Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/CXXFieldCollector.h"
     18 #include "clang/Sema/Scope.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "TypeLocBuilder.h"
     21 #include "clang/AST/APValue.h"
     22 #include "clang/AST/ASTConsumer.h"
     23 #include "clang/AST/ASTContext.h"
     24 #include "clang/AST/CXXInheritance.h"
     25 #include "clang/AST/DeclCXX.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/AST/DeclTemplate.h"
     28 #include "clang/AST/EvaluatedExprVisitor.h"
     29 #include "clang/AST/ExprCXX.h"
     30 #include "clang/AST/StmtCXX.h"
     31 #include "clang/AST/CharUnits.h"
     32 #include "clang/Sema/DeclSpec.h"
     33 #include "clang/Sema/ParsedTemplate.h"
     34 #include "clang/Parse/ParseDiagnostic.h"
     35 #include "clang/Basic/PartialDiagnostic.h"
     36 #include "clang/Basic/SourceManager.h"
     37 #include "clang/Basic/TargetInfo.h"
     38 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
     39 #include "clang/Lex/Preprocessor.h"
     40 #include "clang/Lex/HeaderSearch.h"
     41 #include "llvm/ADT/Triple.h"
     42 #include <algorithm>
     43 #include <cstring>
     44 #include <functional>
     45 using namespace clang;
     46 using namespace sema;
     47 
     48 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     49   if (OwnedType) {
     50     Decl *Group[2] = { OwnedType, Ptr };
     51     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     52   }
     53 
     54   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     55 }
     56 
     57 /// \brief If the identifier refers to a type name within this scope,
     58 /// return the declaration of that type.
     59 ///
     60 /// This routine performs ordinary name lookup of the identifier II
     61 /// within the given scope, with optional C++ scope specifier SS, to
     62 /// determine whether the name refers to a type. If so, returns an
     63 /// opaque pointer (actually a QualType) corresponding to that
     64 /// type. Otherwise, returns NULL.
     65 ///
     66 /// If name lookup results in an ambiguity, this routine will complain
     67 /// and then return NULL.
     68 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
     69                              Scope *S, CXXScopeSpec *SS,
     70                              bool isClassName, bool HasTrailingDot,
     71                              ParsedType ObjectTypePtr,
     72                              bool WantNontrivialTypeSourceInfo) {
     73   // Determine where we will perform name lookup.
     74   DeclContext *LookupCtx = 0;
     75   if (ObjectTypePtr) {
     76     QualType ObjectType = ObjectTypePtr.get();
     77     if (ObjectType->isRecordType())
     78       LookupCtx = computeDeclContext(ObjectType);
     79   } else if (SS && SS->isNotEmpty()) {
     80     LookupCtx = computeDeclContext(*SS, false);
     81 
     82     if (!LookupCtx) {
     83       if (isDependentScopeSpecifier(*SS)) {
     84         // C++ [temp.res]p3:
     85         //   A qualified-id that refers to a type and in which the
     86         //   nested-name-specifier depends on a template-parameter (14.6.2)
     87         //   shall be prefixed by the keyword typename to indicate that the
     88         //   qualified-id denotes a type, forming an
     89         //   elaborated-type-specifier (7.1.5.3).
     90         //
     91         // We therefore do not perform any name lookup if the result would
     92         // refer to a member of an unknown specialization.
     93         if (!isClassName)
     94           return ParsedType();
     95 
     96         // We know from the grammar that this name refers to a type,
     97         // so build a dependent node to describe the type.
     98         if (WantNontrivialTypeSourceInfo)
     99           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    100 
    101         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    102         QualType T =
    103           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    104                             II, NameLoc);
    105 
    106           return ParsedType::make(T);
    107       }
    108 
    109       return ParsedType();
    110     }
    111 
    112     if (!LookupCtx->isDependentContext() &&
    113         RequireCompleteDeclContext(*SS, LookupCtx))
    114       return ParsedType();
    115   }
    116 
    117   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    118   // lookup for class-names.
    119   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    120                                       LookupOrdinaryName;
    121   LookupResult Result(*this, &II, NameLoc, Kind);
    122   if (LookupCtx) {
    123     // Perform "qualified" name lookup into the declaration context we
    124     // computed, which is either the type of the base of a member access
    125     // expression or the declaration context associated with a prior
    126     // nested-name-specifier.
    127     LookupQualifiedName(Result, LookupCtx);
    128 
    129     if (ObjectTypePtr && Result.empty()) {
    130       // C++ [basic.lookup.classref]p3:
    131       //   If the unqualified-id is ~type-name, the type-name is looked up
    132       //   in the context of the entire postfix-expression. If the type T of
    133       //   the object expression is of a class type C, the type-name is also
    134       //   looked up in the scope of class C. At least one of the lookups shall
    135       //   find a name that refers to (possibly cv-qualified) T.
    136       LookupName(Result, S);
    137     }
    138   } else {
    139     // Perform unqualified name lookup.
    140     LookupName(Result, S);
    141   }
    142 
    143   NamedDecl *IIDecl = 0;
    144   switch (Result.getResultKind()) {
    145   case LookupResult::NotFound:
    146   case LookupResult::NotFoundInCurrentInstantiation:
    147   case LookupResult::FoundOverloaded:
    148   case LookupResult::FoundUnresolvedValue:
    149     Result.suppressDiagnostics();
    150     return ParsedType();
    151 
    152   case LookupResult::Ambiguous:
    153     // Recover from type-hiding ambiguities by hiding the type.  We'll
    154     // do the lookup again when looking for an object, and we can
    155     // diagnose the error then.  If we don't do this, then the error
    156     // about hiding the type will be immediately followed by an error
    157     // that only makes sense if the identifier was treated like a type.
    158     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    159       Result.suppressDiagnostics();
    160       return ParsedType();
    161     }
    162 
    163     // Look to see if we have a type anywhere in the list of results.
    164     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    165          Res != ResEnd; ++Res) {
    166       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    167         if (!IIDecl ||
    168             (*Res)->getLocation().getRawEncoding() <
    169               IIDecl->getLocation().getRawEncoding())
    170           IIDecl = *Res;
    171       }
    172     }
    173 
    174     if (!IIDecl) {
    175       // None of the entities we found is a type, so there is no way
    176       // to even assume that the result is a type. In this case, don't
    177       // complain about the ambiguity. The parser will either try to
    178       // perform this lookup again (e.g., as an object name), which
    179       // will produce the ambiguity, or will complain that it expected
    180       // a type name.
    181       Result.suppressDiagnostics();
    182       return ParsedType();
    183     }
    184 
    185     // We found a type within the ambiguous lookup; diagnose the
    186     // ambiguity and then return that type. This might be the right
    187     // answer, or it might not be, but it suppresses any attempt to
    188     // perform the name lookup again.
    189     break;
    190 
    191   case LookupResult::Found:
    192     IIDecl = Result.getFoundDecl();
    193     break;
    194   }
    195 
    196   assert(IIDecl && "Didn't find decl");
    197 
    198   QualType T;
    199   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    200     DiagnoseUseOfDecl(IIDecl, NameLoc);
    201 
    202     if (T.isNull())
    203       T = Context.getTypeDeclType(TD);
    204 
    205     if (SS && SS->isNotEmpty()) {
    206       if (WantNontrivialTypeSourceInfo) {
    207         // Construct a type with type-source information.
    208         TypeLocBuilder Builder;
    209         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    210 
    211         T = getElaboratedType(ETK_None, *SS, T);
    212         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    213         ElabTL.setKeywordLoc(SourceLocation());
    214         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    215         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    216       } else {
    217         T = getElaboratedType(ETK_None, *SS, T);
    218       }
    219     }
    220   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    221     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    222     if (!HasTrailingDot)
    223       T = Context.getObjCInterfaceType(IDecl);
    224   }
    225 
    226   if (T.isNull()) {
    227     // If it's not plausibly a type, suppress diagnostics.
    228     Result.suppressDiagnostics();
    229     return ParsedType();
    230   }
    231   return ParsedType::make(T);
    232 }
    233 
    234 /// isTagName() - This method is called *for error recovery purposes only*
    235 /// to determine if the specified name is a valid tag name ("struct foo").  If
    236 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    237 /// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
    238 /// where the user forgot to specify the tag.
    239 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    240   // Do a tag name lookup in this scope.
    241   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    242   LookupName(R, S, false);
    243   R.suppressDiagnostics();
    244   if (R.getResultKind() == LookupResult::Found)
    245     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    246       switch (TD->getTagKind()) {
    247       default:         return DeclSpec::TST_unspecified;
    248       case TTK_Struct: return DeclSpec::TST_struct;
    249       case TTK_Union:  return DeclSpec::TST_union;
    250       case TTK_Class:  return DeclSpec::TST_class;
    251       case TTK_Enum:   return DeclSpec::TST_enum;
    252       }
    253     }
    254 
    255   return DeclSpec::TST_unspecified;
    256 }
    257 
    258 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    259 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    260 /// then downgrade the missing typename error to a warning.
    261 /// This is needed for MSVC compatibility; Example:
    262 /// @code
    263 /// template<class T> class A {
    264 /// public:
    265 ///   typedef int TYPE;
    266 /// };
    267 /// template<class T> class B : public A<T> {
    268 /// public:
    269 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    270 /// };
    271 /// @endcode
    272 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
    273   if (CurContext->isRecord()) {
    274     const Type *Ty = SS->getScopeRep()->getAsType();
    275 
    276     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    277     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
    278           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
    279       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
    280         return true;
    281   }
    282   return false;
    283 }
    284 
    285 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
    286                                    SourceLocation IILoc,
    287                                    Scope *S,
    288                                    CXXScopeSpec *SS,
    289                                    ParsedType &SuggestedType) {
    290   // We don't have anything to suggest (yet).
    291   SuggestedType = ParsedType();
    292 
    293   // There may have been a typo in the name of the type. Look up typo
    294   // results, in case we have something that we can suggest.
    295   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
    296                                              LookupOrdinaryName, S, SS, NULL,
    297                                              false, CTC_Type)) {
    298     std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    299     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    300 
    301     if (Corrected.isKeyword()) {
    302       // We corrected to a keyword.
    303       // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
    304       Diag(IILoc, diag::err_unknown_typename_suggest)
    305         << &II << CorrectedQuotedStr;
    306       return true;
    307     } else {
    308       NamedDecl *Result = Corrected.getCorrectionDecl();
    309       if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
    310           !Result->isInvalidDecl()) {
    311         // We found a similarly-named type or interface; suggest that.
    312         if (!SS || !SS->isSet())
    313           Diag(IILoc, diag::err_unknown_typename_suggest)
    314             << &II << CorrectedQuotedStr
    315             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    316         else if (DeclContext *DC = computeDeclContext(*SS, false))
    317           Diag(IILoc, diag::err_unknown_nested_typename_suggest)
    318             << &II << DC << CorrectedQuotedStr << SS->getRange()
    319             << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    320         else
    321           llvm_unreachable("could not have corrected a typo here");
    322 
    323         Diag(Result->getLocation(), diag::note_previous_decl)
    324           << CorrectedQuotedStr;
    325 
    326         SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
    327                                     false, false, ParsedType(),
    328                                     /*NonTrivialTypeSourceInfo=*/true);
    329         return true;
    330       }
    331     }
    332   }
    333 
    334   if (getLangOptions().CPlusPlus) {
    335     // See if II is a class template that the user forgot to pass arguments to.
    336     UnqualifiedId Name;
    337     Name.setIdentifier(&II, IILoc);
    338     CXXScopeSpec EmptySS;
    339     TemplateTy TemplateResult;
    340     bool MemberOfUnknownSpecialization;
    341     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    342                        Name, ParsedType(), true, TemplateResult,
    343                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    344       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
    345       Diag(IILoc, diag::err_template_missing_args) << TplName;
    346       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    347         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    348           << TplDecl->getTemplateParameters()->getSourceRange();
    349       }
    350       return true;
    351     }
    352   }
    353 
    354   // FIXME: Should we move the logic that tries to recover from a missing tag
    355   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    356 
    357   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    358     Diag(IILoc, diag::err_unknown_typename) << &II;
    359   else if (DeclContext *DC = computeDeclContext(*SS, false))
    360     Diag(IILoc, diag::err_typename_nested_not_found)
    361       << &II << DC << SS->getRange();
    362   else if (isDependentScopeSpecifier(*SS)) {
    363     unsigned DiagID = diag::err_typename_missing;
    364     if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
    365       DiagID = diag::warn_typename_missing;
    366 
    367     Diag(SS->getRange().getBegin(), DiagID)
    368       << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
    369       << SourceRange(SS->getRange().getBegin(), IILoc)
    370       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    371     SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
    372   } else {
    373     assert(SS && SS->isInvalid() &&
    374            "Invalid scope specifier has already been diagnosed");
    375   }
    376 
    377   return true;
    378 }
    379 
    380 /// \brief Determine whether the given result set contains either a type name
    381 /// or
    382 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    383   bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
    384                        NextToken.is(tok::less);
    385 
    386   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    387     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    388       return true;
    389 
    390     if (CheckTemplate && isa<TemplateDecl>(*I))
    391       return true;
    392   }
    393 
    394   return false;
    395 }
    396 
    397 Sema::NameClassification Sema::ClassifyName(Scope *S,
    398                                             CXXScopeSpec &SS,
    399                                             IdentifierInfo *&Name,
    400                                             SourceLocation NameLoc,
    401                                             const Token &NextToken) {
    402   DeclarationNameInfo NameInfo(Name, NameLoc);
    403   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    404 
    405   if (NextToken.is(tok::coloncolon)) {
    406     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    407                                 QualType(), false, SS, 0, false);
    408 
    409   }
    410 
    411   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    412   LookupParsedName(Result, S, &SS, !CurMethod);
    413 
    414   // Perform lookup for Objective-C instance variables (including automatically
    415   // synthesized instance variables), if we're in an Objective-C method.
    416   // FIXME: This lookup really, really needs to be folded in to the normal
    417   // unqualified lookup mechanism.
    418   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    419     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    420     if (E.get() || E.isInvalid())
    421       return E;
    422 
    423     // Synthesize ivars lazily.
    424     if (getLangOptions().ObjCDefaultSynthProperties &&
    425         getLangOptions().ObjCNonFragileABI2) {
    426       if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
    427         if (const ObjCPropertyDecl *Property =
    428                                           canSynthesizeProvisionalIvar(Name)) {
    429           Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
    430           Diag(Property->getLocation(), diag::note_property_declare);
    431         }
    432 
    433         // FIXME: This is strange. Shouldn't we just take the ivar returned
    434         // from SynthesizeProvisionalIvar and continue with that?
    435         E = LookupInObjCMethod(Result, S, Name, true);
    436         if (E.get() || E.isInvalid())
    437           return E;
    438       }
    439     }
    440   }
    441 
    442   bool SecondTry = false;
    443   bool IsFilteredTemplateName = false;
    444 
    445 Corrected:
    446   switch (Result.getResultKind()) {
    447   case LookupResult::NotFound:
    448     // If an unqualified-id is followed by a '(', then we have a function
    449     // call.
    450     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    451       // In C++, this is an ADL-only call.
    452       // FIXME: Reference?
    453       if (getLangOptions().CPlusPlus)
    454         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    455 
    456       // C90 6.3.2.2:
    457       //   If the expression that precedes the parenthesized argument list in a
    458       //   function call consists solely of an identifier, and if no
    459       //   declaration is visible for this identifier, the identifier is
    460       //   implicitly declared exactly as if, in the innermost block containing
    461       //   the function call, the declaration
    462       //
    463       //     extern int identifier ();
    464       //
    465       //   appeared.
    466       //
    467       // We also allow this in C99 as an extension.
    468       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    469         Result.addDecl(D);
    470         Result.resolveKind();
    471         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    472       }
    473     }
    474 
    475     // In C, we first see whether there is a tag type by the same name, in
    476     // which case it's likely that the user just forget to write "enum",
    477     // "struct", or "union".
    478     if (!getLangOptions().CPlusPlus && !SecondTry) {
    479       Result.clear(LookupTagName);
    480       LookupParsedName(Result, S, &SS);
    481       if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
    482         const char *TagName = 0;
    483         const char *FixItTagName = 0;
    484         switch (Tag->getTagKind()) {
    485           case TTK_Class:
    486             TagName = "class";
    487             FixItTagName = "class ";
    488             break;
    489 
    490           case TTK_Enum:
    491             TagName = "enum";
    492             FixItTagName = "enum ";
    493             break;
    494 
    495           case TTK_Struct:
    496             TagName = "struct";
    497             FixItTagName = "struct ";
    498             break;
    499 
    500           case TTK_Union:
    501             TagName = "union";
    502             FixItTagName = "union ";
    503             break;
    504         }
    505 
    506         Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    507           << Name << TagName << getLangOptions().CPlusPlus
    508           << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    509         break;
    510       }
    511 
    512       Result.clear(LookupOrdinaryName);
    513     }
    514 
    515     // Perform typo correction to determine if there is another name that is
    516     // close to this name.
    517     if (!SecondTry) {
    518       SecondTry = true;
    519       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    520                                                  Result.getLookupKind(), S, &SS)) {
    521         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    522         unsigned QualifiedDiag = diag::err_no_member_suggest;
    523         std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    524         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    525 
    526         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    527         NamedDecl *UnderlyingFirstDecl
    528           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
    529         if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    530             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    531           UnqualifiedDiag = diag::err_no_template_suggest;
    532           QualifiedDiag = diag::err_no_member_template_suggest;
    533         } else if (UnderlyingFirstDecl &&
    534                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    535                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    536                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    537            UnqualifiedDiag = diag::err_unknown_typename_suggest;
    538            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    539          }
    540 
    541         if (SS.isEmpty())
    542           Diag(NameLoc, UnqualifiedDiag)
    543             << Name << CorrectedQuotedStr
    544             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    545         else
    546           Diag(NameLoc, QualifiedDiag)
    547             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
    548             << SS.getRange()
    549             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    550 
    551         // Update the name, so that the caller has the new name.
    552         Name = Corrected.getCorrectionAsIdentifierInfo();
    553 
    554         // Also update the LookupResult...
    555         // FIXME: This should probably go away at some point
    556         Result.clear();
    557         Result.setLookupName(Corrected.getCorrection());
    558         if (FirstDecl) Result.addDecl(FirstDecl);
    559 
    560         // Typo correction corrected to a keyword.
    561         if (Corrected.isKeyword())
    562           return Corrected.getCorrectionAsIdentifierInfo();
    563 
    564         if (FirstDecl)
    565           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    566             << CorrectedQuotedStr;
    567 
    568         // If we found an Objective-C instance variable, let
    569         // LookupInObjCMethod build the appropriate expression to
    570         // reference the ivar.
    571         // FIXME: This is a gross hack.
    572         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    573           Result.clear();
    574           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    575           return move(E);
    576         }
    577 
    578         goto Corrected;
    579       }
    580     }
    581 
    582     // We failed to correct; just fall through and let the parser deal with it.
    583     Result.suppressDiagnostics();
    584     return NameClassification::Unknown();
    585 
    586   case LookupResult::NotFoundInCurrentInstantiation:
    587     // We performed name lookup into the current instantiation, and there were
    588     // dependent bases, so we treat this result the same way as any other
    589     // dependent nested-name-specifier.
    590 
    591     // C++ [temp.res]p2:
    592     //   A name used in a template declaration or definition and that is
    593     //   dependent on a template-parameter is assumed not to name a type
    594     //   unless the applicable name lookup finds a type name or the name is
    595     //   qualified by the keyword typename.
    596     //
    597     // FIXME: If the next token is '<', we might want to ask the parser to
    598     // perform some heroics to see if we actually have a
    599     // template-argument-list, which would indicate a missing 'template'
    600     // keyword here.
    601     return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
    602 
    603   case LookupResult::Found:
    604   case LookupResult::FoundOverloaded:
    605   case LookupResult::FoundUnresolvedValue:
    606     break;
    607 
    608   case LookupResult::Ambiguous:
    609     if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    610         hasAnyAcceptableTemplateNames(Result)) {
    611       // C++ [temp.local]p3:
    612       //   A lookup that finds an injected-class-name (10.2) can result in an
    613       //   ambiguity in certain cases (for example, if it is found in more than
    614       //   one base class). If all of the injected-class-names that are found
    615       //   refer to specializations of the same class template, and if the name
    616       //   is followed by a template-argument-list, the reference refers to the
    617       //   class template itself and not a specialization thereof, and is not
    618       //   ambiguous.
    619       //
    620       // This filtering can make an ambiguous result into an unambiguous one,
    621       // so try again after filtering out template names.
    622       FilterAcceptableTemplateNames(Result);
    623       if (!Result.isAmbiguous()) {
    624         IsFilteredTemplateName = true;
    625         break;
    626       }
    627     }
    628 
    629     // Diagnose the ambiguity and return an error.
    630     return NameClassification::Error();
    631   }
    632 
    633   if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
    634       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    635     // C++ [temp.names]p3:
    636     //   After name lookup (3.4) finds that a name is a template-name or that
    637     //   an operator-function-id or a literal- operator-id refers to a set of
    638     //   overloaded functions any member of which is a function template if
    639     //   this is followed by a <, the < is always taken as the delimiter of a
    640     //   template-argument-list and never as the less-than operator.
    641     if (!IsFilteredTemplateName)
    642       FilterAcceptableTemplateNames(Result);
    643 
    644     if (!Result.empty()) {
    645       bool IsFunctionTemplate;
    646       TemplateName Template;
    647       if (Result.end() - Result.begin() > 1) {
    648         IsFunctionTemplate = true;
    649         Template = Context.getOverloadedTemplateName(Result.begin(),
    650                                                      Result.end());
    651       } else {
    652         TemplateDecl *TD
    653           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    654         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    655 
    656         if (SS.isSet() && !SS.isInvalid())
    657           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    658                                                     /*TemplateKeyword=*/false,
    659                                                       TD);
    660         else
    661           Template = TemplateName(TD);
    662       }
    663 
    664       if (IsFunctionTemplate) {
    665         // Function templates always go through overload resolution, at which
    666         // point we'll perform the various checks (e.g., accessibility) we need
    667         // to based on which function we selected.
    668         Result.suppressDiagnostics();
    669 
    670         return NameClassification::FunctionTemplate(Template);
    671       }
    672 
    673       return NameClassification::TypeTemplate(Template);
    674     }
    675   }
    676 
    677   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    678   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    679     DiagnoseUseOfDecl(Type, NameLoc);
    680     QualType T = Context.getTypeDeclType(Type);
    681     return ParsedType::make(T);
    682   }
    683 
    684   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    685   if (!Class) {
    686     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    687     if (ObjCCompatibleAliasDecl *Alias
    688                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    689       Class = Alias->getClassInterface();
    690   }
    691 
    692   if (Class) {
    693     DiagnoseUseOfDecl(Class, NameLoc);
    694 
    695     if (NextToken.is(tok::period)) {
    696       // Interface. <something> is parsed as a property reference expression.
    697       // Just return "unknown" as a fall-through for now.
    698       Result.suppressDiagnostics();
    699       return NameClassification::Unknown();
    700     }
    701 
    702     QualType T = Context.getObjCInterfaceType(Class);
    703     return ParsedType::make(T);
    704   }
    705 
    706   if (!Result.empty() && (*Result.begin())->isCXXClassMember())
    707     return BuildPossibleImplicitMemberExpr(SS, Result, 0);
    708 
    709   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    710   return BuildDeclarationNameExpr(SS, Result, ADL);
    711 }
    712 
    713 // Determines the context to return to after temporarily entering a
    714 // context.  This depends in an unnecessarily complicated way on the
    715 // exact ordering of callbacks from the parser.
    716 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    717 
    718   // Functions defined inline within classes aren't parsed until we've
    719   // finished parsing the top-level class, so the top-level class is
    720   // the context we'll need to return to.
    721   if (isa<FunctionDecl>(DC)) {
    722     DC = DC->getLexicalParent();
    723 
    724     // A function not defined within a class will always return to its
    725     // lexical context.
    726     if (!isa<CXXRecordDecl>(DC))
    727       return DC;
    728 
    729     // A C++ inline method/friend is parsed *after* the topmost class
    730     // it was declared in is fully parsed ("complete");  the topmost
    731     // class is the context we need to return to.
    732     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
    733       DC = RD;
    734 
    735     // Return the declaration context of the topmost class the inline method is
    736     // declared in.
    737     return DC;
    738   }
    739 
    740   // ObjCMethodDecls are parsed (for some reason) outside the context
    741   // of the class.
    742   if (isa<ObjCMethodDecl>(DC))
    743     return DC->getLexicalParent()->getLexicalParent();
    744 
    745   return DC->getLexicalParent();
    746 }
    747 
    748 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
    749   assert(getContainingDC(DC) == CurContext &&
    750       "The next DeclContext should be lexically contained in the current one.");
    751   CurContext = DC;
    752   S->setEntity(DC);
    753 }
    754 
    755 void Sema::PopDeclContext() {
    756   assert(CurContext && "DeclContext imbalance!");
    757 
    758   CurContext = getContainingDC(CurContext);
    759   assert(CurContext && "Popped translation unit!");
    760 }
    761 
    762 /// EnterDeclaratorContext - Used when we must lookup names in the context
    763 /// of a declarator's nested name specifier.
    764 ///
    765 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
    766   // C++0x [basic.lookup.unqual]p13:
    767   //   A name used in the definition of a static data member of class
    768   //   X (after the qualified-id of the static member) is looked up as
    769   //   if the name was used in a member function of X.
    770   // C++0x [basic.lookup.unqual]p14:
    771   //   If a variable member of a namespace is defined outside of the
    772   //   scope of its namespace then any name used in the definition of
    773   //   the variable member (after the declarator-id) is looked up as
    774   //   if the definition of the variable member occurred in its
    775   //   namespace.
    776   // Both of these imply that we should push a scope whose context
    777   // is the semantic context of the declaration.  We can't use
    778   // PushDeclContext here because that context is not necessarily
    779   // lexically contained in the current context.  Fortunately,
    780   // the containing scope should have the appropriate information.
    781 
    782   assert(!S->getEntity() && "scope already has entity");
    783 
    784 #ifndef NDEBUG
    785   Scope *Ancestor = S->getParent();
    786   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    787   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
    788 #endif
    789 
    790   CurContext = DC;
    791   S->setEntity(DC);
    792 }
    793 
    794 void Sema::ExitDeclaratorContext(Scope *S) {
    795   assert(S->getEntity() == CurContext && "Context imbalance!");
    796 
    797   // Switch back to the lexical context.  The safety of this is
    798   // enforced by an assert in EnterDeclaratorContext.
    799   Scope *Ancestor = S->getParent();
    800   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    801   CurContext = (DeclContext*) Ancestor->getEntity();
    802 
    803   // We don't need to do anything with the scope, which is going to
    804   // disappear.
    805 }
    806 
    807 /// \brief Determine whether we allow overloading of the function
    808 /// PrevDecl with another declaration.
    809 ///
    810 /// This routine determines whether overloading is possible, not
    811 /// whether some new function is actually an overload. It will return
    812 /// true in C++ (where we can always provide overloads) or, as an
    813 /// extension, in C when the previous function is already an
    814 /// overloaded function declaration or has the "overloadable"
    815 /// attribute.
    816 static bool AllowOverloadingOfFunction(LookupResult &Previous,
    817                                        ASTContext &Context) {
    818   if (Context.getLangOptions().CPlusPlus)
    819     return true;
    820 
    821   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
    822     return true;
    823 
    824   return (Previous.getResultKind() == LookupResult::Found
    825           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
    826 }
    827 
    828 /// Add this decl to the scope shadowed decl chains.
    829 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
    830   // Move up the scope chain until we find the nearest enclosing
    831   // non-transparent context. The declaration will be introduced into this
    832   // scope.
    833   while (S->getEntity() &&
    834          ((DeclContext *)S->getEntity())->isTransparentContext())
    835     S = S->getParent();
    836 
    837   // Add scoped declarations into their context, so that they can be
    838   // found later. Declarations without a context won't be inserted
    839   // into any context.
    840   if (AddToContext)
    841     CurContext->addDecl(D);
    842 
    843   // Out-of-line definitions shouldn't be pushed into scope in C++.
    844   // Out-of-line variable and function definitions shouldn't even in C.
    845   if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
    846       D->isOutOfLine())
    847     return;
    848 
    849   // Template instantiations should also not be pushed into scope.
    850   if (isa<FunctionDecl>(D) &&
    851       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
    852     return;
    853 
    854   // If this replaces anything in the current scope,
    855   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
    856                                IEnd = IdResolver.end();
    857   for (; I != IEnd; ++I) {
    858     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
    859       S->RemoveDecl(*I);
    860       IdResolver.RemoveDecl(*I);
    861 
    862       // Should only need to replace one decl.
    863       break;
    864     }
    865   }
    866 
    867   S->AddDecl(D);
    868 
    869   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
    870     // Implicitly-generated labels may end up getting generated in an order that
    871     // isn't strictly lexical, which breaks name lookup. Be careful to insert
    872     // the label at the appropriate place in the identifier chain.
    873     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
    874       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
    875       if (IDC == CurContext) {
    876         if (!S->isDeclScope(*I))
    877           continue;
    878       } else if (IDC->Encloses(CurContext))
    879         break;
    880     }
    881 
    882     IdResolver.InsertDeclAfter(I, D);
    883   } else {
    884     IdResolver.AddDecl(D);
    885   }
    886 }
    887 
    888 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
    889                          bool ExplicitInstantiationOrSpecialization) {
    890   return IdResolver.isDeclInScope(D, Ctx, Context, S,
    891                                   ExplicitInstantiationOrSpecialization);
    892 }
    893 
    894 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
    895   DeclContext *TargetDC = DC->getPrimaryContext();
    896   do {
    897     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
    898       if (ScopeDC->getPrimaryContext() == TargetDC)
    899         return S;
    900   } while ((S = S->getParent()));
    901 
    902   return 0;
    903 }
    904 
    905 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
    906                                             DeclContext*,
    907                                             ASTContext&);
    908 
    909 /// Filters out lookup results that don't fall within the given scope
    910 /// as determined by isDeclInScope.
    911 void Sema::FilterLookupForScope(LookupResult &R,
    912                                 DeclContext *Ctx, Scope *S,
    913                                 bool ConsiderLinkage,
    914                                 bool ExplicitInstantiationOrSpecialization) {
    915   LookupResult::Filter F = R.makeFilter();
    916   while (F.hasNext()) {
    917     NamedDecl *D = F.next();
    918 
    919     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
    920       continue;
    921 
    922     if (ConsiderLinkage &&
    923         isOutOfScopePreviousDeclaration(D, Ctx, Context))
    924       continue;
    925 
    926     F.erase();
    927   }
    928 
    929   F.done();
    930 }
    931 
    932 static bool isUsingDecl(NamedDecl *D) {
    933   return isa<UsingShadowDecl>(D) ||
    934          isa<UnresolvedUsingTypenameDecl>(D) ||
    935          isa<UnresolvedUsingValueDecl>(D);
    936 }
    937 
    938 /// Removes using shadow declarations from the lookup results.
    939 static void RemoveUsingDecls(LookupResult &R) {
    940   LookupResult::Filter F = R.makeFilter();
    941   while (F.hasNext())
    942     if (isUsingDecl(F.next()))
    943       F.erase();
    944 
    945   F.done();
    946 }
    947 
    948 /// \brief Check for this common pattern:
    949 /// @code
    950 /// class S {
    951 ///   S(const S&); // DO NOT IMPLEMENT
    952 ///   void operator=(const S&); // DO NOT IMPLEMENT
    953 /// };
    954 /// @endcode
    955 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
    956   // FIXME: Should check for private access too but access is set after we get
    957   // the decl here.
    958   if (D->doesThisDeclarationHaveABody())
    959     return false;
    960 
    961   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
    962     return CD->isCopyConstructor();
    963   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
    964     return Method->isCopyAssignmentOperator();
    965   return false;
    966 }
    967 
    968 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
    969   assert(D);
    970 
    971   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
    972     return false;
    973 
    974   // Ignore class templates.
    975   if (D->getDeclContext()->isDependentContext() ||
    976       D->getLexicalDeclContext()->isDependentContext())
    977     return false;
    978 
    979   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    980     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
    981       return false;
    982 
    983     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    984       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
    985         return false;
    986     } else {
    987       // 'static inline' functions are used in headers; don't warn.
    988       if (FD->getStorageClass() == SC_Static &&
    989           FD->isInlineSpecified())
    990         return false;
    991     }
    992 
    993     if (FD->doesThisDeclarationHaveABody() &&
    994         Context.DeclMustBeEmitted(FD))
    995       return false;
    996   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    997     if (!VD->isFileVarDecl() ||
    998         VD->getType().isConstant(Context) ||
    999         Context.DeclMustBeEmitted(VD))
   1000       return false;
   1001 
   1002     if (VD->isStaticDataMember() &&
   1003         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1004       return false;
   1005 
   1006   } else {
   1007     return false;
   1008   }
   1009 
   1010   // Only warn for unused decls internal to the translation unit.
   1011   if (D->getLinkage() == ExternalLinkage)
   1012     return false;
   1013 
   1014   return true;
   1015 }
   1016 
   1017 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1018   if (!D)
   1019     return;
   1020 
   1021   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1022     const FunctionDecl *First = FD->getFirstDeclaration();
   1023     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1024       return; // First should already be in the vector.
   1025   }
   1026 
   1027   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1028     const VarDecl *First = VD->getFirstDeclaration();
   1029     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1030       return; // First should already be in the vector.
   1031   }
   1032 
   1033    if (ShouldWarnIfUnusedFileScopedDecl(D))
   1034      UnusedFileScopedDecls.push_back(D);
   1035  }
   1036 
   1037 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1038   if (D->isInvalidDecl())
   1039     return false;
   1040 
   1041   if (D->isUsed() || D->hasAttr<UnusedAttr>())
   1042     return false;
   1043 
   1044   if (isa<LabelDecl>(D))
   1045     return true;
   1046 
   1047   // White-list anything that isn't a local variable.
   1048   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1049       !D->getDeclContext()->isFunctionOrMethod())
   1050     return false;
   1051 
   1052   // Types of valid local variables should be complete, so this should succeed.
   1053   if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
   1054 
   1055     // White-list anything with an __attribute__((unused)) type.
   1056     QualType Ty = VD->getType();
   1057 
   1058     // Only look at the outermost level of typedef.
   1059     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
   1060       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1061         return false;
   1062     }
   1063 
   1064     // If we failed to complete the type for some reason, or if the type is
   1065     // dependent, don't diagnose the variable.
   1066     if (Ty->isIncompleteType() || Ty->isDependentType())
   1067       return false;
   1068 
   1069     if (const TagType *TT = Ty->getAs<TagType>()) {
   1070       const TagDecl *Tag = TT->getDecl();
   1071       if (Tag->hasAttr<UnusedAttr>())
   1072         return false;
   1073 
   1074       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1075         // FIXME: Checking for the presence of a user-declared constructor
   1076         // isn't completely accurate; we'd prefer to check that the initializer
   1077         // has no side effects.
   1078         if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
   1079           return false;
   1080       }
   1081     }
   1082 
   1083     // TODO: __attribute__((unused)) templates?
   1084   }
   1085 
   1086   return true;
   1087 }
   1088 
   1089 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1090 /// unless they are marked attr(unused).
   1091 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1092   if (!ShouldDiagnoseUnusedDecl(D))
   1093     return;
   1094 
   1095   unsigned DiagID;
   1096   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1097     DiagID = diag::warn_unused_exception_param;
   1098   else if (isa<LabelDecl>(D))
   1099     DiagID = diag::warn_unused_label;
   1100   else
   1101     DiagID = diag::warn_unused_variable;
   1102 
   1103   Diag(D->getLocation(), DiagID) << D->getDeclName();
   1104 }
   1105 
   1106 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1107   // Verify that we have no forward references left.  If so, there was a goto
   1108   // or address of a label taken, but no definition of it.  Label fwd
   1109   // definitions are indicated with a null substmt.
   1110   if (L->getStmt() == 0)
   1111     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1112 }
   1113 
   1114 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1115   if (S->decl_empty()) return;
   1116   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1117          "Scope shouldn't contain decls!");
   1118 
   1119   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
   1120        I != E; ++I) {
   1121     Decl *TmpD = (*I);
   1122     assert(TmpD && "This decl didn't get pushed??");
   1123 
   1124     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1125     NamedDecl *D = cast<NamedDecl>(TmpD);
   1126 
   1127     if (!D->getDeclName()) continue;
   1128 
   1129     // Diagnose unused variables in this scope.
   1130     if (!S->hasErrorOccurred())
   1131       DiagnoseUnusedDecl(D);
   1132 
   1133     // If this was a forward reference to a label, verify it was defined.
   1134     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1135       CheckPoppedLabel(LD, *this);
   1136 
   1137     // Remove this name from our lexical scope.
   1138     IdResolver.RemoveDecl(D);
   1139   }
   1140 }
   1141 
   1142 /// \brief Look for an Objective-C class in the translation unit.
   1143 ///
   1144 /// \param Id The name of the Objective-C class we're looking for. If
   1145 /// typo-correction fixes this name, the Id will be updated
   1146 /// to the fixed name.
   1147 ///
   1148 /// \param IdLoc The location of the name in the translation unit.
   1149 ///
   1150 /// \param TypoCorrection If true, this routine will attempt typo correction
   1151 /// if there is no class with the given name.
   1152 ///
   1153 /// \returns The declaration of the named Objective-C class, or NULL if the
   1154 /// class could not be found.
   1155 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1156                                               SourceLocation IdLoc,
   1157                                               bool DoTypoCorrection) {
   1158   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1159   // creation from this context.
   1160   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1161 
   1162   if (!IDecl && DoTypoCorrection) {
   1163     // Perform typo correction at the given location, but only if we
   1164     // find an Objective-C class name.
   1165     TypoCorrection C;
   1166     if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
   1167                          TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
   1168         (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
   1169       Diag(IdLoc, diag::err_undef_interface_suggest)
   1170         << Id << IDecl->getDeclName()
   1171         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
   1172       Diag(IDecl->getLocation(), diag::note_previous_decl)
   1173         << IDecl->getDeclName();
   1174 
   1175       Id = IDecl->getIdentifier();
   1176     }
   1177   }
   1178 
   1179   return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1180 }
   1181 
   1182 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1183 /// from S, where a non-field would be declared. This routine copes
   1184 /// with the difference between C and C++ scoping rules in structs and
   1185 /// unions. For example, the following code is well-formed in C but
   1186 /// ill-formed in C++:
   1187 /// @code
   1188 /// struct S6 {
   1189 ///   enum { BAR } e;
   1190 /// };
   1191 ///
   1192 /// void test_S6() {
   1193 ///   struct S6 a;
   1194 ///   a.e = BAR;
   1195 /// }
   1196 /// @endcode
   1197 /// For the declaration of BAR, this routine will return a different
   1198 /// scope. The scope S will be the scope of the unnamed enumeration
   1199 /// within S6. In C++, this routine will return the scope associated
   1200 /// with S6, because the enumeration's scope is a transparent
   1201 /// context but structures can contain non-field names. In C, this
   1202 /// routine will return the translation unit scope, since the
   1203 /// enumeration's scope is a transparent context and structures cannot
   1204 /// contain non-field names.
   1205 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1206   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1207          (S->getEntity() &&
   1208           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
   1209          (S->isClassScope() && !getLangOptions().CPlusPlus))
   1210     S = S->getParent();
   1211   return S;
   1212 }
   1213 
   1214 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1215 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1216 /// if we're creating this built-in in anticipation of redeclaring the
   1217 /// built-in.
   1218 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1219                                      Scope *S, bool ForRedeclaration,
   1220                                      SourceLocation Loc) {
   1221   Builtin::ID BID = (Builtin::ID)bid;
   1222 
   1223   ASTContext::GetBuiltinTypeError Error;
   1224   QualType R = Context.GetBuiltinType(BID, Error);
   1225   switch (Error) {
   1226   case ASTContext::GE_None:
   1227     // Okay
   1228     break;
   1229 
   1230   case ASTContext::GE_Missing_stdio:
   1231     if (ForRedeclaration)
   1232       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1233         << Context.BuiltinInfo.GetName(BID);
   1234     return 0;
   1235 
   1236   case ASTContext::GE_Missing_setjmp:
   1237     if (ForRedeclaration)
   1238       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1239         << Context.BuiltinInfo.GetName(BID);
   1240     return 0;
   1241   }
   1242 
   1243   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1244     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1245       << Context.BuiltinInfo.GetName(BID)
   1246       << R;
   1247     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1248         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
   1249           != Diagnostic::Ignored)
   1250       Diag(Loc, diag::note_please_include_header)
   1251         << Context.BuiltinInfo.getHeaderName(BID)
   1252         << Context.BuiltinInfo.GetName(BID);
   1253   }
   1254 
   1255   FunctionDecl *New = FunctionDecl::Create(Context,
   1256                                            Context.getTranslationUnitDecl(),
   1257                                            Loc, Loc, II, R, /*TInfo=*/0,
   1258                                            SC_Extern,
   1259                                            SC_None, false,
   1260                                            /*hasPrototype=*/true);
   1261   New->setImplicit();
   1262 
   1263   // Create Decl objects for each parameter, adding them to the
   1264   // FunctionDecl.
