1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective C declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Lookup.h" 16 #include "clang/Sema/ExternalSemaSource.h" 17 #include "clang/Sema/Scope.h" 18 #include "clang/Sema/ScopeInfo.h" 19 #include "clang/AST/ASTConsumer.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "llvm/ADT/DenseSet.h" 27 28 using namespace clang; 29 30 /// Check whether the given method, which must be in the 'init' 31 /// family, is a valid member of that family. 32 /// 33 /// \param receiverTypeIfCall - if null, check this as if declaring it; 34 /// if non-null, check this as if making a call to it with the given 35 /// receiver type 36 /// 37 /// \return true to indicate that there was an error and appropriate 38 /// actions were taken 39 bool Sema::checkInitMethod(ObjCMethodDecl *method, 40 QualType receiverTypeIfCall) { 41 if (method->isInvalidDecl()) return true; 42 43 // This castAs is safe: methods that don't return an object 44 // pointer won't be inferred as inits and will reject an explicit 45 // objc_method_family(init). 46 47 // We ignore protocols here. Should we? What about Class? 48 49 const ObjCObjectType *result = method->getResultType() 50 ->castAs<ObjCObjectPointerType>()->getObjectType(); 51 52 if (result->isObjCId()) { 53 return false; 54 } else if (result->isObjCClass()) { 55 // fall through: always an error 56 } else { 57 ObjCInterfaceDecl *resultClass = result->getInterface(); 58 assert(resultClass && "unexpected object type!"); 59 60 // It's okay for the result type to still be a forward declaration 61 // if we're checking an interface declaration. 62 if (resultClass->isForwardDecl()) { 63 if (receiverTypeIfCall.isNull() && 64 !isa<ObjCImplementationDecl>(method->getDeclContext())) 65 return false; 66 67 // Otherwise, we try to compare class types. 68 } else { 69 // If this method was declared in a protocol, we can't check 70 // anything unless we have a receiver type that's an interface. 71 const ObjCInterfaceDecl *receiverClass = 0; 72 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 73 if (receiverTypeIfCall.isNull()) 74 return false; 75 76 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 77 ->getInterfaceDecl(); 78 79 // This can be null for calls to e.g. id<Foo>. 80 if (!receiverClass) return false; 81 } else { 82 receiverClass = method->getClassInterface(); 83 assert(receiverClass && "method not associated with a class!"); 84 } 85 86 // If either class is a subclass of the other, it's fine. 87 if (receiverClass->isSuperClassOf(resultClass) || 88 resultClass->isSuperClassOf(receiverClass)) 89 return false; 90 } 91 } 92 93 SourceLocation loc = method->getLocation(); 94 95 // If we're in a system header, and this is not a call, just make 96 // the method unusable. 97 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 98 method->addAttr(new (Context) UnavailableAttr(loc, Context, 99 "init method returns a type unrelated to its receiver type")); 100 return true; 101 } 102 103 // Otherwise, it's an error. 104 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 105 method->setInvalidDecl(); 106 return true; 107 } 108 109 bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 110 const ObjCMethodDecl *Overridden, 111 bool IsImplementation) { 112 if (Overridden->hasRelatedResultType() && 113 !NewMethod->hasRelatedResultType()) { 114 // This can only happen when the method follows a naming convention that 115 // implies a related result type, and the original (overridden) method has 116 // a suitable return type, but the new (overriding) method does not have 117 // a suitable return type. 118 QualType ResultType = NewMethod->getResultType(); 119 SourceRange ResultTypeRange; 120 if (const TypeSourceInfo *ResultTypeInfo 121 = NewMethod->getResultTypeSourceInfo()) 122 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 123 124 // Figure out which class this method is part of, if any. 125 ObjCInterfaceDecl *CurrentClass 126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 127 if (!CurrentClass) { 128 DeclContext *DC = NewMethod->getDeclContext(); 129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 130 CurrentClass = Cat->getClassInterface(); 131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 132 CurrentClass = Impl->getClassInterface(); 133 else if (ObjCCategoryImplDecl *CatImpl 134 = dyn_cast<ObjCCategoryImplDecl>(DC)) 135 CurrentClass = CatImpl->getClassInterface(); 136 } 137 138 if (CurrentClass) { 139 Diag(NewMethod->getLocation(), 140 diag::warn_related_result_type_compatibility_class) 141 << Context.getObjCInterfaceType(CurrentClass) 142 << ResultType 143 << ResultTypeRange; 144 } else { 145 Diag(NewMethod->getLocation(), 146 diag::warn_related_result_type_compatibility_protocol) 147 << ResultType 148 << ResultTypeRange; 149 } 150 151 Diag(Overridden->getLocation(), diag::note_related_result_type_overridden) 152 << Overridden->getMethodFamily(); 153 } 154 155 return false; 156 } 157 158 /// \brief Check for consistency between a given method declaration and the 159 /// methods it overrides within the class hierarchy. 160 /// 161 /// This method walks the inheritance hierarchy starting at the given 162 /// declaration context (\p DC), invoking Sema::CheckObjCMethodOverride() with 163 /// the given new method (\p NewMethod) and any method it directly overrides 164 /// in the hierarchy. Sema::CheckObjCMethodOverride() is responsible for 165 /// checking consistency, e.g., among return types for methods that return a 166 /// related result type. 167 static bool CheckObjCMethodOverrides(Sema &S, ObjCMethodDecl *NewMethod, 168 DeclContext *DC, 169 bool SkipCurrent = true) { 170 if (!DC) 171 return false; 172 173 if (!SkipCurrent) { 174 // Look for this method. If we find it, we're done. 175 Selector Sel = NewMethod->getSelector(); 176 bool IsInstance = NewMethod->isInstanceMethod(); 177 DeclContext::lookup_const_iterator Meth, MethEnd; 178 for (llvm::tie(Meth, MethEnd) = DC->lookup(Sel); Meth != MethEnd; ++Meth) { 179 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth); 180 if (MD && MD->isInstanceMethod() == IsInstance) 181 return S.CheckObjCMethodOverride(NewMethod, MD, false); 182 } 183 } 184 185 if (ObjCInterfaceDecl *Class = llvm::dyn_cast<ObjCInterfaceDecl>(DC)) { 186 // Look through categories. 187 for (ObjCCategoryDecl *Category = Class->getCategoryList(); 188 Category; Category = Category->getNextClassCategory()) { 189 if (CheckObjCMethodOverrides(S, NewMethod, Category, false)) 190 return true; 191 } 192 193 // Look through protocols. 194 for (ObjCList<ObjCProtocolDecl>::iterator I = Class->protocol_begin(), 195 IEnd = Class->protocol_end(); 196 I != IEnd; ++I) 197 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 198 return true; 199 200 // Look in our superclass. 201 return CheckObjCMethodOverrides(S, NewMethod, Class->getSuperClass(), 202 false); 203 } 204 205 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) { 206 // Look through protocols. 207 for (ObjCList<ObjCProtocolDecl>::iterator I = Category->protocol_begin(), 208 IEnd = Category->protocol_end(); 209 I != IEnd; ++I) 210 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 211 return true; 212 213 return false; 214 } 215 216 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) { 217 // Look through protocols. 218 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocol->protocol_begin(), 219 IEnd = Protocol->protocol_end(); 220 I != IEnd; ++I) 221 if (CheckObjCMethodOverrides(S, NewMethod, *I, false)) 222 return true; 223 224 return false; 225 } 226 227 return false; 228 } 229 230 bool Sema::CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod, 231 DeclContext *DC) { 232 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(DC)) 233 return ::CheckObjCMethodOverrides(*this, NewMethod, Class); 234 235 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) 236 return ::CheckObjCMethodOverrides(*this, NewMethod, Category); 237 238 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) 239 return ::CheckObjCMethodOverrides(*this, NewMethod, Protocol); 240 241 if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(DC)) 242 return ::CheckObjCMethodOverrides(*this, NewMethod, 243 Impl->getClassInterface()); 244 245 if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC)) 246 return ::CheckObjCMethodOverrides(*this, NewMethod, 247 CatImpl->getClassInterface()); 248 249 return ::CheckObjCMethodOverrides(*this, NewMethod, CurContext); 250 } 251 252 /// \brief Check a method declaration for compatibility with the Objective-C 253 /// ARC conventions. 254 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 255 ObjCMethodFamily family = method->getMethodFamily(); 256 switch (family) { 257 case OMF_None: 258 case OMF_dealloc: 259 case OMF_retain: 260 case OMF_release: 261 case OMF_autorelease: 262 case OMF_retainCount: 263 case OMF_self: 264 return false; 265 266 case OMF_init: 267 // If the method doesn't obey the init rules, don't bother annotating it. 268 if (S.checkInitMethod(method, QualType())) 269 return true; 270 271 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 272 S.Context)); 273 274 // Don't add a second copy of this attribute, but otherwise don't 275 // let it be suppressed. 276 if (method->hasAttr<NSReturnsRetainedAttr>()) 277 return false; 278 break; 279 280 case OMF_alloc: 281 case OMF_copy: 282 case OMF_mutableCopy: 283 case OMF_new: 284 if (method->hasAttr<NSReturnsRetainedAttr>() || 285 method->hasAttr<NSReturnsNotRetainedAttr>() || 286 method->hasAttr<NSReturnsAutoreleasedAttr>()) 287 return false; 288 break; 289 290 case OMF_performSelector: 291 // we don't annotate performSelector's 292 return true; 293 294 } 295 296 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 297 S.Context)); 298 return false; 299 } 300 301 static void DiagnoseObjCImplementedDeprecations(Sema &S, 302 NamedDecl *ND, 303 SourceLocation ImplLoc, 304 int select) { 305 if (ND && ND->isDeprecated()) { 306 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 307 if (select == 0) 308 S.Diag(ND->getLocation(), diag::note_method_declared_at); 309 else 310 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 311 } 312 } 313 314 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 315 /// and user declared, in the method definition's AST. 316 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 317 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 318 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 319 320 // If we don't have a valid method decl, simply return. 321 if (!MDecl) 322 return; 323 324 // Allow the rest of sema to find private method decl implementations. 325 if (MDecl->isInstanceMethod()) 326 AddInstanceMethodToGlobalPool(MDecl, true); 327 else 328 AddFactoryMethodToGlobalPool(MDecl, true); 329 330 // Allow all of Sema to see that we are entering a method definition. 331 PushDeclContext(FnBodyScope, MDecl); 332 PushFunctionScope(); 333 334 // Create Decl objects for each parameter, entrring them in the scope for 335 // binding to their use. 336 337 // Insert the invisible arguments, self and _cmd! 338 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 339 340 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 341 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 342 343 // Introduce all of the other parameters into this scope. 