1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include <limits.h> // For LONG_MIN, LONG_MAX 29 30 #include "v8.h" 31 32 #if defined(V8_TARGET_ARCH_MIPS) 33 34 #include "bootstrapper.h" 35 #include "codegen-inl.h" 36 #include "debug.h" 37 #include "runtime.h" 38 39 namespace v8 { 40 namespace internal { 41 42 MacroAssembler::MacroAssembler(void* buffer, int size) 43 : Assembler(buffer, size), 44 generating_stub_(false), 45 allow_stub_calls_(true), 46 code_object_(HEAP->undefined_value()) { 47 } 48 49 50 // Arguments macros 51 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 52 #define COND_ARGS cond, r1, r2 53 54 #define REGISTER_TARGET_BODY(Name) \ 55 void MacroAssembler::Name(Register target, \ 56 BranchDelaySlot bd) { \ 57 Name(Operand(target), bd); \ 58 } \ 59 void MacroAssembler::Name(Register target, COND_TYPED_ARGS, \ 60 BranchDelaySlot bd) { \ 61 Name(Operand(target), COND_ARGS, bd); \ 62 } 63 64 65 #define INT_PTR_TARGET_BODY(Name) \ 66 void MacroAssembler::Name(intptr_t target, RelocInfo::Mode rmode, \ 67 BranchDelaySlot bd) { \ 68 Name(Operand(target, rmode), bd); \ 69 } \ 70 void MacroAssembler::Name(intptr_t target, \ 71 RelocInfo::Mode rmode, \ 72 COND_TYPED_ARGS, \ 73 BranchDelaySlot bd) { \ 74 Name(Operand(target, rmode), COND_ARGS, bd); \ 75 } 76 77 78 #define BYTE_PTR_TARGET_BODY(Name) \ 79 void MacroAssembler::Name(byte* target, RelocInfo::Mode rmode, \ 80 BranchDelaySlot bd) { \ 81 Name(reinterpret_cast<intptr_t>(target), rmode, bd); \ 82 } \ 83 void MacroAssembler::Name(byte* target, \ 84 RelocInfo::Mode rmode, \ 85 COND_TYPED_ARGS, \ 86 BranchDelaySlot bd) { \ 87 Name(reinterpret_cast<intptr_t>(target), rmode, COND_ARGS, bd); \ 88 } 89 90 91 #define CODE_TARGET_BODY(Name) \ 92 void MacroAssembler::Name(Handle<Code> target, RelocInfo::Mode rmode, \ 93 BranchDelaySlot bd) { \ 94 Name(reinterpret_cast<intptr_t>(target.location()), rmode, bd); \ 95 } \ 96 void MacroAssembler::Name(Handle<Code> target, \ 97 RelocInfo::Mode rmode, \ 98 COND_TYPED_ARGS, \ 99 BranchDelaySlot bd) { \ 100 Name(reinterpret_cast<intptr_t>(target.location()), rmode, COND_ARGS, bd); \ 101 } 102 103 104 REGISTER_TARGET_BODY(Jump) 105 REGISTER_TARGET_BODY(Call) 106 INT_PTR_TARGET_BODY(Jump) 107 INT_PTR_TARGET_BODY(Call) 108 BYTE_PTR_TARGET_BODY(Jump) 109 BYTE_PTR_TARGET_BODY(Call) 110 CODE_TARGET_BODY(Jump) 111 CODE_TARGET_BODY(Call) 112 113 #undef COND_TYPED_ARGS 114 #undef COND_ARGS 115 #undef REGISTER_TARGET_BODY 116 #undef BYTE_PTR_TARGET_BODY 117 #undef CODE_TARGET_BODY 118 119 120 void MacroAssembler::Ret(BranchDelaySlot bd) { 121 Jump(Operand(ra), bd); 122 } 123 124 125 void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2, 126 BranchDelaySlot bd) { 127 Jump(Operand(ra), cond, r1, r2, bd); 128 } 129 130 131 void MacroAssembler::LoadRoot(Register destination, 132 Heap::RootListIndex index) { 133 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 134 } 135 136 137 void MacroAssembler::LoadRoot(Register destination, 138 Heap::RootListIndex index, 139 Condition cond, 140 Register src1, const Operand& src2) { 141 Branch(2, NegateCondition(cond), src1, src2); 142 lw(destination, MemOperand(s6, index << kPointerSizeLog2)); 143 } 144 145 146 void MacroAssembler::StoreRoot(Register source, 147 Heap::RootListIndex index) { 148 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 149 } 150 151 152 void MacroAssembler::StoreRoot(Register source, 153 Heap::RootListIndex index, 154 Condition cond, 155 Register src1, const Operand& src2) { 156 Branch(2, NegateCondition(cond), src1, src2); 157 sw(source, MemOperand(s6, index << kPointerSizeLog2)); 158 } 159 160 161 void MacroAssembler::RecordWriteHelper(Register object, 162 Register address, 163 Register scratch) { 164 if (FLAG_debug_code) { 165 // Check that the object is not in new space. 166 Label not_in_new_space; 167 InNewSpace(object, scratch, ne, ¬_in_new_space); 168 Abort("new-space object passed to RecordWriteHelper"); 169 bind(¬_in_new_space); 170 } 171 172 // Calculate page address: Clear bits from 0 to kPageSizeBits. 173 if (mips32r2) { 174 Ins(object, zero_reg, 0, kPageSizeBits); 175 } else { 176 // The Ins macro is slow on r1, so use shifts instead. 177 srl(object, object, kPageSizeBits); 178 sll(object, object, kPageSizeBits); 179 } 180 181 // Calculate region number. 182 Ext(address, address, Page::kRegionSizeLog2, 183 kPageSizeBits - Page::kRegionSizeLog2); 184 185 // Mark region dirty. 