   1265   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1266     llvm::SmallVector<ParmVarDecl*, 16> Params;
   1267     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
   1268       ParmVarDecl *parm =
   1269         ParmVarDecl::Create(Context, New, SourceLocation(),
   1270                             SourceLocation(), 0,
   1271                             FT->getArgType(i), /*TInfo=*/0,
   1272                             SC_None, SC_None, 0);
   1273       parm->setScopeInfo(0, i);
   1274       Params.push_back(parm);
   1275     }
   1276     New->setParams(Params.data(), Params.size());
   1277   }
   1278 
   1279   AddKnownFunctionAttributes(New);
   1280 
   1281   // TUScope is the translation-unit scope to insert this function into.
   1282   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1283   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1284   // entirely, but we're not there yet.
   1285   DeclContext *SavedContext = CurContext;
   1286   CurContext = Context.getTranslationUnitDecl();
   1287   PushOnScopeChains(New, TUScope);
   1288   CurContext = SavedContext;
   1289   return New;
   1290 }
   1291 
   1292 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1293 /// same name and scope as a previous declaration 'Old'.  Figure out
   1294 /// how to resolve this situation, merging decls or emitting
   1295 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1296 ///
   1297 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1298   // If the new decl is known invalid already, don't bother doing any
   1299   // merging checks.
   1300   if (New->isInvalidDecl()) return;
   1301 
   1302   // Allow multiple definitions for ObjC built-in typedefs.
   1303   // FIXME: Verify the underlying types are equivalent!
   1304   if (getLangOptions().ObjC1) {
   1305     const IdentifierInfo *TypeID = New->getIdentifier();
   1306     switch (TypeID->getLength()) {
   1307     default: break;
   1308     case 2:
   1309       if (!TypeID->isStr("id"))
   1310         break;
   1311       Context.ObjCIdRedefinitionType = New->getUnderlyingType();
   1312       // Install the built-in type for 'id', ignoring the current definition.
   1313       New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1314       return;
   1315     case 5:
   1316       if (!TypeID->isStr("Class"))
   1317         break;
   1318       Context.ObjCClassRedefinitionType = New->getUnderlyingType();
   1319       // Install the built-in type for 'Class', ignoring the current definition.
   1320       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1321       return;
   1322     case 3:
   1323       if (!TypeID->isStr("SEL"))
   1324         break;
   1325       Context.ObjCSelRedefinitionType = New->getUnderlyingType();
   1326       // Install the built-in type for 'SEL', ignoring the current definition.
   1327       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1328       return;
   1329     case 8:
   1330       if (!TypeID->isStr("Protocol"))
   1331         break;
   1332       Context.setObjCProtoType(New->getUnderlyingType());
   1333       return;
   1334     }
   1335     // Fall through - the typedef name was not a builtin type.
   1336   }
   1337 
   1338   // Verify the old decl was also a type.
   1339   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1340   if (!Old) {
   1341     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1342       << New->getDeclName();
   1343 
   1344     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1345     if (OldD->getLocation().isValid())
   1346       Diag(OldD->getLocation(), diag::note_previous_definition);
   1347 
   1348     return New->setInvalidDecl();
   1349   }
   1350 
   1351   // If the old declaration is invalid, just give up here.
   1352   if (Old->isInvalidDecl())
   1353     return New->setInvalidDecl();
   1354 
   1355   // Determine the "old" type we'll use for checking and diagnostics.
   1356   QualType OldType;
   1357   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1358     OldType = OldTypedef->getUnderlyingType();
   1359   else
   1360     OldType = Context.getTypeDeclType(Old);
   1361 
   1362   // If the typedef types are not identical, reject them in all languages and
   1363   // with any extensions enabled.
   1364 
   1365   if (OldType != New->getUnderlyingType() &&
   1366       Context.getCanonicalType(OldType) !=
   1367       Context.getCanonicalType(New->getUnderlyingType())) {
   1368     int Kind = 0;
   1369     if (isa<TypeAliasDecl>(Old))
   1370       Kind = 1;
   1371     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1372       << Kind << New->getUnderlyingType() << OldType;
   1373     if (Old->getLocation().isValid())
   1374       Diag(Old->getLocation(), diag::note_previous_definition);
   1375     return New->setInvalidDecl();
   1376   }
   1377 
   1378   // The types match.  Link up the redeclaration chain if the old
   1379   // declaration was a typedef.
   1380   // FIXME: this is a potential source of weirdness if the type
   1381   // spellings don't match exactly.
   1382   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
   1383     New->setPreviousDeclaration(Typedef);
   1384 
   1385   if (getLangOptions().Microsoft)
   1386     return;
   1387 
   1388   if (getLangOptions().CPlusPlus) {
   1389     // C++ [dcl.typedef]p2:
   1390     //   In a given non-class scope, a typedef specifier can be used to
   1391     //   redefine the name of any type declared in that scope to refer
   1392     //   to the type to which it already refers.
   1393     if (!isa<CXXRecordDecl>(CurContext))
   1394       return;
   1395 
   1396     // C++0x [dcl.typedef]p4:
   1397     //   In a given class scope, a typedef specifier can be used to redefine
   1398     //   any class-name declared in that scope that is not also a typedef-name
   1399     //   to refer to the type to which it already refers.
   1400     //
   1401     // This wording came in via DR424, which was a correction to the
   1402     // wording in DR56, which accidentally banned code like:
   1403     //
   1404     //   struct S {
   1405     //     typedef struct A { } A;
   1406     //   };
   1407     //
   1408     // in the C++03 standard. We implement the C++0x semantics, which
   1409     // allow the above but disallow
   1410     //
   1411     //   struct S {
   1412     //     typedef int I;
   1413     //     typedef int I;
   1414     //   };
   1415     //
   1416     // since that was the intent of DR56.
   1417     if (!isa<TypedefNameDecl>(Old))
   1418       return;
   1419 
   1420     Diag(New->getLocation(), diag::err_redefinition)
   1421       << New->getDeclName();
   1422     Diag(Old->getLocation(), diag::note_previous_definition);
   1423     return New->setInvalidDecl();
   1424   }
   1425 
   1426   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1427   // is normally mapped to an error, but can be controlled with
   1428   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1429   // in a system header, don't emit this for compatibility with GCC.
   1430   if (getDiagnostics().getSuppressSystemWarnings() &&
   1431       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1432        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1433     return;
   1434 
   1435   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1436     << New->getDeclName();
   1437   Diag(Old->getLocation(), diag::note_previous_definition);
   1438   return;
   1439 }
   1440 
   1441 /// DeclhasAttr - returns true if decl Declaration already has the target
   1442 /// attribute.
   1443 static bool
   1444 DeclHasAttr(const Decl *D, const Attr *A) {
   1445   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1446   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
   1447     if ((*i)->getKind() == A->getKind()) {
   1448       // FIXME: Don't hardcode this check
   1449       if (OA && isa<OwnershipAttr>(*i))
   1450         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
   1451       return true;
   1452     }
   1453 
   1454   return false;
   1455 }
   1456 
   1457 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   1458 static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
   1459                                 ASTContext &C) {
   1460   if (!oldDecl->hasAttrs())
   1461     return;
   1462 
   1463   bool foundAny = newDecl->hasAttrs();
   1464 
   1465   // Ensure that any moving of objects within the allocated map is done before
   1466   // we process them.
   1467   if (!foundAny) newDecl->setAttrs(AttrVec());
   1468 
   1469   for (specific_attr_iterator<InheritableAttr>
   1470        i = oldDecl->specific_attr_begin<InheritableAttr>(),
   1471        e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
   1472     if (!DeclHasAttr(newDecl, *i)) {
   1473       InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
   1474       newAttr->setInherited(true);
   1475       newDecl->addAttr(newAttr);
   1476       foundAny = true;
   1477     }
   1478   }
   1479 
   1480   if (!foundAny) newDecl->dropAttrs();
   1481 }
   1482 
   1483 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   1484 /// to the new one.
   1485 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   1486                                      const ParmVarDecl *oldDecl,
   1487                                      ASTContext &C) {
   1488   if (!oldDecl->hasAttrs())
   1489     return;
   1490 
   1491   bool foundAny = newDecl->hasAttrs();
   1492 
   1493   // Ensure that any moving of objects within the allocated map is
   1494   // done before we process them.
   1495   if (!foundAny) newDecl->setAttrs(AttrVec());
   1496 
   1497   for (specific_attr_iterator<InheritableParamAttr>
   1498        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
   1499        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
   1500     if (!DeclHasAttr(newDecl, *i)) {
   1501       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
   1502       newAttr->setInherited(true);
   1503       newDecl->addAttr(newAttr);
   1504       foundAny = true;
   1505     }
   1506   }
   1507 
   1508   if (!foundAny) newDecl->dropAttrs();
   1509 }
   1510 
   1511 namespace {
   1512 
   1513 /// Used in MergeFunctionDecl to keep track of function parameters in
   1514 /// C.
   1515 struct GNUCompatibleParamWarning {
   1516   ParmVarDecl *OldParm;
   1517   ParmVarDecl *NewParm;
   1518   QualType PromotedType;
   1519 };
   1520 
   1521 }
   1522 
   1523 /// getSpecialMember - get the special member enum for a method.
   1524 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   1525   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   1526     if (Ctor->isDefaultConstructor())
   1527       return Sema::CXXDefaultConstructor;
   1528 
   1529     if (Ctor->isCopyConstructor())
   1530       return Sema::CXXCopyConstructor;
   1531 
   1532     if (Ctor->isMoveConstructor())
   1533       return Sema::CXXMoveConstructor;
   1534   } else if (isa<CXXDestructorDecl>(MD)) {
   1535     return Sema::CXXDestructor;
   1536   } else if (MD->isCopyAssignmentOperator()) {
   1537     return Sema::CXXCopyAssignment;
   1538   }
   1539 
   1540   return Sema::CXXInvalid;
   1541 }
   1542 
   1543 /// canRedefineFunction - checks if a function can be redefined. Currently,
   1544 /// only extern inline functions can be redefined, and even then only in
   1545 /// GNU89 mode.
   1546 static bool canRedefineFunction(const FunctionDecl *FD,
   1547                                 const LangOptions& LangOpts) {
   1548   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   1549           !LangOpts.CPlusPlus &&
   1550           FD->isInlineSpecified() &&
   1551           FD->getStorageClass() == SC_Extern);
   1552 }
   1553 
   1554 /// MergeFunctionDecl - We just parsed a function 'New' from
   1555 /// declarator D which has the same name and scope as a previous
   1556 /// declaration 'Old'.  Figure out how to resolve this situation,
   1557 /// merging decls or emitting diagnostics as appropriate.
   1558 ///
   1559 /// In C++, New and Old must be declarations that are not
   1560 /// overloaded. Use IsOverload to determine whether New and Old are
   1561 /// overloaded, and to select the Old declaration that New should be
   1562 /// merged with.
   1563 ///
   1564 /// Returns true if there was an error, false otherwise.
   1565 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
   1566   // Verify the old decl was also a function.
   1567   FunctionDecl *Old = 0;
   1568   if (FunctionTemplateDecl *OldFunctionTemplate
   1569         = dyn_cast<FunctionTemplateDecl>(OldD))
   1570     Old = OldFunctionTemplate->getTemplatedDecl();
   1571   else
   1572     Old = dyn_cast<FunctionDecl>(OldD);
   1573   if (!Old) {
   1574     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   1575       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   1576       Diag(Shadow->getTargetDecl()->getLocation(),
   1577            diag::note_using_decl_target);
   1578       Diag(Shadow->getUsingDecl()->getLocation(),
   1579            diag::note_using_decl) << 0;
   1580       return true;
   1581     }
   1582 
   1583     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1584       << New->getDeclName();
   1585     Diag(OldD->getLocation(), diag::note_previous_definition);
   1586     return true;
   1587   }
   1588 
   1589   // Determine whether the previous declaration was a definition,
   1590   // implicit declaration, or a declaration.
   1591   diag::kind PrevDiag;
   1592   if (Old->isThisDeclarationADefinition())
   1593     PrevDiag = diag::note_previous_definition;
   1594   else if (Old->isImplicit())
   1595     PrevDiag = diag::note_previous_implicit_declaration;
   1596   else
   1597     PrevDiag = diag::note_previous_declaration;
   1598 
   1599   QualType OldQType = Context.getCanonicalType(Old->getType());
   1600   QualType NewQType = Context.getCanonicalType(New->getType());
   1601 
   1602   // Don't complain about this if we're in GNU89 mode and the old function
   1603   // is an extern inline function.
   1604   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   1605       New->getStorageClass() == SC_Static &&
   1606       Old->getStorageClass() != SC_Static &&
   1607       !canRedefineFunction(Old, getLangOptions())) {
   1608     if (getLangOptions().Microsoft) {
   1609       Diag(New->getLocation(), diag::warn_static_non_static) << New;
   1610       Diag(Old->getLocation(), PrevDiag);
   1611     } else {
   1612       Diag(New->getLocation(), diag::err_static_non_static) << New;
   1613       Diag(Old->getLocation(), PrevDiag);
   1614       return true;
   1615     }
   1616   }
   1617 
   1618   // If a function is first declared with a calling convention, but is
   1619   // later declared or defined without one, the second decl assumes the
   1620   // calling convention of the first.
   1621   //
   1622   // For the new decl, we have to look at the NON-canonical type to tell the
   1623   // difference between a function that really doesn't have a calling
   1624   // convention and one that is declared cdecl. That's because in
   1625   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
   1626   // because it is the default calling convention.
   1627   //
   1628   // Note also that we DO NOT return at this point, because we still have
   1629   // other tests to run.
   1630   const FunctionType *OldType = cast<FunctionType>(OldQType);
   1631   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
   1632   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   1633   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   1634   bool RequiresAdjustment = false;
   1635   if (OldTypeInfo.getCC() != CC_Default &&
   1636       NewTypeInfo.getCC() == CC_Default) {
   1637     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   1638     RequiresAdjustment = true;
   1639   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
   1640                                      NewTypeInfo.getCC())) {
   1641     // Calling conventions really aren't compatible, so complain.
   1642     Diag(New->getLocation(), diag::err_cconv_change)
   1643       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   1644       << (OldTypeInfo.getCC() == CC_Default)
   1645       << (OldTypeInfo.getCC() == CC_Default ? "" :
   1646           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
   1647     Diag(Old->getLocation(), diag::note_previous_declaration);
   1648     return true;
   1649   }
   1650 
   1651   // FIXME: diagnose the other way around?
   1652   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   1653     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   1654     RequiresAdjustment = true;
   1655   }
   1656 
   1657   // Merge regparm attribute.
   1658   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   1659       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   1660     if (NewTypeInfo.getHasRegParm()) {
   1661       Diag(New->getLocation(), diag::err_regparm_mismatch)
   1662         << NewType->getRegParmType()
   1663         << OldType->getRegParmType();
   1664       Diag(Old->getLocation(), diag::note_previous_declaration);
   1665       return true;
   1666     }
   1667 
   1668     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   1669     RequiresAdjustment = true;
   1670   }
   1671 
   1672   if (RequiresAdjustment) {
   1673     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
   1674     New->setType(QualType(NewType, 0));
   1675     NewQType = Context.getCanonicalType(New->getType());
   1676   }
   1677 
   1678   if (getLangOptions().CPlusPlus) {
   1679     // (C++98 13.1p2):
   1680     //   Certain function declarations cannot be overloaded:
   1681     //     -- Function declarations that differ only in the return type
   1682     //        cannot be overloaded.
   1683     QualType OldReturnType = OldType->getResultType();
   1684     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
   1685     QualType ResQT;
   1686     if (OldReturnType != NewReturnType) {
   1687       if (NewReturnType->isObjCObjectPointerType()
   1688           && OldReturnType->isObjCObjectPointerType())
   1689         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   1690       if (ResQT.isNull()) {
   1691         if (New->isCXXClassMember() && New->isOutOfLine())
   1692           Diag(New->getLocation(),
   1693                diag::err_member_def_does_not_match_ret_type) << New;
   1694         else
   1695           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
   1696         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1697         return true;
   1698       }
   1699       else
   1700         NewQType = ResQT;
   1701     }
   1702 
   1703     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1704     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
   1705     if (OldMethod && NewMethod) {
   1706       // Preserve triviality.
   1707       NewMethod->setTrivial(OldMethod->isTrivial());
   1708 
   1709       bool isFriend = NewMethod->getFriendObjectKind();
   1710 
   1711       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
   1712         //    -- Member function declarations with the same name and the
   1713         //       same parameter types cannot be overloaded if any of them
   1714         //       is a static member function declaration.
   1715         if (OldMethod->isStatic() || NewMethod->isStatic()) {
   1716           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   1717           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1718           return true;
   1719         }
   1720 
   1721         // C++ [class.mem]p1:
   1722         //   [...] A member shall not be declared twice in the
   1723         //   member-specification, except that a nested class or member
   1724         //   class template can be declared and then later defined.
   1725         unsigned NewDiag;
   1726         if (isa<CXXConstructorDecl>(OldMethod))
   1727           NewDiag = diag::err_constructor_redeclared;
   1728         else if (isa<CXXDestructorDecl>(NewMethod))
   1729           NewDiag = diag::err_destructor_redeclared;
   1730         else if (isa<CXXConversionDecl>(NewMethod))
   1731           NewDiag = diag::err_conv_function_redeclared;
   1732         else
   1733           NewDiag = diag::err_member_redeclared;
   1734 
   1735         Diag(New->getLocation(), NewDiag);
   1736         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1737 
   1738       // Complain if this is an explicit declaration of a special
   1739       // member that was initially declared implicitly.
   1740       //
   1741       // As an exception, it's okay to befriend such methods in order
   1742       // to permit the implicit constructor/destructor/operator calls.
   1743       } else if (OldMethod->isImplicit()) {
   1744         if (isFriend) {
   1745           NewMethod->setImplicit();
   1746         } else {
   1747           Diag(NewMethod->getLocation(),
   1748                diag::err_definition_of_implicitly_declared_member)
   1749             << New << getSpecialMember(OldMethod);
   1750           return true;
   1751         }
   1752       } else if (OldMethod->isExplicitlyDefaulted()) {
   1753         Diag(NewMethod->getLocation(),
   1754              diag::err_definition_of_explicitly_defaulted_member)
   1755           << getSpecialMember(OldMethod);
   1756         return true;
   1757       }
   1758     }
   1759 
   1760     // (C++98 8.3.5p3):
   1761     //   All declarations for a function shall agree exactly in both the
   1762     //   return type and the parameter-type-list.
   1763     // We also want to respect all the extended bits except noreturn.
   1764 
   1765     // noreturn should now match unless the old type info didn't have it.
   1766     QualType OldQTypeForComparison = OldQType;
   1767     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   1768       assert(OldQType == QualType(OldType, 0));
   1769       const FunctionType *OldTypeForComparison
   1770         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   1771       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   1772       assert(OldQTypeForComparison.isCanonical());
   1773     }
   1774 
   1775     if (OldQTypeForComparison == NewQType)
   1776       return MergeCompatibleFunctionDecls(New, Old);
   1777 
   1778     // Fall through for conflicting redeclarations and redefinitions.
   1779   }
   1780 
   1781   // C: Function types need to be compatible, not identical. This handles
   1782   // duplicate function decls like "void f(int); void f(enum X);" properly.
   1783   if (!getLangOptions().CPlusPlus &&
   1784       Context.typesAreCompatible(OldQType, NewQType)) {
   1785     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   1786     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   1787     const FunctionProtoType *OldProto = 0;
   1788     if (isa<FunctionNoProtoType>(NewFuncType) &&
   1789         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   1790       // The old declaration provided a function prototype, but the
   1791       // new declaration does not. Merge in the prototype.
   1792       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   1793       llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
   1794                                                  OldProto->arg_type_end());
   1795       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
   1796                                          ParamTypes.data(), ParamTypes.size(),
   1797                                          OldProto->getExtProtoInfo());
   1798       New->setType(NewQType);
   1799       New->setHasInheritedPrototype();
   1800 
   1801       // Synthesize a parameter for each argument type.
   1802       llvm::SmallVector<ParmVarDecl*, 16> Params;
   1803       for (FunctionProtoType::arg_type_iterator
   1804              ParamType = OldProto->arg_type_begin(),
   1805              ParamEnd = OldProto->arg_type_end();
   1806            ParamType != ParamEnd; ++ParamType) {
   1807         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
   1808                                                  SourceLocation(),
   1809                                                  SourceLocation(), 0,
   1810                                                  *ParamType, /*TInfo=*/0,
   1811                                                  SC_None, SC_None,
   1812                                                  0);
   1813         Param->setScopeInfo(0, Params.size());
   1814         Param->setImplicit();
   1815         Params.push_back(Param);
   1816       }
   1817 
   1818       New->setParams(Params.data(), Params.size());
   1819     }
   1820 
   1821     return MergeCompatibleFunctionDecls(New, Old);
   1822   }
   1823 
   1824   // GNU C permits a K&R definition to follow a prototype declaration
   1825   // if the declared types of the parameters in the K&R definition
   1826   // match the types in the prototype declaration, even when the
   1827   // promoted types of the parameters from the K&R definition differ
   1828   // from the types in the prototype. GCC then keeps the types from
   1829   // the prototype.
   1830   //
   1831   // If a variadic prototype is followed by a non-variadic K&R definition,
   1832   // the K&R definition becomes variadic.  This is sort of an edge case, but
   1833   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   1834   // C99 6.9.1p8.
   1835   if (!getLangOptions().CPlusPlus &&
   1836       Old->hasPrototype() && !New->hasPrototype() &&
   1837       New->getType()->getAs<FunctionProtoType>() &&
   1838       Old->getNumParams() == New->getNumParams()) {
   1839     llvm::SmallVector<QualType, 16> ArgTypes;
   1840     llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   1841     const FunctionProtoType *OldProto
   1842       = Old->getType()->getAs<FunctionProtoType>();
   1843     const FunctionProtoType *NewProto
   1844       = New->getType()->getAs<FunctionProtoType>();
   1845 
   1846     // Determine whether this is the GNU C extension.
   1847     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
   1848                                                NewProto->getResultType());
   1849     bool LooseCompatible = !MergedReturn.isNull();
   1850     for (unsigned Idx = 0, End = Old->getNumParams();
   1851          LooseCompatible && Idx != End; ++Idx) {
   1852       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   1853       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   1854       if (Context.typesAreCompatible(OldParm->getType(),
   1855                                      NewProto->getArgType(Idx))) {
   1856         ArgTypes.push_back(NewParm->getType());
   1857       } else if (Context.typesAreCompatible(OldParm->getType(),
   1858                                             NewParm->getType(),
   1859                                             /*CompareUnqualified=*/true)) {
   1860         GNUCompatibleParamWarning Warn
   1861           = { OldParm, NewParm, NewProto->getArgType(Idx) };
   1862         Warnings.push_back(Warn);
   1863         ArgTypes.push_back(NewParm->getType());
   1864       } else
   1865         LooseCompatible = false;
   1866     }
   1867 
   1868     if (LooseCompatible) {
   1869       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   1870         Diag(Warnings[Warn].NewParm->getLocation(),
   1871              diag::ext_param_promoted_not_compatible_with_prototype)
   1872           << Warnings[Warn].PromotedType
   1873           << Warnings[Warn].OldParm->getType();
   1874         if (Warnings[Warn].OldParm->getLocation().isValid())
   1875           Diag(Warnings[Warn].OldParm->getLocation(),
   1876                diag::note_previous_declaration);
   1877       }
   1878 
   1879       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
   1880                                            ArgTypes.size(),
   1881                                            OldProto->getExtProtoInfo()));
   1882       return MergeCompatibleFunctionDecls(New, Old);
   1883     }
   1884 
   1885     // Fall through to diagnose conflicting types.
   1886   }
   1887 
   1888   // A function that has already been declared has been redeclared or defined
   1889   // with a different type- show appropriate diagnostic
   1890   if (unsigned BuiltinID = Old->getBuiltinID()) {
   1891     // The user has declared a builtin function with an incompatible
   1892     // signature.
   1893     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   1894       // The function the user is redeclaring is a library-defined
   1895       // function like 'malloc' or 'printf'. Warn about the
   1896       // redeclaration, then pretend that we don't know about this
   1897       // library built-in.
   1898       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   1899       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
   1900         << Old << Old->getType();
   1901       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   1902       Old->setInvalidDecl();
   1903       return false;
   1904     }
   1905 
   1906     PrevDiag = diag::note_previous_builtin_declaration;
   1907   }
   1908 
   1909   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   1910   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   1911   return true;
   1912 }
   1913 
   1914 /// \brief Completes the merge of two function declarations that are
   1915 /// known to be compatible.
   1916 ///
   1917 /// This routine handles the merging of attributes and other
   1918 /// properties of function declarations form the old declaration to
   1919 /// the new declaration, once we know that New is in fact a
   1920 /// redeclaration of Old.
   1921 ///
   1922 /// \returns false
   1923 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
   1924   // Merge the attributes
   1925   mergeDeclAttributes(New, Old, Context);
   1926 
   1927   // Merge the storage class.
   1928   if (Old->getStorageClass() != SC_Extern &&
   1929       Old->getStorageClass() != SC_None)
   1930     New->setStorageClass(Old->getStorageClass());
   1931 
   1932   // Merge "pure" flag.
   1933   if (Old->isPure())
   1934     New->setPure();
   1935 
   1936   // Merge attributes from the parameters.  These can mismatch with K&R
   1937   // declarations.
   1938   if (New->getNumParams() == Old->getNumParams())
   1939     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   1940       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   1941                                Context);
   1942 
   1943   if (getLangOptions().CPlusPlus)
   1944     return MergeCXXFunctionDecl(New, Old);
   1945 
   1946   return false;
   1947 }
   1948 
   1949 
   1950 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   1951                                 const ObjCMethodDecl *oldMethod) {
   1952   // Merge the attributes.
   1953   mergeDeclAttributes(newMethod, oldMethod, Context);
   1954 
   1955   // Merge attributes from the parameters.
   1956   for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
   1957          ni = newMethod->param_begin(), ne = newMethod->param_end();
   1958        ni != ne; ++ni, ++oi)
   1959     mergeParamDeclAttributes(*ni, *oi, Context);
   1960 
   1961   CheckObjCMethodOverride(newMethod, oldMethod, true);
   1962 }
   1963 
   1964 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   1965 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   1966 /// emitting diagnostics as appropriate.
   1967 ///
   1968 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   1969 /// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
   1970 /// check them before the initializer is attached.
   1971 ///
   1972 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
   1973   if (New->isInvalidDecl() || Old->isInvalidDecl())
   1974     return;
   1975 
   1976   QualType MergedT;
   1977   if (getLangOptions().CPlusPlus) {
   1978     AutoType *AT = New->getType()->getContainedAutoType();
   1979     if (AT && !AT->isDeduced()) {
   1980       // We don't know what the new type is until the initializer is attached.
   1981       return;
   1982     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   1983       // These could still be something that needs exception specs checked.
   1984       return MergeVarDeclExceptionSpecs(New, Old);
   1985     }
   1986     // C++ [basic.link]p10:
   1987     //   [...] the types specified by all declarations referring to a given
   1988     //   object or function shall be identical, except that declarations for an
   1989     //   array object can specify array types that differ by the presence or
   1990     //   absence of a major array bound (8.3.4).
   1991     else if (Old->getType()->isIncompleteArrayType() &&
   1992              New->getType()->isArrayType()) {
   1993       CanQual<ArrayType> OldArray
   1994         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   1995       CanQual<ArrayType> NewArray
   1996         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   1997       if (OldArray->getElementType() == NewArray->getElementType())
   1998         MergedT = New->getType();
   1999     } else if (Old->getType()->isArrayType() &&
   2000              New->getType()->isIncompleteArrayType()) {
   2001       CanQual<ArrayType> OldArray
   2002         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2003       CanQual<ArrayType> NewArray
   2004         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2005       if (OldArray->getElementType() == NewArray->getElementType())
   2006         MergedT = Old->getType();
   2007     } else if (New->getType()->isObjCObjectPointerType()
   2008                && Old->getType()->isObjCObjectPointerType()) {
   2009         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   2010                                                         Old->getType());
   2011     }
   2012   } else {
   2013     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   2014   }
   2015   if (MergedT.isNull()) {
   2016     Diag(New->getLocation(), diag::err_redefinition_different_type)
   2017       << New->getDeclName();
   2018     Diag(Old->getLocation(), diag::note_previous_definition);
   2019     return New->setInvalidDecl();
   2020   }
   2021   New->setType(MergedT);
   2022 }
   2023 
   2024 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   2025 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   2026 /// situation, merging decls or emitting diagnostics as appropriate.
   2027 ///
   2028 /// Tentative definition rules (C99 6.9.2p2) are checked by
   2029 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   2030 /// definitions here, since the initializer hasn't been attached.
   2031 ///
   2032 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   2033   // If the new decl is already invalid, don't do any other checking.
   2034   if (New->isInvalidDecl())
   2035     return;
   2036 
   2037   // Verify the old decl was also a variable.
   2038   VarDecl *Old = 0;
   2039   if (!Previous.isSingleResult() ||
   2040       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
   2041     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2042       << New->getDeclName();
   2043     Diag(Previous.getRepresentativeDecl()->getLocation(),
   2044          diag::note_previous_definition);
   2045     return New->setInvalidDecl();
   2046   }
   2047 
   2048   // C++ [class.mem]p1:
   2049   //   A member shall not be declared twice in the member-specification [...]
   2050   //
   2051   // Here, we need only consider static data members.
   2052   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   2053     Diag(New->getLocation(), diag::err_duplicate_member)
   2054       << New->getIdentifier();
   2055     Diag(Old->getLocation(), diag::note_previous_declaration);
   2056     New->setInvalidDecl();
   2057   }
   2058 
   2059   mergeDeclAttributes(New, Old, Context);
   2060   // Warn if an already-declared variable is made a weak_import in a subsequent declaration
   2061   if (New->getAttr<WeakImportAttr>() &&
   2062       Old->getStorageClass() == SC_None &&
   2063       !Old->getAttr<WeakImportAttr>()) {
   2064     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   2065     Diag(Old->getLocation(), diag::note_previous_definition);
   2066     // Remove weak_import attribute on new declaration.
   2067     New->dropAttr<WeakImportAttr>();
   2068   }
   2069 
   2070   // Merge the types.
   2071   MergeVarDeclTypes(New, Old);
   2072   if (New->isInvalidDecl())
   2073     return;
   2074 
   2075   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
   2076   if (New->getStorageClass() == SC_Static &&
   2077       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
   2078     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
   2079     Diag(Old->getLocation(), diag::note_previous_definition);
   2080     return New->setInvalidDecl();
   2081   }
   2082   // C99 6.2.2p4:
   2083   //   For an identifier declared with the storage-class specifier
   2084   //   extern in a scope in which a prior declaration of that
   2085   //   identifier is visible,23) if the prior declaration specifies
   2086   //   internal or external linkage, the linkage of the identifier at
   2087   //   the later declaration is the same as the linkage specified at
   2088   //   the prior declaration. If no prior declaration is visible, or
   2089   //   if the prior declaration specifies no linkage, then the
   2090   //   identifier has external linkage.
   2091   if (New->hasExternalStorage() && Old->hasLinkage())
   2092     /* Okay */;
   2093   else if (New->getStorageClass() != SC_Static &&
   2094            Old->getStorageClass() == SC_Static) {
   2095     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   2096     Diag(Old->getLocation(), diag::note_previous_definition);
   2097     return New->setInvalidDecl();
   2098   }
   2099 
   2100   // Check if extern is followed by non-extern and vice-versa.
   2101   if (New->hasExternalStorage() &&
   2102       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   2103     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   2104     Diag(Old->getLocation(), diag::note_previous_definition);
   2105     return New->setInvalidDecl();
   2106   }
   2107   if (Old->hasExternalStorage() &&
   2108       !New->hasLinkage() && New->isLocalVarDecl()) {
   2109     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   2110     Diag(Old->getLocation(), diag::note_previous_definition);
   2111     return New->setInvalidDecl();
   2112   }
   2113 
   2114   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   2115 
   2116   // FIXME: The test for external storage here seems wrong? We still
   2117   // need to check for mismatches.
   2118   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   2119       // Don't complain about out-of-line definitions of static members.
   2120       !(Old->getLexicalDeclContext()->isRecord() &&
   2121         !New->getLexicalDeclContext()->isRecord())) {
   2122     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   2123     Diag(Old->getLocation(), diag::note_previous_definition);
   2124     return New->setInvalidDecl();
   2125   }
   2126 
   2127   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
   2128     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   2129     Diag(Old->getLocation(), diag::note_previous_definition);
   2130   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
   2131     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   2132     Diag(Old->getLocation(), diag::note_previous_definition);
   2133   }
   2134 
   2135   // C++ doesn't have tentative definitions, so go right ahead and check here.
   2136   const VarDecl *Def;
   2137   if (getLangOptions().CPlusPlus &&
   2138       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   2139       (Def = Old->getDefinition())) {
   2140     Diag(New->getLocation(), diag::err_redefinition)
   2141       << New->getDeclName();
   2142     Diag(Def->getLocation(), diag::note_previous_definition);
   2143     New->setInvalidDecl();
   2144     return;
   2145   }
   2146   // c99 6.2.2 P4.
   2147   // For an identifier declared with the storage-class specifier extern in a
   2148   // scope in which a prior declaration of that identifier is visible, if
   2149   // the prior declaration specifies internal or external linkage, the linkage
   2150   // of the identifier at the later declaration is the same as the linkage
   2151   // specified at the prior declaration.
   2152   // FIXME. revisit this code.
   2153   if (New->hasExternalStorage() &&
   2154       Old->getLinkage() == InternalLinkage &&
   2155       New->getDeclContext() == Old->getDeclContext())
   2156     New->setStorageClass(Old->getStorageClass());
   2157 
   2158   // Keep a chain of previous declarations.
   2159   New->setPreviousDeclaration(Old);
   2160 
   2161   // Inherit access appropriately.
   2162   New->setAccess(Old->getAccess());
   2163 }
   2164 
   2165 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2166 /// no declarator (e.g. "struct foo;") is parsed.
   2167 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2168                                        DeclSpec &DS) {
   2169   return ParsedFreeStandingDeclSpec(S, AS, DS,
   2170                                     MultiTemplateParamsArg(*this, 0, 0));
   2171 }
   2172 
   2173 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2174 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
   2175 /// parameters to cope with template friend declarations.
   2176 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2177                                        DeclSpec &DS,
   2178                                        MultiTemplateParamsArg TemplateParams) {
   2179   Decl *TagD = 0;
   2180   TagDecl *Tag = 0;
   2181   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   2182       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   2183       DS.getTypeSpecType() == DeclSpec::TST_union ||
   2184       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   2185     TagD = DS.getRepAsDecl();
   2186 
   2187     if (!TagD) // We probably had an error
   2188       return 0;
   2189 
   2190     // Note that the above type specs guarantee that the
   2191     // type rep is a Decl, whereas in many of the others
   2192     // it's a Type.
   2193     Tag = dyn_cast<TagDecl>(TagD);
   2194   }
   2195 
   2196   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   2197     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   2198     // or incomplete types shall not be restrict-qualified."
   2199     if (TypeQuals & DeclSpec::TQ_restrict)
   2200       Diag(DS.getRestrictSpecLoc(),
   2201            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   2202            << DS.getSourceRange();
   2203   }
   2204 
   2205   if (DS.isFriendSpecified()) {
   2206     // If we're dealing with a decl but not a TagDecl, assume that
   2207     // whatever routines created it handled the friendship aspect.
   2208     if (TagD && !Tag)
   2209       return 0;
   2210     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   2211   }
   2212 
   2213   // Track whether we warned about the fact that there aren't any
   2214   // declarators.
   2215   bool emittedWarning = false;
   2216 
   2217   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   2218     ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
   2219 
   2220     if (!Record->getDeclName() && Record->isDefinition() &&
   2221         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   2222       if (getLangOptions().CPlusPlus ||
   2223           Record->getDeclContext()->isRecord())
   2224         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
   2225 
   2226       Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
   2227         << DS.getSourceRange();
   2228       emittedWarning = true;
   2229     }
   2230   }
   2231 
   2232   // Check for Microsoft C extension: anonymous struct.
   2233   if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
   2234       CurContext->isRecord() &&
   2235       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   2236     // Handle 2 kinds of anonymous struct:
   2237     //   struct STRUCT;
   2238     // and
   2239     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   2240     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   2241     if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
   2242         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   2243          DS.getRepAsType().get()->isStructureType())) {
   2244       Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
   2245         << DS.getSourceRange();
   2246       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   2247     }
   2248   }
   2249 
   2250   if (getLangOptions().CPlusPlus &&
   2251       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   2252     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   2253       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   2254           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
   2255         Diag(Enum->getLocation(), diag::ext_no_declarators)
   2256           << DS.getSourceRange();
   2257         emittedWarning = true;
   2258       }
   2259 
   2260   // Skip all the checks below if we have a type error.
   2261   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
   2262 
   2263   if (!DS.isMissingDeclaratorOk()) {
   2264     // Warn about typedefs of enums without names, since this is an
   2265     // extension in both Microsoft and GNU.
   2266     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
   2267         Tag && isa<EnumDecl>(Tag)) {
   2268       Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
   2269         << DS.getSourceRange();
   2270       return Tag;
   2271     }
   2272 
   2273     Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
   2274       << DS.getSourceRange();
   2275     emittedWarning = true;
   2276   }
   2277 
   2278   // We're going to complain about a bunch of spurious specifiers;
   2279   // only do this if we're declaring a tag, because otherwise we
   2280   // should be getting diag::ext_no_declarators.
   2281   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
   2282     return TagD;
   2283 
   2284   // Note that a linkage-specification sets a storage class, but
   2285   // 'extern "C" struct foo;' is actually valid and not theoretically
   2286   // useless.
   2287   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
   2288     if (!DS.isExternInLinkageSpec())
   2289       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
   2290         << DeclSpec::getSpecifierName(scs);
   2291 
   2292   if (DS.isThreadSpecified())
   2293     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
   2294   if (DS.getTypeQualifiers()) {
   2295     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2296       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
   2297     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2298       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
   2299     // Restrict is covered above.
   2300   }
   2301   if (DS.isInlineSpecified())
   2302     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
   2303   if (DS.isVirtualSpecified())
   2304     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
   2305   if (DS.isExplicitSpecified())
   2306     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
   2307 
   2308   // FIXME: Warn on useless attributes
   2309 
   2310   return TagD;
   2311 }
   2312 
   2313 /// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
   2314 /// builds a statement for it and returns it so it is evaluated.
   2315 StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
   2316   StmtResult R;
   2317   if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
   2318     Expr *Exp = DS.getRepAsExpr();
   2319     QualType Ty = Exp->getType();
   2320     if (Ty->isPointerType()) {
   2321       do
   2322         Ty = Ty->getAs<PointerType>()->getPointeeType();
   2323       while (Ty->isPointerType());
   2324     }
   2325     if (Ty->isVariableArrayType()) {
   2326       R = ActOnExprStmt(MakeFullExpr(Exp));
   2327     }
   2328   }
   2329   return R;
   2330 }
   2331 
   2332 /// We are trying to inject an anonymous member into the given scope;
   2333 /// check if there's an existing declaration that can't be overloaded.
   2334 ///
   2335 /// \return true if this is a forbidden redeclaration
   2336 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   2337                                          Scope *S,
   2338                                          DeclContext *Owner,
   2339                                          DeclarationName Name,
   2340                                          SourceLocation NameLoc,
   2341                                          unsigned diagnostic) {
   2342   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   2343                  Sema::ForRedeclaration);
   2344   if (!SemaRef.LookupName(R, S)) return false;
   2345 
   2346   if (R.getAsSingle<TagDecl>())
   2347     return false;
   2348 
   2349   // Pick a representative declaration.
   2350   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   2351   assert(PrevDecl && "Expected a non-null Decl");
   2352 
   2353   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   2354     return false;
   2355 
   2356   SemaRef.Diag(NameLoc, diagnostic) << Name;
   2357   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   2358 
   2359   return true;
   2360 }
   2361 
   2362 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   2363 /// anonymous struct or union AnonRecord into the owning context Owner
   2364 /// and scope S. This routine will be invoked just after we realize
   2365 /// that an unnamed union or struct is actually an anonymous union or
   2366 /// struct, e.g.,
   2367 ///
   2368 /// @code
   2369 /// union {
   2370 ///   int i;
   2371 ///   float f;
   2372 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   2373 ///    // f into the surrounding scope.x
   2374 /// @endcode
   2375 ///
   2376 /// This routine is recursive, injecting the names of nested anonymous
   2377 /// structs/unions into the owning context and scope as well.