344 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 345 E = MDecl->param_end(); PI != E; ++PI) { 346 ParmVarDecl *Param = (*PI); 347 if (!Param->isInvalidDecl() && 348 RequireCompleteType(Param->getLocation(), Param->getType(), 349 diag::err_typecheck_decl_incomplete_type)) 350 Param->setInvalidDecl(); 351 if ((*PI)->getIdentifier()) 352 PushOnScopeChains(*PI, FnBodyScope); 353 } 354 355 // In ARC, disallow definition of retain/release/autorelease/retainCount 356 if (getLangOptions().ObjCAutoRefCount) { 357 switch (MDecl->getMethodFamily()) { 358 case OMF_retain: 359 case OMF_retainCount: 360 case OMF_release: 361 case OMF_autorelease: 362 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 363 << MDecl->getSelector(); 364 break; 365 366 case OMF_None: 367 case OMF_dealloc: 368 case OMF_alloc: 369 case OMF_init: 370 case OMF_mutableCopy: 371 case OMF_copy: 372 case OMF_new: 373 case OMF_self: 374 case OMF_performSelector: 375 break; 376 } 377 } 378 379 // Warn on implementating deprecated methods under 380 // -Wdeprecated-implementations flag. 381 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) 382 if (ObjCMethodDecl *IMD = 383 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 384 DiagnoseObjCImplementedDeprecations(*this, 385 dyn_cast<NamedDecl>(IMD), 386 MDecl->getLocation(), 0); 387 } 388 389 Decl *Sema:: 390 ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 391 IdentifierInfo *ClassName, SourceLocation ClassLoc, 392 IdentifierInfo *SuperName, SourceLocation SuperLoc, 393 Decl * const *ProtoRefs, unsigned NumProtoRefs, 394 const SourceLocation *ProtoLocs, 395 SourceLocation EndProtoLoc, AttributeList *AttrList) { 396 assert(ClassName && "Missing class identifier"); 397 398 // Check for another declaration kind with the same name. 399 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 400 LookupOrdinaryName, ForRedeclaration); 401 402 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 403 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 404 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 405 } 406 407 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 408 if (IDecl) { 409 // Class already seen. Is it a forward declaration? 410 if (!IDecl->isForwardDecl()) { 411 IDecl->setInvalidDecl(); 412 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 413 Diag(IDecl->getLocation(), diag::note_previous_definition); 414 415 // Return the previous class interface. 416 // FIXME: don't leak the objects passed in! 417 return IDecl; 418 } else { 419 IDecl->setLocation(AtInterfaceLoc); 420 IDecl->setForwardDecl(false); 421 IDecl->setClassLoc(ClassLoc); 422 // If the forward decl was in a PCH, we need to write it again in a 423 // dependent AST file. 424 IDecl->setChangedSinceDeserialization(true); 425 426 // Since this ObjCInterfaceDecl was created by a forward declaration, 427 // we now add it to the DeclContext since it wasn't added before 428 // (see ActOnForwardClassDeclaration). 429 IDecl->setLexicalDeclContext(CurContext); 430 CurContext->addDecl(IDecl); 431 432 if (AttrList) 433 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 434 } 435 } else { 436 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 437 ClassName, ClassLoc); 438 if (AttrList) 439 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 440 441 PushOnScopeChains(IDecl, TUScope); 442 } 443 444 if (SuperName) { 445 // Check if a different kind of symbol declared in this scope. 446 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 447 LookupOrdinaryName); 448 449 if (!PrevDecl) { 450 // Try to correct for a typo in the superclass name. 451 TypoCorrection Corrected = CorrectTypo( 452 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 453 NULL, NULL, false, CTC_NoKeywords); 454 if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 455 Diag(SuperLoc, diag::err_undef_superclass_suggest) 456 << SuperName << ClassName << PrevDecl->getDeclName(); 457 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 458 << PrevDecl->getDeclName(); 459 } 460 } 461 462 if (PrevDecl == IDecl) { 463 Diag(SuperLoc, diag::err_recursive_superclass) 464 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 465 IDecl->setLocEnd(ClassLoc); 466 } else { 467 ObjCInterfaceDecl *SuperClassDecl = 468 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 469 470 // Diagnose classes that inherit from deprecated classes. 471 if (SuperClassDecl) 472 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 473 474 if (PrevDecl && SuperClassDecl == 0) { 475 // The previous declaration was not a class decl. Check if we have a 476 // typedef. If we do, get the underlying class type. 477 if (const TypedefNameDecl *TDecl = 478 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 479 QualType T = TDecl->getUnderlyingType(); 480 if (T->isObjCObjectType()) { 481 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 482 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 483 } 484 } 485 486 // This handles the following case: 487 // 488 // typedef int SuperClass; 489 // @interface MyClass : SuperClass {} @end 490 // 491 if (!SuperClassDecl) { 492 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 493 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 494 } 495 } 496 497 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 498 if (!SuperClassDecl) 499 Diag(SuperLoc, diag::err_undef_superclass) 500 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 501 else if (SuperClassDecl->isForwardDecl()) { 502 Diag(SuperLoc, diag::err_forward_superclass) 503 << SuperClassDecl->getDeclName() << ClassName 504 << SourceRange(AtInterfaceLoc, ClassLoc); 505 Diag(SuperClassDecl->getLocation(), diag::note_forward_class); 506 SuperClassDecl = 0; 507 } 508 } 509 IDecl->setSuperClass(SuperClassDecl); 510 IDecl->setSuperClassLoc(SuperLoc); 511 IDecl->setLocEnd(SuperLoc); 512 } 513 } else { // we have a root class. 514 IDecl->setLocEnd(ClassLoc); 515 } 516 517 // Check then save referenced protocols. 518 if (NumProtoRefs) { 519 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 520 ProtoLocs, Context); 521 IDecl->setLocEnd(EndProtoLoc); 522 } 523 524 CheckObjCDeclScope(IDecl); 525 return IDecl; 526 } 527 528 /// ActOnCompatiblityAlias - this action is called after complete parsing of 529 /// @compatibility_alias declaration. It sets up the alias relationships. 530 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 531 IdentifierInfo *AliasName, 532 SourceLocation AliasLocation, 533 IdentifierInfo *ClassName, 534 SourceLocation ClassLocation) { 535 // Look for previous declaration of alias name 536 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 537 LookupOrdinaryName, ForRedeclaration); 538 if (ADecl) { 539 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 540 Diag(AliasLocation, diag::warn_previous_alias_decl); 541 else 542 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 543 Diag(ADecl->getLocation(), diag::note_previous_declaration); 544 return 0; 545 } 546 // Check for class declaration 547 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 548 LookupOrdinaryName, ForRedeclaration); 549 if (const TypedefNameDecl *TDecl = 550 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 551 QualType T = TDecl->getUnderlyingType(); 552 if (T->isObjCObjectType()) { 553 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 554 ClassName = IDecl->getIdentifier(); 555 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 556 LookupOrdinaryName, ForRedeclaration); 557 } 558 } 559 } 560 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 561 if (CDecl == 0) { 562 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 563 if (CDeclU) 564 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 565 return 0; 566 } 567 568 // Everything checked out, instantiate a new alias declaration AST. 569 ObjCCompatibleAliasDecl *AliasDecl = 570 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 571 572 if (!CheckObjCDeclScope(AliasDecl)) 573 PushOnScopeChains(AliasDecl, TUScope); 574 575 return AliasDecl; 576 } 577 578 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 579 IdentifierInfo *PName, 580 SourceLocation &Ploc, SourceLocation PrevLoc, 581 const ObjCList<ObjCProtocolDecl> &PList) { 582 583 bool res = false; 584 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 585 E = PList.end(); I != E; ++I) { 586 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 587 Ploc)) { 588 if (PDecl->getIdentifier() == PName) { 589 Diag(Ploc, diag::err_protocol_has_circular_dependency); 590 Diag(PrevLoc, diag::note_previous_definition); 591 res = true; 592 } 593 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 594 PDecl->getLocation(), PDecl->getReferencedProtocols())) 595 res = true; 596 } 597 } 598 return res; 599 } 600 601 Decl * 602 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 603 IdentifierInfo *ProtocolName, 604 SourceLocation ProtocolLoc, 605 Decl * const *ProtoRefs, 606 unsigned NumProtoRefs, 607 const SourceLocation *ProtoLocs, 608 SourceLocation EndProtoLoc, 609 AttributeList *AttrList) { 610 bool err = false; 611 // FIXME: Deal with AttrList. 612 assert(ProtocolName && "Missing protocol identifier"); 613 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 614 if (PDecl) { 615 // Protocol already seen. Better be a forward protocol declaration 616 if (!PDecl->isForwardDecl()) { 617 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 618 Diag(PDecl->getLocation(), diag::note_previous_definition); 619 // Just return the protocol we already had. 620 // FIXME: don't leak the objects passed in! 621 return PDecl; 622 } 623 ObjCList<ObjCProtocolDecl> PList; 624 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 625 err = CheckForwardProtocolDeclarationForCircularDependency( 626 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 627 628 // Make sure the cached decl gets a valid start location. 629 PDecl->setLocation(AtProtoInterfaceLoc); 630 PDecl->setForwardDecl(false); 631 CurContext->addDecl(PDecl); 632 // Repeat in dependent AST files. 633 PDecl->setChangedSinceDeserialization(true); 634 } else { 635 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 636 AtProtoInterfaceLoc,ProtocolName); 637 PushOnScopeChains(PDecl, TUScope); 638 PDecl->setForwardDecl(false); 639 } 640 if (AttrList) 641 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 642 if (!err && NumProtoRefs ) { 643 /// Check then save referenced protocols. 644 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 645 ProtoLocs, Context); 646 PDecl->setLocEnd(EndProtoLoc); 647 } 648 649 CheckObjCDeclScope(PDecl); 650 return PDecl; 651 } 652 653 /// FindProtocolDeclaration - This routine looks up protocols and 654 /// issues an error if they are not declared. It returns list of 655 /// protocol declarations in its 'Protocols' argument. 656 void 657 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 658 const IdentifierLocPair *ProtocolId, 659 unsigned NumProtocols, 660 llvm::SmallVectorImpl<Decl *> &Protocols) { 661 for (unsigned i = 0; i != NumProtocols; ++i) { 662 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 663 ProtocolId[i].second); 664 if (!PDecl) { 665 TypoCorrection Corrected = CorrectTypo( 666 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 667 LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords); 668 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 669 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 670 << ProtocolId[i].first << Corrected.getCorrection(); 671 Diag(PDecl->getLocation(), diag::note_previous_decl) 672 << PDecl->getDeclName(); 673 } 674 } 675 676 if (!PDecl) { 677 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 678 << ProtocolId[i].first; 679 continue; 680 } 681 682 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 683 684 // If this is a forward declaration and we are supposed to warn in this 685 // case, do it. 686 if (WarnOnDeclarations && PDecl->isForwardDecl()) 687 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 688 << ProtocolId[i].first; 689 Protocols.push_back(PDecl); 690 } 691 } 692 693 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 694 /// a class method in its extension. 695 /// 696 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 697 ObjCInterfaceDecl *ID) { 698 if (!ID) 699 return; // Possibly due to previous error 700 701 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 702 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 703 e = ID->meth_end(); i != e; ++i) { 704 ObjCMethodDecl *MD = *i; 705 MethodMap[MD->getSelector()] = MD; 706 } 707 708 if (MethodMap.empty()) 709 return; 710 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 711 e = CAT->meth_end(); i != e; ++i) { 712 ObjCMethodDecl *Method = *i; 713 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 714 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 715 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 716 << Method->getDeclName(); 717 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 718 } 719 } 720 } 721 722 /// ActOnForwardProtocolDeclaration - Handle @protocol foo; 723 Decl * 724 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 725 const IdentifierLocPair *IdentList, 726 unsigned NumElts, 727 AttributeList *attrList) { 728 llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols; 729 llvm::SmallVector<SourceLocation, 8> ProtoLocs; 730 731 for (unsigned i = 0; i != NumElts; ++i) { 732 IdentifierInfo *Ident = IdentList[i].first; 733 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 734 bool isNew = false; 735 if (PDecl == 0) { // Not already seen? 736 PDecl = ObjCProtocolDecl::Create(Context, CurContext, 737 IdentList[i].second, Ident); 738 PushOnScopeChains(PDecl, TUScope, false); 739 isNew = true; 740 } 741 if (attrList) { 742 ProcessDeclAttributeList(TUScope, PDecl, attrList); 743 if (!isNew) 744 PDecl->setChangedSinceDeserialization(true); 745 } 746 Protocols.push_back(PDecl); 747 ProtoLocs.push_back(IdentList[i].second); 748 } 749 750 ObjCForwardProtocolDecl *PDecl = 751 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 752 Protocols.data(), Protocols.size(), 753 ProtoLocs.data()); 754 CurContext->addDecl(PDecl); 755 CheckObjCDeclScope(PDecl); 756 return PDecl; 757 } 758 759 Decl *Sema:: 760 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 761 IdentifierInfo *ClassName, SourceLocation ClassLoc, 762 IdentifierInfo *CategoryName, 763 SourceLocation CategoryLoc, 764 Decl * const *ProtoRefs, 765 unsigned NumProtoRefs, 766 const SourceLocation *ProtoLocs, 767 SourceLocation EndProtoLoc) { 768 ObjCCategoryDecl *CDecl; 769 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 770 771 /// Check that class of this category is already completely declared. 