Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "SDNodeDbgValue.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/CallingConv.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Function.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/InlineAsm.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/IntrinsicInst.h"
     31 #include "llvm/LLVMContext.h"
     32 #include "llvm/Module.h"
     33 #include "llvm/CodeGen/Analysis.h"
     34 #include "llvm/CodeGen/FastISel.h"
     35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     36 #include "llvm/CodeGen/GCStrategy.h"
     37 #include "llvm/CodeGen/GCMetadata.h"
     38 #include "llvm/CodeGen/MachineFunction.h"
     39 #include "llvm/CodeGen/MachineFrameInfo.h"
     40 #include "llvm/CodeGen/MachineInstrBuilder.h"
     41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     42 #include "llvm/CodeGen/MachineModuleInfo.h"
     43 #include "llvm/CodeGen/MachineRegisterInfo.h"
     44 #include "llvm/CodeGen/PseudoSourceValue.h"
     45 #include "llvm/CodeGen/SelectionDAG.h"
     46 #include "llvm/Analysis/DebugInfo.h"
     47 #include "llvm/Target/TargetData.h"
     48 #include "llvm/Target/TargetFrameLowering.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetIntrinsicInfo.h"
     51 #include "llvm/Target/TargetLowering.h"
     52 #include "llvm/Target/TargetOptions.h"
     53 #include "llvm/Support/CommandLine.h"
     54 #include "llvm/Support/Debug.h"
     55 #include "llvm/Support/ErrorHandling.h"
     56 #include "llvm/Support/MathExtras.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include <algorithm>
     59 using namespace llvm;
     60 
     61 /// LimitFloatPrecision - Generate low-precision inline sequences for
     62 /// some float libcalls (6, 8 or 12 bits).
     63 static unsigned LimitFloatPrecision;
     64 
     65 static cl::opt<unsigned, true>
     66 LimitFPPrecision("limit-float-precision",
     67                  cl::desc("Generate low-precision inline sequences "
     68                           "for some float libcalls"),
     69                  cl::location(LimitFloatPrecision),
     70                  cl::init(0));
     71 
     72 // Limit the width of DAG chains. This is important in general to prevent
     73 // prevent DAG-based analysis from blowing up. For example, alias analysis and
     74 // load clustering may not complete in reasonable time. It is difficult to
     75 // recognize and avoid this situation within each individual analysis, and
     76 // future analyses are likely to have the same behavior. Limiting DAG width is
     77 // the safe approach, and will be especially important with global DAGs.
     78 //
     79 // MaxParallelChains default is arbitrarily high to avoid affecting
     80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
     81 // sequence over this should have been converted to llvm.memcpy by the
     82 // frontend. It easy to induce this behavior with .ll code such as:
     83 // %buffer = alloca [4096 x i8]
     84 // %data = load [4096 x i8]* %argPtr
     85 // store [4096 x i8] %data, [4096 x i8]* %buffer
     86 static const unsigned MaxParallelChains = 64;
     87 
     88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
     89                                       const SDValue *Parts, unsigned NumParts,
     90                                       EVT PartVT, EVT ValueVT);
     91 
     92 /// getCopyFromParts - Create a value that contains the specified legal parts
     93 /// combined into the value they represent.  If the parts combine to a type
     94 /// larger then ValueVT then AssertOp can be used to specify whether the extra
     95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
     96 /// (ISD::AssertSext).
     97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
     98                                 const SDValue *Parts,
     99                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
    100                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
    101   if (ValueVT.isVector())
    102     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
    103 
    104   assert(NumParts > 0 && "No parts to assemble!");
    105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    106   SDValue Val = Parts[0];
    107 
    108   if (NumParts > 1) {
    109     // Assemble the value from multiple parts.
    110     if (ValueVT.isInteger()) {
    111       unsigned PartBits = PartVT.getSizeInBits();
    112       unsigned ValueBits = ValueVT.getSizeInBits();
    113 
    114       // Assemble the power of 2 part.
    115       unsigned RoundParts = NumParts & (NumParts - 1) ?
    116         1 << Log2_32(NumParts) : NumParts;
    117       unsigned RoundBits = PartBits * RoundParts;
    118       EVT RoundVT = RoundBits == ValueBits ?
    119         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
    120       SDValue Lo, Hi;
    121 
    122       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
    123 
    124       if (RoundParts > 2) {
    125         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
    126                               PartVT, HalfVT);
    127         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
    128                               RoundParts / 2, PartVT, HalfVT);
    129       } else {
    130         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
    131         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
    132       }
    133 
    134       if (TLI.isBigEndian())
    135         std::swap(Lo, Hi);
    136 
    137       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
    138 
    139       if (RoundParts < NumParts) {
    140         // Assemble the trailing non-power-of-2 part.
    141         unsigned OddParts = NumParts - RoundParts;
    142         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
    143         Hi = getCopyFromParts(DAG, DL,
    144                               Parts + RoundParts, OddParts, PartVT, OddVT);
    145 
    146         // Combine the round and odd parts.
    147         Lo = Val;
    148         if (TLI.isBigEndian())
    149           std::swap(Lo, Hi);
    150         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    151         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
    152         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
    153                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
    154                                          TLI.getPointerTy()));
    155         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
    156         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
    157       }
    158     } else if (PartVT.isFloatingPoint()) {
    159       // FP split into multiple FP parts (for ppcf128)
    160       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
    161              "Unexpected split");
    162       SDValue Lo, Hi;
    163       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
    164       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
    165       if (TLI.isBigEndian())
    166         std::swap(Lo, Hi);
    167       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
    168     } else {
    169       // FP split into integer parts (soft fp)
    170       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
    171              !PartVT.isVector() && "Unexpected split");
    172       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
    173       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
    174     }
    175   }
    176 
    177   // There is now one part, held in Val.  Correct it to match ValueVT.
    178   PartVT = Val.getValueType();
    179 
    180   if (PartVT == ValueVT)
    181     return Val;
    182 
    183   if (PartVT.isInteger() && ValueVT.isInteger()) {
    184     if (ValueVT.bitsLT(PartVT)) {
    185       // For a truncate, see if we have any information to
    186       // indicate whether the truncated bits will always be
    187       // zero or sign-extension.
    188       if (AssertOp != ISD::DELETED_NODE)
    189         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
    190                           DAG.getValueType(ValueVT));
    191       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    192     }
    193     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
    194   }
    195 
    196   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    197     // FP_ROUND's are always exact here.
    198     if (ValueVT.bitsLT(Val.getValueType()))
    199       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
    200                          DAG.getIntPtrConstant(1));
    201 
    202     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
    203   }
    204 
    205   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
    206     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    207 
    208   llvm_unreachable("Unknown mismatch!");
    209   return SDValue();
    210 }
    211 
    212 /// getCopyFromParts - Create a value that contains the specified legal parts
    213 /// combined into the value they represent.  If the parts combine to a type
    214 /// larger then ValueVT then AssertOp can be used to specify whether the extra
    215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
    216 /// (ISD::AssertSext).
    217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
    218                                       const SDValue *Parts, unsigned NumParts,
    219                                       EVT PartVT, EVT ValueVT) {
    220   assert(ValueVT.isVector() && "Not a vector value");
    221   assert(NumParts > 0 && "No parts to assemble!");
    222   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    223   SDValue Val = Parts[0];
    224 
    225   // Handle a multi-element vector.
    226   if (NumParts > 1) {
    227     EVT IntermediateVT, RegisterVT;
    228     unsigned NumIntermediates;
    229     unsigned NumRegs =
    230     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
    231                                NumIntermediates, RegisterVT);
    232     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    233     NumParts = NumRegs; // Silence a compiler warning.
    234     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    235     assert(RegisterVT == Parts[0].getValueType() &&
    236            "Part type doesn't match part!");
    237 
    238     // Assemble the parts into intermediate operands.
    239     SmallVector<SDValue, 8> Ops(NumIntermediates);
    240     if (NumIntermediates == NumParts) {
    241       // If the register was not expanded, truncate or copy the value,
    242       // as appropriate.
    243       for (unsigned i = 0; i != NumParts; ++i)
    244         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
    245                                   PartVT, IntermediateVT);
    246     } else if (NumParts > 0) {
    247       // If the intermediate type was expanded, build the intermediate
    248       // operands from the parts.
    249       assert(NumParts % NumIntermediates == 0 &&
    250              "Must expand into a divisible number of parts!");
    251       unsigned Factor = NumParts / NumIntermediates;
    252       for (unsigned i = 0; i != NumIntermediates; ++i)
    253         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
    254                                   PartVT, IntermediateVT);
    255     }
    256 
    257     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
    258     // intermediate operands.
    259     Val = DAG.getNode(IntermediateVT.isVector() ?
    260                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
    261                       ValueVT, &Ops[0], NumIntermediates);
    262   }
    263 
    264   // There is now one part, held in Val.  Correct it to match ValueVT.
    265   PartVT = Val.getValueType();
    266 
    267   if (PartVT == ValueVT)
    268     return Val;
    269 
    270   if (PartVT.isVector()) {
    271     // If the element type of the source/dest vectors are the same, but the
    272     // parts vector has more elements than the value vector, then we have a
    273     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
    274     // elements we want.
    275     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
    276       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
    277              "Cannot narrow, it would be a lossy transformation");
    278       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
    279                          DAG.getIntPtrConstant(0));
    280     }
    281 
    282     // Vector/Vector bitcast.
    283     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
    284       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    285 
    286     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
    287       "Cannot handle this kind of promotion");
    288     // Promoted vector extract
    289     bool Smaller = ValueVT.bitsLE(PartVT);
    290     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    291                        DL, ValueVT, Val);
    292 
    293   }
    294 
    295   // Trivial bitcast if the types are the same size and the destination
    296   // vector type is legal.
    297   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
    298       TLI.isTypeLegal(ValueVT))
    299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    300 
    301   // Handle cases such as i8 -> <1 x i1>
    302   assert(ValueVT.getVectorNumElements() == 1 &&
    303          "Only trivial scalar-to-vector conversions should get here!");
    304 
    305   if (ValueVT.getVectorNumElements() == 1 &&
    306       ValueVT.getVectorElementType() != PartVT) {
    307     bool Smaller = ValueVT.bitsLE(PartVT);
    308     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    309                        DL, ValueVT.getScalarType(), Val);
    310   }
    311 
    312   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
    313 }
    314 
    315 
    316 
    317 
    318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
    319                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    320                                  EVT PartVT);
    321 
    322 /// getCopyToParts - Create a series of nodes that contain the specified value
    323 /// split into legal parts.  If the parts contain more bits than Val, then, for
    324 /// integers, ExtendKind can be used to specify how to generate the extra bits.
    325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
    326                            SDValue Val, SDValue *Parts, unsigned NumParts,
    327                            EVT PartVT,
    328                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
    329   EVT ValueVT = Val.getValueType();
    330 
    331   // Handle the vector case separately.
    332   if (ValueVT.isVector())
    333     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
    334 
    335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    336   unsigned PartBits = PartVT.getSizeInBits();
    337   unsigned OrigNumParts = NumParts;
    338   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
    339 
    340   if (NumParts == 0)
    341     return;
    342 
    343   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
    344   if (PartVT == ValueVT) {
    345     assert(NumParts == 1 && "No-op copy with multiple parts!");
    346     Parts[0] = Val;
    347     return;
    348   }
    349 
    350   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
    351     // If the parts cover more bits than the value has, promote the value.
    352     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    353       assert(NumParts == 1 && "Do not know what to promote to!");
    354       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
    355     } else {
    356       assert(PartVT.isInteger() && ValueVT.isInteger() &&
    357              "Unknown mismatch!");
    358       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    359       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
    360     }
    361   } else if (PartBits == ValueVT.getSizeInBits()) {
    362     // Different types of the same size.
    363     assert(NumParts == 1 && PartVT != ValueVT);
    364     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    365   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
    366     // If the parts cover less bits than value has, truncate the value.
    367     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    368            "Unknown mismatch!");
    369     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    370     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    371   }
    372 
    373   // The value may have changed - recompute ValueVT.
    374   ValueVT = Val.getValueType();
    375   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
    376          "Failed to tile the value with PartVT!");
    377 
    378   if (NumParts == 1) {
    379     assert(PartVT == ValueVT && "Type conversion failed!");
    380     Parts[0] = Val;
    381     return;
    382   }
    383 
    384   // Expand the value into multiple parts.
    385   if (NumParts & (NumParts - 1)) {
    386     // The number of parts is not a power of 2.  Split off and copy the tail.
    387     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    388            "Do not know what to expand to!");
    389     unsigned RoundParts = 1 << Log2_32(NumParts);
    390     unsigned RoundBits = RoundParts * PartBits;
    391     unsigned OddParts = NumParts - RoundParts;
    392     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
    393                                  DAG.getIntPtrConstant(RoundBits));
    394     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
    395 
    396     if (TLI.isBigEndian())
    397       // The odd parts were reversed by getCopyToParts - unreverse them.
    398       std::reverse(Parts + RoundParts, Parts + NumParts);
    399 
    400     NumParts = RoundParts;
    401     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    402     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    403   }
    404 
    405   // The number of parts is a power of 2.  Repeatedly bisect the value using
    406   // EXTRACT_ELEMENT.
    407   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
    408                          EVT::getIntegerVT(*DAG.getContext(),
    409                                            ValueVT.getSizeInBits()),
    410                          Val);
    411 
    412   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
    413     for (unsigned i = 0; i < NumParts; i += StepSize) {
    414       unsigned ThisBits = StepSize * PartBits / 2;
    415       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
    416       SDValue &Part0 = Parts[i];
    417       SDValue &Part1 = Parts[i+StepSize/2];
    418 
    419       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    420                           ThisVT, Part0, DAG.getIntPtrConstant(1));
    421       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    422                           ThisVT, Part0, DAG.getIntPtrConstant(0));
    423 
    424       if (ThisBits == PartBits && ThisVT != PartVT) {
    425         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
    426         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
    427       }
    428     }
    429   }
    430 
    431   if (TLI.isBigEndian())
    432     std::reverse(Parts, Parts + OrigNumParts);
    433 }
    434 
    435 
    436 /// getCopyToPartsVector - Create a series of nodes that contain the specified
    437 /// value split into legal parts.
    438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
    439                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    440                                  EVT PartVT) {
    441   EVT ValueVT = Val.getValueType();
    442   assert(ValueVT.isVector() && "Not a vector");
    443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    444 
    445   if (NumParts == 1) {
    446     if (PartVT == ValueVT) {
    447       // Nothing to do.
    448     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
    449       // Bitconvert vector->vector case.
    450       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    451     } else if (PartVT.isVector() &&
    452                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
    453                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
    454       EVT ElementVT = PartVT.getVectorElementType();
    455       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
    456       // undef elements.
    457       SmallVector<SDValue, 16> Ops;
    458       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
    459         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    460                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
    461 
    462       for (unsigned i = ValueVT.getVectorNumElements(),
    463            e = PartVT.getVectorNumElements(); i != e; ++i)
    464         Ops.push_back(DAG.getUNDEF(ElementVT));
    465 
    466       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
    467 
    468       // FIXME: Use CONCAT for 2x -> 4x.
    469 
    470       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
    471       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
    472     } else if (PartVT.isVector() &&
    473                PartVT.getVectorElementType().bitsGE(
    474                  ValueVT.getVectorElementType()) &&
    475                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
    476 
    477       // Promoted vector extract
    478       bool Smaller = PartVT.bitsLE(ValueVT);
    479       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    480                         DL, PartVT, Val);
    481     } else{
    482       // Vector -> scalar conversion.
    483       assert(ValueVT.getVectorNumElements() == 1 &&
    484              "Only trivial vector-to-scalar conversions should get here!");
    485       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    486                         PartVT, Val, DAG.getIntPtrConstant(0));
    487 
    488       bool Smaller = ValueVT.bitsLE(PartVT);
    489       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    490                          DL, PartVT, Val);
    491     }
    492 
    493     Parts[0] = Val;
    494     return;
    495   }
    496 
    497   // Handle a multi-element vector.
    498   EVT IntermediateVT, RegisterVT;
    499   unsigned NumIntermediates;
    500   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
    501                                                 IntermediateVT,
    502                                                 NumIntermediates, RegisterVT);
    503   unsigned NumElements = ValueVT.getVectorNumElements();
    504 
    505   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    506   NumParts = NumRegs; // Silence a compiler warning.
    507   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    508 
    509   // Split the vector into intermediate operands.
    510   SmallVector<SDValue, 8> Ops(NumIntermediates);
    511   for (unsigned i = 0; i != NumIntermediates; ++i) {
    512     if (IntermediateVT.isVector())
    513       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
    514                            IntermediateVT, Val,
    515                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
    516     else
    517       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    518                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
    519   }
    520 
    521   // Split the intermediate operands into legal parts.
    522   if (NumParts == NumIntermediates) {
    523     // If the register was not expanded, promote or copy the value,
    524     // as appropriate.
    525     for (unsigned i = 0; i != NumParts; ++i)
    526       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
    527   } else if (NumParts > 0) {
    528     // If the intermediate type was expanded, split each the value into
    529     // legal parts.
    530     assert(NumParts % NumIntermediates == 0 &&
    531            "Must expand into a divisible number of parts!");
    532     unsigned Factor = NumParts / NumIntermediates;
    533     for (unsigned i = 0; i != NumIntermediates; ++i)
    534       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
    535   }
    536 }
    537 
    538 
    539 
    540 
    541 namespace {
    542   /// RegsForValue - This struct represents the registers (physical or virtual)
    543   /// that a particular set of values is assigned, and the type information
    544   /// about the value. The most common situation is to represent one value at a
    545   /// time, but struct or array values are handled element-wise as multiple
    546   /// values.  The splitting of aggregates is performed recursively, so that we
    547   /// never have aggregate-typed registers. The values at this point do not
    548   /// necessarily have legal types, so each value may require one or more
    549   /// registers of some legal type.
    550   ///
    551   struct RegsForValue {
    552     /// ValueVTs - The value types of the values, which may not be legal, and
    553     /// may need be promoted or synthesized from one or more registers.
    554     ///
    555     SmallVector<EVT, 4> ValueVTs;
    556 
    557     /// RegVTs - The value types of the registers. This is the same size as
    558     /// ValueVTs and it records, for each value, what the type of the assigned
    559     /// register or registers are. (Individual values are never synthesized
    560     /// from more than one type of register.)
    561     ///
    562     /// With virtual registers, the contents of RegVTs is redundant with TLI's
    563     /// getRegisterType member function, however when with physical registers
    564     /// it is necessary to have a separate record of the types.
    565     ///
    566     SmallVector<EVT, 4> RegVTs;
    567 
    568     /// Regs - This list holds the registers assigned to the values.
    569     /// Each legal or promoted value requires one register, and each
    570     /// expanded value requires multiple registers.
    571     ///
    572     SmallVector<unsigned, 4> Regs;
    573 
    574     RegsForValue() {}
    575 
    576     RegsForValue(const SmallVector<unsigned, 4> &regs,
    577                  EVT regvt, EVT valuevt)
    578       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
    579 
    580     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
    581                  unsigned Reg, Type *Ty) {
    582       ComputeValueVTs(tli, Ty, ValueVTs);
    583 
    584       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    585         EVT ValueVT = ValueVTs[Value];
    586         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
    587         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
    588         for (unsigned i = 0; i != NumRegs; ++i)
    589           Regs.push_back(Reg + i);
    590         RegVTs.push_back(RegisterVT);
    591         Reg += NumRegs;
    592       }
    593     }
    594 
    595     /// areValueTypesLegal - Return true if types of all the values are legal.
    596     bool areValueTypesLegal(const TargetLowering &TLI) {
    597       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    598         EVT RegisterVT = RegVTs[Value];
    599         if (!TLI.isTypeLegal(RegisterVT))
    600           return false;
    601       }
    602       return true;
    603     }
    604 
    605     /// append - Add the specified values to this one.
    606     void append(const RegsForValue &RHS) {
    607       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    608       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    609       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    610     }
    611 
    612     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    613     /// this value and returns the result as a ValueVTs value.  This uses
    614     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    615     /// If the Flag pointer is NULL, no flag is used.
    616     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    617                             DebugLoc dl,
    618                             SDValue &Chain, SDValue *Flag) const;
    619 
    620     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    621     /// specified value into the registers specified by this object.  This uses
    622     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    623     /// If the Flag pointer is NULL, no flag is used.
    624     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    625                        SDValue &Chain, SDValue *Flag) const;
    626 
    627     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    628     /// operand list.  This adds the code marker, matching input operand index
    629     /// (if applicable), and includes the number of values added into it.
    630     void AddInlineAsmOperands(unsigned Kind,
    631                               bool HasMatching, unsigned MatchingIdx,
    632                               SelectionDAG &DAG,
    633                               std::vector<SDValue> &Ops) const;
    634   };
    635 }
    636 
    637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    638 /// this value and returns the result as a ValueVT value.  This uses
    639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    640 /// If the Flag pointer is NULL, no flag is used.
    641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
    642                                       FunctionLoweringInfo &FuncInfo,
    643                                       DebugLoc dl,
    644                                       SDValue &Chain, SDValue *Flag) const {
    645   // A Value with type {} or [0 x %t] needs no registers.
    646   if (ValueVTs.empty())
    647     return SDValue();
    648 
    649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    650 
    651   // Assemble the legal parts into the final values.
    652   SmallVector<SDValue, 4> Values(ValueVTs.size());
    653   SmallVector<SDValue, 8> Parts;
    654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    655     // Copy the legal parts from the registers.
    656     EVT ValueVT = ValueVTs[Value];
    657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    658     EVT RegisterVT = RegVTs[Value];
    659 
    660     Parts.resize(NumRegs);
    661     for (unsigned i = 0; i != NumRegs; ++i) {
    662       SDValue P;
    663       if (Flag == 0) {
    664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
    665       } else {
    666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
    667         *Flag = P.getValue(2);
    668       }
    669 
    670       Chain = P.getValue(1);
    671       Parts[i] = P;
    672 
    673       // If the source register was virtual and if we know something about it,
    674       // add an assert node.
    675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
    676           !RegisterVT.isInteger() || RegisterVT.isVector())
    677         continue;
    678 
    679       const FunctionLoweringInfo::LiveOutInfo *LOI =
    680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
    681       if (!LOI)
    682         continue;
    683 
    684       unsigned RegSize = RegisterVT.getSizeInBits();
    685       unsigned NumSignBits = LOI->NumSignBits;
    686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
    687 
    688       // FIXME: We capture more information than the dag can represent.  For
    689       // now, just use the tightest assertzext/assertsext possible.
    690       bool isSExt = true;
    691       EVT FromVT(MVT::Other);
    692       if (NumSignBits == RegSize)
    693         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
    694       else if (NumZeroBits >= RegSize-1)
    695         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
    696       else if (NumSignBits > RegSize-8)
    697         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
    698       else if (NumZeroBits >= RegSize-8)
    699         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
    700       else if (NumSignBits > RegSize-16)
    701         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
    702       else if (NumZeroBits >= RegSize-16)
    703         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
    704       else if (NumSignBits > RegSize-32)
    705         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
    706       else if (NumZeroBits >= RegSize-32)
    707         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
    708       else
    709         continue;
    710 
    711       // Add an assertion node.
    712       assert(FromVT != MVT::Other);
    713       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
    714                              RegisterVT, P, DAG.getValueType(FromVT));
    715     }
    716 
    717     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
    718                                      NumRegs, RegisterVT, ValueVT);
    719     Part += NumRegs;
    720     Parts.clear();
    721   }
    722 
    723   return DAG.getNode(ISD::MERGE_VALUES, dl,
    724                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
    725                      &Values[0], ValueVTs.size());
    726 }
    727 
    728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    729 /// specified value into the registers specified by this object.  This uses
    730 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    731 /// If the Flag pointer is NULL, no flag is used.
    732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    733                                  SDValue &Chain, SDValue *Flag) const {
    734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    735 
    736   // Get the list of the values's legal parts.
    737   unsigned NumRegs = Regs.size();
    738   SmallVector<SDValue, 8> Parts(NumRegs);
    739   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    740     EVT ValueVT = ValueVTs[Value];
    741     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    742     EVT RegisterVT = RegVTs[Value];
    743 
    744     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
    745                    &Parts[Part], NumParts, RegisterVT);
    746     Part += NumParts;
    747   }
    748 
    749   // Copy the parts into the registers.
    750   SmallVector<SDValue, 8> Chains(NumRegs);
    751   for (unsigned i = 0; i != NumRegs; ++i) {
    752     SDValue Part;
    753     if (Flag == 0) {
    754       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
    755     } else {
    756       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
    757       *Flag = Part.getValue(1);
    758     }
    759 
    760     Chains[i] = Part.getValue(0);
    761   }
    762 
    763   if (NumRegs == 1 || Flag)
    764     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
    765     // flagged to it. That is the CopyToReg nodes and the user are considered
    766     // a single scheduling unit. If we create a TokenFactor and return it as
    767     // chain, then the TokenFactor is both a predecessor (operand) of the
    768     // user as well as a successor (the TF operands are flagged to the user).
    769     // c1, f1 = CopyToReg
    770     // c2, f2 = CopyToReg
    771     // c3     = TokenFactor c1, c2
    772     // ...
    773     //        = op c3, ..., f2
    774     Chain = Chains[NumRegs-1];
    775   else
    776     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
    777 }
    778 
    779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    780 /// operand list.  This adds the code marker and includes the number of
    781 /// values added into it.
    782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
    783                                         unsigned MatchingIdx,
    784                                         SelectionDAG &DAG,
    785                                         std::vector<SDValue> &Ops) const {
    786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    787 
    788   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
    789   if (HasMatching)
    790     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
    791   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
    792   Ops.push_back(Res);
    793 
    794   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
    795     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
    796     EVT RegisterVT = RegVTs[Value];
    797     for (unsigned i = 0; i != NumRegs; ++i) {
    798       assert(Reg < Regs.size() && "Mismatch in # registers expected");
    799       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
    800     }
    801   }
    802 }
    803 
    804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
    805   AA = &aa;
    806   GFI = gfi;
    807   TD = DAG.getTarget().getTargetData();
    808 }
    809 
    810 /// clear - Clear out the current SelectionDAG and the associated
    811 /// state and prepare this SelectionDAGBuilder object to be used
    812 /// for a new block. This doesn't clear out information about
    813 /// additional blocks that are needed to complete switch lowering
    814 /// or PHI node updating; that information is cleared out as it is
    815 /// consumed.
    816 void SelectionDAGBuilder::clear() {
    817   NodeMap.clear();
    818   UnusedArgNodeMap.clear();
    819   PendingLoads.clear();
    820   PendingExports.clear();
    821   CurDebugLoc = DebugLoc();
    822   HasTailCall = false;
    823 }
    824 
    825 /// clearDanglingDebugInfo - Clear the dangling debug information
    826 /// map. This function is seperated from the clear so that debug
    827 /// information that is dangling in a basic block can be properly
    828 /// resolved in a different basic block. This allows the
    829 /// SelectionDAG to resolve dangling debug information attached
    830 /// to PHI nodes.
    831 void SelectionDAGBuilder::clearDanglingDebugInfo() {
    832   DanglingDebugInfoMap.clear();
    833 }
    834 
    835 /// getRoot - Return the current virtual root of the Selection DAG,
    836 /// flushing any PendingLoad items. This must be done before emitting
    837 /// a store or any other node that may need to be ordered after any
    838 /// prior load instructions.
    839 ///
    840 SDValue SelectionDAGBuilder::getRoot() {
    841   if (PendingLoads.empty())
    842     return DAG.getRoot();
    843 
    844   if (PendingLoads.size() == 1) {
    845     SDValue Root = PendingLoads[0];
    846     DAG.setRoot(Root);
    847     PendingLoads.clear();
    848     return Root;
    849   }
    850 
    851   // Otherwise, we have to make a token factor node.
    852   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    853                                &PendingLoads[0], PendingLoads.size());
    854   PendingLoads.clear();
    855   DAG.setRoot(Root);
    856   return Root;
    857 }
    858 
    859 /// getControlRoot - Similar to getRoot, but instead of flushing all the
    860 /// PendingLoad items, flush all the PendingExports items. It is necessary
    861 /// to do this before emitting a terminator instruction.
    862 ///
    863 SDValue SelectionDAGBuilder::getControlRoot() {
    864   SDValue Root = DAG.getRoot();
    865 
    866   if (PendingExports.empty())
    867     return Root;
    868 
    869   // Turn all of the CopyToReg chains into one factored node.
    870   if (Root.getOpcode() != ISD::EntryToken) {
    871     unsigned i = 0, e = PendingExports.size();
    872     for (; i != e; ++i) {
    873       assert(PendingExports[i].getNode()->getNumOperands() > 1);
    874       if (PendingExports[i].getNode()->getOperand(0) == Root)
    875         break;  // Don't add the root if we already indirectly depend on it.