   2378 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   2379                                                 DeclContext *Owner,
   2380                                                 RecordDecl *AnonRecord,
   2381                                                 AccessSpecifier AS,
   2382                               llvm::SmallVector<NamedDecl*, 2> &Chaining,
   2383                                                       bool MSAnonStruct) {
   2384   unsigned diagKind
   2385     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   2386                             : diag::err_anonymous_struct_member_redecl;
   2387 
   2388   bool Invalid = false;
   2389 
   2390   // Look every FieldDecl and IndirectFieldDecl with a name.
   2391   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
   2392                                DEnd = AnonRecord->decls_end();
   2393        D != DEnd; ++D) {
   2394     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
   2395         cast<NamedDecl>(*D)->getDeclName()) {
   2396       ValueDecl *VD = cast<ValueDecl>(*D);
   2397       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   2398                                        VD->getLocation(), diagKind)) {
   2399         // C++ [class.union]p2:
   2400         //   The names of the members of an anonymous union shall be
   2401         //   distinct from the names of any other entity in the
   2402         //   scope in which the anonymous union is declared.
   2403         Invalid = true;
   2404       } else {
   2405         // C++ [class.union]p2:
   2406         //   For the purpose of name lookup, after the anonymous union
   2407         //   definition, the members of the anonymous union are
   2408         //   considered to have been defined in the scope in which the
   2409         //   anonymous union is declared.
   2410         unsigned OldChainingSize = Chaining.size();
   2411         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   2412           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
   2413                PE = IF->chain_end(); PI != PE; ++PI)
   2414             Chaining.push_back(*PI);
   2415         else
   2416           Chaining.push_back(VD);
   2417 
   2418         assert(Chaining.size() >= 2);
   2419         NamedDecl **NamedChain =
   2420           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   2421         for (unsigned i = 0; i < Chaining.size(); i++)
   2422           NamedChain[i] = Chaining[i];
   2423 
   2424         IndirectFieldDecl* IndirectField =
   2425           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   2426                                     VD->getIdentifier(), VD->getType(),
   2427                                     NamedChain, Chaining.size());
   2428 
   2429         IndirectField->setAccess(AS);
   2430         IndirectField->setImplicit();
   2431         SemaRef.PushOnScopeChains(IndirectField, S);
   2432 
   2433         // That includes picking up the appropriate access specifier.
   2434         if (AS != AS_none) IndirectField->setAccess(AS);
   2435 
   2436         Chaining.resize(OldChainingSize);
   2437       }
   2438     }
   2439   }
   2440 
   2441   return Invalid;
   2442 }
   2443 
   2444 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   2445 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   2446 /// illegal input values are mapped to SC_None.
   2447 static StorageClass
   2448 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2449   switch (StorageClassSpec) {
   2450   case DeclSpec::SCS_unspecified:    return SC_None;
   2451   case DeclSpec::SCS_extern:         return SC_Extern;
   2452   case DeclSpec::SCS_static:         return SC_Static;
   2453   case DeclSpec::SCS_auto:           return SC_Auto;
   2454   case DeclSpec::SCS_register:       return SC_Register;
   2455   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2456     // Illegal SCSs map to None: error reporting is up to the caller.
   2457   case DeclSpec::SCS_mutable:        // Fall through.
   2458   case DeclSpec::SCS_typedef:        return SC_None;
   2459   }
   2460   llvm_unreachable("unknown storage class specifier");
   2461 }
   2462 
   2463 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
   2464 /// a StorageClass. Any error reporting is up to the caller:
   2465 /// illegal input values are mapped to SC_None.
   2466 static StorageClass
   2467 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2468   switch (StorageClassSpec) {
   2469   case DeclSpec::SCS_unspecified:    return SC_None;
   2470   case DeclSpec::SCS_extern:         return SC_Extern;
   2471   case DeclSpec::SCS_static:         return SC_Static;
   2472   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2473     // Illegal SCSs map to None: error reporting is up to the caller.
   2474   case DeclSpec::SCS_auto:           // Fall through.
   2475   case DeclSpec::SCS_mutable:        // Fall through.
   2476   case DeclSpec::SCS_register:       // Fall through.
   2477   case DeclSpec::SCS_typedef:        return SC_None;
   2478   }
   2479   llvm_unreachable("unknown storage class specifier");
   2480 }
   2481 
   2482 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   2483 /// anonymous structure or union. Anonymous unions are a C++ feature
   2484 /// (C++ [class.union]) and a GNU C extension; anonymous structures
   2485 /// are a GNU C and GNU C++ extension.
   2486 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   2487                                              AccessSpecifier AS,
   2488                                              RecordDecl *Record) {
   2489   DeclContext *Owner = Record->getDeclContext();
   2490 
   2491   // Diagnose whether this anonymous struct/union is an extension.
   2492   if (Record->isUnion() && !getLangOptions().CPlusPlus)
   2493     Diag(Record->getLocation(), diag::ext_anonymous_union);
   2494   else if (!Record->isUnion())
   2495     Diag(Record->getLocation(), diag::ext_anonymous_struct);
   2496 
   2497   // C and C++ require different kinds of checks for anonymous
   2498   // structs/unions.
   2499   bool Invalid = false;
   2500   if (getLangOptions().CPlusPlus) {
   2501     const char* PrevSpec = 0;
   2502     unsigned DiagID;
   2503     // C++ [class.union]p3:
   2504     //   Anonymous unions declared in a named namespace or in the
   2505     //   global namespace shall be declared static.
   2506     if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   2507         (isa<TranslationUnitDecl>(Owner) ||
   2508          (isa<NamespaceDecl>(Owner) &&
   2509           cast<NamespaceDecl>(Owner)->getDeclName()))) {
   2510       Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
   2511       Invalid = true;
   2512 
   2513       // Recover by adding 'static'.
   2514       DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
   2515                              PrevSpec, DiagID, getLangOptions());
   2516     }
   2517     // C++ [class.union]p3:
   2518     //   A storage class is not allowed in a declaration of an
   2519     //   anonymous union in a class scope.
   2520     else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   2521              isa<RecordDecl>(Owner)) {
   2522       Diag(DS.getStorageClassSpecLoc(),
   2523            diag::err_anonymous_union_with_storage_spec);
   2524       Invalid = true;
   2525 
   2526       // Recover by removing the storage specifier.
   2527       DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
   2528                              PrevSpec, DiagID, getLangOptions());
   2529     }
   2530 
   2531     // Ignore const/volatile/restrict qualifiers.
   2532     if (DS.getTypeQualifiers()) {
   2533       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2534         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2535           << Record->isUnion() << 0
   2536           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   2537       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2538         Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2539           << Record->isUnion() << 1
   2540           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   2541       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   2542         Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   2543           << Record->isUnion() << 2
   2544           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   2545 
   2546       DS.ClearTypeQualifiers();
   2547     }
   2548 
   2549     // C++ [class.union]p2:
   2550     //   The member-specification of an anonymous union shall only
   2551     //   define non-static data members. [Note: nested types and
   2552     //   functions cannot be declared within an anonymous union. ]
   2553     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
   2554                                  MemEnd = Record->decls_end();
   2555          Mem != MemEnd; ++Mem) {
   2556       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
   2557         // C++ [class.union]p3:
   2558         //   An anonymous union shall not have private or protected
   2559         //   members (clause 11).
   2560         assert(FD->getAccess() != AS_none);
   2561         if (FD->getAccess() != AS_public) {
   2562           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   2563             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   2564           Invalid = true;
   2565         }
   2566 
   2567         // C++ [class.union]p1
   2568         //   An object of a class with a non-trivial constructor, a non-trivial
   2569         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   2570         //   assignment operator cannot be a member of a union, nor can an
   2571         //   array of such objects.
   2572         if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
   2573           Invalid = true;
   2574       } else if ((*Mem)->isImplicit()) {
   2575         // Any implicit members are fine.
   2576       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
   2577         // This is a type that showed up in an
   2578         // elaborated-type-specifier inside the anonymous struct or
   2579         // union, but which actually declares a type outside of the
   2580         // anonymous struct or union. It's okay.
   2581       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
   2582         if (!MemRecord->isAnonymousStructOrUnion() &&
   2583             MemRecord->getDeclName()) {
   2584           // Visual C++ allows type definition in anonymous struct or union.
   2585           if (getLangOptions().Microsoft)
   2586             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   2587               << (int)Record->isUnion();
   2588           else {
   2589             // This is a nested type declaration.
   2590             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   2591               << (int)Record->isUnion();
   2592             Invalid = true;
   2593           }
   2594         }
   2595       } else if (isa<AccessSpecDecl>(*Mem)) {
   2596         // Any access specifier is fine.
   2597       } else {
   2598         // We have something that isn't a non-static data
   2599         // member. Complain about it.
   2600         unsigned DK = diag::err_anonymous_record_bad_member;
   2601         if (isa<TypeDecl>(*Mem))
   2602           DK = diag::err_anonymous_record_with_type;
   2603         else if (isa<FunctionDecl>(*Mem))
   2604           DK = diag::err_anonymous_record_with_function;
   2605         else if (isa<VarDecl>(*Mem))
   2606           DK = diag::err_anonymous_record_with_static;
   2607 
   2608         // Visual C++ allows type definition in anonymous struct or union.
   2609         if (getLangOptions().Microsoft &&
   2610             DK == diag::err_anonymous_record_with_type)
   2611           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
   2612             << (int)Record->isUnion();
   2613         else {
   2614           Diag((*Mem)->getLocation(), DK)
   2615               << (int)Record->isUnion();
   2616           Invalid = true;
   2617         }
   2618       }
   2619     }
   2620   }
   2621 
   2622   if (!Record->isUnion() && !Owner->isRecord()) {
   2623     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   2624       << (int)getLangOptions().CPlusPlus;
   2625     Invalid = true;
   2626   }
   2627 
   2628   // Mock up a declarator.
   2629   Declarator Dc(DS, Declarator::MemberContext);
   2630   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2631   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   2632 
   2633   // Create a declaration for this anonymous struct/union.
   2634   NamedDecl *Anon = 0;
   2635   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   2636     Anon = FieldDecl::Create(Context, OwningClass,
   2637                              DS.getSourceRange().getBegin(),
   2638                              Record->getLocation(),
   2639                              /*IdentifierInfo=*/0,
   2640                              Context.getTypeDeclType(Record),
   2641                              TInfo,
   2642                              /*BitWidth=*/0, /*Mutable=*/false,
   2643                              /*HasInit=*/false);
   2644     Anon->setAccess(AS);
   2645     if (getLangOptions().CPlusPlus)
   2646       FieldCollector->Add(cast<FieldDecl>(Anon));
   2647   } else {
   2648     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   2649     assert(SCSpec != DeclSpec::SCS_typedef &&
   2650            "Parser allowed 'typedef' as storage class VarDecl.");
   2651     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2652     if (SCSpec == DeclSpec::SCS_mutable) {
   2653       // mutable can only appear on non-static class members, so it's always
   2654       // an error here
   2655       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   2656       Invalid = true;
   2657       SC = SC_None;
   2658     }
   2659     SCSpec = DS.getStorageClassSpecAsWritten();
   2660     VarDecl::StorageClass SCAsWritten
   2661       = StorageClassSpecToVarDeclStorageClass(SCSpec);
   2662 
   2663     Anon = VarDecl::Create(Context, Owner,
   2664                            DS.getSourceRange().getBegin(),
   2665                            Record->getLocation(), /*IdentifierInfo=*/0,
   2666                            Context.getTypeDeclType(Record),
   2667                            TInfo, SC, SCAsWritten);
   2668   }
   2669   Anon->setImplicit();
   2670 
   2671   // Add the anonymous struct/union object to the current
   2672   // context. We'll be referencing this object when we refer to one of
   2673   // its members.
   2674   Owner->addDecl(Anon);
   2675 
   2676   // Inject the members of the anonymous struct/union into the owning
   2677   // context and into the identifier resolver chain for name lookup
   2678   // purposes.
   2679   llvm::SmallVector<NamedDecl*, 2> Chain;
   2680   Chain.push_back(Anon);
   2681 
   2682   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   2683                                           Chain, false))
   2684     Invalid = true;
   2685 
   2686   // Mark this as an anonymous struct/union type. Note that we do not
   2687   // do this until after we have already checked and injected the
   2688   // members of this anonymous struct/union type, because otherwise
   2689   // the members could be injected twice: once by DeclContext when it
   2690   // builds its lookup table, and once by
   2691   // InjectAnonymousStructOrUnionMembers.
   2692   Record->setAnonymousStructOrUnion(true);
   2693 
   2694   if (Invalid)
   2695     Anon->setInvalidDecl();
   2696 
   2697   return Anon;
   2698 }
   2699 
   2700 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   2701 /// Microsoft C anonymous structure.
   2702 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   2703 /// Example:
   2704 ///
   2705 /// struct A { int a; };
   2706 /// struct B { struct A; int b; };
   2707 ///
   2708 /// void foo() {
   2709 ///   B var;
   2710 ///   var.a = 3;
   2711 /// }
   2712 ///
   2713 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   2714                                            RecordDecl *Record) {
   2715 
   2716   // If there is no Record, get the record via the typedef.
   2717   if (!Record)
   2718     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   2719 
   2720   // Mock up a declarator.
   2721   Declarator Dc(DS, Declarator::TypeNameContext);
   2722   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   2723   assert(TInfo && "couldn't build declarator info for anonymous struct");
   2724 
   2725   // Create a declaration for this anonymous struct.
   2726   NamedDecl* Anon = FieldDecl::Create(Context,
   2727                              cast<RecordDecl>(CurContext),
   2728                              DS.getSourceRange().getBegin(),
   2729                              DS.getSourceRange().getBegin(),
   2730                              /*IdentifierInfo=*/0,
   2731                              Context.getTypeDeclType(Record),
   2732                              TInfo,
   2733                              /*BitWidth=*/0, /*Mutable=*/false,
   2734                              /*HasInit=*/false);
   2735   Anon->setImplicit();
   2736 
   2737   // Add the anonymous struct object to the current context.
   2738   CurContext->addDecl(Anon);
   2739 
   2740   // Inject the members of the anonymous struct into the current
   2741   // context and into the identifier resolver chain for name lookup
   2742   // purposes.
   2743   llvm::SmallVector<NamedDecl*, 2> Chain;
   2744   Chain.push_back(Anon);
   2745 
   2746   if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   2747                                           Record->getDefinition(),
   2748                                           AS_none, Chain, true))
   2749     Anon->setInvalidDecl();
   2750 
   2751   return Anon;
   2752 }
   2753 
   2754 /// GetNameForDeclarator - Determine the full declaration name for the
   2755 /// given Declarator.
   2756 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   2757   return GetNameFromUnqualifiedId(D.getName());
   2758 }
   2759 
   2760 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   2761 DeclarationNameInfo
   2762 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   2763   DeclarationNameInfo NameInfo;
   2764   NameInfo.setLoc(Name.StartLocation);
   2765 
   2766   switch (Name.getKind()) {
   2767 
   2768   case UnqualifiedId::IK_ImplicitSelfParam:
   2769   case UnqualifiedId::IK_Identifier:
   2770     NameInfo.setName(Name.Identifier);
   2771     NameInfo.setLoc(Name.StartLocation);
   2772     return NameInfo;
   2773 
   2774   case UnqualifiedId::IK_OperatorFunctionId:
   2775     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   2776                                            Name.OperatorFunctionId.Operator));
   2777     NameInfo.setLoc(Name.StartLocation);
   2778     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   2779       = Name.OperatorFunctionId.SymbolLocations[0];
   2780     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   2781       = Name.EndLocation.getRawEncoding();
   2782     return NameInfo;
   2783 
   2784   case UnqualifiedId::IK_LiteralOperatorId:
   2785     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   2786                                                            Name.Identifier));
   2787     NameInfo.setLoc(Name.StartLocation);
   2788     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   2789     return NameInfo;
   2790 
   2791   case UnqualifiedId::IK_ConversionFunctionId: {
   2792     TypeSourceInfo *TInfo;
   2793     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   2794     if (Ty.isNull())
   2795       return DeclarationNameInfo();
   2796     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   2797                                                Context.getCanonicalType(Ty)));
   2798     NameInfo.setLoc(Name.StartLocation);
   2799     NameInfo.setNamedTypeInfo(TInfo);
   2800     return NameInfo;
   2801   }
   2802 
   2803   case UnqualifiedId::IK_ConstructorName: {
   2804     TypeSourceInfo *TInfo;
   2805     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   2806     if (Ty.isNull())
   2807       return DeclarationNameInfo();
   2808     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   2809                                               Context.getCanonicalType(Ty)));
   2810     NameInfo.setLoc(Name.StartLocation);
   2811     NameInfo.setNamedTypeInfo(TInfo);
   2812     return NameInfo;
   2813   }
   2814 
   2815   case UnqualifiedId::IK_ConstructorTemplateId: {
   2816     // In well-formed code, we can only have a constructor
   2817     // template-id that refers to the current context, so go there
   2818     // to find the actual type being constructed.
   2819     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   2820     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   2821       return DeclarationNameInfo();
   2822 
   2823     // Determine the type of the class being constructed.
   2824     QualType CurClassType = Context.getTypeDeclType(CurClass);
   2825 
   2826     // FIXME: Check two things: that the template-id names the same type as
   2827     // CurClassType, and that the template-id does not occur when the name
   2828     // was qualified.
   2829 
   2830     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   2831                                     Context.getCanonicalType(CurClassType)));
   2832     NameInfo.setLoc(Name.StartLocation);
   2833     // FIXME: should we retrieve TypeSourceInfo?
   2834     NameInfo.setNamedTypeInfo(0);
   2835     return NameInfo;
   2836   }
   2837 
   2838   case UnqualifiedId::IK_DestructorName: {
   2839     TypeSourceInfo *TInfo;
   2840     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   2841     if (Ty.isNull())
   2842       return DeclarationNameInfo();
   2843     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   2844                                               Context.getCanonicalType(Ty)));
   2845     NameInfo.setLoc(Name.StartLocation);
   2846     NameInfo.setNamedTypeInfo(TInfo);
   2847     return NameInfo;
   2848   }
   2849 
   2850   case UnqualifiedId::IK_TemplateId: {
   2851     TemplateName TName = Name.TemplateId->Template.get();
   2852     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   2853     return Context.getNameForTemplate(TName, TNameLoc);
   2854   }
   2855 
   2856   } // switch (Name.getKind())
   2857 
   2858   assert(false && "Unknown name kind");
   2859   return DeclarationNameInfo();
   2860 }
   2861 
   2862 /// isNearlyMatchingFunction - Determine whether the C++ functions
   2863 /// Declaration and Definition are "nearly" matching. This heuristic
   2864 /// is used to improve diagnostics in the case where an out-of-line
   2865 /// function definition doesn't match any declaration within
   2866 /// the class or namespace.
   2867 static bool isNearlyMatchingFunction(ASTContext &Context,
   2868                                      FunctionDecl *Declaration,
   2869                                      FunctionDecl *Definition) {
   2870   if (Declaration->param_size() != Definition->param_size())
   2871     return false;
   2872   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   2873     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   2874     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   2875 
   2876     if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
   2877                                         DefParamTy.getNonReferenceType()))
   2878       return false;
   2879   }
   2880 
   2881   return true;
   2882 }
   2883 
   2884 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   2885 /// declarator needs to be rebuilt in the current instantiation.
   2886 /// Any bits of declarator which appear before the name are valid for
   2887 /// consideration here.  That's specifically the type in the decl spec
   2888 /// and the base type in any member-pointer chunks.
   2889 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   2890                                                     DeclarationName Name) {
   2891   // The types we specifically need to rebuild are:
   2892   //   - typenames, typeofs, and decltypes
   2893   //   - types which will become injected class names
   2894   // Of course, we also need to rebuild any type referencing such a
   2895   // type.  It's safest to just say "dependent", but we call out a
   2896   // few cases here.
   2897 
   2898   DeclSpec &DS = D.getMutableDeclSpec();
   2899   switch (DS.getTypeSpecType()) {
   2900   case DeclSpec::TST_typename:
   2901   case DeclSpec::TST_typeofType:
   2902   case DeclSpec::TST_decltype:
   2903   case DeclSpec::TST_underlyingType: {
   2904     // Grab the type from the parser.
   2905     TypeSourceInfo *TSI = 0;
   2906     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   2907     if (T.isNull() || !T->isDependentType()) break;
   2908 
   2909     // Make sure there's a type source info.  This isn't really much
   2910     // of a waste; most dependent types should have type source info
   2911     // attached already.
   2912     if (!TSI)
   2913       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   2914 
   2915     // Rebuild the type in the current instantiation.
   2916     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   2917     if (!TSI) return true;
   2918 
   2919     // Store the new type back in the decl spec.
   2920     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   2921     DS.UpdateTypeRep(LocType);
   2922     break;
   2923   }
   2924 
   2925   case DeclSpec::TST_typeofExpr: {
   2926     Expr *E = DS.getRepAsExpr();
   2927     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   2928     if (Result.isInvalid()) return true;
   2929     DS.UpdateExprRep(Result.get());
   2930     break;
   2931   }
   2932 
   2933   default:
   2934     // Nothing to do for these decl specs.
   2935     break;
   2936   }
   2937 
   2938   // It doesn't matter what order we do this in.
   2939   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   2940     DeclaratorChunk &Chunk = D.getTypeObject(I);
   2941 
   2942     // The only type information in the declarator which can come
   2943     // before the declaration name is the base type of a member
   2944     // pointer.
   2945     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   2946       continue;
   2947 
   2948     // Rebuild the scope specifier in-place.
   2949     CXXScopeSpec &SS = Chunk.Mem.Scope();
   2950     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   2951       return true;
   2952   }
   2953 
   2954   return false;
   2955 }
   2956 
   2957 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   2958   return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
   2959                           /*IsFunctionDefinition=*/false);
   2960 }
   2961 
   2962 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   2963 ///   If T is the name of a class, then each of the following shall have a
   2964 ///   name different from T:
   2965 ///     - every static data member of class T;
   2966 ///     - every member function of class T
   2967 ///     - every member of class T that is itself a type;
   2968 /// \returns true if the declaration name violates these rules.
   2969 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   2970                                    DeclarationNameInfo NameInfo) {
   2971   DeclarationName Name = NameInfo.getName();
   2972 
   2973   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   2974     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   2975       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   2976       return true;
   2977     }
   2978 
   2979   return false;
   2980 }
   2981 
   2982 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   2983                              MultiTemplateParamsArg TemplateParamLists,
   2984                              bool IsFunctionDefinition) {
   2985   // TODO: consider using NameInfo for diagnostic.
   2986   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   2987   DeclarationName Name = NameInfo.getName();
   2988 
   2989   // All of these full declarators require an identifier.  If it doesn't have
   2990   // one, the ParsedFreeStandingDeclSpec action should be used.
   2991   if (!Name) {
   2992     if (!D.isInvalidType())  // Reject this if we think it is valid.
   2993       Diag(D.getDeclSpec().getSourceRange().getBegin(),
   2994            diag::err_declarator_need_ident)
   2995         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   2996     return 0;
   2997   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   2998     return 0;
   2999 
   3000   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   3001   // we find one that is.
   3002   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   3003          (S->getFlags() & Scope::TemplateParamScope) != 0)
   3004     S = S->getParent();
   3005 
   3006   DeclContext *DC = CurContext;
   3007   if (D.getCXXScopeSpec().isInvalid())
   3008     D.setInvalidType();
   3009   else if (D.getCXXScopeSpec().isSet()) {
   3010     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   3011                                         UPPC_DeclarationQualifier))
   3012       return 0;
   3013 
   3014     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   3015     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   3016     if (!DC) {
   3017       // If we could not compute the declaration context, it's because the
   3018       // declaration context is dependent but does not refer to a class,
   3019       // class template, or class template partial specialization. Complain
   3020       // and return early, to avoid the coming semantic disaster.
   3021       Diag(D.getIdentifierLoc(),
   3022            diag::err_template_qualified_declarator_no_match)
   3023         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
   3024         << D.getCXXScopeSpec().getRange();
   3025       return 0;
   3026     }
   3027     bool IsDependentContext = DC->isDependentContext();
   3028 
   3029     if (!IsDependentContext &&
   3030         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   3031       return 0;
   3032 
   3033     if (isa<CXXRecordDecl>(DC)) {
   3034       if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
   3035         Diag(D.getIdentifierLoc(),
   3036              diag::err_member_def_undefined_record)
   3037           << Name << DC << D.getCXXScopeSpec().getRange();
   3038         D.setInvalidType();
   3039       } else if (isa<CXXRecordDecl>(CurContext) &&
   3040                  !D.getDeclSpec().isFriendSpecified()) {
   3041         // The user provided a superfluous scope specifier inside a class
   3042         // definition:
   3043         //
   3044         // class X {
   3045         //   void X::f();
   3046         // };
   3047         if (CurContext->Equals(DC))
   3048           Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
   3049             << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
   3050         else
   3051           Diag(D.getIdentifierLoc(), diag::err_member_qualification)
   3052             << Name << D.getCXXScopeSpec().getRange();
   3053 
   3054         // Pretend that this qualifier was not here.
   3055         D.getCXXScopeSpec().clear();
   3056       }
   3057     }
   3058 
   3059     // Check whether we need to rebuild the type of the given
   3060     // declaration in the current instantiation.
   3061     if (EnteringContext && IsDependentContext &&
   3062         TemplateParamLists.size() != 0) {
   3063       ContextRAII SavedContext(*this, DC);
   3064       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   3065         D.setInvalidType();
   3066     }
   3067   }
   3068 
   3069   if (DiagnoseClassNameShadow(DC, NameInfo))
   3070     // If this is a typedef, we'll end up spewing multiple diagnostics.
   3071     // Just return early; it's safer.
   3072     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3073       return 0;
   3074 
   3075   NamedDecl *New;
   3076 
   3077   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3078   QualType R = TInfo->getType();
   3079 
   3080   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   3081                                       UPPC_DeclarationType))
   3082     D.setInvalidType();
   3083 
   3084   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   3085                         ForRedeclaration);
   3086 
   3087   // See if this is a redefinition of a variable in the same scope.
   3088   if (!D.getCXXScopeSpec().isSet()) {
   3089     bool IsLinkageLookup = false;
   3090 
   3091     // If the declaration we're planning to build will be a function
   3092     // or object with linkage, then look for another declaration with
   3093     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   3094     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3095       /* Do nothing*/;
   3096     else if (R->isFunctionType()) {
   3097       if (CurContext->isFunctionOrMethod() ||
   3098           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3099         IsLinkageLookup = true;
   3100     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
   3101       IsLinkageLookup = true;
   3102     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   3103              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3104       IsLinkageLookup = true;
   3105 
   3106     if (IsLinkageLookup)
   3107       Previous.clear(LookupRedeclarationWithLinkage);
   3108 
   3109     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
   3110   } else { // Something like "int foo::x;"
   3111     LookupQualifiedName(Previous, DC);
   3112 
   3113     // Don't consider using declarations as previous declarations for
   3114     // out-of-line members.
   3115     RemoveUsingDecls(Previous);
   3116 
   3117     // C++ 7.3.1.2p2:
   3118     // Members (including explicit specializations of templates) of a named
   3119     // namespace can also be defined outside that namespace by explicit
   3120     // qualification of the name being defined, provided that the entity being
   3121     // defined was already declared in the namespace and the definition appears
   3122     // after the point of declaration in a namespace that encloses the
   3123     // declarations namespace.
   3124     //
   3125     // Note that we only check the context at this point. We don't yet
   3126     // have enough information to make sure that PrevDecl is actually
   3127     // the declaration we want to match. For example, given:
   3128     //
   3129     //   class X {
   3130     //     void f();
   3131     //     void f(float);
   3132     //   };
   3133     //
   3134     //   void X::f(int) { } // ill-formed
   3135     //
   3136     // In this case, PrevDecl will point to the overload set
   3137     // containing the two f's declared in X, but neither of them
   3138     // matches.
   3139 
   3140     // First check whether we named the global scope.
   3141     if (isa<TranslationUnitDecl>(DC)) {
   3142       Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
   3143         << Name << D.getCXXScopeSpec().getRange();
   3144     } else {
   3145       DeclContext *Cur = CurContext;
   3146       while (isa<LinkageSpecDecl>(Cur))
   3147         Cur = Cur->getParent();
   3148       if (!Cur->Encloses(DC)) {
   3149         // The qualifying scope doesn't enclose the original declaration.
   3150         // Emit diagnostic based on current scope.
   3151         SourceLocation L = D.getIdentifierLoc();
   3152         SourceRange R = D.getCXXScopeSpec().getRange();
   3153         if (isa<FunctionDecl>(Cur))
   3154           Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
   3155         else
   3156           Diag(L, diag::err_invalid_declarator_scope)
   3157             << Name << cast<NamedDecl>(DC) << R;
   3158         D.setInvalidType();
   3159       }
   3160     }
   3161   }
   3162 
   3163   if (Previous.isSingleResult() &&
   3164       Previous.getFoundDecl()->isTemplateParameter()) {
   3165     // Maybe we will complain about the shadowed template parameter.
   3166     if (!D.isInvalidType())
   3167       if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   3168                                           Previous.getFoundDecl()))
   3169         D.setInvalidType();
   3170 
   3171     // Just pretend that we didn't see the previous declaration.
   3172     Previous.clear();
   3173   }
   3174 
   3175   // In C++, the previous declaration we find might be a tag type
   3176   // (class or enum). In this case, the new declaration will hide the
   3177   // tag type. Note that this does does not apply if we're declaring a
   3178   // typedef (C++ [dcl.typedef]p4).
   3179   if (Previous.isSingleTagDecl() &&
   3180       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   3181     Previous.clear();
   3182 
   3183   bool Redeclaration = false;
   3184   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3185     if (TemplateParamLists.size()) {
   3186       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   3187       return 0;
   3188     }
   3189 
   3190     New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
   3191   } else if (R->isFunctionType()) {
   3192     New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
   3193                                   move(TemplateParamLists),
   3194                                   IsFunctionDefinition, Redeclaration);
   3195   } else {
   3196     New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
   3197                                   move(TemplateParamLists),
   3198                                   Redeclaration);
   3199   }
   3200 
   3201   if (New == 0)
   3202     return 0;
   3203 
   3204   // If this has an identifier and is not an invalid redeclaration or
   3205   // function template specialization, add it to the scope stack.
   3206   if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
   3207     PushOnScopeChains(New, S);
   3208 
   3209   return New;
   3210 }
   3211 
   3212 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
   3213 /// types into constant array types in certain situations which would otherwise
   3214 /// be errors (for GCC compatibility).
   3215 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   3216                                                     ASTContext &Context,
   3217                                                     bool &SizeIsNegative,
   3218                                                     llvm::APSInt &Oversized) {
   3219   // This method tries to turn a variable array into a constant
   3220   // array even when the size isn't an ICE.  This is necessary
   3221   // for compatibility with code that depends on gcc's buggy
   3222   // constant expression folding, like struct {char x[(int)(char*)2];}
   3223   SizeIsNegative = false;
   3224   Oversized = 0;
   3225 
   3226   if (T->isDependentType())
   3227     return QualType();
   3228 
   3229   QualifierCollector Qs;
   3230   const Type *Ty = Qs.strip(T);
   3231 
   3232   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   3233     QualType Pointee = PTy->getPointeeType();
   3234     QualType FixedType =
   3235         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   3236                                             Oversized);
   3237     if (FixedType.isNull()) return FixedType;
   3238     FixedType = Context.getPointerType(FixedType);
   3239     return Qs.apply(Context, FixedType);
   3240   }
   3241   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   3242     QualType Inner = PTy->getInnerType();
   3243     QualType FixedType =
   3244         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   3245                                             Oversized);
   3246     if (FixedType.isNull()) return FixedType;
   3247     FixedType = Context.getParenType(FixedType);
   3248     return Qs.apply(Context, FixedType);
   3249   }
   3250 
   3251   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   3252   if (!VLATy)
   3253     return QualType();
   3254   // FIXME: We should probably handle this case
   3255   if (VLATy->getElementType()->isVariablyModifiedType())
   3256     return QualType();
   3257 
   3258   Expr::EvalResult EvalResult;
   3259   if (!VLATy->getSizeExpr() ||
   3260       !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
   3261       !EvalResult.Val.isInt())
   3262     return QualType();
   3263 
   3264   // Check whether the array size is negative.
   3265   llvm::APSInt &Res = EvalResult.Val.getInt();
   3266   if (Res.isSigned() && Res.isNegative()) {
   3267     SizeIsNegative = true;
   3268     return QualType();
   3269   }
   3270 
   3271   // Check whether the array is too large to be addressed.
   3272   unsigned ActiveSizeBits
   3273     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   3274                                               Res);
   3275   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   3276     Oversized = Res;
   3277     return QualType();
   3278   }
   3279 
   3280   return Context.getConstantArrayType(VLATy->getElementType(),
   3281                                       Res, ArrayType::Normal, 0);
   3282 }
   3283 
   3284 /// \brief Register the given locally-scoped external C declaration so
   3285 /// that it can be found later for redeclarations
   3286 void
   3287 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
   3288                                        const LookupResult &Previous,
   3289                                        Scope *S) {
   3290   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
   3291          "Decl is not a locally-scoped decl!");
   3292   // Note that we have a locally-scoped external with this name.
   3293   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
   3294 
   3295   if (!Previous.isSingleResult())
   3296     return;
   3297 
   3298   NamedDecl *PrevDecl = Previous.getFoundDecl();
   3299 
   3300   // If there was a previous declaration of this variable, it may be
   3301   // in our identifier chain. Update the identifier chain with the new
   3302   // declaration.
   3303   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
   3304     // The previous declaration was found on the identifer resolver
   3305     // chain, so remove it from its scope.
   3306 
   3307     if (S->isDeclScope(PrevDecl)) {
   3308       // Special case for redeclarations in the SAME scope.
   3309       // Because this declaration is going to be added to the identifier chain
   3310       // later, we should temporarily take it OFF the chain.
   3311       IdResolver.RemoveDecl(ND);
   3312 
   3313     } else {
   3314       // Find the scope for the original declaration.
   3315       while (S && !S->isDeclScope(PrevDecl))
   3316         S = S->getParent();
   3317     }
   3318 
   3319     if (S)
   3320       S->RemoveDecl(PrevDecl);
   3321   }
   3322 }
   3323 
   3324 /// \brief Diagnose function specifiers on a declaration of an identifier that
   3325 /// does not identify a function.
   3326 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
   3327   // FIXME: We should probably indicate the identifier in question to avoid
   3328   // confusion for constructs like "inline int a(), b;"
   3329   if (D.getDeclSpec().isInlineSpecified())
   3330     Diag(D.getDeclSpec().getInlineSpecLoc(),
   3331          diag::err_inline_non_function);
   3332 
   3333   if (D.getDeclSpec().isVirtualSpecified())
   3334     Diag(D.getDeclSpec().getVirtualSpecLoc(),
   3335          diag::err_virtual_non_function);
   3336 
   3337   if (D.getDeclSpec().isExplicitSpecified())
   3338     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   3339          diag::err_explicit_non_function);
   3340 }
   3341 
   3342 NamedDecl*
   3343 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   3344                              QualType R,  TypeSourceInfo *TInfo,
   3345                              LookupResult &Previous, bool &Redeclaration) {
   3346   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   3347   if (D.getCXXScopeSpec().isSet()) {
   3348     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   3349       << D.getCXXScopeSpec().getRange();
   3350     D.setInvalidType();
   3351     // Pretend we didn't see the scope specifier.
   3352     DC = CurContext;
   3353     Previous.clear();
   3354   }
   3355 
   3356   if (getLangOptions().CPlusPlus) {
   3357     // Check that there are no default arguments (C++ only).
   3358     CheckExtraCXXDefaultArguments(D);
   3359   }
   3360 
   3361   DiagnoseFunctionSpecifiers(D);
   3362 
   3363   if (D.getDeclSpec().isThreadSpecified())
   3364     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3365 
   3366   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   3367     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   3368       << D.getName().getSourceRange();
   3369     return 0;
   3370   }
   3371 
   3372   TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
   3373   if (!NewTD) return 0;
   3374 
   3375   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3376   ProcessDeclAttributes(S, NewTD, D);
   3377 
   3378   CheckTypedefForVariablyModifiedType(S, NewTD);
   3379 
   3380   return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   3381 }
   3382 
   3383 void
   3384 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   3385   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   3386   // then it shall have block scope.
   3387   // Note that variably modified types must be fixed before merging the decl so
   3388   // that redeclarations will match.
   3389   QualType T = NewTD->getUnderlyingType();
   3390   if (T->isVariablyModifiedType()) {
   3391     getCurFunction()->setHasBranchProtectedScope();
   3392 
   3393     if (S->getFnParent() == 0) {
   3394       bool SizeIsNegative;
   3395       llvm::APSInt Oversized;
   3396       QualType FixedTy =
   3397           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   3398                                               Oversized);
   3399       if (!FixedTy.isNull()) {
   3400         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   3401         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
   3402       } else {
   3403         if (SizeIsNegative)
   3404           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   3405         else if (T->isVariableArrayType())
   3406           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   3407         else if (Oversized.getBoolValue())
   3408           Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
   3409         else
   3410           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   3411         NewTD->setInvalidDecl();
   3412       }
   3413     }
   3414   }
   3415 }
   3416 
   3417 
   3418 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   3419 /// declares a typedef-name, either using the 'typedef' type specifier or via
   3420 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   3421 NamedDecl*
   3422 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   3423                            LookupResult &Previous, bool &Redeclaration) {
   3424   // Merge the decl with the existing one if appropriate. If the decl is
   3425   // in an outer scope, it isn't the same thing.
   3426   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
   3427                        /*ExplicitInstantiationOrSpecialization=*/false);
   3428   if (!Previous.empty()) {
   3429     Redeclaration = true;
   3430     MergeTypedefNameDecl(NewTD, Previous);
   3431   }
   3432 
   3433   // If this is the C FILE type, notify the AST context.
   3434   if (IdentifierInfo *II = NewTD->getIdentifier())
   3435     if (!NewTD->isInvalidDecl() &&
   3436         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   3437       if (II->isStr("FILE"))
   3438         Context.setFILEDecl(NewTD);
   3439       else if (II->isStr("jmp_buf"))
   3440         Context.setjmp_bufDecl(NewTD);
   3441       else if (II->isStr("sigjmp_buf"))
   3442         Context.setsigjmp_bufDecl(NewTD);
   3443       else if (II->isStr("__builtin_va_list"))
   3444         Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
   3445     }
   3446 
   3447   return NewTD;
   3448 }
   3449 
   3450 /// \brief Determines whether the given declaration is an out-of-scope
   3451 /// previous declaration.
   3452 ///
   3453 /// This routine should be invoked when name lookup has found a
   3454 /// previous declaration (PrevDecl) that is not in the scope where a
   3455 /// new declaration by the same name is being introduced. If the new
   3456 /// declaration occurs in a local scope, previous declarations with
   3457 /// linkage may still be considered previous declarations (C99
   3458 /// 6.2.2p4-5, C++ [basic.link]p6).
   3459 ///
   3460 /// \param PrevDecl the previous declaration found by name
   3461 /// lookup
   3462 ///
   3463 /// \param DC the context in which the new declaration is being
   3464 /// declared.
   3465 ///
   3466 /// \returns true if PrevDecl is an out-of-scope previous declaration
   3467 /// for a new delcaration with the same name.
   3468 static bool
   3469 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   3470                                 ASTContext &Context) {
   3471   if (!PrevDecl)
   3472     return false;
   3473 
   3474   if (!PrevDecl->hasLinkage())
   3475     return false;
   3476 
   3477   if (Context.getLangOptions().CPlusPlus) {
   3478     // C++ [basic.link]p6:
   3479     //   If there is a visible declaration of an entity with linkage
   3480     //   having the same name and type, ignoring entities declared
   3481     //   outside the innermost enclosing namespace scope, the block
   3482     //   scope declaration declares that same entity and receives the
   3483     //   linkage of the previous declaration.
   3484     DeclContext *OuterContext = DC->getRedeclContext();
   3485     if (!OuterContext->isFunctionOrMethod())
   3486       // This rule only applies to block-scope declarations.
   3487       return false;
   3488 
   3489     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   3490     if (PrevOuterContext->isRecord())
   3491       // We found a member function: ignore it.
   3492       return false;
   3493 
   3494     // Find the innermost enclosing namespace for the new and
   3495     // previous declarations.
   3496     OuterContext = OuterContext->getEnclosingNamespaceContext();
   3497     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   3498 
   3499     // The previous declaration is in a different namespace, so it
   3500     // isn't the same function.