772 if (!IDecl || IDecl->isForwardDecl()) { 773 // Create an invalid ObjCCategoryDecl to serve as context for 774 // the enclosing method declarations. We mark the decl invalid 775 // to make it clear that this isn't a valid AST. 776 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 777 ClassLoc, CategoryLoc, CategoryName); 778 CDecl->setInvalidDecl(); 779 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 780 return CDecl; 781 } 782 783 if (!CategoryName && IDecl->getImplementation()) { 784 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 785 Diag(IDecl->getImplementation()->getLocation(), 786 diag::note_implementation_declared); 787 } 788 789 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 790 ClassLoc, CategoryLoc, CategoryName); 791 // FIXME: PushOnScopeChains? 792 CurContext->addDecl(CDecl); 793 794 CDecl->setClassInterface(IDecl); 795 // Insert class extension to the list of class's categories. 796 if (!CategoryName) 797 CDecl->insertNextClassCategory(); 798 799 // If the interface is deprecated, warn about it. 800 (void)DiagnoseUseOfDecl(IDecl, ClassLoc); 801 802 if (CategoryName) { 803 /// Check for duplicate interface declaration for this category 804 ObjCCategoryDecl *CDeclChain; 805 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 806 CDeclChain = CDeclChain->getNextClassCategory()) { 807 if (CDeclChain->getIdentifier() == CategoryName) { 808 // Class extensions can be declared multiple times. 809 Diag(CategoryLoc, diag::warn_dup_category_def) 810 << ClassName << CategoryName; 811 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 812 break; 813 } 814 } 815 if (!CDeclChain) 816 CDecl->insertNextClassCategory(); 817 } 818 819 if (NumProtoRefs) { 820 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 821 ProtoLocs, Context); 822 // Protocols in the class extension belong to the class. 823 if (CDecl->IsClassExtension()) 824 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 825 NumProtoRefs, Context); 826 } 827 828 CheckObjCDeclScope(CDecl); 829 return CDecl; 830 } 831 832 /// ActOnStartCategoryImplementation - Perform semantic checks on the 833 /// category implementation declaration and build an ObjCCategoryImplDecl 834 /// object. 835 Decl *Sema::ActOnStartCategoryImplementation( 836 SourceLocation AtCatImplLoc, 837 IdentifierInfo *ClassName, SourceLocation ClassLoc, 838 IdentifierInfo *CatName, SourceLocation CatLoc) { 839 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 840 ObjCCategoryDecl *CatIDecl = 0; 841 if (IDecl) { 842 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 843 if (!CatIDecl) { 844 // Category @implementation with no corresponding @interface. 845 // Create and install one. 846 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 847 SourceLocation(), SourceLocation(), 848 CatName); 849 CatIDecl->setClassInterface(IDecl); 850 CatIDecl->insertNextClassCategory(); 851 } 852 } 853 854 ObjCCategoryImplDecl *CDecl = 855 ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName, 856 IDecl); 857 /// Check that class of this category is already completely declared. 858 if (!IDecl || IDecl->isForwardDecl()) 859 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 860 861 // FIXME: PushOnScopeChains? 862 CurContext->addDecl(CDecl); 863 864 /// Check that CatName, category name, is not used in another implementation. 865 if (CatIDecl) { 866 if (CatIDecl->getImplementation()) { 867 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 868 << CatName; 869 Diag(CatIDecl->getImplementation()->getLocation(), 870 diag::note_previous_definition); 871 } else { 872 CatIDecl->setImplementation(CDecl); 873 // Warn on implementating category of deprecated class under 874 // -Wdeprecated-implementations flag. 875 DiagnoseObjCImplementedDeprecations(*this, 876 dyn_cast<NamedDecl>(IDecl), 877 CDecl->getLocation(), 2); 878 } 879 } 880 881 CheckObjCDeclScope(CDecl); 882 return CDecl; 883 } 884 885 Decl *Sema::ActOnStartClassImplementation( 886 SourceLocation AtClassImplLoc, 887 IdentifierInfo *ClassName, SourceLocation ClassLoc, 888 IdentifierInfo *SuperClassname, 889 SourceLocation SuperClassLoc) { 890 ObjCInterfaceDecl* IDecl = 0; 891 // Check for another declaration kind with the same name. 892 NamedDecl *PrevDecl 893 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 894 ForRedeclaration); 895 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 896 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 897 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 898 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 899 // If this is a forward declaration of an interface, warn. 900 if (IDecl->isForwardDecl()) { 901 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 902 IDecl = 0; 903 } 904 } else { 905 // We did not find anything with the name ClassName; try to correct for 906 // typos in the class name. 907 TypoCorrection Corrected = CorrectTypo( 908 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 909 NULL, NULL, false, CTC_NoKeywords); 910 if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 911 // Suggest the (potentially) correct interface name. However, put the 912 // fix-it hint itself in a separate note, since changing the name in 913 // the warning would make the fix-it change semantics.However, don't 914 // provide a code-modification hint or use the typo name for recovery, 915 // because this is just a warning. The program may actually be correct. 916 DeclarationName CorrectedName = Corrected.getCorrection(); 917 Diag(ClassLoc, diag::warn_undef_interface_suggest) 918 << ClassName << CorrectedName; 919 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 920 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 921 IDecl = 0; 922 } else { 923 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 924 } 925 } 926 927 // Check that super class name is valid class name 928 ObjCInterfaceDecl* SDecl = 0; 929 if (SuperClassname) { 930 // Check if a different kind of symbol declared in this scope. 931 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 932 LookupOrdinaryName); 933 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 934 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 935 << SuperClassname; 936 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 937 } else { 938 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 939 if (!SDecl) 940 Diag(SuperClassLoc, diag::err_undef_superclass) 941 << SuperClassname << ClassName; 942 else if (IDecl && IDecl->getSuperClass() != SDecl) { 943 // This implementation and its interface do not have the same 944 // super class. 945 Diag(SuperClassLoc, diag::err_conflicting_super_class) 946 << SDecl->getDeclName(); 947 Diag(SDecl->getLocation(), diag::note_previous_definition); 948 } 949 } 950 } 951 952 if (!IDecl) { 953 // Legacy case of @implementation with no corresponding @interface. 954 // Build, chain & install the interface decl into the identifier. 955 956 // FIXME: Do we support attributes on the @implementation? If so we should 957 // copy them over. 958 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 959 ClassName, ClassLoc, false, true); 960 IDecl->setSuperClass(SDecl); 961 IDecl->setLocEnd(ClassLoc); 962 963 PushOnScopeChains(IDecl, TUScope); 964 } else { 965 // Mark the interface as being completed, even if it was just as 966 // @class ....; 967 // declaration; the user cannot reopen it. 968 IDecl->setForwardDecl(false); 969 } 970 971 ObjCImplementationDecl* IMPDecl = 972 ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc, 973 IDecl, SDecl); 974 975 if (CheckObjCDeclScope(IMPDecl)) 976 return IMPDecl; 977 978 // Check that there is no duplicate implementation of this class. 979 if (IDecl->getImplementation()) { 980 // FIXME: Don't leak everything! 981 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 982 Diag(IDecl->getImplementation()->getLocation(), 983 diag::note_previous_definition); 984 } else { // add it to the list. 985 IDecl->setImplementation(IMPDecl); 986 PushOnScopeChains(IMPDecl, TUScope); 987 // Warn on implementating deprecated class under 988 // -Wdeprecated-implementations flag. 989 DiagnoseObjCImplementedDeprecations(*this, 990 dyn_cast<NamedDecl>(IDecl), 991 IMPDecl->getLocation(), 1); 992 } 993 return IMPDecl; 994 } 995 996 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 997 ObjCIvarDecl **ivars, unsigned numIvars, 998 SourceLocation RBrace) { 999 assert(ImpDecl && "missing implementation decl"); 1000 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 1001 if (!IDecl) 1002 return; 1003 /// Check case of non-existing @interface decl. 1004 /// (legacy objective-c @implementation decl without an @interface decl). 1005 /// Add implementations's ivar to the synthesize class's ivar list. 1006 if (IDecl->isImplicitInterfaceDecl()) { 1007 IDecl->setLocEnd(RBrace); 1008 // Add ivar's to class's DeclContext. 1009 for (unsigned i = 0, e = numIvars; i != e; ++i) { 1010 ivars[i]->setLexicalDeclContext(ImpDecl); 1011 IDecl->makeDeclVisibleInContext(ivars[i], false); 1012 ImpDecl->addDecl(ivars[i]); 1013 } 1014 1015 return; 1016 } 1017 // If implementation has empty ivar list, just return. 1018 if (numIvars == 0) 1019 return; 1020 1021 assert(ivars && "missing @implementation ivars"); 1022 if (LangOpts.ObjCNonFragileABI2) { 1023 if (ImpDecl->getSuperClass()) 1024 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 1025 for (unsigned i = 0; i < numIvars; i++) { 1026 ObjCIvarDecl* ImplIvar = ivars[i]; 1027 if (const ObjCIvarDecl *ClsIvar = 1028 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 1029 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 1030 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1031 continue; 1032 } 1033 // Instance ivar to Implementation's DeclContext. 1034 ImplIvar->setLexicalDeclContext(ImpDecl); 1035 IDecl->makeDeclVisibleInContext(ImplIvar, false); 1036 ImpDecl->addDecl(ImplIvar); 1037 } 1038 return; 1039 } 1040 // Check interface's Ivar list against those in the implementation. 1041 // names and types must match. 1042 // 1043 unsigned j = 0; 1044 ObjCInterfaceDecl::ivar_iterator 1045 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1046 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1047 ObjCIvarDecl* ImplIvar = ivars[j++]; 1048 ObjCIvarDecl* ClsIvar = *IVI; 1049 assert (ImplIvar && "missing implementation ivar"); 1050 assert (ClsIvar && "missing class ivar"); 1051 1052 // First, make sure the types match. 1053 if (Context.getCanonicalType(ImplIvar->getType()) != 1054 Context.getCanonicalType(ClsIvar->getType())) { 1055 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1056 << ImplIvar->getIdentifier() 1057 << ImplIvar->getType() << ClsIvar->getType(); 1058 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1059 } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) { 1060 Expr *ImplBitWidth = ImplIvar->getBitWidth(); 1061 Expr *ClsBitWidth = ClsIvar->getBitWidth(); 1062 if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() != 1063 ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) { 1064 Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth) 1065 << ImplIvar->getIdentifier(); 1066 Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition); 1067 } 1068 } 1069 // Make sure the names are identical. 