186 lw(scratch, MemOperand(object, Page::kDirtyFlagOffset)); 187 li(at, Operand(1)); 188 sllv(at, at, address); 189 or_(scratch, scratch, at); 190 sw(scratch, MemOperand(object, Page::kDirtyFlagOffset)); 191 } 192 193 194 void MacroAssembler::InNewSpace(Register object, 195 Register scratch, 196 Condition cc, 197 Label* branch) { 198 ASSERT(cc == eq || cc == ne); 199 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); 200 Branch(branch, cc, scratch, 201 Operand(ExternalReference::new_space_start(isolate()))); 202 } 203 204 205 // Will clobber 4 registers: object, scratch0, scratch1, at. The 206 // register 'object' contains a heap object pointer. The heap object 207 // tag is shifted away. 208 void MacroAssembler::RecordWrite(Register object, 209 Operand offset, 210 Register scratch0, 211 Register scratch1) { 212 // The compiled code assumes that record write doesn't change the 213 // context register, so we check that none of the clobbered 214 // registers are cp. 215 ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp)); 216 217 Label done; 218 219 // First, test that the object is not in the new space. We cannot set 220 // region marks for new space pages. 221 InNewSpace(object, scratch0, eq, &done); 222 223 // Add offset into the object. 224 Addu(scratch0, object, offset); 225 226 // Record the actual write. 227 RecordWriteHelper(object, scratch0, scratch1); 228 229 bind(&done); 230 231 // Clobber all input registers when running with the debug-code flag 232 // turned on to provoke errors. 233 if (FLAG_debug_code) { 234 li(object, Operand(BitCast<int32_t>(kZapValue))); 235 li(scratch0, Operand(BitCast<int32_t>(kZapValue))); 236 li(scratch1, Operand(BitCast<int32_t>(kZapValue))); 237 } 238 } 239 240 241 // Will clobber 4 registers: object, address, scratch, ip. The 242 // register 'object' contains a heap object pointer. The heap object 243 // tag is shifted away. 244 void MacroAssembler::RecordWrite(Register object, 245 Register address, 246 Register scratch) { 247 // The compiled code assumes that record write doesn't change the 248 // context register, so we check that none of the clobbered 249 // registers are cp. 250 ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp)); 251 252 Label done; 253 254 // First, test that the object is not in the new space. We cannot set 255 // region marks for new space pages. 256 InNewSpace(object, scratch, eq, &done); 257 258 // Record the actual write. 259 RecordWriteHelper(object, address, scratch); 260 261 bind(&done); 262 263 // Clobber all input registers when running with the debug-code flag 264 // turned on to provoke errors. 265 if (FLAG_debug_code) { 266 li(object, Operand(BitCast<int32_t>(kZapValue))); 267 li(address, Operand(BitCast<int32_t>(kZapValue))); 268 li(scratch, Operand(BitCast<int32_t>(kZapValue))); 269 } 270 } 271 272 273 // ----------------------------------------------------------------------------- 274 // Allocation support 275 276 277 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, 278 Register scratch, 279 Label* miss) { 280 Label same_contexts; 281 282 ASSERT(!holder_reg.is(scratch)); 283 ASSERT(!holder_reg.is(at)); 284 ASSERT(!scratch.is(at)); 285 286 // Load current lexical context from the stack frame. 287 lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); 288 // In debug mode, make sure the lexical context is set. 289 #ifdef DEBUG 290 Check(ne, "we should not have an empty lexical context", 291 scratch, Operand(zero_reg)); 292 #endif 293 294 // Load the global context of the current context. 295 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; 296 lw(scratch, FieldMemOperand(scratch, offset)); 297 lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); 298 299 // Check the context is a global context. 300 if (FLAG_debug_code) { 301 // TODO(119): Avoid push(holder_reg)/pop(holder_reg). 302 Push(holder_reg); // Temporarily save holder on the stack. 303 // Read the first word and compare to the global_context_map. 304 lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); 305 LoadRoot(at, Heap::kGlobalContextMapRootIndex); 306 Check(eq, "JSGlobalObject::global_context should be a global context.", 307 holder_reg, Operand(at)); 308 Pop(holder_reg); // Restore holder. 309 } 310 311 // Check if both contexts are the same. 312 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); 313 Branch(&same_contexts, eq, scratch, Operand(at)); 314 315 // Check the context is a global context. 316 if (FLAG_debug_code) { 317 // TODO(119): Avoid push(holder_reg)/pop(holder_reg). 318 Push(holder_reg); // Temporarily save holder on the stack. 319 mov(holder_reg, at); // Move at to its holding place. 