   3501     if (!OuterContext->Equals(PrevOuterContext))
   3502       return false;
   3503   }
   3504 
   3505   return true;
   3506 }
   3507 
   3508 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   3509   CXXScopeSpec &SS = D.getCXXScopeSpec();
   3510   if (!SS.isSet()) return;
   3511   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   3512 }
   3513 
   3514 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   3515   QualType type = decl->getType();
   3516   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   3517   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   3518     // Various kinds of declaration aren't allowed to be __autoreleasing.
   3519     unsigned kind = -1U;
   3520     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3521       if (var->hasAttr<BlocksAttr>())
   3522         kind = 0; // __block
   3523       else if (!var->hasLocalStorage())
   3524         kind = 1; // global
   3525     } else if (isa<ObjCIvarDecl>(decl)) {
   3526       kind = 3; // ivar
   3527     } else if (isa<FieldDecl>(decl)) {
   3528       kind = 2; // field
   3529     }
   3530 
   3531     if (kind != -1U) {
   3532       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   3533         << kind;
   3534     }
   3535   } else if (lifetime == Qualifiers::OCL_None) {
   3536     // Try to infer lifetime.
   3537     if (!type->isObjCLifetimeType())
   3538       return false;
   3539 
   3540     lifetime = type->getObjCARCImplicitLifetime();
   3541     type = Context.getLifetimeQualifiedType(type, lifetime);
   3542     decl->setType(type);
   3543   }
   3544 
   3545   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   3546     // Thread-local variables cannot have lifetime.
   3547     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   3548         var->isThreadSpecified()) {
   3549       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   3550         << var->getType();
   3551       return true;
   3552     }
   3553   }
   3554 
   3555   return false;
   3556 }
   3557 
   3558 NamedDecl*
   3559 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   3560                               QualType R, TypeSourceInfo *TInfo,
   3561                               LookupResult &Previous,
   3562                               MultiTemplateParamsArg TemplateParamLists,
   3563                               bool &Redeclaration) {
   3564   DeclarationName Name = GetNameForDeclarator(D).getName();
   3565 
   3566   // Check that there are no default arguments (C++ only).
   3567   if (getLangOptions().CPlusPlus)
   3568     CheckExtraCXXDefaultArguments(D);
   3569 
   3570   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   3571   assert(SCSpec != DeclSpec::SCS_typedef &&
   3572          "Parser allowed 'typedef' as storage class VarDecl.");
   3573   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3574   if (SCSpec == DeclSpec::SCS_mutable) {
   3575     // mutable can only appear on non-static class members, so it's always
   3576     // an error here
   3577     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   3578     D.setInvalidType();
   3579     SC = SC_None;
   3580   }
   3581   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   3582   VarDecl::StorageClass SCAsWritten
   3583     = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3584 
   3585   IdentifierInfo *II = Name.getAsIdentifierInfo();
   3586   if (!II) {
   3587     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   3588       << Name.getAsString();
   3589     return 0;
   3590   }
   3591 
   3592   DiagnoseFunctionSpecifiers(D);
   3593 
   3594   if (!DC->isRecord() && S->getFnParent() == 0) {
   3595     // C99 6.9p2: The storage-class specifiers auto and register shall not
   3596     // appear in the declaration specifiers in an external declaration.
   3597     if (SC == SC_Auto || SC == SC_Register) {
   3598 
   3599       // If this is a register variable with an asm label specified, then this
   3600       // is a GNU extension.
   3601       if (SC == SC_Register && D.getAsmLabel())
   3602         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
   3603       else
   3604         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   3605       D.setInvalidType();
   3606     }
   3607   }
   3608 
   3609   bool isExplicitSpecialization = false;
   3610   VarDecl *NewVD;
   3611   if (!getLangOptions().CPlusPlus) {
   3612     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   3613                             D.getIdentifierLoc(), II,
   3614                             R, TInfo, SC, SCAsWritten);
   3615 
   3616     if (D.isInvalidType())
   3617       NewVD->setInvalidDecl();
   3618   } else {
   3619     if (DC->isRecord() && !CurContext->isRecord()) {
   3620       // This is an out-of-line definition of a static data member.
   3621       if (SC == SC_Static) {
   3622         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   3623              diag::err_static_out_of_line)
   3624           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   3625       } else if (SC == SC_None)
   3626         SC = SC_Static;
   3627     }
   3628     if (SC == SC_Static) {
   3629       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   3630         if (RD->isLocalClass())
   3631           Diag(D.getIdentifierLoc(),
   3632                diag::err_static_data_member_not_allowed_in_local_class)
   3633             << Name << RD->getDeclName();
   3634 
   3635         // C++ [class.union]p1: If a union contains a static data member,
   3636         // the program is ill-formed.
   3637         //
   3638         // We also disallow static data members in anonymous structs.
   3639         if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
   3640           Diag(D.getIdentifierLoc(),
   3641                diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
   3642             << Name << RD->isUnion();
   3643       }
   3644     }
   3645 
   3646     // Match up the template parameter lists with the scope specifier, then
   3647     // determine whether we have a template or a template specialization.
   3648     isExplicitSpecialization = false;
   3649     bool Invalid = false;
   3650     if (TemplateParameterList *TemplateParams
   3651         = MatchTemplateParametersToScopeSpecifier(
   3652                                   D.getDeclSpec().getSourceRange().getBegin(),
   3653                                                   D.getIdentifierLoc(),
   3654                                                   D.getCXXScopeSpec(),
   3655                                                   TemplateParamLists.get(),
   3656                                                   TemplateParamLists.size(),
   3657                                                   /*never a friend*/ false,
   3658                                                   isExplicitSpecialization,
   3659                                                   Invalid)) {
   3660       if (TemplateParams->size() > 0) {
   3661         // There is no such thing as a variable template.
   3662         Diag(D.getIdentifierLoc(), diag::err_template_variable)
   3663           << II
   3664           << SourceRange(TemplateParams->getTemplateLoc(),
   3665                          TemplateParams->getRAngleLoc());
   3666         return 0;
   3667       } else {
   3668         // There is an extraneous 'template<>' for this variable. Complain
   3669         // about it, but allow the declaration of the variable.
   3670         Diag(TemplateParams->getTemplateLoc(),
   3671              diag::err_template_variable_noparams)
   3672           << II
   3673           << SourceRange(TemplateParams->getTemplateLoc(),
   3674                          TemplateParams->getRAngleLoc());
   3675       }
   3676     }
   3677 
   3678     NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   3679                             D.getIdentifierLoc(), II,
   3680                             R, TInfo, SC, SCAsWritten);
   3681 
   3682     // If this decl has an auto type in need of deduction, make a note of the
   3683     // Decl so we can diagnose uses of it in its own initializer.
   3684     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   3685         R->getContainedAutoType())
   3686       ParsingInitForAutoVars.insert(NewVD);
   3687 
   3688     if (D.isInvalidType() || Invalid)
   3689       NewVD->setInvalidDecl();
   3690 
   3691     SetNestedNameSpecifier(NewVD, D);
   3692 
   3693     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
   3694       NewVD->setTemplateParameterListsInfo(Context,
   3695                                            TemplateParamLists.size(),
   3696                                            TemplateParamLists.release());
   3697     }
   3698   }
   3699 
   3700   if (D.getDeclSpec().isThreadSpecified()) {
   3701     if (NewVD->hasLocalStorage())
   3702       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
   3703     else if (!Context.Target.isTLSSupported())
   3704       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
   3705     else
   3706       NewVD->setThreadSpecified(true);
   3707   }
   3708 
   3709   // Set the lexical context. If the declarator has a C++ scope specifier, the
   3710   // lexical context will be different from the semantic context.
   3711   NewVD->setLexicalDeclContext(CurContext);
   3712 
   3713   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3714   ProcessDeclAttributes(S, NewVD, D);
   3715 
   3716   // In auto-retain/release, infer strong retension for variables of
   3717   // retainable type.
   3718   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   3719     NewVD->setInvalidDecl();
   3720 
   3721   // Handle GNU asm-label extension (encoded as an attribute).
   3722   if (Expr *E = (Expr*)D.getAsmLabel()) {
   3723     // The parser guarantees this is a string.
   3724     StringLiteral *SE = cast<StringLiteral>(E);
   3725     llvm::StringRef Label = SE->getString();
   3726     if (S->getFnParent() != 0) {
   3727       switch (SC) {
   3728       case SC_None:
   3729       case SC_Auto:
   3730         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   3731         break;
   3732       case SC_Register:
   3733         if (!Context.Target.isValidGCCRegisterName(Label))
   3734           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   3735         break;
   3736       case SC_Static:
   3737       case SC_Extern:
   3738       case SC_PrivateExtern:
   3739         break;
   3740       }
   3741     }
   3742 
   3743     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   3744                                                 Context, Label));
   3745   }
   3746 
   3747   // Diagnose shadowed variables before filtering for scope.
   3748   if (!D.getCXXScopeSpec().isSet())
   3749     CheckShadow(S, NewVD, Previous);
   3750 
   3751   // Don't consider existing declarations that are in a different
   3752   // scope and are out-of-semantic-context declarations (if the new
   3753   // declaration has linkage).
   3754   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
   3755                        isExplicitSpecialization);
   3756 
   3757   if (!getLangOptions().CPlusPlus)
   3758     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
   3759   else {
   3760     // Merge the decl with the existing one if appropriate.
   3761     if (!Previous.empty()) {
   3762       if (Previous.isSingleResult() &&
   3763           isa<FieldDecl>(Previous.getFoundDecl()) &&
   3764           D.getCXXScopeSpec().isSet()) {
   3765         // The user tried to define a non-static data member
   3766         // out-of-line (C++ [dcl.meaning]p1).
   3767         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   3768           << D.getCXXScopeSpec().getRange();
   3769         Previous.clear();
   3770         NewVD->setInvalidDecl();
   3771       }
   3772     } else if (D.getCXXScopeSpec().isSet()) {
   3773       // No previous declaration in the qualifying scope.
   3774       Diag(D.getIdentifierLoc(), diag::err_no_member)
   3775         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   3776         << D.getCXXScopeSpec().getRange();
   3777       NewVD->setInvalidDecl();
   3778     }
   3779 
   3780     CheckVariableDeclaration(NewVD, Previous, Redeclaration);
   3781 
   3782     // This is an explicit specialization of a static data member. Check it.
   3783     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
   3784         CheckMemberSpecialization(NewVD, Previous))
   3785       NewVD->setInvalidDecl();
   3786   }
   3787 
   3788   // attributes declared post-definition are currently ignored
   3789   // FIXME: This should be handled in attribute merging, not
   3790   // here.
   3791   if (Previous.isSingleResult()) {
   3792     VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
   3793     if (Def && (Def = Def->getDefinition()) &&
   3794         Def != NewVD && D.hasAttributes()) {
   3795       Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
   3796       Diag(Def->getLocation(), diag::note_previous_definition);
   3797     }
   3798   }
   3799 
   3800   // If this is a locally-scoped extern C variable, update the map of
   3801   // such variables.
   3802   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
   3803       !NewVD->isInvalidDecl())
   3804     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
   3805 
   3806   // If there's a #pragma GCC visibility in scope, and this isn't a class
   3807   // member, set the visibility of this variable.
   3808   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
   3809     AddPushedVisibilityAttribute(NewVD);
   3810 
   3811   MarkUnusedFileScopedDecl(NewVD);
   3812 
   3813   return NewVD;
   3814 }
   3815 
   3816 /// \brief Diagnose variable or built-in function shadowing.  Implements
   3817 /// -Wshadow.
   3818 ///
   3819 /// This method is called whenever a VarDecl is added to a "useful"
   3820 /// scope.
   3821 ///
   3822 /// \param S the scope in which the shadowing name is being declared
   3823 /// \param R the lookup of the name
   3824 ///
   3825 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   3826   // Return if warning is ignored.
   3827   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
   3828         Diagnostic::Ignored)
   3829     return;
   3830 
   3831   // Don't diagnose declarations at file scope.
   3832   if (D->hasGlobalStorage())
   3833     return;
   3834 
   3835   DeclContext *NewDC = D->getDeclContext();
   3836 
   3837   // Only diagnose if we're shadowing an unambiguous field or variable.
   3838   if (R.getResultKind() != LookupResult::Found)
   3839     return;
   3840 
   3841   NamedDecl* ShadowedDecl = R.getFoundDecl();
   3842   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   3843     return;
   3844 
   3845   // Fields are not shadowed by variables in C++ static methods.
   3846   if (isa<FieldDecl>(ShadowedDecl))
   3847     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   3848       if (MD->isStatic())
   3849         return;
   3850 
   3851   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   3852     if (shadowedVar->isExternC()) {
   3853       // For shadowing external vars, make sure that we point to the global
   3854       // declaration, not a locally scoped extern declaration.
   3855       for (VarDecl::redecl_iterator
   3856              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
   3857            I != E; ++I)
   3858         if (I->isFileVarDecl()) {
   3859           ShadowedDecl = *I;
   3860           break;
   3861         }
   3862     }
   3863 
   3864   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   3865 
   3866   // Only warn about certain kinds of shadowing for class members.
   3867   if (NewDC && NewDC->isRecord()) {
   3868     // In particular, don't warn about shadowing non-class members.
   3869     if (!OldDC->isRecord())
   3870       return;
   3871 
   3872     // TODO: should we warn about static data members shadowing
   3873     // static data members from base classes?
   3874 
   3875     // TODO: don't diagnose for inaccessible shadowed members.
   3876     // This is hard to do perfectly because we might friend the
   3877     // shadowing context, but that's just a false negative.
   3878   }
   3879 
   3880   // Determine what kind of declaration we're shadowing.
   3881   unsigned Kind;
   3882   if (isa<RecordDecl>(OldDC)) {
   3883     if (isa<FieldDecl>(ShadowedDecl))
   3884       Kind = 3; // field
   3885     else
   3886       Kind = 2; // static data member
   3887   } else if (OldDC->isFileContext())
   3888     Kind = 1; // global
   3889   else
   3890     Kind = 0; // local
   3891 
   3892   DeclarationName Name = R.getLookupName();
   3893 
   3894   // Emit warning and note.
   3895   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   3896   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   3897 }
   3898 
   3899 /// \brief Check -Wshadow without the advantage of a previous lookup.
   3900 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   3901   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
   3902         Diagnostic::Ignored)
   3903     return;
   3904 
   3905   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   3906                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   3907   LookupName(R, S);
   3908   CheckShadow(S, D, R);
   3909 }
   3910 
   3911 /// \brief Perform semantic checking on a newly-created variable
   3912 /// declaration.
   3913 ///
   3914 /// This routine performs all of the type-checking required for a
   3915 /// variable declaration once it has been built. It is used both to
   3916 /// check variables after they have been parsed and their declarators
   3917 /// have been translated into a declaration, and to check variables
   3918 /// that have been instantiated from a template.
   3919 ///
   3920 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   3921 void Sema::CheckVariableDeclaration(VarDecl *NewVD,
   3922                                     LookupResult &Previous,
   3923                                     bool &Redeclaration) {
   3924   // If the decl is already known invalid, don't check it.
   3925   if (NewVD->isInvalidDecl())
   3926     return;
   3927 
   3928   QualType T = NewVD->getType();
   3929 
   3930   if (T->isObjCObjectType()) {
   3931     Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
   3932     return NewVD->setInvalidDecl();
   3933   }
   3934 
   3935   // Emit an error if an address space was applied to decl with local storage.
   3936   // This includes arrays of objects with address space qualifiers, but not
   3937   // automatic variables that point to other address spaces.
   3938   // ISO/IEC TR 18037 S5.1.2
   3939   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   3940     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   3941     return NewVD->setInvalidDecl();
   3942   }
   3943 
   3944   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   3945       && !NewVD->hasAttr<BlocksAttr>()) {
   3946     if (getLangOptions().getGCMode() != LangOptions::NonGC)
   3947       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   3948     else
   3949       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   3950   }
   3951 
   3952   bool isVM = T->isVariablyModifiedType();
   3953   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   3954       NewVD->hasAttr<BlocksAttr>())
   3955     getCurFunction()->setHasBranchProtectedScope();
   3956 
   3957   if ((isVM && NewVD->hasLinkage()) ||
   3958       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   3959     bool SizeIsNegative;
   3960     llvm::APSInt Oversized;
   3961     QualType FixedTy =
   3962         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   3963                                             Oversized);
   3964 
   3965     if (FixedTy.isNull() && T->isVariableArrayType()) {
   3966       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   3967       // FIXME: This won't give the correct result for
   3968       // int a[10][n];
   3969       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   3970 
   3971       if (NewVD->isFileVarDecl())
   3972         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   3973         << SizeRange;
   3974       else if (NewVD->getStorageClass() == SC_Static)
   3975         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   3976         << SizeRange;
   3977       else
   3978         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   3979         << SizeRange;
   3980       return NewVD->setInvalidDecl();
   3981     }
   3982 
   3983     if (FixedTy.isNull()) {
   3984       if (NewVD->isFileVarDecl())
   3985         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   3986       else
   3987         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   3988       return NewVD->setInvalidDecl();
   3989     }
   3990 
   3991     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   3992     NewVD->setType(FixedTy);
   3993   }
   3994 
   3995   if (Previous.empty() && NewVD->isExternC()) {
   3996     // Since we did not find anything by this name and we're declaring
   3997     // an extern "C" variable, look for a non-visible extern "C"
   3998     // declaration with the same name.
   3999     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4000       = LocallyScopedExternalDecls.find(NewVD->getDeclName());
   4001     if (Pos != LocallyScopedExternalDecls.end())
   4002       Previous.addDecl(Pos->second);
   4003   }
   4004 
   4005   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
   4006     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   4007       << T;
   4008     return NewVD->setInvalidDecl();
   4009   }
   4010 
   4011   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   4012     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   4013     return NewVD->setInvalidDecl();
   4014   }
   4015 
   4016   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   4017     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   4018     return NewVD->setInvalidDecl();
   4019   }
   4020 
   4021   // Function pointers and references cannot have qualified function type, only
   4022   // function pointer-to-members can do that.
   4023   QualType Pointee;
   4024   unsigned PtrOrRef = 0;
   4025   if (const PointerType *Ptr = T->getAs<PointerType>())
   4026     Pointee = Ptr->getPointeeType();
   4027   else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
   4028     Pointee = Ref->getPointeeType();
   4029     PtrOrRef = 1;
   4030   }
   4031   if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
   4032       Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
   4033     Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
   4034         << PtrOrRef;
   4035     return NewVD->setInvalidDecl();
   4036   }
   4037 
   4038   if (!Previous.empty()) {
   4039     Redeclaration = true;
   4040     MergeVarDecl(NewVD, Previous);
   4041   }
   4042 }
   4043 
   4044 /// \brief Data used with FindOverriddenMethod
   4045 struct FindOverriddenMethodData {
   4046   Sema *S;
   4047   CXXMethodDecl *Method;
   4048 };
   4049 
   4050 /// \brief Member lookup function that determines whether a given C++
   4051 /// method overrides a method in a base class, to be used with
   4052 /// CXXRecordDecl::lookupInBases().
   4053 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   4054                                  CXXBasePath &Path,
   4055                                  void *UserData) {
   4056   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   4057 
   4058   FindOverriddenMethodData *Data
   4059     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   4060 
   4061   DeclarationName Name = Data->Method->getDeclName();
   4062 
   4063   // FIXME: Do we care about other names here too?
   4064   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4065     // We really want to find the base class destructor here.
   4066     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   4067     CanQualType CT = Data->S->Context.getCanonicalType(T);
   4068 
   4069     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   4070   }
   4071 
   4072   for (Path.Decls = BaseRecord->lookup(Name);
   4073        Path.Decls.first != Path.Decls.second;
   4074        ++Path.Decls.first) {
   4075     NamedDecl *D = *Path.Decls.first;
   4076     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   4077       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   4078         return true;
   4079     }
   4080   }
   4081 
   4082   return false;
   4083 }
   4084 
   4085 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   4086 /// and if so, check that it's a valid override and remember it.
   4087 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   4088   // Look for virtual methods in base classes that this method might override.
   4089   CXXBasePaths Paths;
   4090   FindOverriddenMethodData Data;
   4091   Data.Method = MD;
   4092   Data.S = this;
   4093   bool AddedAny = false;
   4094   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   4095     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
   4096          E = Paths.found_decls_end(); I != E; ++I) {
   4097       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
   4098         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   4099         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   4100             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   4101             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   4102           AddedAny = true;
   4103         }
   4104       }
   4105     }
   4106   }
   4107 
   4108   return AddedAny;
   4109 }
   4110 
   4111 static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
   4112   LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
   4113                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4114   S.LookupQualifiedName(Prev, NewFD->getDeclContext());
   4115   assert(!Prev.isAmbiguous() &&
   4116          "Cannot have an ambiguity in previous-declaration lookup");
   4117   for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   4118        Func != FuncEnd; ++Func) {
   4119     if (isa<FunctionDecl>(*Func) &&
   4120         isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
   4121       S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
   4122   }
   4123 }
   4124 
   4125 NamedDecl*
   4126 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   4127                               QualType R, TypeSourceInfo *TInfo,
   4128                               LookupResult &Previous,
   4129                               MultiTemplateParamsArg TemplateParamLists,
   4130                               bool IsFunctionDefinition, bool &Redeclaration) {
   4131   assert(R.getTypePtr()->isFunctionType());
   4132 
   4133   // TODO: consider using NameInfo for diagnostic.
   4134   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4135   DeclarationName Name = NameInfo.getName();
   4136   FunctionDecl::StorageClass SC = SC_None;
   4137   switch (D.getDeclSpec().getStorageClassSpec()) {
   4138   default: assert(0 && "Unknown storage class!");
   4139   case DeclSpec::SCS_auto:
   4140   case DeclSpec::SCS_register:
   4141   case DeclSpec::SCS_mutable:
   4142     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4143          diag::err_typecheck_sclass_func);
   4144     D.setInvalidType();
   4145     break;
   4146   case DeclSpec::SCS_unspecified: SC = SC_None; break;
   4147   case DeclSpec::SCS_extern:      SC = SC_Extern; break;
   4148   case DeclSpec::SCS_static: {
   4149     if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4150       // C99 6.7.1p5:
   4151       //   The declaration of an identifier for a function that has
   4152       //   block scope shall have no explicit storage-class specifier
   4153       //   other than extern
   4154       // See also (C++ [dcl.stc]p4).
   4155       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4156            diag::err_static_block_func);
   4157       SC = SC_None;
   4158     } else
   4159       SC = SC_Static;
   4160     break;
   4161   }
   4162   case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
   4163   }
   4164 
   4165   if (D.getDeclSpec().isThreadSpecified())
   4166     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   4167 
   4168   // Do not allow returning a objc interface by-value.
   4169   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
   4170     Diag(D.getIdentifierLoc(),
   4171          diag::err_object_cannot_be_passed_returned_by_value) << 0
   4172     << R->getAs<FunctionType>()->getResultType();
   4173     D.setInvalidType();
   4174   }
   4175 
   4176   FunctionDecl *NewFD;
   4177   bool isInline = D.getDeclSpec().isInlineSpecified();
   4178   bool isFriend = false;
   4179   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   4180   FunctionDecl::StorageClass SCAsWritten
   4181     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
   4182   FunctionTemplateDecl *FunctionTemplate = 0;
   4183   bool isExplicitSpecialization = false;
   4184   bool isFunctionTemplateSpecialization = false;
   4185 
   4186   if (!getLangOptions().CPlusPlus) {
   4187     // Determine whether the function was written with a
   4188     // prototype. This true when:
   4189     //   - there is a prototype in the declarator, or
   4190     //   - the type R of the function is some kind of typedef or other reference
   4191     //     to a type name (which eventually refers to a function type).
   4192     bool HasPrototype =
   4193     (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   4194     (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   4195 
   4196     NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   4197                                  NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   4198                                  HasPrototype);
   4199     if (D.isInvalidType())
   4200       NewFD->setInvalidDecl();
   4201 
   4202     // Set the lexical context.
   4203     NewFD->setLexicalDeclContext(CurContext);
   4204     // Filter out previous declarations that don't match the scope.
   4205     FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
   4206                          /*ExplicitInstantiationOrSpecialization=*/false);
   4207   } else {
   4208     isFriend = D.getDeclSpec().isFriendSpecified();
   4209     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   4210     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   4211     bool isVirtualOkay = false;
   4212 
   4213     // Check that the return type is not an abstract class type.
   4214     // For record types, this is done by the AbstractClassUsageDiagnoser once
   4215     // the class has been completely parsed.
   4216     if (!DC->isRecord() &&
   4217       RequireNonAbstractType(D.getIdentifierLoc(),
   4218                              R->getAs<FunctionType>()->getResultType(),
   4219                              diag::err_abstract_type_in_decl,
   4220                              AbstractReturnType))
   4221       D.setInvalidType();
   4222 
   4223     if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   4224       // This is a C++ constructor declaration.
   4225       assert(DC->isRecord() &&
   4226              "Constructors can only be declared in a member context");
   4227 
   4228       R = CheckConstructorDeclarator(D, R, SC);
   4229 
   4230       // Create the new declaration
   4231       CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
   4232                                          Context,
   4233                                          cast<CXXRecordDecl>(DC),
   4234                                          D.getSourceRange().getBegin(),
   4235                                          NameInfo, R, TInfo,
   4236                                          isExplicit, isInline,
   4237                                          /*isImplicitlyDeclared=*/false);
   4238 
   4239       NewFD = NewCD;
   4240     } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4241       // This is a C++ destructor declaration.
   4242       if (DC->isRecord()) {
   4243         R = CheckDestructorDeclarator(D, R, SC);
   4244         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   4245 
   4246         CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
   4247                                           D.getSourceRange().getBegin(),
   4248                                           NameInfo, R, TInfo,
   4249                                           isInline,
   4250                                           /*isImplicitlyDeclared=*/false);
   4251         NewFD = NewDD;
   4252         isVirtualOkay = true;
   4253 
   4254         // If the class is complete, then we now create the implicit exception
   4255         // specification. If the class is incomplete or dependent, we can't do
   4256         // it yet.
   4257         if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
   4258             Record->getDefinition() && !Record->isBeingDefined() &&
   4259             R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   4260           AdjustDestructorExceptionSpec(Record, NewDD);
   4261         }
   4262 
   4263       } else {
   4264         Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   4265 
   4266         // Create a FunctionDecl to satisfy the function definition parsing
   4267         // code path.
   4268         NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   4269                                      D.getIdentifierLoc(), Name, R, TInfo,
   4270                                      SC, SCAsWritten, isInline,
   4271                                      /*hasPrototype=*/true);
   4272         D.setInvalidType();
   4273       }
   4274     } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   4275       if (!DC->isRecord()) {
   4276         Diag(D.getIdentifierLoc(),
   4277              diag::err_conv_function_not_member);
   4278         return 0;
   4279       }
   4280 
   4281       CheckConversionDeclarator(D, R, SC);
   4282       NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
   4283                                         D.getSourceRange().getBegin(),
   4284                                         NameInfo, R, TInfo,
   4285                                         isInline, isExplicit,
   4286                                         SourceLocation());
   4287 
   4288       isVirtualOkay = true;
   4289     } else if (DC->isRecord()) {
   4290       // If the of the function is the same as the name of the record, then this
   4291       // must be an invalid constructor that has a return type.
   4292       // (The parser checks for a return type and makes the declarator a
   4293       // constructor if it has no return type).
   4294       // must have an invalid constructor that has a return type
   4295       if (Name.getAsIdentifierInfo() &&
   4296           Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   4297         Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   4298           << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   4299           << SourceRange(D.getIdentifierLoc());
   4300         return 0;
   4301       }
   4302 
   4303       bool isStatic = SC == SC_Static;
   4304 
   4305       // [class.free]p1:
   4306       // Any allocation function for a class T is a static member
   4307       // (even if not explicitly declared static).
   4308       if (Name.getCXXOverloadedOperator() == OO_New ||
   4309           Name.getCXXOverloadedOperator() == OO_Array_New)
   4310         isStatic = true;
   4311 
   4312       // [class.free]p6 Any deallocation function for a class X is a static member
   4313       // (even if not explicitly declared static).
   4314       if (Name.getCXXOverloadedOperator() == OO_Delete ||
   4315           Name.getCXXOverloadedOperator() == OO_Array_Delete)
   4316         isStatic = true;
   4317 
   4318       // This is a C++ method declaration.
   4319       CXXMethodDecl *NewMD = CXXMethodDecl::Create(
   4320                                                Context, cast<CXXRecordDecl>(DC),
   4321                                                D.getSourceRange().getBegin(),
   4322                                                NameInfo, R, TInfo,
   4323                                                isStatic, SCAsWritten, isInline,
   4324                                                SourceLocation());
   4325       NewFD = NewMD;
   4326 
   4327       isVirtualOkay = !isStatic;
   4328     } else {
   4329       // Determine whether the function was written with a
   4330       // prototype. This true when:
   4331       //   - we're in C++ (where every function has a prototype),
   4332       NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
   4333                                    NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   4334                                    true/*HasPrototype*/);
   4335     }
   4336 
   4337     if (isFriend && !isInline && IsFunctionDefinition) {
   4338       // C++ [class.friend]p5
   4339       //   A function can be defined in a friend declaration of a
   4340       //   class . . . . Such a function is implicitly inline.
   4341       NewFD->setImplicitlyInline();
   4342     }
   4343 
   4344     SetNestedNameSpecifier(NewFD, D);
   4345     isExplicitSpecialization = false;
   4346     isFunctionTemplateSpecialization = false;
   4347     if (D.isInvalidType())
   4348       NewFD->setInvalidDecl();
   4349 
   4350     // Set the lexical context. If the declarator has a C++
   4351     // scope specifier, or is the object of a friend declaration, the
   4352     // lexical context will be different from the semantic context.
   4353     NewFD->setLexicalDeclContext(CurContext);
   4354 
   4355     // Match up the template parameter lists with the scope specifier, then
   4356     // determine whether we have a template or a template specialization.
   4357     bool Invalid = false;
   4358     if (TemplateParameterList *TemplateParams
   4359           = MatchTemplateParametersToScopeSpecifier(
   4360                                   D.getDeclSpec().getSourceRange().getBegin(),
   4361                                   D.getIdentifierLoc(),
   4362                                   D.getCXXScopeSpec(),
   4363                                   TemplateParamLists.get(),
   4364                                   TemplateParamLists.size(),
   4365                                   isFriend,
   4366                                   isExplicitSpecialization,
   4367                                   Invalid)) {
   4368       if (TemplateParams->size() > 0) {
   4369         // This is a function template
   4370 
   4371         // Check that we can declare a template here.
   4372         if (CheckTemplateDeclScope(S, TemplateParams))
   4373           return 0;
   4374 
   4375         // A destructor cannot be a template.
   4376         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4377           Diag(NewFD->getLocation(), diag::err_destructor_template);
   4378           return 0;
   4379         }
   4380 
   4381         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   4382                                                         NewFD->getLocation(),
   4383                                                         Name, TemplateParams,
   4384                                                         NewFD);
   4385         FunctionTemplate->setLexicalDeclContext(CurContext);
   4386         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   4387 
   4388         // For source fidelity, store the other template param lists.
   4389         if (TemplateParamLists.size() > 1) {
   4390           NewFD->setTemplateParameterListsInfo(Context,
   4391                                                TemplateParamLists.size() - 1,
   4392                                                TemplateParamLists.release());
   4393         }
   4394       } else {
   4395         // This is a function template specialization.
   4396         isFunctionTemplateSpecialization = true;
   4397         // For source fidelity, store all the template param lists.
   4398         NewFD->setTemplateParameterListsInfo(Context,
   4399                                              TemplateParamLists.size(),
   4400                                              TemplateParamLists.release());
   4401 
   4402         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   4403         if (isFriend) {
   4404           // We want to remove the "template<>", found here.
   4405           SourceRange RemoveRange = TemplateParams->getSourceRange();
   4406 
   4407           // If we remove the template<> and the name is not a
   4408           // template-id, we're actually silently creating a problem:
   4409           // the friend declaration will refer to an untemplated decl,
   4410           // and clearly the user wants a template specialization.  So
   4411           // we need to insert '<>' after the name.
   4412           SourceLocation InsertLoc;
   4413           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   4414             InsertLoc = D.getName().getSourceRange().getEnd();
   4415             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
   4416           }
   4417 
   4418           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   4419             << Name << RemoveRange
   4420             << FixItHint::CreateRemoval(RemoveRange)
   4421             << FixItHint::CreateInsertion(InsertLoc, "<>");
   4422         }
   4423       }
   4424     }
   4425     else {
   4426       // All template param lists were matched against the scope specifier:
   4427       // this is NOT (an explicit specialization of) a template.
   4428       if (TemplateParamLists.size() > 0)
   4429         // For source fidelity, store all the template param lists.
   4430         NewFD->setTemplateParameterListsInfo(Context,
   4431                                              TemplateParamLists.size(),
   4432                                              TemplateParamLists.release());
   4433     }
   4434 
   4435     if (Invalid) {
   4436       NewFD->setInvalidDecl();
   4437       if (FunctionTemplate)
   4438         FunctionTemplate->setInvalidDecl();
   4439     }
   4440 
   4441     // C++ [dcl.fct.spec]p5:
   4442     //   The virtual specifier shall only be used in declarations of
   4443     //   nonstatic class member functions that appear within a
   4444     //   member-specification of a class declaration; see 10.3.
   4445     //
   4446     if (isVirtual && !NewFD->isInvalidDecl()) {
   4447       if (!isVirtualOkay) {
   4448         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4449              diag::err_virtual_non_function);
   4450       } else if (!CurContext->isRecord()) {
   4451         // 'virtual' was specified outside of the class.
   4452         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4453              diag::err_virtual_out_of_class)
   4454           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   4455       } else if (NewFD->getDescribedFunctionTemplate()) {
   4456         // C++ [temp.mem]p3:
   4457         //  A member function template shall not be virtual.
   4458         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   4459              diag::err_virtual_member_function_template)
   4460           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   4461       } else {
   4462         // Okay: Add virtual to the method.
   4463         NewFD->setVirtualAsWritten(true);
   4464       }
   4465     }
   4466 
   4467     // C++ [dcl.fct.spec]p3:
   4468     //  The inline specifier shall not appear on a block scope function declaration.
   4469     if (isInline && !NewFD->isInvalidDecl()) {
   4470       if (CurContext->isFunctionOrMethod()) {
   4471         // 'inline' is not allowed on block scope function declaration.
   4472         Diag(D.getDeclSpec().getInlineSpecLoc(),
   4473              diag::err_inline_declaration_block_scope) << Name
   4474           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   4475       }
   4476     }
   4477 
   4478     // C++ [dcl.fct.spec]p6:
   4479     //  The explicit specifier shall be used only in the declaration of a
   4480     //  constructor or conversion function within its class definition; see 12.3.1
   4481     //  and 12.3.2.
   4482     if (isExplicit && !NewFD->isInvalidDecl()) {
   4483       if (!CurContext->isRecord()) {
   4484         // 'explicit' was specified outside of the class.
   4485         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   4486              diag::err_explicit_out_of_class)
   4487           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   4488       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   4489                  !isa<CXXConversionDecl>(NewFD)) {
   4490         // 'explicit' was specified on a function that wasn't a constructor
   4491         // or conversion function.
   4492         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   4493              diag::err_explicit_non_ctor_or_conv_function)
   4494           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   4495       }
   4496     }
   4497 
   4498     // Filter out previous declarations that don't match the scope.
   4499     FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
   4500                          isExplicitSpecialization ||
   4501                          isFunctionTemplateSpecialization);
   4502 
   4503     if (isFriend) {
   4504       // For now, claim that the objects have no previous declaration.
   4505       if (FunctionTemplate) {
   4506         FunctionTemplate->setObjectOfFriendDecl(false);
   4507         FunctionTemplate->setAccess(AS_public);
   4508       }
   4509       NewFD->setObjectOfFriendDecl(false);
   4510       NewFD->setAccess(AS_public);
   4511     }
   4512 
   4513     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
   4514       // A method is implicitly inline if it's defined in its class
   4515       // definition.
   4516       NewFD->setImplicitlyInline();
   4517     }
   4518 
   4519     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   4520         !CurContext->isRecord()) {
   4521       // C++ [class.static]p1:
   4522       //   A data or function member of a class may be declared static
   4523       //   in a class definition, in which case it is a static member of
   4524       //   the class.
   4525 
   4526       // Complain about the 'static' specifier if it's on an out-of-line
   4527       // member function definition.
   4528       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4529            diag::err_static_out_of_line)
   4530         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4531     }
   4532   }
   4533 
   4534   // Handle GNU asm-label extension (encoded as an attribute).
   4535   if (Expr *E = (Expr*) D.getAsmLabel()) {
   4536     // The parser guarantees this is a string.
   4537     StringLiteral *SE = cast<StringLiteral>(E);
   4538     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   4539                                                 SE->getString()));
   4540   }
   4541 
   4542   // Copy the parameter declarations from the declarator D to the function
   4543   // declaration NewFD, if they are available.  First scavenge them into Params.
   4544   llvm::SmallVector<ParmVarDecl*, 16> Params;
   4545   if (D.isFunctionDeclarator()) {
   4546     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   4547 
   4548     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   4549     // function that takes no arguments, not a function that takes a
   4550     // single void argument.
   4551     // We let through "const void" here because Sema::GetTypeForDeclarator
   4552     // already checks for that case.
   4553     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   4554         FTI.ArgInfo[0].Param &&
   4555         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
   4556       // Empty arg list, don't push any params.
   4557       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
   4558 
   4559       // In C++, the empty parameter-type-list must be spelled "void"; a
   4560       // typedef of void is not permitted.
   4561       if (getLangOptions().CPlusPlus &&
   4562           Param->getType().getUnqualifiedType() != Context.VoidTy) {
   4563         bool IsTypeAlias = false;
   4564         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
   4565           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
   4566         else if (const TemplateSpecializationType *TST =
   4567                    Param->getType()->getAs<TemplateSpecializationType>())
   4568           IsTypeAlias = TST->isTypeAlias();
   4569         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
   4570           << IsTypeAlias;
   4571       }
   4572     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
   4573       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   4574         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   4575         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   4576         Param->setDeclContext(NewFD);
   4577         Params.push_back(Param);
   4578 
   4579         if (Param->isInvalidDecl())
   4580           NewFD->setInvalidDecl();
   4581       }
   4582     }
   4583 
   4584   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   4585     // When we're declaring a function with a typedef, typeof, etc as in the
   4586     // following example, we'll need to synthesize (unnamed)
   4587     // parameters for use in the declaration.
   4588     //
   4589     // @code
   4590     // typedef void fn(int);
   4591     // fn f;
   4592     // @endcode
   4593 
   4594     // Synthesize a parameter for each argument type.
   4595     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   4596          AE = FT->arg_type_end(); AI != AE; ++AI) {
   4597       ParmVarDecl *Param =
   4598         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
   4599       Param->setScopeInfo(0, Params.size());
   4600       Params.push_back(Param);
   4601     }
   4602   } else {
   4603     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   4604            "Should not need args for typedef of non-prototype fn");
   4605   }
   4606   // Finally, we know we have the right number of parameters, install them.
   4607   NewFD->setParams(Params.data(), Params.size());
   4608 
   4609   // Process the non-inheritable attributes on this declaration.
   4610   ProcessDeclAttributes(S, NewFD, D,
   4611                         /*NonInheritable=*/true, /*Inheritable=*/false);
   4612 
   4613   if (!getLangOptions().CPlusPlus) {
   4614     // Perform semantic checking on the function declaration.
   4615     bool isExplicitSpecialization=false;
   4616     CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
   4617                              Redeclaration);
   4618     assert((NewFD->isInvalidDecl() || !Redeclaration ||
   4619             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   4620            "previous declaration set still overloaded");
   4621   } else {
   4622     // If the declarator is a template-id, translate the parser's template
   4623     // argument list into our AST format.
   4624     bool HasExplicitTemplateArgs = false;
   4625     TemplateArgumentListInfo TemplateArgs;
   4626     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   4627       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   4628       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   4629       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   4630       ASTTemplateArgsPtr TemplateArgsPtr(*this,
   4631                                          TemplateId->getTemplateArgs(),
   4632                                          TemplateId->NumArgs);
   4633       translateTemplateArguments(TemplateArgsPtr,
   4634                                  TemplateArgs);
   4635       TemplateArgsPtr.release();
   4636 
   4637       HasExplicitTemplateArgs = true;
   4638 
   4639       if (NewFD->isInvalidDecl()) {
   4640         HasExplicitTemplateArgs = false;
   4641       } else if (FunctionTemplate) {
   4642         // Function template with explicit template arguments.