    876     }
    877 
    878     if (i == e)
    879       PendingExports.push_back(Root);
    880   }
    881 
    882   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    883                      &PendingExports[0],
    884                      PendingExports.size());
    885   PendingExports.clear();
    886   DAG.setRoot(Root);
    887   return Root;
    888 }
    889 
    890 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
    891   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
    892   DAG.AssignOrdering(Node, SDNodeOrder);
    893 
    894   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
    895     AssignOrderingToNode(Node->getOperand(I).getNode());
    896 }
    897 
    898 void SelectionDAGBuilder::visit(const Instruction &I) {
    899   // Set up outgoing PHI node register values before emitting the terminator.
    900   if (isa<TerminatorInst>(&I))
    901     HandlePHINodesInSuccessorBlocks(I.getParent());
    902 
    903   CurDebugLoc = I.getDebugLoc();
    904 
    905   visit(I.getOpcode(), I);
    906 
    907   if (!isa<TerminatorInst>(&I) && !HasTailCall)
    908     CopyToExportRegsIfNeeded(&I);
    909 
    910   CurDebugLoc = DebugLoc();
    911 }
    912 
    913 void SelectionDAGBuilder::visitPHI(const PHINode &) {
    914   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
    915 }
    916 
    917 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
    918   // Note: this doesn't use InstVisitor, because it has to work with
    919   // ConstantExpr's in addition to instructions.
    920   switch (Opcode) {
    921   default: llvm_unreachable("Unknown instruction type encountered!");
    922     // Build the switch statement using the Instruction.def file.
    923 #define HANDLE_INST(NUM, OPCODE, CLASS) \
    924     case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
    925 #include "llvm/Instruction.def"
    926   }
    927 
    928   // Assign the ordering to the freshly created DAG nodes.
    929   if (NodeMap.count(&I)) {
    930     ++SDNodeOrder;
    931     AssignOrderingToNode(getValue(&I).getNode());
    932   }
    933 }
    934 
    935 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    936 // generate the debug data structures now that we've seen its definition.
    937 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
    938                                                    SDValue Val) {
    939   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
    940   if (DDI.getDI()) {
    941     const DbgValueInst *DI = DDI.getDI();
    942     DebugLoc dl = DDI.getdl();
    943     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
    944     MDNode *Variable = DI->getVariable();
    945     uint64_t Offset = DI->getOffset();
    946     SDDbgValue *SDV;
    947     if (Val.getNode()) {
    948       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
    949         SDV = DAG.getDbgValue(Variable, Val.getNode(),
    950                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
    951         DAG.AddDbgValue(SDV, Val.getNode(), false);
    952       }
    953     } else
    954       DEBUG(dbgs() << "Dropping debug info for " << DI);
    955     DanglingDebugInfoMap[V] = DanglingDebugInfo();
    956   }
    957 }
    958 
    959 // getValue - Return an SDValue for the given Value.
    960 SDValue SelectionDAGBuilder::getValue(const Value *V) {
    961   // If we already have an SDValue for this value, use it. It's important
    962   // to do this first, so that we don't create a CopyFromReg if we already
    963   // have a regular SDValue.
    964   SDValue &N = NodeMap[V];
    965   if (N.getNode()) return N;
    966 
    967   // If there's a virtual register allocated and initialized for this
    968   // value, use it.
    969   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
    970   if (It != FuncInfo.ValueMap.end()) {
    971     unsigned InReg = It->second;
    972     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
    973     SDValue Chain = DAG.getEntryNode();
    974     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
    975     resolveDanglingDebugInfo(V, N);
    976     return N;
    977   }
    978 
    979   // Otherwise create a new SDValue and remember it.
    980   SDValue Val = getValueImpl(V);
    981   NodeMap[V] = Val;
    982   resolveDanglingDebugInfo(V, Val);
    983   return Val;
    984 }
    985 
    986 /// getNonRegisterValue - Return an SDValue for the given Value, but
    987 /// don't look in FuncInfo.ValueMap for a virtual register.
    988 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
    989   // If we already have an SDValue for this value, use it.
    990   SDValue &N = NodeMap[V];
    991   if (N.getNode()) return N;
    992 
    993   // Otherwise create a new SDValue and remember it.
    994   SDValue Val = getValueImpl(V);
    995   NodeMap[V] = Val;
    996   resolveDanglingDebugInfo(V, Val);
    997   return Val;
    998 }
    999 
   1000 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
   1001 /// Create an SDValue for the given value.
   1002 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
   1003   if (const Constant *C = dyn_cast<Constant>(V)) {
   1004     EVT VT = TLI.getValueType(V->getType(), true);
   1005 
   1006     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1007       return DAG.getConstant(*CI, VT);
   1008 
   1009     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   1010       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
   1011 
   1012     if (isa<ConstantPointerNull>(C))
   1013       return DAG.getConstant(0, TLI.getPointerTy());
   1014 
   1015     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   1016       return DAG.getConstantFP(*CFP, VT);
   1017 
   1018     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
   1019       return DAG.getUNDEF(VT);
   1020 
   1021     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1022       visit(CE->getOpcode(), *CE);
   1023       SDValue N1 = NodeMap[V];
   1024       assert(N1.getNode() && "visit didn't populate the NodeMap!");
   1025       return N1;
   1026     }
   1027 
   1028     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
   1029       SmallVector<SDValue, 4> Constants;
   1030       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
   1031            OI != OE; ++OI) {
   1032         SDNode *Val = getValue(*OI).getNode();
   1033         // If the operand is an empty aggregate, there are no values.
   1034         if (!Val) continue;
   1035         // Add each leaf value from the operand to the Constants list
   1036         // to form a flattened list of all the values.
   1037         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1038           Constants.push_back(SDValue(Val, i));
   1039       }
   1040 
   1041       return DAG.getMergeValues(&Constants[0], Constants.size(),
   1042                                 getCurDebugLoc());
   1043     }
   1044 
   1045     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
   1046       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
   1047              "Unknown struct or array constant!");
   1048 
   1049       SmallVector<EVT, 4> ValueVTs;
   1050       ComputeValueVTs(TLI, C->getType(), ValueVTs);
   1051       unsigned NumElts = ValueVTs.size();
   1052       if (NumElts == 0)
   1053         return SDValue(); // empty struct
   1054       SmallVector<SDValue, 4> Constants(NumElts);
   1055       for (unsigned i = 0; i != NumElts; ++i) {
   1056         EVT EltVT = ValueVTs[i];
   1057         if (isa<UndefValue>(C))
   1058           Constants[i] = DAG.getUNDEF(EltVT);
   1059         else if (EltVT.isFloatingPoint())
   1060           Constants[i] = DAG.getConstantFP(0, EltVT);
   1061         else
   1062           Constants[i] = DAG.getConstant(0, EltVT);
   1063       }
   1064 
   1065       return DAG.getMergeValues(&Constants[0], NumElts,
   1066                                 getCurDebugLoc());
   1067     }
   1068 
   1069     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
   1070       return DAG.getBlockAddress(BA, VT);
   1071 
   1072     VectorType *VecTy = cast<VectorType>(V->getType());
   1073     unsigned NumElements = VecTy->getNumElements();
   1074 
   1075     // Now that we know the number and type of the elements, get that number of
   1076     // elements into the Ops array based on what kind of constant it is.
   1077     SmallVector<SDValue, 16> Ops;
   1078     if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
   1079       for (unsigned i = 0; i != NumElements; ++i)
   1080         Ops.push_back(getValue(CP->getOperand(i)));
   1081     } else {
   1082       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
   1083       EVT EltVT = TLI.getValueType(VecTy->getElementType());
   1084 
   1085       SDValue Op;
   1086       if (EltVT.isFloatingPoint())
   1087         Op = DAG.getConstantFP(0, EltVT);
   1088       else
   1089         Op = DAG.getConstant(0, EltVT);
   1090       Ops.assign(NumElements, Op);
   1091     }
   1092 
   1093     // Create a BUILD_VECTOR node.
   1094     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   1095                                     VT, &Ops[0], Ops.size());
   1096   }
   1097 
   1098   // If this is a static alloca, generate it as the frameindex instead of
   1099   // computation.
   1100   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
   1101     DenseMap<const AllocaInst*, int>::iterator SI =
   1102       FuncInfo.StaticAllocaMap.find(AI);
   1103     if (SI != FuncInfo.StaticAllocaMap.end())
   1104       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
   1105   }
   1106 
   1107   // If this is an instruction which fast-isel has deferred, select it now.
   1108   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   1109     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
   1110     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
   1111     SDValue Chain = DAG.getEntryNode();
   1112     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
   1113   }
   1114 
   1115   llvm_unreachable("Can't get register for value!");
   1116   return SDValue();
   1117 }
   1118 
   1119 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
   1120   SDValue Chain = getControlRoot();
   1121   SmallVector<ISD::OutputArg, 8> Outs;
   1122   SmallVector<SDValue, 8> OutVals;
   1123 
   1124   if (!FuncInfo.CanLowerReturn) {
   1125     unsigned DemoteReg = FuncInfo.DemoteRegister;
   1126     const Function *F = I.getParent()->getParent();
   1127 
   1128     // Emit a store of the return value through the virtual register.
   1129     // Leave Outs empty so that LowerReturn won't try to load return
   1130     // registers the usual way.
   1131     SmallVector<EVT, 1> PtrValueVTs;
   1132     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
   1133                     PtrValueVTs);
   1134 
   1135     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
   1136     SDValue RetOp = getValue(I.getOperand(0));
   1137 
   1138     SmallVector<EVT, 4> ValueVTs;
   1139     SmallVector<uint64_t, 4> Offsets;
   1140     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
   1141     unsigned NumValues = ValueVTs.size();
   1142 
   1143     SmallVector<SDValue, 4> Chains(NumValues);
   1144     for (unsigned i = 0; i != NumValues; ++i) {
   1145       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   1146                                 RetPtr.getValueType(), RetPtr,
   1147                                 DAG.getIntPtrConstant(Offsets[i]));
   1148       Chains[i] =
   1149         DAG.getStore(Chain, getCurDebugLoc(),
   1150                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
   1151                      // FIXME: better loc info would be nice.
   1152                      Add, MachinePointerInfo(), false, false, 0);
   1153     }
   1154 
   1155     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   1156                         MVT::Other, &Chains[0], NumValues);
   1157   } else if (I.getNumOperands() != 0) {
   1158     SmallVector<EVT, 4> ValueVTs;
   1159     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
   1160     unsigned NumValues = ValueVTs.size();
   1161     if (NumValues) {
   1162       SDValue RetOp = getValue(I.getOperand(0));
   1163       for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1164         EVT VT = ValueVTs[j];
   1165 
   1166         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1167 
   1168         const Function *F = I.getParent()->getParent();
   1169         if (F->paramHasAttr(0, Attribute::SExt))
   1170           ExtendKind = ISD::SIGN_EXTEND;
   1171         else if (F->paramHasAttr(0, Attribute::ZExt))
   1172           ExtendKind = ISD::ZERO_EXTEND;
   1173 
   1174         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
   1175           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
   1176 
   1177         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
   1178         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
   1179         SmallVector<SDValue, 4> Parts(NumParts);
   1180         getCopyToParts(DAG, getCurDebugLoc(),
   1181                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
   1182                        &Parts[0], NumParts, PartVT, ExtendKind);
   1183 
   1184         // 'inreg' on function refers to return value
   1185         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1186         if (F->paramHasAttr(0, Attribute::InReg))
   1187           Flags.setInReg();
   1188 
   1189         // Propagate extension type if any
   1190         if (ExtendKind == ISD::SIGN_EXTEND)
   1191           Flags.setSExt();
   1192         else if (ExtendKind == ISD::ZERO_EXTEND)
   1193           Flags.setZExt();
   1194 
   1195         for (unsigned i = 0; i < NumParts; ++i) {
   1196           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
   1197                                         /*isfixed=*/true));
   1198           OutVals.push_back(Parts[i]);
   1199         }
   1200       }
   1201     }
   1202   }
   1203 
   1204   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
   1205   CallingConv::ID CallConv =
   1206     DAG.getMachineFunction().getFunction()->getCallingConv();
   1207   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
   1208                           Outs, OutVals, getCurDebugLoc(), DAG);
   1209 
   1210   // Verify that the target's LowerReturn behaved as expected.
   1211   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   1212          "LowerReturn didn't return a valid chain!");
   1213 
   1214   // Update the DAG with the new chain value resulting from return lowering.
   1215   DAG.setRoot(Chain);
   1216 }
   1217 
   1218 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
   1219 /// created for it, emit nodes to copy the value into the virtual
   1220 /// registers.
   1221 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
   1222   // Skip empty types
   1223   if (V->getType()->isEmptyTy())
   1224     return;
   1225 
   1226   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   1227   if (VMI != FuncInfo.ValueMap.end()) {
   1228     assert(!V->use_empty() && "Unused value assigned virtual registers!");
   1229     CopyValueToVirtualRegister(V, VMI->second);
   1230   }
   1231 }
   1232 
   1233 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
   1234 /// the current basic block, add it to ValueMap now so that we'll get a
   1235 /// CopyTo/FromReg.
   1236 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
   1237   // No need to export constants.
   1238   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
   1239 
   1240   // Already exported?
   1241   if (FuncInfo.isExportedInst(V)) return;
   1242 
   1243   unsigned Reg = FuncInfo.InitializeRegForValue(V);
   1244   CopyValueToVirtualRegister(V, Reg);
   1245 }
   1246 
   1247 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
   1248                                                      const BasicBlock *FromBB) {
   1249   // The operands of the setcc have to be in this block.  We don't know
   1250   // how to export them from some other block.
   1251   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
   1252     // Can export from current BB.
   1253     if (VI->getParent() == FromBB)
   1254       return true;
   1255 
   1256     // Is already exported, noop.
   1257     return FuncInfo.isExportedInst(V);
   1258   }
   1259 
   1260   // If this is an argument, we can export it if the BB is the entry block or
   1261   // if it is already exported.
   1262   if (isa<Argument>(V)) {
   1263     if (FromBB == &FromBB->getParent()->getEntryBlock())
   1264       return true;
   1265 
   1266     // Otherwise, can only export this if it is already exported.
   1267     return FuncInfo.isExportedInst(V);
   1268   }
   1269 
   1270   // Otherwise, constants can always be exported.
   1271   return true;
   1272 }
   1273 
   1274 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
   1275 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
   1276                                             MachineBasicBlock *Dst) {
   1277   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1278   if (!BPI)
   1279     return 0;
   1280   BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
   1281   BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
   1282   return BPI->getEdgeWeight(SrcBB, DstBB);
   1283 }
   1284 
   1285 void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
   1286                                                  MachineBasicBlock *Dst) {
   1287   uint32_t weight = getEdgeWeight(Src, Dst);
   1288   Src->addSuccessor(Dst, weight);
   1289 }
   1290 
   1291 
   1292 static bool InBlock(const Value *V, const BasicBlock *BB) {
   1293   if (const Instruction *I = dyn_cast<Instruction>(V))
   1294     return I->getParent() == BB;
   1295   return true;
   1296 }
   1297 
   1298 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
   1299 /// This function emits a branch and is used at the leaves of an OR or an
   1300 /// AND operator tree.
   1301 ///
   1302 void
   1303 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
   1304                                                   MachineBasicBlock *TBB,
   1305                                                   MachineBasicBlock *FBB,
   1306                                                   MachineBasicBlock *CurBB,
   1307                                                   MachineBasicBlock *SwitchBB) {
   1308   const BasicBlock *BB = CurBB->getBasicBlock();
   1309 
   1310   // If the leaf of the tree is a comparison, merge the condition into
   1311   // the caseblock.
   1312   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
   1313     // The operands of the cmp have to be in this block.  We don't know
   1314     // how to export them from some other block.  If this is the first block
   1315     // of the sequence, no exporting is needed.
   1316     if (CurBB == SwitchBB ||
   1317         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
   1318          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
   1319       ISD::CondCode Condition;
   1320       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
   1321         Condition = getICmpCondCode(IC->getPredicate());
   1322       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
   1323         Condition = getFCmpCondCode(FC->getPredicate());
   1324       } else {
   1325         Condition = ISD::SETEQ; // silence warning.
   1326         llvm_unreachable("Unknown compare instruction");
   1327       }
   1328 
   1329       CaseBlock CB(Condition, BOp->getOperand(0),
   1330                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
   1331       SwitchCases.push_back(CB);
   1332       return;
   1333     }
   1334   }
   1335 
   1336   // Create a CaseBlock record representing this branch.
   1337   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
   1338                NULL, TBB, FBB, CurBB);
   1339   SwitchCases.push_back(CB);
   1340 }
   1341 
   1342 /// FindMergedConditions - If Cond is an expression like
   1343 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
   1344                                                MachineBasicBlock *TBB,
   1345                                                MachineBasicBlock *FBB,
   1346                                                MachineBasicBlock *CurBB,
   1347                                                MachineBasicBlock *SwitchBB,
   1348                                                unsigned Opc) {
   1349   // If this node is not part of the or/and tree, emit it as a branch.
   1350   const Instruction *BOp = dyn_cast<Instruction>(Cond);
   1351   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
   1352       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
   1353       BOp->getParent() != CurBB->getBasicBlock() ||
   1354       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
   1355       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
   1356     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
   1357     return;
   1358   }
   1359 
   1360   //  Create TmpBB after CurBB.
   1361   MachineFunction::iterator BBI = CurBB;
   1362   MachineFunction &MF = DAG.getMachineFunction();
   1363   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
   1364   CurBB->getParent()->insert(++BBI, TmpBB);
   1365 
   1366   if (Opc == Instruction::Or) {
   1367     // Codegen X | Y as:
   1368     //   jmp_if_X TBB
   1369     //   jmp TmpBB
   1370     // TmpBB:
   1371     //   jmp_if_Y TBB
   1372     //   jmp FBB
   1373     //
   1374 
   1375     // Emit the LHS condition.
   1376     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
   1377 
   1378     // Emit the RHS condition into TmpBB.
   1379     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1380   } else {
   1381     assert(Opc == Instruction::And && "Unknown merge op!");
   1382     // Codegen X & Y as:
   1383     //   jmp_if_X TmpBB
   1384     //   jmp FBB
   1385     // TmpBB:
   1386     //   jmp_if_Y TBB
   1387     //   jmp FBB
   1388     //
   1389     //  This requires creation of TmpBB after CurBB.
   1390 
   1391     // Emit the LHS condition.
   1392     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
   1393 
   1394     // Emit the RHS condition into TmpBB.
   1395     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1396   }
   1397 }
   1398 
   1399 /// If the set of cases should be emitted as a series of branches, return true.
   1400 /// If we should emit this as a bunch of and/or'd together conditions, return
   1401 /// false.
   1402 bool
   1403 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
   1404   if (Cases.size() != 2) return true;
   1405 
   1406   // If this is two comparisons of the same values or'd or and'd together, they
   1407   // will get folded into a single comparison, so don't emit two blocks.
   1408   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
   1409        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
   1410       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
   1411        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
   1412     return false;
   1413   }
   1414 
   1415   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
   1416   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
   1417   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
   1418       Cases[0].CC == Cases[1].CC &&
   1419       isa<Constant>(Cases[0].CmpRHS) &&
   1420       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
   1421     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
   1422       return false;
   1423     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
   1424       return false;
   1425   }
   1426 
   1427   return true;
   1428 }
   1429 
   1430 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
   1431   MachineBasicBlock *BrMBB = FuncInfo.MBB;
   1432 
   1433   // Update machine-CFG edges.
   1434   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
   1435 
   1436   // Figure out which block is immediately after the current one.
   1437   MachineBasicBlock *NextBlock = 0;
   1438   MachineFunction::iterator BBI = BrMBB;
   1439   if (++BBI != FuncInfo.MF->end())
   1440     NextBlock = BBI;
   1441 
   1442   if (I.isUnconditional()) {
   1443     // Update machine-CFG edges.
   1444     BrMBB->addSuccessor(Succ0MBB);
   1445 
   1446     // If this is not a fall-through branch, emit the branch.
   1447     if (Succ0MBB != NextBlock)
   1448       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1449                               MVT::Other, getControlRoot(),
   1450                               DAG.getBasicBlock(Succ0MBB)));
   1451 
   1452     return;
   1453   }
   1454 
   1455   // If this condition is one of the special cases we handle, do special stuff
   1456   // now.
   1457   const Value *CondVal = I.getCondition();
   1458   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
   1459 
   1460   // If this is a series of conditions that are or'd or and'd together, emit
   1461   // this as a sequence of branches instead of setcc's with and/or operations.
   1462   // As long as jumps are not expensive, this should improve performance.
   1463   // For example, instead of something like:
   1464   //     cmp A, B
   1465   //     C = seteq
   1466   //     cmp D, E
   1467   //     F = setle
   1468   //     or C, F
   1469   //     jnz foo
   1470   // Emit:
   1471   //     cmp A, B
   1472   //     je foo
   1473   //     cmp D, E
   1474   //     jle foo
   1475   //
   1476   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
   1477     if (!TLI.isJumpExpensive() &&
   1478         BOp->hasOneUse() &&
   1479         (BOp->getOpcode() == Instruction::And ||
   1480          BOp->getOpcode() == Instruction::Or)) {
   1481       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
   1482                            BOp->getOpcode());
   1483       // If the compares in later blocks need to use values not currently
   1484       // exported from this block, export them now.  This block should always
   1485       // be the first entry.
   1486       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
   1487 
   1488       // Allow some cases to be rejected.
   1489       if (ShouldEmitAsBranches(SwitchCases)) {
   1490         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
   1491           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
   1492           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
   1493         }
   1494 
   1495         // Emit the branch for this block.
   1496         visitSwitchCase(SwitchCases[0], BrMBB);
   1497         SwitchCases.erase(SwitchCases.begin());
   1498         return;
   1499       }
   1500 
   1501       // Okay, we decided not to do this, remove any inserted MBB's and clear
   1502       // SwitchCases.
   1503       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
   1504         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
   1505 
   1506       SwitchCases.clear();
   1507     }
   1508   }
   1509 
   1510   // Create a CaseBlock record representing this branch.
   1511   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
   1512                NULL, Succ0MBB, Succ1MBB, BrMBB);
   1513 
   1514   // Use visitSwitchCase to actually insert the fast branch sequence for this
   1515   // cond branch.
   1516   visitSwitchCase(CB, BrMBB);
   1517 }
   1518 
   1519 /// visitSwitchCase - Emits the necessary code to represent a single node in
   1520 /// the binary search tree resulting from lowering a switch instruction.
   1521 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
   1522                                           MachineBasicBlock *SwitchBB) {
   1523   SDValue Cond;
   1524   SDValue CondLHS = getValue(CB.CmpLHS);
   1525   DebugLoc dl = getCurDebugLoc();
   1526 
   1527   // Build the setcc now.
   1528   if (CB.CmpMHS == NULL) {
   1529     // Fold "(X == true)" to X and "(X == false)" to !X to
   1530     // handle common cases produced by branch lowering.
   1531     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
   1532         CB.CC == ISD::SETEQ)
   1533       Cond = CondLHS;
   1534     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
   1535              CB.CC == ISD::SETEQ) {
   1536       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
   1537       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
   1538     } else
   1539       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
   1540   } else {
   1541     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
   1542 
   1543     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
   1544     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
   1545 
   1546     SDValue CmpOp = getValue(CB.CmpMHS);
   1547     EVT VT = CmpOp.getValueType();
   1548 
   1549     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
   1550       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
   1551                           ISD::SETLE);
   1552     } else {
   1553       SDValue SUB = DAG.getNode(ISD::SUB, dl,
   1554                                 VT, CmpOp, DAG.getConstant(Low, VT));
   1555       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
   1556                           DAG.getConstant(High-Low, VT), ISD::SETULE);
   1557     }
   1558   }
   1559 
   1560   // Update successor info
   1561   addSuccessorWithWeight(SwitchBB, CB.TrueBB);
   1562   addSuccessorWithWeight(SwitchBB, CB.FalseBB);
   1563 
   1564   // Set NextBlock to be the MBB immediately after the current one, if any.
   1565   // This is used to avoid emitting unnecessary branches to the next block.
   1566   MachineBasicBlock *NextBlock = 0;
   1567   MachineFunction::iterator BBI = SwitchBB;
   1568   if (++BBI != FuncInfo.MF->end())
   1569     NextBlock = BBI;
   1570 
   1571   // If the lhs block is the next block, invert the condition so that we can
   1572   // fall through to the lhs instead of the rhs block.
   1573   if (CB.TrueBB == NextBlock) {
   1574     std::swap(CB.TrueBB, CB.FalseBB);
   1575     SDValue True = DAG.getConstant(1, Cond.getValueType());
   1576     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
   1577   }
   1578 
   1579   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1580                                MVT::Other, getControlRoot(), Cond,
   1581                                DAG.getBasicBlock(CB.TrueBB));
   1582 
   1583   // Insert the false branch. Do this even if it's a fall through branch,
   1584   // this makes it easier to do DAG optimizations which require inverting
   1585   // the branch condition.
   1586   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1587                        DAG.getBasicBlock(CB.FalseBB));
   1588 
   1589   DAG.setRoot(BrCond);
   1590 }
   1591 
   1592 /// visitJumpTable - Emit JumpTable node in the current MBB
   1593 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
   1594   // Emit the code for the jump table
   1595   assert(JT.Reg != -1U && "Should lower JT Header first!");
   1596   EVT PTy = TLI.getPointerTy();
   1597   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1598                                      JT.Reg, PTy);
   1599   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
   1600   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
   1601                                     MVT::Other, Index.getValue(1),
   1602                                     Table, Index);
   1603   DAG.setRoot(BrJumpTable);
   1604 }
   1605 
   1606 /// visitJumpTableHeader - This function emits necessary code to produce index
   1607 /// in the JumpTable from switch case.
   1608 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
   1609                                                JumpTableHeader &JTH,
   1610                                                MachineBasicBlock *SwitchBB) {
   1611   // Subtract the lowest switch case value from the value being switched on and
   1612   // conditional branch to default mbb if the result is greater than the
   1613   // difference between smallest and largest cases.
   1614   SDValue SwitchOp = getValue(JTH.SValue);
   1615   EVT VT = SwitchOp.getValueType();
   1616   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1617                             DAG.getConstant(JTH.First, VT));
   1618 
   1619   // The SDNode we just created, which holds the value being switched on minus
   1620   // the smallest case value, needs to be copied to a virtual register so it
   1621   // can be used as an index into the jump table in a subsequent basic block.
   1622   // This value may be smaller or larger than the target's pointer type, and
   1623   // therefore require extension or truncating.
   1624   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
   1625 
   1626   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
   1627   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1628                                     JumpTableReg, SwitchOp);
   1629   JT.Reg = JumpTableReg;
   1630 
   1631   // Emit the range check for the jump table, and branch to the default block
   1632   // for the switch statement if the value being switched on exceeds the largest
   1633   // case in the switch.
   1634   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
   1635                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
   1636                              DAG.getConstant(JTH.Last-JTH.First,VT),
   1637                              ISD::SETUGT);
   1638 
   1639   // Set NextBlock to be the MBB immediately after the current one, if any.
   1640   // This is used to avoid emitting unnecessary branches to the next block.
   1641   MachineBasicBlock *NextBlock = 0;
   1642   MachineFunction::iterator BBI = SwitchBB;
   1643 
   1644   if (++BBI != FuncInfo.MF->end())
   1645     NextBlock = BBI;
   1646 
   1647   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1648                                MVT::Other, CopyTo, CMP,
   1649                                DAG.getBasicBlock(JT.Default));
   1650 
   1651   if (JT.MBB != NextBlock)
   1652     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
   1653                          DAG.getBasicBlock(JT.MBB));
   1654 
   1655   DAG.setRoot(BrCond);
   1656 }
   1657 
   1658 /// visitBitTestHeader - This function emits necessary code to produce value
   1659 /// suitable for "bit tests"
   1660 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
   1661                                              MachineBasicBlock *SwitchBB) {
   1662   // Subtract the minimum value
   1663   SDValue SwitchOp = getValue(B.SValue);
   1664   EVT VT = SwitchOp.getValueType();
   1665   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1666                             DAG.getConstant(B.First, VT));
   1667 
   1668   // Check range
   1669   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
   1670                                   TLI.getSetCCResultType(Sub.getValueType()),
   1671                                   Sub, DAG.getConstant(B.Range, VT),
   1672                                   ISD::SETUGT);
   1673 
   1674   // Determine the type of the test operands.
   1675   bool UsePtrType = false;
   1676   if (!TLI.isTypeLegal(VT))
   1677     UsePtrType = true;
   1678   else {
   1679     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
   1680       if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
   1681         // Switch table case range are encoded into series of masks.
   1682         // Just use pointer type, it's guaranteed to fit.
   1683         UsePtrType = true;
   1684         break;
   1685       }
   1686   }
   1687   if (UsePtrType) {
   1688     VT = TLI.getPointerTy();
   1689     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
   1690   }
   1691 
   1692   B.RegVT = VT;
   1693   B.Reg = FuncInfo.CreateReg(VT);
   1694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1695                                     B.Reg, Sub);
   1696 
   1697   // Set NextBlock to be the MBB immediately after the current one, if any.