320 LoadRoot(at, Heap::kNullValueRootIndex); 321 Check(ne, "JSGlobalProxy::context() should not be null.", 322 holder_reg, Operand(at)); 323 324 lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); 325 LoadRoot(at, Heap::kGlobalContextMapRootIndex); 326 Check(eq, "JSGlobalObject::global_context should be a global context.", 327 holder_reg, Operand(at)); 328 // Restore at is not needed. at is reloaded below. 329 Pop(holder_reg); // Restore holder. 330 // Restore at to holder's context. 331 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); 332 } 333 334 // Check that the security token in the calling global object is 335 // compatible with the security token in the receiving global 336 // object. 337 int token_offset = Context::kHeaderSize + 338 Context::SECURITY_TOKEN_INDEX * kPointerSize; 339 340 lw(scratch, FieldMemOperand(scratch, token_offset)); 341 lw(at, FieldMemOperand(at, token_offset)); 342 Branch(miss, ne, scratch, Operand(at)); 343 344 bind(&same_contexts); 345 } 346 347 348 // --------------------------------------------------------------------------- 349 // Instruction macros 350 351 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { 352 if (rt.is_reg()) { 353 addu(rd, rs, rt.rm()); 354 } else { 355 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 356 addiu(rd, rs, rt.imm32_); 357 } else { 358 // li handles the relocation. 359 ASSERT(!rs.is(at)); 360 li(at, rt); 361 addu(rd, rs, at); 362 } 363 } 364 } 365 366 367 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { 368 if (rt.is_reg()) { 369 subu(rd, rs, rt.rm()); 370 } else { 371 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 372 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). 373 } else { 374 // li handles the relocation. 375 ASSERT(!rs.is(at)); 376 li(at, rt); 377 subu(rd, rs, at); 378 } 379 } 380 } 381 382 383 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { 384 if (rt.is_reg()) { 385 mul(rd, rs, rt.rm()); 386 } else { 387 // li handles the relocation. 388 ASSERT(!rs.is(at)); 389 li(at, rt); 390 mul(rd, rs, at); 391 } 392 } 393 394 395 void MacroAssembler::Mult(Register rs, const Operand& rt) { 396 if (rt.is_reg()) { 397 mult(rs, rt.rm()); 398 } else { 399 // li handles the relocation. 400 ASSERT(!rs.is(at)); 401 li(at, rt); 402 mult(rs, at); 403 } 404 } 405 406 407 void MacroAssembler::Multu(Register rs, const Operand& rt) { 408 if (rt.is_reg()) { 409 multu(rs, rt.rm()); 410 } else { 411 // li handles the relocation. 412 ASSERT(!rs.is(at)); 413 li(at, rt); 414 multu(rs, at); 415 } 416 } 417 418 419 void MacroAssembler::Div(Register rs, const Operand& rt) { 420 if (rt.is_reg()) { 421 div(rs, rt.rm()); 422 } else { 423 // li handles the relocation. 424 ASSERT(!rs.is(at)); 425 li(at, rt); 426 div(rs, at); 427 } 428 } 429 430 431 void MacroAssembler::Divu(Register rs, const Operand& rt) { 432 if (rt.is_reg()) { 433 divu(rs, rt.rm()); 434 } else { 435 // li handles the relocation. 436 ASSERT(!rs.is(at)); 437 li(at, rt); 438 divu(rs, at); 439 } 440 } 441 442 443 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { 444 if (rt.is_reg()) { 445 and_(rd, rs, rt.rm()); 446 } else { 447 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 448 andi(rd, rs, rt.imm32_); 449 } else { 450 // li handles the relocation. 451 ASSERT(!rs.is(at)); 452 li(at, rt); 453 and_(rd, rs, at); 454 } 455 } 456 } 457 458 459 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { 460 if (rt.is_reg()) { 461 or_(rd, rs, rt.rm()); 462 } else { 463 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 464 ori(rd, rs, rt.imm32_); 465 } else { 466 // li handles the relocation. 467 ASSERT(!rs.is(at)); 468 li(at, rt); 469 or_(rd, rs, at); 470 } 471 } 472 } 473 474 475 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { 476 if (rt.is_reg()) { 477 xor_(rd, rs, rt.rm()); 478 } else { 479 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 480 xori(rd, rs, rt.imm32_); 481 } else { 482 // li handles the relocation. 483 ASSERT(!rs.is(at)); 484 li(at, rt); 485 xor_(rd, rs, at); 486 } 487 } 488 } 489 490 491 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { 492 if (rt.is_reg()) { 493 nor(rd, rs, rt.rm()); 494 } else { 495 // li handles the relocation. 496 ASSERT(!rs.is(at)); 497 li(at, rt); 498 nor(rd, rs, at); 499 } 500 } 501 502 503 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { 504 if (rt.is_reg()) { 505 slt(rd, rs, rt.rm()); 506 } else { 507 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 508 slti(rd, rs, rt.imm32_); 509 } else { 510 // li handles the relocation. 