Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/Sema/ExternalSemaSource.h"
     17 #include "clang/Sema/Scope.h"
     18 #include "clang/Sema/ScopeInfo.h"
     19 #include "clang/AST/ASTConsumer.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "llvm/ADT/DenseSet.h"
     27 
     28 using namespace clang;
     29 
     30 /// Check whether the given method, which must be in the 'init'
     31 /// family, is a valid member of that family.
     32 ///
     33 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     34 ///   if non-null, check this as if making a call to it with the given
     35 ///   receiver type
     36 ///
     37 /// \return true to indicate that there was an error and appropriate
     38 ///   actions were taken
     39 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     40                            QualType receiverTypeIfCall) {
     41   if (method->isInvalidDecl()) return true;
     42 
     43   // This castAs is safe: methods that don't return an object
     44   // pointer won't be inferred as inits and will reject an explicit
     45   // objc_method_family(init).
     46 
     47   // We ignore protocols here.  Should we?  What about Class?
     48 
     49   const ObjCObjectType *result = method->getResultType()
     50     ->castAs<ObjCObjectPointerType>()->getObjectType();
     51 
     52   if (result->isObjCId()) {
     53     return false;
     54   } else if (result->isObjCClass()) {
     55     // fall through: always an error
     56   } else {
     57     ObjCInterfaceDecl *resultClass = result->getInterface();
     58     assert(resultClass && "unexpected object type!");
     59 
     60     // It's okay for the result type to still be a forward declaration
     61     // if we're checking an interface declaration.
     62     if (resultClass->isForwardDecl()) {
     63       if (receiverTypeIfCall.isNull() &&
     64           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     65         return false;
     66 
     67     // Otherwise, we try to compare class types.
     68     } else {
     69       // If this method was declared in a protocol, we can't check
     70       // anything unless we have a receiver type that's an interface.
     71       const ObjCInterfaceDecl *receiverClass = 0;
     72       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     73         if (receiverTypeIfCall.isNull())
     74           return false;
     75 
     76         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     77           ->getInterfaceDecl();
     78 
     79         // This can be null for calls to e.g. id<Foo>.
     80         if (!receiverClass) return false;
     81       } else {
     82         receiverClass = method->getClassInterface();
     83         assert(receiverClass && "method not associated with a class!");
     84       }
     85 
     86       // If either class is a subclass of the other, it's fine.
     87       if (receiverClass->isSuperClassOf(resultClass) ||
     88           resultClass->isSuperClassOf(receiverClass))
     89         return false;
     90     }
     91   }
     92 
     93   SourceLocation loc = method->getLocation();
     94 
     95   // If we're in a system header, and this is not a call, just make
     96   // the method unusable.
     97   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
     98     method->addAttr(new (Context) UnavailableAttr(loc, Context,
     99                 "init method returns a type unrelated to its receiver type"));
    100     return true;
    101   }
    102 
    103   // Otherwise, it's an error.
    104   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    105   method->setInvalidDecl();
    106   return true;
    107 }
    108 
    109 bool Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    110                                    const ObjCMethodDecl *Overridden,
    111                                    bool IsImplementation) {
    112   if (Overridden->hasRelatedResultType() &&
    113       !NewMethod->hasRelatedResultType()) {
    114     // This can only happen when the method follows a naming convention that
    115     // implies a related result type, and the original (overridden) method has
    116     // a suitable return type, but the new (overriding) method does not have
    117     // a suitable return type.
    118     QualType ResultType = NewMethod->getResultType();
    119     SourceRange ResultTypeRange;
    120     if (const TypeSourceInfo *ResultTypeInfo
    121                                         = NewMethod->getResultTypeSourceInfo())
    122       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    123 
    124     // Figure out which class this method is part of, if any.
    125     ObjCInterfaceDecl *CurrentClass
    126       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    127     if (!CurrentClass) {
    128       DeclContext *DC = NewMethod->getDeclContext();
    129       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    130         CurrentClass = Cat->getClassInterface();
    131       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    132         CurrentClass = Impl->getClassInterface();
    133       else if (ObjCCategoryImplDecl *CatImpl
    134                = dyn_cast<ObjCCategoryImplDecl>(DC))
    135         CurrentClass = CatImpl->getClassInterface();
    136     }
    137 
    138     if (CurrentClass) {
    139       Diag(NewMethod->getLocation(),
    140            diag::warn_related_result_type_compatibility_class)
    141         << Context.getObjCInterfaceType(CurrentClass)
    142         << ResultType
    143         << ResultTypeRange;
    144     } else {
    145       Diag(NewMethod->getLocation(),
    146            diag::warn_related_result_type_compatibility_protocol)
    147         << ResultType
    148         << ResultTypeRange;
    149     }
    150 
    151     Diag(Overridden->getLocation(), diag::note_related_result_type_overridden)
    152       << Overridden->getMethodFamily();
    153   }
    154 
    155   return false;
    156 }
    157 
    158 /// \brief Check for consistency between a given method declaration and the
    159 /// methods it overrides within the class hierarchy.
    160 ///
    161 /// This method walks the inheritance hierarchy starting at the given
    162 /// declaration context (\p DC), invoking Sema::CheckObjCMethodOverride() with
    163 /// the given new method (\p NewMethod) and any method it directly overrides
    164 /// in the hierarchy. Sema::CheckObjCMethodOverride() is responsible for
    165 /// checking consistency, e.g., among return types for methods that return a
    166 /// related result type.
    167 static bool CheckObjCMethodOverrides(Sema &S, ObjCMethodDecl *NewMethod,
    168                                      DeclContext *DC,
    169                                      bool SkipCurrent = true) {
    170   if (!DC)
    171     return false;
    172 
    173   if (!SkipCurrent) {
    174     // Look for this method. If we find it, we're done.
    175     Selector Sel = NewMethod->getSelector();
    176     bool IsInstance = NewMethod->isInstanceMethod();
    177     DeclContext::lookup_const_iterator Meth, MethEnd;
    178     for (llvm::tie(Meth, MethEnd) = DC->lookup(Sel); Meth != MethEnd; ++Meth) {
    179       ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(*Meth);
    180       if (MD && MD->isInstanceMethod() == IsInstance)
    181         return S.CheckObjCMethodOverride(NewMethod, MD, false);
    182     }
    183   }
    184 
    185   if (ObjCInterfaceDecl *Class = llvm::dyn_cast<ObjCInterfaceDecl>(DC)) {
    186     // Look through categories.
    187     for (ObjCCategoryDecl *Category = Class->getCategoryList();
    188          Category; Category = Category->getNextClassCategory()) {
    189       if (CheckObjCMethodOverrides(S, NewMethod, Category, false))
    190         return true;
    191     }
    192 
    193     // Look through protocols.
    194     for (ObjCList<ObjCProtocolDecl>::iterator I = Class->protocol_begin(),
    195                                            IEnd = Class->protocol_end();
    196          I != IEnd; ++I)
    197       if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
    198         return true;
    199 
    200     // Look in our superclass.
    201     return CheckObjCMethodOverrides(S, NewMethod, Class->getSuperClass(),
    202                                     false);
    203   }
    204 
    205   if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC)) {
    206     // Look through protocols.
    207     for (ObjCList<ObjCProtocolDecl>::iterator I = Category->protocol_begin(),
    208                                            IEnd = Category->protocol_end();
    209          I != IEnd; ++I)
    210       if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
    211         return true;
    212 
    213     return false;
    214   }
    215 
    216   if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC)) {
    217     // Look through protocols.
    218     for (ObjCList<ObjCProtocolDecl>::iterator I = Protocol->protocol_begin(),
    219                                            IEnd = Protocol->protocol_end();
    220          I != IEnd; ++I)
    221       if (CheckObjCMethodOverrides(S, NewMethod, *I, false))
    222         return true;
    223 
    224     return false;
    225   }
    226 
    227   return false;
    228 }
    229 
    230 bool Sema::CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod,
    231                                     DeclContext *DC) {
    232   if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(DC))
    233     return ::CheckObjCMethodOverrides(*this, NewMethod, Class);
    234 
    235   if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(DC))
    236     return ::CheckObjCMethodOverrides(*this, NewMethod, Category);
    237 
    238   if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(DC))
    239     return ::CheckObjCMethodOverrides(*this, NewMethod, Protocol);
    240 
    241   if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(DC))
    242     return ::CheckObjCMethodOverrides(*this, NewMethod,
    243                                       Impl->getClassInterface());
    244 
    245   if (ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(DC))
    246     return ::CheckObjCMethodOverrides(*this, NewMethod,
    247                                       CatImpl->getClassInterface());
    248 
    249   return ::CheckObjCMethodOverrides(*this, NewMethod, CurContext);
    250 }
    251 
    252 /// \brief Check a method declaration for compatibility with the Objective-C
    253 /// ARC conventions.
    254 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
    255   ObjCMethodFamily family = method->getMethodFamily();
    256   switch (family) {
    257   case OMF_None:
    258   case OMF_dealloc:
    259   case OMF_retain:
    260   case OMF_release:
    261   case OMF_autorelease:
    262   case OMF_retainCount:
    263   case OMF_self:
    264     return false;
    265 
    266   case OMF_init:
    267     // If the method doesn't obey the init rules, don't bother annotating it.
    268     if (S.checkInitMethod(method, QualType()))
    269       return true;
    270 
    271     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
    272                                                        S.Context));
    273 
    274     // Don't add a second copy of this attribute, but otherwise don't
    275     // let it be suppressed.
    276     if (method->hasAttr<NSReturnsRetainedAttr>())
    277       return false;
    278     break;
    279 
    280   case OMF_alloc:
    281   case OMF_copy:
    282   case OMF_mutableCopy:
    283   case OMF_new:
    284     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    285         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    286         method->hasAttr<NSReturnsAutoreleasedAttr>())
    287       return false;
    288     break;
    289 
    290   case OMF_performSelector:
    291     // we don't annotate performSelector's
    292     return true;
    293 
    294   }
    295 
    296   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
    297                                                         S.Context));
    298   return false;
    299 }
    300 
    301 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    302                                                 NamedDecl *ND,
    303                                                 SourceLocation ImplLoc,
    304                                                 int select) {
    305   if (ND && ND->isDeprecated()) {
    306     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    307     if (select == 0)
    308       S.Diag(ND->getLocation(), diag::note_method_declared_at);
    309     else
    310       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    311   }
    312 }
    313 
    314 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    315 /// and user declared, in the method definition's AST.
    316 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    317   assert(getCurMethodDecl() == 0 && "Method parsing confused");
    318   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    319 
    320   // If we don't have a valid method decl, simply return.
    321   if (!MDecl)
    322     return;
    323 
    324   // Allow the rest of sema to find private method decl implementations.
    325   if (MDecl->isInstanceMethod())
    326     AddInstanceMethodToGlobalPool(MDecl, true);
    327   else
    328     AddFactoryMethodToGlobalPool(MDecl, true);
    329 
    330   // Allow all of Sema to see that we are entering a method definition.
    331   PushDeclContext(FnBodyScope, MDecl);
    332   PushFunctionScope();
    333 
    334   // Create Decl objects for each parameter, entrring them in the scope for
    335   // binding to their use.
    336 
    337   // Insert the invisible arguments, self and _cmd!
    338   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    339 
    340   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    341   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    342 
    343   // Introduce all of the other parameters into this scope.