1070 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1071 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1072 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1073 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1074 } 1075 --numIvars; 1076 } 1077 1078 if (numIvars > 0) 1079 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1080 else if (IVI != IVE) 1081 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 1082 } 1083 1084 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1085 bool &IncompleteImpl, unsigned DiagID) { 1086 // No point warning no definition of method which is 'unavailable'. 1087 if (method->hasAttr<UnavailableAttr>()) 1088 return; 1089 if (!IncompleteImpl) { 1090 Diag(ImpLoc, diag::warn_incomplete_impl); 1091 IncompleteImpl = true; 1092 } 1093 if (DiagID == diag::warn_unimplemented_protocol_method) 1094 Diag(ImpLoc, DiagID) << method->getDeclName(); 1095 else 1096 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1097 } 1098 1099 /// Determines if type B can be substituted for type A. Returns true if we can 1100 /// guarantee that anything that the user will do to an object of type A can 1101 /// also be done to an object of type B. This is trivially true if the two 1102 /// types are the same, or if B is a subclass of A. It becomes more complex 1103 /// in cases where protocols are involved. 1104 /// 1105 /// Object types in Objective-C describe the minimum requirements for an 1106 /// object, rather than providing a complete description of a type. For 1107 /// example, if A is a subclass of B, then B* may refer to an instance of A. 1108 /// The principle of substitutability means that we may use an instance of A 1109 /// anywhere that we may use an instance of B - it will implement all of the 1110 /// ivars of B and all of the methods of B. 1111 /// 1112 /// This substitutability is important when type checking methods, because 1113 /// the implementation may have stricter type definitions than the interface. 1114 /// The interface specifies minimum requirements, but the implementation may 1115 /// have more accurate ones. For example, a method may privately accept 1116 /// instances of B, but only publish that it accepts instances of A. Any 1117 /// object passed to it will be type checked against B, and so will implicitly 1118 /// by a valid A*. Similarly, a method may return a subclass of the class that 1119 /// it is declared as returning. 1120 /// 1121 /// This is most important when considering subclassing. A method in a 1122 /// subclass must accept any object as an argument that its superclass's 1123 /// implementation accepts. It may, however, accept a more general type 1124 /// without breaking substitutability (i.e. you can still use the subclass 1125 /// anywhere that you can use the superclass, but not vice versa). The 1126 /// converse requirement applies to return types: the return type for a 1127 /// subclass method must be a valid object of the kind that the superclass 1128 /// advertises, but it may be specified more accurately. This avoids the need 1129 /// for explicit down-casting by callers. 1130 /// 1131 /// Note: This is a stricter requirement than for assignment. 1132 static bool isObjCTypeSubstitutable(ASTContext &Context, 1133 const ObjCObjectPointerType *A, 1134 const ObjCObjectPointerType *B, 1135 bool rejectId) { 1136 // Reject a protocol-unqualified id. 1137 if (rejectId && B->isObjCIdType()) return false; 1138 1139 // If B is a qualified id, then A must also be a qualified id and it must 1140 // implement all of the protocols in B. It may not be a qualified class. 1141 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1142 // stricter definition so it is not substitutable for id<A>. 1143 if (B->isObjCQualifiedIdType()) { 1144 return A->isObjCQualifiedIdType() && 1145 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1146 QualType(B,0), 1147 false); 1148 } 1149 1150 /* 1151 // id is a special type that bypasses type checking completely. We want a 1152 // warning when it is used in one place but not another. 1153 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1154 1155 1156 // If B is a qualified id, then A must also be a qualified id (which it isn't 1157 // if we've got this far) 1158 if (B->isObjCQualifiedIdType()) return false; 1159 */ 1160 1161 // Now we know that A and B are (potentially-qualified) class types. The 1162 // normal rules for assignment apply. 1163 return Context.canAssignObjCInterfaces(A, B); 1164 } 1165 1166 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1167 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1168 } 1169 1170 static void CheckMethodOverrideReturn(Sema &S, 1171 ObjCMethodDecl *MethodImpl, 1172 ObjCMethodDecl *MethodDecl, 1173 bool IsProtocolMethodDecl) { 1174 if (IsProtocolMethodDecl && 1175 (MethodDecl->getObjCDeclQualifier() != 1176 MethodImpl->getObjCDeclQualifier())) { 1177 S.Diag(MethodImpl->getLocation(), 1178 diag::warn_conflicting_ret_type_modifiers) 1179 << MethodImpl->getDeclName() 1180 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1181 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1182 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1183 } 1184 1185 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1186 MethodDecl->getResultType())) 1187 return; 1188 1189 unsigned DiagID = diag::warn_conflicting_ret_types; 1190 1191 // Mismatches between ObjC pointers go into a different warning 1192 // category, and sometimes they're even completely whitelisted. 1193 if (const ObjCObjectPointerType *ImplPtrTy = 1194 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1195 if (const ObjCObjectPointerType *IfacePtrTy = 1196 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1197 // Allow non-matching return types as long as they don't violate 1198 // the principle of substitutability. Specifically, we permit 1199 // return types that are subclasses of the declared return type, 1200 // or that are more-qualified versions of the declared type. 1201 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1202 return; 1203 1204 DiagID = diag::warn_non_covariant_ret_types; 1205 } 1206 } 1207 1208 S.Diag(MethodImpl->getLocation(), DiagID) 1209 << MethodImpl->getDeclName() 1210 << MethodDecl->getResultType() 1211 << MethodImpl->getResultType() 1212 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1213 S.Diag(MethodDecl->getLocation(), diag::note_previous_definition) 1214 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1215 } 1216 1217 static void CheckMethodOverrideParam(Sema &S, 1218 ObjCMethodDecl *MethodImpl, 1219 ObjCMethodDecl *MethodDecl, 1220 ParmVarDecl *ImplVar, 1221 ParmVarDecl *IfaceVar, 1222 bool IsProtocolMethodDecl) { 1223 if (IsProtocolMethodDecl && 1224 (ImplVar->getObjCDeclQualifier() != 1225 IfaceVar->getObjCDeclQualifier())) { 1226 S.Diag(ImplVar->getLocation(), 1227 diag::warn_conflicting_param_modifiers) 1228 << getTypeRange(ImplVar->getTypeSourceInfo()) 1229 << MethodImpl->getDeclName(); 1230 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1231 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1232 } 1233 1234 QualType ImplTy = ImplVar->getType(); 1235 QualType IfaceTy = IfaceVar->getType(); 1236 1237 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1238 return; 1239 1240 unsigned DiagID = diag::warn_conflicting_param_types; 1241 1242 // Mismatches between ObjC pointers go into a different warning 1243 // category, and sometimes they're even completely whitelisted. 1244 if (const ObjCObjectPointerType *ImplPtrTy = 1245 ImplTy->getAs<ObjCObjectPointerType>()) { 1246 if (const ObjCObjectPointerType *IfacePtrTy = 1247 IfaceTy->getAs<ObjCObjectPointerType>()) { 1248 // Allow non-matching argument types as long as they don't 1249 // violate the principle of substitutability. Specifically, the 1250 // implementation must accept any objects that the superclass 1251 // accepts, however it may also accept others. 1252 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1253 return; 1254 1255 DiagID = diag::warn_non_contravariant_param_types; 1256 } 1257 } 1258 1259 S.Diag(ImplVar->getLocation(), DiagID) 1260 << getTypeRange(ImplVar->getTypeSourceInfo()) 1261 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1262 S.Diag(IfaceVar->getLocation(), diag::note_previous_definition) 1263 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1264 } 1265 1266 /// In ARC, check whether the conventional meanings of the two methods 1267 /// match. If they don't, it's a hard error. 1268 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1269 ObjCMethodDecl *decl) { 1270 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1271 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1272 if (implFamily == declFamily) return false; 1273 1274 // Since conventions are sorted by selector, the only possibility is 1275 // that the types differ enough to cause one selector or the other 1276 // to fall out of the family. 1277 assert(implFamily == OMF_None || declFamily == OMF_None); 1278 1279 // No further diagnostics required on invalid declarations. 1280 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1281 1282 const ObjCMethodDecl *unmatched = impl; 1283 ObjCMethodFamily family = declFamily; 1284 unsigned errorID = diag::err_arc_lost_method_convention; 1285 unsigned noteID = diag::note_arc_lost_method_convention; 1286 if (declFamily == OMF_None) { 1287 unmatched = decl; 1288 family = implFamily; 1289 errorID = diag::err_arc_gained_method_convention; 1290 noteID = diag::note_arc_gained_method_convention; 1291 } 1292 1293 // Indexes into a %select clause in the diagnostic. 1294 enum FamilySelector { 1295 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1296 }; 1297 FamilySelector familySelector = FamilySelector(); 1298 1299 switch (family) { 1300 case OMF_None: llvm_unreachable("logic error, no method convention"); 1301 case OMF_retain: 1302 case OMF_release: 1303 case OMF_autorelease: 1304 case OMF_dealloc: 1305 case OMF_retainCount: 1306 case OMF_self: 1307 case OMF_performSelector: 1308 // Mismatches for these methods don't change ownership 1309 // conventions, so we don't care. 1310 return false; 1311 1312 case OMF_init: familySelector = F_init; break; 1313 case OMF_alloc: familySelector = F_alloc; break; 1314 case OMF_copy: familySelector = F_copy; break; 1315 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1316 case OMF_new: familySelector = F_new; break; 1317 } 1318 1319 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1320 ReasonSelector reasonSelector; 1321 1322 // The only reason these methods don't fall within their families is 1323 // due to unusual result types. 1324 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1325 reasonSelector = R_UnrelatedReturn; 1326 } else { 1327 reasonSelector = R_NonObjectReturn; 1328 } 1329 1330 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1331 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1332 1333 return true; 1334 } 1335 1336 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1337 ObjCMethodDecl *MethodDecl, 1338 bool IsProtocolMethodDecl) { 1339 if (getLangOptions().ObjCAutoRefCount && 1340 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1341 return; 1342 1343 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1344 IsProtocolMethodDecl); 1345 1346 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1347 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1348 IM != EM; ++IM, ++IF) 1349 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1350 IsProtocolMethodDecl); 1351 1352 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1353 Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic); 1354 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1355 } 1356 } 1357 1358 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1359 /// improve the efficiency of selector lookups and type checking by associating 1360 /// with each protocol / interface / category the flattened instance tables. If 1361 /// we used an immutable set to keep the table then it wouldn't add significant 1362 /// memory cost and it would be handy for lookups. 