511 ASSERT(!rs.is(at)); 512 li(at, rt); 513 slt(rd, rs, at); 514 } 515 } 516 } 517 518 519 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { 520 if (rt.is_reg()) { 521 sltu(rd, rs, rt.rm()); 522 } else { 523 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { 524 sltiu(rd, rs, rt.imm32_); 525 } else { 526 // li handles the relocation. 527 ASSERT(!rs.is(at)); 528 li(at, rt); 529 sltu(rd, rs, at); 530 } 531 } 532 } 533 534 535 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { 536 if (mips32r2) { 537 if (rt.is_reg()) { 538 rotrv(rd, rs, rt.rm()); 539 } else { 540 rotr(rd, rs, rt.imm32_); 541 } 542 } else { 543 if (rt.is_reg()) { 544 subu(at, zero_reg, rt.rm()); 545 sllv(at, rs, at); 546 srlv(rd, rs, rt.rm()); 547 or_(rd, rd, at); 548 } else { 549 if (rt.imm32_ == 0) { 550 srl(rd, rs, 0); 551 } else { 552 srl(at, rs, rt.imm32_); 553 sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); 554 or_(rd, rd, at); 555 } 556 } 557 } 558 } 559 560 561 //------------Pseudo-instructions------------- 562 563 void MacroAssembler::li(Register rd, Operand j, bool gen2instr) { 564 ASSERT(!j.is_reg()); 565 BlockTrampolinePoolScope block_trampoline_pool(this); 566 if (!MustUseReg(j.rmode_) && !gen2instr) { 567 // Normal load of an immediate value which does not need Relocation Info. 568 if (is_int16(j.imm32_)) { 569 addiu(rd, zero_reg, j.imm32_); 570 } else if (!(j.imm32_ & kHiMask)) { 571 ori(rd, zero_reg, j.imm32_); 572 } else if (!(j.imm32_ & kImm16Mask)) { 573 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); 574 } else { 575 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); 576 ori(rd, rd, (j.imm32_ & kImm16Mask)); 577 } 578 } else if (MustUseReg(j.rmode_) || gen2instr) { 579 if (MustUseReg(j.rmode_)) { 580 RecordRelocInfo(j.rmode_, j.imm32_); 581 } 582 // We need always the same number of instructions as we may need to patch 583 // this code to load another value which may need 2 instructions to load. 584 if (is_int16(j.imm32_)) { 585 nop(); 586 addiu(rd, zero_reg, j.imm32_); 587 } else if (!(j.imm32_ & kHiMask)) { 588 nop(); 589 ori(rd, zero_reg, j.imm32_); 590 } else if (!(j.imm32_ & kImm16Mask)) { 591 nop(); 592 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); 593 } else { 594 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift); 595 ori(rd, rd, (j.imm32_ & kImm16Mask)); 596 } 597 } 598 } 599 600 601 // Exception-generating instructions and debugging support 602 void MacroAssembler::stop(const char* msg) { 603 // TO_UPGRADE: Just a break for now. Maybe we could upgrade it. 604 // We use the 0x54321 value to be able to find it easily when reading memory. 605 break_(0x54321); 606 } 607 608 609 void MacroAssembler::MultiPush(RegList regs) { 610 int16_t NumSaved = 0; 611 int16_t NumToPush = NumberOfBitsSet(regs); 612 613 addiu(sp, sp, -4 * NumToPush); 614 for (int16_t i = kNumRegisters; i > 0; i--) { 615 if ((regs & (1 << i)) != 0) { 616 sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved))); 617 } 618 } 619 } 620 621 622 void MacroAssembler::MultiPushReversed(RegList regs) { 623 int16_t NumSaved = 0; 624 int16_t NumToPush = NumberOfBitsSet(regs); 625 626 addiu(sp, sp, -4 * NumToPush); 627 for (int16_t i = 0; i < kNumRegisters; i++) { 628 if ((regs & (1 << i)) != 0) { 629 sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved))); 630 } 631 } 632 } 633 634 635 void MacroAssembler::MultiPop(RegList regs) { 636 int16_t NumSaved = 0; 637 638 for (int16_t i = 0; i < kNumRegisters; i++) { 639 if ((regs & (1 << i)) != 0) { 640 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++))); 641 } 642 } 643 addiu(sp, sp, 4 * NumSaved); 644 } 645 646 647 void MacroAssembler::MultiPopReversed(RegList regs) { 648 int16_t NumSaved = 0; 649 650 for (int16_t i = kNumRegisters; i > 0; i--) { 651 if ((regs & (1 << i)) != 0) { 652 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++))); 653 } 654 } 655 addiu(sp, sp, 4 * NumSaved); 656 } 657 658 659 void MacroAssembler::Ext(Register rt, 660 Register rs, 661 uint16_t pos, 662 uint16_t size) { 663 ASSERT(pos < 32); 664 ASSERT(pos + size < 32); 665 666 if (mips32r2) { 667 ext_(rt, rs, pos, size); 668 } else { 669 // Move rs to rt and shift it left then right to get the 670 // desired bitfield on the right side and zeroes on the left. 671 sll(rt, rs, 32 - (pos + size)); 672 srl(rt, rt, 32 - size); 673 } 674 } 675 676 677 void MacroAssembler::Ins(Register rt, 678 Register rs, 679 uint16_t pos, 680 uint16_t size) { 681 ASSERT(pos < 32); 682 ASSERT(pos + size < 32); 683 684 if (mips32r2) { 685 ins_(rt, rs, pos, size); 686 } else { 687 ASSERT(!rt.is(t8) && !rs.is(t8)); 688 689 srl(t8, rt, pos + size); 690 // The left chunk from rt that needs to 691 // be saved is on the right side of t8. 