    344   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    345        E = MDecl->param_end(); PI != E; ++PI) {
    346     ParmVarDecl *Param = (*PI);
    347     if (!Param->isInvalidDecl() &&
    348         RequireCompleteType(Param->getLocation(), Param->getType(),
    349                             diag::err_typecheck_decl_incomplete_type))
    350           Param->setInvalidDecl();
    351     if ((*PI)->getIdentifier())
    352       PushOnScopeChains(*PI, FnBodyScope);
    353   }
    354 
    355   // In ARC, disallow definition of retain/release/autorelease/retainCount
    356   if (getLangOptions().ObjCAutoRefCount) {
    357     switch (MDecl->getMethodFamily()) {
    358     case OMF_retain:
    359     case OMF_retainCount:
    360     case OMF_release:
    361     case OMF_autorelease:
    362       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    363         << MDecl->getSelector();
    364       break;
    365 
    366     case OMF_None:
    367     case OMF_dealloc:
    368     case OMF_alloc:
    369     case OMF_init:
    370     case OMF_mutableCopy:
    371     case OMF_copy:
    372     case OMF_new:
    373     case OMF_self:
    374     case OMF_performSelector:
    375       break;
    376     }
    377   }
    378 
    379   // Warn on implementating deprecated methods under
    380   // -Wdeprecated-implementations flag.
    381   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface())
    382     if (ObjCMethodDecl *IMD =
    383           IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
    384       DiagnoseObjCImplementedDeprecations(*this,
    385                                           dyn_cast<NamedDecl>(IMD),
    386                                           MDecl->getLocation(), 0);
    387 }
    388 
    389 Decl *Sema::
    390 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    391                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    392                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    393                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    394                          const SourceLocation *ProtoLocs,
    395                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    396   assert(ClassName && "Missing class identifier");
    397 
    398   // Check for another declaration kind with the same name.
    399   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    400                                          LookupOrdinaryName, ForRedeclaration);
    401 
    402   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    403     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    404     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    405   }
    406 
    407   ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    408   if (IDecl) {
    409     // Class already seen. Is it a forward declaration?
    410     if (!IDecl->isForwardDecl()) {
    411       IDecl->setInvalidDecl();
    412       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
    413       Diag(IDecl->getLocation(), diag::note_previous_definition);
    414 
    415       // Return the previous class interface.
    416       // FIXME: don't leak the objects passed in!
    417       return IDecl;
    418     } else {
    419       IDecl->setLocation(AtInterfaceLoc);
    420       IDecl->setForwardDecl(false);
    421       IDecl->setClassLoc(ClassLoc);
    422       // If the forward decl was in a PCH, we need to write it again in a
    423       // dependent AST file.
    424       IDecl->setChangedSinceDeserialization(true);
    425 
    426       // Since this ObjCInterfaceDecl was created by a forward declaration,
    427       // we now add it to the DeclContext since it wasn't added before
    428       // (see ActOnForwardClassDeclaration).
    429       IDecl->setLexicalDeclContext(CurContext);
    430       CurContext->addDecl(IDecl);
    431 
    432       if (AttrList)
    433         ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    434     }
    435   } else {
    436     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
    437                                       ClassName, ClassLoc);
    438     if (AttrList)
    439       ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    440 
    441     PushOnScopeChains(IDecl, TUScope);
    442   }
    443 
    444   if (SuperName) {
    445     // Check if a different kind of symbol declared in this scope.
    446     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    447                                 LookupOrdinaryName);
    448 
    449     if (!PrevDecl) {
    450       // Try to correct for a typo in the superclass name.
    451       TypoCorrection Corrected = CorrectTypo(
    452           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    453           NULL, NULL, false, CTC_NoKeywords);
    454       if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
    455         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    456           << SuperName << ClassName << PrevDecl->getDeclName();
    457         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    458           << PrevDecl->getDeclName();
    459       }
    460     }
    461 
    462     if (PrevDecl == IDecl) {
    463       Diag(SuperLoc, diag::err_recursive_superclass)
    464         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    465       IDecl->setLocEnd(ClassLoc);
    466     } else {
    467       ObjCInterfaceDecl *SuperClassDecl =
    468                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    469 
    470       // Diagnose classes that inherit from deprecated classes.
    471       if (SuperClassDecl)
    472         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    473 
    474       if (PrevDecl && SuperClassDecl == 0) {
    475         // The previous declaration was not a class decl. Check if we have a
    476         // typedef. If we do, get the underlying class type.
    477         if (const TypedefNameDecl *TDecl =
    478               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    479           QualType T = TDecl->getUnderlyingType();
    480           if (T->isObjCObjectType()) {
    481             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
    482               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    483           }
    484         }
    485 
    486         // This handles the following case:
    487         //
    488         // typedef int SuperClass;
    489         // @interface MyClass : SuperClass {} @end
    490         //
    491         if (!SuperClassDecl) {
    492           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    493           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    494         }
    495       }
    496 
    497       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    498         if (!SuperClassDecl)
    499           Diag(SuperLoc, diag::err_undef_superclass)
    500             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    501         else if (SuperClassDecl->isForwardDecl()) {
    502           Diag(SuperLoc, diag::err_forward_superclass)
    503             << SuperClassDecl->getDeclName() << ClassName
    504             << SourceRange(AtInterfaceLoc, ClassLoc);
    505           Diag(SuperClassDecl->getLocation(), diag::note_forward_class);
    506           SuperClassDecl = 0;
    507         }
    508       }
    509       IDecl->setSuperClass(SuperClassDecl);
    510       IDecl->setSuperClassLoc(SuperLoc);
    511       IDecl->setLocEnd(SuperLoc);
    512     }
    513   } else { // we have a root class.
    514     IDecl->setLocEnd(ClassLoc);
    515   }
    516 
    517   // Check then save referenced protocols.
    518   if (NumProtoRefs) {
    519     IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    520                            ProtoLocs, Context);
    521     IDecl->setLocEnd(EndProtoLoc);
    522   }
    523 
    524   CheckObjCDeclScope(IDecl);
    525   return IDecl;
    526 }
    527 
    528 /// ActOnCompatiblityAlias - this action is called after complete parsing of
    529 /// @compatibility_alias declaration. It sets up the alias relationships.
    530 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
    531                                         IdentifierInfo *AliasName,
    532                                         SourceLocation AliasLocation,
    533                                         IdentifierInfo *ClassName,
    534                                         SourceLocation ClassLocation) {
    535   // Look for previous declaration of alias name
    536   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    537                                       LookupOrdinaryName, ForRedeclaration);
    538   if (ADecl) {
    539     if (isa<ObjCCompatibleAliasDecl>(ADecl))
    540       Diag(AliasLocation, diag::warn_previous_alias_decl);
    541     else
    542       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    543     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    544     return 0;
    545   }
    546   // Check for class declaration
    547   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    548                                        LookupOrdinaryName, ForRedeclaration);
    549   if (const TypedefNameDecl *TDecl =
    550         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    551     QualType T = TDecl->getUnderlyingType();
    552     if (T->isObjCObjectType()) {
    553       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    554         ClassName = IDecl->getIdentifier();
    555         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    556                                   LookupOrdinaryName, ForRedeclaration);
    557       }
    558     }
    559   }
    560   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    561   if (CDecl == 0) {
    562     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    563     if (CDeclU)
    564       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    565     return 0;
    566   }
    567 
    568   // Everything checked out, instantiate a new alias declaration AST.
    569   ObjCCompatibleAliasDecl *AliasDecl =
    570     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    571 
    572   if (!CheckObjCDeclScope(AliasDecl))
    573     PushOnScopeChains(AliasDecl, TUScope);
    574 
    575   return AliasDecl;
    576 }
    577 
    578 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    579   IdentifierInfo *PName,
    580   SourceLocation &Ploc, SourceLocation PrevLoc,
    581   const ObjCList<ObjCProtocolDecl> &PList) {
    582 
    583   bool res = false;
    584   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    585        E = PList.end(); I != E; ++I) {
    586     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    587                                                  Ploc)) {
    588       if (PDecl->getIdentifier() == PName) {
    589         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    590         Diag(PrevLoc, diag::note_previous_definition);
    591         res = true;
    592       }
    593       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    594             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    595         res = true;
    596     }
    597   }
    598   return res;
    599 }
    600 
    601 Decl *
    602 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    603                                   IdentifierInfo *ProtocolName,
    604                                   SourceLocation ProtocolLoc,
    605                                   Decl * const *ProtoRefs,
    606                                   unsigned NumProtoRefs,
    607                                   const SourceLocation *ProtoLocs,
    608                                   SourceLocation EndProtoLoc,
    609                                   AttributeList *AttrList) {
    610   bool err = false;
    611   // FIXME: Deal with AttrList.
    612   assert(ProtocolName && "Missing protocol identifier");
    613   ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
    614   if (PDecl) {
    615     // Protocol already seen. Better be a forward protocol declaration
    616     if (!PDecl->isForwardDecl()) {
    617       Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    618       Diag(PDecl->getLocation(), diag::note_previous_definition);
    619       // Just return the protocol we already had.
    620       // FIXME: don't leak the objects passed in!
    621       return PDecl;
    622     }
    623     ObjCList<ObjCProtocolDecl> PList;
    624     PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    625     err = CheckForwardProtocolDeclarationForCircularDependency(
    626             ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
    627 
    628     // Make sure the cached decl gets a valid start location.
    629     PDecl->setLocation(AtProtoInterfaceLoc);
    630     PDecl->setForwardDecl(false);
    631     CurContext->addDecl(PDecl);
    632     // Repeat in dependent AST files.
    633     PDecl->setChangedSinceDeserialization(true);
    634   } else {
    635     PDecl = ObjCProtocolDecl::Create(Context, CurContext,
    636                                      AtProtoInterfaceLoc,ProtocolName);
    637     PushOnScopeChains(PDecl, TUScope);
    638     PDecl->setForwardDecl(false);
    639   }
    640   if (AttrList)
    641     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    642   if (!err && NumProtoRefs ) {
    643     /// Check then save referenced protocols.
    644     PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    645                            ProtoLocs, Context);
    646     PDecl->setLocEnd(EndProtoLoc);
    647   }
    648 
    649   CheckObjCDeclScope(PDecl);
    650   return PDecl;
    651 }
    652 
    653 /// FindProtocolDeclaration - This routine looks up protocols and
    654 /// issues an error if they are not declared. It returns list of
    655 /// protocol declarations in its 'Protocols' argument.
    656 void
    657 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    658                               const IdentifierLocPair *ProtocolId,
    659                               unsigned NumProtocols,
    660                               llvm::SmallVectorImpl<Decl *> &Protocols) {
    661   for (unsigned i = 0; i != NumProtocols; ++i) {
    662     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    663                                              ProtocolId[i].second);
    664     if (!PDecl) {
    665       TypoCorrection Corrected = CorrectTypo(
    666           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    667           LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
    668       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    669         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    670           << ProtocolId[i].first << Corrected.getCorrection();
    671         Diag(PDecl->getLocation(), diag::note_previous_decl)
    672           << PDecl->getDeclName();
    673       }
    674     }
    675 
    676     if (!PDecl) {
    677       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    678         << ProtocolId[i].first;
    679       continue;
    680     }
    681 
    682     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    683 
    684     // If this is a forward declaration and we are supposed to warn in this
    685     // case, do it.
    686     if (WarnOnDeclarations && PDecl->isForwardDecl())
    687       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    688         << ProtocolId[i].first;
    689     Protocols.push_back(PDecl);
    690   }
    691 }
    692 
    693 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    694 /// a class method in its extension.
    695 ///
    696 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    697                                             ObjCInterfaceDecl *ID) {
    698   if (!ID)
    699     return;  // Possibly due to previous error
    700 
    701   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    702   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    703        e =  ID->meth_end(); i != e; ++i) {
    704     ObjCMethodDecl *MD = *i;
    705     MethodMap[MD->getSelector()] = MD;
    706   }
    707 
    708   if (MethodMap.empty())
    709     return;
    710   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    711        e =  CAT->meth_end(); i != e; ++i) {
    712     ObjCMethodDecl *Method = *i;
    713     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    714     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    715       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    716             << Method->getDeclName();
    717       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    718     }
    719   }
    720 }
    721 
    722 /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
    723 Decl *
    724 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    725                                       const IdentifierLocPair *IdentList,
    726                                       unsigned NumElts,
    727                                       AttributeList *attrList) {
    728   llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
    729   llvm::SmallVector<SourceLocation, 8> ProtoLocs;
    730 
    731   for (unsigned i = 0; i != NumElts; ++i) {
    732     IdentifierInfo *Ident = IdentList[i].first;
    733     ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
    734     bool isNew = false;
    735     if (PDecl == 0) { // Not already seen?