   1698   // This is used to avoid emitting unnecessary branches to the next block.
   1699   MachineBasicBlock *NextBlock = 0;
   1700   MachineFunction::iterator BBI = SwitchBB;
   1701   if (++BBI != FuncInfo.MF->end())
   1702     NextBlock = BBI;
   1703 
   1704   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
   1705 
   1706   addSuccessorWithWeight(SwitchBB, B.Default);
   1707   addSuccessorWithWeight(SwitchBB, MBB);
   1708 
   1709   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1710                                 MVT::Other, CopyTo, RangeCmp,
   1711                                 DAG.getBasicBlock(B.Default));
   1712 
   1713   if (MBB != NextBlock)
   1714     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
   1715                           DAG.getBasicBlock(MBB));
   1716 
   1717   DAG.setRoot(BrRange);
   1718 }
   1719 
   1720 /// visitBitTestCase - this function produces one "bit test"
   1721 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
   1722                                            MachineBasicBlock* NextMBB,
   1723                                            unsigned Reg,
   1724                                            BitTestCase &B,
   1725                                            MachineBasicBlock *SwitchBB) {
   1726   EVT VT = BB.RegVT;
   1727   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1728                                        Reg, VT);
   1729   SDValue Cmp;
   1730   unsigned PopCount = CountPopulation_64(B.Mask);
   1731   if (PopCount == 1) {
   1732     // Testing for a single bit; just compare the shift count with what it
   1733     // would need to be to shift a 1 bit in that position.
   1734     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1735                        TLI.getSetCCResultType(VT),
   1736                        ShiftOp,
   1737                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
   1738                        ISD::SETEQ);
   1739   } else if (PopCount == BB.Range) {
   1740     // There is only one zero bit in the range, test for it directly.
   1741     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1742                        TLI.getSetCCResultType(VT),
   1743                        ShiftOp,
   1744                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
   1745                        ISD::SETNE);
   1746   } else {
   1747     // Make desired shift
   1748     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
   1749                                     DAG.getConstant(1, VT), ShiftOp);
   1750 
   1751     // Emit bit tests and jumps
   1752     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
   1753                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
   1754     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1755                        TLI.getSetCCResultType(VT),
   1756                        AndOp, DAG.getConstant(0, VT),
   1757                        ISD::SETNE);
   1758   }
   1759 
   1760   addSuccessorWithWeight(SwitchBB, B.TargetBB);
   1761   addSuccessorWithWeight(SwitchBB, NextMBB);
   1762 
   1763   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1764                               MVT::Other, getControlRoot(),
   1765                               Cmp, DAG.getBasicBlock(B.TargetBB));
   1766 
   1767   // Set NextBlock to be the MBB immediately after the current one, if any.
   1768   // This is used to avoid emitting unnecessary branches to the next block.
   1769   MachineBasicBlock *NextBlock = 0;
   1770   MachineFunction::iterator BBI = SwitchBB;
   1771   if (++BBI != FuncInfo.MF->end())
   1772     NextBlock = BBI;
   1773 
   1774   if (NextMBB != NextBlock)
   1775     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
   1776                         DAG.getBasicBlock(NextMBB));
   1777 
   1778   DAG.setRoot(BrAnd);
   1779 }
   1780 
   1781 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
   1782   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
   1783 
   1784   // Retrieve successors.
   1785   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
   1786   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
   1787 
   1788   const Value *Callee(I.getCalledValue());
   1789   if (isa<InlineAsm>(Callee))
   1790     visitInlineAsm(&I);
   1791   else
   1792     LowerCallTo(&I, getValue(Callee), false, LandingPad);
   1793 
   1794   // If the value of the invoke is used outside of its defining block, make it
   1795   // available as a virtual register.
   1796   CopyToExportRegsIfNeeded(&I);
   1797 
   1798   // Update successor info
   1799   InvokeMBB->addSuccessor(Return);
   1800   InvokeMBB->addSuccessor(LandingPad);
   1801 
   1802   // Drop into normal successor.
   1803   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1804                           MVT::Other, getControlRoot(),
   1805                           DAG.getBasicBlock(Return)));
   1806 }
   1807 
   1808 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
   1809 }
   1810 
   1811 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
   1812 /// small case ranges).
   1813 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
   1814                                                  CaseRecVector& WorkList,
   1815                                                  const Value* SV,
   1816                                                  MachineBasicBlock *Default,
   1817                                                  MachineBasicBlock *SwitchBB) {
   1818   Case& BackCase  = *(CR.Range.second-1);
   1819 
   1820   // Size is the number of Cases represented by this range.
   1821   size_t Size = CR.Range.second - CR.Range.first;
   1822   if (Size > 3)
   1823     return false;
   1824 
   1825   // Get the MachineFunction which holds the current MBB.  This is used when
   1826   // inserting any additional MBBs necessary to represent the switch.
   1827   MachineFunction *CurMF = FuncInfo.MF;
   1828 
   1829   // Figure out which block is immediately after the current one.
   1830   MachineBasicBlock *NextBlock = 0;
   1831   MachineFunction::iterator BBI = CR.CaseBB;
   1832 
   1833   if (++BBI != FuncInfo.MF->end())
   1834     NextBlock = BBI;
   1835 
   1836   // If any two of the cases has the same destination, and if one value
   1837   // is the same as the other, but has one bit unset that the other has set,
   1838   // use bit manipulation to do two compares at once.  For example:
   1839   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
   1840   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
   1841   // TODO: Handle cases where CR.CaseBB != SwitchBB.
   1842   if (Size == 2 && CR.CaseBB == SwitchBB) {
   1843     Case &Small = *CR.Range.first;
   1844     Case &Big = *(CR.Range.second-1);
   1845 
   1846     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
   1847       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
   1848       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
   1849 
   1850       // Check that there is only one bit different.
   1851       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
   1852           (SmallValue | BigValue) == BigValue) {
   1853         // Isolate the common bit.
   1854         APInt CommonBit = BigValue & ~SmallValue;
   1855         assert((SmallValue | CommonBit) == BigValue &&
   1856                CommonBit.countPopulation() == 1 && "Not a common bit?");
   1857 
   1858         SDValue CondLHS = getValue(SV);
   1859         EVT VT = CondLHS.getValueType();
   1860         DebugLoc DL = getCurDebugLoc();
   1861 
   1862         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
   1863                                  DAG.getConstant(CommonBit, VT));
   1864         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
   1865                                     Or, DAG.getConstant(BigValue, VT),
   1866                                     ISD::SETEQ);
   1867 
   1868         // Update successor info.
   1869         SwitchBB->addSuccessor(Small.BB);
   1870         SwitchBB->addSuccessor(Default);
   1871 
   1872         // Insert the true branch.
   1873         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
   1874                                      getControlRoot(), Cond,
   1875                                      DAG.getBasicBlock(Small.BB));
   1876 
   1877         // Insert the false branch.
   1878         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
   1879                              DAG.getBasicBlock(Default));
   1880 
   1881         DAG.setRoot(BrCond);
   1882         return true;
   1883       }
   1884     }
   1885   }
   1886 
   1887   // Rearrange the case blocks so that the last one falls through if possible.
   1888   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
   1889     // The last case block won't fall through into 'NextBlock' if we emit the
   1890     // branches in this order.  See if rearranging a case value would help.
   1891     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
   1892       if (I->BB == NextBlock) {
   1893         std::swap(*I, BackCase);
   1894         break;
   1895       }
   1896     }
   1897   }
   1898 
   1899   // Create a CaseBlock record representing a conditional branch to
   1900   // the Case's target mbb if the value being switched on SV is equal
   1901   // to C.
   1902   MachineBasicBlock *CurBlock = CR.CaseBB;
   1903   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   1904     MachineBasicBlock *FallThrough;
   1905     if (I != E-1) {
   1906       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
   1907       CurMF->insert(BBI, FallThrough);
   1908 
   1909       // Put SV in a virtual register to make it available from the new blocks.
   1910       ExportFromCurrentBlock(SV);
   1911     } else {
   1912       // If the last case doesn't match, go to the default block.
   1913       FallThrough = Default;
   1914     }
   1915 
   1916     const Value *RHS, *LHS, *MHS;
   1917     ISD::CondCode CC;
   1918     if (I->High == I->Low) {
   1919       // This is just small small case range :) containing exactly 1 case
   1920       CC = ISD::SETEQ;
   1921       LHS = SV; RHS = I->High; MHS = NULL;
   1922     } else {
   1923       CC = ISD::SETLE;
   1924       LHS = I->Low; MHS = SV; RHS = I->High;
   1925     }
   1926     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
   1927 
   1928     // If emitting the first comparison, just call visitSwitchCase to emit the
   1929     // code into the current block.  Otherwise, push the CaseBlock onto the
   1930     // vector to be later processed by SDISel, and insert the node's MBB
   1931     // before the next MBB.
   1932     if (CurBlock == SwitchBB)
   1933       visitSwitchCase(CB, SwitchBB);
   1934     else
   1935       SwitchCases.push_back(CB);
   1936 
   1937     CurBlock = FallThrough;
   1938   }
   1939 
   1940   return true;
   1941 }
   1942 
   1943 static inline bool areJTsAllowed(const TargetLowering &TLI) {
   1944   return !DisableJumpTables &&
   1945           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
   1946            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
   1947 }
   1948 
   1949 static APInt ComputeRange(const APInt &First, const APInt &Last) {
   1950   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
   1951   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
   1952   return (LastExt - FirstExt + 1ULL);
   1953 }
   1954 
   1955 /// handleJTSwitchCase - Emit jumptable for current switch case range
   1956 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
   1957                                              CaseRecVector& WorkList,
   1958                                              const Value* SV,
   1959                                              MachineBasicBlock* Default,
   1960                                              MachineBasicBlock *SwitchBB) {
   1961   Case& FrontCase = *CR.Range.first;
   1962   Case& BackCase  = *(CR.Range.second-1);
   1963 
   1964   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   1965   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   1966 
   1967   APInt TSize(First.getBitWidth(), 0);
   1968   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   1969        I!=E; ++I)
   1970     TSize += I->size();
   1971 
   1972   if (!areJTsAllowed(TLI) || TSize.ult(4))
   1973     return false;
   1974 
   1975   APInt Range = ComputeRange(First, Last);
   1976   double Density = TSize.roundToDouble() / Range.roundToDouble();
   1977   if (Density < 0.4)
   1978     return false;
   1979 
   1980   DEBUG(dbgs() << "Lowering jump table\n"
   1981                << "First entry: " << First << ". Last entry: " << Last << '\n'
   1982                << "Range: " << Range
   1983                << ". Size: " << TSize << ". Density: " << Density << "\n\n");
   1984 
   1985   // Get the MachineFunction which holds the current MBB.  This is used when
   1986   // inserting any additional MBBs necessary to represent the switch.
   1987   MachineFunction *CurMF = FuncInfo.MF;
   1988 
   1989   // Figure out which block is immediately after the current one.
   1990   MachineFunction::iterator BBI = CR.CaseBB;
   1991   ++BBI;
   1992 
   1993   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   1994 
   1995   // Create a new basic block to hold the code for loading the address
   1996   // of the jump table, and jumping to it.  Update successor information;
   1997   // we will either branch to the default case for the switch, or the jump
   1998   // table.
   1999   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2000   CurMF->insert(BBI, JumpTableBB);
   2001 
   2002   addSuccessorWithWeight(CR.CaseBB, Default);
   2003   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
   2004 
   2005   // Build a vector of destination BBs, corresponding to each target
   2006   // of the jump table. If the value of the jump table slot corresponds to
   2007   // a case statement, push the case's BB onto the vector, otherwise, push
   2008   // the default BB.
   2009   std::vector<MachineBasicBlock*> DestBBs;
   2010   APInt TEI = First;
   2011   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
   2012     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
   2013     const APInt &High = cast<ConstantInt>(I->High)->getValue();
   2014 
   2015     if (Low.sle(TEI) && TEI.sle(High)) {
   2016       DestBBs.push_back(I->BB);
   2017       if (TEI==High)
   2018         ++I;
   2019     } else {
   2020       DestBBs.push_back(Default);
   2021     }
   2022   }
   2023 
   2024   // Update successor info. Add one edge to each unique successor.
   2025   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
   2026   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
   2027          E = DestBBs.end(); I != E; ++I) {
   2028     if (!SuccsHandled[(*I)->getNumber()]) {
   2029       SuccsHandled[(*I)->getNumber()] = true;
   2030       addSuccessorWithWeight(JumpTableBB, *I);
   2031     }
   2032   }
   2033 
   2034   // Create a jump table index for this jump table.
   2035   unsigned JTEncoding = TLI.getJumpTableEncoding();
   2036   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
   2037                        ->createJumpTableIndex(DestBBs);
   2038 
   2039   // Set the jump table information so that we can codegen it as a second
   2040   // MachineBasicBlock
   2041   JumpTable JT(-1U, JTI, JumpTableBB, Default);
   2042   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
   2043   if (CR.CaseBB == SwitchBB)
   2044     visitJumpTableHeader(JT, JTH, SwitchBB);
   2045 
   2046   JTCases.push_back(JumpTableBlock(JTH, JT));
   2047 
   2048   return true;
   2049 }
   2050 
   2051 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
   2052 /// 2 subtrees.
   2053 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
   2054                                                   CaseRecVector& WorkList,
   2055                                                   const Value* SV,
   2056                                                   MachineBasicBlock *Default,
   2057                                                   MachineBasicBlock *SwitchBB) {
   2058   // Get the MachineFunction which holds the current MBB.  This is used when
   2059   // inserting any additional MBBs necessary to represent the switch.
   2060   MachineFunction *CurMF = FuncInfo.MF;
   2061 
   2062   // Figure out which block is immediately after the current one.
   2063   MachineFunction::iterator BBI = CR.CaseBB;
   2064   ++BBI;
   2065 
   2066   Case& FrontCase = *CR.Range.first;
   2067   Case& BackCase  = *(CR.Range.second-1);
   2068   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2069 
   2070   // Size is the number of Cases represented by this range.
   2071   unsigned Size = CR.Range.second - CR.Range.first;
   2072 
   2073   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2074   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2075   double FMetric = 0;
   2076   CaseItr Pivot = CR.Range.first + Size/2;
   2077 
   2078   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
   2079   // (heuristically) allow us to emit JumpTable's later.
   2080   APInt TSize(First.getBitWidth(), 0);
   2081   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2082        I!=E; ++I)
   2083     TSize += I->size();
   2084 
   2085   APInt LSize = FrontCase.size();
   2086   APInt RSize = TSize-LSize;
   2087   DEBUG(dbgs() << "Selecting best pivot: \n"
   2088                << "First: " << First << ", Last: " << Last <<'\n'
   2089                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
   2090   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
   2091        J!=E; ++I, ++J) {
   2092     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
   2093     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
   2094     APInt Range = ComputeRange(LEnd, RBegin);
   2095     assert((Range - 2ULL).isNonNegative() &&
   2096            "Invalid case distance");
   2097     // Use volatile double here to avoid excess precision issues on some hosts,
   2098     // e.g. that use 80-bit X87 registers.
   2099     volatile double LDensity =
   2100        (double)LSize.roundToDouble() /
   2101                            (LEnd - First + 1ULL).roundToDouble();
   2102     volatile double RDensity =
   2103       (double)RSize.roundToDouble() /
   2104                            (Last - RBegin + 1ULL).roundToDouble();
   2105     double Metric = Range.logBase2()*(LDensity+RDensity);
   2106     // Should always split in some non-trivial place
   2107     DEBUG(dbgs() <<"=>Step\n"
   2108                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
   2109                  << "LDensity: " << LDensity
   2110                  << ", RDensity: " << RDensity << '\n'
   2111                  << "Metric: " << Metric << '\n');
   2112     if (FMetric < Metric) {
   2113       Pivot = J;
   2114       FMetric = Metric;
   2115       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
   2116     }
   2117 
   2118     LSize += J->size();
   2119     RSize -= J->size();
   2120   }
   2121   if (areJTsAllowed(TLI)) {
   2122     // If our case is dense we *really* should handle it earlier!
   2123     assert((FMetric > 0) && "Should handle dense range earlier!");
   2124   } else {
   2125     Pivot = CR.Range.first + Size/2;
   2126   }
   2127 
   2128   CaseRange LHSR(CR.Range.first, Pivot);
   2129   CaseRange RHSR(Pivot, CR.Range.second);
   2130   Constant *C = Pivot->Low;
   2131   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
   2132 
   2133   // We know that we branch to the LHS if the Value being switched on is
   2134   // less than the Pivot value, C.  We use this to optimize our binary
   2135   // tree a bit, by recognizing that if SV is greater than or equal to the
   2136   // LHS's Case Value, and that Case Value is exactly one less than the
   2137   // Pivot's Value, then we can branch directly to the LHS's Target,
   2138   // rather than creating a leaf node for it.
   2139   if ((LHSR.second - LHSR.first) == 1 &&
   2140       LHSR.first->High == CR.GE &&
   2141       cast<ConstantInt>(C)->getValue() ==
   2142       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
   2143     TrueBB = LHSR.first->BB;
   2144   } else {
   2145     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2146     CurMF->insert(BBI, TrueBB);
   2147     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
   2148 
   2149     // Put SV in a virtual register to make it available from the new blocks.
   2150     ExportFromCurrentBlock(SV);
   2151   }
   2152 
   2153   // Similar to the optimization above, if the Value being switched on is
   2154   // known to be less than the Constant CR.LT, and the current Case Value
   2155   // is CR.LT - 1, then we can branch directly to the target block for
   2156   // the current Case Value, rather than emitting a RHS leaf node for it.
   2157   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
   2158       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
   2159       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
   2160     FalseBB = RHSR.first->BB;
   2161   } else {
   2162     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2163     CurMF->insert(BBI, FalseBB);
   2164     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
   2165 
   2166     // Put SV in a virtual register to make it available from the new blocks.
   2167     ExportFromCurrentBlock(SV);
   2168   }
   2169 
   2170   // Create a CaseBlock record representing a conditional branch to
   2171   // the LHS node if the value being switched on SV is less than C.
   2172   // Otherwise, branch to LHS.
   2173   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
   2174 
   2175   if (CR.CaseBB == SwitchBB)
   2176     visitSwitchCase(CB, SwitchBB);
   2177   else
   2178     SwitchCases.push_back(CB);
   2179 
   2180   return true;
   2181 }
   2182 
   2183 /// handleBitTestsSwitchCase - if current case range has few destination and
   2184 /// range span less, than machine word bitwidth, encode case range into series
   2185 /// of masks and emit bit tests with these masks.
   2186 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
   2187                                                    CaseRecVector& WorkList,
   2188                                                    const Value* SV,
   2189                                                    MachineBasicBlock* Default,
   2190                                                    MachineBasicBlock *SwitchBB){
   2191   EVT PTy = TLI.getPointerTy();
   2192   unsigned IntPtrBits = PTy.getSizeInBits();
   2193 
   2194   Case& FrontCase = *CR.Range.first;
   2195   Case& BackCase  = *(CR.Range.second-1);
   2196 
   2197   // Get the MachineFunction which holds the current MBB.  This is used when
   2198   // inserting any additional MBBs necessary to represent the switch.
   2199   MachineFunction *CurMF = FuncInfo.MF;
   2200 
   2201   // If target does not have legal shift left, do not emit bit tests at all.
   2202   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
   2203     return false;
   2204 
   2205   size_t numCmps = 0;
   2206   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2207        I!=E; ++I) {
   2208     // Single case counts one, case range - two.
   2209     numCmps += (I->Low == I->High ? 1 : 2);
   2210   }
   2211 
   2212   // Count unique destinations
   2213   SmallSet<MachineBasicBlock*, 4> Dests;
   2214   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2215     Dests.insert(I->BB);
   2216     if (Dests.size() > 3)
   2217       // Don't bother the code below, if there are too much unique destinations
   2218       return false;
   2219   }
   2220   DEBUG(dbgs() << "Total number of unique destinations: "
   2221         << Dests.size() << '\n'
   2222         << "Total number of comparisons: " << numCmps << '\n');
   2223 
   2224   // Compute span of values.
   2225   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
   2226   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
   2227   APInt cmpRange = maxValue - minValue;
   2228 
   2229   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
   2230                << "Low bound: " << minValue << '\n'
   2231                << "High bound: " << maxValue << '\n');
   2232 
   2233   if (cmpRange.uge(IntPtrBits) ||
   2234       (!(Dests.size() == 1 && numCmps >= 3) &&
   2235        !(Dests.size() == 2 && numCmps >= 5) &&
   2236        !(Dests.size() >= 3 && numCmps >= 6)))
   2237     return false;
   2238 
   2239   DEBUG(dbgs() << "Emitting bit tests\n");
   2240   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
   2241 
   2242   // Optimize the case where all the case values fit in a
   2243   // word without having to subtract minValue. In this case,
   2244   // we can optimize away the subtraction.
   2245   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
   2246     cmpRange = maxValue;
   2247   } else {
   2248     lowBound = minValue;
   2249   }
   2250 
   2251   CaseBitsVector CasesBits;
   2252   unsigned i, count = 0;
   2253 
   2254   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2255     MachineBasicBlock* Dest = I->BB;
   2256     for (i = 0; i < count; ++i)
   2257       if (Dest == CasesBits[i].BB)
   2258         break;
   2259 
   2260     if (i == count) {
   2261       assert((count < 3) && "Too much destinations to test!");
   2262       CasesBits.push_back(CaseBits(0, Dest, 0));
   2263       count++;
   2264     }
   2265 
   2266     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
   2267     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
   2268 
   2269     uint64_t lo = (lowValue - lowBound).getZExtValue();
   2270     uint64_t hi = (highValue - lowBound).getZExtValue();
   2271 
   2272     for (uint64_t j = lo; j <= hi; j++) {
   2273       CasesBits[i].Mask |=  1ULL << j;
   2274       CasesBits[i].Bits++;
   2275     }
   2276 
   2277   }
   2278   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
   2279 
   2280   BitTestInfo BTC;
   2281 
   2282   // Figure out which block is immediately after the current one.
   2283   MachineFunction::iterator BBI = CR.CaseBB;
   2284   ++BBI;
   2285 
   2286   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2287 
   2288   DEBUG(dbgs() << "Cases:\n");
   2289   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
   2290     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
   2291                  << ", Bits: " << CasesBits[i].Bits
   2292                  << ", BB: " << CasesBits[i].BB << '\n');
   2293 
   2294     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2295     CurMF->insert(BBI, CaseBB);
   2296     BTC.push_back(BitTestCase(CasesBits[i].Mask,
   2297                               CaseBB,
   2298                               CasesBits[i].BB));
   2299 
   2300     // Put SV in a virtual register to make it available from the new blocks.
   2301     ExportFromCurrentBlock(SV);
   2302   }
   2303 
   2304   BitTestBlock BTB(lowBound, cmpRange, SV,
   2305                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
   2306                    CR.CaseBB, Default, BTC);
   2307 
   2308   if (CR.CaseBB == SwitchBB)
   2309     visitBitTestHeader(BTB, SwitchBB);
   2310 
   2311   BitTestCases.push_back(BTB);
   2312 
   2313   return true;
   2314 }
   2315 
   2316 /// Clusterify - Transform simple list of Cases into list of CaseRange's
   2317 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
   2318                                        const SwitchInst& SI) {
   2319   size_t numCmps = 0;
   2320 
   2321   // Start with "simple" cases
   2322   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
   2323     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
   2324     Cases.push_back(Case(SI.getSuccessorValue(i),
   2325                          SI.getSuccessorValue(i),
   2326                          SMBB));
   2327   }
   2328   std::sort(Cases.begin(), Cases.end(), CaseCmp());
   2329 
   2330   // Merge case into clusters
   2331   if (Cases.size() >= 2)
   2332     // Must recompute end() each iteration because it may be
   2333     // invalidated by erase if we hold on to it
   2334     for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
   2335          J != Cases.end(); ) {
   2336       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
   2337       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
   2338       MachineBasicBlock* nextBB = J->BB;
   2339       MachineBasicBlock* currentBB = I->BB;
   2340 
   2341       // If the two neighboring cases go to the same destination, merge them
   2342       // into a single case.
   2343       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
   2344         I->High = J->High;
   2345         J = Cases.erase(J);
   2346       } else {
   2347         I = J++;
   2348       }
   2349     }
   2350 
   2351   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
   2352     if (I->Low != I->High)
   2353       // A range counts double, since it requires two compares.
   2354       ++numCmps;
   2355   }
   2356 
   2357   return numCmps;
   2358 }
   2359 
   2360 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
   2361                                            MachineBasicBlock *Last) {
   2362   // Update JTCases.
   2363   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
   2364     if (JTCases[i].first.HeaderBB == First)
   2365       JTCases[i].first.HeaderBB = Last;
   2366 
   2367   // Update BitTestCases.
   2368   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
   2369     if (BitTestCases[i].Parent == First)
   2370       BitTestCases[i].Parent = Last;
   2371 }
   2372 
   2373 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
   2374   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
   2375 
   2376   // Figure out which block is immediately after the current one.
   2377   MachineBasicBlock *NextBlock = 0;
   2378   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
   2379 
   2380   // If there is only the default destination, branch to it if it is not the
   2381   // next basic block.  Otherwise, just fall through.
   2382   if (SI.getNumOperands() == 2) {
   2383     // Update machine-CFG edges.
   2384 
   2385     // If this is not a fall-through branch, emit the branch.
   2386     SwitchMBB->addSuccessor(Default);
   2387     if (Default != NextBlock)
   2388       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   2389                               MVT::Other, getControlRoot(),
   2390                               DAG.getBasicBlock(Default)));
   2391 
   2392     return;
   2393   }
   2394 
   2395   // If there are any non-default case statements, create a vector of Cases
   2396   // representing each one, and sort the vector so that we can efficiently
   2397   // create a binary search tree from them.
   2398   CaseVector Cases;
   2399   size_t numCmps = Clusterify(Cases, SI);
   2400   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
   2401                << ". Total compares: " << numCmps << '\n');
   2402   numCmps = 0;
   2403 
   2404   // Get the Value to be switched on and default basic blocks, which will be
   2405   // inserted into CaseBlock records, representing basic blocks in the binary
   2406   // search tree.
   2407   const Value *SV = SI.getOperand(0);
   2408 
   2409   // Push the initial CaseRec onto the worklist
   2410   CaseRecVector WorkList;
   2411   WorkList.push_back(CaseRec(SwitchMBB,0,0,
   2412                              CaseRange(Cases.begin(),Cases.end())));
   2413 
   2414   while (!WorkList.empty()) {
   2415     // Grab a record representing a case range to process off the worklist
   2416     CaseRec CR = WorkList.back();
   2417     WorkList.pop_back();
   2418 
   2419     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2420       continue;
   2421 
   2422     // If the range has few cases (two or less) emit a series of specific
   2423     // tests.
   2424     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
   2425       continue;
   2426 
   2427     // If the switch has more than 5 blocks, and at least 40% dense, and the
   2428     // target supports indirect branches, then emit a jump table rather than
   2429     // lowering the switch to a binary tree of conditional branches.
   2430     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2431       continue;
   2432 
   2433     // Emit binary tree. We need to pick a pivot, and push left and right ranges
   2434     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
   2435     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
   2436   }
   2437 }
   2438 
   2439 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
   2440   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
   2441 
   2442   // Update machine-CFG edges with unique successors.
   2443   SmallVector<BasicBlock*, 32> succs;
   2444   succs.reserve(I.getNumSuccessors());
   2445   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
   2446     succs.push_back(I.getSuccessor(i));
   2447   array_pod_sort(succs.begin(), succs.end());
   2448   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
   2449   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
   2450     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
   2451     addSuccessorWithWeight(IndirectBrMBB, Succ);
   2452   }
   2453 
   2454   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
   2455                           MVT::Other, getControlRoot(),
   2456                           getValue(I.getAddress())));
   2457 }
   2458 
   2459 void SelectionDAGBuilder::visitFSub(const User &I) {
   2460   // -0.0 - X --> fneg
   2461   Type *Ty = I.getType();
   2462   if (isa<Constant>(I.getOperand(0)) &&
   2463       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
   2464     SDValue Op2 = getValue(I.getOperand(1));
   2465     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
   2466                              Op2.getValueType(), Op2));
   2467     return;
   2468   }
   2469 
   2470   visitBinary(I, ISD::FSUB);
   2471 }
   2472 
   2473 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
   2474   SDValue Op1 = getValue(I.getOperand(0));
   2475   SDValue Op2 = getValue(I.getOperand(1));
   2476   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
   2477                            Op1.getValueType(), Op1, Op2));
   2478 }
   2479 
   2480 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
   2481   SDValue Op1 = getValue(I.getOperand(0));
   2482   SDValue Op2 = getValue(I.getOperand(1));
   2483 
   2484   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
   2485 
   2486   // Coerce the shift amount to the right type if we can.