692 sll(at, t8, pos + size); 693 // The 'at' register now contains the left chunk on 694 // the left (proper position) and zeroes. 695 sll(t8, rt, 32 - pos); 696 // t8 now contains the right chunk on the left and zeroes. 697 srl(t8, t8, 32 - pos); 698 // t8 now contains the right chunk on 699 // the right (proper position) and zeroes. 700 or_(rt, at, t8); 701 // rt now contains the left and right chunks from the original rt 702 // in their proper position and zeroes in the middle. 703 sll(t8, rs, 32 - size); 704 // t8 now contains the chunk from rs on the left and zeroes. 705 srl(t8, t8, 32 - size - pos); 706 // t8 now contains the original chunk from rs in 707 // the middle (proper position). 708 or_(rt, rt, t8); 709 // rt now contains the result of the ins instruction in R2 mode. 710 } 711 } 712 713 714 void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) { 715 // Move the data from fs to t4. 716 mfc1(t4, fs); 717 return Cvt_d_uw(fd, t4); 718 } 719 720 721 void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs) { 722 // Convert rs to a FP value in fd (and fd + 1). 723 // We do this by converting rs minus the MSB to avoid sign conversion, 724 // then adding 2^31-1 and 1 to the result. 725 726 ASSERT(!fd.is(f20)); 727 ASSERT(!rs.is(t9)); 728 ASSERT(!rs.is(t8)); 729 730 // Save rs's MSB to t8 731 And(t8, rs, 0x80000000); 732 // Remove rs's MSB. 733 And(t9, rs, 0x7FFFFFFF); 734 // Move t9 to fd 735 mtc1(t9, fd); 736 737 // Convert fd to a real FP value. 738 cvt_d_w(fd, fd); 739 740 Label conversion_done; 741 742 // If rs's MSB was 0, it's done. 743 // Otherwise we need to add that to the FP register. 744 Branch(&conversion_done, eq, t8, Operand(zero_reg)); 745 746 // First load 2^31 - 1 into f20. 747 Or(t9, zero_reg, 0x7FFFFFFF); 748 mtc1(t9, f20); 749 750 // Convert it to FP and add it to fd. 751 cvt_d_w(f20, f20); 752 add_d(fd, fd, f20); 753 // Now add 1. 754 Or(t9, zero_reg, 1); 755 mtc1(t9, f20); 756 757 cvt_d_w(f20, f20); 758 add_d(fd, fd, f20); 759 bind(&conversion_done); 760 } 761 762 763 void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs) { 764 Trunc_uw_d(fs, t4); 765 mtc1(t4, fd); 766 } 767 768 769 void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs) { 770 ASSERT(!fd.is(f22)); 771 ASSERT(!rs.is(t6)); 772 773 // Load 2^31 into f22. 774 Or(t6, zero_reg, 0x80000000); 775 Cvt_d_uw(f22, t6); 776 777 // Test if f22 > fd. 778 c(OLT, D, fd, f22); 779 780 Label simple_convert; 781 // If fd < 2^31 we can convert it normally. 782 bc1t(&simple_convert); 783 784 // First we subtract 2^31 from fd, then trunc it to rs 785 // and add 2^31 to rs. 786 787 sub_d(f22, fd, f22); 788 trunc_w_d(f22, f22); 789 mfc1(rs, f22); 790 or_(rs, rs, t6); 791 792 Label done; 793 Branch(&done); 794 // Simple conversion. 795 bind(&simple_convert); 796 trunc_w_d(f22, fd); 797 mfc1(rs, f22); 798 799 bind(&done); 800 } 801 802 803 // Tries to get a signed int32 out of a double precision floating point heap 804 // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the 805 // 32bits signed integer range. 806 // This method implementation differs from the ARM version for performance 807 // reasons. 808 void MacroAssembler::ConvertToInt32(Register source, 809 Register dest, 810 Register scratch, 811 Register scratch2, 812 FPURegister double_scratch, 813 Label *not_int32) { 814 Label right_exponent, done; 815 // Get exponent word (ENDIAN issues). 816 lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); 817 // Get exponent alone in scratch2. 818 And(scratch2, scratch, Operand(HeapNumber::kExponentMask)); 819 // Load dest with zero. We use this either for the final shift or 820 // for the answer. 821 mov(dest, zero_reg); 822 // Check whether the exponent matches a 32 bit signed int that is not a Smi. 823 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is 824 // the exponent that we are fastest at and also the highest exponent we can 825 // handle here. 826 const uint32_t non_smi_exponent = 827 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; 828 // If we have a match of the int32-but-not-Smi exponent then skip some logic. 829 Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent)); 830 // If the exponent is higher than that then go to not_int32 case. This 831 // catches numbers that don't fit in a signed int32, infinities and NaNs. 832 Branch(not_int32, gt, scratch2, Operand(non_smi_exponent)); 833 834 // We know the exponent is smaller than 30 (biased). If it is less than 835 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie 836 // it rounds to zero. 837 const uint32_t zero_exponent = 838 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; 839 Subu(scratch2, scratch2, Operand(zero_exponent)); 840 // Dest already has a Smi zero. 841 Branch(&done, lt, scratch2, Operand(zero_reg)); 842 if (!Isolate::Current()->cpu_features()->IsSupported(FPU)) { 843 // We have a shifted exponent between 0 and 30 in scratch2. 