    736       PDecl = ObjCProtocolDecl::Create(Context, CurContext,
    737                                        IdentList[i].second, Ident);
    738       PushOnScopeChains(PDecl, TUScope, false);
    739       isNew = true;
    740     }
    741     if (attrList) {
    742       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    743       if (!isNew)
    744         PDecl->setChangedSinceDeserialization(true);
    745     }
    746     Protocols.push_back(PDecl);
    747     ProtoLocs.push_back(IdentList[i].second);
    748   }
    749 
    750   ObjCForwardProtocolDecl *PDecl =
    751     ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
    752                                     Protocols.data(), Protocols.size(),
    753                                     ProtoLocs.data());
    754   CurContext->addDecl(PDecl);
    755   CheckObjCDeclScope(PDecl);
    756   return PDecl;
    757 }
    758 
    759 Decl *Sema::
    760 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    761                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    762                             IdentifierInfo *CategoryName,
    763                             SourceLocation CategoryLoc,
    764                             Decl * const *ProtoRefs,
    765                             unsigned NumProtoRefs,
    766                             const SourceLocation *ProtoLocs,
    767                             SourceLocation EndProtoLoc) {
    768   ObjCCategoryDecl *CDecl;
    769   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    770 
    771   /// Check that class of this category is already completely declared.
    772   if (!IDecl || IDecl->isForwardDecl()) {
    773     // Create an invalid ObjCCategoryDecl to serve as context for
    774     // the enclosing method declarations.  We mark the decl invalid
    775     // to make it clear that this isn't a valid AST.
    776     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    777                                      ClassLoc, CategoryLoc, CategoryName);
    778     CDecl->setInvalidDecl();
    779     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    780     return CDecl;
    781   }
    782 
    783   if (!CategoryName && IDecl->getImplementation()) {
    784     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    785     Diag(IDecl->getImplementation()->getLocation(),
    786           diag::note_implementation_declared);
    787   }
    788 
    789   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    790                                    ClassLoc, CategoryLoc, CategoryName);
    791   // FIXME: PushOnScopeChains?
    792   CurContext->addDecl(CDecl);
    793 
    794   CDecl->setClassInterface(IDecl);
    795   // Insert class extension to the list of class's categories.
    796   if (!CategoryName)
    797     CDecl->insertNextClassCategory();
    798 
    799   // If the interface is deprecated, warn about it.
    800   (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
    801 
    802   if (CategoryName) {
    803     /// Check for duplicate interface declaration for this category
    804     ObjCCategoryDecl *CDeclChain;
    805     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
    806          CDeclChain = CDeclChain->getNextClassCategory()) {
    807       if (CDeclChain->getIdentifier() == CategoryName) {
    808         // Class extensions can be declared multiple times.
    809         Diag(CategoryLoc, diag::warn_dup_category_def)
    810           << ClassName << CategoryName;
    811         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
    812         break;
    813       }
    814     }
    815     if (!CDeclChain)
    816       CDecl->insertNextClassCategory();
    817   }
    818 
    819   if (NumProtoRefs) {
    820     CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    821                            ProtoLocs, Context);
    822     // Protocols in the class extension belong to the class.
    823     if (CDecl->IsClassExtension())
    824      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
    825                                             NumProtoRefs, Context);
    826   }
    827 
    828   CheckObjCDeclScope(CDecl);
    829   return CDecl;
    830 }
    831 
    832 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    833 /// category implementation declaration and build an ObjCCategoryImplDecl
    834 /// object.
    835 Decl *Sema::ActOnStartCategoryImplementation(
    836                       SourceLocation AtCatImplLoc,
    837                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    838                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    839   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    840   ObjCCategoryDecl *CatIDecl = 0;
    841   if (IDecl) {
    842     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    843     if (!CatIDecl) {
    844       // Category @implementation with no corresponding @interface.
    845       // Create and install one.
    846       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
    847                                           SourceLocation(), SourceLocation(),
    848                                           CatName);
    849       CatIDecl->setClassInterface(IDecl);
    850       CatIDecl->insertNextClassCategory();
    851     }
    852   }
    853 
    854   ObjCCategoryImplDecl *CDecl =
    855     ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
    856                                  IDecl);
    857   /// Check that class of this category is already completely declared.
    858   if (!IDecl || IDecl->isForwardDecl())
    859     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    860 
    861   // FIXME: PushOnScopeChains?
    862   CurContext->addDecl(CDecl);
    863 
    864   /// Check that CatName, category name, is not used in another implementation.
    865   if (CatIDecl) {
    866     if (CatIDecl->getImplementation()) {
    867       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    868         << CatName;
    869       Diag(CatIDecl->getImplementation()->getLocation(),
    870            diag::note_previous_definition);
    871     } else {
    872       CatIDecl->setImplementation(CDecl);
    873       // Warn on implementating category of deprecated class under
    874       // -Wdeprecated-implementations flag.
    875       DiagnoseObjCImplementedDeprecations(*this,
    876                                           dyn_cast<NamedDecl>(IDecl),
    877                                           CDecl->getLocation(), 2);
    878     }
    879   }
    880 
    881   CheckObjCDeclScope(CDecl);
    882   return CDecl;
    883 }
    884 
    885 Decl *Sema::ActOnStartClassImplementation(
    886                       SourceLocation AtClassImplLoc,
    887                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    888                       IdentifierInfo *SuperClassname,
    889                       SourceLocation SuperClassLoc) {
    890   ObjCInterfaceDecl* IDecl = 0;
    891   // Check for another declaration kind with the same name.
    892   NamedDecl *PrevDecl
    893     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    894                        ForRedeclaration);
    895   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    896     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    897     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    898   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    899     // If this is a forward declaration of an interface, warn.
    900     if (IDecl->isForwardDecl()) {
    901       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    902       IDecl = 0;
    903     }
    904   } else {
    905     // We did not find anything with the name ClassName; try to correct for
    906     // typos in the class name.
    907     TypoCorrection Corrected = CorrectTypo(
    908         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    909         NULL, NULL, false, CTC_NoKeywords);
    910     if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
    911       // Suggest the (potentially) correct interface name. However, put the
    912       // fix-it hint itself in a separate note, since changing the name in
    913       // the warning would make the fix-it change semantics.However, don't
    914       // provide a code-modification hint or use the typo name for recovery,
    915       // because this is just a warning. The program may actually be correct.
    916       DeclarationName CorrectedName = Corrected.getCorrection();
    917       Diag(ClassLoc, diag::warn_undef_interface_suggest)
    918         << ClassName << CorrectedName;
    919       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
    920         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
    921       IDecl = 0;
    922     } else {
    923       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    924     }
    925   }
    926 
    927   // Check that super class name is valid class name
    928   ObjCInterfaceDecl* SDecl = 0;
    929   if (SuperClassname) {
    930     // Check if a different kind of symbol declared in this scope.
    931     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
    932                                 LookupOrdinaryName);
    933     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    934       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
    935         << SuperClassname;
    936       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    937     } else {
    938       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    939       if (!SDecl)
    940         Diag(SuperClassLoc, diag::err_undef_superclass)
    941           << SuperClassname << ClassName;
    942       else if (IDecl && IDecl->getSuperClass() != SDecl) {
    943         // This implementation and its interface do not have the same
    944         // super class.
    945         Diag(SuperClassLoc, diag::err_conflicting_super_class)
    946           << SDecl->getDeclName();
    947         Diag(SDecl->getLocation(), diag::note_previous_definition);
    948       }
    949     }
    950   }
    951 
    952   if (!IDecl) {
    953     // Legacy case of @implementation with no corresponding @interface.
    954     // Build, chain & install the interface decl into the identifier.
    955 
    956     // FIXME: Do we support attributes on the @implementation? If so we should
    957     // copy them over.
    958     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
    959                                       ClassName, ClassLoc, false, true);
    960     IDecl->setSuperClass(SDecl);
    961     IDecl->setLocEnd(ClassLoc);
    962 
    963     PushOnScopeChains(IDecl, TUScope);
    964   } else {
    965     // Mark the interface as being completed, even if it was just as
    966     //   @class ....;
    967     // declaration; the user cannot reopen it.
    968     IDecl->setForwardDecl(false);
    969   }
    970 
    971   ObjCImplementationDecl* IMPDecl =
    972     ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
    973                                    IDecl, SDecl);
    974 
    975   if (CheckObjCDeclScope(IMPDecl))
    976     return IMPDecl;
    977 
    978   // Check that there is no duplicate implementation of this class.
    979   if (IDecl->getImplementation()) {
    980     // FIXME: Don't leak everything!
    981     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
    982     Diag(IDecl->getImplementation()->getLocation(),
    983          diag::note_previous_definition);
    984   } else { // add it to the list.
    985     IDecl->setImplementation(IMPDecl);
    986     PushOnScopeChains(IMPDecl, TUScope);
    987     // Warn on implementating deprecated class under
    988     // -Wdeprecated-implementations flag.
    989     DiagnoseObjCImplementedDeprecations(*this,
    990                                         dyn_cast<NamedDecl>(IDecl),
    991                                         IMPDecl->getLocation(), 1);
    992   }
    993   return IMPDecl;
    994 }
    995 
    996 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
    997                                     ObjCIvarDecl **ivars, unsigned numIvars,
    998                                     SourceLocation RBrace) {
    999   assert(ImpDecl && "missing implementation decl");
   1000   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1001   if (!IDecl)
   1002     return;
   1003   /// Check case of non-existing @interface decl.
   1004   /// (legacy objective-c @implementation decl without an @interface decl).
   1005   /// Add implementations's ivar to the synthesize class's ivar list.
   1006   if (IDecl->isImplicitInterfaceDecl()) {
   1007     IDecl->setLocEnd(RBrace);
   1008     // Add ivar's to class's DeclContext.
   1009     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1010       ivars[i]->setLexicalDeclContext(ImpDecl);
   1011       IDecl->makeDeclVisibleInContext(ivars[i], false);
   1012       ImpDecl->addDecl(ivars[i]);
   1013     }
   1014 
   1015     return;
   1016   }
   1017   // If implementation has empty ivar list, just return.
   1018   if (numIvars == 0)
   1019     return;
   1020 
   1021   assert(ivars && "missing @implementation ivars");
   1022   if (LangOpts.ObjCNonFragileABI2) {
   1023     if (ImpDecl->getSuperClass())
   1024       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1025     for (unsigned i = 0; i < numIvars; i++) {
   1026       ObjCIvarDecl* ImplIvar = ivars[i];
   1027       if (const ObjCIvarDecl *ClsIvar =
   1028             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1029         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1030         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1031         continue;
   1032       }
   1033       // Instance ivar to Implementation's DeclContext.
   1034       ImplIvar->setLexicalDeclContext(ImpDecl);
   1035       IDecl->makeDeclVisibleInContext(ImplIvar, false);
   1036       ImpDecl->addDecl(ImplIvar);
   1037     }
   1038     return;
   1039   }
   1040   // Check interface's Ivar list against those in the implementation.
   1041   // names and types must match.
   1042   //
   1043   unsigned j = 0;
   1044   ObjCInterfaceDecl::ivar_iterator
   1045     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1046   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1047     ObjCIvarDecl* ImplIvar = ivars[j++];
   1048     ObjCIvarDecl* ClsIvar = *IVI;
   1049     assert (ImplIvar && "missing implementation ivar");
   1050     assert (ClsIvar && "missing class ivar");
   1051 
   1052     // First, make sure the types match.