1363 1364 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 1365 /// Declared in protocol, and those referenced by it. 1366 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1367 ObjCProtocolDecl *PDecl, 1368 bool& IncompleteImpl, 1369 const llvm::DenseSet<Selector> &InsMap, 1370 const llvm::DenseSet<Selector> &ClsMap, 1371 ObjCContainerDecl *CDecl) { 1372 ObjCInterfaceDecl *IDecl; 1373 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 1374 IDecl = C->getClassInterface(); 1375 else 1376 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 1377 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1378 1379 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1380 ObjCInterfaceDecl *NSIDecl = 0; 1381 if (getLangOptions().NeXTRuntime) { 1382 // check to see if class implements forwardInvocation method and objects 1383 // of this class are derived from 'NSProxy' so that to forward requests 1384 // from one object to another. 1385 // Under such conditions, which means that every method possible is 1386 // implemented in the class, we should not issue "Method definition not 1387 // found" warnings. 1388 // FIXME: Use a general GetUnarySelector method for this. 1389 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1390 Selector fISelector = Context.Selectors.getSelector(1, &II); 1391 if (InsMap.count(fISelector)) 1392 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1393 // need be implemented in the implementation. 1394 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1395 } 1396 1397 // If a method lookup fails locally we still need to look and see if 1398 // the method was implemented by a base class or an inherited 1399 // protocol. This lookup is slow, but occurs rarely in correct code 1400 // and otherwise would terminate in a warning. 1401 1402 // check unimplemented instance methods. 1403 if (!NSIDecl) 1404 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1405 E = PDecl->instmeth_end(); I != E; ++I) { 1406 ObjCMethodDecl *method = *I; 1407 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1408 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1409 (!Super || 1410 !Super->lookupInstanceMethod(method->getSelector()))) { 1411 // Ugly, but necessary. Method declared in protcol might have 1412 // have been synthesized due to a property declared in the class which 1413 // uses the protocol. 1414 ObjCMethodDecl *MethodInClass = 1415 IDecl->lookupInstanceMethod(method->getSelector()); 1416 if (!MethodInClass || !MethodInClass->isSynthesized()) { 1417 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1418 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1419 != Diagnostic::Ignored) { 1420 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1421 Diag(method->getLocation(), diag::note_method_declared_at); 1422 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1423 << PDecl->getDeclName(); 1424 } 1425 } 1426 } 1427 } 1428 // check unimplemented class methods 1429 for (ObjCProtocolDecl::classmeth_iterator 1430 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1431 I != E; ++I) { 1432 ObjCMethodDecl *method = *I; 1433 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1434 !ClsMap.count(method->getSelector()) && 1435 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1436 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1437 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) { 1438 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1439 Diag(method->getLocation(), diag::note_method_declared_at); 1440 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1441 PDecl->getDeclName(); 1442 } 1443 } 1444 } 1445 // Check on this protocols's referenced protocols, recursively. 1446 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1447 E = PDecl->protocol_end(); PI != E; ++PI) 1448 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 1449 } 1450 1451 /// MatchAllMethodDeclarations - Check methods declared in interface 1452 /// or protocol against those declared in their implementations. 1453 /// 1454 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 1455 const llvm::DenseSet<Selector> &ClsMap, 1456 llvm::DenseSet<Selector> &InsMapSeen, 1457 llvm::DenseSet<Selector> &ClsMapSeen, 1458 ObjCImplDecl* IMPDecl, 1459 ObjCContainerDecl* CDecl, 1460 bool &IncompleteImpl, 1461 bool ImmediateClass) { 1462 // Check and see if instance methods in class interface have been 1463 // implemented in the implementation class. If so, their types match. 1464 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1465 E = CDecl->instmeth_end(); I != E; ++I) { 1466 if (InsMapSeen.count((*I)->getSelector())) 1467 continue; 1468 InsMapSeen.insert((*I)->getSelector()); 1469 if (!(*I)->isSynthesized() && 1470 !InsMap.count((*I)->getSelector())) { 1471 if (ImmediateClass) 1472 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1473 diag::note_undef_method_impl); 1474 continue; 1475 } else { 1476 ObjCMethodDecl *ImpMethodDecl = 1477 IMPDecl->getInstanceMethod((*I)->getSelector()); 1478 ObjCMethodDecl *MethodDecl = 1479 CDecl->getInstanceMethod((*I)->getSelector()); 1480 assert(MethodDecl && 1481 "MethodDecl is null in ImplMethodsVsClassMethods"); 1482 // ImpMethodDecl may be null as in a @dynamic property. 1483 if (ImpMethodDecl) 1484 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1485 isa<ObjCProtocolDecl>(CDecl)); 1486 } 1487 } 1488 1489 // Check and see if class methods in class interface have been 1490 // implemented in the implementation class. If so, their types match. 1491 for (ObjCInterfaceDecl::classmeth_iterator 1492 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1493 if (ClsMapSeen.count((*I)->getSelector())) 1494 continue; 1495 ClsMapSeen.insert((*I)->getSelector()); 1496 if (!ClsMap.count((*I)->getSelector())) { 1497 if (ImmediateClass) 1498 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1499 diag::note_undef_method_impl); 1500 } else { 1501 ObjCMethodDecl *ImpMethodDecl = 1502 IMPDecl->getClassMethod((*I)->getSelector()); 1503 ObjCMethodDecl *MethodDecl = 1504 CDecl->getClassMethod((*I)->getSelector()); 1505 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1506 isa<ObjCProtocolDecl>(CDecl)); 1507 } 1508 } 1509 1510 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1511 // Also methods in class extensions need be looked at next. 1512 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1513 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1514 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1515 IMPDecl, 1516 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1517 IncompleteImpl, false); 1518 1519 // Check for any implementation of a methods declared in protocol. 1520 for (ObjCInterfaceDecl::all_protocol_iterator 1521 PI = I->all_referenced_protocol_begin(), 1522 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1523 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1524 IMPDecl, 1525 (*PI), IncompleteImpl, false); 1526 if (I->getSuperClass()) 1527 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1528 IMPDecl, 1529 I->getSuperClass(), IncompleteImpl, false); 1530 } 1531 } 1532 1533 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1534 ObjCContainerDecl* CDecl, 1535 bool IncompleteImpl) { 1536 llvm::DenseSet<Selector> InsMap; 1537 // Check and see if instance methods in class interface have been 1538 // implemented in the implementation class. 1539 for (ObjCImplementationDecl::instmeth_iterator 1540 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1541 InsMap.insert((*I)->getSelector()); 1542 1543 // Check and see if properties declared in the interface have either 1) 1544 // an implementation or 2) there is a @synthesize/@dynamic implementation 1545 // of the property in the @implementation. 1546 if (isa<ObjCInterfaceDecl>(CDecl) && 1547 !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2)) 1548 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1549 1550 llvm::DenseSet<Selector> ClsMap; 1551 for (ObjCImplementationDecl::classmeth_iterator 1552 I = IMPDecl->classmeth_begin(), 1553 E = IMPDecl->classmeth_end(); I != E; ++I) 1554 ClsMap.insert((*I)->getSelector()); 1555 1556 // Check for type conflict of methods declared in a class/protocol and 1557 // its implementation; if any. 1558 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1559 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1560 IMPDecl, CDecl, 1561 IncompleteImpl, true); 1562 1563 // Check the protocol list for unimplemented methods in the @implementation 1564 // class. 1565 // Check and see if class methods in class interface have been 1566 // implemented in the implementation class. 1567 1568 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1569 for (ObjCInterfaceDecl::all_protocol_iterator 1570 PI = I->all_referenced_protocol_begin(), 1571 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1572 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1573 InsMap, ClsMap, I); 1574 // Check class extensions (unnamed categories) 1575 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1576 Categories; Categories = Categories->getNextClassExtension()) 1577 ImplMethodsVsClassMethods(S, IMPDecl, 1578 const_cast<ObjCCategoryDecl*>(Categories), 1579 IncompleteImpl); 1580 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1581 // For extended class, unimplemented methods in its protocols will 1582 // be reported in the primary class. 1583 if (!C->IsClassExtension()) { 1584 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1585 E = C->protocol_end(); PI != E; ++PI) 1586 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1587 InsMap, ClsMap, CDecl); 1588 // Report unimplemented properties in the category as well. 1589 // When reporting on missing setter/getters, do not report when 1590 // setter/getter is implemented in category's primary class 1591 // implementation. 1592 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1593 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1594 for (ObjCImplementationDecl::instmeth_iterator 1595 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1596 InsMap.insert((*I)->getSelector()); 1597 } 1598 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1599 } 1600 } else 1601 assert(false && "invalid ObjCContainerDecl type."); 1602 } 1603 1604 /// ActOnForwardClassDeclaration - 1605 Decl * 1606 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1607 IdentifierInfo **IdentList, 1608 SourceLocation *IdentLocs, 1609 unsigned NumElts) { 1610 llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces; 1611 1612 for (unsigned i = 0; i != NumElts; ++i) { 1613 // Check for another declaration kind with the same name. 1614 NamedDecl *PrevDecl 1615 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1616 LookupOrdinaryName, ForRedeclaration); 1617 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1618 // Maybe we will complain about the shadowed template parameter. 1619 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1620 // Just pretend that we didn't see the previous declaration. 1621 PrevDecl = 0; 1622 } 1623 1624 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1625 // GCC apparently allows the following idiom: 1626 // 1627 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1628 // @class XCElementToggler; 1629 // 1630 // FIXME: Make an extension? 1631 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1632 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1633 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1634 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1635 } else { 1636 // a forward class declaration matching a typedef name of a class refers 1637 // to the underlying class. 1638 if (const ObjCObjectType *OI = 1639 TDD->getUnderlyingType()->getAs<ObjCObjectType>()) 1640 PrevDecl = OI->getInterface(); 1641 } 1642 } 1643 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1644 if (!IDecl) { // Not already seen? Make a forward decl. 1645 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1646 IdentList[i], IdentLocs[i], true); 1647 1648 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1649 // the current DeclContext. This prevents clients that walk DeclContext 1650 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1651 // declared later (if at all). We also take care to explicitly make 1652 // sure this declaration is visible for name lookup. 1653 PushOnScopeChains(IDecl, TUScope, false); 1654 CurContext->makeDeclVisibleInContext(IDecl, true); 1655 } 1656 1657 Interfaces.push_back(IDecl); 1658 } 1659 1660 assert(Interfaces.size() == NumElts); 1661 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1662 Interfaces.data(), IdentLocs, 1663 Interfaces.size()); 1664 CurContext->addDecl(CDecl); 1665 CheckObjCDeclScope(CDecl); 1666 return CDecl; 1667 } 1668 1669 static bool tryMatchRecordTypes(ASTContext &Context, 1670 Sema::MethodMatchStrategy strategy, 1671 const Type *left, const Type *right); 1672 1673 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1674 QualType leftQT, QualType rightQT) { 1675 const Type *left = 1676 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1677 const Type *right = 1678 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1679 1680 if (left == right) return true; 1681 1682 // If we're doing a strict match, the types have to match exactly. 