844 srl(dest, scratch2, HeapNumber::kExponentShift); 845 // We now have the exponent in dest. Subtract from 30 to get 846 // how much to shift down. 847 li(at, Operand(30)); 848 subu(dest, at, dest); 849 } 850 bind(&right_exponent); 851 if (Isolate::Current()->cpu_features()->IsSupported(FPU)) { 852 CpuFeatures::Scope scope(FPU); 853 // MIPS FPU instructions implementing double precision to integer 854 // conversion using round to zero. Since the FP value was qualified 855 // above, the resulting integer should be a legal int32. 856 // The original 'Exponent' word is still in scratch. 857 lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); 858 mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1)); 859 trunc_w_d(double_scratch, double_scratch); 860 mfc1(dest, double_scratch); 861 } else { 862 // On entry, dest has final downshift, scratch has original sign/exp/mant. 863 // Save sign bit in top bit of dest. 864 And(scratch2, scratch, Operand(0x80000000)); 865 Or(dest, dest, Operand(scratch2)); 866 // Put back the implicit 1, just above mantissa field. 867 Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift)); 868 869 // Shift up the mantissa bits to take up the space the exponent used to 870 // take. We just orred in the implicit bit so that took care of one and 871 // we want to leave the sign bit 0 so we subtract 2 bits from the shift 872 // distance. But we want to clear the sign-bit so shift one more bit 873 // left, then shift right one bit. 874 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; 875 sll(scratch, scratch, shift_distance + 1); 876 srl(scratch, scratch, 1); 877 878 // Get the second half of the double. For some exponents we don't 879 // actually need this because the bits get shifted out again, but 880 // it's probably slower to test than just to do it. 881 lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); 882 // Extract the top 10 bits, and insert those bottom 10 bits of scratch. 883 // The width of the field here is the same as the shift amount above. 884 const int field_width = shift_distance; 885 Ext(scratch2, scratch2, 32-shift_distance, field_width); 886 Ins(scratch, scratch2, 0, field_width); 887 // Move down according to the exponent. 888 srlv(scratch, scratch, dest); 889 // Prepare the negative version of our integer. 890 subu(scratch2, zero_reg, scratch); 891 // Trick to check sign bit (msb) held in dest, count leading zero. 892 // 0 indicates negative, save negative version with conditional move. 893 clz(dest, dest); 894 movz(scratch, scratch2, dest); 895 mov(dest, scratch); 896 } 897 bind(&done); 898 } 899 900 901 // Emulated condtional branches do not emit a nop in the branch delay slot. 902 // 903 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. 904 #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \ 905 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ 906 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) 907 908 909 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { 910 b(offset); 911 912 // Emit a nop in the branch delay slot if required. 913 if (bdslot == PROTECT) 914 nop(); 915 } 916 917 918 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, 919 const Operand& rt, 920 BranchDelaySlot bdslot) { 921 BRANCH_ARGS_CHECK(cond, rs, rt); 922 ASSERT(!rs.is(zero_reg)); 923 Register r2 = no_reg; 924 Register scratch = at; 925 926 if (rt.is_reg()) { 927 // We don't want any other register but scratch clobbered. 928 ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_)); 929 r2 = rt.rm_; 930 switch (cond) { 931 case cc_always: 932 b(offset); 933 break; 934 case eq: 935 beq(rs, r2, offset); 936 break; 937 case ne: 938 bne(rs, r2, offset); 939 break; 940 // Signed comparison 941 case greater: 942 if (r2.is(zero_reg)) { 943 bgtz(rs, offset); 944 } else { 945 slt(scratch, r2, rs); 946 bne(scratch, zero_reg, offset); 947 } 948 break; 949 case greater_equal: 950 if (r2.is(zero_reg)) { 951 bgez(rs, offset); 952 } else { 953 slt(scratch, rs, r2); 954 beq(scratch, zero_reg, offset); 955 } 956 break; 957 case less: 958 if (r2.is(zero_reg)) { 959 bltz(rs, offset); 960 } else { 961 slt(scratch, rs, r2); 962 bne(scratch, zero_reg, offset); 963 } 964 break; 965 case less_equal: 966 if (r2.is(zero_reg)) { 967 blez(rs, offset); 968 } else { 969 slt(scratch, r2, rs); 970 beq(scratch, zero_reg, offset); 971 } 972 break; 973 // Unsigned comparison. 