   4643         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   4644           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   4645 
   4646         HasExplicitTemplateArgs = false;
   4647       } else if (!isFunctionTemplateSpecialization &&
   4648                  !D.getDeclSpec().isFriendSpecified()) {
   4649         // We have encountered something that the user meant to be a
   4650         // specialization (because it has explicitly-specified template
   4651         // arguments) but that was not introduced with a "template<>" (or had
   4652         // too few of them).
   4653         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   4654           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   4655           << FixItHint::CreateInsertion(
   4656                                         D.getDeclSpec().getSourceRange().getBegin(),
   4657                                                   "template<> ");
   4658         isFunctionTemplateSpecialization = true;
   4659       } else {
   4660         // "friend void foo<>(int);" is an implicit specialization decl.
   4661         isFunctionTemplateSpecialization = true;
   4662       }
   4663     } else if (isFriend && isFunctionTemplateSpecialization) {
   4664       // This combination is only possible in a recovery case;  the user
   4665       // wrote something like:
   4666       //   template <> friend void foo(int);
   4667       // which we're recovering from as if the user had written:
   4668       //   friend void foo<>(int);
   4669       // Go ahead and fake up a template id.
   4670       HasExplicitTemplateArgs = true;
   4671         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   4672       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   4673     }
   4674 
   4675     // If it's a friend (and only if it's a friend), it's possible
   4676     // that either the specialized function type or the specialized
   4677     // template is dependent, and therefore matching will fail.  In
   4678     // this case, don't check the specialization yet.
   4679     if (isFunctionTemplateSpecialization && isFriend &&
   4680         (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
   4681       assert(HasExplicitTemplateArgs &&
   4682              "friend function specialization without template args");
   4683       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   4684                                                        Previous))
   4685         NewFD->setInvalidDecl();
   4686     } else if (isFunctionTemplateSpecialization) {
   4687       if (CurContext->isDependentContext() && CurContext->isRecord()
   4688           && !isFriend) {
   4689         Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
   4690           << NewFD->getDeclName();
   4691         NewFD->setInvalidDecl();
   4692         return 0;
   4693       } else if (CheckFunctionTemplateSpecialization(NewFD,
   4694                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   4695                                                      Previous))
   4696         NewFD->setInvalidDecl();
   4697 
   4698       // C++ [dcl.stc]p1:
   4699       //   A storage-class-specifier shall not be specified in an explicit
   4700       //   specialization (14.7.3)
   4701       if (SC != SC_None) {
   4702         if (SC != NewFD->getStorageClass())
   4703           Diag(NewFD->getLocation(),
   4704                diag::err_explicit_specialization_inconsistent_storage_class)
   4705             << SC
   4706             << FixItHint::CreateRemoval(
   4707                                       D.getDeclSpec().getStorageClassSpecLoc());
   4708 
   4709         else
   4710           Diag(NewFD->getLocation(),
   4711                diag::ext_explicit_specialization_storage_class)
   4712             << FixItHint::CreateRemoval(
   4713                                       D.getDeclSpec().getStorageClassSpecLoc());
   4714       }
   4715 
   4716     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   4717       if (CheckMemberSpecialization(NewFD, Previous))
   4718           NewFD->setInvalidDecl();
   4719     }
   4720 
   4721     // Perform semantic checking on the function declaration.
   4722     CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
   4723                              Redeclaration);
   4724 
   4725     assert((NewFD->isInvalidDecl() || !Redeclaration ||
   4726             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   4727            "previous declaration set still overloaded");
   4728 
   4729     NamedDecl *PrincipalDecl = (FunctionTemplate
   4730                                 ? cast<NamedDecl>(FunctionTemplate)
   4731                                 : NewFD);
   4732 
   4733     if (isFriend && Redeclaration) {
   4734       AccessSpecifier Access = AS_public;
   4735       if (!NewFD->isInvalidDecl())
   4736         Access = NewFD->getPreviousDeclaration()->getAccess();
   4737 
   4738       NewFD->setAccess(Access);
   4739       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   4740 
   4741       PrincipalDecl->setObjectOfFriendDecl(true);
   4742     }
   4743 
   4744     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   4745         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   4746       PrincipalDecl->setNonMemberOperator();
   4747 
   4748     // If we have a function template, check the template parameter
   4749     // list. This will check and merge default template arguments.
   4750     if (FunctionTemplate) {
   4751       FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
   4752       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   4753                                  PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
   4754                             D.getDeclSpec().isFriendSpecified()
   4755                               ? (IsFunctionDefinition
   4756                                    ? TPC_FriendFunctionTemplateDefinition
   4757                                    : TPC_FriendFunctionTemplate)
   4758                               : (D.getCXXScopeSpec().isSet() &&
   4759                                  DC && DC->isRecord() &&
   4760                                  DC->isDependentContext())
   4761                                   ? TPC_ClassTemplateMember
   4762                                   : TPC_FunctionTemplate);
   4763     }
   4764 
   4765     if (NewFD->isInvalidDecl()) {
   4766       // Ignore all the rest of this.
   4767     } else if (!Redeclaration) {
   4768       // Fake up an access specifier if it's supposed to be a class member.
   4769       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   4770         NewFD->setAccess(AS_public);
   4771 
   4772       // Qualified decls generally require a previous declaration.
   4773       if (D.getCXXScopeSpec().isSet()) {
   4774         // ...with the major exception of templated-scope or
   4775         // dependent-scope friend declarations.
   4776 
   4777         // TODO: we currently also suppress this check in dependent
   4778         // contexts because (1) the parameter depth will be off when
   4779         // matching friend templates and (2) we might actually be
   4780         // selecting a friend based on a dependent factor.  But there
   4781         // are situations where these conditions don't apply and we
   4782         // can actually do this check immediately.
   4783         if (isFriend &&
   4784             (TemplateParamLists.size() ||
   4785              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   4786              CurContext->isDependentContext())) {
   4787               // ignore these
   4788             } else {
   4789               // The user tried to provide an out-of-line definition for a
   4790               // function that is a member of a class or namespace, but there
   4791               // was no such member function declared (C++ [class.mfct]p2,
   4792               // C++ [namespace.memdef]p2). For example:
   4793               //
   4794               // class X {
   4795               //   void f() const;
   4796               // };
   4797               //
   4798               // void X::f() { } // ill-formed
   4799               //
   4800               // Complain about this problem, and attempt to suggest close
   4801               // matches (e.g., those that differ only in cv-qualifiers and
   4802               // whether the parameter types are references).
   4803               Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
   4804               << Name << DC << D.getCXXScopeSpec().getRange();
   4805               NewFD->setInvalidDecl();
   4806 
   4807               DiagnoseInvalidRedeclaration(*this, NewFD);
   4808             }
   4809 
   4810         // Unqualified local friend declarations are required to resolve
   4811         // to something.
   4812         } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   4813           Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
   4814           NewFD->setInvalidDecl();
   4815           DiagnoseInvalidRedeclaration(*this, NewFD);
   4816         }
   4817 
   4818     } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
   4819                !isFriend && !isFunctionTemplateSpecialization &&
   4820                !isExplicitSpecialization) {
   4821       // An out-of-line member function declaration must also be a
   4822       // definition (C++ [dcl.meaning]p1).
   4823       // Note that this is not the case for explicit specializations of
   4824       // function templates or member functions of class templates, per
   4825       // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
   4826       // for compatibility with old SWIG code which likes to generate them.
   4827       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   4828         << D.getCXXScopeSpec().getRange();
   4829     }
   4830   }
   4831 
   4832 
   4833   // Handle attributes. We need to have merged decls when handling attributes
   4834   // (for example to check for conflicts, etc).
   4835   // FIXME: This needs to happen before we merge declarations. Then,
   4836   // let attribute merging cope with attribute conflicts.
   4837   ProcessDeclAttributes(S, NewFD, D,
   4838                         /*NonInheritable=*/false, /*Inheritable=*/true);
   4839 
   4840   // attributes declared post-definition are currently ignored
   4841   // FIXME: This should happen during attribute merging
   4842   if (Redeclaration && Previous.isSingleResult()) {
   4843     const FunctionDecl *Def;
   4844     FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
   4845     if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
   4846       Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
   4847       Diag(Def->getLocation(), diag::note_previous_definition);
   4848     }
   4849   }
   4850 
   4851   AddKnownFunctionAttributes(NewFD);
   4852 
   4853   if (NewFD->hasAttr<OverloadableAttr>() &&
   4854       !NewFD->getType()->getAs<FunctionProtoType>()) {
   4855     Diag(NewFD->getLocation(),
   4856          diag::err_attribute_overloadable_no_prototype)
   4857       << NewFD;
   4858 
   4859     // Turn this into a variadic function with no parameters.
   4860     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   4861     FunctionProtoType::ExtProtoInfo EPI;
   4862     EPI.Variadic = true;
   4863     EPI.ExtInfo = FT->getExtInfo();
   4864 
   4865     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
   4866     NewFD->setType(R);
   4867   }
   4868 
   4869   // If there's a #pragma GCC visibility in scope, and this isn't a class
   4870   // member, set the visibility of this function.
   4871   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
   4872     AddPushedVisibilityAttribute(NewFD);
   4873 
   4874   // If this is a locally-scoped extern C function, update the
   4875   // map of such names.
   4876   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
   4877       && !NewFD->isInvalidDecl())
   4878     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
   4879 
   4880   // Set this FunctionDecl's range up to the right paren.
   4881   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   4882 
   4883   if (getLangOptions().CPlusPlus) {
   4884     if (FunctionTemplate) {
   4885       if (NewFD->isInvalidDecl())
   4886         FunctionTemplate->setInvalidDecl();
   4887       return FunctionTemplate;
   4888     }
   4889   }
   4890 
   4891   MarkUnusedFileScopedDecl(NewFD);
   4892 
   4893   if (getLangOptions().CUDA)
   4894     if (IdentifierInfo *II = NewFD->getIdentifier())
   4895       if (!NewFD->isInvalidDecl() &&
   4896           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   4897         if (II->isStr("cudaConfigureCall")) {
   4898           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
   4899             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   4900 
   4901           Context.setcudaConfigureCallDecl(NewFD);
   4902         }
   4903       }
   4904 
   4905   return NewFD;
   4906 }
   4907 
   4908 /// \brief Perform semantic checking of a new function declaration.
   4909 ///
   4910 /// Performs semantic analysis of the new function declaration
   4911 /// NewFD. This routine performs all semantic checking that does not
   4912 /// require the actual declarator involved in the declaration, and is
   4913 /// used both for the declaration of functions as they are parsed
   4914 /// (called via ActOnDeclarator) and for the declaration of functions
   4915 /// that have been instantiated via C++ template instantiation (called
   4916 /// via InstantiateDecl).
   4917 ///
   4918 /// \param IsExplicitSpecialiation whether this new function declaration is
   4919 /// an explicit specialization of the previous declaration.
   4920 ///
   4921 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   4922 void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   4923                                     LookupResult &Previous,
   4924                                     bool IsExplicitSpecialization,
   4925                                     bool &Redeclaration) {
   4926   // If NewFD is already known erroneous, don't do any of this checking.
   4927   if (NewFD->isInvalidDecl()) {
   4928     // If this is a class member, mark the class invalid immediately.
   4929     // This avoids some consistency errors later.
   4930     if (isa<CXXMethodDecl>(NewFD))
   4931       cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
   4932 
   4933     return;
   4934   }
   4935 
   4936   if (NewFD->getResultType()->isVariablyModifiedType()) {
   4937     // Functions returning a variably modified type violate C99 6.7.5.2p2
   4938     // because all functions have linkage.
   4939     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   4940     return NewFD->setInvalidDecl();
   4941   }
   4942 
   4943   if (NewFD->isMain())
   4944     CheckMain(NewFD);
   4945 
   4946   // Check for a previous declaration of this name.
   4947   if (Previous.empty() && NewFD->isExternC()) {
   4948     // Since we did not find anything by this name and we're declaring
   4949     // an extern "C" function, look for a non-visible extern "C"
   4950     // declaration with the same name.
   4951     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4952       = LocallyScopedExternalDecls.find(NewFD->getDeclName());
   4953     if (Pos != LocallyScopedExternalDecls.end())
   4954       Previous.addDecl(Pos->second);
   4955   }
   4956 
   4957   // Merge or overload the declaration with an existing declaration of
   4958   // the same name, if appropriate.
   4959   if (!Previous.empty()) {
   4960     // Determine whether NewFD is an overload of PrevDecl or
   4961     // a declaration that requires merging. If it's an overload,
   4962     // there's no more work to do here; we'll just add the new
   4963     // function to the scope.
   4964 
   4965     NamedDecl *OldDecl = 0;
   4966     if (!AllowOverloadingOfFunction(Previous, Context)) {
   4967       Redeclaration = true;
   4968       OldDecl = Previous.getFoundDecl();
   4969     } else {
   4970       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   4971                             /*NewIsUsingDecl*/ false)) {
   4972       case Ovl_Match:
   4973         Redeclaration = true;
   4974         break;
   4975 
   4976       case Ovl_NonFunction:
   4977         Redeclaration = true;
   4978         break;
   4979 
   4980       case Ovl_Overload:
   4981         Redeclaration = false;
   4982         break;
   4983       }
   4984 
   4985       if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   4986         // If a function name is overloadable in C, then every function
   4987         // with that name must be marked "overloadable".
   4988         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   4989           << Redeclaration << NewFD;
   4990         NamedDecl *OverloadedDecl = 0;
   4991         if (Redeclaration)
   4992           OverloadedDecl = OldDecl;
   4993         else if (!Previous.empty())
   4994           OverloadedDecl = Previous.getRepresentativeDecl();
   4995         if (OverloadedDecl)
   4996           Diag(OverloadedDecl->getLocation(),
   4997                diag::note_attribute_overloadable_prev_overload);
   4998         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   4999                                                         Context));
   5000       }
   5001     }
   5002 
   5003     if (Redeclaration) {
   5004       // NewFD and OldDecl represent declarations that need to be
   5005       // merged.
   5006       if (MergeFunctionDecl(NewFD, OldDecl))
   5007         return NewFD->setInvalidDecl();
   5008 
   5009       Previous.clear();
   5010       Previous.addDecl(OldDecl);
   5011 
   5012       if (FunctionTemplateDecl *OldTemplateDecl
   5013                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   5014         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   5015         FunctionTemplateDecl *NewTemplateDecl
   5016           = NewFD->getDescribedFunctionTemplate();
   5017         assert(NewTemplateDecl && "Template/non-template mismatch");
   5018         if (CXXMethodDecl *Method
   5019               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   5020           Method->setAccess(OldTemplateDecl->getAccess());
   5021           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   5022         }
   5023 
   5024         // If this is an explicit specialization of a member that is a function
   5025         // template, mark it as a member specialization.
   5026         if (IsExplicitSpecialization &&
   5027             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   5028           NewTemplateDecl->setMemberSpecialization();
   5029           assert(OldTemplateDecl->isMemberSpecialization());
   5030         }
   5031       } else {
   5032         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
   5033           NewFD->setAccess(OldDecl->getAccess());
   5034         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   5035       }
   5036     }
   5037   }
   5038 
   5039   // Semantic checking for this function declaration (in isolation).
   5040   if (getLangOptions().CPlusPlus) {
   5041     // C++-specific checks.
   5042     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   5043       CheckConstructor(Constructor);
   5044     } else if (CXXDestructorDecl *Destructor =
   5045                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   5046       CXXRecordDecl *Record = Destructor->getParent();
   5047       QualType ClassType = Context.getTypeDeclType(Record);
   5048 
   5049       // FIXME: Shouldn't we be able to perform this check even when the class
   5050       // type is dependent? Both gcc and edg can handle that.
   5051       if (!ClassType->isDependentType()) {
   5052         DeclarationName Name
   5053           = Context.DeclarationNames.getCXXDestructorName(
   5054                                         Context.getCanonicalType(ClassType));
   5055         if (NewFD->getDeclName() != Name) {
   5056           Diag(NewFD->getLocation(), diag::err_destructor_name);
   5057           return NewFD->setInvalidDecl();
   5058         }
   5059       }
   5060     } else if (CXXConversionDecl *Conversion
   5061                = dyn_cast<CXXConversionDecl>(NewFD)) {
   5062       ActOnConversionDeclarator(Conversion);
   5063     }
   5064 
   5065     // Find any virtual functions that this function overrides.
   5066     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   5067       if (!Method->isFunctionTemplateSpecialization() &&
   5068           !Method->getDescribedFunctionTemplate()) {
   5069         if (AddOverriddenMethods(Method->getParent(), Method)) {
   5070           // If the function was marked as "static", we have a problem.
   5071           if (NewFD->getStorageClass() == SC_Static) {
   5072             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
   5073               << NewFD->getDeclName();
   5074             for (CXXMethodDecl::method_iterator
   5075                       Overridden = Method->begin_overridden_methods(),
   5076                    OverriddenEnd = Method->end_overridden_methods();
   5077                  Overridden != OverriddenEnd;
   5078                  ++Overridden) {
   5079               Diag((*Overridden)->getLocation(),
   5080                    diag::note_overridden_virtual_function);
   5081             }
   5082           }
   5083         }
   5084       }
   5085     }
   5086 
   5087     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   5088     if (NewFD->isOverloadedOperator() &&
   5089         CheckOverloadedOperatorDeclaration(NewFD))
   5090       return NewFD->setInvalidDecl();
   5091 
   5092     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   5093     if (NewFD->getLiteralIdentifier() &&
   5094         CheckLiteralOperatorDeclaration(NewFD))
   5095       return NewFD->setInvalidDecl();
   5096 
   5097     // In C++, check default arguments now that we have merged decls. Unless
   5098     // the lexical context is the class, because in this case this is done
   5099     // during delayed parsing anyway.
   5100     if (!CurContext->isRecord())
   5101       CheckCXXDefaultArguments(NewFD);
   5102 
   5103     // If this function declares a builtin function, check the type of this
   5104     // declaration against the expected type for the builtin.
   5105     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   5106       ASTContext::GetBuiltinTypeError Error;
   5107       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   5108       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   5109         // The type of this function differs from the type of the builtin,
   5110         // so forget about the builtin entirely.
   5111         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   5112       }
   5113     }
   5114   }
   5115 }
   5116 
   5117 void Sema::CheckMain(FunctionDecl* FD) {
   5118   // C++ [basic.start.main]p3:  A program that declares main to be inline
   5119   //   or static is ill-formed.
   5120   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
   5121   //   shall not appear in a declaration of main.
   5122   // static main is not an error under C99, but we should warn about it.
   5123   bool isInline = FD->isInlineSpecified();
   5124   bool isStatic = FD->getStorageClass() == SC_Static;
   5125   if (isInline || isStatic) {
   5126     unsigned diagID = diag::warn_unusual_main_decl;
   5127     if (isInline || getLangOptions().CPlusPlus)
   5128       diagID = diag::err_unusual_main_decl;
   5129 
   5130     int which = isStatic + (isInline << 1) - 1;
   5131     Diag(FD->getLocation(), diagID) << which;
   5132   }
   5133 
   5134   QualType T = FD->getType();
   5135   assert(T->isFunctionType() && "function decl is not of function type");
   5136   const FunctionType* FT = T->getAs<FunctionType>();
   5137 
   5138   if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
   5139     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
   5140     FD->setInvalidDecl(true);
   5141   }
   5142 
   5143   // Treat protoless main() as nullary.
   5144   if (isa<FunctionNoProtoType>(FT)) return;
   5145 
   5146   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   5147   unsigned nparams = FTP->getNumArgs();
   5148   assert(FD->getNumParams() == nparams);
   5149 
   5150   bool HasExtraParameters = (nparams > 3);
   5151 
   5152   // Darwin passes an undocumented fourth argument of type char**.  If
   5153   // other platforms start sprouting these, the logic below will start
   5154   // getting shifty.
   5155   if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
   5156     HasExtraParameters = false;
   5157 
   5158   if (HasExtraParameters) {
   5159     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   5160     FD->setInvalidDecl(true);
   5161     nparams = 3;
   5162   }
   5163 
   5164   // FIXME: a lot of the following diagnostics would be improved
   5165   // if we had some location information about types.
   5166 
   5167   QualType CharPP =
   5168     Context.getPointerType(Context.getPointerType(Context.CharTy));
   5169   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   5170 
   5171   for (unsigned i = 0; i < nparams; ++i) {
   5172     QualType AT = FTP->getArgType(i);
   5173 
   5174     bool mismatch = true;
   5175 
   5176     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   5177       mismatch = false;
   5178     else if (Expected[i] == CharPP) {
   5179       // As an extension, the following forms are okay:
   5180       //   char const **
   5181       //   char const * const *
   5182       //   char * const *
   5183 
   5184       QualifierCollector qs;
   5185       const PointerType* PT;
   5186       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   5187           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   5188           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
   5189         qs.removeConst();
   5190         mismatch = !qs.empty();
   5191       }
   5192     }
   5193 
   5194     if (mismatch) {
   5195       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   5196       // TODO: suggest replacing given type with expected type
   5197       FD->setInvalidDecl(true);
   5198     }
   5199   }
   5200 
   5201   if (nparams == 1 && !FD->isInvalidDecl()) {
   5202     Diag(FD->getLocation(), diag::warn_main_one_arg);
   5203   }
   5204 
   5205   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   5206     Diag(FD->getLocation(), diag::err_main_template_decl);
   5207     FD->setInvalidDecl();
   5208   }
   5209 }
   5210 
   5211 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   5212   // FIXME: Need strict checking.  In C89, we need to check for
   5213   // any assignment, increment, decrement, function-calls, or
   5214   // commas outside of a sizeof.  In C99, it's the same list,
   5215   // except that the aforementioned are allowed in unevaluated
   5216   // expressions.  Everything else falls under the
   5217   // "may accept other forms of constant expressions" exception.
   5218   // (We never end up here for C++, so the constant expression
   5219   // rules there don't matter.)
   5220   if (Init->isConstantInitializer(Context, false))
   5221     return false;
   5222   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
   5223     << Init->getSourceRange();
   5224   return true;
   5225 }
   5226 
   5227 namespace {
   5228   // Visits an initialization expression to see if OrigDecl is evaluated in
   5229   // its own initialization and throws a warning if it does.
   5230   class SelfReferenceChecker
   5231       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   5232     Sema &S;
   5233     Decl *OrigDecl;
   5234 
   5235   public:
   5236     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   5237 
   5238     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   5239                                                     S(S), OrigDecl(OrigDecl) { }
   5240 
   5241     void VisitExpr(Expr *E) {
   5242       if (isa<ObjCMessageExpr>(*E)) return;
   5243       Inherited::VisitExpr(E);
   5244     }
   5245 
   5246     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   5247       CheckForSelfReference(E);
   5248       Inherited::VisitImplicitCastExpr(E);
   5249     }
   5250 
   5251     void CheckForSelfReference(ImplicitCastExpr *E) {
   5252       if (E->getCastKind() != CK_LValueToRValue) return;
   5253       Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
   5254       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
   5255       if (!DRE) return;
   5256       Decl* ReferenceDecl = DRE->getDecl();
   5257       if (OrigDecl != ReferenceDecl) return;
   5258       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
   5259                           Sema::NotForRedeclaration);
   5260       S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
   5261                             S.PDiag(diag::warn_uninit_self_reference_in_init)
   5262                               << Result.getLookupName()
   5263                               << OrigDecl->getLocation()
   5264                               << SubExpr->getSourceRange());
   5265     }
   5266   };
   5267 }
   5268 
   5269 /// AddInitializerToDecl - Adds the initializer Init to the
   5270 /// declaration dcl. If DirectInit is true, this is C++ direct
   5271 /// initialization rather than copy initialization.
   5272 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   5273                                 bool DirectInit, bool TypeMayContainAuto) {
   5274   // If there is no declaration, there was an error parsing it.  Just ignore
   5275   // the initializer.
   5276   if (RealDecl == 0 || RealDecl->isInvalidDecl())
   5277     return;
   5278 
   5279   // Check for self-references within variable initializers.
   5280   if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
   5281     // Variables declared within a function/method body are handled
   5282     // by a dataflow analysis.
   5283     if (!vd->hasLocalStorage() && !vd->isStaticLocal())
   5284       SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
   5285   }
   5286   else {
   5287     SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
   5288   }
   5289 
   5290   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   5291     // With declarators parsed the way they are, the parser cannot
   5292     // distinguish between a normal initializer and a pure-specifier.
   5293     // Thus this grotesque test.
   5294     IntegerLiteral *IL;
   5295     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   5296         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   5297       CheckPureMethod(Method, Init->getSourceRange());
   5298     else {
   5299       Diag(Method->getLocation(), diag::err_member_function_initialization)
   5300         << Method->getDeclName() << Init->getSourceRange();
   5301       Method->setInvalidDecl();
   5302     }
   5303     return;
   5304   }
   5305 
   5306   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   5307   if (!VDecl) {
   5308     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   5309     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   5310     RealDecl->setInvalidDecl();
   5311     return;
   5312   }
   5313 
   5314   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   5315   if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
   5316     TypeSourceInfo *DeducedType = 0;
   5317     if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
   5318       Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   5319         << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   5320         << Init->getSourceRange();
   5321     if (!DeducedType) {
   5322       RealDecl->setInvalidDecl();
   5323       return;
   5324     }
   5325     VDecl->setTypeSourceInfo(DeducedType);
   5326     VDecl->setType(DeducedType->getType());
   5327 
   5328     // In ARC, infer lifetime.
   5329     if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   5330       VDecl->setInvalidDecl();
   5331 
   5332     // If this is a redeclaration, check that the type we just deduced matches
   5333     // the previously declared type.
   5334     if (VarDecl *Old = VDecl->getPreviousDeclaration())
   5335       MergeVarDeclTypes(VDecl, Old);
   5336   }
   5337 
   5338 
   5339   // A definition must end up with a complete type, which means it must be
   5340   // complete with the restriction that an array type might be completed by the
   5341   // initializer; note that later code assumes this restriction.
   5342   QualType BaseDeclType = VDecl->getType();
   5343   if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   5344     BaseDeclType = Array->getElementType();
   5345   if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   5346                           diag::err_typecheck_decl_incomplete_type)) {
   5347     RealDecl->setInvalidDecl();
   5348     return;
   5349   }
   5350 
   5351   // The variable can not have an abstract class type.
   5352   if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   5353                              diag::err_abstract_type_in_decl,
   5354                              AbstractVariableType))
   5355     VDecl->setInvalidDecl();
   5356 
   5357   const VarDecl *Def;
   5358   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   5359     Diag(VDecl->getLocation(), diag::err_redefinition)
   5360       << VDecl->getDeclName();
   5361     Diag(Def->getLocation(), diag::note_previous_definition);
   5362     VDecl->setInvalidDecl();
   5363     return;
   5364   }
   5365 
   5366   const VarDecl* PrevInit = 0;
   5367   if (getLangOptions().CPlusPlus) {
   5368     // C++ [class.static.data]p4
   5369     //   If a static data member is of const integral or const
   5370     //   enumeration type, its declaration in the class definition can
   5371     //   specify a constant-initializer which shall be an integral
   5372     //   constant expression (5.19). In that case, the member can appear
   5373     //   in integral constant expressions. The member shall still be
   5374     //   defined in a namespace scope if it is used in the program and the
   5375     //   namespace scope definition shall not contain an initializer.
   5376     //
   5377     // We already performed a redefinition check above, but for static
   5378     // data members we also need to check whether there was an in-class
   5379     // declaration with an initializer.
   5380     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   5381       Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
   5382       Diag(PrevInit->getLocation(), diag::note_previous_definition);
   5383       return;
   5384     }
   5385 
   5386     if (VDecl->hasLocalStorage())
   5387       getCurFunction()->setHasBranchProtectedScope();
   5388 
   5389     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   5390       VDecl->setInvalidDecl();
   5391       return;
   5392     }
   5393   }
   5394 
   5395   // Capture the variable that is being initialized and the style of
   5396   // initialization.
   5397   InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   5398 
   5399   // FIXME: Poor source location information.
   5400   InitializationKind Kind
   5401     = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
   5402                                                    Init->getLocStart(),
   5403                                                    Init->getLocEnd())
   5404                 : InitializationKind::CreateCopy(VDecl->getLocation(),
   5405                                                  Init->getLocStart());
   5406 
   5407   // Get the decls type and save a reference for later, since
   5408   // CheckInitializerTypes may change it.
   5409   QualType DclT = VDecl->getType(), SavT = DclT;
   5410   if (VDecl->isLocalVarDecl()) {
   5411     if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
   5412       Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   5413       VDecl->setInvalidDecl();
   5414     } else if (!VDecl->isInvalidDecl()) {
   5415       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   5416       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   5417                                                 MultiExprArg(*this, &Init, 1),
   5418                                                 &DclT);
   5419       if (Result.isInvalid()) {
   5420         VDecl->setInvalidDecl();
   5421         return;
   5422       }
   5423 
   5424       Init = Result.takeAs<Expr>();
   5425 
   5426       // C++ 3.6.2p2, allow dynamic initialization of static initializers.
   5427       // Don't check invalid declarations to avoid emitting useless diagnostics.
   5428       if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
   5429         if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
   5430           CheckForConstantInitializer(Init, DclT);
   5431       }
   5432     }
   5433   } else if (VDecl->isStaticDataMember() &&
   5434              VDecl->getLexicalDeclContext()->isRecord()) {
   5435     // This is an in-class initialization for a static data member, e.g.,
   5436     //
   5437     // struct S {
   5438     //   static const int value = 17;
   5439     // };
   5440 
   5441     // Try to perform the initialization regardless.
   5442     if (!VDecl->isInvalidDecl()) {
   5443       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   5444       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   5445                                           MultiExprArg(*this, &Init, 1),
   5446                                           &DclT);
   5447       if (Result.isInvalid()) {
   5448         VDecl->setInvalidDecl();
   5449         return;
   5450       }
   5451 
   5452       Init = Result.takeAs<Expr>();
   5453     }
   5454 
   5455     // C++ [class.mem]p4:
   5456     //   A member-declarator can contain a constant-initializer only
   5457     //   if it declares a static member (9.4) of const integral or
   5458     //   const enumeration type, see 9.4.2.
   5459     QualType T = VDecl->getType();
   5460 
   5461     // Do nothing on dependent types.
   5462     if (T->isDependentType()) {
   5463 
   5464     // Require constness.
   5465     } else if (!T.isConstQualified()) {
   5466       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   5467         << Init->getSourceRange();
   5468       VDecl->setInvalidDecl();
   5469 
   5470     // We allow integer constant expressions in all cases.
   5471     } else if (T->isIntegralOrEnumerationType()) {
   5472       // Check whether the expression is a constant expression.
   5473       SourceLocation Loc;
   5474       if (Init->isValueDependent())
   5475         ; // Nothing to check.
   5476       else if (Init->isIntegerConstantExpr(Context, &Loc))
   5477         ; // Ok, it's an ICE!
   5478       else if (Init->isEvaluatable(Context)) {
   5479         // If we can constant fold the initializer through heroics, accept it,
   5480         // but report this as a use of an extension for -pedantic.
   5481         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   5482           << Init->getSourceRange();
   5483       } else {
   5484         // Otherwise, this is some crazy unknown case.  Report the issue at the
   5485         // location provided by the isIntegerConstantExpr failed check.
   5486         Diag(Loc, diag::err_in_class_initializer_non_constant)
   5487           << Init->getSourceRange();
   5488         VDecl->setInvalidDecl();
   5489       }
   5490 
   5491     // We allow floating-point constants as an extension in C++03, and
   5492     // C++0x has far more complicated rules that we don't really
   5493     // implement fully.
   5494     } else {
   5495       bool Allowed = false;
   5496       if (getLangOptions().CPlusPlus0x) {
   5497         Allowed = T->isLiteralType();
   5498       } else if (T->isFloatingType()) { // also permits complex, which is ok
   5499         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   5500           << T << Init->getSourceRange();
   5501         Allowed = true;
   5502       }
   5503 
   5504       if (!Allowed) {
   5505         Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   5506           << T << Init->getSourceRange();
   5507         VDecl->setInvalidDecl();
   5508 
   5509       // TODO: there are probably expressions that pass here that shouldn't.
   5510       } else if (!Init->isValueDependent() &&
   5511                  !Init->isConstantInitializer(Context, false)) {
   5512         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   5513           << Init->getSourceRange();
   5514         VDecl->setInvalidDecl();
   5515       }
   5516     }
   5517   } else if (VDecl->isFileVarDecl()) {
   5518     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
   5519         (!getLangOptions().CPlusPlus ||
   5520          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
   5521       Diag(VDecl->getLocation(), diag::warn_extern_init);
   5522     if (!VDecl->isInvalidDecl()) {
   5523       InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
   5524       ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   5525                                                 MultiExprArg(*this, &Init, 1),
   5526                                                 &DclT);
   5527       if (Result.isInvalid()) {
   5528         VDecl->setInvalidDecl();
   5529         return;
   5530       }
   5531 
   5532       Init = Result.takeAs<Expr>();
   5533     }
   5534 
   5535     // C++ 3.6.2p2, allow dynamic initialization of static initializers.
   5536     // Don't check invalid declarations to avoid emitting useless diagnostics.
   5537     if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
   5538       // C99 6.7.8p4. All file scoped initializers need to be constant.
   5539       CheckForConstantInitializer(Init, DclT);
   5540     }
   5541   }
   5542   // If the type changed, it means we had an incomplete type that was
   5543   // completed by the initializer. For example:
   5544   //   int ary[] = { 1, 3, 5 };
   5545   // "ary" transitions from a VariableArrayType to a ConstantArrayType.
   5546   if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
   5547     VDecl->setType(DclT);
   5548     Init->setType(DclT);
   5549   }
   5550 
   5551 
   5552   // If this variable is a local declaration with record type, make sure it
   5553   // doesn't have a flexible member initialization.  We only support this as a
   5554   // global/static definition.
   5555   if (VDecl->hasLocalStorage())
   5556     if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
   5557       if (RT->getDecl()->hasFlexibleArrayMember()) {
   5558         // Check whether the initializer tries to initialize the flexible
   5559         // array member itself to anything other than an empty initializer list.
   5560         if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
   5561           unsigned Index = std::distance(RT->getDecl()->field_begin(),
   5562                                          RT->getDecl()->field_end()) - 1;
   5563           if (Index < ILE->getNumInits() &&
   5564               !(isa<InitListExpr>(ILE->getInit(Index)) &&
   5565                 cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
   5566             Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
   5567             VDecl->setInvalidDecl();
   5568           }
   5569         }
   5570       }
   5571 
   5572   // Check any implicit conversions within the expression.
   5573   CheckImplicitConversions(Init, VDecl->getLocation());
   5574 
   5575   if (!VDecl->isInvalidDecl())
   5576     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   5577 
   5578   Init = MaybeCreateExprWithCleanups(Init);
   5579   // Attach the initializer to the decl.
   5580   VDecl->setInit(Init);
   5581 
   5582   CheckCompleteVariableDeclaration(VDecl);
   5583 }
   5584 
   5585 /// ActOnInitializerError - Given that there was an error parsing an
   5586 /// initializer for the given declaration, try to return to some form
   5587 /// of sanity.
   5588 void Sema::ActOnInitializerError(Decl *D) {
   5589   // Our main concern here is re-establishing invariants like "a
   5590   // variable's type is either dependent or complete".
   5591   if (!D || D->isInvalidDecl()) return;
   5592 
   5593   VarDecl *VD = dyn_cast<VarDecl>(D);
   5594   if (!VD) return;
   5595 
   5596   // Auto types are meaningless if we can't make sense of the initializer.
   5597   if (ParsingInitForAutoVars.count(D)) {
   5598     D->setInvalidDecl();
   5599     return;
   5600   }
   5601 
   5602   QualType Ty = VD->getType();
   5603   if (Ty->isDependentType()) return;
   5604 
   5605   // Require a complete type.
   5606   if (RequireCompleteType(VD->getLocation(),
   5607                           Context.getBaseElementType(Ty),
   5608                           diag::err_typecheck_decl_incomplete_type)) {
   5609     VD->setInvalidDecl();
   5610     return;
   5611   }
   5612 
   5613   // Require an abstract type.
   5614   if (RequireNonAbstractType(VD->getLocation(), Ty,
   5615                              diag::err_abstract_type_in_decl,
   5616                              AbstractVariableType)) {
   5617     VD->setInvalidDecl();
   5618     return;
   5619   }
   5620 
   5621   // Don't bother complaining about constructors or destructors,
   5622   // though.
   5623 }
   5624 
   5625 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   5626                                   bool TypeMayContainAuto) {
   5627   // If there is no declaration, there was an error parsing it. Just ignore it.
   5628   if (RealDecl == 0)
   5629     return;
   5630 
   5631   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   5632     QualType Type = Var->getType();
   5633 
   5634     // C++0x [dcl.spec.auto]p3
   5635     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   5636       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   5637         << Var->getDeclName() << Type;
   5638       Var->setInvalidDecl();
   5639       return;
   5640     }
   5641 
   5642     switch (Var->isThisDeclarationADefinition()) {
   5643     case VarDecl::Definition:
   5644       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   5645         break;
   5646 
   5647       // We have an out-of-line definition of a static data member
   5648       // that has an in-class initializer, so we type-check this like
   5649       // a declaration.
   5650       //
   5651       // Fall through
   5652 
   5653     case VarDecl::DeclarationOnly:
   5654       // It's only a declaration.
   5655 
   5656       // Block scope. C99 6.7p7: If an identifier for an object is
   5657       // declared with no linkage (C99 6.2.2p6), the type for the
   5658       // object shall be complete.
   5659       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   5660           !Var->getLinkage() && !Var->isInvalidDecl() &&
   5661           RequireCompleteType(Var->getLocation(), Type,
   5662                               diag::err_typecheck_decl_incomplete_type))
   5663         Var->setInvalidDecl();
   5664 
   5665       // Make sure that the type is not abstract.
   5666       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   5667           RequireNonAbstractType(Var->getLocation(), Type,
   5668                                  diag::err_abstract_type_in_decl,
   5669                                  AbstractVariableType))
   5670         Var->setInvalidDecl();
   5671       return;
   5672 
   5673     case VarDecl::TentativeDefinition:
   5674       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   5675       // object that has file scope without an initializer, and without a
   5676       // storage-class specifier or with the storage-class specifier "static",
   5677       // constitutes a tentative definition. Note: A tentative definition with
   5678       // external linkage is valid (C99 6.2.2p5).
   5679       if (!Var->isInvalidDecl()) {
   5680         if (const IncompleteArrayType *ArrayT
   5681                                     = Context.getAsIncompleteArrayType(Type)) {
   5682           if (RequireCompleteType(Var->getLocation(),
   5683                                   ArrayT->getElementType(),
   5684                                   diag::err_illegal_decl_array_incomplete_type))
   5685             Var->setInvalidDecl();
   5686         } else if (Var->getStorageClass() == SC_Static) {
   5687           // C99 6.9.2p3: If the declaration of an identifier for an object is
   5688           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   5689           // declared type shall not be an incomplete type.
   5690           // NOTE: code such as the following
   5691           //     static struct s;
   5692           //     struct s { int a; };
   5693           // is accepted by gcc. Hence here we issue a warning instead of
   5694           // an error and we do not invalidate the static declaration.
   5695           // NOTE: to avoid multiple warnings, only check the first declaration.
   5696           if (Var->getPreviousDeclaration() == 0)
   5697             RequireCompleteType(Var->getLocation(), Type,
   5698                                 diag::ext_typecheck_decl_incomplete_type);
   5699         }
   5700       }
   5701 
   5702       // Record the tentative definition; we're done.
   5703       if (!Var->isInvalidDecl())
   5704         TentativeDefinitions.push_back(Var);
   5705       return;
   5706     }
   5707 
   5708     // Provide a specific diagnostic for uninitialized variable
   5709     // definitions with incomplete array type.
   5710     if (Type->isIncompleteArrayType()) {
   5711       Diag(Var->getLocation(),
   5712            diag::err_typecheck_incomplete_array_needs_initializer);
   5713       Var->setInvalidDecl();
   5714       return;
   5715     }
   5716 
   5717     // Provide a specific diagnostic for uninitialized variable
   5718     // definitions with reference type.
   5719     if (Type->isReferenceType()) {
   5720       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   5721         << Var->getDeclName()
   5722         << SourceRange(Var->getLocation(), Var->getLocation());
   5723       Var->setInvalidDecl();
   5724       return;
   5725     }
   5726 
   5727     // Do not attempt to type-check the default initializer for a
   5728     // variable with dependent type.
   5729     if (Type->isDependentType())
   5730       return;
   5731 
   5732     if (Var->isInvalidDecl())
   5733       return;
   5734 
   5735     if (RequireCompleteType(Var->getLocation(),
   5736                             Context.getBaseElementType(Type),
   5737                             diag::err_typecheck_decl_incomplete_type)) {
   5738       Var->setInvalidDecl();
   5739       return;
   5740     }
   5741 
   5742     // The variable can not have an abstract class type.