1683 if (strategy == Sema::MMS_strict) return false; 1684 1685 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1686 1687 // Otherwise, use this absurdly complicated algorithm to try to 1688 // validate the basic, low-level compatibility of the two types. 1689 1690 // As a minimum, require the sizes and alignments to match. 1691 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1692 return false; 1693 1694 // Consider all the kinds of non-dependent canonical types: 1695 // - functions and arrays aren't possible as return and parameter types 1696 1697 // - vector types of equal size can be arbitrarily mixed 1698 if (isa<VectorType>(left)) return isa<VectorType>(right); 1699 if (isa<VectorType>(right)) return false; 1700 1701 // - references should only match references of identical type 1702 // - structs, unions, and Objective-C objects must match more-or-less 1703 // exactly 1704 // - everything else should be a scalar 1705 if (!left->isScalarType() || !right->isScalarType()) 1706 return tryMatchRecordTypes(Context, strategy, left, right); 1707 1708 // Make scalars agree in kind, except count bools as chars. 1709 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1710 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1711 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1712 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1713 1714 // Note that data member pointers and function member pointers don't 1715 // intermix because of the size differences. 1716 1717 return (leftSK == rightSK); 1718 } 1719 1720 static bool tryMatchRecordTypes(ASTContext &Context, 1721 Sema::MethodMatchStrategy strategy, 1722 const Type *lt, const Type *rt) { 1723 assert(lt && rt && lt != rt); 1724 1725 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1726 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1727 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1728 1729 // Require union-hood to match. 1730 if (left->isUnion() != right->isUnion()) return false; 1731 1732 // Require an exact match if either is non-POD. 1733 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1734 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1735 return false; 1736 1737 // Require size and alignment to match. 1738 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1739 1740 // Require fields to match. 1741 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1742 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1743 for (; li != le && ri != re; ++li, ++ri) { 1744 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1745 return false; 1746 } 1747 return (li == le && ri == re); 1748 } 1749 1750 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1751 /// returns true, or false, accordingly. 1752 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1753 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1754 const ObjCMethodDecl *right, 1755 MethodMatchStrategy strategy) { 1756 if (!matchTypes(Context, strategy, 1757 left->getResultType(), right->getResultType())) 1758 return false; 1759 1760 if (getLangOptions().ObjCAutoRefCount && 1761 (left->hasAttr<NSReturnsRetainedAttr>() 1762 != right->hasAttr<NSReturnsRetainedAttr>() || 1763 left->hasAttr<NSConsumesSelfAttr>() 1764 != right->hasAttr<NSConsumesSelfAttr>())) 1765 return false; 1766 1767 ObjCMethodDecl::param_iterator 1768 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); 1769 1770 for (; li != le; ++li, ++ri) { 1771 assert(ri != right->param_end() && "Param mismatch"); 1772 ParmVarDecl *lparm = *li, *rparm = *ri; 1773 1774 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 1775 return false; 1776 1777 if (getLangOptions().ObjCAutoRefCount && 1778 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 1779 return false; 1780 } 1781 return true; 1782 } 1783 1784 /// \brief Read the contents of the method pool for a given selector from 1785 /// external storage. 1786 /// 1787 /// This routine should only be called once, when the method pool has no entry 1788 /// for this selector. 1789 Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { 1790 assert(ExternalSource && "We need an external AST source"); 1791 assert(MethodPool.find(Sel) == MethodPool.end() && 1792 "Selector data already loaded into the method pool"); 1793 1794 // Read the method list from the external source. 1795 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); 1796 1797 return MethodPool.insert(std::make_pair(Sel, Methods)).first; 1798 } 1799 1800 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1801 bool instance) { 1802 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 1803 if (Pos == MethodPool.end()) { 1804 if (ExternalSource) 1805 Pos = ReadMethodPool(Method->getSelector()); 1806 else 1807 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 1808 GlobalMethods())).first; 1809 } 1810 Method->setDefined(impl); 1811 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 1812 if (Entry.Method == 0) { 1813 // Haven't seen a method with this selector name yet - add it. 1814 Entry.Method = Method; 1815 Entry.Next = 0; 1816 return; 1817 } 1818 1819 // We've seen a method with this name, see if we have already seen this type 1820 // signature. 1821 for (ObjCMethodList *List = &Entry; List; List = List->Next) { 1822 bool match = MatchTwoMethodDeclarations(Method, List->Method); 1823 1824 if (match) { 1825 ObjCMethodDecl *PrevObjCMethod = List->Method; 1826 PrevObjCMethod->setDefined(impl); 1827 // If a method is deprecated, push it in the global pool. 1828 // This is used for better diagnostics. 1829 if (Method->isDeprecated()) { 1830 if (!PrevObjCMethod->isDeprecated()) 1831 List->Method = Method; 1832 } 1833 // If new method is unavailable, push it into global pool 1834 // unless previous one is deprecated. 1835 if (Method->isUnavailable()) { 1836 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 1837 List->Method = Method; 1838 } 1839 return; 1840 } 1841 } 1842 1843 // We have a new signature for an existing method - add it. 1844 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1845 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1846 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1847 } 1848 1849 /// Determines if this is an "acceptable" loose mismatch in the global 1850 /// method pool. This exists mostly as a hack to get around certain 1851 /// global mismatches which we can't afford to make warnings / errors. 1852 /// Really, what we want is a way to take a method out of the global 1853 /// method pool. 1854 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 1855 ObjCMethodDecl *other) { 1856 if (!chosen->isInstanceMethod()) 1857 return false; 1858 1859 Selector sel = chosen->getSelector(); 1860 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 1861 return false; 1862 1863 // Don't complain about mismatches for -length if the method we 1864 // chose has an integral result type. 1865 return (chosen->getResultType()->isIntegerType()); 1866 } 1867 1868 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 1869 bool receiverIdOrClass, 1870 bool warn, bool instance) { 1871 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1872 if (Pos == MethodPool.end()) { 1873 if (ExternalSource) 1874 Pos = ReadMethodPool(Sel); 1875 else 1876 return 0; 1877 } 1878 1879 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 1880 1881 if (warn && MethList.Method && MethList.Next) { 1882 bool issueDiagnostic = false, issueError = false; 1883 1884 // We support a warning which complains about *any* difference in 1885 // method signature. 1886 bool strictSelectorMatch = 1887 (receiverIdOrClass && warn && 1888 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 1889 R.getBegin()) != 1890 Diagnostic::Ignored)); 1891 if (strictSelectorMatch) 1892 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1893 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1894 MMS_strict)) { 1895 issueDiagnostic = true; 1896 break; 1897 } 1898 } 1899 1900 // If we didn't see any strict differences, we won't see any loose 1901 // differences. In ARC, however, we also need to check for loose 1902 // mismatches, because most of them are errors. 1903 if (!strictSelectorMatch || 1904 (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) 1905 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 1906 // This checks if the methods differ in type mismatch. 1907 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 1908 MMS_loose) && 1909 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 1910 issueDiagnostic = true; 1911 if (getLangOptions().ObjCAutoRefCount) 1912 issueError = true; 1913 break; 1914 } 1915 } 1916 1917 if (issueDiagnostic) { 1918 if (issueError) 1919 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 1920 else if (strictSelectorMatch) 1921 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 1922 else 1923 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 1924 1925 Diag(MethList.Method->getLocStart(), 1926 issueError ? diag::note_possibility : diag::note_using) 1927 << MethList.Method->getSourceRange(); 1928 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 1929 Diag(Next->Method->getLocStart(), diag::note_also_found) 1930 << Next->Method->getSourceRange(); 1931 } 1932 } 1933 return MethList.Method; 1934 } 1935 1936 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 1937 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1938 if (Pos == MethodPool.end()) 1939 return 0; 1940 1941 GlobalMethods &Methods = Pos->second; 1942 1943 if (Methods.first.Method && Methods.first.Method->isDefined()) 1944 return Methods.first.Method; 1945 if (Methods.second.Method && Methods.second.Method->isDefined()) 1946 return Methods.second.Method; 1947 return 0; 1948 } 1949 1950 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with 1951 /// identical selector names in current and its super classes and issues 1952 /// a warning if any of their argument types are incompatible. 1953 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 1954 ObjCMethodDecl *Method, 1955 bool IsInstance) { 1956 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 1957 if (ID == 0) return; 1958 1959 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 1960 ObjCMethodDecl *SuperMethodDecl = 1961 SD->lookupMethod(Method->getSelector(), IsInstance); 1962 if (SuperMethodDecl == 0) { 1963 ID = SD; 1964 continue; 1965 } 1966 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 1967 E = Method->param_end(); 1968 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 1969 for (; ParamI != E; ++ParamI, ++PrevI) { 1970 // Number of parameters are the same and is guaranteed by selector match. 1971 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 1972 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 1973 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 1974 // If type of argument of method in this class does not match its 1975 // respective argument type in the super class method, issue warning; 1976 if (!Context.typesAreCompatible(T1, T2)) { 1977 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 1978 << T1 << T2; 1979 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 1980 return; 1981 } 1982 } 1983 ID = SD; 1984 } 1985 } 1986 1987 /// DiagnoseDuplicateIvars - 1988 /// Check for duplicate ivars in the entire class at the start of 1989 /// @implementation. This becomes necesssary because class extension can 1990 /// add ivars to a class in random order which will not be known until 1991 /// class's @implementation is seen. 1992 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 1993 ObjCInterfaceDecl *SID) { 1994 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 1995 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 1996 ObjCIvarDecl* Ivar = (*IVI); 1997 if (Ivar->isInvalidDecl()) 1998 continue; 1999 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2000 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2001 if (prevIvar) { 2002 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2003 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2004 Ivar->setInvalidDecl(); 2005 } 2006 } 2007 } 2008 } 2009 2010 // Note: For class/category implemenations, allMethods/allProperties is 2011 // always null. 2012 void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2013 Decl *ClassDecl, 2014 Decl **allMethods, unsigned allNum, 2015 Decl **allProperties, unsigned pNum, 2016 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2017 // FIXME: If we don't have a ClassDecl, we have an error. We should consider 2018 // always passing in a decl. If the decl has an error, isInvalidDecl() 2019 // should be true. 2020 if (!ClassDecl) 2021 return; 2022 2023 bool isInterfaceDeclKind = 2024 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2025 || isa<ObjCProtocolDecl>(ClassDecl); 2026 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2027 2028 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 2029 // FIXME: This is wrong. We shouldn't be pretending that there is 2030 // an '@end' in the declaration. 