   1053     if (Context.getCanonicalType(ImplIvar->getType()) !=
   1054         Context.getCanonicalType(ClsIvar->getType())) {
   1055       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1056         << ImplIvar->getIdentifier()
   1057         << ImplIvar->getType() << ClsIvar->getType();
   1058       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1059     } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
   1060       Expr *ImplBitWidth = ImplIvar->getBitWidth();
   1061       Expr *ClsBitWidth = ClsIvar->getBitWidth();
   1062       if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
   1063           ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
   1064         Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
   1065           << ImplIvar->getIdentifier();
   1066         Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
   1067       }
   1068     }
   1069     // Make sure the names are identical.
   1070     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1071       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1072         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1073       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1074     }
   1075     --numIvars;
   1076   }
   1077 
   1078   if (numIvars > 0)
   1079     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1080   else if (IVI != IVE)
   1081     Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
   1082 }
   1083 
   1084 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1085                                bool &IncompleteImpl, unsigned DiagID) {
   1086   // No point warning no definition of method which is 'unavailable'.
   1087   if (method->hasAttr<UnavailableAttr>())
   1088     return;
   1089   if (!IncompleteImpl) {
   1090     Diag(ImpLoc, diag::warn_incomplete_impl);
   1091     IncompleteImpl = true;
   1092   }
   1093   if (DiagID == diag::warn_unimplemented_protocol_method)
   1094     Diag(ImpLoc, DiagID) << method->getDeclName();
   1095   else
   1096     Diag(method->getLocation(), DiagID) << method->getDeclName();
   1097 }
   1098 
   1099 /// Determines if type B can be substituted for type A.  Returns true if we can
   1100 /// guarantee that anything that the user will do to an object of type A can
   1101 /// also be done to an object of type B.  This is trivially true if the two
   1102 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1103 /// in cases where protocols are involved.
   1104 ///
   1105 /// Object types in Objective-C describe the minimum requirements for an
   1106 /// object, rather than providing a complete description of a type.  For
   1107 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1108 /// The principle of substitutability means that we may use an instance of A
   1109 /// anywhere that we may use an instance of B - it will implement all of the
   1110 /// ivars of B and all of the methods of B.
   1111 ///
   1112 /// This substitutability is important when type checking methods, because
   1113 /// the implementation may have stricter type definitions than the interface.
   1114 /// The interface specifies minimum requirements, but the implementation may
   1115 /// have more accurate ones.  For example, a method may privately accept
   1116 /// instances of B, but only publish that it accepts instances of A.  Any
   1117 /// object passed to it will be type checked against B, and so will implicitly
   1118 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1119 /// it is declared as returning.
   1120 ///
   1121 /// This is most important when considering subclassing.  A method in a
   1122 /// subclass must accept any object as an argument that its superclass's
   1123 /// implementation accepts.  It may, however, accept a more general type
   1124 /// without breaking substitutability (i.e. you can still use the subclass
   1125 /// anywhere that you can use the superclass, but not vice versa).  The
   1126 /// converse requirement applies to return types: the return type for a
   1127 /// subclass method must be a valid object of the kind that the superclass
   1128 /// advertises, but it may be specified more accurately.  This avoids the need
   1129 /// for explicit down-casting by callers.
   1130 ///
   1131 /// Note: This is a stricter requirement than for assignment.
   1132 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1133                                     const ObjCObjectPointerType *A,
   1134                                     const ObjCObjectPointerType *B,
   1135                                     bool rejectId) {
   1136   // Reject a protocol-unqualified id.
   1137   if (rejectId && B->isObjCIdType()) return false;
   1138 
   1139   // If B is a qualified id, then A must also be a qualified id and it must
   1140   // implement all of the protocols in B.  It may not be a qualified class.
   1141   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1142   // stricter definition so it is not substitutable for id<A>.
   1143   if (B->isObjCQualifiedIdType()) {
   1144     return A->isObjCQualifiedIdType() &&
   1145            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1146                                                      QualType(B,0),
   1147                                                      false);
   1148   }
   1149 
   1150   /*
   1151   // id is a special type that bypasses type checking completely.  We want a
   1152   // warning when it is used in one place but not another.
   1153   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1154 
   1155 
   1156   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1157   // if we've got this far)
   1158   if (B->isObjCQualifiedIdType()) return false;
   1159   */
   1160 
   1161   // Now we know that A and B are (potentially-qualified) class types.  The
   1162   // normal rules for assignment apply.
   1163   return Context.canAssignObjCInterfaces(A, B);
   1164 }
   1165 
   1166 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1167   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1168 }
   1169 
   1170 static void CheckMethodOverrideReturn(Sema &S,
   1171                                       ObjCMethodDecl *MethodImpl,
   1172                                       ObjCMethodDecl *MethodDecl,
   1173                                       bool IsProtocolMethodDecl) {
   1174   if (IsProtocolMethodDecl &&
   1175       (MethodDecl->getObjCDeclQualifier() !=
   1176        MethodImpl->getObjCDeclQualifier())) {
   1177     S.Diag(MethodImpl->getLocation(),
   1178            diag::warn_conflicting_ret_type_modifiers)
   1179         << MethodImpl->getDeclName()
   1180         << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1181     S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1182         << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1183   }
   1184 
   1185   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1186                                        MethodDecl->getResultType()))
   1187     return;
   1188 
   1189   unsigned DiagID = diag::warn_conflicting_ret_types;
   1190 
   1191   // Mismatches between ObjC pointers go into a different warning
   1192   // category, and sometimes they're even completely whitelisted.
   1193   if (const ObjCObjectPointerType *ImplPtrTy =
   1194         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1195     if (const ObjCObjectPointerType *IfacePtrTy =
   1196           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1197       // Allow non-matching return types as long as they don't violate
   1198       // the principle of substitutability.  Specifically, we permit
   1199       // return types that are subclasses of the declared return type,
   1200       // or that are more-qualified versions of the declared type.
   1201       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1202         return;
   1203 
   1204       DiagID = diag::warn_non_covariant_ret_types;
   1205     }
   1206   }
   1207 
   1208   S.Diag(MethodImpl->getLocation(), DiagID)
   1209     << MethodImpl->getDeclName()
   1210     << MethodDecl->getResultType()
   1211     << MethodImpl->getResultType()
   1212     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1213   S.Diag(MethodDecl->getLocation(), diag::note_previous_definition)
   1214     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1215 }
   1216 
   1217 static void CheckMethodOverrideParam(Sema &S,
   1218                                      ObjCMethodDecl *MethodImpl,
   1219                                      ObjCMethodDecl *MethodDecl,
   1220                                      ParmVarDecl *ImplVar,
   1221                                      ParmVarDecl *IfaceVar,
   1222                                      bool IsProtocolMethodDecl) {
   1223   if (IsProtocolMethodDecl &&
   1224       (ImplVar->getObjCDeclQualifier() !=
   1225        IfaceVar->getObjCDeclQualifier())) {
   1226     S.Diag(ImplVar->getLocation(),
   1227            diag::warn_conflicting_param_modifiers)
   1228         << getTypeRange(ImplVar->getTypeSourceInfo())
   1229         << MethodImpl->getDeclName();
   1230     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1231         << getTypeRange(IfaceVar->getTypeSourceInfo());
   1232   }
   1233 
   1234   QualType ImplTy = ImplVar->getType();
   1235   QualType IfaceTy = IfaceVar->getType();
   1236 
   1237   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1238     return;
   1239 
   1240   unsigned DiagID = diag::warn_conflicting_param_types;
   1241 
   1242   // Mismatches between ObjC pointers go into a different warning
   1243   // category, and sometimes they're even completely whitelisted.
   1244   if (const ObjCObjectPointerType *ImplPtrTy =
   1245         ImplTy->getAs<ObjCObjectPointerType>()) {
   1246     if (const ObjCObjectPointerType *IfacePtrTy =
   1247           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1248       // Allow non-matching argument types as long as they don't
   1249       // violate the principle of substitutability.  Specifically, the
   1250       // implementation must accept any objects that the superclass
   1251       // accepts, however it may also accept others.
   1252       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1253         return;
   1254 
   1255       DiagID = diag::warn_non_contravariant_param_types;
   1256     }
   1257   }
   1258 
   1259   S.Diag(ImplVar->getLocation(), DiagID)
   1260     << getTypeRange(ImplVar->getTypeSourceInfo())
   1261     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1262   S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
   1263     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1264 }
   1265 
   1266 /// In ARC, check whether the conventional meanings of the two methods
   1267 /// match.  If they don't, it's a hard error.
   1268 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1269                                       ObjCMethodDecl *decl) {
   1270   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1271   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1272   if (implFamily == declFamily) return false;
   1273 
   1274   // Since conventions are sorted by selector, the only possibility is
   1275   // that the types differ enough to cause one selector or the other
   1276   // to fall out of the family.
   1277   assert(implFamily == OMF_None || declFamily == OMF_None);
   1278 
   1279   // No further diagnostics required on invalid declarations.
   1280   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1281 
   1282   const ObjCMethodDecl *unmatched = impl;
   1283   ObjCMethodFamily family = declFamily;
   1284   unsigned errorID = diag::err_arc_lost_method_convention;
   1285   unsigned noteID = diag::note_arc_lost_method_convention;
   1286   if (declFamily == OMF_None) {
   1287     unmatched = decl;
   1288     family = implFamily;
   1289     errorID = diag::err_arc_gained_method_convention;
   1290     noteID = diag::note_arc_gained_method_convention;
   1291   }
   1292 
   1293   // Indexes into a %select clause in the diagnostic.
   1294   enum FamilySelector {
   1295     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1296   };
   1297   FamilySelector familySelector = FamilySelector();
   1298 
   1299   switch (family) {
   1300   case OMF_None: llvm_unreachable("logic error, no method convention");
   1301   case OMF_retain:
   1302   case OMF_release:
   1303   case OMF_autorelease:
   1304   case OMF_dealloc:
   1305   case OMF_retainCount:
   1306   case OMF_self:
   1307   case OMF_performSelector:
   1308     // Mismatches for these methods don't change ownership
   1309     // conventions, so we don't care.
   1310     return false;
   1311 
   1312   case OMF_init: familySelector = F_init; break;
   1313   case OMF_alloc: familySelector = F_alloc; break;
   1314   case OMF_copy: familySelector = F_copy; break;
   1315   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1316   case OMF_new: familySelector = F_new; break;
   1317   }
   1318 
   1319   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1320   ReasonSelector reasonSelector;
   1321 
   1322   // The only reason these methods don't fall within their families is
   1323   // due to unusual result types.
   1324   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1325     reasonSelector = R_UnrelatedReturn;
   1326   } else {
   1327     reasonSelector = R_NonObjectReturn;
   1328   }
   1329 
   1330   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
   1331   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
   1332 
   1333   return true;
   1334 }
   1335 
   1336 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1337                                        ObjCMethodDecl *MethodDecl,
   1338                                        bool IsProtocolMethodDecl) {
   1339   if (getLangOptions().ObjCAutoRefCount &&
   1340       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1341     return;
   1342 
   1343   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1344                             IsProtocolMethodDecl);
   1345 
   1346   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1347        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
   1348        IM != EM; ++IM, ++IF)
   1349     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1350                              IsProtocolMethodDecl);
   1351 
   1352   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1353     Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
   1354     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1355   }
   1356 }
   1357 
   1358 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1359 /// improve the efficiency of selector lookups and type checking by associating
   1360 /// with each protocol / interface / category the flattened instance tables. If
   1361 /// we used an immutable set to keep the table then it wouldn't add significant
   1362 /// memory cost and it would be handy for lookups.