   5743     if (RequireNonAbstractType(Var->getLocation(), Type,
   5744                                diag::err_abstract_type_in_decl,
   5745                                AbstractVariableType)) {
   5746       Var->setInvalidDecl();
   5747       return;
   5748     }
   5749 
   5750     // Check for jumps past the implicit initializer.  C++0x
   5751     // clarifies that this applies to a "variable with automatic
   5752     // storage duration", not a "local variable".
   5753     // C++0x [stmt.dcl]p3
   5754     //   A program that jumps from a point where a variable with automatic
   5755     //   storage duration is not in scope to a point where it is in scope is
   5756     //   ill-formed unless the variable has scalar type, class type with a
   5757     //   trivial default constructor and a trivial destructor, a cv-qualified
   5758     //   version of one of these types, or an array of one of the preceding
   5759     //   types and is declared without an initializer.
   5760     if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
   5761       if (const RecordType *Record
   5762             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   5763         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   5764         if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
   5765             (getLangOptions().CPlusPlus0x &&
   5766              (!CXXRecord->hasTrivialDefaultConstructor() ||
   5767               !CXXRecord->hasTrivialDestructor())))
   5768           getCurFunction()->setHasBranchProtectedScope();
   5769       }
   5770     }
   5771 
   5772     // C++03 [dcl.init]p9:
   5773     //   If no initializer is specified for an object, and the
   5774     //   object is of (possibly cv-qualified) non-POD class type (or
   5775     //   array thereof), the object shall be default-initialized; if
   5776     //   the object is of const-qualified type, the underlying class
   5777     //   type shall have a user-declared default
   5778     //   constructor. Otherwise, if no initializer is specified for
   5779     //   a non- static object, the object and its subobjects, if
   5780     //   any, have an indeterminate initial value); if the object
   5781     //   or any of its subobjects are of const-qualified type, the
   5782     //   program is ill-formed.
   5783     // C++0x [dcl.init]p11:
   5784     //   If no initializer is specified for an object, the object is
   5785     //   default-initialized; [...].
   5786     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   5787     InitializationKind Kind
   5788       = InitializationKind::CreateDefault(Var->getLocation());
   5789 
   5790     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
   5791     ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
   5792                                       MultiExprArg(*this, 0, 0));
   5793     if (Init.isInvalid())
   5794       Var->setInvalidDecl();
   5795     else if (Init.get())
   5796       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   5797 
   5798     CheckCompleteVariableDeclaration(Var);
   5799   }
   5800 }
   5801 
   5802 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   5803   VarDecl *VD = dyn_cast<VarDecl>(D);
   5804   if (!VD) {
   5805     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   5806     D->setInvalidDecl();
   5807     return;
   5808   }
   5809 
   5810   VD->setCXXForRangeDecl(true);
   5811 
   5812   // for-range-declaration cannot be given a storage class specifier.
   5813   int Error = -1;
   5814   switch (VD->getStorageClassAsWritten()) {
   5815   case SC_None:
   5816     break;
   5817   case SC_Extern:
   5818     Error = 0;
   5819     break;
   5820   case SC_Static:
   5821     Error = 1;
   5822     break;
   5823   case SC_PrivateExtern:
   5824     Error = 2;
   5825     break;
   5826   case SC_Auto:
   5827     Error = 3;
   5828     break;
   5829   case SC_Register:
   5830     Error = 4;
   5831     break;
   5832   }
   5833   // FIXME: constexpr isn't allowed here.
   5834   //if (DS.isConstexprSpecified())
   5835   //  Error = 5;
   5836   if (Error != -1) {
   5837     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   5838       << VD->getDeclName() << Error;
   5839     D->setInvalidDecl();
   5840   }
   5841 }
   5842 
   5843 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   5844   if (var->isInvalidDecl()) return;
   5845 
   5846   // In ARC, don't allow jumps past the implicit initialization of a
   5847   // local retaining variable.
   5848   if (getLangOptions().ObjCAutoRefCount &&
   5849       var->hasLocalStorage()) {
   5850     switch (var->getType().getObjCLifetime()) {
   5851     case Qualifiers::OCL_None:
   5852     case Qualifiers::OCL_ExplicitNone:
   5853     case Qualifiers::OCL_Autoreleasing:
   5854       break;
   5855 
   5856     case Qualifiers::OCL_Weak:
   5857     case Qualifiers::OCL_Strong:
   5858       getCurFunction()->setHasBranchProtectedScope();
   5859       break;
   5860     }
   5861   }
   5862 
   5863   // All the following checks are C++ only.
   5864   if (!getLangOptions().CPlusPlus) return;
   5865 
   5866   QualType baseType = Context.getBaseElementType(var->getType());
   5867   if (baseType->isDependentType()) return;
   5868 
   5869   // __block variables might require us to capture a copy-initializer.
   5870   if (var->hasAttr<BlocksAttr>()) {
   5871     // It's currently invalid to ever have a __block variable with an
   5872     // array type; should we diagnose that here?
   5873 
   5874     // Regardless, we don't want to ignore array nesting when
   5875     // constructing this copy.
   5876     QualType type = var->getType();
   5877 
   5878     if (type->isStructureOrClassType()) {
   5879       SourceLocation poi = var->getLocation();
   5880       Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
   5881       ExprResult result =
   5882         PerformCopyInitialization(
   5883                         InitializedEntity::InitializeBlock(poi, type, false),
   5884                                   poi, Owned(varRef));
   5885       if (!result.isInvalid()) {
   5886         result = MaybeCreateExprWithCleanups(result);
   5887         Expr *init = result.takeAs<Expr>();
   5888         Context.setBlockVarCopyInits(var, init);
   5889       }
   5890     }
   5891   }
   5892 
   5893   // Check for global constructors.
   5894   if (!var->getDeclContext()->isDependentContext() &&
   5895       var->hasGlobalStorage() &&
   5896       !var->isStaticLocal() &&
   5897       var->getInit() &&
   5898       !var->getInit()->isConstantInitializer(Context,
   5899                                              baseType->isReferenceType()))
   5900     Diag(var->getLocation(), diag::warn_global_constructor)
   5901       << var->getInit()->getSourceRange();
   5902 
   5903   // Require the destructor.
   5904   if (const RecordType *recordType = baseType->getAs<RecordType>())
   5905     FinalizeVarWithDestructor(var, recordType);
   5906 }
   5907 
   5908 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   5909 /// any semantic actions necessary after any initializer has been attached.
   5910 void
   5911 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   5912   // Note that we are no longer parsing the initializer for this declaration.
   5913   ParsingInitForAutoVars.erase(ThisDecl);
   5914 }
   5915 
   5916 Sema::DeclGroupPtrTy
   5917 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   5918                               Decl **Group, unsigned NumDecls) {
   5919   llvm::SmallVector<Decl*, 8> Decls;
   5920 
   5921   if (DS.isTypeSpecOwned())
   5922     Decls.push_back(DS.getRepAsDecl());
   5923 
   5924   for (unsigned i = 0; i != NumDecls; ++i)
   5925     if (Decl *D = Group[i])
   5926       Decls.push_back(D);
   5927 
   5928   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
   5929                               DS.getTypeSpecType() == DeclSpec::TST_auto);
   5930 }
   5931 
   5932 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   5933 /// group, performing any necessary semantic checking.
   5934 Sema::DeclGroupPtrTy
   5935 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
   5936                            bool TypeMayContainAuto) {
   5937   // C++0x [dcl.spec.auto]p7:
   5938   //   If the type deduced for the template parameter U is not the same in each
   5939   //   deduction, the program is ill-formed.
   5940   // FIXME: When initializer-list support is added, a distinction is needed
   5941   // between the deduced type U and the deduced type which 'auto' stands for.
   5942   //   auto a = 0, b = { 1, 2, 3 };
   5943   // is legal because the deduced type U is 'int' in both cases.
   5944   if (TypeMayContainAuto && NumDecls > 1) {
   5945     QualType Deduced;
   5946     CanQualType DeducedCanon;
   5947     VarDecl *DeducedDecl = 0;
   5948     for (unsigned i = 0; i != NumDecls; ++i) {
   5949       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   5950         AutoType *AT = D->getType()->getContainedAutoType();
   5951         // Don't reissue diagnostics when instantiating a template.
   5952         if (AT && D->isInvalidDecl())
   5953           break;
   5954         if (AT && AT->isDeduced()) {
   5955           QualType U = AT->getDeducedType();
   5956           CanQualType UCanon = Context.getCanonicalType(U);
   5957           if (Deduced.isNull()) {
   5958             Deduced = U;
   5959             DeducedCanon = UCanon;
   5960             DeducedDecl = D;
   5961           } else if (DeducedCanon != UCanon) {
   5962             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   5963                  diag::err_auto_different_deductions)
   5964               << Deduced << DeducedDecl->getDeclName()
   5965               << U << D->getDeclName()
   5966               << DeducedDecl->getInit()->getSourceRange()
   5967               << D->getInit()->getSourceRange();
   5968             D->setInvalidDecl();
   5969             break;
   5970           }
   5971         }
   5972       }
   5973     }
   5974   }
   5975 
   5976   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
   5977 }
   5978 
   5979 
   5980 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   5981 /// to introduce parameters into function prototype scope.
   5982 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   5983   const DeclSpec &DS = D.getDeclSpec();
   5984 
   5985   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   5986   VarDecl::StorageClass StorageClass = SC_None;
   5987   VarDecl::StorageClass StorageClassAsWritten = SC_None;
   5988   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   5989     StorageClass = SC_Register;
   5990     StorageClassAsWritten = SC_Register;
   5991   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   5992     Diag(DS.getStorageClassSpecLoc(),
   5993          diag::err_invalid_storage_class_in_func_decl);
   5994     D.getMutableDeclSpec().ClearStorageClassSpecs();
   5995   }
   5996 
   5997   if (D.getDeclSpec().isThreadSpecified())
   5998     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   5999 
   6000   DiagnoseFunctionSpecifiers(D);
   6001 
   6002   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   6003   QualType parmDeclType = TInfo->getType();
   6004 
   6005   if (getLangOptions().CPlusPlus) {
   6006     // Check that there are no default arguments inside the type of this
   6007     // parameter.
   6008     CheckExtraCXXDefaultArguments(D);
   6009 
   6010     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   6011     if (D.getCXXScopeSpec().isSet()) {
   6012       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   6013         << D.getCXXScopeSpec().getRange();
   6014       D.getCXXScopeSpec().clear();
   6015     }
   6016   }
   6017 
   6018   // Ensure we have a valid name
   6019   IdentifierInfo *II = 0;
   6020   if (D.hasName()) {
   6021     II = D.getIdentifier();
   6022     if (!II) {
   6023       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   6024         << GetNameForDeclarator(D).getName().getAsString();
   6025       D.setInvalidType(true);
   6026     }
   6027   }
   6028 
   6029   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   6030   if (II) {
   6031     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   6032                    ForRedeclaration);
   6033     LookupName(R, S);
   6034     if (R.isSingleResult()) {
   6035       NamedDecl *PrevDecl = R.getFoundDecl();
   6036       if (PrevDecl->isTemplateParameter()) {
   6037         // Maybe we will complain about the shadowed template parameter.
   6038         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   6039         // Just pretend that we didn't see the previous declaration.
   6040         PrevDecl = 0;
   6041       } else if (S->isDeclScope(PrevDecl)) {
   6042         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   6043         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   6044 
   6045         // Recover by removing the name
   6046         II = 0;
   6047         D.SetIdentifier(0, D.getIdentifierLoc());
   6048         D.setInvalidType(true);
   6049       }
   6050     }
   6051   }
   6052 
   6053   // Temporarily put parameter variables in the translation unit, not
   6054   // the enclosing context.  This prevents them from accidentally
   6055   // looking like class members in C++.
   6056   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   6057                                     D.getSourceRange().getBegin(),
   6058                                     D.getIdentifierLoc(), II,
   6059                                     parmDeclType, TInfo,
   6060                                     StorageClass, StorageClassAsWritten);
   6061 
   6062   if (D.isInvalidType())
   6063     New->setInvalidDecl();
   6064 
   6065   assert(S->isFunctionPrototypeScope());
   6066   assert(S->getFunctionPrototypeDepth() >= 1);
   6067   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   6068                     S->getNextFunctionPrototypeIndex());
   6069 
   6070   // Add the parameter declaration into this scope.
   6071   S->AddDecl(New);
   6072   if (II)
   6073     IdResolver.AddDecl(New);
   6074 
   6075   ProcessDeclAttributes(S, New, D);
   6076 
   6077   if (New->hasAttr<BlocksAttr>()) {
   6078     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   6079   }
   6080   return New;
   6081 }
   6082 
   6083 /// \brief Synthesizes a variable for a parameter arising from a
   6084 /// typedef.
   6085 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   6086                                               SourceLocation Loc,
   6087                                               QualType T) {
   6088   /* FIXME: setting StartLoc == Loc.
   6089      Would it be worth to modify callers so as to provide proper source
   6090      location for the unnamed parameters, embedding the parameter's type? */
   6091   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
   6092                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   6093                                            SC_None, SC_None, 0);
   6094   Param->setImplicit();
   6095   return Param;
   6096 }
   6097 
   6098 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   6099                                     ParmVarDecl * const *ParamEnd) {
   6100   // Don't diagnose unused-parameter errors in template instantiations; we
   6101   // will already have done so in the template itself.
   6102   if (!ActiveTemplateInstantiations.empty())
   6103     return;
   6104 
   6105   for (; Param != ParamEnd; ++Param) {
   6106     if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
   6107         !(*Param)->hasAttr<UnusedAttr>()) {
   6108       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   6109         << (*Param)->getDeclName();
   6110     }
   6111   }
   6112 }
   6113 
   6114 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   6115                                                   ParmVarDecl * const *ParamEnd,
   6116                                                   QualType ReturnTy,
   6117                                                   NamedDecl *D) {
   6118   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   6119     return;
   6120 
   6121   // Warn if the return value is pass-by-value and larger than the specified
   6122   // threshold.
   6123   if (ReturnTy.isPODType(Context)) {
   6124     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   6125     if (Size > LangOpts.NumLargeByValueCopy)
   6126       Diag(D->getLocation(), diag::warn_return_value_size)
   6127           << D->getDeclName() << Size;
   6128   }
   6129 
   6130   // Warn if any parameter is pass-by-value and larger than the specified
   6131   // threshold.
   6132   for (; Param != ParamEnd; ++Param) {
   6133     QualType T = (*Param)->getType();
   6134     if (!T.isPODType(Context))
   6135       continue;
   6136     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   6137     if (Size > LangOpts.NumLargeByValueCopy)
   6138       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   6139           << (*Param)->getDeclName() << Size;
   6140   }
   6141 }
   6142 
   6143 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   6144                                   SourceLocation NameLoc, IdentifierInfo *Name,
   6145                                   QualType T, TypeSourceInfo *TSInfo,
   6146                                   VarDecl::StorageClass StorageClass,
   6147                                   VarDecl::StorageClass StorageClassAsWritten) {
   6148   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   6149   if (getLangOptions().ObjCAutoRefCount &&
   6150       T.getObjCLifetime() == Qualifiers::OCL_None &&
   6151       T->isObjCLifetimeType()) {
   6152 
   6153     Qualifiers::ObjCLifetime lifetime;
   6154 
   6155     // Special cases for arrays:
   6156     //   - if it's const, use __unsafe_unretained
   6157     //   - otherwise, it's an error
   6158     if (T->isArrayType()) {
   6159       if (!T.isConstQualified()) {
   6160         Diag(NameLoc, diag::err_arc_array_param_no_ownership)
   6161           << TSInfo->getTypeLoc().getSourceRange();
   6162       }
   6163       lifetime = Qualifiers::OCL_ExplicitNone;
   6164     } else {
   6165       lifetime = T->getObjCARCImplicitLifetime();
   6166     }
   6167     T = Context.getLifetimeQualifiedType(T, lifetime);
   6168   }
   6169 
   6170   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   6171                                          Context.getAdjustedParameterType(T),
   6172                                          TSInfo,
   6173                                          StorageClass, StorageClassAsWritten,
   6174                                          0);
   6175 
   6176   // Parameters can not be abstract class types.
   6177   // For record types, this is done by the AbstractClassUsageDiagnoser once
   6178   // the class has been completely parsed.
   6179   if (!CurContext->isRecord() &&
   6180       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   6181                              AbstractParamType))
   6182     New->setInvalidDecl();
   6183 
   6184   // Parameter declarators cannot be interface types. All ObjC objects are
   6185   // passed by reference.
   6186   if (T->isObjCObjectType()) {
   6187     Diag(NameLoc,
   6188          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
   6189     New->setInvalidDecl();
   6190   }
   6191 
   6192   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   6193   // duration shall not be qualified by an address-space qualifier."
   6194   // Since all parameters have automatic store duration, they can not have
   6195   // an address space.
   6196   if (T.getAddressSpace() != 0) {
   6197     Diag(NameLoc, diag::err_arg_with_address_space);
   6198     New->setInvalidDecl();
   6199   }
   6200 
   6201   return New;
   6202 }
   6203 
   6204 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   6205                                            SourceLocation LocAfterDecls) {
   6206   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   6207 
   6208   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   6209   // for a K&R function.
   6210   if (!FTI.hasPrototype) {
   6211     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
   6212       --i;
   6213       if (FTI.ArgInfo[i].Param == 0) {
   6214         llvm::SmallString<256> Code;
   6215         llvm::raw_svector_ostream(Code) << "  int "
   6216                                         << FTI.ArgInfo[i].Ident->getName()
   6217                                         << ";\n";
   6218         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
   6219           << FTI.ArgInfo[i].Ident
   6220           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   6221 
   6222         // Implicitly declare the argument as type 'int' for lack of a better
   6223         // type.
   6224         AttributeFactory attrs;
   6225         DeclSpec DS(attrs);
   6226         const char* PrevSpec; // unused
   6227         unsigned DiagID; // unused
   6228         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
   6229                            PrevSpec, DiagID);
   6230         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   6231         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
   6232         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
   6233       }
   6234     }
   6235   }
   6236 }
   6237 
   6238 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
   6239                                          Declarator &D) {
   6240   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   6241   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   6242   Scope *ParentScope = FnBodyScope->getParent();
   6243 
   6244   Decl *DP = HandleDeclarator(ParentScope, D,
   6245                               MultiTemplateParamsArg(*this),
   6246                               /*IsFunctionDefinition=*/true);
   6247   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   6248 }
   6249 
   6250 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
   6251   // Don't warn about invalid declarations.
   6252   if (FD->isInvalidDecl())
   6253     return false;
   6254 
   6255   // Or declarations that aren't global.
   6256   if (!FD->isGlobal())
   6257     return false;
   6258 
   6259   // Don't warn about C++ member functions.
   6260   if (isa<CXXMethodDecl>(FD))
   6261     return false;
   6262 
   6263   // Don't warn about 'main'.
   6264   if (FD->isMain())
   6265     return false;
   6266 
   6267   // Don't warn about inline functions.
   6268   if (FD->isInlined())
   6269     return false;
   6270 
   6271   // Don't warn about function templates.
   6272   if (FD->getDescribedFunctionTemplate())
   6273     return false;
   6274 
   6275   // Don't warn about function template specializations.
   6276   if (FD->isFunctionTemplateSpecialization())
   6277     return false;
   6278 
   6279   bool MissingPrototype = true;
   6280   for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
   6281        Prev; Prev = Prev->getPreviousDeclaration()) {
   6282     // Ignore any declarations that occur in function or method
   6283     // scope, because they aren't visible from the header.
   6284     if (Prev->getDeclContext()->isFunctionOrMethod())
   6285       continue;
   6286 
   6287     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   6288     break;
   6289   }
   6290 
   6291   return MissingPrototype;
   6292 }
   6293 
   6294 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
   6295   // Don't complain if we're in GNU89 mode and the previous definition
   6296   // was an extern inline function.
   6297   const FunctionDecl *Definition;
   6298   if (FD->isDefined(Definition) &&
   6299       !canRedefineFunction(Definition, getLangOptions())) {
   6300     if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
   6301         Definition->getStorageClass() == SC_Extern)
   6302       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   6303         << FD->getDeclName() << getLangOptions().CPlusPlus;
   6304     else
   6305       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   6306     Diag(Definition->getLocation(), diag::note_previous_definition);
   6307   }
   6308 }
   6309 
   6310 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   6311   // Clear the last template instantiation error context.
   6312   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   6313 
   6314   if (!D)
   6315     return D;
   6316   FunctionDecl *FD = 0;
   6317 
   6318   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   6319     FD = FunTmpl->getTemplatedDecl();
   6320   else
   6321     FD = cast<FunctionDecl>(D);
   6322 
   6323   // Enter a new function scope
   6324   PushFunctionScope();
   6325 
   6326   // See if this is a redefinition.
   6327   if (!FD->isLateTemplateParsed())
   6328     CheckForFunctionRedefinition(FD);
   6329 
   6330   // Builtin functions cannot be defined.
   6331   if (unsigned BuiltinID = FD->getBuiltinID()) {
   6332     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   6333       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   6334       FD->setInvalidDecl();
   6335     }
   6336   }
   6337 
   6338   // The return type of a function definition must be complete
   6339   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   6340   QualType ResultType = FD->getResultType();
   6341   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   6342       !FD->isInvalidDecl() &&
   6343       RequireCompleteType(FD->getLocation(), ResultType,
   6344                           diag::err_func_def_incomplete_result))
   6345     FD->setInvalidDecl();
   6346 
   6347   // GNU warning -Wmissing-prototypes:
   6348   //   Warn if a global function is defined without a previous
   6349   //   prototype declaration. This warning is issued even if the
   6350   //   definition itself provides a prototype. The aim is to detect
   6351   //   global functions that fail to be declared in header files.
   6352   if (ShouldWarnAboutMissingPrototype(FD))
   6353     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   6354 
   6355   if (FnBodyScope)
   6356     PushDeclContext(FnBodyScope, FD);
   6357 
   6358   // Check the validity of our function parameters
   6359   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   6360                            /*CheckParameterNames=*/true);
   6361 
   6362   // Introduce our parameters into the function scope
   6363   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
   6364     ParmVarDecl *Param = FD->getParamDecl(p);
   6365     Param->setOwningFunction(FD);
   6366 
   6367     // If this has an identifier, add it to the scope stack.
   6368     if (Param->getIdentifier() && FnBodyScope) {
   6369       CheckShadow(FnBodyScope, Param);
   6370 
   6371       PushOnScopeChains(Param, FnBodyScope);
   6372     }
   6373   }
   6374 
   6375   // Checking attributes of current function definition
   6376   // dllimport attribute.
   6377   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
   6378   if (DA && (!FD->getAttr<DLLExportAttr>())) {
   6379     // dllimport attribute cannot be directly applied to definition.
   6380     // Microsoft accepts dllimport for functions defined within class scope.
   6381     if (!DA->isInherited() &&
   6382         !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
   6383       Diag(FD->getLocation(),
   6384            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
   6385         << "dllimport";
   6386       FD->setInvalidDecl();
   6387       return FD;
   6388     }
   6389 
   6390     // Visual C++ appears to not think this is an issue, so only issue
   6391     // a warning when Microsoft extensions are disabled.
   6392     if (!LangOpts.Microsoft) {
   6393       // If a symbol previously declared dllimport is later defined, the
   6394       // attribute is ignored in subsequent references, and a warning is
   6395       // emitted.
   6396       Diag(FD->getLocation(),
   6397            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   6398         << FD->getName() << "dllimport";
   6399     }
   6400   }
   6401   return FD;
   6402 }
   6403 
   6404 /// \brief Given the set of return statements within a function body,
   6405 /// compute the variables that are subject to the named return value
   6406 /// optimization.
   6407 ///
   6408 /// Each of the variables that is subject to the named return value
   6409 /// optimization will be marked as NRVO variables in the AST, and any
   6410 /// return statement that has a marked NRVO variable as its NRVO candidate can
   6411 /// use the named return value optimization.
   6412 ///
   6413 /// This function applies a very simplistic algorithm for NRVO: if every return
   6414 /// statement in the function has the same NRVO candidate, that candidate is
   6415 /// the NRVO variable.
   6416 ///
   6417 /// FIXME: Employ a smarter algorithm that accounts for multiple return
   6418 /// statements and the lifetimes of the NRVO candidates. We should be able to
   6419 /// find a maximal set of NRVO variables.
   6420 static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   6421   ReturnStmt **Returns = Scope->Returns.data();
   6422 
   6423   const VarDecl *NRVOCandidate = 0;
   6424   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   6425     if (!Returns[I]->getNRVOCandidate())
   6426       return;
   6427 
   6428     if (!NRVOCandidate)
   6429       NRVOCandidate = Returns[I]->getNRVOCandidate();
   6430     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
   6431       return;
   6432   }
   6433 
   6434   if (NRVOCandidate)
   6435     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
   6436 }
   6437 
   6438 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   6439   return ActOnFinishFunctionBody(D, move(BodyArg), false);
   6440 }
   6441 
   6442 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   6443                                     bool IsInstantiation) {
   6444   FunctionDecl *FD = 0;
   6445   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
   6446   if (FunTmpl)
   6447     FD = FunTmpl->getTemplatedDecl();
   6448   else
   6449     FD = dyn_cast_or_null<FunctionDecl>(dcl);
   6450 
   6451   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   6452   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
   6453 
   6454   if (FD) {
   6455     FD->setBody(Body);
   6456     if (FD->isMain()) {
   6457       // C and C++ allow for main to automagically return 0.
   6458       // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   6459       FD->setHasImplicitReturnZero(true);
   6460       WP.disableCheckFallThrough();
   6461     } else if (FD->hasAttr<NakedAttr>()) {
   6462       // If the function is marked 'naked', don't complain about missing return
   6463       // statements.
   6464       WP.disableCheckFallThrough();
   6465     }
   6466 
   6467     // MSVC permits the use of pure specifier (=0) on function definition,
   6468     // defined at class scope, warn about this non standard construct.
   6469     if (getLangOptions().Microsoft && FD->isPure())
   6470       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   6471 
   6472     if (!FD->isInvalidDecl()) {
   6473       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   6474       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   6475                                              FD->getResultType(), FD);
   6476 
   6477       // If this is a constructor, we need a vtable.
   6478       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   6479         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   6480 
   6481       ComputeNRVO(Body, getCurFunction());
   6482     }
   6483 
   6484     assert(FD == getCurFunctionDecl() && "Function parsing confused");
   6485   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   6486     assert(MD == getCurMethodDecl() && "Method parsing confused");
   6487     MD->setBody(Body);
   6488     if (Body)
   6489       MD->setEndLoc(Body->getLocEnd());
   6490     if (!MD->isInvalidDecl()) {
   6491       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   6492       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   6493                                              MD->getResultType(), MD);
   6494     }
   6495   } else {
   6496     return 0;
   6497   }
   6498 
   6499   // Verify and clean out per-function state.
   6500   if (Body) {
   6501     // C++ constructors that have function-try-blocks can't have return
   6502     // statements in the handlers of that block. (C++ [except.handle]p14)
   6503     // Verify this.
   6504     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   6505       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   6506 
   6507     // Verify that that gotos and switch cases don't jump into scopes illegally.
   6508     // Verify that that gotos and switch cases don't jump into scopes illegally.
   6509     if (getCurFunction()->NeedsScopeChecking() &&
   6510         !dcl->isInvalidDecl() &&
   6511         !hasAnyUnrecoverableErrorsInThisFunction())
   6512       DiagnoseInvalidJumps(Body);
   6513 
   6514     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   6515       if (!Destructor->getParent()->isDependentType())
   6516         CheckDestructor(Destructor);
   6517 
   6518       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   6519                                              Destructor->getParent());
   6520     }
   6521 
   6522     // If any errors have occurred, clear out any temporaries that may have
   6523     // been leftover. This ensures that these temporaries won't be picked up for
   6524     // deletion in some later function.
   6525     if (PP.getDiagnostics().hasErrorOccurred() ||
   6526         PP.getDiagnostics().getSuppressAllDiagnostics()) {
   6527       ExprTemporaries.clear();
   6528       ExprNeedsCleanups = false;
   6529     } else if (!isa<FunctionTemplateDecl>(dcl)) {
   6530       // Since the body is valid, issue any analysis-based warnings that are
   6531       // enabled.
   6532       ActivePolicy = &WP;
   6533     }
   6534 
   6535     assert(ExprTemporaries.empty() && "Leftover temporaries in function");
   6536     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   6537   }
   6538 
   6539   if (!IsInstantiation)
   6540     PopDeclContext();
   6541 
   6542   PopFunctionOrBlockScope(ActivePolicy, dcl);
   6543 
   6544   // If any errors have occurred, clear out any temporaries that may have
   6545   // been leftover. This ensures that these temporaries won't be picked up for
   6546   // deletion in some later function.
   6547   if (getDiagnostics().hasErrorOccurred()) {
   6548     ExprTemporaries.clear();
   6549     ExprNeedsCleanups = false;
   6550   }
   6551 
   6552   return dcl;
   6553 }
   6554 
   6555 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   6556 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   6557 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   6558                                           IdentifierInfo &II, Scope *S) {
   6559   // Before we produce a declaration for an implicitly defined
   6560   // function, see whether there was a locally-scoped declaration of
   6561   // this name as a function or variable. If so, use that
   6562   // (non-visible) declaration, and complain about it.
   6563   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   6564     = LocallyScopedExternalDecls.find(&II);
   6565   if (Pos != LocallyScopedExternalDecls.end()) {
   6566     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
   6567     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
   6568     return Pos->second;
   6569   }
   6570 
   6571   // Extension in C99.  Legal in C90, but warn about it.
   6572   if (II.getName().startswith("__builtin_"))
   6573     Diag(Loc, diag::warn_builtin_unknown) << &II;
   6574   else if (getLangOptions().C99)
   6575     Diag(Loc, diag::ext_implicit_function_decl) << &II;
   6576   else
   6577     Diag(Loc, diag::warn_implicit_function_decl) << &II;
   6578 
   6579   // Set a Declarator for the implicit definition: int foo();
   6580   const char *Dummy;
   6581   AttributeFactory attrFactory;
   6582   DeclSpec DS(attrFactory);
   6583   unsigned DiagID;
   6584   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
   6585   (void)Error; // Silence warning.
   6586   assert(!Error && "Error setting up implicit decl!");
   6587   Declarator D(DS, Declarator::BlockContext);
   6588   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
   6589                                              0, 0, true, SourceLocation(),
   6590                                              SourceLocation(),
   6591                                              EST_None, SourceLocation(),
   6592                                              0, 0, 0, 0, Loc, Loc, D),
   6593                 DS.getAttributes(),
   6594                 SourceLocation());
   6595   D.SetIdentifier(&II, Loc);
   6596 
   6597   // Insert this function into translation-unit scope.
   6598 
   6599   DeclContext *PrevDC = CurContext;
   6600   CurContext = Context.getTranslationUnitDecl();
   6601 
   6602   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   6603   FD->setImplicit();
   6604 
   6605   CurContext = PrevDC;
   6606 
   6607   AddKnownFunctionAttributes(FD);
   6608 
   6609   return FD;
   6610 }
   6611 
   6612 /// \brief Adds any function attributes that we know a priori based on
   6613 /// the declaration of this function.
   6614 ///
   6615 /// These attributes can apply both to implicitly-declared builtins
   6616 /// (like __builtin___printf_chk) or to library-declared functions
   6617 /// like NSLog or printf.
   6618 ///
   6619 /// We need to check for duplicate attributes both here and where user-written
   6620 /// attributes are applied to declarations.
   6621 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   6622   if (FD->isInvalidDecl())
   6623     return;
   6624 
   6625   // If this is a built-in function, map its builtin attributes to
   6626   // actual attributes.
   6627   if (unsigned BuiltinID = FD->getBuiltinID()) {
   6628     // Handle printf-formatting attributes.
   6629     unsigned FormatIdx;
   6630     bool HasVAListArg;
   6631     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   6632       if (!FD->getAttr<FormatAttr>())
   6633         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   6634                                                 "printf", FormatIdx+1,
   6635                                                HasVAListArg ? 0 : FormatIdx+2));
   6636     }
   6637     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   6638                                              HasVAListArg)) {
   6639      if (!FD->getAttr<FormatAttr>())
   6640        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   6641                                               "scanf", FormatIdx+1,
   6642                                               HasVAListArg ? 0 : FormatIdx+2));
   6643     }
   6644 
   6645     // Mark const if we don't care about errno and that is the only
   6646     // thing preventing the function from being const. This allows
   6647     // IRgen to use LLVM intrinsics for such functions.
   6648     if (!getLangOptions().MathErrno &&
   6649         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   6650       if (!FD->getAttr<ConstAttr>())
   6651         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   6652     }
   6653 
   6654     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
   6655       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
   6656     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
   6657       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   6658   }
   6659 
   6660   IdentifierInfo *Name = FD->getIdentifier();
   6661   if (!Name)
   6662     return;
   6663   if ((!getLangOptions().CPlusPlus &&
   6664        FD->getDeclContext()->isTranslationUnit()) ||
   6665       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   6666        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   6667        LinkageSpecDecl::lang_c)) {
   6668     // Okay: this could be a libc/libm/Objective-C function we know
   6669     // about.
   6670   } else
   6671     return;
   6672 
   6673   if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
   6674     // FIXME: NSLog and NSLogv should be target specific
   6675     if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
   6676       // FIXME: We known better than our headers.
   6677       const_cast<FormatAttr *>(Format)->setType(Context, "printf");
   6678     } else
   6679       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   6680                                              "printf", 1,
   6681                                              Name->isStr("NSLogv") ? 0 : 2));
   6682   } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   6683     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   6684     // target-specific builtins, perhaps?
   6685     if (!FD->getAttr<FormatAttr>())
   6686       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   6687                                              "printf", 2,
   6688                                              Name->isStr("vasprintf") ? 0 : 3));
   6689   }
   6690 }
   6691 
   6692 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   6693                                     TypeSourceInfo *TInfo) {
   6694   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   6695   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   6696 
   6697   if (!TInfo) {
   6698     assert(D.isInvalidType() && "no declarator info for valid type");
   6699     TInfo = Context.getTrivialTypeSourceInfo(T);
   6700   }
   6701 
   6702   // Scope manipulation handled by caller.
   6703   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   6704                                            D.getSourceRange().getBegin(),
   6705                                            D.getIdentifierLoc(),
   6706                                            D.getIdentifier(),
   6707                                            TInfo);
   6708 
   6709   // Bail out immediately if we have an invalid declaration.
   6710   if (D.isInvalidType()) {
   6711     NewTD->setInvalidDecl();
   6712     return NewTD;
   6713   }
   6714 
   6715   // C++ [dcl.typedef]p8:
   6716   //   If the typedef declaration defines an unnamed class (or
   6717   //   enum), the first typedef-name declared by the declaration
   6718   //   to be that class type (or enum type) is used to denote the
   6719   //   class type (or enum type) for linkage purposes only.
   6720   // We need to check whether the type was declared in the declaration.
   6721   switch (D.getDeclSpec().getTypeSpecType()) {
   6722   case TST_enum:
   6723   case TST_struct:
   6724   case TST_union:
   6725   case TST_class: {
   6726     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   6727 
   6728     // Do nothing if the tag is not anonymous or already has an
   6729     // associated typedef (from an earlier typedef in this decl group).
   6730     if (tagFromDeclSpec->getIdentifier()) break;
   6731     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   6732 
   6733     // A well-formed anonymous tag must always be a TUK_Definition.
   6734     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   6735 
   6736     // The type must match the tag exactly;  no qualifiers allowed.
   6737     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   6738       break;
   6739 
   6740     // Otherwise, set this is the anon-decl typedef for the tag.
   6741     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   6742     break;
   6743   }
   6744 
   6745   default:
   6746     break;
   6747   }
   6748 
   6749   return NewTD;
   6750 }
   6751 
   6752 
   6753 /// \brief Determine whether a tag with a given kind is acceptable
   6754 /// as a redeclaration of the given tag declaration.
   6755 ///
   6756 /// \returns true if the new tag kind is acceptable, false otherwise.
   6757 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   6758                                         TagTypeKind NewTag, bool isDefinition,
   6759                                         SourceLocation NewTagLoc,
   6760                                         const IdentifierInfo &Name) {
   6761   // C++ [dcl.type.elab]p3:
   6762   //   The class-key or enum keyword present in the
   6763   //   elaborated-type-specifier shall agree in kind with the
   6764   //   declaration to which the name in the elaborated-type-specifier
   6765   //   refers. This rule also applies to the form of
   6766   //   elaborated-type-specifier that declares a class-name or
   6767   //   friend class since it can be construed as referring to the
   6768   //   definition of the class. Thus, in any
   6769   //   elaborated-type-specifier, the enum keyword shall be used to
   6770   //   refer to an enumeration (7.2), the union class-key shall be
   6771   //   used to refer to a union (clause 9), and either the class or
   6772   //   struct class-key shall be used to refer to a class (clause 9)
   6773   //   declared using the class or struct class-key.
   6774   TagTypeKind OldTag = Previous->getTagKind();
   6775   if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
   6776     if (OldTag == NewTag)
   6777       return true;
   6778 
   6779   if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
   6780       (NewTag == TTK_Struct || NewTag == TTK_Class)) {
   6781     // Warn about the struct/class tag mismatch.
   6782     bool isTemplate = false;
   6783     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   6784       isTemplate = Record->getDescribedClassTemplate();
   6785 
   6786     if (!ActiveTemplateInstantiations.empty()) {
   6787       // In a template instantiation, do not offer fix-its for tag mismatches
   6788       // since they usually mess up the template instead of fixing the problem.
   6789       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   6790         << (NewTag == TTK_Class) << isTemplate << &Name;
   6791       return true;
   6792     }
   6793 
   6794     if (isDefinition) {
   6795       // On definitions, check previous tags and issue a fix-it for each
   6796       // one that doesn't match the current tag.
   6797       if (Previous->getDefinition()) {
   6798         // Don't suggest fix-its for redefinitions.
   6799         return true;
   6800       }
   6801 
   6802       bool previousMismatch = false;
   6803       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
   6804            E(Previous->redecls_end()); I != E; ++I) {
   6805         if (I->getTagKind() != NewTag) {
   6806           if (!previousMismatch) {
   6807             previousMismatch = true;
   6808             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   6809               << (NewTag == TTK_Class) << isTemplate << &Name;
   6810           }
   6811           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   6812             << (NewTag == TTK_Class)
   6813             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   6814                                             NewTag == TTK_Class?
   6815                                             "class" : "struct");
   6816         }
   6817       }
   6818       return true;
   6819     }
   6820 
   6821     // Check for a previous definition.  If current tag and definition
   6822     // are same type, do nothing.  If no definition, but disagree with
   6823     // with previous tag type, give a warning, but no fix-it.
   6824     const TagDecl *Redecl = Previous->getDefinition() ?
   6825                             Previous->getDefinition() : Previous;
   6826     if (Redecl->getTagKind() == NewTag) {
   6827       return true;
   6828     }
   6829 
   6830     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   6831       << (NewTag == TTK_Class)
   6832       << isTemplate << &Name;
   6833     Diag(Redecl->getLocation(), diag::note_previous_use);
   6834 
   6835     // If there is a previous defintion, suggest a fix-it.
   6836     if (Previous->getDefinition()) {
   6837         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   6838           << (Redecl->getTagKind() == TTK_Class)
   6839           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   6840                         Redecl->getTagKind() == TTK_Class? "class" : "struct");
   6841     }
   6842 
   6843     return true;
   6844   }
   6845   return false;
   6846 }
   6847 
   6848 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   6849 /// former case, Name will be non-null.  In the later case, Name will be null.
   6850 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   6851 /// reference/declaration/definition of a tag.
   6852 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   6853                      SourceLocation KWLoc, CXXScopeSpec &SS,
   6854                      IdentifierInfo *Name, SourceLocation NameLoc,
   6855                      AttributeList *Attr, AccessSpecifier AS,
   6856                      MultiTemplateParamsArg TemplateParameterLists,
   6857                      bool &OwnedDecl, bool &IsDependent,
   6858                      bool ScopedEnum, bool ScopedEnumUsesClassTag,
   6859                      TypeResult UnderlyingType) {
   6860   // If this is not a definition, it must have a name.
   6861   assert((Name != 0 || TUK == TUK_Definition) &&
   6862          "Nameless record must be a definition!");
   6863   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   6864 
   6865   OwnedDecl = false;
   6866   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6867 
   6868   // FIXME: Check explicit specializations more carefully.
   6869   bool isExplicitSpecialization = false;
   6870   bool Invalid = false;
   6871 
   6872   // We only need to do this matching if we have template parameters
   6873   // or a scope specifier, which also conveniently avoids this work
   6874   // for non-C++ cases.