2031 SourceLocation L = ClassDecl->getLocation(); 2032 AtEnd.setBegin(L); 2033 AtEnd.setEnd(L); 2034 Diag(L, diag::err_missing_atend); 2035 } 2036 2037 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2038 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2039 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2040 2041 for (unsigned i = 0; i < allNum; i++ ) { 2042 ObjCMethodDecl *Method = 2043 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2044 2045 if (!Method) continue; // Already issued a diagnostic. 2046 if (Method->isInstanceMethod()) { 2047 /// Check for instance method of the same name with incompatible types 2048 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2049 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2050 : false; 2051 if ((isInterfaceDeclKind && PrevMethod && !match) 2052 || (checkIdenticalMethods && match)) { 2053 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2054 << Method->getDeclName(); 2055 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2056 Method->setInvalidDecl(); 2057 } else { 2058 InsMap[Method->getSelector()] = Method; 2059 /// The following allows us to typecheck messages to "id". 2060 AddInstanceMethodToGlobalPool(Method); 2061 // verify that the instance method conforms to the same definition of 2062 // parent methods if it shadows one. 2063 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 2064 } 2065 } else { 2066 /// Check for class method of the same name with incompatible types 2067 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2068 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2069 : false; 2070 if ((isInterfaceDeclKind && PrevMethod && !match) 2071 || (checkIdenticalMethods && match)) { 2072 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2073 << Method->getDeclName(); 2074 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2075 Method->setInvalidDecl(); 2076 } else { 2077 ClsMap[Method->getSelector()] = Method; 2078 /// The following allows us to typecheck messages to "Class". 2079 AddFactoryMethodToGlobalPool(Method); 2080 // verify that the class method conforms to the same definition of 2081 // parent methods if it shadows one. 2082 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 2083 } 2084 } 2085 } 2086 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2087 // Compares properties declared in this class to those of its 2088 // super class. 2089 ComparePropertiesInBaseAndSuper(I); 2090 CompareProperties(I, I); 2091 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2092 // Categories are used to extend the class by declaring new methods. 2093 // By the same token, they are also used to add new properties. No 2094 // need to compare the added property to those in the class. 2095 2096 // Compare protocol properties with those in category 2097 CompareProperties(C, C); 2098 if (C->IsClassExtension()) { 2099 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2100 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2101 } 2102 } 2103 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2104 if (CDecl->getIdentifier()) 2105 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2106 // user-defined setter/getter. It also synthesizes setter/getter methods 2107 // and adds them to the DeclContext and global method pools. 2108 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2109 E = CDecl->prop_end(); 2110 I != E; ++I) 2111 ProcessPropertyDecl(*I, CDecl); 2112 CDecl->setAtEndRange(AtEnd); 2113 } 2114 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2115 IC->setAtEndRange(AtEnd); 2116 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2117 // Any property declared in a class extension might have user 2118 // declared setter or getter in current class extension or one 2119 // of the other class extensions. Mark them as synthesized as 2120 // property will be synthesized when property with same name is 2121 // seen in the @implementation. 2122 for (const ObjCCategoryDecl *ClsExtDecl = 2123 IDecl->getFirstClassExtension(); 2124 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2125 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2126 E = ClsExtDecl->prop_end(); I != E; ++I) { 2127 ObjCPropertyDecl *Property = (*I); 2128 // Skip over properties declared @dynamic 2129 if (const ObjCPropertyImplDecl *PIDecl 2130 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2131 if (PIDecl->getPropertyImplementation() 2132 == ObjCPropertyImplDecl::Dynamic) 2133 continue; 2134 2135 for (const ObjCCategoryDecl *CExtDecl = 2136 IDecl->getFirstClassExtension(); 2137 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2138 if (ObjCMethodDecl *GetterMethod = 2139 CExtDecl->getInstanceMethod(Property->getGetterName())) 2140 GetterMethod->setSynthesized(true); 2141 if (!Property->isReadOnly()) 2142 if (ObjCMethodDecl *SetterMethod = 2143 CExtDecl->getInstanceMethod(Property->getSetterName())) 2144 SetterMethod->setSynthesized(true); 2145 } 2146 } 2147 } 2148 2149 if (LangOpts.ObjCDefaultSynthProperties && 2150 LangOpts.ObjCNonFragileABI2) 2151 DefaultSynthesizeProperties(S, IC, IDecl); 2152 ImplMethodsVsClassMethods(S, IC, IDecl); 2153 AtomicPropertySetterGetterRules(IC, IDecl); 2154 DiagnoseOwningPropertyGetterSynthesis(IC); 2155 2156 if (LangOpts.ObjCNonFragileABI2) 2157 while (IDecl->getSuperClass()) { 2158 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2159 IDecl = IDecl->getSuperClass(); 2160 } 2161 } 2162 SetIvarInitializers(IC); 2163 } else if (ObjCCategoryImplDecl* CatImplClass = 2164 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2165 CatImplClass->setAtEndRange(AtEnd); 2166 2167 // Find category interface decl and then check that all methods declared 2168 // in this interface are implemented in the category @implementation. 2169 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2170 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2171 Categories; Categories = Categories->getNextClassCategory()) { 2172 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2173 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2174 break; 2175 } 2176 } 2177 } 2178 } 2179 if (isInterfaceDeclKind) { 2180 // Reject invalid vardecls. 2181 for (unsigned i = 0; i != tuvNum; i++) { 2182 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2183 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2184 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2185 if (!VDecl->hasExternalStorage()) 2186 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2187 } 2188 } 2189 } 2190 } 2191 2192 2193 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2194 /// objective-c's type qualifier from the parser version of the same info. 2195 static Decl::ObjCDeclQualifier 2196 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2197 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2198 } 2199 2200 static inline 2201 bool containsInvalidMethodImplAttribute(const AttrVec &A) { 2202 // The 'ibaction' attribute is allowed on method definitions because of 2203 // how the IBAction macro is used on both method declarations and definitions. 2204 // If the method definitions contains any other attributes, return true. 2205 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 2206 if ((*i)->getKind() != attr::IBAction) 2207 return true; 2208 return false; 2209 } 2210 2211 /// \brief Check whether the declared result type of the given Objective-C 2212 /// method declaration is compatible with the method's class. 2213 /// 2214 static bool 2215 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2216 ObjCInterfaceDecl *CurrentClass) { 2217 QualType ResultType = Method->getResultType(); 2218 SourceRange ResultTypeRange; 2219 if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo()) 2220 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 2221 2222 // If an Objective-C method inherits its related result type, then its 2223 // declared result type must be compatible with its own class type. The 2224 // declared result type is compatible if: 2225 if (const ObjCObjectPointerType *ResultObjectType 2226 = ResultType->getAs<ObjCObjectPointerType>()) { 2227 // - it is id or qualified id, or 2228 if (ResultObjectType->isObjCIdType() || 2229 ResultObjectType->isObjCQualifiedIdType()) 2230 return false; 2231 2232 if (CurrentClass) { 2233 if (ObjCInterfaceDecl *ResultClass 2234 = ResultObjectType->getInterfaceDecl()) { 2235 // - it is the same as the method's class type, or 2236 if (CurrentClass == ResultClass) 2237 return false; 2238 2239 // - it is a superclass of the method's class type 2240 if (ResultClass->isSuperClassOf(CurrentClass)) 2241 return false; 2242 } 2243 } 2244 } 2245 2246 return true; 2247 } 2248 2249 /// \brief Determine if any method in the global method pool has an inferred 2250 /// result type. 2251 static bool 2252 anyMethodInfersRelatedResultType(Sema &S, Selector Sel, bool IsInstance) { 2253 Sema::GlobalMethodPool::iterator Pos = S.MethodPool.find(Sel); 2254 if (Pos == S.MethodPool.end()) { 2255 if (S.ExternalSource) 2256 Pos = S.ReadMethodPool(Sel); 2257 else 2258 return 0; 2259 } 2260 2261 ObjCMethodList &List = IsInstance ? Pos->second.first : Pos->second.second; 2262 for (ObjCMethodList *M = &List; M; M = M->Next) { 2263 if (M->Method && M->Method->hasRelatedResultType()) 2264 return true; 2265 } 2266 2267 return false; 2268 } 2269 2270 Decl *Sema::ActOnMethodDeclaration( 2271 Scope *S, 2272 SourceLocation MethodLoc, SourceLocation EndLoc, 2273 tok::TokenKind MethodType, Decl *ClassDecl, 2274 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2275 SourceLocation SelectorStartLoc, 2276 Selector Sel, 2277 // optional arguments. The number of types/arguments is obtained 2278 // from the Sel.getNumArgs(). 2279 ObjCArgInfo *ArgInfo, 2280 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2281 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2282 bool isVariadic, bool MethodDefinition) { 2283 // Make sure we can establish a context for the method. 2284 if (!ClassDecl) { 2285 Diag(MethodLoc, diag::error_missing_method_context); 2286 return 0; 2287 } 2288 QualType resultDeclType; 2289 2290 TypeSourceInfo *ResultTInfo = 0; 2291 if (ReturnType) { 2292 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2293 2294 // Methods cannot return interface types. All ObjC objects are 2295 // passed by reference. 2296 if (resultDeclType->isObjCObjectType()) { 2297 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2298 << 0 << resultDeclType; 2299 return 0; 2300 } 2301 } else // get the type for "id". 2302 resultDeclType = Context.getObjCIdType(); 2303 2304 ObjCMethodDecl* ObjCMethod = 2305 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType, 2306 ResultTInfo, 2307 cast<DeclContext>(ClassDecl), 2308 MethodType == tok::minus, isVariadic, 2309 false, false, 2310 MethodDeclKind == tok::objc_optional 2311 ? ObjCMethodDecl::Optional 2312 : ObjCMethodDecl::Required, 2313 false); 2314 2315 llvm::SmallVector<ParmVarDecl*, 16> Params; 2316 2317 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2318 QualType ArgType; 2319 TypeSourceInfo *DI; 2320 2321 if (ArgInfo[i].Type == 0) { 2322 ArgType = Context.getObjCIdType(); 2323 DI = 0; 2324 } else { 2325 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2326 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2327 ArgType = Context.getAdjustedParameterType(ArgType); 2328 } 2329 2330 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2331 LookupOrdinaryName, ForRedeclaration); 2332 LookupName(R, S); 2333 if (R.isSingleResult()) { 2334 NamedDecl *PrevDecl = R.getFoundDecl(); 2335 if (S->isDeclScope(PrevDecl)) { 2336 Diag(ArgInfo[i].NameLoc, 2337 (MethodDefinition ? diag::warn_method_param_redefinition 2338 : diag::warn_method_param_declaration)) 2339 << ArgInfo[i].Name; 2340 Diag(PrevDecl->getLocation(), 2341 diag::note_previous_declaration); 2342 } 2343 } 2344 2345 SourceLocation StartLoc = DI 2346 ? DI->getTypeLoc().getBeginLoc() 2347 : ArgInfo[i].NameLoc; 2348 2349 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2350 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2351 ArgType, DI, SC_None, SC_None); 2352 2353 Param->setObjCMethodScopeInfo(i); 2354 2355 Param->setObjCDeclQualifier( 2356 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2357 2358 // Apply the attributes to the parameter. 