   2487   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
   2488     unsigned ShiftSize = ShiftTy.getSizeInBits();
   2489     unsigned Op2Size = Op2.getValueType().getSizeInBits();
   2490     DebugLoc DL = getCurDebugLoc();
   2491 
   2492     // If the operand is smaller than the shift count type, promote it.
   2493     if (ShiftSize > Op2Size)
   2494       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
   2495 
   2496     // If the operand is larger than the shift count type but the shift
   2497     // count type has enough bits to represent any shift value, truncate
   2498     // it now. This is a common case and it exposes the truncate to
   2499     // optimization early.
   2500     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
   2501       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
   2502     // Otherwise we'll need to temporarily settle for some other convenient
   2503     // type.  Type legalization will make adjustments once the shiftee is split.
   2504     else
   2505       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
   2506   }
   2507 
   2508   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
   2509                            Op1.getValueType(), Op1, Op2));
   2510 }
   2511 
   2512 void SelectionDAGBuilder::visitSDiv(const User &I) {
   2513   SDValue Op1 = getValue(I.getOperand(0));
   2514   SDValue Op2 = getValue(I.getOperand(1));
   2515 
   2516   // Turn exact SDivs into multiplications.
   2517   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
   2518   // exact bit.
   2519   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
   2520       !isa<ConstantSDNode>(Op1) &&
   2521       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
   2522     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
   2523   else
   2524     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
   2525                              Op1, Op2));
   2526 }
   2527 
   2528 void SelectionDAGBuilder::visitICmp(const User &I) {
   2529   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
   2530   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
   2531     predicate = IC->getPredicate();
   2532   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
   2533     predicate = ICmpInst::Predicate(IC->getPredicate());
   2534   SDValue Op1 = getValue(I.getOperand(0));
   2535   SDValue Op2 = getValue(I.getOperand(1));
   2536   ISD::CondCode Opcode = getICmpCondCode(predicate);
   2537 
   2538   EVT DestVT = TLI.getValueType(I.getType());
   2539   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
   2540 }
   2541 
   2542 void SelectionDAGBuilder::visitFCmp(const User &I) {
   2543   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
   2544   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
   2545     predicate = FC->getPredicate();
   2546   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
   2547     predicate = FCmpInst::Predicate(FC->getPredicate());
   2548   SDValue Op1 = getValue(I.getOperand(0));
   2549   SDValue Op2 = getValue(I.getOperand(1));
   2550   ISD::CondCode Condition = getFCmpCondCode(predicate);
   2551   EVT DestVT = TLI.getValueType(I.getType());
   2552   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
   2553 }
   2554 
   2555 void SelectionDAGBuilder::visitSelect(const User &I) {
   2556   SmallVector<EVT, 4> ValueVTs;
   2557   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   2558   unsigned NumValues = ValueVTs.size();
   2559   if (NumValues == 0) return;
   2560 
   2561   SmallVector<SDValue, 4> Values(NumValues);
   2562   SDValue Cond     = getValue(I.getOperand(0));
   2563   SDValue TrueVal  = getValue(I.getOperand(1));
   2564   SDValue FalseVal = getValue(I.getOperand(2));
   2565 
   2566   for (unsigned i = 0; i != NumValues; ++i)
   2567     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
   2568                           TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
   2569                             Cond,
   2570                             SDValue(TrueVal.getNode(),
   2571                                     TrueVal.getResNo() + i),
   2572                             SDValue(FalseVal.getNode(),
   2573                                     FalseVal.getResNo() + i));
   2574 
   2575   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   2576                            DAG.getVTList(&ValueVTs[0], NumValues),
   2577                            &Values[0], NumValues));
   2578 }
   2579 
   2580 void SelectionDAGBuilder::visitTrunc(const User &I) {
   2581   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
   2582   SDValue N = getValue(I.getOperand(0));
   2583   EVT DestVT = TLI.getValueType(I.getType());
   2584   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
   2585 }
   2586 
   2587 void SelectionDAGBuilder::visitZExt(const User &I) {
   2588   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2589   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
   2590   SDValue N = getValue(I.getOperand(0));
   2591   EVT DestVT = TLI.getValueType(I.getType());
   2592   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
   2593 }
   2594 
   2595 void SelectionDAGBuilder::visitSExt(const User &I) {
   2596   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2597   // SExt also can't be a cast to bool for same reason. So, nothing much to do
   2598   SDValue N = getValue(I.getOperand(0));
   2599   EVT DestVT = TLI.getValueType(I.getType());
   2600   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
   2601 }
   2602 
   2603 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
   2604   // FPTrunc is never a no-op cast, no need to check
   2605   SDValue N = getValue(I.getOperand(0));
   2606   EVT DestVT = TLI.getValueType(I.getType());
   2607   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
   2608                            DestVT, N, DAG.getIntPtrConstant(0)));
   2609 }
   2610 
   2611 void SelectionDAGBuilder::visitFPExt(const User &I){
   2612   // FPTrunc is never a no-op cast, no need to check
   2613   SDValue N = getValue(I.getOperand(0));
   2614   EVT DestVT = TLI.getValueType(I.getType());
   2615   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
   2616 }
   2617 
   2618 void SelectionDAGBuilder::visitFPToUI(const User &I) {
   2619   // FPToUI is never a no-op cast, no need to check
   2620   SDValue N = getValue(I.getOperand(0));
   2621   EVT DestVT = TLI.getValueType(I.getType());
   2622   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
   2623 }
   2624 
   2625 void SelectionDAGBuilder::visitFPToSI(const User &I) {
   2626   // FPToSI is never a no-op cast, no need to check
   2627   SDValue N = getValue(I.getOperand(0));
   2628   EVT DestVT = TLI.getValueType(I.getType());
   2629   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
   2630 }
   2631 
   2632 void SelectionDAGBuilder::visitUIToFP(const User &I) {
   2633   // UIToFP is never a no-op cast, no need to check
   2634   SDValue N = getValue(I.getOperand(0));
   2635   EVT DestVT = TLI.getValueType(I.getType());
   2636   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2637 }
   2638 
   2639 void SelectionDAGBuilder::visitSIToFP(const User &I){
   2640   // SIToFP is never a no-op cast, no need to check
   2641   SDValue N = getValue(I.getOperand(0));
   2642   EVT DestVT = TLI.getValueType(I.getType());
   2643   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2644 }
   2645 
   2646 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
   2647   // What to do depends on the size of the integer and the size of the pointer.
   2648   // We can either truncate, zero extend, or no-op, accordingly.
   2649   SDValue N = getValue(I.getOperand(0));
   2650   EVT DestVT = TLI.getValueType(I.getType());
   2651   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2652 }
   2653 
   2654 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
   2655   // What to do depends on the size of the integer and the size of the pointer.
   2656   // We can either truncate, zero extend, or no-op, accordingly.
   2657   SDValue N = getValue(I.getOperand(0));
   2658   EVT DestVT = TLI.getValueType(I.getType());
   2659   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2660 }
   2661 
   2662 void SelectionDAGBuilder::visitBitCast(const User &I) {
   2663   SDValue N = getValue(I.getOperand(0));
   2664   EVT DestVT = TLI.getValueType(I.getType());
   2665 
   2666   // BitCast assures us that source and destination are the same size so this is
   2667   // either a BITCAST or a no-op.
   2668   if (DestVT != N.getValueType())
   2669     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   2670                              DestVT, N)); // convert types.
   2671   else
   2672     setValue(&I, N);            // noop cast.
   2673 }
   2674 
   2675 void SelectionDAGBuilder::visitInsertElement(const User &I) {
   2676   SDValue InVec = getValue(I.getOperand(0));
   2677   SDValue InVal = getValue(I.getOperand(1));
   2678   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2679                               TLI.getPointerTy(),
   2680                               getValue(I.getOperand(2)));
   2681   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
   2682                            TLI.getValueType(I.getType()),
   2683                            InVec, InVal, InIdx));
   2684 }
   2685 
   2686 void SelectionDAGBuilder::visitExtractElement(const User &I) {
   2687   SDValue InVec = getValue(I.getOperand(0));
   2688   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2689                               TLI.getPointerTy(),
   2690                               getValue(I.getOperand(1)));
   2691   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2692                            TLI.getValueType(I.getType()), InVec, InIdx));
   2693 }
   2694 
   2695 // Utility for visitShuffleVector - Returns true if the mask is mask starting
   2696 // from SIndx and increasing to the element length (undefs are allowed).
   2697 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
   2698   unsigned MaskNumElts = Mask.size();
   2699   for (unsigned i = 0; i != MaskNumElts; ++i)
   2700     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
   2701       return false;
   2702   return true;
   2703 }
   2704 
   2705 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
   2706   SmallVector<int, 8> Mask;
   2707   SDValue Src1 = getValue(I.getOperand(0));
   2708   SDValue Src2 = getValue(I.getOperand(1));
   2709 
   2710   // Convert the ConstantVector mask operand into an array of ints, with -1
   2711   // representing undef values.
   2712   SmallVector<Constant*, 8> MaskElts;
   2713   cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
   2714   unsigned MaskNumElts = MaskElts.size();
   2715   for (unsigned i = 0; i != MaskNumElts; ++i) {
   2716     if (isa<UndefValue>(MaskElts[i]))
   2717       Mask.push_back(-1);
   2718     else
   2719       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
   2720   }
   2721 
   2722   EVT VT = TLI.getValueType(I.getType());
   2723   EVT SrcVT = Src1.getValueType();
   2724   unsigned SrcNumElts = SrcVT.getVectorNumElements();
   2725 
   2726   if (SrcNumElts == MaskNumElts) {
   2727     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2728                                       &Mask[0]));
   2729     return;
   2730   }
   2731 
   2732   // Normalize the shuffle vector since mask and vector length don't match.
   2733   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
   2734     // Mask is longer than the source vectors and is a multiple of the source
   2735     // vectors.  We can use concatenate vector to make the mask and vectors
   2736     // lengths match.
   2737     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
   2738       // The shuffle is concatenating two vectors together.
   2739       setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
   2740                                VT, Src1, Src2));
   2741       return;
   2742     }
   2743 
   2744     // Pad both vectors with undefs to make them the same length as the mask.
   2745     unsigned NumConcat = MaskNumElts / SrcNumElts;
   2746     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
   2747     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
   2748     SDValue UndefVal = DAG.getUNDEF(SrcVT);
   2749 
   2750     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
   2751     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
   2752     MOps1[0] = Src1;
   2753     MOps2[0] = Src2;
   2754 
   2755     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2756                                                   getCurDebugLoc(), VT,
   2757                                                   &MOps1[0], NumConcat);
   2758     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2759                                                   getCurDebugLoc(), VT,
   2760                                                   &MOps2[0], NumConcat);
   2761 
   2762     // Readjust mask for new input vector length.
   2763     SmallVector<int, 8> MappedOps;
   2764     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2765       int Idx = Mask[i];
   2766       if (Idx < (int)SrcNumElts)
   2767         MappedOps.push_back(Idx);
   2768       else
   2769         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
   2770     }
   2771 
   2772     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2773                                       &MappedOps[0]));
   2774     return;
   2775   }
   2776 
   2777   if (SrcNumElts > MaskNumElts) {
   2778     // Analyze the access pattern of the vector to see if we can extract
   2779     // two subvectors and do the shuffle. The analysis is done by calculating
   2780     // the range of elements the mask access on both vectors.
   2781     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
   2782     int MaxRange[2] = {-1, -1};
   2783 
   2784     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2785       int Idx = Mask[i];
   2786       int Input = 0;
   2787       if (Idx < 0)
   2788         continue;
   2789 
   2790       if (Idx >= (int)SrcNumElts) {
   2791         Input = 1;
   2792         Idx -= SrcNumElts;
   2793       }
   2794       if (Idx > MaxRange[Input])
   2795         MaxRange[Input] = Idx;
   2796       if (Idx < MinRange[Input])
   2797         MinRange[Input] = Idx;
   2798     }
   2799 
   2800     // Check if the access is smaller than the vector size and can we find
   2801     // a reasonable extract index.
   2802     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
   2803                                  // Extract.
   2804     int StartIdx[2];  // StartIdx to extract from
   2805     for (int Input=0; Input < 2; ++Input) {
   2806       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
   2807         RangeUse[Input] = 0; // Unused
   2808         StartIdx[Input] = 0;
   2809       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
   2810         // Fits within range but we should see if we can find a good
   2811         // start index that is a multiple of the mask length.
   2812         if (MaxRange[Input] < (int)MaskNumElts) {
   2813           RangeUse[Input] = 1; // Extract from beginning of the vector
   2814           StartIdx[Input] = 0;
   2815         } else {
   2816           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
   2817           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
   2818               StartIdx[Input] + MaskNumElts <= SrcNumElts)
   2819             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
   2820         }
   2821       }
   2822     }
   2823 
   2824     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
   2825       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
   2826       return;
   2827     }
   2828     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
   2829       // Extract appropriate subvector and generate a vector shuffle
   2830       for (int Input=0; Input < 2; ++Input) {
   2831         SDValue &Src = Input == 0 ? Src1 : Src2;
   2832         if (RangeUse[Input] == 0)
   2833           Src = DAG.getUNDEF(VT);
   2834         else
   2835           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
   2836                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
   2837       }
   2838 
   2839       // Calculate new mask.
   2840       SmallVector<int, 8> MappedOps;
   2841       for (unsigned i = 0; i != MaskNumElts; ++i) {
   2842         int Idx = Mask[i];
   2843         if (Idx < 0)
   2844           MappedOps.push_back(Idx);
   2845         else if (Idx < (int)SrcNumElts)
   2846           MappedOps.push_back(Idx - StartIdx[0]);
   2847         else
   2848           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
   2849       }
   2850 
   2851       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2852                                         &MappedOps[0]));
   2853       return;
   2854     }
   2855   }
   2856 
   2857   // We can't use either concat vectors or extract subvectors so fall back to
   2858   // replacing the shuffle with extract and build vector.
   2859   // to insert and build vector.
   2860   EVT EltVT = VT.getVectorElementType();
   2861   EVT PtrVT = TLI.getPointerTy();
   2862   SmallVector<SDValue,8> Ops;
   2863   for (unsigned i = 0; i != MaskNumElts; ++i) {
   2864     if (Mask[i] < 0) {
   2865       Ops.push_back(DAG.getUNDEF(EltVT));
   2866     } else {
   2867       int Idx = Mask[i];
   2868       SDValue Res;
   2869 
   2870       if (Idx < (int)SrcNumElts)
   2871         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2872                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
   2873       else
   2874         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2875                           EltVT, Src2,
   2876                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
   2877 
   2878       Ops.push_back(Res);
   2879     }
   2880   }
   2881 
   2882   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   2883                            VT, &Ops[0], Ops.size()));
   2884 }
   2885 
   2886 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
   2887   const Value *Op0 = I.getOperand(0);
   2888   const Value *Op1 = I.getOperand(1);
   2889   Type *AggTy = I.getType();
   2890   Type *ValTy = Op1->getType();
   2891   bool IntoUndef = isa<UndefValue>(Op0);
   2892   bool FromUndef = isa<UndefValue>(Op1);
   2893 
   2894   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   2895 
   2896   SmallVector<EVT, 4> AggValueVTs;
   2897   ComputeValueVTs(TLI, AggTy, AggValueVTs);
   2898   SmallVector<EVT, 4> ValValueVTs;
   2899   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   2900 
   2901   unsigned NumAggValues = AggValueVTs.size();
   2902   unsigned NumValValues = ValValueVTs.size();
   2903   SmallVector<SDValue, 4> Values(NumAggValues);
   2904 
   2905   SDValue Agg = getValue(Op0);
   2906   unsigned i = 0;
   2907   // Copy the beginning value(s) from the original aggregate.
   2908   for (; i != LinearIndex; ++i)
   2909     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2910                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   2911   // Copy values from the inserted value(s).
   2912   if (NumValValues) {
   2913     SDValue Val = getValue(Op1);
   2914     for (; i != LinearIndex + NumValValues; ++i)
   2915       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2916                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
   2917   }
   2918   // Copy remaining value(s) from the original aggregate.
   2919   for (; i != NumAggValues; ++i)
   2920     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2921                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   2922 
   2923   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   2924                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
   2925                            &Values[0], NumAggValues));
   2926 }
   2927 
   2928 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
   2929   const Value *Op0 = I.getOperand(0);
   2930   Type *AggTy = Op0->getType();
   2931   Type *ValTy = I.getType();
   2932   bool OutOfUndef = isa<UndefValue>(Op0);
   2933 
   2934   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   2935 
   2936   SmallVector<EVT, 4> ValValueVTs;
   2937   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   2938 
   2939   unsigned NumValValues = ValValueVTs.size();
   2940 
   2941   // Ignore a extractvalue that produces an empty object
   2942   if (!NumValValues) {
   2943     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   2944     return;
   2945   }
   2946 
   2947   SmallVector<SDValue, 4> Values(NumValValues);
   2948 
   2949   SDValue Agg = getValue(Op0);
   2950   // Copy out the selected value(s).
   2951   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
   2952     Values[i - LinearIndex] =
   2953       OutOfUndef ?
   2954         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
   2955         SDValue(Agg.getNode(), Agg.getResNo() + i);
   2956 
   2957   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   2958                            DAG.getVTList(&ValValueVTs[0], NumValValues),
   2959                            &Values[0], NumValValues));
   2960 }
   2961 
   2962 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
   2963   SDValue N = getValue(I.getOperand(0));
   2964   Type *Ty = I.getOperand(0)->getType();
   2965 
   2966   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
   2967        OI != E; ++OI) {
   2968     const Value *Idx = *OI;
   2969     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
   2970       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
   2971       if (Field) {
   2972         // N = N + Offset
   2973         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
   2974         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   2975                         DAG.getIntPtrConstant(Offset));
   2976       }
   2977 
   2978       Ty = StTy->getElementType(Field);
   2979     } else {
   2980       Ty = cast<SequentialType>(Ty)->getElementType();
   2981 
   2982       // If this is a constant subscript, handle it quickly.
   2983       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
   2984         if (CI->isZero()) continue;
   2985         uint64_t Offs =
   2986             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
   2987         SDValue OffsVal;
   2988         EVT PTy = TLI.getPointerTy();
   2989         unsigned PtrBits = PTy.getSizeInBits();
   2990         if (PtrBits < 64)
   2991           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
   2992                                 TLI.getPointerTy(),
   2993                                 DAG.getConstant(Offs, MVT::i64));
   2994         else
   2995           OffsVal = DAG.getIntPtrConstant(Offs);
   2996 
   2997         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   2998                         OffsVal);
   2999         continue;
   3000       }
   3001 
   3002       // N = N + Idx * ElementSize;
   3003       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
   3004                                 TD->getTypeAllocSize(Ty));
   3005       SDValue IdxN = getValue(Idx);
   3006 
   3007       // If the index is smaller or larger than intptr_t, truncate or extend
   3008       // it.
   3009       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
   3010 
   3011       // If this is a multiply by a power of two, turn it into a shl
   3012       // immediately.  This is a very common case.
   3013       if (ElementSize != 1) {
   3014         if (ElementSize.isPowerOf2()) {
   3015           unsigned Amt = ElementSize.logBase2();
   3016           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
   3017                              N.getValueType(), IdxN,
   3018                              DAG.getConstant(Amt, TLI.getPointerTy()));
   3019         } else {
   3020           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
   3021           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
   3022                              N.getValueType(), IdxN, Scale);
   3023         }
   3024       }
   3025 
   3026       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3027                       N.getValueType(), N, IdxN);
   3028     }
   3029   }
   3030 
   3031   setValue(&I, N);
   3032 }
   3033 
   3034 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
   3035   // If this is a fixed sized alloca in the entry block of the function,
   3036   // allocate it statically on the stack.
   3037   if (FuncInfo.StaticAllocaMap.count(&I))
   3038     return;   // getValue will auto-populate this.
   3039 
   3040   Type *Ty = I.getAllocatedType();
   3041   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   3042   unsigned Align =
   3043     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
   3044              I.getAlignment());
   3045 
   3046   SDValue AllocSize = getValue(I.getArraySize());
   3047 
   3048   EVT IntPtr = TLI.getPointerTy();
   3049   if (AllocSize.getValueType() != IntPtr)
   3050     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
   3051 
   3052   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
   3053                           AllocSize,
   3054                           DAG.getConstant(TySize, IntPtr));
   3055 
   3056   // Handle alignment.  If the requested alignment is less than or equal to
   3057   // the stack alignment, ignore it.  If the size is greater than or equal to
   3058   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
   3059   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   3060   if (Align <= StackAlign)
   3061     Align = 0;
   3062 
   3063   // Round the size of the allocation up to the stack alignment size
   3064   // by add SA-1 to the size.
   3065   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3066                           AllocSize.getValueType(), AllocSize,
   3067                           DAG.getIntPtrConstant(StackAlign-1));
   3068 
   3069   // Mask out the low bits for alignment purposes.
   3070   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
   3071                           AllocSize.getValueType(), AllocSize,
   3072                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
   3073 
   3074   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
   3075   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
   3076   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
   3077                             VTs, Ops, 3);
   3078   setValue(&I, DSA);
   3079   DAG.setRoot(DSA.getValue(1));
   3080 
   3081   // Inform the Frame Information that we have just allocated a variable-sized
   3082   // object.
   3083   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
   3084 }
   3085 
   3086 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
   3087   const Value *SV = I.getOperand(0);
   3088   SDValue Ptr = getValue(SV);
   3089 
   3090   Type *Ty = I.getType();
   3091 
   3092   bool isVolatile = I.isVolatile();
   3093   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3094   unsigned Alignment = I.getAlignment();
   3095   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3096 
   3097   SmallVector<EVT, 4> ValueVTs;
   3098   SmallVector<uint64_t, 4> Offsets;
   3099   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
   3100   unsigned NumValues = ValueVTs.size();
   3101   if (NumValues == 0)
   3102     return;
   3103 
   3104   SDValue Root;
   3105   bool ConstantMemory = false;
   3106   if (I.isVolatile() || NumValues > MaxParallelChains)
   3107     // Serialize volatile loads with other side effects.
   3108     Root = getRoot();
   3109   else if (AA->pointsToConstantMemory(
   3110              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
   3111     // Do not serialize (non-volatile) loads of constant memory with anything.
   3112     Root = DAG.getEntryNode();
   3113     ConstantMemory = true;
   3114   } else {
   3115     // Do not serialize non-volatile loads against each other.
   3116     Root = DAG.getRoot();
   3117   }
   3118 
   3119   SmallVector<SDValue, 4> Values(NumValues);
   3120   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3121                                           NumValues));
   3122   EVT PtrVT = Ptr.getValueType();
   3123   unsigned ChainI = 0;
   3124   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3125     // Serializing loads here may result in excessive register pressure, and
   3126     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
   3127     // could recover a bit by hoisting nodes upward in the chain by recognizing
   3128     // they are side-effect free or do not alias. The optimizer should really
   3129     // avoid this case by converting large object/array copies to llvm.memcpy
   3130     // (MaxParallelChains should always remain as failsafe).
   3131     if (ChainI == MaxParallelChains) {
   3132       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
   3133       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3134                                   MVT::Other, &Chains[0], ChainI);
   3135       Root = Chain;
   3136       ChainI = 0;
   3137     }
   3138     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3139                             PtrVT, Ptr,
   3140                             DAG.getConstant(Offsets[i], PtrVT));
   3141     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
   3142                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
   3143                             isNonTemporal, Alignment, TBAAInfo);
   3144 
   3145     Values[i] = L;
   3146     Chains[ChainI] = L.getValue(1);
   3147   }
   3148 
   3149   if (!ConstantMemory) {
   3150     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3151                                 MVT::Other, &Chains[0], ChainI);
   3152     if (isVolatile)
   3153       DAG.setRoot(Chain);
   3154     else
   3155       PendingLoads.push_back(Chain);
   3156   }
   3157 
   3158   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3159                            DAG.getVTList(&ValueVTs[0], NumValues),
   3160                            &Values[0], NumValues));
   3161 }
   3162 
   3163 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
   3164   const Value *SrcV = I.getOperand(0);
   3165   const Value *PtrV = I.getOperand(1);
   3166 
   3167   SmallVector<EVT, 4> ValueVTs;
   3168   SmallVector<uint64_t, 4> Offsets;
   3169   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
   3170   unsigned NumValues = ValueVTs.size();
   3171   if (NumValues == 0)
   3172     return;
   3173 
   3174   // Get the lowered operands. Note that we do this after
   3175   // checking if NumResults is zero, because with zero results
   3176   // the operands won't have values in the map.
   3177   SDValue Src = getValue(SrcV);
   3178   SDValue Ptr = getValue(PtrV);
   3179 
   3180   SDValue Root = getRoot();
   3181   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3182                                           NumValues));
   3183   EVT PtrVT = Ptr.getValueType();
   3184   bool isVolatile = I.isVolatile();
   3185   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3186   unsigned Alignment = I.getAlignment();
   3187   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3188 
   3189   unsigned ChainI = 0;
   3190   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3191     // See visitLoad comments.
   3192     if (ChainI == MaxParallelChains) {
   3193       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3194                                   MVT::Other, &Chains[0], ChainI);
   3195       Root = Chain;
   3196       ChainI = 0;
   3197     }
   3198     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
   3199                               DAG.getConstant(Offsets[i], PtrVT));
   3200     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
   3201                               SDValue(Src.getNode(), Src.getResNo() + i),
   3202                               Add, MachinePointerInfo(PtrV, Offsets[i]),
   3203                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
   3204     Chains[ChainI] = St;
   3205   }
   3206 
   3207   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3208                                   MVT::Other, &Chains[0], ChainI);
   3209   ++SDNodeOrder;
   3210   AssignOrderingToNode(StoreNode.getNode());
   3211   DAG.setRoot(StoreNode);
   3212 }
   3213 
   3214 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
   3215 /// node.
   3216 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
   3217                                                unsigned Intrinsic) {
   3218   bool HasChain = !I.doesNotAccessMemory();
   3219   bool OnlyLoad = HasChain && I.onlyReadsMemory();
   3220 
   3221   // Build the operand list.
   3222   SmallVector<SDValue, 8> Ops;
   3223   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
   3224     if (OnlyLoad) {
   3225       // We don't need to serialize loads against other loads.
   3226       Ops.push_back(DAG.getRoot());
   3227     } else {
   3228       Ops.push_back(getRoot());
   3229     }
   3230   }
   3231 
   3232   // Info is set by getTgtMemInstrinsic
   3233   TargetLowering::IntrinsicInfo Info;
   3234   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
   3235 
   3236   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
   3237   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
   3238       Info.opc == ISD::INTRINSIC_W_CHAIN)
   3239     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
   3240 
   3241   // Add all operands of the call to the operand list.
   3242   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   3243     SDValue Op = getValue(I.getArgOperand(i));
   3244     assert(TLI.isTypeLegal(Op.getValueType()) &&
   3245            "Intrinsic uses a non-legal type?");
   3246     Ops.push_back(Op);
   3247   }
   3248 
   3249   SmallVector<EVT, 4> ValueVTs;
   3250   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   3251 #ifndef NDEBUG
   3252   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
   3253     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
   3254            "Intrinsic uses a non-legal type?");
   3255   }
   3256 #endif // NDEBUG
   3257 
   3258   if (HasChain)
   3259     ValueVTs.push_back(MVT::Other);
   3260 
   3261   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
   3262 
   3263   // Create the node.
   3264   SDValue Result;
   3265   if (IsTgtIntrinsic) {
   3266     // This is target intrinsic that touches memory
   3267     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
   3268                                      VTs, &Ops[0], Ops.size(),
   3269                                      Info.memVT,
   3270                                    MachinePointerInfo(Info.ptrVal, Info.offset),
   3271                                      Info.align, Info.vol,
   3272                                      Info.readMem, Info.writeMem);
   3273   } else if (!HasChain) {
   3274     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
   3275                          VTs, &Ops[0], Ops.size());
   3276   } else if (!I.getType()->isVoidTy()) {
   3277     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
   3278                          VTs, &Ops[0], Ops.size());
   3279   } else {
   3280     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
   3281                          VTs, &Ops[0], Ops.size());
   3282   }
   3283 
   3284   if (HasChain) {
   3285     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
   3286     if (OnlyLoad)
   3287       PendingLoads.push_back(Chain);
   3288     else
   3289       DAG.setRoot(Chain);
   3290   }
   3291 
   3292   if (!I.getType()->isVoidTy()) {
   3293     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
   3294       EVT VT = TLI.getValueType(PTy);
   3295       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
   3296     }
   3297 
   3298     setValue(&I, Result);
   3299   }
   3300 }
   3301 
   3302 /// GetSignificand - Get the significand and build it into a floating-point
   3303 /// number with exponent of 1:
   3304 ///
   3305 ///   Op = (Op & 0x007fffff) | 0x3f800000;
   3306 ///
   3307 /// where Op is the hexidecimal representation of floating point value.