974 case Ugreater: 975 if (r2.is(zero_reg)) { 976 bgtz(rs, offset); 977 } else { 978 sltu(scratch, r2, rs); 979 bne(scratch, zero_reg, offset); 980 } 981 break; 982 case Ugreater_equal: 983 if (r2.is(zero_reg)) { 984 bgez(rs, offset); 985 } else { 986 sltu(scratch, rs, r2); 987 beq(scratch, zero_reg, offset); 988 } 989 break; 990 case Uless: 991 if (r2.is(zero_reg)) { 992 b(offset); 993 } else { 994 sltu(scratch, rs, r2); 995 bne(scratch, zero_reg, offset); 996 } 997 break; 998 case Uless_equal: 999 if (r2.is(zero_reg)) { 1000 b(offset); 1001 } else { 1002 sltu(scratch, r2, rs); 1003 beq(scratch, zero_reg, offset); 1004 } 1005 break; 1006 default: 1007 UNREACHABLE(); 1008 } 1009 } else { 1010 // Be careful to always use shifted_branch_offset only just before the 1011 // branch instruction, as the location will be remember for patching the 1012 // target. 1013 switch (cond) { 1014 case cc_always: 1015 b(offset); 1016 break; 1017 case eq: 1018 // We don't want any other register but scratch clobbered. 1019 ASSERT(!scratch.is(rs)); 1020 r2 = scratch; 1021 li(r2, rt); 1022 beq(rs, r2, offset); 1023 break; 1024 case ne: 1025 // We don't want any other register but scratch clobbered. 1026 ASSERT(!scratch.is(rs)); 1027 r2 = scratch; 1028 li(r2, rt); 1029 bne(rs, r2, offset); 1030 break; 1031 // Signed comparison 1032 case greater: 1033 if (rt.imm32_ == 0) { 1034 bgtz(rs, offset); 1035 } else { 1036 r2 = scratch; 1037 li(r2, rt); 1038 slt(scratch, r2, rs); 1039 bne(scratch, zero_reg, offset); 1040 } 1041 break; 1042 case greater_equal: 1043 if (rt.imm32_ == 0) { 1044 bgez(rs, offset); 1045 } else if (is_int16(rt.imm32_)) { 1046 slti(scratch, rs, rt.imm32_); 1047 beq(scratch, zero_reg, offset); 1048 } else { 1049 r2 = scratch; 1050 li(r2, rt); 1051 sltu(scratch, rs, r2); 1052 beq(scratch, zero_reg, offset); 1053 } 1054 break; 1055 case less: 1056 if (rt.imm32_ == 0) { 1057 bltz(rs, offset); 1058 } else if (is_int16(rt.imm32_)) { 1059 slti(scratch, rs, rt.imm32_); 1060 bne(scratch, zero_reg, offset); 1061 } else { 1062 r2 = scratch; 1063 li(r2, rt); 1064 slt(scratch, rs, r2); 1065 bne(scratch, zero_reg, offset); 1066 } 1067 break; 1068 case less_equal: 1069 if (rt.imm32_ == 0) { 1070 blez(rs, offset); 1071 } else { 1072 r2 = scratch; 1073 li(r2, rt); 1074 slt(scratch, r2, rs); 1075 beq(scratch, zero_reg, offset); 1076 } 1077 break; 1078 // Unsigned comparison. 1079 case Ugreater: 1080 if (rt.imm32_ == 0) { 1081 bgtz(rs, offset); 1082 } else { 1083 r2 = scratch; 1084 li(r2, rt); 1085 sltu(scratch, r2, rs); 1086 bne(scratch, zero_reg, offset); 1087 } 1088 break; 1089 case Ugreater_equal: 1090 if (rt.imm32_ == 0) { 1091 bgez(rs, offset); 1092 } else if (is_int16(rt.imm32_)) { 1093 sltiu(scratch, rs, rt.imm32_); 1094 beq(scratch, zero_reg, offset); 1095 } else { 1096 r2 = scratch; 1097 li(r2, rt); 1098 sltu(scratch, rs, r2); 1099 beq(scratch, zero_reg, offset); 1100 } 1101 break; 1102 case Uless: 1103 if (rt.imm32_ == 0) { 1104 b(offset); 1105 } else if (is_int16(rt.imm32_)) { 1106 sltiu(scratch, rs, rt.imm32_); 1107 bne(scratch, zero_reg, offset); 1108 } else { 1109 r2 = scratch; 1110 li(r2, rt); 1111 sltu(scratch, rs, r2); 1112 bne(scratch, zero_reg, offset); 1113 } 1114 break; 1115 case Uless_equal: 1116 if (rt.imm32_ == 0) { 1117 b(offset); 1118 } else { 1119 r2 = scratch; 1120 li(r2, rt); 1121 sltu(scratch, r2, rs); 1122 beq(scratch, zero_reg, offset); 1123 } 1124 break; 1125 default: 1126 UNREACHABLE(); 1127 } 1128 } 1129 // Emit a nop in the branch delay slot if required. 1130 if (bdslot == PROTECT) 1131 nop(); 1132 } 1133 1134 1135 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { 1136 // We use branch_offset as an argument for the branch instructions to be sure 1137 // it is called just before generating the branch instruction, as needed. 1138 1139 b(shifted_branch_offset(L, false)); 1140 1141 // Emit a nop in the branch delay slot if required. 1142 if (bdslot == PROTECT) 1143 nop(); 1144 } 1145 1146 1147 void MacroAssembler::Branch(Label* L, Condition cond, Register rs, 1148 const Operand& rt, 1149 BranchDelaySlot bdslot) { 1150 BRANCH_ARGS_CHECK(cond, rs, rt); 1151 1152 int32_t offset; 1153 Register r2 = no_reg; 1154 Register scratch = at; 1155 if (rt.is_reg()) { 1156 r2 = rt.rm_; 1157 // Be careful to always use shifted_branch_offset only just before the 1158 // branch instruction, as the location will be remember for patching the 1159 // target. 