   1363 
   1364 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1365 /// Declared in protocol, and those referenced by it.
   1366 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1367                                    ObjCProtocolDecl *PDecl,
   1368                                    bool& IncompleteImpl,
   1369                                    const llvm::DenseSet<Selector> &InsMap,
   1370                                    const llvm::DenseSet<Selector> &ClsMap,
   1371                                    ObjCContainerDecl *CDecl) {
   1372   ObjCInterfaceDecl *IDecl;
   1373   if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
   1374     IDecl = C->getClassInterface();
   1375   else
   1376     IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
   1377   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1378 
   1379   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1380   ObjCInterfaceDecl *NSIDecl = 0;
   1381   if (getLangOptions().NeXTRuntime) {
   1382     // check to see if class implements forwardInvocation method and objects
   1383     // of this class are derived from 'NSProxy' so that to forward requests
   1384     // from one object to another.
   1385     // Under such conditions, which means that every method possible is
   1386     // implemented in the class, we should not issue "Method definition not
   1387     // found" warnings.
   1388     // FIXME: Use a general GetUnarySelector method for this.
   1389     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1390     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1391     if (InsMap.count(fISelector))
   1392       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1393       // need be implemented in the implementation.
   1394       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1395   }
   1396 
   1397   // If a method lookup fails locally we still need to look and see if
   1398   // the method was implemented by a base class or an inherited
   1399   // protocol. This lookup is slow, but occurs rarely in correct code
   1400   // and otherwise would terminate in a warning.
   1401 
   1402   // check unimplemented instance methods.
   1403   if (!NSIDecl)
   1404     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1405          E = PDecl->instmeth_end(); I != E; ++I) {
   1406       ObjCMethodDecl *method = *I;
   1407       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1408           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
   1409           (!Super ||
   1410            !Super->lookupInstanceMethod(method->getSelector()))) {
   1411             // Ugly, but necessary. Method declared in protcol might have
   1412             // have been synthesized due to a property declared in the class which
   1413             // uses the protocol.
   1414             ObjCMethodDecl *MethodInClass =
   1415             IDecl->lookupInstanceMethod(method->getSelector());
   1416             if (!MethodInClass || !MethodInClass->isSynthesized()) {
   1417               unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1418               if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1419                       != Diagnostic::Ignored) {
   1420                 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1421                 Diag(method->getLocation(), diag::note_method_declared_at);
   1422                 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1423                   << PDecl->getDeclName();
   1424               }
   1425             }
   1426           }
   1427     }
   1428   // check unimplemented class methods
   1429   for (ObjCProtocolDecl::classmeth_iterator
   1430          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1431        I != E; ++I) {
   1432     ObjCMethodDecl *method = *I;
   1433     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1434         !ClsMap.count(method->getSelector()) &&
   1435         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1436       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1437       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
   1438         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1439         Diag(method->getLocation(), diag::note_method_declared_at);
   1440         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1441           PDecl->getDeclName();
   1442       }
   1443     }
   1444   }
   1445   // Check on this protocols's referenced protocols, recursively.
   1446   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1447        E = PDecl->protocol_end(); PI != E; ++PI)
   1448     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
   1449 }
   1450 
   1451 /// MatchAllMethodDeclarations - Check methods declared in interface
   1452 /// or protocol against those declared in their implementations.
   1453 ///
   1454 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
   1455                                       const llvm::DenseSet<Selector> &ClsMap,
   1456                                       llvm::DenseSet<Selector> &InsMapSeen,
   1457                                       llvm::DenseSet<Selector> &ClsMapSeen,
   1458                                       ObjCImplDecl* IMPDecl,
   1459                                       ObjCContainerDecl* CDecl,
   1460                                       bool &IncompleteImpl,
   1461                                       bool ImmediateClass) {
   1462   // Check and see if instance methods in class interface have been
   1463   // implemented in the implementation class. If so, their types match.
   1464   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1465        E = CDecl->instmeth_end(); I != E; ++I) {
   1466     if (InsMapSeen.count((*I)->getSelector()))
   1467         continue;
   1468     InsMapSeen.insert((*I)->getSelector());
   1469     if (!(*I)->isSynthesized() &&
   1470         !InsMap.count((*I)->getSelector())) {
   1471       if (ImmediateClass)
   1472         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1473                             diag::note_undef_method_impl);
   1474       continue;
   1475     } else {
   1476       ObjCMethodDecl *ImpMethodDecl =
   1477       IMPDecl->getInstanceMethod((*I)->getSelector());
   1478       ObjCMethodDecl *MethodDecl =
   1479       CDecl->getInstanceMethod((*I)->getSelector());
   1480       assert(MethodDecl &&
   1481              "MethodDecl is null in ImplMethodsVsClassMethods");
   1482       // ImpMethodDecl may be null as in a @dynamic property.
   1483       if (ImpMethodDecl)
   1484         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1485                                     isa<ObjCProtocolDecl>(CDecl));
   1486     }
   1487   }
   1488 
   1489   // Check and see if class methods in class interface have been
   1490   // implemented in the implementation class. If so, their types match.
   1491    for (ObjCInterfaceDecl::classmeth_iterator
   1492        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1493      if (ClsMapSeen.count((*I)->getSelector()))
   1494        continue;
   1495      ClsMapSeen.insert((*I)->getSelector());
   1496     if (!ClsMap.count((*I)->getSelector())) {
   1497       if (ImmediateClass)
   1498         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1499                             diag::note_undef_method_impl);
   1500     } else {
   1501       ObjCMethodDecl *ImpMethodDecl =
   1502         IMPDecl->getClassMethod((*I)->getSelector());
   1503       ObjCMethodDecl *MethodDecl =
   1504         CDecl->getClassMethod((*I)->getSelector());
   1505       WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1506                                   isa<ObjCProtocolDecl>(CDecl));
   1507     }
   1508   }
   1509 
   1510   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1511     // Also methods in class extensions need be looked at next.
   1512     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
   1513          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
   1514       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1515                                  IMPDecl,
   1516                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl),
   1517                                  IncompleteImpl, false);
   1518 
   1519     // Check for any implementation of a methods declared in protocol.
   1520     for (ObjCInterfaceDecl::all_protocol_iterator
   1521           PI = I->all_referenced_protocol_begin(),
   1522           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1523       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1524                                  IMPDecl,
   1525                                  (*PI), IncompleteImpl, false);
   1526     if (I->getSuperClass())
   1527       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1528                                  IMPDecl,
   1529                                  I->getSuperClass(), IncompleteImpl, false);
   1530   }
   1531 }
   1532 
   1533 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1534                                      ObjCContainerDecl* CDecl,
   1535                                      bool IncompleteImpl) {
   1536   llvm::DenseSet<Selector> InsMap;
   1537   // Check and see if instance methods in class interface have been
   1538   // implemented in the implementation class.
   1539   for (ObjCImplementationDecl::instmeth_iterator
   1540          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1541     InsMap.insert((*I)->getSelector());
   1542 
   1543   // Check and see if properties declared in the interface have either 1)
   1544   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1545   // of the property in the @implementation.
   1546   if (isa<ObjCInterfaceDecl>(CDecl) &&
   1547         !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
   1548     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1549 
   1550   llvm::DenseSet<Selector> ClsMap;
   1551   for (ObjCImplementationDecl::classmeth_iterator
   1552        I = IMPDecl->classmeth_begin(),
   1553        E = IMPDecl->classmeth_end(); I != E; ++I)
   1554     ClsMap.insert((*I)->getSelector());
   1555 
   1556   // Check for type conflict of methods declared in a class/protocol and
   1557   // its implementation; if any.
   1558   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
   1559   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1560                              IMPDecl, CDecl,
   1561                              IncompleteImpl, true);
   1562 
   1563   // Check the protocol list for unimplemented methods in the @implementation
   1564   // class.
   1565   // Check and see if class methods in class interface have been
   1566   // implemented in the implementation class.
   1567 
   1568   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1569     for (ObjCInterfaceDecl::all_protocol_iterator
   1570           PI = I->all_referenced_protocol_begin(),
   1571           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1572       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1573                               InsMap, ClsMap, I);
   1574     // Check class extensions (unnamed categories)
   1575     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
   1576          Categories; Categories = Categories->getNextClassExtension())
   1577       ImplMethodsVsClassMethods(S, IMPDecl,
   1578                                 const_cast<ObjCCategoryDecl*>(Categories),
   1579                                 IncompleteImpl);
   1580   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1581     // For extended class, unimplemented methods in its protocols will
   1582     // be reported in the primary class.
   1583     if (!C->IsClassExtension()) {
   1584       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1585            E = C->protocol_end(); PI != E; ++PI)
   1586         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1587                                 InsMap, ClsMap, CDecl);
   1588       // Report unimplemented properties in the category as well.
   1589       // When reporting on missing setter/getters, do not report when
   1590       // setter/getter is implemented in category's primary class
   1591       // implementation.
   1592       if (ObjCInterfaceDecl *ID = C->getClassInterface())
   1593         if (ObjCImplDecl *IMP = ID->getImplementation()) {
   1594           for (ObjCImplementationDecl::instmeth_iterator
   1595                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
   1596             InsMap.insert((*I)->getSelector());
   1597         }
   1598       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1599     }
   1600   } else
   1601     assert(false && "invalid ObjCContainerDecl type.");
   1602 }
   1603 
   1604 /// ActOnForwardClassDeclaration -
   1605 Decl *
   1606 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1607                                    IdentifierInfo **IdentList,
   1608                                    SourceLocation *IdentLocs,
   1609                                    unsigned NumElts) {
   1610   llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
   1611 
   1612   for (unsigned i = 0; i != NumElts; ++i) {
   1613     // Check for another declaration kind with the same name.
   1614     NamedDecl *PrevDecl
   1615       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1616                          LookupOrdinaryName, ForRedeclaration);
   1617     if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1618       // Maybe we will complain about the shadowed template parameter.
   1619       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
   1620       // Just pretend that we didn't see the previous declaration.
   1621       PrevDecl = 0;
   1622     }
   1623 
   1624     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1625       // GCC apparently allows the following idiom:
   1626       //
   1627       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1628       // @class XCElementToggler;
   1629       //
   1630       // FIXME: Make an extension?
   1631       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1632       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1633         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1634         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1635       } else {
   1636         // a forward class declaration matching a typedef name of a class refers
   1637         // to the underlying class.
   1638         if (const ObjCObjectType *OI =
   1639               TDD->getUnderlyingType()->getAs<ObjCObjectType>())
   1640           PrevDecl = OI->getInterface();
   1641       }
   1642     }
   1643     ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1644     if (!IDecl) {  // Not already seen?  Make a forward decl.
   1645       IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1646                                         IdentList[i], IdentLocs[i], true);
   1647 
   1648       // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
   1649       // the current DeclContext.  This prevents clients that walk DeclContext
   1650       // from seeing the imaginary ObjCInterfaceDecl until it is actually
   1651       // declared later (if at all).  We also take care to explicitly make
   1652       // sure this declaration is visible for name lookup.
   1653       PushOnScopeChains(IDecl, TUScope, false);
   1654       CurContext->makeDeclVisibleInContext(IDecl, true);
   1655     }
   1656 
   1657     Interfaces.push_back(IDecl);
   1658   }
   1659 
   1660   assert(Interfaces.size() == NumElts);
   1661   ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
   1662                                                Interfaces.data(), IdentLocs,
   1663                                                Interfaces.size());
   1664   CurContext->addDecl(CDecl);
   1665   CheckObjCDeclScope(CDecl);
   1666   return CDecl;
   1667 }
   1668 
   1669 static bool tryMatchRecordTypes(ASTContext &Context,
   1670                                 Sema::MethodMatchStrategy strategy,
   1671                                 const Type *left, const Type *right);
   1672 
   1673 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1674                        QualType leftQT, QualType rightQT) {
   1675   const Type *left =
   1676     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   1677   const Type *right =
   1678     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   1679 
   1680   if (left == right) return true;
   1681 
   1682   // If we're doing a strict match, the types have to match exactly.