   3308 static SDValue
   3309 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
   3310   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3311                            DAG.getConstant(0x007fffff, MVT::i32));
   3312   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
   3313                            DAG.getConstant(0x3f800000, MVT::i32));
   3314   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
   3315 }
   3316 
   3317 /// GetExponent - Get the exponent:
   3318 ///
   3319 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
   3320 ///
   3321 /// where Op is the hexidecimal representation of floating point value.
   3322 static SDValue
   3323 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
   3324             DebugLoc dl) {
   3325   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3326                            DAG.getConstant(0x7f800000, MVT::i32));
   3327   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
   3328                            DAG.getConstant(23, TLI.getPointerTy()));
   3329   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
   3330                            DAG.getConstant(127, MVT::i32));
   3331   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
   3332 }
   3333 
   3334 /// getF32Constant - Get 32-bit floating point constant.
   3335 static SDValue
   3336 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
   3337   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
   3338 }
   3339 
   3340 /// Inlined utility function to implement binary input atomic intrinsics for
   3341 /// visitIntrinsicCall: I is a call instruction
   3342 ///                     Op is the associated NodeType for I
   3343 const char *
   3344 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
   3345                                            ISD::NodeType Op) {
   3346   SDValue Root = getRoot();
   3347   SDValue L =
   3348     DAG.getAtomic(Op, getCurDebugLoc(),
   3349                   getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
   3350                   Root,
   3351                   getValue(I.getArgOperand(0)),
   3352                   getValue(I.getArgOperand(1)),
   3353                   I.getArgOperand(0));
   3354   setValue(&I, L);
   3355   DAG.setRoot(L.getValue(1));
   3356   return 0;
   3357 }
   3358 
   3359 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
   3360 const char *
   3361 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
   3362   SDValue Op1 = getValue(I.getArgOperand(0));
   3363   SDValue Op2 = getValue(I.getArgOperand(1));
   3364 
   3365   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
   3366   setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
   3367   return 0;
   3368 }
   3369 
   3370 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
   3371 /// limited-precision mode.
   3372 void
   3373 SelectionDAGBuilder::visitExp(const CallInst &I) {
   3374   SDValue result;
   3375   DebugLoc dl = getCurDebugLoc();
   3376 
   3377   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3378       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3379     SDValue Op = getValue(I.getArgOperand(0));
   3380 
   3381     // Put the exponent in the right bit position for later addition to the
   3382     // final result:
   3383     //
   3384     //   #define LOG2OFe 1.4426950f
   3385     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
   3386     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3387                              getF32Constant(DAG, 0x3fb8aa3b));
   3388     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3389 
   3390     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
   3391     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3392     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3393 
   3394     //   IntegerPartOfX <<= 23;
   3395     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3396                                  DAG.getConstant(23, TLI.getPointerTy()));
   3397 
   3398     if (LimitFloatPrecision <= 6) {
   3399       // For floating-point precision of 6:
   3400       //
   3401       //   TwoToFractionalPartOfX =
   3402       //     0.997535578f +
   3403       //       (0.735607626f + 0.252464424f * x) * x;
   3404       //
   3405       // error 0.0144103317, which is 6 bits
   3406       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3407                                getF32Constant(DAG, 0x3e814304));
   3408       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3409                                getF32Constant(DAG, 0x3f3c50c8));
   3410       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3411       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3412                                getF32Constant(DAG, 0x3f7f5e7e));
   3413       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
   3414 
   3415       // Add the exponent into the result in integer domain.
   3416       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3417                                TwoToFracPartOfX, IntegerPartOfX);
   3418 
   3419       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
   3420     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3421       // For floating-point precision of 12:
   3422       //
   3423       //   TwoToFractionalPartOfX =
   3424       //     0.999892986f +
   3425       //       (0.696457318f +
   3426       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3427       //
   3428       // 0.000107046256 error, which is 13 to 14 bits
   3429       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3430                                getF32Constant(DAG, 0x3da235e3));
   3431       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3432                                getF32Constant(DAG, 0x3e65b8f3));
   3433       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3434       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3435                                getF32Constant(DAG, 0x3f324b07));
   3436       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3437       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3438                                getF32Constant(DAG, 0x3f7ff8fd));
   3439       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
   3440 
   3441       // Add the exponent into the result in integer domain.
   3442       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3443                                TwoToFracPartOfX, IntegerPartOfX);
   3444 
   3445       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
   3446     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3447       // For floating-point precision of 18:
   3448       //
   3449       //   TwoToFractionalPartOfX =
   3450       //     0.999999982f +
   3451       //       (0.693148872f +
   3452       //         (0.240227044f +
   3453       //           (0.554906021e-1f +
   3454       //             (0.961591928e-2f +
   3455       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3456       //
   3457       // error 2.47208000*10^(-7), which is better than 18 bits
   3458       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3459                                getF32Constant(DAG, 0x3924b03e));
   3460       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3461                                getF32Constant(DAG, 0x3ab24b87));
   3462       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3463       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3464                                getF32Constant(DAG, 0x3c1d8c17));
   3465       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3466       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3467                                getF32Constant(DAG, 0x3d634a1d));
   3468       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3469       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3470                                getF32Constant(DAG, 0x3e75fe14));
   3471       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3472       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3473                                 getF32Constant(DAG, 0x3f317234));
   3474       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3475       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3476                                 getF32Constant(DAG, 0x3f800000));
   3477       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
   3478                                              MVT::i32, t13);
   3479 
   3480       // Add the exponent into the result in integer domain.
   3481       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3482                                 TwoToFracPartOfX, IntegerPartOfX);
   3483 
   3484       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
   3485     }
   3486   } else {
   3487     // No special expansion.
   3488     result = DAG.getNode(ISD::FEXP, dl,
   3489                          getValue(I.getArgOperand(0)).getValueType(),
   3490                          getValue(I.getArgOperand(0)));
   3491   }
   3492 
   3493   setValue(&I, result);
   3494 }
   3495 
   3496 /// visitLog - Lower a log intrinsic. Handles the special sequences for
   3497 /// limited-precision mode.
   3498 void
   3499 SelectionDAGBuilder::visitLog(const CallInst &I) {
   3500   SDValue result;
   3501   DebugLoc dl = getCurDebugLoc();
   3502 
   3503   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3504       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3505     SDValue Op = getValue(I.getArgOperand(0));
   3506     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3507 
   3508     // Scale the exponent by log(2) [0.69314718f].
   3509     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3510     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3511                                         getF32Constant(DAG, 0x3f317218));
   3512 
   3513     // Get the significand and build it into a floating-point number with
   3514     // exponent of 1.
   3515     SDValue X = GetSignificand(DAG, Op1, dl);
   3516 
   3517     if (LimitFloatPrecision <= 6) {
   3518       // For floating-point precision of 6:
   3519       //
   3520       //   LogofMantissa =
   3521       //     -1.1609546f +
   3522       //       (1.4034025f - 0.23903021f * x) * x;
   3523       //
   3524       // error 0.0034276066, which is better than 8 bits
   3525       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3526                                getF32Constant(DAG, 0xbe74c456));
   3527       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3528                                getF32Constant(DAG, 0x3fb3a2b1));
   3529       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3530       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3531                                           getF32Constant(DAG, 0x3f949a29));
   3532 
   3533       result = DAG.getNode(ISD::FADD, dl,
   3534                            MVT::f32, LogOfExponent, LogOfMantissa);
   3535     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3536       // For floating-point precision of 12:
   3537       //
   3538       //   LogOfMantissa =
   3539       //     -1.7417939f +
   3540       //       (2.8212026f +
   3541       //         (-1.4699568f +
   3542       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
   3543       //
   3544       // error 0.000061011436, which is 14 bits
   3545       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3546                                getF32Constant(DAG, 0xbd67b6d6));
   3547       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3548                                getF32Constant(DAG, 0x3ee4f4b8));
   3549       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3550       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3551                                getF32Constant(DAG, 0x3fbc278b));
   3552       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3553       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3554                                getF32Constant(DAG, 0x40348e95));
   3555       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3556       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3557                                           getF32Constant(DAG, 0x3fdef31a));
   3558 
   3559       result = DAG.getNode(ISD::FADD, dl,
   3560                            MVT::f32, LogOfExponent, LogOfMantissa);
   3561     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3562       // For floating-point precision of 18:
   3563       //
   3564       //   LogOfMantissa =
   3565       //     -2.1072184f +
   3566       //       (4.2372794f +
   3567       //         (-3.7029485f +
   3568       //           (2.2781945f +
   3569       //             (-0.87823314f +
   3570       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
   3571       //
   3572       // error 0.0000023660568, which is better than 18 bits
   3573       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3574                                getF32Constant(DAG, 0xbc91e5ac));
   3575       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3576                                getF32Constant(DAG, 0x3e4350aa));
   3577       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3578       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3579                                getF32Constant(DAG, 0x3f60d3e3));
   3580       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3581       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3582                                getF32Constant(DAG, 0x4011cdf0));
   3583       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3584       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3585                                getF32Constant(DAG, 0x406cfd1c));
   3586       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3587       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3588                                getF32Constant(DAG, 0x408797cb));
   3589       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3590       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3591                                           getF32Constant(DAG, 0x4006dcab));
   3592 
   3593       result = DAG.getNode(ISD::FADD, dl,
   3594                            MVT::f32, LogOfExponent, LogOfMantissa);
   3595     }
   3596   } else {
   3597     // No special expansion.
   3598     result = DAG.getNode(ISD::FLOG, dl,
   3599                          getValue(I.getArgOperand(0)).getValueType(),
   3600                          getValue(I.getArgOperand(0)));
   3601   }
   3602 
   3603   setValue(&I, result);
   3604 }
   3605 
   3606 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
   3607 /// limited-precision mode.
   3608 void
   3609 SelectionDAGBuilder::visitLog2(const CallInst &I) {
   3610   SDValue result;
   3611   DebugLoc dl = getCurDebugLoc();
   3612 
   3613   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3614       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3615     SDValue Op = getValue(I.getArgOperand(0));
   3616     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3617 
   3618     // Get the exponent.
   3619     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
   3620 
   3621     // Get the significand and build it into a floating-point number with
   3622     // exponent of 1.
   3623     SDValue X = GetSignificand(DAG, Op1, dl);
   3624 
   3625     // Different possible minimax approximations of significand in
   3626     // floating-point for various degrees of accuracy over [1,2].
   3627     if (LimitFloatPrecision <= 6) {
   3628       // For floating-point precision of 6:
   3629       //
   3630       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
   3631       //
   3632       // error 0.0049451742, which is more than 7 bits
   3633       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3634                                getF32Constant(DAG, 0xbeb08fe0));
   3635       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3636                                getF32Constant(DAG, 0x40019463));
   3637       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3638       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3639                                            getF32Constant(DAG, 0x3fd6633d));
   3640 
   3641       result = DAG.getNode(ISD::FADD, dl,
   3642                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3643     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3644       // For floating-point precision of 12:
   3645       //
   3646       //   Log2ofMantissa =
   3647       //     -2.51285454f +
   3648       //       (4.07009056f +
   3649       //         (-2.12067489f +
   3650       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
   3651       //
   3652       // error 0.0000876136000, which is better than 13 bits
   3653       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3654                                getF32Constant(DAG, 0xbda7262e));
   3655       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3656                                getF32Constant(DAG, 0x3f25280b));
   3657       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3658       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3659                                getF32Constant(DAG, 0x4007b923));
   3660       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3661       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3662                                getF32Constant(DAG, 0x40823e2f));
   3663       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3664       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3665                                            getF32Constant(DAG, 0x4020d29c));
   3666 
   3667       result = DAG.getNode(ISD::FADD, dl,
   3668                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3669     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3670       // For floating-point precision of 18:
   3671       //
   3672       //   Log2ofMantissa =
   3673       //     -3.0400495f +
   3674       //       (6.1129976f +
   3675       //         (-5.3420409f +
   3676       //           (3.2865683f +
   3677       //             (-1.2669343f +
   3678       //               (0.27515199f -
   3679       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
   3680       //
   3681       // error 0.0000018516, which is better than 18 bits
   3682       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3683                                getF32Constant(DAG, 0xbcd2769e));
   3684       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3685                                getF32Constant(DAG, 0x3e8ce0b9));
   3686       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3687       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3688                                getF32Constant(DAG, 0x3fa22ae7));
   3689       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3690       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3691                                getF32Constant(DAG, 0x40525723));
   3692       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3693       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3694                                getF32Constant(DAG, 0x40aaf200));
   3695       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3696       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3697                                getF32Constant(DAG, 0x40c39dad));
   3698       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3699       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3700                                            getF32Constant(DAG, 0x4042902c));
   3701 
   3702       result = DAG.getNode(ISD::FADD, dl,
   3703                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3704     }
   3705   } else {
   3706     // No special expansion.
   3707     result = DAG.getNode(ISD::FLOG2, dl,
   3708                          getValue(I.getArgOperand(0)).getValueType(),
   3709                          getValue(I.getArgOperand(0)));
   3710   }
   3711 
   3712   setValue(&I, result);
   3713 }
   3714 
   3715 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
   3716 /// limited-precision mode.
   3717 void
   3718 SelectionDAGBuilder::visitLog10(const CallInst &I) {
   3719   SDValue result;
   3720   DebugLoc dl = getCurDebugLoc();
   3721 
   3722   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3723       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3724     SDValue Op = getValue(I.getArgOperand(0));
   3725     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3726 
   3727     // Scale the exponent by log10(2) [0.30102999f].
   3728     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3729     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3730                                         getF32Constant(DAG, 0x3e9a209a));
   3731 
   3732     // Get the significand and build it into a floating-point number with
   3733     // exponent of 1.
   3734     SDValue X = GetSignificand(DAG, Op1, dl);
   3735 
   3736     if (LimitFloatPrecision <= 6) {
   3737       // For floating-point precision of 6:
   3738       //
   3739       //   Log10ofMantissa =
   3740       //     -0.50419619f +
   3741       //       (0.60948995f - 0.10380950f * x) * x;
   3742       //
   3743       // error 0.0014886165, which is 6 bits
   3744       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3745                                getF32Constant(DAG, 0xbdd49a13));
   3746       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3747                                getF32Constant(DAG, 0x3f1c0789));
   3748       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3749       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3750                                             getF32Constant(DAG, 0x3f011300));
   3751 
   3752       result = DAG.getNode(ISD::FADD, dl,
   3753                            MVT::f32, LogOfExponent, Log10ofMantissa);
   3754     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3755       // For floating-point precision of 12:
   3756       //
   3757       //   Log10ofMantissa =
   3758       //     -0.64831180f +
   3759       //       (0.91751397f +
   3760       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
   3761       //
   3762       // error 0.00019228036, which is better than 12 bits
   3763       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3764                                getF32Constant(DAG, 0x3d431f31));
   3765       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   3766                                getF32Constant(DAG, 0x3ea21fb2));
   3767       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3768       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3769                                getF32Constant(DAG, 0x3f6ae232));
   3770       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3771       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   3772                                             getF32Constant(DAG, 0x3f25f7c3));
   3773 
   3774       result = DAG.getNode(ISD::FADD, dl,
   3775                            MVT::f32, LogOfExponent, Log10ofMantissa);
   3776     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3777       // For floating-point precision of 18:
   3778       //
   3779       //   Log10ofMantissa =
   3780       //     -0.84299375f +
   3781       //       (1.5327582f +
   3782       //         (-1.0688956f +
   3783       //           (0.49102474f +
   3784       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
   3785       //
   3786       // error 0.0000037995730, which is better than 18 bits
   3787       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3788                                getF32Constant(DAG, 0x3c5d51ce));
   3789       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   3790                                getF32Constant(DAG, 0x3e00685a));
   3791       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3792       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3793                                getF32Constant(DAG, 0x3efb6798));
   3794       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3795       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   3796                                getF32Constant(DAG, 0x3f88d192));
   3797       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3798       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3799                                getF32Constant(DAG, 0x3fc4316c));
   3800       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3801       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
   3802                                             getF32Constant(DAG, 0x3f57ce70));
   3803 
   3804       result = DAG.getNode(ISD::FADD, dl,
   3805                            MVT::f32, LogOfExponent, Log10ofMantissa);
   3806     }
   3807   } else {
   3808     // No special expansion.
   3809     result = DAG.getNode(ISD::FLOG10, dl,
   3810                          getValue(I.getArgOperand(0)).getValueType(),
   3811                          getValue(I.getArgOperand(0)));
   3812   }
   3813 
   3814   setValue(&I, result);
   3815 }
   3816 
   3817 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
   3818 /// limited-precision mode.
   3819 void
   3820 SelectionDAGBuilder::visitExp2(const CallInst &I) {
   3821   SDValue result;
   3822   DebugLoc dl = getCurDebugLoc();
   3823 
   3824   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3825       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3826     SDValue Op = getValue(I.getArgOperand(0));
   3827 
   3828     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
   3829 
   3830     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   3831     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3832     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
   3833 
   3834     //   IntegerPartOfX <<= 23;
   3835     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3836                                  DAG.getConstant(23, TLI.getPointerTy()));
   3837 
   3838     if (LimitFloatPrecision <= 6) {
   3839       // For floating-point precision of 6:
   3840       //
   3841       //   TwoToFractionalPartOfX =
   3842       //     0.997535578f +
   3843       //       (0.735607626f + 0.252464424f * x) * x;
   3844       //
   3845       // error 0.0144103317, which is 6 bits
   3846       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3847                                getF32Constant(DAG, 0x3e814304));
   3848       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3849                                getF32Constant(DAG, 0x3f3c50c8));
   3850       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3851       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3852                                getF32Constant(DAG, 0x3f7f5e7e));
   3853       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   3854       SDValue TwoToFractionalPartOfX =
   3855         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   3856 
   3857       result = DAG.getNode(ISD::BITCAST, dl,
   3858                            MVT::f32, TwoToFractionalPartOfX);
   3859     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3860       // For floating-point precision of 12:
   3861       //
   3862       //   TwoToFractionalPartOfX =
   3863       //     0.999892986f +
   3864       //       (0.696457318f +
   3865       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3866       //
   3867       // error 0.000107046256, which is 13 to 14 bits
   3868       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3869                                getF32Constant(DAG, 0x3da235e3));
   3870       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3871                                getF32Constant(DAG, 0x3e65b8f3));
   3872       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3873       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3874                                getF32Constant(DAG, 0x3f324b07));
   3875       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3876       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3877                                getF32Constant(DAG, 0x3f7ff8fd));
   3878       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   3879       SDValue TwoToFractionalPartOfX =
   3880         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   3881 
   3882       result = DAG.getNode(ISD::BITCAST, dl,
   3883                            MVT::f32, TwoToFractionalPartOfX);
   3884     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3885       // For floating-point precision of 18:
   3886       //
   3887       //   TwoToFractionalPartOfX =
   3888       //     0.999999982f +
   3889       //       (0.693148872f +
   3890       //         (0.240227044f +
   3891       //           (0.554906021e-1f +
   3892       //             (0.961591928e-2f +
   3893       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3894       // error 2.47208000*10^(-7), which is better than 18 bits
   3895       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3896                                getF32Constant(DAG, 0x3924b03e));
   3897       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3898                                getF32Constant(DAG, 0x3ab24b87));
   3899       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3900       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3901                                getF32Constant(DAG, 0x3c1d8c17));
   3902       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3903       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3904                                getF32Constant(DAG, 0x3d634a1d));
   3905       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3906       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3907                                getF32Constant(DAG, 0x3e75fe14));
   3908       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3909       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3910                                 getF32Constant(DAG, 0x3f317234));
   3911       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3912       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3913                                 getF32Constant(DAG, 0x3f800000));
   3914       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   3915       SDValue TwoToFractionalPartOfX =
   3916         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   3917 
   3918       result = DAG.getNode(ISD::BITCAST, dl,
   3919                            MVT::f32, TwoToFractionalPartOfX);
   3920     }
   3921   } else {
   3922     // No special expansion.
   3923     result = DAG.getNode(ISD::FEXP2, dl,
   3924                          getValue(I.getArgOperand(0)).getValueType(),
   3925                          getValue(I.getArgOperand(0)));
   3926   }
   3927 
   3928   setValue(&I, result);
   3929 }
   3930 
   3931 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
   3932 /// limited-precision mode with x == 10.0f.
   3933 void
   3934 SelectionDAGBuilder::visitPow(const CallInst &I) {
   3935   SDValue result;
   3936   const Value *Val = I.getArgOperand(0);
   3937   DebugLoc dl = getCurDebugLoc();
   3938   bool IsExp10 = false;
   3939 
   3940   if (getValue(Val).getValueType() == MVT::f32 &&
   3941       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
   3942       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3943     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
   3944       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   3945         APFloat Ten(10.0f);
   3946         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
   3947       }
   3948     }
   3949   }
   3950 
   3951   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3952     SDValue Op = getValue(I.getArgOperand(1));
   3953 
   3954     // Put the exponent in the right bit position for later addition to the
   3955     // final result:
   3956     //
   3957     //   #define LOG2OF10 3.3219281f
   3958     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
   3959     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3960                              getF32Constant(DAG, 0x40549a78));
   3961     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3962 
   3963     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   3964     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3965     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3966 
   3967     //   IntegerPartOfX <<= 23;
   3968     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3969                                  DAG.getConstant(23, TLI.getPointerTy()));
   3970 
   3971     if (LimitFloatPrecision <= 6) {
   3972       // For floating-point precision of 6:
   3973       //
   3974       //   twoToFractionalPartOfX =
   3975       //     0.997535578f +
   3976       //       (0.735607626f + 0.252464424f * x) * x;
   3977       //
   3978       // error 0.0144103317, which is 6 bits
   3979       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3980                                getF32Constant(DAG, 0x3e814304));
   3981       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3982                                getF32Constant(DAG, 0x3f3c50c8));
   3983       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3984       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3985                                getF32Constant(DAG, 0x3f7f5e7e));
   3986       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   3987       SDValue TwoToFractionalPartOfX =
   3988         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   3989 
   3990       result = DAG.getNode(ISD::BITCAST, dl,
   3991                            MVT::f32, TwoToFractionalPartOfX);
   3992     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3993       // For floating-point precision of 12:
   3994       //
   3995       //   TwoToFractionalPartOfX =
   3996       //     0.999892986f +
   3997       //       (0.696457318f +
   3998       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3999       //
   4000       // error 0.000107046256, which is 13 to 14 bits
   4001       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4002                                getF32Constant(DAG, 0x3da235e3));
   4003       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4004                                getF32Constant(DAG, 0x3e65b8f3));
   4005       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4006       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4007                                getF32Constant(DAG, 0x3f324b07));
   4008       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4009       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4010                                getF32Constant(DAG, 0x3f7ff8fd));
   4011       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   4012       SDValue TwoToFractionalPartOfX =
   4013         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   4014 
   4015       result = DAG.getNode(ISD::BITCAST, dl,
   4016                            MVT::f32, TwoToFractionalPartOfX);
   4017     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4018       // For floating-point precision of 18:
   4019       //
   4020       //   TwoToFractionalPartOfX =
   4021       //     0.999999982f +
   4022       //       (0.693148872f +
   4023       //         (0.240227044f +
   4024       //           (0.554906021e-1f +
   4025       //             (0.961591928e-2f +
   4026       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4027       // error 2.47208000*10^(-7), which is better than 18 bits
   4028       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4029                                getF32Constant(DAG, 0x3924b03e));
   4030       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4031                                getF32Constant(DAG, 0x3ab24b87));
   4032       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4033       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4034                                getF32Constant(DAG, 0x3c1d8c17));
   4035       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4036       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4037                                getF32Constant(DAG, 0x3d634a1d));
   4038       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4039       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4040                                getF32Constant(DAG, 0x3e75fe14));
   4041       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4042       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4043                                 getF32Constant(DAG, 0x3f317234));
   4044       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4045       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4046                                 getF32Constant(DAG, 0x3f800000));
   4047       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   4048       SDValue TwoToFractionalPartOfX =
   4049         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   4050 
   4051       result = DAG.getNode(ISD::BITCAST, dl,
   4052                            MVT::f32, TwoToFractionalPartOfX);
   4053     }
   4054   } else {
   4055     // No special expansion.
   4056     result = DAG.getNode(ISD::FPOW, dl,
   4057                          getValue(I.getArgOperand(0)).getValueType(),
   4058                          getValue(I.getArgOperand(0)),
   4059                          getValue(I.getArgOperand(1)));
   4060   }
   4061 
   4062   setValue(&I, result);
   4063 }
   4064 
   4065 
   4066 /// ExpandPowI - Expand a llvm.powi intrinsic.
   4067 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
   4068                           SelectionDAG &DAG) {
   4069   // If RHS is a constant, we can expand this out to a multiplication tree,
   4070   // otherwise we end up lowering to a call to __powidf2 (for example).  When
   4071   // optimizing for size, we only want to do this if the expansion would produce
   4072   // a small number of multiplies, otherwise we do the full expansion.
   4073   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   4074     // Get the exponent as a positive value.
   4075     unsigned Val = RHSC->getSExtValue();
   4076     if ((int)Val < 0) Val = -Val;
   4077 
   4078     // powi(x, 0) -> 1.0
   4079     if (Val == 0)
   4080       return DAG.getConstantFP(1.0, LHS.getValueType());
   4081 
   4082     const Function *F = DAG.getMachineFunction().getFunction();
   4083     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
   4084         // If optimizing for size, don't insert too many multiplies.  This
   4085         // inserts up to 5 multiplies.
   4086         CountPopulation_32(Val)+Log2_32(Val) < 7) {
   4087       // We use the simple binary decomposition method to generate the multiply
   4088       // sequence.  There are more optimal ways to do this (for example,
   4089       // powi(x,15) generates one more multiply than it should), but this has
   4090       // the benefit of being both really simple and much better than a libcall.
   4091       SDValue Res;  // Logically starts equal to 1.0
   4092       SDValue CurSquare = LHS;
   4093       while (Val) {
   4094         if (Val & 1) {
   4095           if (Res.getNode())
   4096             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
   4097           else
   4098             Res = CurSquare;  // 1.0*CurSquare.
   4099         }
   4100 
   4101         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
   4102                                 CurSquare, CurSquare);
   4103         Val >>= 1;
   4104       }
   4105 
   4106       // If the original was negative, invert the result, producing 1/(x*x*x).
   4107       if (RHSC->getSExtValue() < 0)
   4108         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
   4109                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
   4110       return Res;
   4111     }
   4112   }
   4113 
   4114   // Otherwise, expand to a libcall.
   4115   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
   4116 }
   4117 
   4118 // getTruncatedArgReg - Find underlying register used for an truncated
   4119 // argument.
   4120 static unsigned getTruncatedArgReg(const SDValue &N) {
   4121   if (N.getOpcode() != ISD::TRUNCATE)
   4122     return 0;
   4123 
   4124   const SDValue &Ext = N.getOperand(0);
   4125   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
   4126     const SDValue &CFR = Ext.getOperand(0);
   4127     if (CFR.getOpcode() == ISD::CopyFromReg)
   4128       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
   4129     else
   4130       if (CFR.getOpcode() == ISD::TRUNCATE)
   4131         return getTruncatedArgReg(CFR);
   4132   }
   4133   return 0;
   4134 }
   4135 
   4136 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
   4137 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
   4138 /// At the end of instruction selection, they will be inserted to the entry BB.
   4139 bool
   4140 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
   4141                                               int64_t Offset,
   4142                                               const SDValue &N) {
   4143   const Argument *Arg = dyn_cast<Argument>(V);
   4144   if (!Arg)
   4145     return false;
   4146 
   4147   MachineFunction &MF = DAG.getMachineFunction();
   4148   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
   4149   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
   4150 
   4151   // Ignore inlined function arguments here.
   4152   DIVariable DV(Variable);
   4153   if (DV.isInlinedFnArgument(MF.getFunction()))
   4154     return false;
   4155 
   4156   unsigned Reg = 0;
   4157   if (Arg->hasByValAttr()) {
   4158     // Byval arguments' frame index is recorded during argument lowering.
   4159     // Use this info directly.
   4160     Reg = TRI->getFrameRegister(MF);
   4161     Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
   4162     // If byval argument ofset is not recorded then ignore this.
   4163     if (!Offset)
   4164       Reg = 0;
   4165   }
   4166 
   4167   if (N.getNode()) {
   4168     if (N.getOpcode() == ISD::CopyFromReg)
   4169       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
   4170     else
   4171       Reg = getTruncatedArgReg(N);
   4172     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
   4173       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4174       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
   4175       if (PR)
   4176         Reg = PR;
   4177     }
   4178   }
   4179 
   4180   if (!Reg) {
   4181     // Check if ValueMap has reg number.
   4182     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   4183     if (VMI != FuncInfo.ValueMap.end())
   4184       Reg = VMI->second;
   4185   }
   4186 
   4187   if (!Reg && N.getNode()) {
   4188     // Check if frame index is available.