2359 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2360 2361 S->AddDecl(Param); 2362 IdResolver.AddDecl(Param); 2363 2364 Params.push_back(Param); 2365 } 2366 2367 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2368 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2369 QualType ArgType = Param->getType(); 2370 if (ArgType.isNull()) 2371 ArgType = Context.getObjCIdType(); 2372 else 2373 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2374 ArgType = Context.getAdjustedParameterType(ArgType); 2375 if (ArgType->isObjCObjectType()) { 2376 Diag(Param->getLocation(), 2377 diag::err_object_cannot_be_passed_returned_by_value) 2378 << 1 << ArgType; 2379 Param->setInvalidDecl(); 2380 } 2381 Param->setDeclContext(ObjCMethod); 2382 2383 Params.push_back(Param); 2384 } 2385 2386 ObjCMethod->setMethodParams(Context, Params.data(), Params.size(), 2387 Sel.getNumArgs()); 2388 ObjCMethod->setObjCDeclQualifier( 2389 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2390 const ObjCMethodDecl *PrevMethod = 0; 2391 2392 if (AttrList) 2393 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2394 2395 const ObjCMethodDecl *InterfaceMD = 0; 2396 2397 // Add the method now. 2398 if (ObjCImplementationDecl *ImpDecl = 2399 dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2400 if (MethodType == tok::minus) { 2401 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2402 ImpDecl->addInstanceMethod(ObjCMethod); 2403 } else { 2404 PrevMethod = ImpDecl->getClassMethod(Sel); 2405 ImpDecl->addClassMethod(ObjCMethod); 2406 } 2407 InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel, 2408 MethodType == tok::minus); 2409 2410 if (ObjCMethod->hasAttrs() && 2411 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2412 Diag(EndLoc, diag::warn_attribute_method_def); 2413 } else if (ObjCCategoryImplDecl *CatImpDecl = 2414 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2415 if (MethodType == tok::minus) { 2416 PrevMethod = CatImpDecl->getInstanceMethod(Sel); 2417 CatImpDecl->addInstanceMethod(ObjCMethod); 2418 } else { 2419 PrevMethod = CatImpDecl->getClassMethod(Sel); 2420 CatImpDecl->addClassMethod(ObjCMethod); 2421 } 2422 2423 if (ObjCCategoryDecl *Cat = CatImpDecl->getCategoryDecl()) 2424 InterfaceMD = Cat->getMethod(Sel, MethodType == tok::minus); 2425 2426 if (ObjCMethod->hasAttrs() && 2427 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2428 Diag(EndLoc, diag::warn_attribute_method_def); 2429 } else { 2430 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2431 } 2432 if (PrevMethod) { 2433 // You can never have two method definitions with the same name. 2434 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2435 << ObjCMethod->getDeclName(); 2436 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2437 } 2438 2439 // If this Objective-C method does not have a related result type, but we 2440 // are allowed to infer related result types, try to do so based on the 2441 // method family. 2442 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2443 if (!CurrentClass) { 2444 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2445 CurrentClass = Cat->getClassInterface(); 2446 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2447 CurrentClass = Impl->getClassInterface(); 2448 else if (ObjCCategoryImplDecl *CatImpl 2449 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2450 CurrentClass = CatImpl->getClassInterface(); 2451 } 2452 2453 // Merge information down from the interface declaration if we have one. 2454 if (InterfaceMD) { 2455 // Inherit the related result type, if we can. 2456 if (InterfaceMD->hasRelatedResultType() && 2457 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) 2458 ObjCMethod->SetRelatedResultType(); 2459 2460 mergeObjCMethodDecls(ObjCMethod, InterfaceMD); 2461 } 2462 2463 bool ARCError = false; 2464 if (getLangOptions().ObjCAutoRefCount) 2465 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2466 2467 if (!ObjCMethod->hasRelatedResultType() && !ARCError && 2468 getLangOptions().ObjCInferRelatedResultType) { 2469 bool InferRelatedResultType = false; 2470 switch (ObjCMethod->getMethodFamily()) { 2471 case OMF_None: 2472 case OMF_copy: 2473 case OMF_dealloc: 2474 case OMF_mutableCopy: 2475 case OMF_release: 2476 case OMF_retainCount: 2477 case OMF_performSelector: 2478 break; 2479 2480 case OMF_alloc: 2481 case OMF_new: 2482 InferRelatedResultType = ObjCMethod->isClassMethod(); 2483 break; 2484 2485 case OMF_init: 2486 case OMF_autorelease: 2487 case OMF_retain: 2488 case OMF_self: 2489 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2490 break; 2491 } 2492 2493 if (InferRelatedResultType && 2494 !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass)) 2495 ObjCMethod->SetRelatedResultType(); 2496 2497 if (!InterfaceMD && 2498 anyMethodInfersRelatedResultType(*this, ObjCMethod->getSelector(), 2499 ObjCMethod->isInstanceMethod())) 2500 CheckObjCMethodOverrides(ObjCMethod, cast<DeclContext>(ClassDecl)); 2501 } 2502 2503 return ObjCMethod; 2504 } 2505 2506 bool Sema::CheckObjCDeclScope(Decl *D) { 2507 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) 2508 return false; 2509 2510 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2511 D->setInvalidDecl(); 2512 2513 return true; 2514 } 2515 2516 /// Called whenever @defs(ClassName) is encountered in the source. Inserts the 2517 /// instance variables of ClassName into Decls. 2518 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2519 IdentifierInfo *ClassName, 2520 llvm::SmallVectorImpl<Decl*> &Decls) { 2521 // Check that ClassName is a valid class 2522 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 2523 if (!Class) { 2524 Diag(DeclStart, diag::err_undef_interface) << ClassName; 2525 return; 2526 } 2527 if (LangOpts.ObjCNonFragileABI) { 2528 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 2529 return; 2530 } 2531 2532 // Collect the instance variables 2533 llvm::SmallVector<ObjCIvarDecl*, 32> Ivars; 2534 Context.DeepCollectObjCIvars(Class, true, Ivars); 2535 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 2536 for (unsigned i = 0; i < Ivars.size(); i++) { 2537 FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 2538 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 2539 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 2540 /*FIXME: StartL=*/ID->getLocation(), 2541 ID->getLocation(), 2542 ID->getIdentifier(), ID->getType(), 2543 ID->getBitWidth()); 2544 Decls.push_back(FD); 2545 } 2546 2547 // Introduce all of these fields into the appropriate scope. 2548 for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 2549 D != Decls.end(); ++D) { 2550 FieldDecl *FD = cast<FieldDecl>(*D); 2551 if (getLangOptions().CPlusPlus) 2552 PushOnScopeChains(cast<FieldDecl>(FD), S); 2553 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 2554 Record->addDecl(FD); 2555 } 2556 } 2557 2558 /// \brief Build a type-check a new Objective-C exception variable declaration. 2559 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 2560 SourceLocation StartLoc, 2561 SourceLocation IdLoc, 2562 IdentifierInfo *Id, 2563 bool Invalid) { 2564 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 2565 // duration shall not be qualified by an address-space qualifier." 2566 // Since all parameters have automatic store duration, they can not have 2567 // an address space. 2568 if (T.getAddressSpace() != 0) { 2569 Diag(IdLoc, diag::err_arg_with_address_space); 2570 Invalid = true; 2571 } 2572 2573 // An @catch parameter must be an unqualified object pointer type; 2574 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 2575 if (Invalid) { 2576 // Don't do any further checking. 2577 } else if (T->isDependentType()) { 2578 // Okay: we don't know what this type will instantiate to. 2579 } else if (!T->isObjCObjectPointerType()) { 2580 Invalid = true; 2581 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 2582 } else if (T->isObjCQualifiedIdType()) { 2583 Invalid = true; 2584 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 2585 } 2586 2587 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 2588 T, TInfo, SC_None, SC_None); 2589 New->setExceptionVariable(true); 2590 2591 if (Invalid) 2592 New->setInvalidDecl(); 2593 return New; 2594 } 2595 2596 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 2597 const DeclSpec &DS = D.getDeclSpec(); 2598 2599 // We allow the "register" storage class on exception variables because 2600 // GCC did, but we drop it completely. Any other storage class is an error. 2601 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 2602 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 2603 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 2604 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 2605 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 2606 << DS.getStorageClassSpec(); 2607 } 2608 if (D.getDeclSpec().isThreadSpecified()) 2609 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 2610 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2611 2612 DiagnoseFunctionSpecifiers(D); 2613 2614 // Check that there are no default arguments inside the type of this 2615 // exception object (C++ only). 2616 if (getLangOptions().CPlusPlus) 2617 CheckExtraCXXDefaultArguments(D); 2618 2619 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 2620 QualType ExceptionType = TInfo->getType(); 2621 2622 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 2623 D.getSourceRange().getBegin(), 2624 D.getIdentifierLoc(), 2625 D.getIdentifier(), 2626 D.isInvalidType()); 2627 2628 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 2629 if (D.getCXXScopeSpec().isSet()) { 2630 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 2631 << D.getCXXScopeSpec().getRange(); 2632 New->setInvalidDecl(); 2633 } 2634 2635 // Add the parameter declaration into this scope. 2636 S->AddDecl(New); 2637 if (D.getIdentifier()) 2638 IdResolver.AddDecl(New); 2639 2640 ProcessDeclAttributes(S, New, D); 2641 2642 if (New->hasAttr<BlocksAttr>()) 2643 Diag(New->getLocation(), diag::err_block_on_nonlocal); 2644 return New; 2645 } 2646 2647 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 2648 /// initialization. 2649 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 2650 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 2651 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 2652 Iv= Iv->getNextIvar()) { 2653 QualType QT = Context.getBaseElementType(Iv->getType()); 2654 if (QT->isRecordType()) 2655 Ivars.push_back(Iv); 2656 } 2657 } 2658 2659 void ObjCImplementationDecl::setIvarInitializers(ASTContext &C, 2660 CXXCtorInitializer ** initializers, 2661 unsigned numInitializers) { 2662 if (numInitializers > 0) { 2663 NumIvarInitializers = numInitializers; 2664 CXXCtorInitializer **ivarInitializers = 2665 new (C) CXXCtorInitializer*[NumIvarInitializers]; 2666 memcpy(ivarInitializers, initializers, 2667 numInitializers * sizeof(CXXCtorInitializer*)); 2668 IvarInitializers = ivarInitializers; 2669 } 2670 } 2671 2672 void Sema::DiagnoseUseOfUnimplementedSelectors() { 2673 // Warning will be issued only when selector table is 2674 // generated (which means there is at lease one implementation 2675 // in the TU). This is to match gcc's behavior. 2676 if (ReferencedSelectors.empty() || 2677 !Context.AnyObjCImplementation()) 2678 return; 2679 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 2680 ReferencedSelectors.begin(), 2681 E = ReferencedSelectors.end(); S != E; ++S) { 2682 Selector Sel = (*S).first; 2683 if (!LookupImplementedMethodInGlobalPool(Sel)) 2684 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 2685 } 2686 return; 2687 } 2688