   1683   if (strategy == Sema::MMS_strict) return false;
   1684 
   1685   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   1686 
   1687   // Otherwise, use this absurdly complicated algorithm to try to
   1688   // validate the basic, low-level compatibility of the two types.
   1689 
   1690   // As a minimum, require the sizes and alignments to match.
   1691   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   1692     return false;
   1693 
   1694   // Consider all the kinds of non-dependent canonical types:
   1695   // - functions and arrays aren't possible as return and parameter types
   1696 
   1697   // - vector types of equal size can be arbitrarily mixed
   1698   if (isa<VectorType>(left)) return isa<VectorType>(right);
   1699   if (isa<VectorType>(right)) return false;
   1700 
   1701   // - references should only match references of identical type
   1702   // - structs, unions, and Objective-C objects must match more-or-less
   1703   //   exactly
   1704   // - everything else should be a scalar
   1705   if (!left->isScalarType() || !right->isScalarType())
   1706     return tryMatchRecordTypes(Context, strategy, left, right);
   1707 
   1708   // Make scalars agree in kind, except count bools as chars.
   1709   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   1710   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   1711   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   1712   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   1713 
   1714   // Note that data member pointers and function member pointers don't
   1715   // intermix because of the size differences.
   1716 
   1717   return (leftSK == rightSK);
   1718 }
   1719 
   1720 static bool tryMatchRecordTypes(ASTContext &Context,
   1721                                 Sema::MethodMatchStrategy strategy,
   1722                                 const Type *lt, const Type *rt) {
   1723   assert(lt && rt && lt != rt);
   1724 
   1725   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   1726   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   1727   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   1728 
   1729   // Require union-hood to match.
   1730   if (left->isUnion() != right->isUnion()) return false;
   1731 
   1732   // Require an exact match if either is non-POD.
   1733   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   1734       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   1735     return false;
   1736 
   1737   // Require size and alignment to match.
   1738   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   1739 
   1740   // Require fields to match.
   1741   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   1742   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   1743   for (; li != le && ri != re; ++li, ++ri) {
   1744     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   1745       return false;
   1746   }
   1747   return (li == le && ri == re);
   1748 }
   1749 
   1750 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   1751 /// returns true, or false, accordingly.
   1752 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   1753 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   1754                                       const ObjCMethodDecl *right,
   1755                                       MethodMatchStrategy strategy) {
   1756   if (!matchTypes(Context, strategy,
   1757                   left->getResultType(), right->getResultType()))
   1758     return false;
   1759 
   1760   if (getLangOptions().ObjCAutoRefCount &&
   1761       (left->hasAttr<NSReturnsRetainedAttr>()
   1762          != right->hasAttr<NSReturnsRetainedAttr>() ||
   1763        left->hasAttr<NSConsumesSelfAttr>()
   1764          != right->hasAttr<NSConsumesSelfAttr>()))
   1765     return false;
   1766 
   1767   ObjCMethodDecl::param_iterator
   1768     li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
   1769 
   1770   for (; li != le; ++li, ++ri) {
   1771     assert(ri != right->param_end() && "Param mismatch");
   1772     ParmVarDecl *lparm = *li, *rparm = *ri;
   1773 
   1774     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   1775       return false;
   1776 
   1777     if (getLangOptions().ObjCAutoRefCount &&
   1778         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   1779       return false;
   1780   }
   1781   return true;
   1782 }
   1783 
   1784 /// \brief Read the contents of the method pool for a given selector from
   1785 /// external storage.
   1786 ///
   1787 /// This routine should only be called once, when the method pool has no entry
   1788 /// for this selector.
   1789 Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
   1790   assert(ExternalSource && "We need an external AST source");
   1791   assert(MethodPool.find(Sel) == MethodPool.end() &&
   1792          "Selector data already loaded into the method pool");
   1793 
   1794   // Read the method list from the external source.
   1795   GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
   1796 
   1797   return MethodPool.insert(std::make_pair(Sel, Methods)).first;
   1798 }
   1799 
   1800 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   1801                                  bool instance) {
   1802   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   1803   if (Pos == MethodPool.end()) {
   1804     if (ExternalSource)
   1805       Pos = ReadMethodPool(Method->getSelector());
   1806     else
   1807       Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   1808                                              GlobalMethods())).first;
   1809   }
   1810   Method->setDefined(impl);
   1811   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   1812   if (Entry.Method == 0) {
   1813     // Haven't seen a method with this selector name yet - add it.
   1814     Entry.Method = Method;
   1815     Entry.Next = 0;
   1816     return;
   1817   }
   1818 
   1819   // We've seen a method with this name, see if we have already seen this type
   1820   // signature.
   1821   for (ObjCMethodList *List = &Entry; List; List = List->Next) {
   1822     bool match = MatchTwoMethodDeclarations(Method, List->Method);
   1823 
   1824     if (match) {
   1825       ObjCMethodDecl *PrevObjCMethod = List->Method;
   1826       PrevObjCMethod->setDefined(impl);
   1827       // If a method is deprecated, push it in the global pool.
   1828       // This is used for better diagnostics.
   1829       if (Method->isDeprecated()) {
   1830         if (!PrevObjCMethod->isDeprecated())
   1831           List->Method = Method;
   1832       }
   1833       // If new method is unavailable, push it into global pool
   1834       // unless previous one is deprecated.
   1835       if (Method->isUnavailable()) {
   1836         if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   1837           List->Method = Method;
   1838       }
   1839       return;
   1840     }
   1841   }
   1842 
   1843   // We have a new signature for an existing method - add it.
   1844   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   1845   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   1846   Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
   1847 }
   1848 
   1849 /// Determines if this is an "acceptable" loose mismatch in the global
   1850 /// method pool.  This exists mostly as a hack to get around certain
   1851 /// global mismatches which we can't afford to make warnings / errors.
   1852 /// Really, what we want is a way to take a method out of the global
   1853 /// method pool.
   1854 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   1855                                        ObjCMethodDecl *other) {
   1856   if (!chosen->isInstanceMethod())
   1857     return false;
   1858 
   1859   Selector sel = chosen->getSelector();
   1860   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   1861     return false;
   1862 
   1863   // Don't complain about mismatches for -length if the method we
   1864   // chose has an integral result type.
   1865   return (chosen->getResultType()->isIntegerType());
   1866 }
   1867 
   1868 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   1869                                                bool receiverIdOrClass,
   1870                                                bool warn, bool instance) {
   1871   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   1872   if (Pos == MethodPool.end()) {
   1873     if (ExternalSource)
   1874       Pos = ReadMethodPool(Sel);
   1875     else
   1876       return 0;
   1877   }
   1878 
   1879   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   1880 
   1881   if (warn && MethList.Method && MethList.Next) {
   1882     bool issueDiagnostic = false, issueError = false;
   1883 
   1884     // We support a warning which complains about *any* difference in
   1885     // method signature.
   1886     bool strictSelectorMatch =
   1887       (receiverIdOrClass && warn &&
   1888        (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   1889                                  R.getBegin()) !=
   1890       Diagnostic::Ignored));
   1891     if (strictSelectorMatch)
   1892       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   1893         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   1894                                         MMS_strict)) {
   1895           issueDiagnostic = true;
   1896           break;
   1897         }
   1898       }
   1899 
   1900     // If we didn't see any strict differences, we won't see any loose
   1901     // differences.  In ARC, however, we also need to check for loose
   1902     // mismatches, because most of them are errors.
   1903     if (!strictSelectorMatch ||
   1904         (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
   1905       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   1906         // This checks if the methods differ in type mismatch.
   1907         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   1908                                         MMS_loose) &&
   1909             !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
   1910           issueDiagnostic = true;
   1911           if (getLangOptions().ObjCAutoRefCount)
   1912             issueError = true;
   1913           break;
   1914         }
   1915       }
   1916 
   1917     if (issueDiagnostic) {
   1918       if (issueError)
   1919         Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   1920       else if (strictSelectorMatch)
   1921         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   1922       else
   1923         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   1924 
   1925       Diag(MethList.Method->getLocStart(),
   1926            issueError ? diag::note_possibility : diag::note_using)
   1927         << MethList.Method->getSourceRange();
   1928       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
   1929         Diag(Next->Method->getLocStart(), diag::note_also_found)
   1930           << Next->Method->getSourceRange();
   1931     }
   1932   }
   1933   return MethList.Method;
   1934 }
   1935 
   1936 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   1937   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   1938   if (Pos == MethodPool.end())
   1939     return 0;
   1940 
   1941   GlobalMethods &Methods = Pos->second;
   1942 
   1943   if (Methods.first.Method && Methods.first.Method->isDefined())
   1944     return Methods.first.Method;
   1945   if (Methods.second.Method && Methods.second.Method->isDefined())
   1946     return Methods.second.Method;
   1947   return 0;
   1948 }
   1949 
   1950 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
   1951 /// identical selector names in current and its super classes and issues
   1952 /// a warning if any of their argument types are incompatible.
   1953 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
   1954                                              ObjCMethodDecl *Method,
   1955                                              bool IsInstance)  {
   1956   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   1957   if (ID == 0) return;
   1958 
   1959   while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
   1960     ObjCMethodDecl *SuperMethodDecl =
   1961         SD->lookupMethod(Method->getSelector(), IsInstance);
   1962     if (SuperMethodDecl == 0) {
   1963       ID = SD;
   1964       continue;
   1965     }
   1966     ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
   1967       E = Method->param_end();
   1968     ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
   1969     for (; ParamI != E; ++ParamI, ++PrevI) {
   1970       // Number of parameters are the same and is guaranteed by selector match.
   1971       assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
   1972       QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   1973       QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   1974       // If type of argument of method in this class does not match its
   1975       // respective argument type in the super class method, issue warning;
   1976       if (!Context.typesAreCompatible(T1, T2)) {
   1977         Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   1978           << T1 << T2;
   1979         Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
   1980         return;
   1981       }
   1982     }
   1983     ID = SD;
   1984   }
   1985 }
   1986 
   1987 /// DiagnoseDuplicateIvars -
   1988 /// Check for duplicate ivars in the entire class at the start of
   1989 /// @implementation. This becomes necesssary because class extension can
   1990 /// add ivars to a class in random order which will not be known until
   1991 /// class's @implementation is seen.
   1992 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   1993                                   ObjCInterfaceDecl *SID) {
   1994   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   1995        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   1996     ObjCIvarDecl* Ivar = (*IVI);
   1997     if (Ivar->isInvalidDecl())
   1998       continue;
   1999     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2000       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2001       if (prevIvar) {
   2002         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2003         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2004         Ivar->setInvalidDecl();
   2005       }
   2006     }
   2007   }
   2008 }
   2009 
   2010 // Note: For class/category implemenations, allMethods/allProperties is
   2011 // always null.
   2012 void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
   2013                       Decl *ClassDecl,
   2014                       Decl **allMethods, unsigned allNum,
   2015                       Decl **allProperties, unsigned pNum,
   2016                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
   2017   // FIXME: If we don't have a ClassDecl, we have an error. We should consider
   2018   // always passing in a decl. If the decl has an error, isInvalidDecl()
   2019   // should be true.
   2020   if (!ClassDecl)
   2021     return;
   2022 
   2023   bool isInterfaceDeclKind =
   2024         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2025          || isa<ObjCProtocolDecl>(ClassDecl);
   2026   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2027 
   2028   if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
   2029     // FIXME: This is wrong.  We shouldn't be pretending that there is
   2030     //  an '@end' in the declaration.