   6875   if (TemplateParameterLists.size() > 0 ||
   6876       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   6877     if (TemplateParameterList *TemplateParams
   6878           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
   6879                                                 TemplateParameterLists.get(),
   6880                                                 TemplateParameterLists.size(),
   6881                                                     TUK == TUK_Friend,
   6882                                                     isExplicitSpecialization,
   6883                                                     Invalid)) {
   6884       if (TemplateParams->size() > 0) {
   6885         // This is a declaration or definition of a class template (which may
   6886         // be a member of another template).
   6887 
   6888         if (Invalid)
   6889           return 0;
   6890 
   6891         OwnedDecl = false;
   6892         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   6893                                                SS, Name, NameLoc, Attr,
   6894                                                TemplateParams, AS,
   6895                                            TemplateParameterLists.size() - 1,
   6896                  (TemplateParameterList**) TemplateParameterLists.release());
   6897         return Result.get();
   6898       } else {
   6899         // The "template<>" header is extraneous.
   6900         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   6901           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   6902         isExplicitSpecialization = true;
   6903       }
   6904     }
   6905   }
   6906 
   6907   // Figure out the underlying type if this a enum declaration. We need to do
   6908   // this early, because it's needed to detect if this is an incompatible
   6909   // redeclaration.
   6910   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   6911 
   6912   if (Kind == TTK_Enum) {
   6913     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   6914       // No underlying type explicitly specified, or we failed to parse the
   6915       // type, default to int.
   6916       EnumUnderlying = Context.IntTy.getTypePtr();
   6917     else if (UnderlyingType.get()) {
   6918       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   6919       // integral type; any cv-qualification is ignored.
   6920       TypeSourceInfo *TI = 0;
   6921       QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
   6922       EnumUnderlying = TI;
   6923 
   6924       SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   6925 
   6926       if (!T->isDependentType() && !T->isIntegralType(Context)) {
   6927         Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
   6928           << T;
   6929         // Recover by falling back to int.
   6930         EnumUnderlying = Context.IntTy.getTypePtr();
   6931       }
   6932 
   6933       if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
   6934                                           UPPC_FixedUnderlyingType))
   6935         EnumUnderlying = Context.IntTy.getTypePtr();
   6936 
   6937     } else if (getLangOptions().Microsoft)
   6938       // Microsoft enums are always of int type.
   6939       EnumUnderlying = Context.IntTy.getTypePtr();
   6940   }
   6941 
   6942   DeclContext *SearchDC = CurContext;
   6943   DeclContext *DC = CurContext;
   6944   bool isStdBadAlloc = false;
   6945 
   6946   RedeclarationKind Redecl = ForRedeclaration;
   6947   if (TUK == TUK_Friend || TUK == TUK_Reference)
   6948     Redecl = NotForRedeclaration;
   6949 
   6950   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   6951 
   6952   if (Name && SS.isNotEmpty()) {
   6953     // We have a nested-name tag ('struct foo::bar').
   6954 
   6955     // Check for invalid 'foo::'.
   6956     if (SS.isInvalid()) {
   6957       Name = 0;
   6958       goto CreateNewDecl;
   6959     }
   6960 
   6961     // If this is a friend or a reference to a class in a dependent
   6962     // context, don't try to make a decl for it.
   6963     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   6964       DC = computeDeclContext(SS, false);
   6965       if (!DC) {
   6966         IsDependent = true;
   6967         return 0;
   6968       }
   6969     } else {
   6970       DC = computeDeclContext(SS, true);
   6971       if (!DC) {
   6972         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   6973           << SS.getRange();
   6974         return 0;
   6975       }
   6976     }
   6977 
   6978     if (RequireCompleteDeclContext(SS, DC))
   6979       return 0;
   6980 
   6981     SearchDC = DC;
   6982     // Look-up name inside 'foo::'.
   6983     LookupQualifiedName(Previous, DC);
   6984 
   6985     if (Previous.isAmbiguous())
   6986       return 0;
   6987 
   6988     if (Previous.empty()) {
   6989       // Name lookup did not find anything. However, if the
   6990       // nested-name-specifier refers to the current instantiation,
   6991       // and that current instantiation has any dependent base
   6992       // classes, we might find something at instantiation time: treat
   6993       // this as a dependent elaborated-type-specifier.
   6994       // But this only makes any sense for reference-like lookups.
   6995       if (Previous.wasNotFoundInCurrentInstantiation() &&
   6996           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   6997         IsDependent = true;
   6998         return 0;
   6999       }
   7000 
   7001       // A tag 'foo::bar' must already exist.
   7002       Diag(NameLoc, diag::err_not_tag_in_scope)
   7003         << Kind << Name << DC << SS.getRange();
   7004       Name = 0;
   7005       Invalid = true;
   7006       goto CreateNewDecl;
   7007     }
   7008   } else if (Name) {
   7009     // If this is a named struct, check to see if there was a previous forward
   7010     // declaration or definition.
   7011     // FIXME: We're looking into outer scopes here, even when we
   7012     // shouldn't be. Doing so can result in ambiguities that we
   7013     // shouldn't be diagnosing.
   7014     LookupName(Previous, S);
   7015 
   7016     if (Previous.isAmbiguous() &&
   7017         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   7018       LookupResult::Filter F = Previous.makeFilter();
   7019       while (F.hasNext()) {
   7020         NamedDecl *ND = F.next();
   7021         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   7022           F.erase();
   7023       }
   7024       F.done();
   7025     }
   7026 
   7027     // Note:  there used to be some attempt at recovery here.
   7028     if (Previous.isAmbiguous())
   7029       return 0;
   7030 
   7031     if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
   7032       // FIXME: This makes sure that we ignore the contexts associated
   7033       // with C structs, unions, and enums when looking for a matching
   7034       // tag declaration or definition. See the similar lookup tweak
   7035       // in Sema::LookupName; is there a better way to deal with this?
   7036       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   7037         SearchDC = SearchDC->getParent();
   7038     }
   7039   } else if (S->isFunctionPrototypeScope()) {
   7040     // If this is an enum declaration in function prototype scope, set its
   7041     // initial context to the translation unit.
   7042     SearchDC = Context.getTranslationUnitDecl();
   7043   }
   7044 
   7045   if (Previous.isSingleResult() &&
   7046       Previous.getFoundDecl()->isTemplateParameter()) {
   7047     // Maybe we will complain about the shadowed template parameter.
   7048     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   7049     // Just pretend that we didn't see the previous declaration.
   7050     Previous.clear();
   7051   }
   7052 
   7053   if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
   7054       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   7055     // This is a declaration of or a reference to "std::bad_alloc".
   7056     isStdBadAlloc = true;
   7057 
   7058     if (Previous.empty() && StdBadAlloc) {
   7059       // std::bad_alloc has been implicitly declared (but made invisible to
   7060       // name lookup). Fill in this implicit declaration as the previous
   7061       // declaration, so that the declarations get chained appropriately.
   7062       Previous.addDecl(getStdBadAlloc());
   7063     }
   7064   }
   7065 
   7066   // If we didn't find a previous declaration, and this is a reference
   7067   // (or friend reference), move to the correct scope.  In C++, we
   7068   // also need to do a redeclaration lookup there, just in case
   7069   // there's a shadow friend decl.
   7070   if (Name && Previous.empty() &&
   7071       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   7072     if (Invalid) goto CreateNewDecl;
   7073     assert(SS.isEmpty());
   7074 
   7075     if (TUK == TUK_Reference) {
   7076       // C++ [basic.scope.pdecl]p5:
   7077       //   -- for an elaborated-type-specifier of the form
   7078       //
   7079       //          class-key identifier
   7080       //
   7081       //      if the elaborated-type-specifier is used in the
   7082       //      decl-specifier-seq or parameter-declaration-clause of a
   7083       //      function defined in namespace scope, the identifier is
   7084       //      declared as a class-name in the namespace that contains
   7085       //      the declaration; otherwise, except as a friend
   7086       //      declaration, the identifier is declared in the smallest
   7087       //      non-class, non-function-prototype scope that contains the
   7088       //      declaration.
   7089       //
   7090       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   7091       // C structs and unions.
   7092       //
   7093       // It is an error in C++ to declare (rather than define) an enum
   7094       // type, including via an elaborated type specifier.  We'll
   7095       // diagnose that later; for now, declare the enum in the same
   7096       // scope as we would have picked for any other tag type.
   7097       //
   7098       // GNU C also supports this behavior as part of its incomplete
   7099       // enum types extension, while GNU C++ does not.
   7100       //
   7101       // Find the context where we'll be declaring the tag.
   7102       // FIXME: We would like to maintain the current DeclContext as the
   7103       // lexical context,
   7104       while (SearchDC->isRecord() || SearchDC->isTransparentContext())
   7105         SearchDC = SearchDC->getParent();
   7106 
   7107       // Find the scope where we'll be declaring the tag.
   7108       while (S->isClassScope() ||
   7109              (getLangOptions().CPlusPlus &&
   7110               S->isFunctionPrototypeScope()) ||
   7111              ((S->getFlags() & Scope::DeclScope) == 0) ||
   7112              (S->getEntity() &&
   7113               ((DeclContext *)S->getEntity())->isTransparentContext()))
   7114         S = S->getParent();
   7115     } else {
   7116       assert(TUK == TUK_Friend);
   7117       // C++ [namespace.memdef]p3:
   7118       //   If a friend declaration in a non-local class first declares a
   7119       //   class or function, the friend class or function is a member of
   7120       //   the innermost enclosing namespace.
   7121       SearchDC = SearchDC->getEnclosingNamespaceContext();
   7122     }
   7123 
   7124     // In C++, we need to do a redeclaration lookup to properly
   7125     // diagnose some problems.
   7126     if (getLangOptions().CPlusPlus) {
   7127       Previous.setRedeclarationKind(ForRedeclaration);
   7128       LookupQualifiedName(Previous, SearchDC);
   7129     }
   7130   }
   7131 
   7132   if (!Previous.empty()) {
   7133     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   7134 
   7135     // It's okay to have a tag decl in the same scope as a typedef
   7136     // which hides a tag decl in the same scope.  Finding this
   7137     // insanity with a redeclaration lookup can only actually happen
   7138     // in C++.
   7139     //
   7140     // This is also okay for elaborated-type-specifiers, which is
   7141     // technically forbidden by the current standard but which is
   7142     // okay according to the likely resolution of an open issue;
   7143     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   7144     if (getLangOptions().CPlusPlus) {
   7145       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   7146         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   7147           TagDecl *Tag = TT->getDecl();
   7148           if (Tag->getDeclName() == Name &&
   7149               Tag->getDeclContext()->getRedeclContext()
   7150                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   7151             PrevDecl = Tag;
   7152             Previous.clear();
   7153             Previous.addDecl(Tag);
   7154             Previous.resolveKind();
   7155           }
   7156         }
   7157       }
   7158     }
   7159 
   7160     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   7161       // If this is a use of a previous tag, or if the tag is already declared
   7162       // in the same scope (so that the definition/declaration completes or
   7163       // rementions the tag), reuse the decl.
   7164       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   7165           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
   7166         // Make sure that this wasn't declared as an enum and now used as a
   7167         // struct or something similar.
   7168         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   7169                                           TUK == TUK_Definition, KWLoc,
   7170                                           *Name)) {
   7171           bool SafeToContinue
   7172             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   7173                Kind != TTK_Enum);
   7174           if (SafeToContinue)
   7175             Diag(KWLoc, diag::err_use_with_wrong_tag)
   7176               << Name
   7177               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   7178                                               PrevTagDecl->getKindName());
   7179           else
   7180             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   7181           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7182 
   7183           if (SafeToContinue)
   7184             Kind = PrevTagDecl->getTagKind();
   7185           else {
   7186             // Recover by making this an anonymous redefinition.
   7187             Name = 0;
   7188             Previous.clear();
   7189             Invalid = true;
   7190           }
   7191         }
   7192 
   7193         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   7194           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   7195 
   7196           // All conflicts with previous declarations are recovered by
   7197           // returning the previous declaration.
   7198           if (ScopedEnum != PrevEnum->isScoped()) {
   7199             Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
   7200               << PrevEnum->isScoped();
   7201             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7202             return PrevTagDecl;
   7203           }
   7204           else if (EnumUnderlying && PrevEnum->isFixed()) {
   7205             QualType T;
   7206             if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   7207                 T = TI->getType();
   7208             else
   7209                 T = QualType(EnumUnderlying.get<const Type*>(), 0);
   7210 
   7211             if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
   7212               Diag(NameLoc.isValid() ? NameLoc : KWLoc,
   7213                    diag::err_enum_redeclare_type_mismatch)
   7214                 << T
   7215                 << PrevEnum->getIntegerType();
   7216               Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7217               return PrevTagDecl;
   7218             }
   7219           }
   7220           else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
   7221             Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
   7222               << PrevEnum->isFixed();
   7223             Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   7224             return PrevTagDecl;
   7225           }
   7226         }
   7227 
   7228         if (!Invalid) {
   7229           // If this is a use, just return the declaration we found.
   7230 
   7231           // FIXME: In the future, return a variant or some other clue
   7232           // for the consumer of this Decl to know it doesn't own it.
   7233           // For our current ASTs this shouldn't be a problem, but will
   7234           // need to be changed with DeclGroups.
   7235           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
   7236                getLangOptions().Microsoft)) || TUK == TUK_Friend)
   7237             return PrevTagDecl;
   7238 
   7239           // Diagnose attempts to redefine a tag.
   7240           if (TUK == TUK_Definition) {
   7241             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   7242               // If we're defining a specialization and the previous definition
   7243               // is from an implicit instantiation, don't emit an error
   7244               // here; we'll catch this in the general case below.
   7245               if (!isExplicitSpecialization ||
   7246                   !isa<CXXRecordDecl>(Def) ||
   7247                   cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
   7248                                                == TSK_ExplicitSpecialization) {
   7249                 Diag(NameLoc, diag::err_redefinition) << Name;
   7250                 Diag(Def->getLocation(), diag::note_previous_definition);
   7251                 // If this is a redefinition, recover by making this
   7252                 // struct be anonymous, which will make any later
   7253                 // references get the previous definition.
   7254                 Name = 0;
   7255                 Previous.clear();
   7256                 Invalid = true;
   7257               }
   7258             } else {
   7259               // If the type is currently being defined, complain
   7260               // about a nested redefinition.
   7261               const TagType *Tag
   7262                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   7263               if (Tag->isBeingDefined()) {
   7264                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   7265                 Diag(PrevTagDecl->getLocation(),
   7266                      diag::note_previous_definition);
   7267                 Name = 0;
   7268                 Previous.clear();
   7269                 Invalid = true;
   7270               }
   7271             }
   7272 
   7273             // Okay, this is definition of a previously declared or referenced
   7274             // tag PrevDecl. We're going to create a new Decl for it.
   7275           }
   7276         }
   7277         // If we get here we have (another) forward declaration or we
   7278         // have a definition.  Just create a new decl.
   7279 
   7280       } else {
   7281         // If we get here, this is a definition of a new tag type in a nested
   7282         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   7283         // new decl/type.  We set PrevDecl to NULL so that the entities
   7284         // have distinct types.
   7285         Previous.clear();
   7286       }
   7287       // If we get here, we're going to create a new Decl. If PrevDecl
   7288       // is non-NULL, it's a definition of the tag declared by
   7289       // PrevDecl. If it's NULL, we have a new definition.
   7290 
   7291 
   7292     // Otherwise, PrevDecl is not a tag, but was found with tag
   7293     // lookup.  This is only actually possible in C++, where a few
   7294     // things like templates still live in the tag namespace.
   7295     } else {
   7296       assert(getLangOptions().CPlusPlus);
   7297 
   7298       // Use a better diagnostic if an elaborated-type-specifier
   7299       // found the wrong kind of type on the first
   7300       // (non-redeclaration) lookup.
   7301       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   7302           !Previous.isForRedeclaration()) {
   7303         unsigned Kind = 0;
   7304         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   7305         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   7306         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   7307         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   7308         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   7309         Invalid = true;
   7310 
   7311       // Otherwise, only diagnose if the declaration is in scope.
   7312       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   7313                                 isExplicitSpecialization)) {
   7314         // do nothing
   7315 
   7316       // Diagnose implicit declarations introduced by elaborated types.
   7317       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   7318         unsigned Kind = 0;
   7319         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   7320         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   7321         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   7322         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   7323         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   7324         Invalid = true;
   7325 
   7326       // Otherwise it's a declaration.  Call out a particularly common
   7327       // case here.
   7328       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   7329         unsigned Kind = 0;
   7330         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   7331         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   7332           << Name << Kind << TND->getUnderlyingType();
   7333         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   7334         Invalid = true;
   7335 
   7336       // Otherwise, diagnose.
   7337       } else {
   7338         // The tag name clashes with something else in the target scope,
   7339         // issue an error and recover by making this tag be anonymous.
   7340         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   7341         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   7342         Name = 0;
   7343         Invalid = true;
   7344       }
   7345 
   7346       // The existing declaration isn't relevant to us; we're in a
   7347       // new scope, so clear out the previous declaration.
   7348       Previous.clear();
   7349     }
   7350   }
   7351 
   7352 CreateNewDecl:
   7353 
   7354   TagDecl *PrevDecl = 0;
   7355   if (Previous.isSingleResult())
   7356     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   7357 
   7358   // If there is an identifier, use the location of the identifier as the
   7359   // location of the decl, otherwise use the location of the struct/union
   7360   // keyword.
   7361   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   7362 
   7363   // Otherwise, create a new declaration. If there is a previous
   7364   // declaration of the same entity, the two will be linked via
   7365   // PrevDecl.
   7366   TagDecl *New;
   7367 
   7368   bool IsForwardReference = false;
   7369   if (Kind == TTK_Enum) {
   7370     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   7371     // enum X { A, B, C } D;    D should chain to X.
   7372     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   7373                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   7374                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   7375     // If this is an undefined enum, warn.
   7376     if (TUK != TUK_Definition && !Invalid) {
   7377       TagDecl *Def;
   7378       if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
   7379         // C++0x: 7.2p2: opaque-enum-declaration.
   7380         // Conflicts are diagnosed above. Do nothing.
   7381       }
   7382       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   7383         Diag(Loc, diag::ext_forward_ref_enum_def)
   7384           << New;
   7385         Diag(Def->getLocation(), diag::note_previous_definition);
   7386       } else {
   7387         unsigned DiagID = diag::ext_forward_ref_enum;
   7388         if (getLangOptions().Microsoft)
   7389           DiagID = diag::ext_ms_forward_ref_enum;
   7390         else if (getLangOptions().CPlusPlus)
   7391           DiagID = diag::err_forward_ref_enum;
   7392         Diag(Loc, DiagID);
   7393 
   7394         // If this is a forward-declared reference to an enumeration, make a
   7395         // note of it; we won't actually be introducing the declaration into
   7396         // the declaration context.
   7397         if (TUK == TUK_Reference)
   7398           IsForwardReference = true;
   7399       }
   7400     }
   7401 
   7402     if (EnumUnderlying) {
   7403       EnumDecl *ED = cast<EnumDecl>(New);
   7404       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   7405         ED->setIntegerTypeSourceInfo(TI);
   7406       else
   7407         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   7408       ED->setPromotionType(ED->getIntegerType());
   7409     }
   7410 
   7411   } else {
   7412     // struct/union/class
   7413 
   7414     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   7415     // struct X { int A; } D;    D should chain to X.
   7416     if (getLangOptions().CPlusPlus) {
   7417       // FIXME: Look for a way to use RecordDecl for simple structs.
   7418       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   7419                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   7420 
   7421       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   7422         StdBadAlloc = cast<CXXRecordDecl>(New);
   7423     } else
   7424       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   7425                                cast_or_null<RecordDecl>(PrevDecl));
   7426   }
   7427 
   7428   // Maybe add qualifier info.
   7429   if (SS.isNotEmpty()) {
   7430     if (SS.isSet()) {
   7431       New->setQualifierInfo(SS.getWithLocInContext(Context));
   7432       if (TemplateParameterLists.size() > 0) {
   7433         New->setTemplateParameterListsInfo(Context,
   7434                                            TemplateParameterLists.size(),
   7435                     (TemplateParameterList**) TemplateParameterLists.release());
   7436       }
   7437     }
   7438     else
   7439       Invalid = true;
   7440   }
   7441 
   7442   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   7443     // Add alignment attributes if necessary; these attributes are checked when
   7444     // the ASTContext lays out the structure.
   7445     //
   7446     // It is important for implementing the correct semantics that this
   7447     // happen here (in act on tag decl). The #pragma pack stack is
   7448     // maintained as a result of parser callbacks which can occur at
   7449     // many points during the parsing of a struct declaration (because
   7450     // the #pragma tokens are effectively skipped over during the
   7451     // parsing of the struct).
   7452     AddAlignmentAttributesForRecord(RD);
   7453 
   7454     AddMsStructLayoutForRecord(RD);
   7455   }
   7456 
   7457   // If this is a specialization of a member class (of a class template),
   7458   // check the specialization.
   7459   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   7460     Invalid = true;
   7461 
   7462   if (Invalid)
   7463     New->setInvalidDecl();
   7464 
   7465   if (Attr)
   7466     ProcessDeclAttributeList(S, New, Attr);
   7467 
   7468   // If we're declaring or defining a tag in function prototype scope
   7469   // in C, note that this type can only be used within the function.
   7470   if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
   7471     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   7472 
   7473   // Set the lexical context. If the tag has a C++ scope specifier, the
   7474   // lexical context will be different from the semantic context.
   7475   New->setLexicalDeclContext(CurContext);
   7476 
   7477   // Mark this as a friend decl if applicable.
   7478   // In Microsoft mode, a friend declaration also acts as a forward
   7479   // declaration so we always pass true to setObjectOfFriendDecl to make
   7480   // the tag name visible.
   7481   if (TUK == TUK_Friend)
   7482     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
   7483                                getLangOptions().Microsoft);
   7484 
   7485   // Set the access specifier.
   7486   if (!Invalid && SearchDC->isRecord())
   7487     SetMemberAccessSpecifier(New, PrevDecl, AS);
   7488 
   7489   if (TUK == TUK_Definition)
   7490     New->startDefinition();
   7491 
   7492   // If this has an identifier, add it to the scope stack.
   7493   if (TUK == TUK_Friend) {
   7494     // We might be replacing an existing declaration in the lookup tables;
   7495     // if so, borrow its access specifier.
   7496     if (PrevDecl)
   7497       New->setAccess(PrevDecl->getAccess());
   7498 
   7499     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   7500     DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
   7501     if (Name) // can be null along some error paths
   7502       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   7503         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   7504   } else if (Name) {
   7505     S = getNonFieldDeclScope(S);
   7506     PushOnScopeChains(New, S, !IsForwardReference);
   7507     if (IsForwardReference)
   7508       SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
   7509 
   7510   } else {
   7511     CurContext->addDecl(New);
   7512   }
   7513 
   7514   // If this is the C FILE type, notify the AST context.
   7515   if (IdentifierInfo *II = New->getIdentifier())
   7516     if (!New->isInvalidDecl() &&
   7517         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   7518         II->isStr("FILE"))
   7519       Context.setFILEDecl(New);
   7520 
   7521   OwnedDecl = true;
   7522   return New;
   7523 }
   7524 
   7525 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   7526   AdjustDeclIfTemplate(TagD);
   7527   TagDecl *Tag = cast<TagDecl>(TagD);
   7528 
   7529   // Enter the tag context.
   7530   PushDeclContext(S, Tag);
   7531 }
   7532 
   7533 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   7534                                            SourceLocation FinalLoc,
   7535                                            SourceLocation LBraceLoc) {
   7536   AdjustDeclIfTemplate(TagD);
   7537   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   7538 
   7539   FieldCollector->StartClass();
   7540 
   7541   if (!Record->getIdentifier())
   7542     return;
   7543 
   7544   if (FinalLoc.isValid())
   7545     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
   7546 
   7547   // C++ [class]p2:
   7548   //   [...] The class-name is also inserted into the scope of the
   7549   //   class itself; this is known as the injected-class-name. For
   7550   //   purposes of access checking, the injected-class-name is treated
   7551   //   as if it were a public member name.
   7552   CXXRecordDecl *InjectedClassName
   7553     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   7554                             Record->getLocStart(), Record->getLocation(),
   7555                             Record->getIdentifier(),
   7556                             /*PrevDecl=*/0,
   7557                             /*DelayTypeCreation=*/true);
   7558   Context.getTypeDeclType(InjectedClassName, Record);
   7559   InjectedClassName->setImplicit();
   7560   InjectedClassName->setAccess(AS_public);
   7561   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   7562       InjectedClassName->setDescribedClassTemplate(Template);
   7563   PushOnScopeChains(InjectedClassName, S);
   7564   assert(InjectedClassName->isInjectedClassName() &&
   7565          "Broken injected-class-name");
   7566 }
   7567 
   7568 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   7569                                     SourceLocation RBraceLoc) {
   7570   AdjustDeclIfTemplate(TagD);
   7571   TagDecl *Tag = cast<TagDecl>(TagD);
   7572   Tag->setRBraceLoc(RBraceLoc);
   7573 
   7574   if (isa<CXXRecordDecl>(Tag))
   7575     FieldCollector->FinishClass();
   7576 
   7577   // Exit this scope of this tag's definition.
   7578   PopDeclContext();
   7579 
   7580   // Notify the consumer that we've defined a tag.
   7581   Consumer.HandleTagDeclDefinition(Tag);
   7582 }
   7583 
   7584 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   7585   AdjustDeclIfTemplate(TagD);
   7586   TagDecl *Tag = cast<TagDecl>(TagD);
   7587   Tag->setInvalidDecl();
   7588 
   7589   // We're undoing ActOnTagStartDefinition here, not
   7590   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   7591   // the FieldCollector.
   7592 
   7593   PopDeclContext();
   7594 }
   7595 
   7596 // Note that FieldName may be null for anonymous bitfields.
   7597 bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
   7598                           QualType FieldTy, const Expr *BitWidth,
   7599                           bool *ZeroWidth) {
   7600   // Default to true; that shouldn't confuse checks for emptiness
   7601   if (ZeroWidth)
   7602     *ZeroWidth = true;
   7603 
   7604   // C99 6.7.2.1p4 - verify the field type.
   7605   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   7606   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   7607     // Handle incomplete types with specific error.
   7608     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   7609       return true;
   7610     if (FieldName)
   7611       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   7612         << FieldName << FieldTy << BitWidth->getSourceRange();
   7613     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   7614       << FieldTy << BitWidth->getSourceRange();
   7615   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   7616                                              UPPC_BitFieldWidth))
   7617     return true;
   7618 
   7619   // If the bit-width is type- or value-dependent, don't try to check
   7620   // it now.
   7621   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   7622     return false;
   7623 
   7624   llvm::APSInt Value;
   7625   if (VerifyIntegerConstantExpression(BitWidth, &Value))
   7626     return true;
   7627 
   7628   if (Value != 0 && ZeroWidth)
   7629     *ZeroWidth = false;
   7630 
   7631   // Zero-width bitfield is ok for anonymous field.
   7632   if (Value == 0 && FieldName)
   7633     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   7634 
   7635   if (Value.isSigned() && Value.isNegative()) {
   7636     if (FieldName)
   7637       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   7638                << FieldName << Value.toString(10);
   7639     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   7640       << Value.toString(10);
   7641   }
   7642 
   7643   if (!FieldTy->isDependentType()) {
   7644     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   7645     if (Value.getZExtValue() > TypeSize) {
   7646       if (!getLangOptions().CPlusPlus) {
   7647         if (FieldName)
   7648           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   7649             << FieldName << (unsigned)Value.getZExtValue()
   7650             << (unsigned)TypeSize;
   7651 
   7652         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   7653           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   7654       }
   7655 
   7656       if (FieldName)
   7657         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   7658           << FieldName << (unsigned)Value.getZExtValue()
   7659           << (unsigned)TypeSize;
   7660       else
   7661         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   7662           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   7663     }
   7664   }
   7665 
   7666   return false;
   7667 }
   7668 
   7669 /// ActOnField - Each field of a C struct/union is passed into this in order
   7670 /// to create a FieldDecl object for it.
   7671 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   7672                        Declarator &D, ExprTy *BitfieldWidth) {
   7673   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   7674                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   7675                                /*HasInit=*/false, AS_public);
   7676   return Res;
   7677 }
   7678 
   7679 /// HandleField - Analyze a field of a C struct or a C++ data member.
   7680 ///
   7681 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   7682                              SourceLocation DeclStart,
   7683                              Declarator &D, Expr *BitWidth, bool HasInit,
   7684                              AccessSpecifier AS) {
   7685   IdentifierInfo *II = D.getIdentifier();
   7686   SourceLocation Loc = DeclStart;
   7687   if (II) Loc = D.getIdentifierLoc();
   7688 
   7689   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   7690   QualType T = TInfo->getType();
   7691   if (getLangOptions().CPlusPlus) {
   7692     CheckExtraCXXDefaultArguments(D);
   7693 
   7694     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   7695                                         UPPC_DataMemberType)) {
   7696       D.setInvalidType();
   7697       T = Context.IntTy;
   7698       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   7699     }
   7700   }
   7701 
   7702   DiagnoseFunctionSpecifiers(D);
   7703 
   7704   if (D.getDeclSpec().isThreadSpecified())
   7705     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   7706 
   7707   // Check to see if this name was declared as a member previously
   7708   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   7709   LookupName(Previous, S);
   7710   assert((Previous.empty() || Previous.isOverloadedResult() ||
   7711           Previous.isSingleResult())
   7712     && "Lookup of member name should be either overloaded, single or null");
   7713 
   7714   // If the name is overloaded then get any declaration else get the single result
   7715   NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
   7716     Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
   7717 
   7718   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   7719     // Maybe we will complain about the shadowed template parameter.
   7720     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   7721     // Just pretend that we didn't see the previous declaration.
   7722     PrevDecl = 0;
   7723   }
   7724 
   7725   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   7726     PrevDecl = 0;
   7727 
   7728   bool Mutable
   7729     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   7730   SourceLocation TSSL = D.getSourceRange().getBegin();
   7731   FieldDecl *NewFD
   7732     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
   7733                      TSSL, AS, PrevDecl, &D);
   7734 
   7735   if (NewFD->isInvalidDecl())
   7736     Record->setInvalidDecl();
   7737 
   7738   if (NewFD->isInvalidDecl() && PrevDecl) {
   7739     // Don't introduce NewFD into scope; there's already something
   7740     // with the same name in the same scope.
   7741   } else if (II) {
   7742     PushOnScopeChains(NewFD, S);
   7743   } else
   7744     Record->addDecl(NewFD);
   7745 
   7746   return NewFD;
   7747 }
   7748 
   7749 /// \brief Build a new FieldDecl and check its well-formedness.
   7750 ///
   7751 /// This routine builds a new FieldDecl given the fields name, type,
   7752 /// record, etc. \p PrevDecl should refer to any previous declaration
   7753 /// with the same name and in the same scope as the field to be
   7754 /// created.
   7755 ///
   7756 /// \returns a new FieldDecl.
   7757 ///
   7758 /// \todo The Declarator argument is a hack. It will be removed once
   7759 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   7760                                 TypeSourceInfo *TInfo,
   7761                                 RecordDecl *Record, SourceLocation Loc,
   7762                                 bool Mutable, Expr *BitWidth, bool HasInit,
   7763                                 SourceLocation TSSL,
   7764                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   7765                                 Declarator *D) {
   7766   IdentifierInfo *II = Name.getAsIdentifierInfo();
   7767   bool InvalidDecl = false;
   7768   if (D) InvalidDecl = D->isInvalidType();
   7769 
   7770   // If we receive a broken type, recover by assuming 'int' and
   7771   // marking this declaration as invalid.
   7772   if (T.isNull()) {
   7773     InvalidDecl = true;
   7774     T = Context.IntTy;
   7775   }
   7776 
   7777   QualType EltTy = Context.getBaseElementType(T);
   7778   if (!EltTy->isDependentType() &&
   7779       RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   7780     // Fields of incomplete type force their record to be invalid.
   7781     Record->setInvalidDecl();
   7782     InvalidDecl = true;
   7783   }
   7784 
   7785   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   7786   // than a variably modified type.
   7787   if (!InvalidDecl && T->isVariablyModifiedType()) {
   7788     bool SizeIsNegative;
   7789     llvm::APSInt Oversized;
   7790     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
   7791                                                            SizeIsNegative,
   7792                                                            Oversized);
   7793     if (!FixedTy.isNull()) {
   7794       Diag(Loc, diag::warn_illegal_constant_array_size);
   7795       T = FixedTy;
   7796     } else {
   7797       if (SizeIsNegative)
   7798         Diag(Loc, diag::err_typecheck_negative_array_size);
   7799       else if (Oversized.getBoolValue())
   7800         Diag(Loc, diag::err_array_too_large)
   7801           << Oversized.toString(10);
   7802       else
   7803         Diag(Loc, diag::err_typecheck_field_variable_size);
   7804       InvalidDecl = true;
   7805     }
   7806   }
   7807 
   7808   // Fields can not have abstract class types
   7809   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   7810                                              diag::err_abstract_type_in_decl,
   7811                                              AbstractFieldType))
   7812     InvalidDecl = true;
   7813 
   7814   bool ZeroWidth = false;
   7815   // If this is declared as a bit-field, check the bit-field.
   7816   if (!InvalidDecl && BitWidth &&
   7817       VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
   7818     InvalidDecl = true;
   7819     BitWidth = 0;
   7820     ZeroWidth = false;
   7821   }
   7822 
   7823   // Check that 'mutable' is consistent with the type of the declaration.
   7824   if (!InvalidDecl && Mutable) {
   7825     unsigned DiagID = 0;
   7826     if (T->isReferenceType())
   7827       DiagID = diag::err_mutable_reference;
   7828     else if (T.isConstQualified())
   7829       DiagID = diag::err_mutable_const;
   7830 
   7831     if (DiagID) {
   7832       SourceLocation ErrLoc = Loc;
   7833       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   7834         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   7835       Diag(ErrLoc, DiagID);
   7836       Mutable = false;
   7837       InvalidDecl = true;
   7838     }
   7839   }
   7840 
   7841   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   7842                                        BitWidth, Mutable, HasInit);
   7843   if (InvalidDecl)
   7844     NewFD->setInvalidDecl();
   7845 
   7846   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   7847     Diag(Loc, diag::err_duplicate_member) << II;
   7848     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   7849     NewFD->setInvalidDecl();
   7850   }
   7851 
   7852   if (!InvalidDecl && getLangOptions().CPlusPlus) {
   7853     if (Record->isUnion()) {
   7854       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   7855         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   7856         if (RDecl->getDefinition()) {
   7857           // C++ [class.union]p1: An object of a class with a non-trivial
   7858           // constructor, a non-trivial copy constructor, a non-trivial
   7859           // destructor, or a non-trivial copy assignment operator
   7860           // cannot be a member of a union, nor can an array of such
   7861           // objects.
   7862           if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
   7863             NewFD->setInvalidDecl();
   7864         }
   7865       }
   7866 
   7867       // C++ [class.union]p1: If a union contains a member of reference type,
   7868       // the program is ill-formed.
   7869       if (EltTy->isReferenceType()) {
   7870         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
   7871           << NewFD->getDeclName() << EltTy;
   7872         NewFD->setInvalidDecl();
   7873       }
   7874     }
   7875   }
   7876 
   7877   // FIXME: We need to pass in the attributes given an AST
   7878   // representation, not a parser representation.
   7879   if (D)
   7880     // FIXME: What to pass instead of TUScope?
   7881     ProcessDeclAttributes(TUScope, NewFD, *D);
   7882 
   7883   // In auto-retain/release, infer strong retension for fields of
   7884   // retainable type.
   7885   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   7886     NewFD->setInvalidDecl();
   7887 
   7888   if (T.isObjCGCWeak())
   7889     Diag(Loc, diag::warn_attribute_weak_on_field);
   7890 
   7891   NewFD->setAccess(AS);
   7892   return NewFD;
   7893 }
   7894 
   7895 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   7896   assert(FD);
   7897   assert(getLangOptions().CPlusPlus && "valid check only for C++");
   7898 
   7899   if (FD->isInvalidDecl())
   7900     return true;
   7901 
   7902   QualType EltTy = Context.getBaseElementType(FD->getType());
   7903   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   7904     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   7905     if (RDecl->getDefinition()) {
   7906       // We check for copy constructors before constructors
   7907       // because otherwise we'll never get complaints about
   7908       // copy constructors.
   7909 
   7910       CXXSpecialMember member = CXXInvalid;
   7911       if (!RDecl->hasTrivialCopyConstructor())
   7912         member = CXXCopyConstructor;
   7913       else if (!RDecl->hasTrivialDefaultConstructor())
   7914         member = CXXDefaultConstructor;
   7915       else if (!RDecl->hasTrivialCopyAssignment())
   7916         member = CXXCopyAssignment;
   7917       else if (!RDecl->hasTrivialDestructor())
   7918         member = CXXDestructor;
   7919 
   7920       if (member != CXXInvalid) {
   7921         if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   7922           // Objective-C++ ARC: it is an error to have a non-trivial field of
   7923           // a union. However, system headers in Objective-C programs
   7924           // occasionally have Objective-C lifetime objects within unions,
   7925           // and rather than cause the program to fail, we make those
   7926           // members unavailable.
   7927           SourceLocation Loc = FD->getLocation();
   7928           if (getSourceManager().isInSystemHeader(Loc)) {
   7929             if (!FD->hasAttr<UnavailableAttr>())
   7930               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
   7931                                   "this system field has retaining ownership"));
   7932             return false;
   7933           }
   7934         }
   7935 
   7936         Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
   7937               << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   7938         DiagnoseNontrivial(RT, member);
   7939         return true;
   7940       }
   7941     }
   7942   }
   7943 
   7944   return false;
   7945 }
   7946 
   7947 /// DiagnoseNontrivial - Given that a class has a non-trivial
   7948 /// special member, figure out why.
   7949 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
   7950   QualType QT(T, 0U);
   7951   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
   7952 
   7953   // Check whether the member was user-declared.
   7954   switch (member) {
   7955   case CXXInvalid:
   7956     break;
   7957 
   7958   case CXXDefaultConstructor:
   7959     if (RD->hasUserDeclaredConstructor()) {
   7960       typedef CXXRecordDecl::ctor_iterator ctor_iter;
   7961       for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
   7962         const FunctionDecl *body = 0;
   7963         ci->hasBody(body);
   7964         if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
   7965           SourceLocation CtorLoc = ci->getLocation();
   7966           Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   7967           return;
   7968         }
   7969       }
   7970 
   7971       assert(0 && "found no user-declared constructors");
   7972       return;
   7973     }
   7974     break;
   7975 
   7976   case CXXCopyConstructor:
   7977     if (RD->hasUserDeclaredCopyConstructor()) {
   7978       SourceLocation CtorLoc =
   7979         RD->getCopyConstructor(0)->getLocation();
   7980       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   7981       return;
   7982     }
   7983     break;
   7984 
   7985   case CXXMoveConstructor:
   7986     if (RD->hasUserDeclaredMoveConstructor()) {
   7987       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
   7988       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   7989       return;
   7990     }
   7991     break;
   7992 
   7993   case CXXCopyAssignment:
   7994     if (RD->hasUserDeclaredCopyAssignment()) {
   7995       // FIXME: this should use the location of the copy
   7996       // assignment, not the type.
   7997       SourceLocation TyLoc = RD->getSourceRange().getBegin();
   7998       Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
   7999       return;
   8000     }
   8001     break;
   8002 
   8003   case CXXMoveAssignment:
   8004     if (RD->hasUserDeclaredMoveAssignment()) {
   8005       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
   8006       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
   8007       return;
   8008     }
   8009     break;
   8010 
   8011   case CXXDestructor:
   8012     if (RD->hasUserDeclaredDestructor()) {
   8013       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
   8014       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   8015       return;
   8016     }
   8017     break;
   8018   }
   8019 
   8020   typedef CXXRecordDecl::base_class_iterator base_iter;
   8021 
   8022   // Virtual bases and members inhibit trivial copying/construction,
   8023   // but not trivial destruction.
   8024   if (member != CXXDestructor) {
   8025     // Check for virtual bases.  vbases includes indirect virtual bases,
   8026     // so we just iterate through the direct bases.
   8027     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
   8028       if (bi->isVirtual()) {
   8029         SourceLocation BaseLoc = bi->getSourceRange().getBegin();
   8030         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
   8031         return;
   8032       }
   8033 
   8034     // Check for virtual methods.
   8035     typedef CXXRecordDecl::method_iterator meth_iter;
   8036     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
   8037          ++mi) {
   8038       if (mi->isVirtual()) {
   8039         SourceLocation MLoc = mi->getSourceRange().getBegin();
   8040         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
   8041         return;
   8042       }
   8043     }
   8044   }
   8045 
   8046   bool (CXXRecordDecl::*hasTrivial)() const;
   8047   switch (member) {
   8048   case CXXDefaultConstructor:
   8049     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
   8050   case CXXCopyConstructor:
   8051     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
   8052   case CXXCopyAssignment:
   8053     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
   8054   case CXXDestructor:
   8055     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
   8056   default:
   8057     assert(0 && "unexpected special member"); return;
   8058   }
   8059 
   8060   // Check for nontrivial bases (and recurse).