   4189     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
   4190       if (FrameIndexSDNode *FINode =
   4191           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
   4192         Reg = TRI->getFrameRegister(MF);
   4193         Offset = FINode->getIndex();
   4194       }
   4195   }
   4196 
   4197   if (!Reg)
   4198     return false;
   4199 
   4200   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
   4201                                     TII->get(TargetOpcode::DBG_VALUE))
   4202     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
   4203   FuncInfo.ArgDbgValues.push_back(&*MIB);
   4204   return true;
   4205 }
   4206 
   4207 // VisualStudio defines setjmp as _setjmp
   4208 #if defined(_MSC_VER) && defined(setjmp) && \
   4209                          !defined(setjmp_undefined_for_msvc)
   4210 #  pragma push_macro("setjmp")
   4211 #  undef setjmp
   4212 #  define setjmp_undefined_for_msvc
   4213 #endif
   4214 
   4215 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
   4216 /// we want to emit this as a call to a named external function, return the name
   4217 /// otherwise lower it and return null.
   4218 const char *
   4219 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
   4220   DebugLoc dl = getCurDebugLoc();
   4221   SDValue Res;
   4222 
   4223   switch (Intrinsic) {
   4224   default:
   4225     // By default, turn this into a target intrinsic node.
   4226     visitTargetIntrinsic(I, Intrinsic);
   4227     return 0;
   4228   case Intrinsic::vastart:  visitVAStart(I); return 0;
   4229   case Intrinsic::vaend:    visitVAEnd(I); return 0;
   4230   case Intrinsic::vacopy:   visitVACopy(I); return 0;
   4231   case Intrinsic::returnaddress:
   4232     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
   4233                              getValue(I.getArgOperand(0))));
   4234     return 0;
   4235   case Intrinsic::frameaddress:
   4236     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
   4237                              getValue(I.getArgOperand(0))));
   4238     return 0;
   4239   case Intrinsic::setjmp:
   4240     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
   4241   case Intrinsic::longjmp:
   4242     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
   4243   case Intrinsic::memcpy: {
   4244     // Assert for address < 256 since we support only user defined address
   4245     // spaces.
   4246     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4247            < 256 &&
   4248            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4249            < 256 &&
   4250            "Unknown address space");
   4251     SDValue Op1 = getValue(I.getArgOperand(0));
   4252     SDValue Op2 = getValue(I.getArgOperand(1));
   4253     SDValue Op3 = getValue(I.getArgOperand(2));
   4254     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4255     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4256     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
   4257                               MachinePointerInfo(I.getArgOperand(0)),
   4258                               MachinePointerInfo(I.getArgOperand(1))));
   4259     return 0;
   4260   }
   4261   case Intrinsic::memset: {
   4262     // Assert for address < 256 since we support only user defined address
   4263     // spaces.
   4264     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4265            < 256 &&
   4266            "Unknown address space");
   4267     SDValue Op1 = getValue(I.getArgOperand(0));
   4268     SDValue Op2 = getValue(I.getArgOperand(1));
   4269     SDValue Op3 = getValue(I.getArgOperand(2));
   4270     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4271     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4272     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4273                               MachinePointerInfo(I.getArgOperand(0))));
   4274     return 0;
   4275   }
   4276   case Intrinsic::memmove: {
   4277     // Assert for address < 256 since we support only user defined address
   4278     // spaces.
   4279     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4280            < 256 &&
   4281            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4282            < 256 &&
   4283            "Unknown address space");
   4284     SDValue Op1 = getValue(I.getArgOperand(0));
   4285     SDValue Op2 = getValue(I.getArgOperand(1));
   4286     SDValue Op3 = getValue(I.getArgOperand(2));
   4287     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4288     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4289     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4290                                MachinePointerInfo(I.getArgOperand(0)),
   4291                                MachinePointerInfo(I.getArgOperand(1))));
   4292     return 0;
   4293   }
   4294   case Intrinsic::dbg_declare: {
   4295     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
   4296     MDNode *Variable = DI.getVariable();
   4297     const Value *Address = DI.getAddress();
   4298     if (!Address || !DIVariable(DI.getVariable()).Verify())
   4299       return 0;
   4300 
   4301     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4302     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4303     // absolute, but not relative, values are different depending on whether
   4304     // debug info exists.
   4305     ++SDNodeOrder;
   4306 
   4307     // Check if address has undef value.
   4308     if (isa<UndefValue>(Address) ||
   4309         (Address->use_empty() && !isa<Argument>(Address))) {
   4310       DEBUG(dbgs() << "Dropping debug info for " << DI);
   4311       return 0;
   4312     }
   4313 
   4314     SDValue &N = NodeMap[Address];
   4315     if (!N.getNode() && isa<Argument>(Address))
   4316       // Check unused arguments map.
   4317       N = UnusedArgNodeMap[Address];
   4318     SDDbgValue *SDV;
   4319     if (N.getNode()) {
   4320       // Parameters are handled specially.
   4321       bool isParameter =
   4322         DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
   4323       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
   4324         Address = BCI->getOperand(0);
   4325       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
   4326 
   4327       if (isParameter && !AI) {
   4328         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
   4329         if (FINode)
   4330           // Byval parameter.  We have a frame index at this point.
   4331           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
   4332                                 0, dl, SDNodeOrder);
   4333         else {
   4334           // Address is an argument, so try to emit its dbg value using
   4335           // virtual register info from the FuncInfo.ValueMap.
   4336           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
   4337           return 0;
   4338         }
   4339       } else if (AI)
   4340         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
   4341                               0, dl, SDNodeOrder);
   4342       else {
   4343         // Can't do anything with other non-AI cases yet.
   4344         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4345         return 0;
   4346       }
   4347       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
   4348     } else {
   4349       // If Address is an argument then try to emit its dbg value using
   4350       // virtual register info from the FuncInfo.ValueMap.
   4351       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
   4352         // If variable is pinned by a alloca in dominating bb then
   4353         // use StaticAllocaMap.
   4354         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
   4355           if (AI->getParent() != DI.getParent()) {
   4356             DenseMap<const AllocaInst*, int>::iterator SI =
   4357               FuncInfo.StaticAllocaMap.find(AI);
   4358             if (SI != FuncInfo.StaticAllocaMap.end()) {
   4359               SDV = DAG.getDbgValue(Variable, SI->second,
   4360                                     0, dl, SDNodeOrder);
   4361               DAG.AddDbgValue(SDV, 0, false);
   4362               return 0;
   4363             }
   4364           }
   4365         }
   4366         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4367       }
   4368     }
   4369     return 0;
   4370   }
   4371   case Intrinsic::dbg_value: {
   4372     const DbgValueInst &DI = cast<DbgValueInst>(I);
   4373     if (!DIVariable(DI.getVariable()).Verify())
   4374       return 0;
   4375 
   4376     MDNode *Variable = DI.getVariable();
   4377     uint64_t Offset = DI.getOffset();
   4378     const Value *V = DI.getValue();
   4379     if (!V)
   4380       return 0;
   4381 
   4382     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4383     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4384     // absolute, but not relative, values are different depending on whether
   4385     // debug info exists.
   4386     ++SDNodeOrder;
   4387     SDDbgValue *SDV;
   4388     if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
   4389       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
   4390       DAG.AddDbgValue(SDV, 0, false);
   4391     } else {
   4392       // Do not use getValue() in here; we don't want to generate code at
   4393       // this point if it hasn't been done yet.
   4394       SDValue N = NodeMap[V];
   4395       if (!N.getNode() && isa<Argument>(V))
   4396         // Check unused arguments map.
   4397         N = UnusedArgNodeMap[V];
   4398       if (N.getNode()) {
   4399         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
   4400           SDV = DAG.getDbgValue(Variable, N.getNode(),
   4401                                 N.getResNo(), Offset, dl, SDNodeOrder);
   4402           DAG.AddDbgValue(SDV, N.getNode(), false);
   4403         }
   4404       } else if (!V->use_empty() ) {
   4405         // Do not call getValue(V) yet, as we don't want to generate code.
   4406         // Remember it for later.
   4407         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
   4408         DanglingDebugInfoMap[V] = DDI;
   4409       } else {
   4410         // We may expand this to cover more cases.  One case where we have no
   4411         // data available is an unreferenced parameter.
   4412         DEBUG(dbgs() << "Dropping debug info for " << DI);
   4413       }
   4414     }
   4415 
   4416     // Build a debug info table entry.
   4417     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   4418       V = BCI->getOperand(0);
   4419     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
   4420     // Don't handle byval struct arguments or VLAs, for example.
   4421     if (!AI)
   4422       return 0;
   4423     DenseMap<const AllocaInst*, int>::iterator SI =
   4424       FuncInfo.StaticAllocaMap.find(AI);
   4425     if (SI == FuncInfo.StaticAllocaMap.end())
   4426       return 0; // VLAs.
   4427     int FI = SI->second;
   4428 
   4429     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4430     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
   4431       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
   4432     return 0;
   4433   }
   4434   case Intrinsic::eh_exception: {
   4435     // Insert the EXCEPTIONADDR instruction.
   4436     assert(FuncInfo.MBB->isLandingPad() &&
   4437            "Call to eh.exception not in landing pad!");
   4438     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   4439     SDValue Ops[1];
   4440     Ops[0] = DAG.getRoot();
   4441     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
   4442     setValue(&I, Op);
   4443     DAG.setRoot(Op.getValue(1));
   4444     return 0;
   4445   }
   4446 
   4447   case Intrinsic::eh_selector: {
   4448     MachineBasicBlock *CallMBB = FuncInfo.MBB;
   4449     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4450     if (CallMBB->isLandingPad())
   4451       AddCatchInfo(I, &MMI, CallMBB);
   4452     else {
   4453 #ifndef NDEBUG
   4454       FuncInfo.CatchInfoLost.insert(&I);
   4455 #endif
   4456       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
   4457       unsigned Reg = TLI.getExceptionSelectorRegister();
   4458       if (Reg) FuncInfo.MBB->addLiveIn(Reg);
   4459     }
   4460 
   4461     // Insert the EHSELECTION instruction.
   4462     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   4463     SDValue Ops[2];
   4464     Ops[0] = getValue(I.getArgOperand(0));
   4465     Ops[1] = getRoot();
   4466     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
   4467     DAG.setRoot(Op.getValue(1));
   4468     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
   4469     return 0;
   4470   }
   4471 
   4472   case Intrinsic::eh_typeid_for: {
   4473     // Find the type id for the given typeinfo.
   4474     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
   4475     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
   4476     Res = DAG.getConstant(TypeID, MVT::i32);
   4477     setValue(&I, Res);
   4478     return 0;
   4479   }
   4480 
   4481   case Intrinsic::eh_return_i32:
   4482   case Intrinsic::eh_return_i64:
   4483     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
   4484     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
   4485                             MVT::Other,
   4486                             getControlRoot(),
   4487                             getValue(I.getArgOperand(0)),
   4488                             getValue(I.getArgOperand(1))));
   4489     return 0;
   4490   case Intrinsic::eh_unwind_init:
   4491     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
   4492     return 0;
   4493   case Intrinsic::eh_dwarf_cfa: {
   4494     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
   4495                                         TLI.getPointerTy());
   4496     SDValue Offset = DAG.getNode(ISD::ADD, dl,
   4497                                  TLI.getPointerTy(),
   4498                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
   4499                                              TLI.getPointerTy()),
   4500                                  CfaArg);
   4501     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
   4502                              TLI.getPointerTy(),
   4503                              DAG.getConstant(0, TLI.getPointerTy()));
   4504     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   4505                              FA, Offset));
   4506     return 0;
   4507   }
   4508   case Intrinsic::eh_sjlj_callsite: {
   4509     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4510     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
   4511     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
   4512     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
   4513 
   4514     MMI.setCurrentCallSite(CI->getZExtValue());
   4515     return 0;
   4516   }
   4517   case Intrinsic::eh_sjlj_setjmp: {
   4518     setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
   4519                              getValue(I.getArgOperand(0))));
   4520     return 0;
   4521   }
   4522   case Intrinsic::eh_sjlj_longjmp: {
   4523     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
   4524                             getRoot(), getValue(I.getArgOperand(0))));
   4525     return 0;
   4526   }
   4527   case Intrinsic::eh_sjlj_dispatch_setup: {
   4528     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
   4529                             getRoot(), getValue(I.getArgOperand(0))));
   4530     return 0;
   4531   }
   4532 
   4533   case Intrinsic::x86_mmx_pslli_w:
   4534   case Intrinsic::x86_mmx_pslli_d:
   4535   case Intrinsic::x86_mmx_pslli_q:
   4536   case Intrinsic::x86_mmx_psrli_w:
   4537   case Intrinsic::x86_mmx_psrli_d:
   4538   case Intrinsic::x86_mmx_psrli_q:
   4539   case Intrinsic::x86_mmx_psrai_w:
   4540   case Intrinsic::x86_mmx_psrai_d: {
   4541     SDValue ShAmt = getValue(I.getArgOperand(1));
   4542     if (isa<ConstantSDNode>(ShAmt)) {
   4543       visitTargetIntrinsic(I, Intrinsic);
   4544       return 0;
   4545     }
   4546     unsigned NewIntrinsic = 0;
   4547     EVT ShAmtVT = MVT::v2i32;
   4548     switch (Intrinsic) {
   4549     case Intrinsic::x86_mmx_pslli_w:
   4550       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
   4551       break;
   4552     case Intrinsic::x86_mmx_pslli_d:
   4553       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
   4554       break;
   4555     case Intrinsic::x86_mmx_pslli_q:
   4556       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
   4557       break;
   4558     case Intrinsic::x86_mmx_psrli_w:
   4559       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
   4560       break;
   4561     case Intrinsic::x86_mmx_psrli_d:
   4562       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
   4563       break;
   4564     case Intrinsic::x86_mmx_psrli_q:
   4565       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
   4566       break;
   4567     case Intrinsic::x86_mmx_psrai_w:
   4568       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
   4569       break;
   4570     case Intrinsic::x86_mmx_psrai_d:
   4571       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
   4572       break;
   4573     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4574     }
   4575 
   4576     // The vector shift intrinsics with scalars uses 32b shift amounts but
   4577     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   4578     // to be zero.
   4579     // We must do this early because v2i32 is not a legal type.
   4580     DebugLoc dl = getCurDebugLoc();
   4581     SDValue ShOps[2];
   4582     ShOps[0] = ShAmt;
   4583     ShOps[1] = DAG.getConstant(0, MVT::i32);
   4584     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   4585     EVT DestVT = TLI.getValueType(I.getType());
   4586     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
   4587     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   4588                        DAG.getConstant(NewIntrinsic, MVT::i32),
   4589                        getValue(I.getArgOperand(0)), ShAmt);
   4590     setValue(&I, Res);
   4591     return 0;
   4592   }
   4593   case Intrinsic::convertff:
   4594   case Intrinsic::convertfsi:
   4595   case Intrinsic::convertfui:
   4596   case Intrinsic::convertsif:
   4597   case Intrinsic::convertuif:
   4598   case Intrinsic::convertss:
   4599   case Intrinsic::convertsu:
   4600   case Intrinsic::convertus:
   4601   case Intrinsic::convertuu: {
   4602     ISD::CvtCode Code = ISD::CVT_INVALID;
   4603     switch (Intrinsic) {
   4604     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
   4605     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
   4606     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
   4607     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
   4608     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
   4609     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
   4610     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
   4611     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
   4612     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
   4613     }
   4614     EVT DestVT = TLI.getValueType(I.getType());
   4615     const Value *Op1 = I.getArgOperand(0);
   4616     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
   4617                                DAG.getValueType(DestVT),
   4618                                DAG.getValueType(getValue(Op1).getValueType()),
   4619                                getValue(I.getArgOperand(1)),
   4620                                getValue(I.getArgOperand(2)),
   4621                                Code);
   4622     setValue(&I, Res);
   4623     return 0;
   4624   }
   4625   case Intrinsic::sqrt:
   4626     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
   4627                              getValue(I.getArgOperand(0)).getValueType(),
   4628                              getValue(I.getArgOperand(0))));
   4629     return 0;
   4630   case Intrinsic::powi:
   4631     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
   4632                             getValue(I.getArgOperand(1)), DAG));
   4633     return 0;
   4634   case Intrinsic::sin:
   4635     setValue(&I, DAG.getNode(ISD::FSIN, dl,
   4636                              getValue(I.getArgOperand(0)).getValueType(),
   4637                              getValue(I.getArgOperand(0))));
   4638     return 0;
   4639   case Intrinsic::cos:
   4640     setValue(&I, DAG.getNode(ISD::FCOS, dl,
   4641                              getValue(I.getArgOperand(0)).getValueType(),
   4642                              getValue(I.getArgOperand(0))));
   4643     return 0;
   4644   case Intrinsic::log:
   4645     visitLog(I);
   4646     return 0;
   4647   case Intrinsic::log2:
   4648     visitLog2(I);
   4649     return 0;
   4650   case Intrinsic::log10:
   4651     visitLog10(I);
   4652     return 0;
   4653   case Intrinsic::exp:
   4654     visitExp(I);
   4655     return 0;
   4656   case Intrinsic::exp2:
   4657     visitExp2(I);
   4658     return 0;
   4659   case Intrinsic::pow:
   4660     visitPow(I);
   4661     return 0;
   4662   case Intrinsic::fma:
   4663     setValue(&I, DAG.getNode(ISD::FMA, dl,
   4664                              getValue(I.getArgOperand(0)).getValueType(),
   4665                              getValue(I.getArgOperand(0)),
   4666                              getValue(I.getArgOperand(1)),
   4667                              getValue(I.getArgOperand(2))));
   4668     return 0;
   4669   case Intrinsic::convert_to_fp16:
   4670     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
   4671                              MVT::i16, getValue(I.getArgOperand(0))));
   4672     return 0;
   4673   case Intrinsic::convert_from_fp16:
   4674     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
   4675                              MVT::f32, getValue(I.getArgOperand(0))));
   4676     return 0;
   4677   case Intrinsic::pcmarker: {
   4678     SDValue Tmp = getValue(I.getArgOperand(0));
   4679     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
   4680     return 0;
   4681   }
   4682   case Intrinsic::readcyclecounter: {
   4683     SDValue Op = getRoot();
   4684     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
   4685                       DAG.getVTList(MVT::i64, MVT::Other),
   4686                       &Op, 1);
   4687     setValue(&I, Res);
   4688     DAG.setRoot(Res.getValue(1));
   4689     return 0;
   4690   }
   4691   case Intrinsic::bswap:
   4692     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
   4693                              getValue(I.getArgOperand(0)).getValueType(),
   4694                              getValue(I.getArgOperand(0))));
   4695     return 0;
   4696   case Intrinsic::cttz: {
   4697     SDValue Arg = getValue(I.getArgOperand(0));
   4698     EVT Ty = Arg.getValueType();
   4699     setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
   4700     return 0;
   4701   }
   4702   case Intrinsic::ctlz: {
   4703     SDValue Arg = getValue(I.getArgOperand(0));
   4704     EVT Ty = Arg.getValueType();
   4705     setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
   4706     return 0;
   4707   }
   4708   case Intrinsic::ctpop: {
   4709     SDValue Arg = getValue(I.getArgOperand(0));
   4710     EVT Ty = Arg.getValueType();
   4711     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
   4712     return 0;
   4713   }
   4714   case Intrinsic::stacksave: {
   4715     SDValue Op = getRoot();
   4716     Res = DAG.getNode(ISD::STACKSAVE, dl,
   4717                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
   4718     setValue(&I, Res);
   4719     DAG.setRoot(Res.getValue(1));
   4720     return 0;
   4721   }
   4722   case Intrinsic::stackrestore: {
   4723     Res = getValue(I.getArgOperand(0));
   4724     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
   4725     return 0;
   4726   }
   4727   case Intrinsic::stackprotector: {
   4728     // Emit code into the DAG to store the stack guard onto the stack.
   4729     MachineFunction &MF = DAG.getMachineFunction();
   4730     MachineFrameInfo *MFI = MF.getFrameInfo();
   4731     EVT PtrTy = TLI.getPointerTy();
   4732 
   4733     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
   4734     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   4735 
   4736     int FI = FuncInfo.StaticAllocaMap[Slot];
   4737     MFI->setStackProtectorIndex(FI);
   4738 
   4739     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   4740 
   4741     // Store the stack protector onto the stack.
   4742     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
   4743                        MachinePointerInfo::getFixedStack(FI),
   4744                        true, false, 0);
   4745     setValue(&I, Res);
   4746     DAG.setRoot(Res);
   4747     return 0;
   4748   }
   4749   case Intrinsic::objectsize: {
   4750     // If we don't know by now, we're never going to know.
   4751     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
   4752 
   4753     assert(CI && "Non-constant type in __builtin_object_size?");
   4754 
   4755     SDValue Arg = getValue(I.getCalledValue());
   4756     EVT Ty = Arg.getValueType();
   4757 
   4758     if (CI->isZero())
   4759       Res = DAG.getConstant(-1ULL, Ty);
   4760     else
   4761       Res = DAG.getConstant(0, Ty);
   4762 
   4763     setValue(&I, Res);
   4764     return 0;
   4765   }
   4766   case Intrinsic::var_annotation:
   4767     // Discard annotate attributes
   4768     return 0;
   4769 
   4770   case Intrinsic::init_trampoline: {
   4771     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
   4772 
   4773     SDValue Ops[6];
   4774     Ops[0] = getRoot();
   4775     Ops[1] = getValue(I.getArgOperand(0));
   4776     Ops[2] = getValue(I.getArgOperand(1));
   4777     Ops[3] = getValue(I.getArgOperand(2));
   4778     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
   4779     Ops[5] = DAG.getSrcValue(F);
   4780 
   4781     Res = DAG.getNode(ISD::TRAMPOLINE, dl,
   4782                       DAG.getVTList(TLI.getPointerTy(), MVT::Other),
   4783                       Ops, 6);
   4784 
   4785     setValue(&I, Res);
   4786     DAG.setRoot(Res.getValue(1));
   4787     return 0;
   4788   }
   4789   case Intrinsic::gcroot:
   4790     if (GFI) {
   4791       const Value *Alloca = I.getArgOperand(0);
   4792       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
   4793 
   4794       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
   4795       GFI->addStackRoot(FI->getIndex(), TypeMap);
   4796     }
   4797     return 0;
   4798   case Intrinsic::gcread:
   4799   case Intrinsic::gcwrite:
   4800     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
   4801     return 0;
   4802   case Intrinsic::flt_rounds:
   4803     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
   4804     return 0;
   4805 
   4806   case Intrinsic::expect: {
   4807     // Just replace __builtin_expect(exp, c) with EXP.
   4808     setValue(&I, getValue(I.getArgOperand(0)));
   4809     return 0;
   4810   }
   4811 
   4812   case Intrinsic::trap: {
   4813     StringRef TrapFuncName = getTrapFunctionName();
   4814     if (TrapFuncName.empty()) {
   4815       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
   4816       return 0;
   4817     }
   4818     TargetLowering::ArgListTy Args;
   4819     std::pair<SDValue, SDValue> Result =
   4820       TLI.LowerCallTo(getRoot(), I.getType(),
   4821                  false, false, false, false, 0, CallingConv::C,
   4822                  /*isTailCall=*/false, /*isReturnValueUsed=*/true,
   4823                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
   4824                  Args, DAG, getCurDebugLoc());
   4825     DAG.setRoot(Result.second);
   4826     return 0;
   4827   }
   4828   case Intrinsic::uadd_with_overflow:
   4829     return implVisitAluOverflow(I, ISD::UADDO);
   4830   case Intrinsic::sadd_with_overflow:
   4831     return implVisitAluOverflow(I, ISD::SADDO);
   4832   case Intrinsic::usub_with_overflow:
   4833     return implVisitAluOverflow(I, ISD::USUBO);
   4834   case Intrinsic::ssub_with_overflow:
   4835     return implVisitAluOverflow(I, ISD::SSUBO);
   4836   case Intrinsic::umul_with_overflow:
   4837     return implVisitAluOverflow(I, ISD::UMULO);
   4838   case Intrinsic::smul_with_overflow:
   4839     return implVisitAluOverflow(I, ISD::SMULO);
   4840 
   4841   case Intrinsic::prefetch: {
   4842     SDValue Ops[5];
   4843     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   4844     Ops[0] = getRoot();
   4845     Ops[1] = getValue(I.getArgOperand(0));
   4846     Ops[2] = getValue(I.getArgOperand(1));
   4847     Ops[3] = getValue(I.getArgOperand(2));
   4848     Ops[4] = getValue(I.getArgOperand(3));
   4849     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
   4850                                         DAG.getVTList(MVT::Other),
   4851                                         &Ops[0], 5,
   4852                                         EVT::getIntegerVT(*Context, 8),
   4853                                         MachinePointerInfo(I.getArgOperand(0)),
   4854                                         0, /* align */
   4855                                         false, /* volatile */
   4856                                         rw==0, /* read */
   4857                                         rw==1)); /* write */
   4858     return 0;
   4859   }
   4860   case Intrinsic::memory_barrier: {
   4861     SDValue Ops[6];
   4862     Ops[0] = getRoot();
   4863     for (int x = 1; x < 6; ++x)
   4864       Ops[x] = getValue(I.getArgOperand(x - 1));
   4865 
   4866     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
   4867     return 0;
   4868   }
   4869   case Intrinsic::atomic_cmp_swap: {
   4870     SDValue Root = getRoot();
   4871     SDValue L =
   4872       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
   4873                     getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
   4874                     Root,
   4875                     getValue(I.getArgOperand(0)),
   4876                     getValue(I.getArgOperand(1)),
   4877                     getValue(I.getArgOperand(2)),
   4878                     MachinePointerInfo(I.getArgOperand(0)));
   4879     setValue(&I, L);
   4880     DAG.setRoot(L.getValue(1));
   4881     return 0;
   4882   }
   4883   case Intrinsic::atomic_load_add:
   4884     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
   4885   case Intrinsic::atomic_load_sub:
   4886     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
   4887   case Intrinsic::atomic_load_or:
   4888     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
   4889   case Intrinsic::atomic_load_xor:
   4890     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
   4891   case Intrinsic::atomic_load_and:
   4892     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
   4893   case Intrinsic::atomic_load_nand:
   4894     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
   4895   case Intrinsic::atomic_load_max:
   4896     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
   4897   case Intrinsic::atomic_load_min:
   4898     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
   4899   case Intrinsic::atomic_load_umin:
   4900     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
   4901   case Intrinsic::atomic_load_umax:
   4902     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
   4903   case Intrinsic::atomic_swap:
   4904     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
   4905 
   4906   case Intrinsic::invariant_start:
   4907   case Intrinsic::lifetime_start:
   4908     // Discard region information.
   4909     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
   4910     return 0;
   4911   case Intrinsic::invariant_end:
   4912   case Intrinsic::lifetime_end:
   4913     // Discard region information.
   4914     return 0;
   4915   }
   4916 }
   4917 
   4918 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
   4919                                       bool isTailCall,
   4920                                       MachineBasicBlock *LandingPad) {
   4921   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   4922   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   4923   Type *RetTy = FTy->getReturnType();
   4924   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4925   MCSymbol *BeginLabel = 0;
   4926 
   4927   TargetLowering::ArgListTy Args;
   4928   TargetLowering::ArgListEntry Entry;
   4929   Args.reserve(CS.arg_size());
   4930 
   4931   // Check whether the function can return without sret-demotion.
   4932   SmallVector<ISD::OutputArg, 4> Outs;
   4933   SmallVector<uint64_t, 4> Offsets;
   4934   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
   4935                 Outs, TLI, &Offsets);
   4936 
   4937   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   4938 					   DAG.getMachineFunction(),
   4939 					   FTy->isVarArg(), Outs,
   4940 					   FTy->getContext());
   4941 
   4942   SDValue DemoteStackSlot;
   4943   int DemoteStackIdx = -100;
   4944 
   4945   if (!CanLowerReturn) {
   4946     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
   4947                       FTy->getReturnType());
   4948     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
   4949                       FTy->getReturnType());
   4950     MachineFunction &MF = DAG.getMachineFunction();
   4951     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   4952     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
   4953 
   4954     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
   4955     Entry.Node = DemoteStackSlot;
   4956     Entry.Ty = StackSlotPtrType;
   4957     Entry.isSExt = false;
   4958     Entry.isZExt = false;
   4959     Entry.isInReg = false;
   4960     Entry.isSRet = true;
   4961     Entry.isNest = false;
   4962     Entry.isByVal = false;
   4963     Entry.Alignment = Align;
   4964     Args.push_back(Entry);
   4965     RetTy = Type::getVoidTy(FTy->getContext());
   4966   }
   4967 
   4968   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   4969        i != e; ++i) {
   4970     const Value *V = *i;
   4971 
   4972     // Skip empty types
   4973     if (V->getType()->isEmptyTy())
   4974       continue;
   4975 
   4976     SDValue ArgNode = getValue(V);
   4977     Entry.Node = ArgNode; Entry.Ty = V->getType();
   4978 
   4979     unsigned attrInd = i - CS.arg_begin() + 1;
   4980     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
   4981     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
   4982     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
   4983     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
   4984     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
   4985     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
   4986     Entry.Alignment = CS.getParamAlignment(attrInd);
   4987     Args.push_back(Entry);
   4988   }
   4989 
   4990   if (LandingPad) {
   4991     // Insert a label before the invoke call to mark the try range.  This can be
   4992     // used to detect deletion of the invoke via the MachineModuleInfo.