   2031     SourceLocation L = ClassDecl->getLocation();
   2032     AtEnd.setBegin(L);
   2033     AtEnd.setEnd(L);
   2034     Diag(L, diag::err_missing_atend);
   2035   }
   2036 
   2037   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2038   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2039   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2040 
   2041   for (unsigned i = 0; i < allNum; i++ ) {
   2042     ObjCMethodDecl *Method =
   2043       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2044 
   2045     if (!Method) continue;  // Already issued a diagnostic.
   2046     if (Method->isInstanceMethod()) {
   2047       /// Check for instance method of the same name with incompatible types
   2048       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2049       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2050                               : false;
   2051       if ((isInterfaceDeclKind && PrevMethod && !match)
   2052           || (checkIdenticalMethods && match)) {
   2053           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2054             << Method->getDeclName();
   2055           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2056         Method->setInvalidDecl();
   2057       } else {
   2058         InsMap[Method->getSelector()] = Method;
   2059         /// The following allows us to typecheck messages to "id".
   2060         AddInstanceMethodToGlobalPool(Method);
   2061         // verify that the instance method conforms to the same definition of
   2062         // parent methods if it shadows one.
   2063         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
   2064       }
   2065     } else {
   2066       /// Check for class method of the same name with incompatible types
   2067       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2068       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2069                               : false;
   2070       if ((isInterfaceDeclKind && PrevMethod && !match)
   2071           || (checkIdenticalMethods && match)) {
   2072         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2073           << Method->getDeclName();
   2074         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2075         Method->setInvalidDecl();
   2076       } else {
   2077         ClsMap[Method->getSelector()] = Method;
   2078         /// The following allows us to typecheck messages to "Class".
   2079         AddFactoryMethodToGlobalPool(Method);
   2080         // verify that the class method conforms to the same definition of
   2081         // parent methods if it shadows one.
   2082         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
   2083       }
   2084     }
   2085   }
   2086   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
   2087     // Compares properties declared in this class to those of its
   2088     // super class.
   2089     ComparePropertiesInBaseAndSuper(I);
   2090     CompareProperties(I, I);
   2091   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2092     // Categories are used to extend the class by declaring new methods.
   2093     // By the same token, they are also used to add new properties. No
   2094     // need to compare the added property to those in the class.
   2095 
   2096     // Compare protocol properties with those in category
   2097     CompareProperties(C, C);
   2098     if (C->IsClassExtension()) {
   2099       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2100       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2101     }
   2102   }
   2103   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2104     if (CDecl->getIdentifier())
   2105       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2106       // user-defined setter/getter. It also synthesizes setter/getter methods
   2107       // and adds them to the DeclContext and global method pools.
   2108       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2109                                             E = CDecl->prop_end();
   2110            I != E; ++I)
   2111         ProcessPropertyDecl(*I, CDecl);
   2112     CDecl->setAtEndRange(AtEnd);
   2113   }
   2114   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2115     IC->setAtEndRange(AtEnd);
   2116     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2117       // Any property declared in a class extension might have user
   2118       // declared setter or getter in current class extension or one
   2119       // of the other class extensions. Mark them as synthesized as
   2120       // property will be synthesized when property with same name is
   2121       // seen in the @implementation.
   2122       for (const ObjCCategoryDecl *ClsExtDecl =
   2123            IDecl->getFirstClassExtension();
   2124            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   2125         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
   2126              E = ClsExtDecl->prop_end(); I != E; ++I) {
   2127           ObjCPropertyDecl *Property = (*I);
   2128           // Skip over properties declared @dynamic
   2129           if (const ObjCPropertyImplDecl *PIDecl
   2130               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2131             if (PIDecl->getPropertyImplementation()
   2132                   == ObjCPropertyImplDecl::Dynamic)
   2133               continue;
   2134 
   2135           for (const ObjCCategoryDecl *CExtDecl =
   2136                IDecl->getFirstClassExtension();
   2137                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
   2138             if (ObjCMethodDecl *GetterMethod =
   2139                 CExtDecl->getInstanceMethod(Property->getGetterName()))
   2140               GetterMethod->setSynthesized(true);
   2141             if (!Property->isReadOnly())
   2142               if (ObjCMethodDecl *SetterMethod =
   2143                   CExtDecl->getInstanceMethod(Property->getSetterName()))
   2144                 SetterMethod->setSynthesized(true);
   2145           }
   2146         }
   2147       }
   2148 
   2149       if (LangOpts.ObjCDefaultSynthProperties &&
   2150           LangOpts.ObjCNonFragileABI2)
   2151         DefaultSynthesizeProperties(S, IC, IDecl);
   2152       ImplMethodsVsClassMethods(S, IC, IDecl);
   2153       AtomicPropertySetterGetterRules(IC, IDecl);
   2154       DiagnoseOwningPropertyGetterSynthesis(IC);
   2155 
   2156       if (LangOpts.ObjCNonFragileABI2)
   2157         while (IDecl->getSuperClass()) {
   2158           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2159           IDecl = IDecl->getSuperClass();
   2160         }
   2161     }
   2162     SetIvarInitializers(IC);
   2163   } else if (ObjCCategoryImplDecl* CatImplClass =
   2164                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2165     CatImplClass->setAtEndRange(AtEnd);
   2166 
   2167     // Find category interface decl and then check that all methods declared
   2168     // in this interface are implemented in the category @implementation.
   2169     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2170       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
   2171            Categories; Categories = Categories->getNextClassCategory()) {
   2172         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
   2173           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
   2174           break;
   2175         }
   2176       }
   2177     }
   2178   }
   2179   if (isInterfaceDeclKind) {
   2180     // Reject invalid vardecls.
   2181     for (unsigned i = 0; i != tuvNum; i++) {
   2182       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2183       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2184         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2185           if (!VDecl->hasExternalStorage())
   2186             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2187         }
   2188     }
   2189   }
   2190 }
   2191 
   2192 
   2193 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2194 /// objective-c's type qualifier from the parser version of the same info.
   2195 static Decl::ObjCDeclQualifier
   2196 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2197   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2198 }
   2199 
   2200 static inline
   2201 bool containsInvalidMethodImplAttribute(const AttrVec &A) {
   2202   // The 'ibaction' attribute is allowed on method definitions because of
   2203   // how the IBAction macro is used on both method declarations and definitions.
   2204   // If the method definitions contains any other attributes, return true.
   2205   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
   2206     if ((*i)->getKind() != attr::IBAction)
   2207       return true;
   2208   return false;
   2209 }
   2210 
   2211 /// \brief Check whether the declared result type of the given Objective-C
   2212 /// method declaration is compatible with the method's class.
   2213 ///
   2214 static bool
   2215 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2216                                     ObjCInterfaceDecl *CurrentClass) {
   2217   QualType ResultType = Method->getResultType();
   2218   SourceRange ResultTypeRange;
   2219   if (const TypeSourceInfo *ResultTypeInfo = Method->getResultTypeSourceInfo())
   2220     ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
   2221 
   2222   // If an Objective-C method inherits its related result type, then its
   2223   // declared result type must be compatible with its own class type. The
   2224   // declared result type is compatible if:
   2225   if (const ObjCObjectPointerType *ResultObjectType
   2226                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2227     //   - it is id or qualified id, or
   2228     if (ResultObjectType->isObjCIdType() ||
   2229         ResultObjectType->isObjCQualifiedIdType())
   2230       return false;
   2231 
   2232     if (CurrentClass) {
   2233       if (ObjCInterfaceDecl *ResultClass
   2234                                       = ResultObjectType->getInterfaceDecl()) {
   2235         //   - it is the same as the method's class type, or
   2236         if (CurrentClass == ResultClass)
   2237           return false;
   2238 
   2239         //   - it is a superclass of the method's class type
   2240         if (ResultClass->isSuperClassOf(CurrentClass))
   2241           return false;
   2242       }
   2243     }
   2244   }
   2245 
   2246   return true;
   2247 }
   2248 
   2249 /// \brief Determine if any method in the global method pool has an inferred
   2250 /// result type.
   2251 static bool
   2252 anyMethodInfersRelatedResultType(Sema &S, Selector Sel, bool IsInstance) {
   2253   Sema::GlobalMethodPool::iterator Pos = S.MethodPool.find(Sel);
   2254   if (Pos == S.MethodPool.end()) {
   2255     if (S.ExternalSource)
   2256       Pos = S.ReadMethodPool(Sel);
   2257     else
   2258       return 0;
   2259   }
   2260 
   2261   ObjCMethodList &List = IsInstance ? Pos->second.first : Pos->second.second;
   2262   for (ObjCMethodList *M = &List; M; M = M->Next) {
   2263     if (M->Method && M->Method->hasRelatedResultType())
   2264       return true;
   2265   }
   2266 
   2267   return false;
   2268 }
   2269 
   2270 Decl *Sema::ActOnMethodDeclaration(
   2271     Scope *S,
   2272     SourceLocation MethodLoc, SourceLocation EndLoc,
   2273     tok::TokenKind MethodType, Decl *ClassDecl,
   2274     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   2275     SourceLocation SelectorStartLoc,
   2276     Selector Sel,
   2277     // optional arguments. The number of types/arguments is obtained
   2278     // from the Sel.getNumArgs().
   2279     ObjCArgInfo *ArgInfo,
   2280     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   2281     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   2282     bool isVariadic, bool MethodDefinition) {
   2283   // Make sure we can establish a context for the method.
   2284   if (!ClassDecl) {
   2285     Diag(MethodLoc, diag::error_missing_method_context);
   2286     return 0;
   2287   }
   2288   QualType resultDeclType;
   2289 
   2290   TypeSourceInfo *ResultTInfo = 0;
   2291   if (ReturnType) {
   2292     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   2293 
   2294     // Methods cannot return interface types. All ObjC objects are
   2295     // passed by reference.
   2296     if (resultDeclType->isObjCObjectType()) {
   2297       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2298         << 0 << resultDeclType;
   2299       return 0;
   2300     }
   2301   } else // get the type for "id".
   2302     resultDeclType = Context.getObjCIdType();
   2303 
   2304   ObjCMethodDecl* ObjCMethod =
   2305     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
   2306                            ResultTInfo,
   2307                            cast<DeclContext>(ClassDecl),
   2308                            MethodType == tok::minus, isVariadic,
   2309                            false, false,
   2310                            MethodDeclKind == tok::objc_optional
   2311                              ? ObjCMethodDecl::Optional
   2312                              : ObjCMethodDecl::Required,
   2313                            false);
   2314 
   2315   llvm::SmallVector<ParmVarDecl*, 16> Params;
   2316 
   2317   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   2318     QualType ArgType;
   2319     TypeSourceInfo *DI;
   2320 
   2321     if (ArgInfo[i].Type == 0) {
   2322       ArgType = Context.getObjCIdType();
   2323       DI = 0;
   2324     } else {
   2325       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   2326       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2327       ArgType = Context.getAdjustedParameterType(ArgType);
   2328     }
   2329 
   2330     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   2331                    LookupOrdinaryName, ForRedeclaration);
   2332     LookupName(R, S);
   2333     if (R.isSingleResult()) {
   2334       NamedDecl *PrevDecl = R.getFoundDecl();
   2335       if (S->isDeclScope(PrevDecl)) {
   2336         Diag(ArgInfo[i].NameLoc,
   2337              (MethodDefinition ? diag::warn_method_param_redefinition
   2338                                : diag::warn_method_param_declaration))
   2339           << ArgInfo[i].Name;
   2340         Diag(PrevDecl->getLocation(),
   2341              diag::note_previous_declaration);
   2342       }
   2343     }
   2344 
   2345     SourceLocation StartLoc = DI
   2346       ? DI->getTypeLoc().getBeginLoc()
   2347       : ArgInfo[i].NameLoc;
   2348 
   2349     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   2350                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   2351                                         ArgType, DI, SC_None, SC_None);
   2352 
   2353     Param->setObjCMethodScopeInfo(i);
   2354 
   2355     Param->setObjCDeclQualifier(
   2356       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   2357 
   2358     // Apply the attributes to the parameter.