   8061   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
   8062     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
   8063     assert(BaseRT && "Don't know how to handle dependent bases");
   8064     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
   8065     if (!(BaseRecTy->*hasTrivial)()) {
   8066       SourceLocation BaseLoc = bi->getSourceRange().getBegin();
   8067       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
   8068       DiagnoseNontrivial(BaseRT, member);
   8069       return;
   8070     }
   8071   }
   8072 
   8073   // Check for nontrivial members (and recurse).
   8074   typedef RecordDecl::field_iterator field_iter;
   8075   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
   8076        ++fi) {
   8077     QualType EltTy = Context.getBaseElementType((*fi)->getType());
   8078     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
   8079       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
   8080 
   8081       if (!(EltRD->*hasTrivial)()) {
   8082         SourceLocation FLoc = (*fi)->getLocation();
   8083         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
   8084         DiagnoseNontrivial(EltRT, member);
   8085         return;
   8086       }
   8087     }
   8088 
   8089     if (EltTy->isObjCLifetimeType()) {
   8090       switch (EltTy.getObjCLifetime()) {
   8091       case Qualifiers::OCL_None:
   8092       case Qualifiers::OCL_ExplicitNone:
   8093         break;
   8094 
   8095       case Qualifiers::OCL_Autoreleasing:
   8096       case Qualifiers::OCL_Weak:
   8097       case Qualifiers::OCL_Strong:
   8098         Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
   8099           << QT << EltTy.getObjCLifetime();
   8100         return;
   8101       }
   8102     }
   8103   }
   8104 
   8105   assert(0 && "found no explanation for non-trivial member");
   8106 }
   8107 
   8108 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   8109 ///  AST enum value.
   8110 static ObjCIvarDecl::AccessControl
   8111 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   8112   switch (ivarVisibility) {
   8113   default: assert(0 && "Unknown visitibility kind");
   8114   case tok::objc_private: return ObjCIvarDecl::Private;
   8115   case tok::objc_public: return ObjCIvarDecl::Public;
   8116   case tok::objc_protected: return ObjCIvarDecl::Protected;
   8117   case tok::objc_package: return ObjCIvarDecl::Package;
   8118   }
   8119 }
   8120 
   8121 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   8122 /// in order to create an IvarDecl object for it.
   8123 Decl *Sema::ActOnIvar(Scope *S,
   8124                                 SourceLocation DeclStart,
   8125                                 Decl *IntfDecl,
   8126                                 Declarator &D, ExprTy *BitfieldWidth,
   8127                                 tok::ObjCKeywordKind Visibility) {
   8128 
   8129   IdentifierInfo *II = D.getIdentifier();
   8130   Expr *BitWidth = (Expr*)BitfieldWidth;
   8131   SourceLocation Loc = DeclStart;
   8132   if (II) Loc = D.getIdentifierLoc();
   8133 
   8134   // FIXME: Unnamed fields can be handled in various different ways, for
   8135   // example, unnamed unions inject all members into the struct namespace!
   8136 
   8137   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   8138   QualType T = TInfo->getType();
   8139 
   8140   if (BitWidth) {
   8141     // 6.7.2.1p3, 6.7.2.1p4
   8142     if (VerifyBitField(Loc, II, T, BitWidth)) {
   8143       D.setInvalidType();
   8144       BitWidth = 0;
   8145     }
   8146   } else {
   8147     // Not a bitfield.
   8148 
   8149     // validate II.
   8150 
   8151   }
   8152   if (T->isReferenceType()) {
   8153     Diag(Loc, diag::err_ivar_reference_type);
   8154     D.setInvalidType();
   8155   }
   8156   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   8157   // than a variably modified type.
   8158   else if (T->isVariablyModifiedType()) {
   8159     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   8160     D.setInvalidType();
   8161   }
   8162 
   8163   // Get the visibility (access control) for this ivar.
   8164   ObjCIvarDecl::AccessControl ac =
   8165     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   8166                                         : ObjCIvarDecl::None;
   8167   // Must set ivar's DeclContext to its enclosing interface.
   8168   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
   8169   ObjCContainerDecl *EnclosingContext;
   8170   if (ObjCImplementationDecl *IMPDecl =
   8171       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   8172     if (!LangOpts.ObjCNonFragileABI2) {
   8173     // Case of ivar declared in an implementation. Context is that of its class.
   8174       EnclosingContext = IMPDecl->getClassInterface();
   8175       assert(EnclosingContext && "Implementation has no class interface!");
   8176     }
   8177     else
   8178       EnclosingContext = EnclosingDecl;
   8179   } else {
   8180     if (ObjCCategoryDecl *CDecl =
   8181         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   8182       if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
   8183         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   8184         return 0;
   8185       }
   8186     }
   8187     EnclosingContext = EnclosingDecl;
   8188   }
   8189 
   8190   // Construct the decl.
   8191   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   8192                                              DeclStart, Loc, II, T,
   8193                                              TInfo, ac, (Expr *)BitfieldWidth);
   8194 
   8195   if (II) {
   8196     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   8197                                            ForRedeclaration);
   8198     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   8199         && !isa<TagDecl>(PrevDecl)) {
   8200       Diag(Loc, diag::err_duplicate_member) << II;
   8201       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   8202       NewID->setInvalidDecl();
   8203     }
   8204   }
   8205 
   8206   // Process attributes attached to the ivar.
   8207   ProcessDeclAttributes(S, NewID, D);
   8208 
   8209   if (D.isInvalidType())
   8210     NewID->setInvalidDecl();
   8211 
   8212   // In ARC, infer 'retaining' for ivars of retainable type.
   8213   if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   8214     NewID->setInvalidDecl();
   8215 
   8216   if (II) {
   8217     // FIXME: When interfaces are DeclContexts, we'll need to add
   8218     // these to the interface.
   8219     S->AddDecl(NewID);
   8220     IdResolver.AddDecl(NewID);
   8221   }
   8222 
   8223   return NewID;
   8224 }
   8225 
   8226 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   8227 /// class and class extensions. For every class @interface and class
   8228 /// extension @interface, if the last ivar is a bitfield of any type,
   8229 /// then add an implicit `char :0` ivar to the end of that interface.
   8230 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
   8231                              llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
   8232   if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
   8233     return;
   8234 
   8235   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   8236   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   8237 
   8238   if (!Ivar->isBitField())
   8239     return;
   8240   uint64_t BitFieldSize =
   8241     Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
   8242   if (BitFieldSize == 0)
   8243     return;
   8244   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
   8245   if (!ID) {
   8246     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   8247       if (!CD->IsClassExtension())
   8248         return;
   8249     }
   8250     // No need to add this to end of @implementation.
   8251     else
   8252       return;
   8253   }
   8254   // All conditions are met. Add a new bitfield to the tail end of ivars.
   8255   llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
   8256   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
   8257 
   8258   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
   8259                               DeclLoc, DeclLoc, 0,
   8260                               Context.CharTy,
   8261                               Context.CreateTypeSourceInfo(Context.CharTy),
   8262                               ObjCIvarDecl::Private, BW,
   8263                               true);
   8264   AllIvarDecls.push_back(Ivar);
   8265 }
   8266 
   8267 void Sema::ActOnFields(Scope* S,
   8268                        SourceLocation RecLoc, Decl *EnclosingDecl,
   8269                        Decl **Fields, unsigned NumFields,
   8270                        SourceLocation LBrac, SourceLocation RBrac,
   8271                        AttributeList *Attr) {
   8272   assert(EnclosingDecl && "missing record or interface decl");
   8273 
   8274   // If the decl this is being inserted into is invalid, then it may be a
   8275   // redeclaration or some other bogus case.  Don't try to add fields to it.
   8276   if (EnclosingDecl->isInvalidDecl()) {
   8277     // FIXME: Deallocate fields?
   8278     return;
   8279   }
   8280 
   8281 
   8282   // Verify that all the fields are okay.
   8283   unsigned NumNamedMembers = 0;
   8284   llvm::SmallVector<FieldDecl*, 32> RecFields;
   8285 
   8286   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   8287   bool ARCErrReported = false;
   8288   for (unsigned i = 0; i != NumFields; ++i) {
   8289     FieldDecl *FD = cast<FieldDecl>(Fields[i]);
   8290 
   8291     // Get the type for the field.
   8292     const Type *FDTy = FD->getType().getTypePtr();
   8293 
   8294     if (!FD->isAnonymousStructOrUnion()) {
   8295       // Remember all fields written by the user.
   8296       RecFields.push_back(FD);
   8297     }
   8298 
   8299     // If the field is already invalid for some reason, don't emit more
   8300     // diagnostics about it.
   8301     if (FD->isInvalidDecl()) {
   8302       EnclosingDecl->setInvalidDecl();
   8303       continue;
   8304     }
   8305 
   8306     // C99 6.7.2.1p2:
   8307     //   A structure or union shall not contain a member with
   8308     //   incomplete or function type (hence, a structure shall not
   8309     //   contain an instance of itself, but may contain a pointer to
   8310     //   an instance of itself), except that the last member of a
   8311     //   structure with more than one named member may have incomplete
   8312     //   array type; such a structure (and any union containing,
   8313     //   possibly recursively, a member that is such a structure)
   8314     //   shall not be a member of a structure or an element of an
   8315     //   array.
   8316     if (FDTy->isFunctionType()) {
   8317       // Field declared as a function.
   8318       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   8319         << FD->getDeclName();
   8320       FD->setInvalidDecl();
   8321       EnclosingDecl->setInvalidDecl();
   8322       continue;
   8323     } else if (FDTy->isIncompleteArrayType() && Record &&
   8324                ((i == NumFields - 1 && !Record->isUnion()) ||
   8325                 ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
   8326                  (i == NumFields - 1 || Record->isUnion())))) {
   8327       // Flexible array member.
   8328       // Microsoft and g++ is more permissive regarding flexible array.
   8329       // It will accept flexible array in union and also
   8330       // as the sole element of a struct/class.
   8331       if (getLangOptions().Microsoft) {
   8332         if (Record->isUnion())
   8333           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
   8334             << FD->getDeclName();
   8335         else if (NumFields == 1)
   8336           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
   8337             << FD->getDeclName() << Record->getTagKind();
   8338       } else if (getLangOptions().CPlusPlus) {
   8339         if (Record->isUnion())
   8340           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   8341             << FD->getDeclName();
   8342         else if (NumFields == 1)
   8343           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
   8344             << FD->getDeclName() << Record->getTagKind();
   8345       } else if (NumNamedMembers < 1) {
   8346         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
   8347           << FD->getDeclName();
   8348         FD->setInvalidDecl();
   8349         EnclosingDecl->setInvalidDecl();
   8350         continue;
   8351       }
   8352       if (!FD->getType()->isDependentType() &&
   8353           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
   8354         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
   8355           << FD->getDeclName() << FD->getType();
   8356         FD->setInvalidDecl();
   8357         EnclosingDecl->setInvalidDecl();
   8358         continue;
   8359       }
   8360       // Okay, we have a legal flexible array member at the end of the struct.
   8361       if (Record)
   8362         Record->setHasFlexibleArrayMember(true);
   8363     } else if (!FDTy->isDependentType() &&
   8364                RequireCompleteType(FD->getLocation(), FD->getType(),
   8365                                    diag::err_field_incomplete)) {
   8366       // Incomplete type
   8367       FD->setInvalidDecl();
   8368       EnclosingDecl->setInvalidDecl();
   8369       continue;
   8370     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   8371       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   8372         // If this is a member of a union, then entire union becomes "flexible".
   8373         if (Record && Record->isUnion()) {
   8374           Record->setHasFlexibleArrayMember(true);
   8375         } else {
   8376           // If this is a struct/class and this is not the last element, reject
   8377           // it.  Note that GCC supports variable sized arrays in the middle of
   8378           // structures.
   8379           if (i != NumFields-1)
   8380             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   8381               << FD->getDeclName() << FD->getType();
   8382           else {
   8383             // We support flexible arrays at the end of structs in
   8384             // other structs as an extension.
   8385             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   8386               << FD->getDeclName();
   8387             if (Record)
   8388               Record->setHasFlexibleArrayMember(true);
   8389           }
   8390         }
   8391       }
   8392       if (Record && FDTTy->getDecl()->hasObjectMember())
   8393         Record->setHasObjectMember(true);
   8394     } else if (FDTy->isObjCObjectType()) {
   8395       /// A field cannot be an Objective-c object
   8396       Diag(FD->getLocation(), diag::err_statically_allocated_object);
   8397       FD->setInvalidDecl();
   8398       EnclosingDecl->setInvalidDecl();
   8399       continue;
   8400     }
   8401     else if (!getLangOptions().CPlusPlus) {
   8402       if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
   8403         // It's an error in ARC if a field has lifetime.
   8404         // We don't want to report this in a system header, though,
   8405         // so we just make the field unavailable.
   8406         // FIXME: that's really not sufficient; we need to make the type
   8407         // itself invalid to, say, initialize or copy.
   8408         QualType T = FD->getType();
   8409         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   8410         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   8411           SourceLocation loc = FD->getLocation();
   8412           if (getSourceManager().isInSystemHeader(loc)) {
   8413             if (!FD->hasAttr<UnavailableAttr>()) {
   8414               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
   8415                                 "this system field has retaining ownership"));
   8416             }
   8417           } else {
   8418             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
   8419           }
   8420           ARCErrReported = true;
   8421         }
   8422       }
   8423       else if (getLangOptions().ObjC1 &&
   8424                getLangOptions().getGCMode() != LangOptions::NonGC &&
   8425                Record && !Record->hasObjectMember()) {
   8426         if (FD->getType()->isObjCObjectPointerType() ||
   8427             FD->getType().isObjCGCStrong())
   8428           Record->setHasObjectMember(true);
   8429         else if (Context.getAsArrayType(FD->getType())) {
   8430           QualType BaseType = Context.getBaseElementType(FD->getType());
   8431           if (BaseType->isRecordType() &&
   8432               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   8433             Record->setHasObjectMember(true);
   8434           else if (BaseType->isObjCObjectPointerType() ||
   8435                    BaseType.isObjCGCStrong())
   8436                  Record->setHasObjectMember(true);
   8437         }
   8438       }
   8439     }
   8440     // Keep track of the number of named members.
   8441     if (FD->getIdentifier())
   8442       ++NumNamedMembers;
   8443   }
   8444 
   8445   // Okay, we successfully defined 'Record'.
   8446   if (Record) {
   8447     bool Completed = false;
   8448     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   8449       if (!CXXRecord->isInvalidDecl()) {
   8450         // Set access bits correctly on the directly-declared conversions.
   8451         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
   8452         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
   8453              I != E; ++I)
   8454           Convs->setAccess(I, (*I)->getAccess());
   8455 
   8456         if (!CXXRecord->isDependentType()) {
   8457           // Objective-C Automatic Reference Counting:
   8458           //   If a class has a non-static data member of Objective-C pointer
   8459           //   type (or array thereof), it is a non-POD type and its
   8460           //   default constructor (if any), copy constructor, copy assignment
   8461           //   operator, and destructor are non-trivial.
   8462           //
   8463           // This rule is also handled by CXXRecordDecl::completeDefinition().
   8464           // However, here we check whether this particular class is only
   8465           // non-POD because of the presence of an Objective-C pointer member.
   8466           // If so, objects of this type cannot be shared between code compiled
   8467           // with instant objects and code compiled with manual retain/release.
   8468           if (getLangOptions().ObjCAutoRefCount &&
   8469               CXXRecord->hasObjectMember() &&
   8470               CXXRecord->getLinkage() == ExternalLinkage) {
   8471             if (CXXRecord->isPOD()) {
   8472               Diag(CXXRecord->getLocation(),
   8473                    diag::warn_arc_non_pod_class_with_object_member)
   8474                << CXXRecord;
   8475             } else {
   8476               // FIXME: Fix-Its would be nice here, but finding a good location
   8477               // for them is going to be tricky.
   8478               if (CXXRecord->hasTrivialCopyConstructor())
   8479                 Diag(CXXRecord->getLocation(),
   8480                      diag::warn_arc_trivial_member_function_with_object_member)
   8481                   << CXXRecord << 0;
   8482               if (CXXRecord->hasTrivialCopyAssignment())
   8483                 Diag(CXXRecord->getLocation(),
   8484                      diag::warn_arc_trivial_member_function_with_object_member)
   8485                 << CXXRecord << 1;
   8486               if (CXXRecord->hasTrivialDestructor())
   8487                 Diag(CXXRecord->getLocation(),
   8488                      diag::warn_arc_trivial_member_function_with_object_member)
   8489                 << CXXRecord << 2;
   8490             }
   8491           }
   8492 
   8493           // Adjust user-defined destructor exception spec.
   8494           if (getLangOptions().CPlusPlus0x &&
   8495               CXXRecord->hasUserDeclaredDestructor())
   8496             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
   8497 
   8498           // Add any implicitly-declared members to this class.
   8499           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   8500 
   8501           // If we have virtual base classes, we may end up finding multiple
   8502           // final overriders for a given virtual function. Check for this
   8503           // problem now.
   8504           if (CXXRecord->getNumVBases()) {
   8505             CXXFinalOverriderMap FinalOverriders;
   8506             CXXRecord->getFinalOverriders(FinalOverriders);
   8507 
   8508             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   8509                                              MEnd = FinalOverriders.end();
   8510                  M != MEnd; ++M) {
   8511               for (OverridingMethods::iterator SO = M->second.begin(),
   8512                                             SOEnd = M->second.end();
   8513                    SO != SOEnd; ++SO) {
   8514                 assert(SO->second.size() > 0 &&
   8515                        "Virtual function without overridding functions?");
   8516                 if (SO->second.size() == 1)
   8517                   continue;
   8518 
   8519                 // C++ [class.virtual]p2:
   8520                 //   In a derived class, if a virtual member function of a base
   8521                 //   class subobject has more than one final overrider the
   8522                 //   program is ill-formed.
   8523                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   8524                   << (NamedDecl *)M->first << Record;
   8525                 Diag(M->first->getLocation(),
   8526                      diag::note_overridden_virtual_function);
   8527                 for (OverridingMethods::overriding_iterator
   8528                           OM = SO->second.begin(),
   8529                        OMEnd = SO->second.end();
   8530                      OM != OMEnd; ++OM)
   8531                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   8532                     << (NamedDecl *)M->first << OM->Method->getParent();
   8533 
   8534                 Record->setInvalidDecl();
   8535               }
   8536             }
   8537             CXXRecord->completeDefinition(&FinalOverriders);
   8538             Completed = true;
   8539           }
   8540         }
   8541       }
   8542     }
   8543 
   8544     if (!Completed)
   8545       Record->completeDefinition();
   8546 
   8547     // Now that the record is complete, do any delayed exception spec checks
   8548     // we were missing.
   8549     while (!DelayedDestructorExceptionSpecChecks.empty()) {
   8550       const CXXDestructorDecl *Dtor =
   8551               DelayedDestructorExceptionSpecChecks.back().first;
   8552       if (Dtor->getParent() != Record)
   8553         break;
   8554 
   8555       assert(!Dtor->getParent()->isDependentType() &&
   8556           "Should not ever add destructors of templates into the list.");
   8557       CheckOverridingFunctionExceptionSpec(Dtor,
   8558           DelayedDestructorExceptionSpecChecks.back().second);
   8559       DelayedDestructorExceptionSpecChecks.pop_back();
   8560     }
   8561 
   8562   } else {
   8563     ObjCIvarDecl **ClsFields =
   8564       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   8565     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   8566       ID->setLocEnd(RBrac);
   8567       // Add ivar's to class's DeclContext.
   8568       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   8569         ClsFields[i]->setLexicalDeclContext(ID);
   8570         ID->addDecl(ClsFields[i]);
   8571       }
   8572       // Must enforce the rule that ivars in the base classes may not be
   8573       // duplicates.
   8574       if (ID->getSuperClass())
   8575         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   8576     } else if (ObjCImplementationDecl *IMPDecl =
   8577                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   8578       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   8579       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   8580         // Ivar declared in @implementation never belongs to the implementation.
   8581         // Only it is in implementation's lexical context.
   8582         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   8583       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   8584     } else if (ObjCCategoryDecl *CDecl =
   8585                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   8586       // case of ivars in class extension; all other cases have been
   8587       // reported as errors elsewhere.
   8588       // FIXME. Class extension does not have a LocEnd field.
   8589       // CDecl->setLocEnd(RBrac);
   8590       // Add ivar's to class extension's DeclContext.
   8591       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   8592         ClsFields[i]->setLexicalDeclContext(CDecl);
   8593         CDecl->addDecl(ClsFields[i]);
   8594       }
   8595     }
   8596   }
   8597 
   8598   if (Attr)
   8599     ProcessDeclAttributeList(S, Record, Attr);
   8600 
   8601   // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
   8602   // set the visibility of this record.
   8603   if (Record && !Record->getDeclContext()->isRecord())
   8604     AddPushedVisibilityAttribute(Record);
   8605 }
   8606 
   8607 /// \brief Determine whether the given integral value is representable within
   8608 /// the given type T.
   8609 static bool isRepresentableIntegerValue(ASTContext &Context,
   8610                                         llvm::APSInt &Value,
   8611                                         QualType T) {
   8612   assert(T->isIntegralType(Context) && "Integral type required!");
   8613   unsigned BitWidth = Context.getIntWidth(T);
   8614 
   8615   if (Value.isUnsigned() || Value.isNonNegative()) {
   8616     if (T->isSignedIntegerOrEnumerationType())
   8617       --BitWidth;
   8618     return Value.getActiveBits() <= BitWidth;
   8619   }
   8620   return Value.getMinSignedBits() <= BitWidth;
   8621 }
   8622 
   8623 // \brief Given an integral type, return the next larger integral type
   8624 // (or a NULL type of no such type exists).
   8625 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   8626   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   8627   // enum checking below.
   8628   assert(T->isIntegralType(Context) && "Integral type required!");
   8629   const unsigned NumTypes = 4;
   8630   QualType SignedIntegralTypes[NumTypes] = {
   8631     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   8632   };
   8633   QualType UnsignedIntegralTypes[NumTypes] = {
   8634     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   8635     Context.UnsignedLongLongTy
   8636   };
   8637 
   8638   unsigned BitWidth = Context.getTypeSize(T);
   8639   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   8640                                                         : UnsignedIntegralTypes;
   8641   for (unsigned I = 0; I != NumTypes; ++I)
   8642     if (Context.getTypeSize(Types[I]) > BitWidth)
   8643       return Types[I];
   8644 
   8645   return QualType();
   8646 }
   8647 
   8648 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   8649                                           EnumConstantDecl *LastEnumConst,
   8650                                           SourceLocation IdLoc,
   8651                                           IdentifierInfo *Id,
   8652                                           Expr *Val) {
   8653   unsigned IntWidth = Context.Target.getIntWidth();
   8654   llvm::APSInt EnumVal(IntWidth);
   8655   QualType EltTy;
   8656 
   8657   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   8658     Val = 0;
   8659 
   8660   if (Val) {
   8661     if (Enum->isDependentType() || Val->isTypeDependent())
   8662       EltTy = Context.DependentTy;
   8663     else {
   8664       // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   8665       SourceLocation ExpLoc;
   8666       if (!Val->isValueDependent() &&
   8667           VerifyIntegerConstantExpression(Val, &EnumVal)) {
   8668         Val = 0;
   8669       } else {
   8670         if (!getLangOptions().CPlusPlus) {
   8671           // C99 6.7.2.2p2:
   8672           //   The expression that defines the value of an enumeration constant
   8673           //   shall be an integer constant expression that has a value
   8674           //   representable as an int.
   8675 
   8676           // Complain if the value is not representable in an int.
   8677           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   8678             Diag(IdLoc, diag::ext_enum_value_not_int)
   8679               << EnumVal.toString(10) << Val->getSourceRange()
   8680               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   8681           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   8682             // Force the type of the expression to 'int'.
   8683             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
   8684           }
   8685         }
   8686 
   8687         if (Enum->isFixed()) {
   8688           EltTy = Enum->getIntegerType();
   8689 
   8690           // C++0x [dcl.enum]p5:
   8691           //   ... if the initializing value of an enumerator cannot be
   8692           //   represented by the underlying type, the program is ill-formed.
   8693           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   8694             if (getLangOptions().Microsoft) {
   8695               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   8696               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   8697             } else
   8698               Diag(IdLoc, diag::err_enumerator_too_large)
   8699                 << EltTy;
   8700           } else
   8701             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   8702         }
   8703         else {
   8704           // C++0x [dcl.enum]p5:
   8705           //   If the underlying type is not fixed, the type of each enumerator
   8706           //   is the type of its initializing value:
   8707           //     - If an initializer is specified for an enumerator, the
   8708           //       initializing value has the same type as the expression.
   8709           EltTy = Val->getType();
   8710         }
   8711       }
   8712     }
   8713   }
   8714 
   8715   if (!Val) {
   8716     if (Enum->isDependentType())
   8717       EltTy = Context.DependentTy;
   8718     else if (!LastEnumConst) {
   8719       // C++0x [dcl.enum]p5:
   8720       //   If the underlying type is not fixed, the type of each enumerator
   8721       //   is the type of its initializing value:
   8722       //     - If no initializer is specified for the first enumerator, the
   8723       //       initializing value has an unspecified integral type.
   8724       //
   8725       // GCC uses 'int' for its unspecified integral type, as does
   8726       // C99 6.7.2.2p3.
   8727       if (Enum->isFixed()) {
   8728         EltTy = Enum->getIntegerType();
   8729       }
   8730       else {
   8731         EltTy = Context.IntTy;
   8732       }
   8733     } else {
   8734       // Assign the last value + 1.
   8735       EnumVal = LastEnumConst->getInitVal();
   8736       ++EnumVal;
   8737       EltTy = LastEnumConst->getType();
   8738 
   8739       // Check for overflow on increment.
   8740       if (EnumVal < LastEnumConst->getInitVal()) {
   8741         // C++0x [dcl.enum]p5:
   8742         //   If the underlying type is not fixed, the type of each enumerator
   8743         //   is the type of its initializing value:
   8744         //
   8745         //     - Otherwise the type of the initializing value is the same as
   8746         //       the type of the initializing value of the preceding enumerator
   8747         //       unless the incremented value is not representable in that type,
   8748         //       in which case the type is an unspecified integral type
   8749         //       sufficient to contain the incremented value. If no such type
   8750         //       exists, the program is ill-formed.
   8751         QualType T = getNextLargerIntegralType(Context, EltTy);
   8752         if (T.isNull() || Enum->isFixed()) {
   8753           // There is no integral type larger enough to represent this
   8754           // value. Complain, then allow the value to wrap around.
   8755           EnumVal = LastEnumConst->getInitVal();
   8756           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   8757           ++EnumVal;
   8758           if (Enum->isFixed())
   8759             // When the underlying type is fixed, this is ill-formed.
   8760             Diag(IdLoc, diag::err_enumerator_wrapped)
   8761               << EnumVal.toString(10)
   8762               << EltTy;
   8763           else
   8764             Diag(IdLoc, diag::warn_enumerator_too_large)
   8765               << EnumVal.toString(10);
   8766         } else {
   8767           EltTy = T;
   8768         }
   8769 
   8770         // Retrieve the last enumerator's value, extent that type to the
   8771         // type that is supposed to be large enough to represent the incremented
   8772         // value, then increment.
   8773         EnumVal = LastEnumConst->getInitVal();
   8774         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   8775         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   8776         ++EnumVal;
   8777 
   8778         // If we're not in C++, diagnose the overflow of enumerator values,
   8779         // which in C99 means that the enumerator value is not representable in
   8780         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   8781         // permits enumerator values that are representable in some larger
   8782         // integral type.
   8783         if (!getLangOptions().CPlusPlus && !T.isNull())
   8784           Diag(IdLoc, diag::warn_enum_value_overflow);
   8785       } else if (!getLangOptions().CPlusPlus &&
   8786                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   8787         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   8788         Diag(IdLoc, diag::ext_enum_value_not_int)
   8789           << EnumVal.toString(10) << 1;
   8790       }
   8791     }
   8792   }
   8793 
   8794   if (!EltTy->isDependentType()) {
   8795     // Make the enumerator value match the signedness and size of the
   8796     // enumerator's type.
   8797     EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   8798     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   8799   }
   8800 
   8801   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   8802                                   Val, EnumVal);
   8803 }
   8804 
   8805 
   8806 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   8807                               SourceLocation IdLoc, IdentifierInfo *Id,
   8808                               AttributeList *Attr,
   8809                               SourceLocation EqualLoc, ExprTy *val) {
   8810   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   8811   EnumConstantDecl *LastEnumConst =
   8812     cast_or_null<EnumConstantDecl>(lastEnumConst);
   8813   Expr *Val = static_cast<Expr*>(val);
   8814 
   8815   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   8816   // we find one that is.
   8817   S = getNonFieldDeclScope(S);
   8818 
   8819   // Verify that there isn't already something declared with this name in this
   8820   // scope.
   8821   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   8822                                          ForRedeclaration);
   8823   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   8824     // Maybe we will complain about the shadowed template parameter.
   8825     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   8826     // Just pretend that we didn't see the previous declaration.
   8827     PrevDecl = 0;
   8828   }
   8829 
   8830   if (PrevDecl) {
   8831     // When in C++, we may get a TagDecl with the same name; in this case the
   8832     // enum constant will 'hide' the tag.
   8833     assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   8834            "Received TagDecl when not in C++!");
   8835     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   8836       if (isa<EnumConstantDecl>(PrevDecl))
   8837         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   8838       else
   8839         Diag(IdLoc, diag::err_redefinition) << Id;
   8840       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   8841       return 0;
   8842     }
   8843   }
   8844 
   8845   // C++ [class.mem]p13:
   8846   //   If T is the name of a class, then each of the following shall have a
   8847   //   name different from T:
   8848   //     - every enumerator of every member of class T that is an enumerated
   8849   //       type
   8850   if (CXXRecordDecl *Record
   8851                       = dyn_cast<CXXRecordDecl>(
   8852                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   8853     if (Record->getIdentifier() && Record->getIdentifier() == Id)
   8854       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   8855 
   8856   EnumConstantDecl *New =
   8857     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   8858 
   8859   if (New) {
   8860     // Process attributes.
   8861     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   8862 
   8863     // Register this decl in the current scope stack.
   8864     New->setAccess(TheEnumDecl->getAccess());
   8865     PushOnScopeChains(New, S);
   8866   }
   8867 
   8868   return New;
   8869 }
   8870 
   8871 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   8872                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   8873                          Decl **Elements, unsigned NumElements,
   8874                          Scope *S, AttributeList *Attr) {
   8875   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   8876   QualType EnumType = Context.getTypeDeclType(Enum);
   8877 
   8878   if (Attr)
   8879     ProcessDeclAttributeList(S, Enum, Attr);
   8880 
   8881   if (Enum->isDependentType()) {
   8882     for (unsigned i = 0; i != NumElements; ++i) {
   8883       EnumConstantDecl *ECD =
   8884         cast_or_null<EnumConstantDecl>(Elements[i]);
   8885       if (!ECD) continue;
   8886 
   8887       ECD->setType(EnumType);
   8888     }
   8889 
   8890     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   8891     return;
   8892   }
   8893 
   8894   // TODO: If the result value doesn't fit in an int, it must be a long or long
   8895   // long value.  ISO C does not support this, but GCC does as an extension,
   8896   // emit a warning.
   8897   unsigned IntWidth = Context.Target.getIntWidth();
   8898   unsigned CharWidth = Context.Target.getCharWidth();
   8899   unsigned ShortWidth = Context.Target.getShortWidth();
   8900 
   8901   // Verify that all the values are okay, compute the size of the values, and
   8902   // reverse the list.
   8903   unsigned NumNegativeBits = 0;
   8904   unsigned NumPositiveBits = 0;
   8905 
   8906   // Keep track of whether all elements have type int.
   8907   bool AllElementsInt = true;
   8908 
   8909   for (unsigned i = 0; i != NumElements; ++i) {
   8910     EnumConstantDecl *ECD =
   8911       cast_or_null<EnumConstantDecl>(Elements[i]);
   8912     if (!ECD) continue;  // Already issued a diagnostic.
   8913 
   8914     const llvm::APSInt &InitVal = ECD->getInitVal();
   8915 
   8916     // Keep track of the size of positive and negative values.
   8917     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   8918       NumPositiveBits = std::max(NumPositiveBits,
   8919                                  (unsigned)InitVal.getActiveBits());
   8920     else
   8921       NumNegativeBits = std::max(NumNegativeBits,
   8922                                  (unsigned)InitVal.getMinSignedBits());
   8923 
   8924     // Keep track of whether every enum element has type int (very commmon).
   8925     if (AllElementsInt)
   8926       AllElementsInt = ECD->getType() == Context.IntTy;
   8927   }
   8928 
   8929   // Figure out the type that should be used for this enum.
   8930   QualType BestType;
   8931   unsigned BestWidth;
   8932 
   8933   // C++0x N3000 [conv.prom]p3:
   8934   //   An rvalue of an unscoped enumeration type whose underlying
   8935   //   type is not fixed can be converted to an rvalue of the first
   8936   //   of the following types that can represent all the values of
   8937   //   the enumeration: int, unsigned int, long int, unsigned long
   8938   //   int, long long int, or unsigned long long int.
   8939   // C99 6.4.4.3p2:
   8940   //   An identifier declared as an enumeration constant has type int.
   8941   // The C99 rule is modified by a gcc extension
   8942   QualType BestPromotionType;
   8943 
   8944   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
   8945   // -fshort-enums is the equivalent to specifying the packed attribute on all
   8946   // enum definitions.
   8947   if (LangOpts.ShortEnums)
   8948     Packed = true;
   8949 
   8950   if (Enum->isFixed()) {
   8951     BestType = BestPromotionType = Enum->getIntegerType();
   8952     // We don't need to set BestWidth, because BestType is going to be the type
   8953     // of the enumerators, but we do anyway because otherwise some compilers
   8954     // warn that it might be used uninitialized.
   8955     BestWidth = CharWidth;
   8956   }
   8957   else if (NumNegativeBits) {
   8958     // If there is a negative value, figure out the smallest integer type (of
   8959     // int/long/longlong) that fits.
   8960     // If it's packed, check also if it fits a char or a short.
   8961     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   8962       BestType = Context.SignedCharTy;
   8963       BestWidth = CharWidth;
   8964     } else if (Packed && NumNegativeBits <= ShortWidth &&
   8965                NumPositiveBits < ShortWidth) {
   8966       BestType = Context.ShortTy;
   8967       BestWidth = ShortWidth;
   8968     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   8969       BestType = Context.IntTy;
   8970       BestWidth = IntWidth;
   8971     } else {
   8972       BestWidth = Context.Target.getLongWidth();
   8973 
   8974       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   8975         BestType = Context.LongTy;
   8976       } else {
   8977         BestWidth = Context.Target.getLongLongWidth();
   8978 
   8979         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   8980           Diag(Enum->getLocation(), diag::warn_enum_too_large);
   8981         BestType = Context.LongLongTy;
   8982       }
   8983     }
   8984     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   8985   } else {
   8986     // If there is no negative value, figure out the smallest type that fits
   8987     // all of the enumerator values.
   8988     // If it's packed, check also if it fits a char or a short.
   8989     if (Packed && NumPositiveBits <= CharWidth) {
   8990       BestType = Context.UnsignedCharTy;
   8991       BestPromotionType = Context.IntTy;
   8992       BestWidth = CharWidth;
   8993     } else if (Packed && NumPositiveBits <= ShortWidth) {
   8994       BestType = Context.UnsignedShortTy;
   8995       BestPromotionType = Context.IntTy;
   8996       BestWidth = ShortWidth;
   8997     } else if (NumPositiveBits <= IntWidth) {
   8998       BestType = Context.UnsignedIntTy;
   8999       BestWidth = IntWidth;
   9000       BestPromotionType
   9001         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9002                            ? Context.UnsignedIntTy : Context.IntTy;
   9003     } else if (NumPositiveBits <=
   9004                (BestWidth = Context.Target.getLongWidth())) {
   9005       BestType = Context.UnsignedLongTy;
   9006       BestPromotionType
   9007         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9008                            ? Context.UnsignedLongTy : Context.LongTy;
   9009     } else {
   9010       BestWidth = Context.Target.getLongLongWidth();
   9011       assert(NumPositiveBits <= BestWidth &&
   9012              "How could an initializer get larger than ULL?");
   9013       BestType = Context.UnsignedLongLongTy;
   9014       BestPromotionType
   9015         = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
   9016                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   9017     }
   9018   }
   9019 
   9020   // Loop over all of the enumerator constants, changing their types to match
   9021   // the type of the enum if needed.
   9022   for (unsigned i = 0; i != NumElements; ++i) {
   9023     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   9024     if (!ECD) continue;  // Already issued a diagnostic.
   9025 
   9026     // Standard C says the enumerators have int type, but we allow, as an
   9027     // extension, the enumerators to be larger than int size.  If each
   9028     // enumerator value fits in an int, type it as an int, otherwise type it the
   9029     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   9030     // that X has type 'int', not 'unsigned'.
   9031 
   9032     // Determine whether the value fits into an int.
   9033     llvm::APSInt InitVal = ECD->getInitVal();
   9034 
   9035     // If it fits into an integer type, force it.  Otherwise force it to match
   9036     // the enum decl type.
   9037     QualType NewTy;
   9038     unsigned NewWidth;
   9039     bool NewSign;
   9040     if (!getLangOptions().CPlusPlus &&
   9041         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   9042       NewTy = Context.IntTy;
   9043       NewWidth = IntWidth;
   9044       NewSign = true;
   9045     } else if (ECD->getType() == BestType) {
   9046       // Already the right type!
   9047       if (getLangOptions().CPlusPlus)
   9048         // C++ [dcl.enum]p4: Following the closing brace of an
   9049         // enum-specifier, each enumerator has the type of its
   9050         // enumeration.
   9051         ECD->setType(EnumType);
   9052       continue;
   9053     } else {
   9054       NewTy = BestType;
   9055       NewWidth = BestWidth;
   9056       NewSign = BestType->isSignedIntegerOrEnumerationType();
   9057     }
   9058 
   9059     // Adjust the APSInt value.
   9060     InitVal = InitVal.extOrTrunc(NewWidth);
   9061     InitVal.setIsSigned(NewSign);
   9062     ECD->setInitVal(InitVal);
   9063 
   9064     // Adjust the Expr initializer and type.
   9065     if (ECD->getInitExpr() &&
   9066         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   9067       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   9068                                                 CK_IntegralCast,
   9069                                                 ECD->getInitExpr(),
   9070                                                 /*base paths*/ 0,
   9071                                                 VK_RValue));
   9072     if (getLangOptions().CPlusPlus)
   9073       // C++ [dcl.enum]p4: Following the closing brace of an
   9074       // enum-specifier, each enumerator has the type of its
   9075       // enumeration.
   9076       ECD->setType(EnumType);
   9077     else
   9078       ECD->setType(NewTy);
   9079   }
   9080 
   9081   Enum->completeDefinition(BestType, BestPromotionType,
   9082                            NumPositiveBits, NumNegativeBits);
   9083 }
   9084 
   9085 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   9086                                   SourceLocation StartLoc,
   9087                                   SourceLocation EndLoc) {
   9088   StringLiteral *AsmString = cast<StringLiteral>(expr);
   9089 
   9090   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   9091                                                    AsmString, StartLoc,
   9092                                                    EndLoc);
   9093   CurContext->addDecl(New);
   9094   return New;
   9095 }
   9096 
   9097 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   9098                              SourceLocation PragmaLoc,
   9099                              SourceLocation NameLoc) {
   9100   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   9101 
   9102   if (PrevDecl) {
   9103     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
   9104   } else {
   9105     (void)WeakUndeclaredIdentifiers.insert(
   9106       std::pair<IdentifierInfo*,WeakInfo>
   9107         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
   9108   }
   9109 }
   9110 
   9111 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   9112                                 IdentifierInfo* AliasName,
   9113                                 SourceLocation PragmaLoc,
   9114                                 SourceLocation NameLoc,
   9115                                 SourceLocation AliasNameLoc) {
   9116   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   9117                                     LookupOrdinaryName);
   9118   WeakInfo W = WeakInfo(Name, NameLoc);
   9119 
   9120   if (PrevDecl) {
   9121     if (!PrevDecl->hasAttr<AliasAttr>())
   9122       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   9123         DeclApplyPragmaWeak(TUScope, ND, W);
   9124   } else {
   9125     (void)WeakUndeclaredIdentifiers.insert(
   9126       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   9127   }
   9128 }
   9129