   4993     BeginLabel = MMI.getContext().CreateTempSymbol();
   4994 
   4995     // For SjLj, keep track of which landing pads go with which invokes
   4996     // so as to maintain the ordering of pads in the LSDA.
   4997     unsigned CallSiteIndex = MMI.getCurrentCallSite();
   4998     if (CallSiteIndex) {
   4999       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
   5000       // Now that the call site is handled, stop tracking it.
   5001       MMI.setCurrentCallSite(0);
   5002     }
   5003 
   5004     // Both PendingLoads and PendingExports must be flushed here;
   5005     // this call might not return.
   5006     (void)getRoot();
   5007     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
   5008   }
   5009 
   5010   // Check if target-independent constraints permit a tail call here.
   5011   // Target-dependent constraints are checked within TLI.LowerCallTo.
   5012   if (isTailCall &&
   5013       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
   5014     isTailCall = false;
   5015 
   5016   // If there's a possibility that fast-isel has already selected some amount
   5017   // of the current basic block, don't emit a tail call.
   5018   if (isTailCall && EnableFastISel)
   5019     isTailCall = false;
   5020 
   5021   std::pair<SDValue,SDValue> Result =
   5022     TLI.LowerCallTo(getRoot(), RetTy,
   5023                     CS.paramHasAttr(0, Attribute::SExt),
   5024                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
   5025                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
   5026                     CS.getCallingConv(),
   5027                     isTailCall,
   5028                     !CS.getInstruction()->use_empty(),
   5029                     Callee, Args, DAG, getCurDebugLoc());
   5030   assert((isTailCall || Result.second.getNode()) &&
   5031          "Non-null chain expected with non-tail call!");
   5032   assert((Result.second.getNode() || !Result.first.getNode()) &&
   5033          "Null value expected with tail call!");
   5034   if (Result.first.getNode()) {
   5035     setValue(CS.getInstruction(), Result.first);
   5036   } else if (!CanLowerReturn && Result.second.getNode()) {
   5037     // The instruction result is the result of loading from the
   5038     // hidden sret parameter.
   5039     SmallVector<EVT, 1> PVTs;
   5040     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
   5041 
   5042     ComputeValueVTs(TLI, PtrRetTy, PVTs);
   5043     assert(PVTs.size() == 1 && "Pointers should fit in one register");
   5044     EVT PtrVT = PVTs[0];
   5045     unsigned NumValues = Outs.size();
   5046     SmallVector<SDValue, 4> Values(NumValues);
   5047     SmallVector<SDValue, 4> Chains(NumValues);
   5048 
   5049     for (unsigned i = 0; i < NumValues; ++i) {
   5050       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
   5051                                 DemoteStackSlot,
   5052                                 DAG.getConstant(Offsets[i], PtrVT));
   5053       SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
   5054                               Add,
   5055                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
   5056                               false, false, 1);
   5057       Values[i] = L;
   5058       Chains[i] = L.getValue(1);
   5059     }
   5060 
   5061     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   5062                                 MVT::Other, &Chains[0], NumValues);
   5063     PendingLoads.push_back(Chain);
   5064 
   5065     // Collect the legal value parts into potentially illegal values
   5066     // that correspond to the original function's return values.
   5067     SmallVector<EVT, 4> RetTys;
   5068     RetTy = FTy->getReturnType();
   5069     ComputeValueVTs(TLI, RetTy, RetTys);
   5070     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   5071     SmallVector<SDValue, 4> ReturnValues;
   5072     unsigned CurReg = 0;
   5073     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   5074       EVT VT = RetTys[I];
   5075       EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
   5076       unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
   5077 
   5078       SDValue ReturnValue =
   5079         getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
   5080                          RegisterVT, VT, AssertOp);
   5081       ReturnValues.push_back(ReturnValue);
   5082       CurReg += NumRegs;
   5083     }
   5084 
   5085     setValue(CS.getInstruction(),
   5086              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   5087                          DAG.getVTList(&RetTys[0], RetTys.size()),
   5088                          &ReturnValues[0], ReturnValues.size()));
   5089   }
   5090 
   5091   // Assign order to nodes here. If the call does not produce a result, it won't
   5092   // be mapped to a SDNode and visit() will not assign it an order number.
   5093   if (!Result.second.getNode()) {
   5094     // As a special case, a null chain means that a tail call has been emitted and
   5095     // the DAG root is already updated.
   5096     HasTailCall = true;
   5097     ++SDNodeOrder;
   5098     AssignOrderingToNode(DAG.getRoot().getNode());
   5099   } else {
   5100     DAG.setRoot(Result.second);
   5101     ++SDNodeOrder;
   5102     AssignOrderingToNode(Result.second.getNode());
   5103   }
   5104 
   5105   if (LandingPad) {
   5106     // Insert a label at the end of the invoke call to mark the try range.  This
   5107     // can be used to detect deletion of the invoke via the MachineModuleInfo.
   5108     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
   5109     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
   5110 
   5111     // Inform MachineModuleInfo of range.
   5112     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
   5113   }
   5114 }
   5115 
   5116 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
   5117 /// value is equal or not-equal to zero.
   5118 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
   5119   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
   5120        UI != E; ++UI) {
   5121     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
   5122       if (IC->isEquality())
   5123         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
   5124           if (C->isNullValue())
   5125             continue;
   5126     // Unknown instruction.
   5127     return false;
   5128   }
   5129   return true;
   5130 }
   5131 
   5132 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
   5133                              Type *LoadTy,
   5134                              SelectionDAGBuilder &Builder) {
   5135 
   5136   // Check to see if this load can be trivially constant folded, e.g. if the
   5137   // input is from a string literal.
   5138   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
   5139     // Cast pointer to the type we really want to load.
   5140     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
   5141                                          PointerType::getUnqual(LoadTy));
   5142 
   5143     if (const Constant *LoadCst =
   5144           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
   5145                                        Builder.TD))
   5146       return Builder.getValue(LoadCst);
   5147   }
   5148 
   5149   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
   5150   // still constant memory, the input chain can be the entry node.
   5151   SDValue Root;
   5152   bool ConstantMemory = false;
   5153 
   5154   // Do not serialize (non-volatile) loads of constant memory with anything.
   5155   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
   5156     Root = Builder.DAG.getEntryNode();
   5157     ConstantMemory = true;
   5158   } else {
   5159     // Do not serialize non-volatile loads against each other.
   5160     Root = Builder.DAG.getRoot();
   5161   }
   5162 
   5163   SDValue Ptr = Builder.getValue(PtrVal);
   5164   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
   5165                                         Ptr, MachinePointerInfo(PtrVal),
   5166                                         false /*volatile*/,
   5167                                         false /*nontemporal*/, 1 /* align=1 */);
   5168 
   5169   if (!ConstantMemory)
   5170     Builder.PendingLoads.push_back(LoadVal.getValue(1));
   5171   return LoadVal;
   5172 }
   5173 
   5174 
   5175 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
   5176 /// If so, return true and lower it, otherwise return false and it will be
   5177 /// lowered like a normal call.
   5178 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
   5179   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
   5180   if (I.getNumArgOperands() != 3)
   5181     return false;
   5182 
   5183   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
   5184   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
   5185       !I.getArgOperand(2)->getType()->isIntegerTy() ||
   5186       !I.getType()->isIntegerTy())
   5187     return false;
   5188 
   5189   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
   5190 
   5191   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
   5192   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
   5193   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
   5194     bool ActuallyDoIt = true;
   5195     MVT LoadVT;
   5196     Type *LoadTy;
   5197     switch (Size->getZExtValue()) {
   5198     default:
   5199       LoadVT = MVT::Other;
   5200       LoadTy = 0;
   5201       ActuallyDoIt = false;
   5202       break;
   5203     case 2:
   5204       LoadVT = MVT::i16;
   5205       LoadTy = Type::getInt16Ty(Size->getContext());
   5206       break;
   5207     case 4:
   5208       LoadVT = MVT::i32;
   5209       LoadTy = Type::getInt32Ty(Size->getContext());
   5210       break;
   5211     case 8:
   5212       LoadVT = MVT::i64;
   5213       LoadTy = Type::getInt64Ty(Size->getContext());
   5214       break;
   5215         /*
   5216     case 16:
   5217       LoadVT = MVT::v4i32;
   5218       LoadTy = Type::getInt32Ty(Size->getContext());
   5219       LoadTy = VectorType::get(LoadTy, 4);
   5220       break;
   5221          */
   5222     }
   5223 
   5224     // This turns into unaligned loads.  We only do this if the target natively
   5225     // supports the MVT we'll be loading or if it is small enough (<= 4) that
   5226     // we'll only produce a small number of byte loads.
   5227 
   5228     // Require that we can find a legal MVT, and only do this if the target
   5229     // supports unaligned loads of that type.  Expanding into byte loads would
   5230     // bloat the code.
   5231     if (ActuallyDoIt && Size->getZExtValue() > 4) {
   5232       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
   5233       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
   5234       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
   5235         ActuallyDoIt = false;
   5236     }
   5237 
   5238     if (ActuallyDoIt) {
   5239       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
   5240       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
   5241 
   5242       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
   5243                                  ISD::SETNE);
   5244       EVT CallVT = TLI.getValueType(I.getType(), true);
   5245       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
   5246       return true;
   5247     }
   5248   }
   5249 
   5250 
   5251   return false;
   5252 }
   5253 
   5254 
   5255 void SelectionDAGBuilder::visitCall(const CallInst &I) {
   5256   // Handle inline assembly differently.
   5257   if (isa<InlineAsm>(I.getCalledValue())) {
   5258     visitInlineAsm(&I);
   5259     return;
   5260   }
   5261 
   5262   // See if any floating point values are being passed to this function. This is
   5263   // used to emit an undefined reference to fltused on Windows.
   5264   FunctionType *FT =
   5265     cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
   5266   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5267   if (FT->isVarArg() &&
   5268       !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
   5269     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   5270       Type* T = I.getArgOperand(i)->getType();
   5271       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
   5272            i != e; ++i) {
   5273         if (!i->isFloatingPointTy()) continue;
   5274         MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
   5275         break;
   5276       }
   5277     }
   5278   }
   5279 
   5280   const char *RenameFn = 0;
   5281   if (Function *F = I.getCalledFunction()) {
   5282     if (F->isDeclaration()) {
   5283       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
   5284         if (unsigned IID = II->getIntrinsicID(F)) {
   5285           RenameFn = visitIntrinsicCall(I, IID);
   5286           if (!RenameFn)
   5287             return;
   5288         }
   5289       }
   5290       if (unsigned IID = F->getIntrinsicID()) {
   5291         RenameFn = visitIntrinsicCall(I, IID);
   5292         if (!RenameFn)
   5293           return;
   5294       }
   5295     }
   5296 
   5297     // Check for well-known libc/libm calls.  If the function is internal, it
   5298     // can't be a library call.
   5299     if (!F->hasLocalLinkage() && F->hasName()) {
   5300       StringRef Name = F->getName();
   5301       if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
   5302         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
   5303             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5304             I.getType() == I.getArgOperand(0)->getType() &&
   5305             I.getType() == I.getArgOperand(1)->getType()) {
   5306           SDValue LHS = getValue(I.getArgOperand(0));
   5307           SDValue RHS = getValue(I.getArgOperand(1));
   5308           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
   5309                                    LHS.getValueType(), LHS, RHS));
   5310           return;
   5311         }
   5312       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
   5313         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5314             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5315             I.getType() == I.getArgOperand(0)->getType()) {
   5316           SDValue Tmp = getValue(I.getArgOperand(0));
   5317           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
   5318                                    Tmp.getValueType(), Tmp));
   5319           return;
   5320         }
   5321       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
   5322         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5323             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5324             I.getType() == I.getArgOperand(0)->getType() &&
   5325             I.onlyReadsMemory()) {
   5326           SDValue Tmp = getValue(I.getArgOperand(0));
   5327           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
   5328                                    Tmp.getValueType(), Tmp));
   5329           return;
   5330         }
   5331       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
   5332         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5333             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5334             I.getType() == I.getArgOperand(0)->getType() &&
   5335             I.onlyReadsMemory()) {
   5336           SDValue Tmp = getValue(I.getArgOperand(0));
   5337           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
   5338                                    Tmp.getValueType(), Tmp));
   5339           return;
   5340         }
   5341       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
   5342         if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
   5343             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5344             I.getType() == I.getArgOperand(0)->getType() &&
   5345             I.onlyReadsMemory()) {
   5346           SDValue Tmp = getValue(I.getArgOperand(0));
   5347           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
   5348                                    Tmp.getValueType(), Tmp));
   5349           return;
   5350         }
   5351       } else if (Name == "memcmp") {
   5352         if (visitMemCmpCall(I))
   5353           return;
   5354       }
   5355     }
   5356   }
   5357 
   5358   SDValue Callee;
   5359   if (!RenameFn)
   5360     Callee = getValue(I.getCalledValue());
   5361   else
   5362     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
   5363 
   5364   // Check if we can potentially perform a tail call. More detailed checking is
   5365   // be done within LowerCallTo, after more information about the call is known.
   5366   LowerCallTo(&I, Callee, I.isTailCall());
   5367 }
   5368 
   5369 namespace {
   5370 
   5371 /// AsmOperandInfo - This contains information for each constraint that we are
   5372 /// lowering.
   5373 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
   5374 public:
   5375   /// CallOperand - If this is the result output operand or a clobber
   5376   /// this is null, otherwise it is the incoming operand to the CallInst.
   5377   /// This gets modified as the asm is processed.
   5378   SDValue CallOperand;
   5379 
   5380   /// AssignedRegs - If this is a register or register class operand, this
   5381   /// contains the set of register corresponding to the operand.
   5382   RegsForValue AssignedRegs;
   5383 
   5384   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
   5385     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
   5386   }
   5387 
   5388   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
   5389   /// busy in OutputRegs/InputRegs.
   5390   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
   5391                          std::set<unsigned> &OutputRegs,
   5392                          std::set<unsigned> &InputRegs,
   5393                          const TargetRegisterInfo &TRI) const {
   5394     if (isOutReg) {
   5395       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
   5396         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
   5397     }
   5398     if (isInReg) {
   5399       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
   5400         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
   5401     }
   5402   }
   5403 
   5404   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
   5405   /// corresponds to.  If there is no Value* for this operand, it returns
   5406   /// MVT::Other.
   5407   EVT getCallOperandValEVT(LLVMContext &Context,
   5408                            const TargetLowering &TLI,
   5409                            const TargetData *TD) const {
   5410     if (CallOperandVal == 0) return MVT::Other;
   5411 
   5412     if (isa<BasicBlock>(CallOperandVal))
   5413       return TLI.getPointerTy();
   5414 
   5415     llvm::Type *OpTy = CallOperandVal->getType();
   5416 
   5417     // FIXME: code duplicated from TargetLowering::ParseConstraints().
   5418     // If this is an indirect operand, the operand is a pointer to the
   5419     // accessed type.
   5420     if (isIndirect) {
   5421       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   5422       if (!PtrTy)
   5423         report_fatal_error("Indirect operand for inline asm not a pointer!");
   5424       OpTy = PtrTy->getElementType();
   5425     }
   5426 
   5427     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   5428     if (StructType *STy = dyn_cast<StructType>(OpTy))
   5429       if (STy->getNumElements() == 1)
   5430         OpTy = STy->getElementType(0);
   5431 
   5432     // If OpTy is not a single value, it may be a struct/union that we
   5433     // can tile with integers.
   5434     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   5435       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   5436       switch (BitSize) {
   5437       default: break;
   5438       case 1:
   5439       case 8:
   5440       case 16:
   5441       case 32:
   5442       case 64:
   5443       case 128:
   5444         OpTy = IntegerType::get(Context, BitSize);
   5445         break;
   5446       }
   5447     }
   5448 
   5449     return TLI.getValueType(OpTy, true);
   5450   }
   5451 
   5452 private:
   5453   /// MarkRegAndAliases - Mark the specified register and all aliases in the
   5454   /// specified set.
   5455   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
   5456                                 const TargetRegisterInfo &TRI) {
   5457     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
   5458     Regs.insert(Reg);
   5459     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
   5460       for (; *Aliases; ++Aliases)
   5461         Regs.insert(*Aliases);
   5462   }
   5463 };
   5464 
   5465 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
   5466 
   5467 } // end anonymous namespace
   5468 
   5469 /// GetRegistersForValue - Assign registers (virtual or physical) for the
   5470 /// specified operand.  We prefer to assign virtual registers, to allow the
   5471 /// register allocator to handle the assignment process.  However, if the asm
   5472 /// uses features that we can't model on machineinstrs, we have SDISel do the
   5473 /// allocation.  This produces generally horrible, but correct, code.
   5474 ///
   5475 ///   OpInfo describes the operand.
   5476 ///   Input and OutputRegs are the set of already allocated physical registers.
   5477 ///
   5478 static void GetRegistersForValue(SelectionDAG &DAG,
   5479                                  const TargetLowering &TLI,
   5480                                  DebugLoc DL,
   5481                                  SDISelAsmOperandInfo &OpInfo,
   5482                                  std::set<unsigned> &OutputRegs,
   5483                                  std::set<unsigned> &InputRegs) {
   5484   LLVMContext &Context = *DAG.getContext();
   5485 
   5486   // Compute whether this value requires an input register, an output register,
   5487   // or both.
   5488   bool isOutReg = false;
   5489   bool isInReg = false;
   5490   switch (OpInfo.Type) {
   5491   case InlineAsm::isOutput:
   5492     isOutReg = true;
   5493 
   5494     // If there is an input constraint that matches this, we need to reserve
   5495     // the input register so no other inputs allocate to it.
   5496     isInReg = OpInfo.hasMatchingInput();
   5497     break;
   5498   case InlineAsm::isInput:
   5499     isInReg = true;
   5500     isOutReg = false;
   5501     break;
   5502   case InlineAsm::isClobber:
   5503     isOutReg = true;
   5504     isInReg = true;
   5505     break;
   5506   }
   5507 
   5508 
   5509   MachineFunction &MF = DAG.getMachineFunction();
   5510   SmallVector<unsigned, 4> Regs;
   5511 
   5512   // If this is a constraint for a single physreg, or a constraint for a
   5513   // register class, find it.
   5514   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
   5515     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   5516                                      OpInfo.ConstraintVT);
   5517 
   5518   unsigned NumRegs = 1;
   5519   if (OpInfo.ConstraintVT != MVT::Other) {
   5520     // If this is a FP input in an integer register (or visa versa) insert a bit
   5521     // cast of the input value.  More generally, handle any case where the input
   5522     // value disagrees with the register class we plan to stick this in.
   5523     if (OpInfo.Type == InlineAsm::isInput &&
   5524         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
   5525       // Try to convert to the first EVT that the reg class contains.  If the
   5526       // types are identical size, use a bitcast to convert (e.g. two differing
   5527       // vector types).
   5528       EVT RegVT = *PhysReg.second->vt_begin();
   5529       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
   5530         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5531                                          RegVT, OpInfo.CallOperand);
   5532         OpInfo.ConstraintVT = RegVT;
   5533       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
   5534         // If the input is a FP value and we want it in FP registers, do a
   5535         // bitcast to the corresponding integer type.  This turns an f64 value
   5536         // into i64, which can be passed with two i32 values on a 32-bit
   5537         // machine.
   5538         RegVT = EVT::getIntegerVT(Context,
   5539                                   OpInfo.ConstraintVT.getSizeInBits());
   5540         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5541                                          RegVT, OpInfo.CallOperand);
   5542         OpInfo.ConstraintVT = RegVT;
   5543       }
   5544     }
   5545 
   5546     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
   5547   }
   5548 
   5549   EVT RegVT;
   5550   EVT ValueVT = OpInfo.ConstraintVT;
   5551 
   5552   // If this is a constraint for a specific physical register, like {r17},
   5553   // assign it now.
   5554   if (unsigned AssignedReg = PhysReg.first) {
   5555     const TargetRegisterClass *RC = PhysReg.second;
   5556     if (OpInfo.ConstraintVT == MVT::Other)
   5557       ValueVT = *RC->vt_begin();
   5558 
   5559     // Get the actual register value type.  This is important, because the user
   5560     // may have asked for (e.g.) the AX register in i32 type.  We need to
   5561     // remember that AX is actually i16 to get the right extension.
   5562     RegVT = *RC->vt_begin();
   5563 
   5564     // This is a explicit reference to a physical register.
   5565     Regs.push_back(AssignedReg);
   5566 
   5567     // If this is an expanded reference, add the rest of the regs to Regs.
   5568     if (NumRegs != 1) {
   5569       TargetRegisterClass::iterator I = RC->begin();
   5570       for (; *I != AssignedReg; ++I)
   5571         assert(I != RC->end() && "Didn't find reg!");
   5572 
   5573       // Already added the first reg.
   5574       --NumRegs; ++I;
   5575       for (; NumRegs; --NumRegs, ++I) {
   5576         assert(I != RC->end() && "Ran out of registers to allocate!");
   5577         Regs.push_back(*I);
   5578       }
   5579     }
   5580 
   5581     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5582     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
   5583     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
   5584     return;
   5585   }
   5586 
   5587   // Otherwise, if this was a reference to an LLVM register class, create vregs
   5588   // for this reference.
   5589   if (const TargetRegisterClass *RC = PhysReg.second) {
   5590     RegVT = *RC->vt_begin();
   5591     if (OpInfo.ConstraintVT == MVT::Other)
   5592       ValueVT = RegVT;
   5593 
   5594     // Create the appropriate number of virtual registers.
   5595     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   5596     for (; NumRegs; --NumRegs)
   5597       Regs.push_back(RegInfo.createVirtualRegister(RC));
   5598 
   5599     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5600     return;
   5601   }
   5602 
   5603   // Otherwise, we couldn't allocate enough registers for this.
   5604 }
   5605 
   5606 /// visitInlineAsm - Handle a call to an InlineAsm object.
   5607 ///
   5608 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
   5609   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   5610 
   5611   /// ConstraintOperands - Information about all of the constraints.
   5612   SDISelAsmOperandInfoVector ConstraintOperands;
   5613 
   5614   std::set<unsigned> OutputRegs, InputRegs;
   5615 
   5616   TargetLowering::AsmOperandInfoVector
   5617     TargetConstraints = TLI.ParseConstraints(CS);
   5618 
   5619   bool hasMemory = false;
   5620 
   5621   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   5622   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   5623   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   5624     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
   5625     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
   5626 
   5627     EVT OpVT = MVT::Other;
   5628 
   5629     // Compute the value type for each operand.
   5630     switch (OpInfo.Type) {
   5631     case InlineAsm::isOutput:
   5632       // Indirect outputs just consume an argument.
   5633       if (OpInfo.isIndirect) {
   5634         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5635         break;
   5636       }
   5637 
   5638       // The return value of the call is this value.  As such, there is no
   5639       // corresponding argument.
   5640       assert(!CS.getType()->isVoidTy() &&
   5641              "Bad inline asm!");
   5642       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   5643         OpVT = TLI.getValueType(STy->getElementType(ResNo));
   5644       } else {
   5645         assert(ResNo == 0 && "Asm only has one result!");
   5646         OpVT = TLI.getValueType(CS.getType());
   5647       }
   5648       ++ResNo;
   5649       break;
   5650     case InlineAsm::isInput:
   5651       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5652       break;
   5653     case InlineAsm::isClobber:
   5654       // Nothing to do.
   5655       break;
   5656     }
   5657 
   5658     // If this is an input or an indirect output, process the call argument.
   5659     // BasicBlocks are labels, currently appearing only in asm's.
   5660     if (OpInfo.CallOperandVal) {
   5661       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
   5662         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
   5663       } else {
   5664         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
   5665       }
   5666 
   5667       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
   5668     }
   5669 
   5670     OpInfo.ConstraintVT = OpVT;
   5671 
   5672     // Indirect operand accesses access memory.
   5673     if (OpInfo.isIndirect)
   5674       hasMemory = true;
   5675     else {
   5676       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
   5677         TargetLowering::ConstraintType
   5678           CType = TLI.getConstraintType(OpInfo.Codes[j]);
   5679         if (CType == TargetLowering::C_Memory) {
   5680           hasMemory = true;
   5681           break;
   5682         }
   5683       }
   5684     }
   5685   }
   5686 
   5687   SDValue Chain, Flag;
   5688 
   5689   // We won't need to flush pending loads if this asm doesn't touch
   5690   // memory and is nonvolatile.
   5691   if (hasMemory || IA->hasSideEffects())
   5692     Chain = getRoot();
   5693   else
   5694     Chain = DAG.getRoot();
   5695 
   5696   // Second pass over the constraints: compute which constraint option to use
   5697   // and assign registers to constraints that want a specific physreg.
   5698   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   5699     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   5700 
   5701     // If this is an output operand with a matching input operand, look up the
   5702     // matching input. If their types mismatch, e.g. one is an integer, the
   5703     // other is floating point, or their sizes are different, flag it as an
   5704     // error.
   5705     if (OpInfo.hasMatchingInput()) {
   5706       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   5707 
   5708       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   5709 	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   5710 	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
   5711 	std::pair<unsigned, const TargetRegisterClass*> InputRC =
   5712 	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
   5713         if ((OpInfo.ConstraintVT.isInteger() !=
   5714              Input.ConstraintVT.isInteger()) ||
   5715             (MatchRC.second != InputRC.second)) {
   5716           report_fatal_error("Unsupported asm: input constraint"
   5717                              " with a matching output constraint of"
   5718                              " incompatible type!");
   5719         }
   5720         Input.ConstraintVT = OpInfo.ConstraintVT;
   5721       }
   5722     }
   5723 
   5724     // Compute the constraint code and ConstraintType to use.
   5725     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
   5726 
   5727     // If this is a memory input, and if the operand is not indirect, do what we
   5728     // need to to provide an address for the memory input.
   5729     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   5730         !OpInfo.isIndirect) {
   5731       assert((OpInfo.isMultipleAlternative ||
   5732               (OpInfo.Type == InlineAsm::isInput)) &&
   5733              "Can only indirectify direct input operands!");
   5734 
   5735       // Memory operands really want the address of the value.  If we don't have
   5736       // an indirect input, put it in the constpool if we can, otherwise spill
   5737       // it to a stack slot.
   5738       // TODO: This isn't quite right. We need to handle these according to
   5739       // the addressing mode that the constraint wants. Also, this may take
   5740       // an additional register for the computation and we don't want that
   5741       // either.
   5742 
   5743       // If the operand is a float, integer, or vector constant, spill to a
   5744       // constant pool entry to get its address.
   5745       const Value *OpVal = OpInfo.CallOperandVal;
   5746       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
   5747           isa<ConstantVector>(OpVal)) {
   5748         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
   5749                                                  TLI.getPointerTy());
   5750       } else {
   5751         // Otherwise, create a stack slot and emit a store to it before the
   5752         // asm.
   5753         Type *Ty = OpVal->getType();
   5754         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   5755         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
   5756         MachineFunction &MF = DAG.getMachineFunction();
   5757         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   5758         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
   5759         Chain = DAG.getStore(Chain, getCurDebugLoc(),
   5760                              OpInfo.CallOperand, StackSlot,
   5761                              MachinePointerInfo::getFixedStack(SSFI),
   5762                              false, false, 0);
   5763         OpInfo.CallOperand = StackSlot;
   5764       }
   5765 
   5766       // There is no longer a Value* corresponding to this operand.
   5767       OpInfo.CallOperandVal = 0;
   5768 
   5769       // It is now an indirect operand.
   5770       OpInfo.isIndirect = true;
   5771     }
   5772 
   5773     // If this constraint is for a specific register, allocate it before
   5774     // anything else.
   5775     if (OpInfo.ConstraintType == TargetLowering::C_Register)
   5776       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
   5777                            InputRegs);
   5778   }
   5779 
   5780   // Second pass - Loop over all of the operands, assigning virtual or physregs
   5781   // to register class operands.
   5782   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   5783     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   5784 
   5785     // C_Register operands have already been allocated, Other/Memory don't need
   5786     // to be.
   5787     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
   5788       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
   5789                            InputRegs);
   5790   }
   5791 
   5792   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
   5793   std::vector<SDValue> AsmNodeOperands;
   5794   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
   5795   AsmNodeOperands.push_back(
   5796           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
   5797                                       TLI.getPointerTy()));
   5798 
   5799   // If we have a !srcloc metadata node associated with it, we want to attach
   5800   // this to the ultimately generated inline asm machineinstr.  To do this, we
   5801   // pass in the third operand as this (potentially null) inline asm MDNode.