   2359     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   2360 
   2361     S->AddDecl(Param);
   2362     IdResolver.AddDecl(Param);
   2363 
   2364     Params.push_back(Param);
   2365   }
   2366 
   2367   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   2368     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   2369     QualType ArgType = Param->getType();
   2370     if (ArgType.isNull())
   2371       ArgType = Context.getObjCIdType();
   2372     else
   2373       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2374       ArgType = Context.getAdjustedParameterType(ArgType);
   2375     if (ArgType->isObjCObjectType()) {
   2376       Diag(Param->getLocation(),
   2377            diag::err_object_cannot_be_passed_returned_by_value)
   2378       << 1 << ArgType;
   2379       Param->setInvalidDecl();
   2380     }
   2381     Param->setDeclContext(ObjCMethod);
   2382 
   2383     Params.push_back(Param);
   2384   }
   2385 
   2386   ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
   2387                               Sel.getNumArgs());
   2388   ObjCMethod->setObjCDeclQualifier(
   2389     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   2390   const ObjCMethodDecl *PrevMethod = 0;
   2391 
   2392   if (AttrList)
   2393     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   2394 
   2395   const ObjCMethodDecl *InterfaceMD = 0;
   2396 
   2397   // Add the method now.
   2398   if (ObjCImplementationDecl *ImpDecl =
   2399         dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2400     if (MethodType == tok::minus) {
   2401       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   2402       ImpDecl->addInstanceMethod(ObjCMethod);
   2403     } else {
   2404       PrevMethod = ImpDecl->getClassMethod(Sel);
   2405       ImpDecl->addClassMethod(ObjCMethod);
   2406     }
   2407     InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
   2408                                                    MethodType == tok::minus);
   2409 
   2410     if (ObjCMethod->hasAttrs() &&
   2411         containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
   2412       Diag(EndLoc, diag::warn_attribute_method_def);
   2413   } else if (ObjCCategoryImplDecl *CatImpDecl =
   2414              dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2415     if (MethodType == tok::minus) {
   2416       PrevMethod = CatImpDecl->getInstanceMethod(Sel);
   2417       CatImpDecl->addInstanceMethod(ObjCMethod);
   2418     } else {
   2419       PrevMethod = CatImpDecl->getClassMethod(Sel);
   2420       CatImpDecl->addClassMethod(ObjCMethod);
   2421     }
   2422 
   2423     if (ObjCCategoryDecl *Cat = CatImpDecl->getCategoryDecl())
   2424       InterfaceMD = Cat->getMethod(Sel, MethodType == tok::minus);
   2425 
   2426     if (ObjCMethod->hasAttrs() &&
   2427         containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
   2428       Diag(EndLoc, diag::warn_attribute_method_def);
   2429   } else {
   2430     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   2431   }
   2432   if (PrevMethod) {
   2433     // You can never have two method definitions with the same name.
   2434     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   2435       << ObjCMethod->getDeclName();
   2436     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2437   }
   2438 
   2439   // If this Objective-C method does not have a related result type, but we
   2440   // are allowed to infer related result types, try to do so based on the
   2441   // method family.
   2442   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2443   if (!CurrentClass) {
   2444     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   2445       CurrentClass = Cat->getClassInterface();
   2446     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   2447       CurrentClass = Impl->getClassInterface();
   2448     else if (ObjCCategoryImplDecl *CatImpl
   2449                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   2450       CurrentClass = CatImpl->getClassInterface();
   2451   }
   2452 
   2453   // Merge information down from the interface declaration if we have one.
   2454   if (InterfaceMD) {
   2455     // Inherit the related result type, if we can.
   2456     if (InterfaceMD->hasRelatedResultType() &&
   2457         !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass))
   2458       ObjCMethod->SetRelatedResultType();
   2459 
   2460     mergeObjCMethodDecls(ObjCMethod, InterfaceMD);
   2461   }
   2462 
   2463   bool ARCError = false;
   2464   if (getLangOptions().ObjCAutoRefCount)
   2465     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
   2466 
   2467   if (!ObjCMethod->hasRelatedResultType() && !ARCError &&
   2468       getLangOptions().ObjCInferRelatedResultType) {
   2469     bool InferRelatedResultType = false;
   2470     switch (ObjCMethod->getMethodFamily()) {
   2471     case OMF_None:
   2472     case OMF_copy:
   2473     case OMF_dealloc:
   2474     case OMF_mutableCopy:
   2475     case OMF_release:
   2476     case OMF_retainCount:
   2477     case OMF_performSelector:
   2478       break;
   2479 
   2480     case OMF_alloc:
   2481     case OMF_new:
   2482       InferRelatedResultType = ObjCMethod->isClassMethod();
   2483       break;
   2484 
   2485     case OMF_init:
   2486     case OMF_autorelease:
   2487     case OMF_retain:
   2488     case OMF_self:
   2489       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   2490       break;
   2491     }
   2492 
   2493     if (InferRelatedResultType &&
   2494         !CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass))
   2495       ObjCMethod->SetRelatedResultType();
   2496 
   2497     if (!InterfaceMD &&
   2498         anyMethodInfersRelatedResultType(*this, ObjCMethod->getSelector(),
   2499                                          ObjCMethod->isInstanceMethod()))
   2500       CheckObjCMethodOverrides(ObjCMethod, cast<DeclContext>(ClassDecl));
   2501   }
   2502 
   2503   return ObjCMethod;
   2504 }
   2505 
   2506 bool Sema::CheckObjCDeclScope(Decl *D) {
   2507   if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
   2508     return false;
   2509 
   2510   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   2511   D->setInvalidDecl();
   2512 
   2513   return true;
   2514 }
   2515 
   2516 /// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
   2517 /// instance variables of ClassName into Decls.
   2518 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   2519                      IdentifierInfo *ClassName,
   2520                      llvm::SmallVectorImpl<Decl*> &Decls) {
   2521   // Check that ClassName is a valid class
   2522   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   2523   if (!Class) {
   2524     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   2525     return;
   2526   }
   2527   if (LangOpts.ObjCNonFragileABI) {
   2528     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   2529     return;
   2530   }
   2531 
   2532   // Collect the instance variables
   2533   llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
   2534   Context.DeepCollectObjCIvars(Class, true, Ivars);
   2535   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   2536   for (unsigned i = 0; i < Ivars.size(); i++) {
   2537     FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   2538     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   2539     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   2540                                            /*FIXME: StartL=*/ID->getLocation(),
   2541                                            ID->getLocation(),
   2542                                            ID->getIdentifier(), ID->getType(),
   2543                                            ID->getBitWidth());
   2544     Decls.push_back(FD);
   2545   }
   2546 
   2547   // Introduce all of these fields into the appropriate scope.
   2548   for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   2549        D != Decls.end(); ++D) {
   2550     FieldDecl *FD = cast<FieldDecl>(*D);
   2551     if (getLangOptions().CPlusPlus)
   2552       PushOnScopeChains(cast<FieldDecl>(FD), S);
   2553     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   2554       Record->addDecl(FD);
   2555   }
   2556 }
   2557 
   2558 /// \brief Build a type-check a new Objective-C exception variable declaration.
   2559 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   2560                                       SourceLocation StartLoc,
   2561                                       SourceLocation IdLoc,
   2562                                       IdentifierInfo *Id,
   2563                                       bool Invalid) {
   2564   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   2565   // duration shall not be qualified by an address-space qualifier."
   2566   // Since all parameters have automatic store duration, they can not have
   2567   // an address space.
   2568   if (T.getAddressSpace() != 0) {
   2569     Diag(IdLoc, diag::err_arg_with_address_space);
   2570     Invalid = true;
   2571   }
   2572 
   2573   // An @catch parameter must be an unqualified object pointer type;
   2574   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   2575   if (Invalid) {
   2576     // Don't do any further checking.
   2577   } else if (T->isDependentType()) {
   2578     // Okay: we don't know what this type will instantiate to.
   2579   } else if (!T->isObjCObjectPointerType()) {
   2580     Invalid = true;
   2581     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   2582   } else if (T->isObjCQualifiedIdType()) {
   2583     Invalid = true;
   2584     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   2585   }
   2586 
   2587   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   2588                                  T, TInfo, SC_None, SC_None);
   2589   New->setExceptionVariable(true);
   2590 
   2591   if (Invalid)
   2592     New->setInvalidDecl();
   2593   return New;
   2594 }
   2595 
   2596 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   2597   const DeclSpec &DS = D.getDeclSpec();
   2598 
   2599   // We allow the "register" storage class on exception variables because
   2600   // GCC did, but we drop it completely. Any other storage class is an error.
   2601   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   2602     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   2603       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   2604   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   2605     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   2606       << DS.getStorageClassSpec();
   2607   }
   2608   if (D.getDeclSpec().isThreadSpecified())
   2609     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   2610   D.getMutableDeclSpec().ClearStorageClassSpecs();
   2611 
   2612   DiagnoseFunctionSpecifiers(D);
   2613 
   2614   // Check that there are no default arguments inside the type of this
   2615   // exception object (C++ only).
   2616   if (getLangOptions().CPlusPlus)
   2617     CheckExtraCXXDefaultArguments(D);
   2618 
   2619   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   2620   QualType ExceptionType = TInfo->getType();
   2621 
   2622   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   2623                                         D.getSourceRange().getBegin(),
   2624                                         D.getIdentifierLoc(),
   2625                                         D.getIdentifier(),
   2626                                         D.isInvalidType());
   2627 
   2628   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   2629   if (D.getCXXScopeSpec().isSet()) {
   2630     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   2631       << D.getCXXScopeSpec().getRange();
   2632     New->setInvalidDecl();
   2633   }
   2634 
   2635   // Add the parameter declaration into this scope.
   2636   S->AddDecl(New);
   2637   if (D.getIdentifier())
   2638     IdResolver.AddDecl(New);
   2639 
   2640   ProcessDeclAttributes(S, New, D);
   2641 
   2642   if (New->hasAttr<BlocksAttr>())
   2643     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   2644   return New;
   2645 }
   2646 
   2647 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   2648 /// initialization.
   2649 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   2650                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   2651   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   2652        Iv= Iv->getNextIvar()) {
   2653     QualType QT = Context.getBaseElementType(Iv->getType());
   2654     if (QT->isRecordType())
   2655       Ivars.push_back(Iv);
   2656   }
   2657 }
   2658 
   2659 void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
   2660                                              CXXCtorInitializer ** initializers,
   2661                                                  unsigned numInitializers) {
   2662   if (numInitializers > 0) {
   2663     NumIvarInitializers = numInitializers;
   2664     CXXCtorInitializer **ivarInitializers =
   2665     new (C) CXXCtorInitializer*[NumIvarInitializers];
   2666     memcpy(ivarInitializers, initializers,
   2667            numInitializers * sizeof(CXXCtorInitializer*));
   2668     IvarInitializers = ivarInitializers;
   2669   }
   2670 }
   2671 
   2672 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   2673   // Warning will be issued only when selector table is
   2674   // generated (which means there is at lease one implementation
   2675   // in the TU). This is to match gcc's behavior.
   2676   if (ReferencedSelectors.empty() ||
   2677       !Context.AnyObjCImplementation())
   2678     return;
   2679   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   2680         ReferencedSelectors.begin(),
   2681        E = ReferencedSelectors.end(); S != E; ++S) {
   2682     Selector Sel = (*S).first;
   2683     if (!LookupImplementedMethodInGlobalPool(Sel))
   2684       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   2685   }
   2686   return;
   2687 }
   2688