   5802   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
   5803   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
   5804 
   5805   // Remember the HasSideEffect and AlignStack bits as operand 3.
   5806   unsigned ExtraInfo = 0;
   5807   if (IA->hasSideEffects())
   5808     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   5809   if (IA->isAlignStack())
   5810     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   5811   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
   5812                                                   TLI.getPointerTy()));
   5813 
   5814   // Loop over all of the inputs, copying the operand values into the
   5815   // appropriate registers and processing the output regs.
   5816   RegsForValue RetValRegs;
   5817 
   5818   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
   5819   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
   5820 
   5821   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   5822     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   5823 
   5824     switch (OpInfo.Type) {
   5825     case InlineAsm::isOutput: {
   5826       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
   5827           OpInfo.ConstraintType != TargetLowering::C_Register) {
   5828         // Memory output, or 'other' output (e.g. 'X' constraint).
   5829         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
   5830 
   5831         // Add information to the INLINEASM node to know about this output.
   5832         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   5833         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
   5834                                                         TLI.getPointerTy()));
   5835         AsmNodeOperands.push_back(OpInfo.CallOperand);
   5836         break;
   5837       }
   5838 
   5839       // Otherwise, this is a register or register class output.
   5840 
   5841       // Copy the output from the appropriate register.  Find a register that
   5842       // we can use.
   5843       if (OpInfo.AssignedRegs.Regs.empty())
   5844         report_fatal_error("Couldn't allocate output reg for constraint '" +
   5845                            Twine(OpInfo.ConstraintCode) + "'!");
   5846 
   5847       // If this is an indirect operand, store through the pointer after the
   5848       // asm.
   5849       if (OpInfo.isIndirect) {
   5850         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
   5851                                                       OpInfo.CallOperandVal));
   5852       } else {
   5853         // This is the result value of the call.
   5854         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   5855         // Concatenate this output onto the outputs list.
   5856         RetValRegs.append(OpInfo.AssignedRegs);
   5857       }
   5858 
   5859       // Add information to the INLINEASM node to know that this register is
   5860       // set.
   5861       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
   5862                                            InlineAsm::Kind_RegDefEarlyClobber :
   5863                                                InlineAsm::Kind_RegDef,
   5864                                                false,
   5865                                                0,
   5866                                                DAG,
   5867                                                AsmNodeOperands);
   5868       break;
   5869     }
   5870     case InlineAsm::isInput: {
   5871       SDValue InOperandVal = OpInfo.CallOperand;
   5872 
   5873       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
   5874         // If this is required to match an output register we have already set,
   5875         // just use its register.
   5876         unsigned OperandNo = OpInfo.getMatchedOperand();
   5877 
   5878         // Scan until we find the definition we already emitted of this operand.
   5879         // When we find it, create a RegsForValue operand.
   5880         unsigned CurOp = InlineAsm::Op_FirstOperand;
   5881         for (; OperandNo; --OperandNo) {
   5882           // Advance to the next operand.
   5883           unsigned OpFlag =
   5884             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   5885           assert((InlineAsm::isRegDefKind(OpFlag) ||
   5886                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
   5887                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
   5888           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
   5889         }
   5890 
   5891         unsigned OpFlag =
   5892           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   5893         if (InlineAsm::isRegDefKind(OpFlag) ||
   5894             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
   5895           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
   5896           if (OpInfo.isIndirect) {
   5897             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
   5898             LLVMContext &Ctx = *DAG.getContext();
   5899             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
   5900                           " don't know how to handle tied "
   5901                           "indirect register inputs");
   5902           }
   5903 
   5904           RegsForValue MatchedRegs;
   5905           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
   5906           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
   5907           MatchedRegs.RegVTs.push_back(RegVT);
   5908           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
   5909           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
   5910                i != e; ++i)
   5911             MatchedRegs.Regs.push_back
   5912               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
   5913 
   5914           // Use the produced MatchedRegs object to
   5915           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   5916                                     Chain, &Flag);
   5917           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
   5918                                            true, OpInfo.getMatchedOperand(),
   5919                                            DAG, AsmNodeOperands);
   5920           break;
   5921         }
   5922 
   5923         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
   5924         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
   5925                "Unexpected number of operands");
   5926         // Add information to the INLINEASM node to know about this input.
   5927         // See InlineAsm.h isUseOperandTiedToDef.
   5928         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
   5929                                                     OpInfo.getMatchedOperand());
   5930         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
   5931                                                         TLI.getPointerTy()));
   5932         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
   5933         break;
   5934       }
   5935 
   5936       // Treat indirect 'X' constraint as memory.
   5937       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
   5938           OpInfo.isIndirect)
   5939         OpInfo.ConstraintType = TargetLowering::C_Memory;
   5940 
   5941       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
   5942         std::vector<SDValue> Ops;
   5943         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
   5944                                          Ops, DAG);
   5945         if (Ops.empty())
   5946           report_fatal_error("Invalid operand for inline asm constraint '" +
   5947                              Twine(OpInfo.ConstraintCode) + "'!");
   5948 
   5949         // Add information to the INLINEASM node to know about this input.
   5950         unsigned ResOpType =
   5951           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
   5952         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   5953                                                         TLI.getPointerTy()));
   5954         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
   5955         break;
   5956       }
   5957 
   5958       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
   5959         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
   5960         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
   5961                "Memory operands expect pointer values");
   5962 
   5963         // Add information to the INLINEASM node to know about this input.
   5964         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   5965         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   5966                                                         TLI.getPointerTy()));
   5967         AsmNodeOperands.push_back(InOperandVal);
   5968         break;
   5969       }
   5970 
   5971       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
   5972               OpInfo.ConstraintType == TargetLowering::C_Register) &&
   5973              "Unknown constraint type!");
   5974       assert(!OpInfo.isIndirect &&
   5975              "Don't know how to handle indirect register inputs yet!");
   5976 
   5977       // Copy the input into the appropriate registers.
   5978       if (OpInfo.AssignedRegs.Regs.empty())
   5979         report_fatal_error("Couldn't allocate input reg for constraint '" +
   5980                            Twine(OpInfo.ConstraintCode) + "'!");
   5981 
   5982       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   5983                                         Chain, &Flag);
   5984 
   5985       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
   5986                                                DAG, AsmNodeOperands);
   5987       break;
   5988     }
   5989     case InlineAsm::isClobber: {
   5990       // Add the clobbered value to the operand list, so that the register
   5991       // allocator is aware that the physreg got clobbered.
   5992       if (!OpInfo.AssignedRegs.Regs.empty())
   5993         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
   5994                                                  false, 0, DAG,
   5995                                                  AsmNodeOperands);
   5996       break;
   5997     }
   5998     }
   5999   }
   6000 
   6001   // Finish up input operands.  Set the input chain and add the flag last.
   6002   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   6003   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
   6004 
   6005   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
   6006                       DAG.getVTList(MVT::Other, MVT::Glue),
   6007                       &AsmNodeOperands[0], AsmNodeOperands.size());
   6008   Flag = Chain.getValue(1);
   6009 
   6010   // If this asm returns a register value, copy the result from that register
   6011   // and set it as the value of the call.
   6012   if (!RetValRegs.Regs.empty()) {
   6013     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6014                                              Chain, &Flag);
   6015 
   6016     // FIXME: Why don't we do this for inline asms with MRVs?
   6017     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
   6018       EVT ResultType = TLI.getValueType(CS.getType());
   6019 
   6020       // If any of the results of the inline asm is a vector, it may have the
   6021       // wrong width/num elts.  This can happen for register classes that can
   6022       // contain multiple different value types.  The preg or vreg allocated may
   6023       // not have the same VT as was expected.  Convert it to the right type
   6024       // with bit_convert.
   6025       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
   6026         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   6027                           ResultType, Val);
   6028 
   6029       } else if (ResultType != Val.getValueType() &&
   6030                  ResultType.isInteger() && Val.getValueType().isInteger()) {
   6031         // If a result value was tied to an input value, the computed result may
   6032         // have a wider width than the expected result.  Extract the relevant
   6033         // portion.
   6034         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
   6035       }
   6036 
   6037       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
   6038     }
   6039 
   6040     setValue(CS.getInstruction(), Val);
   6041     // Don't need to use this as a chain in this case.
   6042     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
   6043       return;
   6044   }
   6045 
   6046   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
   6047 
   6048   // Process indirect outputs, first output all of the flagged copies out of
   6049   // physregs.
   6050   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
   6051     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
   6052     const Value *Ptr = IndirectStoresToEmit[i].second;
   6053     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6054                                              Chain, &Flag);
   6055     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
   6056   }
   6057 
   6058   // Emit the non-flagged stores from the physregs.
   6059   SmallVector<SDValue, 8> OutChains;
   6060   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
   6061     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
   6062                                StoresToEmit[i].first,
   6063                                getValue(StoresToEmit[i].second),
   6064                                MachinePointerInfo(StoresToEmit[i].second),
   6065                                false, false, 0);
   6066     OutChains.push_back(Val);
   6067   }
   6068 
   6069   if (!OutChains.empty())
   6070     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
   6071                         &OutChains[0], OutChains.size());
   6072 
   6073   DAG.setRoot(Chain);
   6074 }
   6075 
   6076 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
   6077   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
   6078                           MVT::Other, getRoot(),
   6079                           getValue(I.getArgOperand(0)),
   6080                           DAG.getSrcValue(I.getArgOperand(0))));
   6081 }
   6082 
   6083 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
   6084   const TargetData &TD = *TLI.getTargetData();
   6085   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
   6086                            getRoot(), getValue(I.getOperand(0)),
   6087                            DAG.getSrcValue(I.getOperand(0)),
   6088                            TD.getABITypeAlignment(I.getType()));
   6089   setValue(&I, V);
   6090   DAG.setRoot(V.getValue(1));
   6091 }
   6092 
   6093 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
   6094   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
   6095                           MVT::Other, getRoot(),
   6096                           getValue(I.getArgOperand(0)),
   6097                           DAG.getSrcValue(I.getArgOperand(0))));
   6098 }
   6099 
   6100 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
   6101   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
   6102                           MVT::Other, getRoot(),
   6103                           getValue(I.getArgOperand(0)),
   6104                           getValue(I.getArgOperand(1)),
   6105                           DAG.getSrcValue(I.getArgOperand(0)),
   6106                           DAG.getSrcValue(I.getArgOperand(1))));
   6107 }
   6108 
   6109 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
   6110 /// implementation, which just calls LowerCall.
   6111 /// FIXME: When all targets are
   6112 /// migrated to using LowerCall, this hook should be integrated into SDISel.
   6113 std::pair<SDValue, SDValue>
   6114 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
   6115                             bool RetSExt, bool RetZExt, bool isVarArg,
   6116                             bool isInreg, unsigned NumFixedArgs,
   6117                             CallingConv::ID CallConv, bool isTailCall,
   6118                             bool isReturnValueUsed,
   6119                             SDValue Callee,
   6120                             ArgListTy &Args, SelectionDAG &DAG,
   6121                             DebugLoc dl) const {
   6122   // Handle all of the outgoing arguments.
   6123   SmallVector<ISD::OutputArg, 32> Outs;
   6124   SmallVector<SDValue, 32> OutVals;
   6125   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   6126     SmallVector<EVT, 4> ValueVTs;
   6127     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
   6128     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6129          Value != NumValues; ++Value) {
   6130       EVT VT = ValueVTs[Value];
   6131       Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
   6132       SDValue Op = SDValue(Args[i].Node.getNode(),
   6133                            Args[i].Node.getResNo() + Value);
   6134       ISD::ArgFlagsTy Flags;
   6135       unsigned OriginalAlignment =
   6136         getTargetData()->getABITypeAlignment(ArgTy);
   6137 
   6138       if (Args[i].isZExt)
   6139         Flags.setZExt();
   6140       if (Args[i].isSExt)
   6141         Flags.setSExt();
   6142       if (Args[i].isInReg)
   6143         Flags.setInReg();
   6144       if (Args[i].isSRet)
   6145         Flags.setSRet();
   6146       if (Args[i].isByVal) {
   6147         Flags.setByVal();
   6148         PointerType *Ty = cast<PointerType>(Args[i].Ty);
   6149         Type *ElementTy = Ty->getElementType();
   6150         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
   6151         // For ByVal, alignment should come from FE.  BE will guess if this
   6152         // info is not there but there are cases it cannot get right.
   6153         unsigned FrameAlign;
   6154         if (Args[i].Alignment)
   6155           FrameAlign = Args[i].Alignment;
   6156         else
   6157           FrameAlign = getByValTypeAlignment(ElementTy);
   6158         Flags.setByValAlign(FrameAlign);
   6159       }
   6160       if (Args[i].isNest)
   6161         Flags.setNest();
   6162       Flags.setOrigAlign(OriginalAlignment);
   6163 
   6164       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
   6165       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
   6166       SmallVector<SDValue, 4> Parts(NumParts);
   6167       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   6168 
   6169       if (Args[i].isSExt)
   6170         ExtendKind = ISD::SIGN_EXTEND;
   6171       else if (Args[i].isZExt)
   6172         ExtendKind = ISD::ZERO_EXTEND;
   6173 
   6174       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
   6175                      PartVT, ExtendKind);
   6176 
   6177       for (unsigned j = 0; j != NumParts; ++j) {
   6178         // if it isn't first piece, alignment must be 1
   6179         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
   6180                                i < NumFixedArgs);
   6181         if (NumParts > 1 && j == 0)
   6182           MyFlags.Flags.setSplit();
   6183         else if (j != 0)
   6184           MyFlags.Flags.setOrigAlign(1);
   6185 
   6186         Outs.push_back(MyFlags);
   6187         OutVals.push_back(Parts[j]);
   6188       }
   6189     }
   6190   }
   6191 
   6192   // Handle the incoming return values from the call.
   6193   SmallVector<ISD::InputArg, 32> Ins;
   6194   SmallVector<EVT, 4> RetTys;
   6195   ComputeValueVTs(*this, RetTy, RetTys);
   6196   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6197     EVT VT = RetTys[I];
   6198     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
   6199     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
   6200     for (unsigned i = 0; i != NumRegs; ++i) {
   6201       ISD::InputArg MyFlags;
   6202       MyFlags.VT = RegisterVT.getSimpleVT();
   6203       MyFlags.Used = isReturnValueUsed;
   6204       if (RetSExt)
   6205         MyFlags.Flags.setSExt();
   6206       if (RetZExt)
   6207         MyFlags.Flags.setZExt();
   6208       if (isInreg)
   6209         MyFlags.Flags.setInReg();
   6210       Ins.push_back(MyFlags);
   6211     }
   6212   }
   6213 
   6214   SmallVector<SDValue, 4> InVals;
   6215   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
   6216                     Outs, OutVals, Ins, dl, DAG, InVals);
   6217 
   6218   // Verify that the target's LowerCall behaved as expected.
   6219   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   6220          "LowerCall didn't return a valid chain!");
   6221   assert((!isTailCall || InVals.empty()) &&
   6222          "LowerCall emitted a return value for a tail call!");
   6223   assert((isTailCall || InVals.size() == Ins.size()) &&
   6224          "LowerCall didn't emit the correct number of values!");
   6225 
   6226   // For a tail call, the return value is merely live-out and there aren't
   6227   // any nodes in the DAG representing it. Return a special value to
   6228   // indicate that a tail call has been emitted and no more Instructions
   6229   // should be processed in the current block.
   6230   if (isTailCall) {
   6231     DAG.setRoot(Chain);
   6232     return std::make_pair(SDValue(), SDValue());
   6233   }
   6234 
   6235   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   6236           assert(InVals[i].getNode() &&
   6237                  "LowerCall emitted a null value!");
   6238           assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   6239                  "LowerCall emitted a value with the wrong type!");
   6240         });
   6241 
   6242   // Collect the legal value parts into potentially illegal values
   6243   // that correspond to the original function's return values.
   6244   ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6245   if (RetSExt)
   6246     AssertOp = ISD::AssertSext;
   6247   else if (RetZExt)
   6248     AssertOp = ISD::AssertZext;
   6249   SmallVector<SDValue, 4> ReturnValues;
   6250   unsigned CurReg = 0;
   6251   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6252     EVT VT = RetTys[I];
   6253     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
   6254     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
   6255 
   6256     ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
   6257                                             NumRegs, RegisterVT, VT,
   6258                                             AssertOp));
   6259     CurReg += NumRegs;
   6260   }
   6261 
   6262   // For a function returning void, there is no return value. We can't create
   6263   // such a node, so we just return a null return value in that case. In
   6264   // that case, nothing will actually look at the value.
   6265   if (ReturnValues.empty())
   6266     return std::make_pair(SDValue(), Chain);
   6267 
   6268   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
   6269                             DAG.getVTList(&RetTys[0], RetTys.size()),
   6270                             &ReturnValues[0], ReturnValues.size());
   6271   return std::make_pair(Res, Chain);
   6272 }
   6273 
   6274 void TargetLowering::LowerOperationWrapper(SDNode *N,
   6275                                            SmallVectorImpl<SDValue> &Results,
   6276                                            SelectionDAG &DAG) const {
   6277   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
   6278   if (Res.getNode())
   6279     Results.push_back(Res);
   6280 }
   6281 
   6282 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6283   llvm_unreachable("LowerOperation not implemented for this target!");
   6284   return SDValue();
   6285 }
   6286 
   6287 void
   6288 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
   6289   SDValue Op = getNonRegisterValue(V);
   6290   assert((Op.getOpcode() != ISD::CopyFromReg ||
   6291           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
   6292          "Copy from a reg to the same reg!");
   6293   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
   6294 
   6295   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
   6296   SDValue Chain = DAG.getEntryNode();
   6297   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
   6298   PendingExports.push_back(Chain);
   6299 }
   6300 
   6301 #include "llvm/CodeGen/SelectionDAGISel.h"
   6302 
   6303 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
   6304 /// entry block, return true.  This includes arguments used by switches, since
   6305 /// the switch may expand into multiple basic blocks.
   6306 static bool isOnlyUsedInEntryBlock(const Argument *A) {
   6307   // With FastISel active, we may be splitting blocks, so force creation
   6308   // of virtual registers for all non-dead arguments.
   6309   if (EnableFastISel)
   6310     return A->use_empty();
   6311 
   6312   const BasicBlock *Entry = A->getParent()->begin();
   6313   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
   6314        UI != E; ++UI) {
   6315     const User *U = *UI;
   6316     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
   6317       return false;  // Use not in entry block.
   6318   }
   6319   return true;
   6320 }
   6321 
   6322 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
   6323   // If this is the entry block, emit arguments.
   6324   const Function &F = *LLVMBB->getParent();
   6325   SelectionDAG &DAG = SDB->DAG;
   6326   DebugLoc dl = SDB->getCurDebugLoc();
   6327   const TargetData *TD = TLI.getTargetData();
   6328   SmallVector<ISD::InputArg, 16> Ins;
   6329 
   6330   // Check whether the function can return without sret-demotion.
   6331   SmallVector<ISD::OutputArg, 4> Outs;
   6332   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
   6333                 Outs, TLI);
   6334 
   6335   if (!FuncInfo->CanLowerReturn) {
   6336     // Put in an sret pointer parameter before all the other parameters.
   6337     SmallVector<EVT, 1> ValueVTs;
   6338     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6339 
   6340     // NOTE: Assuming that a pointer will never break down to more than one VT
   6341     // or one register.
   6342     ISD::ArgFlagsTy Flags;
   6343     Flags.setSRet();
   6344     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
   6345     ISD::InputArg RetArg(Flags, RegisterVT, true);
   6346     Ins.push_back(RetArg);
   6347   }
   6348 
   6349   // Set up the incoming argument description vector.
   6350   unsigned Idx = 1;
   6351   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
   6352        I != E; ++I, ++Idx) {
   6353     SmallVector<EVT, 4> ValueVTs;
   6354     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6355     bool isArgValueUsed = !I->use_empty();
   6356     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6357          Value != NumValues; ++Value) {
   6358       EVT VT = ValueVTs[Value];
   6359       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   6360       ISD::ArgFlagsTy Flags;
   6361       unsigned OriginalAlignment =
   6362         TD->getABITypeAlignment(ArgTy);
   6363 
   6364       if (F.paramHasAttr(Idx, Attribute::ZExt))
   6365         Flags.setZExt();
   6366       if (F.paramHasAttr(Idx, Attribute::SExt))
   6367         Flags.setSExt();
   6368       if (F.paramHasAttr(Idx, Attribute::InReg))
   6369         Flags.setInReg();
   6370       if (F.paramHasAttr(Idx, Attribute::StructRet))
   6371         Flags.setSRet();
   6372       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
   6373         Flags.setByVal();
   6374         PointerType *Ty = cast<PointerType>(I->getType());
   6375         Type *ElementTy = Ty->getElementType();
   6376         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
   6377         // For ByVal, alignment should be passed from FE.  BE will guess if
   6378         // this info is not there but there are cases it cannot get right.
   6379         unsigned FrameAlign;
   6380         if (F.getParamAlignment(Idx))
   6381           FrameAlign = F.getParamAlignment(Idx);
   6382         else
   6383           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   6384         Flags.setByValAlign(FrameAlign);
   6385       }
   6386       if (F.paramHasAttr(Idx, Attribute::Nest))
   6387         Flags.setNest();
   6388       Flags.setOrigAlign(OriginalAlignment);
   6389 
   6390       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6391       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6392       for (unsigned i = 0; i != NumRegs; ++i) {
   6393         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
   6394         if (NumRegs > 1 && i == 0)
   6395           MyFlags.Flags.setSplit();
   6396         // if it isn't first piece, alignment must be 1
   6397         else if (i > 0)
   6398           MyFlags.Flags.setOrigAlign(1);
   6399         Ins.push_back(MyFlags);
   6400       }
   6401     }
   6402   }
   6403 
   6404   // Call the target to set up the argument values.
   6405   SmallVector<SDValue, 8> InVals;
   6406   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
   6407                                              F.isVarArg(), Ins,
   6408                                              dl, DAG, InVals);
   6409 
   6410   // Verify that the target's LowerFormalArguments behaved as expected.
   6411   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
   6412          "LowerFormalArguments didn't return a valid chain!");
   6413   assert(InVals.size() == Ins.size() &&
   6414          "LowerFormalArguments didn't emit the correct number of values!");
   6415   DEBUG({
   6416       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   6417         assert(InVals[i].getNode() &&
   6418                "LowerFormalArguments emitted a null value!");
   6419         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   6420                "LowerFormalArguments emitted a value with the wrong type!");
   6421       }
   6422     });
   6423 
   6424   // Update the DAG with the new chain value resulting from argument lowering.
   6425   DAG.setRoot(NewRoot);
   6426 
   6427   // Set up the argument values.
   6428   unsigned i = 0;
   6429   Idx = 1;
   6430   if (!FuncInfo->CanLowerReturn) {
   6431     // Create a virtual register for the sret pointer, and put in a copy
   6432     // from the sret argument into it.
   6433     SmallVector<EVT, 1> ValueVTs;
   6434     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6435     EVT VT = ValueVTs[0];
   6436     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6437     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6438     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
   6439                                         RegVT, VT, AssertOp);
   6440 
   6441     MachineFunction& MF = SDB->DAG.getMachineFunction();
   6442     MachineRegisterInfo& RegInfo = MF.getRegInfo();
   6443     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
   6444     FuncInfo->DemoteRegister = SRetReg;
   6445     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
   6446                                     SRetReg, ArgValue);
   6447     DAG.setRoot(NewRoot);
   6448 
   6449     // i indexes lowered arguments.  Bump it past the hidden sret argument.
   6450     // Idx indexes LLVM arguments.  Don't touch it.
   6451     ++i;
   6452   }
   6453 
   6454   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   6455       ++I, ++Idx) {
   6456     SmallVector<SDValue, 4> ArgValues;
   6457     SmallVector<EVT, 4> ValueVTs;
   6458     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6459     unsigned NumValues = ValueVTs.size();
   6460 
   6461     // If this argument is unused then remember its value. It is used to generate
   6462     // debugging information.
   6463     if (I->use_empty() && NumValues)
   6464       SDB->setUnusedArgValue(I, InVals[i]);
   6465 
   6466     for (unsigned Val = 0; Val != NumValues; ++Val) {
   6467       EVT VT = ValueVTs[Val];
   6468       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6469       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6470 
   6471       if (!I->use_empty()) {
   6472         ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6473         if (F.paramHasAttr(Idx, Attribute::SExt))
   6474           AssertOp = ISD::AssertSext;
   6475         else if (F.paramHasAttr(Idx, Attribute::ZExt))
   6476           AssertOp = ISD::AssertZext;
   6477 
   6478         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
   6479                                              NumParts, PartVT, VT,
   6480                                              AssertOp));
   6481       }
   6482 
   6483       i += NumParts;
   6484     }
   6485 
   6486     // We don't need to do anything else for unused arguments.
   6487     if (ArgValues.empty())
   6488       continue;
   6489 
   6490     // Note down frame index for byval arguments.
   6491     if (I->hasByValAttr())
   6492       if (FrameIndexSDNode *FI =
   6493           dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
   6494         FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
   6495 
   6496     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
   6497                                      SDB->getCurDebugLoc());
   6498     SDB->setValue(I, Res);
   6499 
   6500     // If this argument is live outside of the entry block, insert a copy from
   6501     // wherever we got it to the vreg that other BB's will reference it as.
   6502     if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
   6503       // If we can, though, try to skip creating an unnecessary vreg.
   6504       // FIXME: This isn't very clean... it would be nice to make this more
   6505       // general.  It's also subtly incompatible with the hacks FastISel
   6506       // uses with vregs.
   6507       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
   6508       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   6509         FuncInfo->ValueMap[I] = Reg;
   6510         continue;
   6511       }
   6512     }
   6513     if (!isOnlyUsedInEntryBlock(I)) {
   6514       FuncInfo->InitializeRegForValue(I);
   6515       SDB->CopyToExportRegsIfNeeded(I);
   6516     }
   6517   }
   6518 
   6519   assert(i == InVals.size() && "Argument register count mismatch!");
   6520 
   6521   // Finally, if the target has anything special to do, allow it to do so.
   6522   // FIXME: this should insert code into the DAG!
   6523   EmitFunctionEntryCode();
   6524 }
   6525 
   6526 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
   6527 /// ensure constants are generated when needed.  Remember the virtual registers
   6528 /// that need to be added to the Machine PHI nodes as input.  We cannot just
   6529 /// directly add them, because expansion might result in multiple MBB's for one
   6530 /// BB.  As such, the start of the BB might correspond to a different MBB than
   6531 /// the end.
   6532 ///
   6533 void
   6534 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   6535   const TerminatorInst *TI = LLVMBB->getTerminator();
   6536 
   6537   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   6538 
   6539   // Check successor nodes' PHI nodes that expect a constant to be available
   6540   // from this block.
   6541   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   6542     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   6543     if (!isa<PHINode>(SuccBB->begin())) continue;
   6544     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   6545 
   6546     // If this terminator has multiple identical successors (common for
   6547     // switches), only handle each succ once.
   6548     if (!SuccsHandled.insert(SuccMBB)) continue;
   6549 
   6550     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   6551 
   6552     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   6553     // nodes and Machine PHI nodes, but the incoming operands have not been
   6554     // emitted yet.
   6555     for (BasicBlock::const_iterator I = SuccBB->begin();
   6556          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   6557       // Ignore dead phi's.
   6558       if (PN->use_empty()) continue;
   6559 
   6560       // Skip empty types
   6561       if (PN->getType()->isEmptyTy())
   6562         continue;
   6563 
   6564       unsigned Reg;
   6565       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   6566 
   6567       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
   6568         unsigned &RegOut = ConstantsOut[C];
   6569         if (RegOut == 0) {
   6570           RegOut = FuncInfo.CreateRegs(C->getType());
   6571           CopyValueToVirtualRegister(C, RegOut);
   6572         }
   6573         Reg = RegOut;
   6574       } else {
   6575         DenseMap<const Value *, unsigned>::iterator I =
   6576           FuncInfo.ValueMap.find(PHIOp);
   6577         if (I != FuncInfo.ValueMap.end())
   6578           Reg = I->second;
   6579         else {
   6580           assert(isa<AllocaInst>(PHIOp) &&
   6581                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
   6582                  "Didn't codegen value into a register!??");
   6583           Reg = FuncInfo.CreateRegs(PHIOp->getType());
   6584           CopyValueToVirtualRegister(PHIOp, Reg);
   6585         }
   6586       }
   6587 
   6588       // Remember that this register needs to added to the machine PHI node as
   6589       // the input for this MBB.
   6590       SmallVector<EVT, 4> ValueVTs;
   6591       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
   6592       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
   6593         EVT VT = ValueVTs[vti];
   6594         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
   6595         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
   6596           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
   6597         Reg += NumRegisters;
   6598       }
   6599     }
   6600   }
   6601   ConstantsOut.clear();
   6602 }
   6603