1160 switch (cond) { 1161 case cc_always: 1162 offset = shifted_branch_offset(L, false); 1163 b(offset); 1164 break; 1165 case eq: 1166 offset = shifted_branch_offset(L, false); 1167 beq(rs, r2, offset); 1168 break; 1169 case ne: 1170 offset = shifted_branch_offset(L, false); 1171 bne(rs, r2, offset); 1172 break; 1173 // Signed comparison 1174 case greater: 1175 if (r2.is(zero_reg)) { 1176 offset = shifted_branch_offset(L, false); 1177 bgtz(rs, offset); 1178 } else { 1179 slt(scratch, r2, rs); 1180 offset = shifted_branch_offset(L, false); 1181 bne(scratch, zero_reg, offset); 1182 } 1183 break; 1184 case greater_equal: 1185 if (r2.is(zero_reg)) { 1186 offset = shifted_branch_offset(L, false); 1187 bgez(rs, offset); 1188 } else { 1189 slt(scratch, rs, r2); 1190 offset = shifted_branch_offset(L, false); 1191 beq(scratch, zero_reg, offset); 1192 } 1193 break; 1194 case less: 1195 if (r2.is(zero_reg)) { 1196 offset = shifted_branch_offset(L, false); 1197 bltz(rs, offset); 1198 } else { 1199 slt(scratch, rs, r2); 1200 offset = shifted_branch_offset(L, false); 1201 bne(scratch, zero_reg, offset); 1202 } 1203 break; 1204 case less_equal: 1205 if (r2.is(zero_reg)) { 1206 offset = shifted_branch_offset(L, false); 1207 blez(rs, offset); 1208 } else { 1209 slt(scratch, r2, rs); 1210 offset = shifted_branch_offset(L, false); 1211 beq(scratch, zero_reg, offset); 1212 } 1213 break; 1214 // Unsigned comparison. 1215 case Ugreater: 1216 if (r2.is(zero_reg)) { 1217 offset = shifted_branch_offset(L, false); 1218 bgtz(rs, offset); 1219 } else { 1220 sltu(scratch, r2, rs); 1221 offset = shifted_branch_offset(L, false); 1222 bne(scratch, zero_reg, offset); 1223 } 1224 break; 1225 case Ugreater_equal: 1226 if (r2.is(zero_reg)) { 1227 offset = shifted_branch_offset(L, false); 1228 bgez(rs, offset); 1229 } else { 1230 sltu(scratch, rs, r2); 1231 offset = shifted_branch_offset(L, false); 1232 beq(scratch, zero_reg, offset); 1233 } 1234 break; 1235 case Uless: 1236 if (r2.is(zero_reg)) { 1237 offset = shifted_branch_offset(L, false); 1238 b(offset); 1239 } else { 1240 sltu(scratch, rs, r2); 1241 offset = shifted_branch_offset(L, false); 1242 bne(scratch, zero_reg, offset); 1243 } 1244 break; 1245 case Uless_equal: 1246 if (r2.is(zero_reg)) { 1247 offset = shifted_branch_offset(L, false); 1248 b(offset); 1249 } else { 1250 sltu(scratch, r2, rs); 1251 offset = shifted_branch_offset(L, false); 1252 beq(scratch, zero_reg, offset); 1253 } 1254 break; 1255 default: 1256 UNREACHABLE(); 1257 } 1258 } else { 1259 // Be careful to always use shifted_branch_offset only just before the 1260 // branch instruction, as the location will be remember for patching the 1261 // target. 1262 switch (cond) { 1263 case cc_always: 1264 offset = shifted_branch_offset(L, false); 1265 b(offset); 1266 break; 1267 case eq: 1268 r2 = scratch; 1269 li(r2, rt); 1270 offset = shifted_branch_offset(L, false); 1271 beq(rs, r2, offset); 1272 break; 1273 case ne: 1274 r2 = scratch; 1275 li(r2, rt); 1276 offset = shifted_branch_offset(L, false); 1277 bne(rs, r2, offset); 1278 break; 1279 // Signed comparison 1280 case greater: 1281 if (rt.imm32_ == 0) { 1282 offset = shifted_branch_offset(L, false); 1283 bgtz(rs, offset); 1284 } else { 1285 r2 = scratch; 1286 li(r2, rt); 1287 slt(scratch, r2, rs); 1288 offset = shifted_branch_offset(L, false); 1289 bne(scratch, zero_reg, offset); 1290 } 1291 break; 1292 case greater_equal: 1293 if (rt.imm32_ == 0) { 1294 offset = shifted_branch_offset(L, false); 1295 bgez(rs, offset); 1296 } else if (is_int16(rt.imm32_)) { 1297 slti(scratch, rs, rt.imm32_); 1298 offset = shifted_branch_offset(L, false); 1299 beq(scratch, zero_reg, offset); 1300 } else { 1301 r2 = scratch; 1302 li(r2, rt); 1303 sltu(scratch, rs, r2); 1304 offset = shifted_branch_offset(L, false); 1305 beq(scratch, zero_reg, offset); 1306 } 1307 break; 1308 case less: 1309 if (rt.imm32_ == 0) { 1310 offset = shifted_branch_offset(L, false); 1311 bltz(rs, offset); 1312 } else if (is_int16(rt.imm32_)) { 1313 slti(scratch, rs, rt.imm32_); 1314 offset = shifted_branch_offset(L, false); 1315 bne(scratch, zero_reg, offset); 1316 } else { 1317 r2 = scratch; 1318 li(r2, rt); 1319 slt(scratch, rs, r2); 1320 offset = shifted_branch_offset(L, false); 1321 bne(scratch, zero_reg, offset); 1322 } 1323 break; 1324 case less_equal: 1325 if (rt.imm32_ == 0) { 1326 offset = shifted_branch_offset(L, false); 1327 blez(rs, offset); 1328 } else { 1329 r2 = scratch; 1330 li(r2, rt); 1331 slt(scratch, r2, rs); 1332 offset = shifted_branch_offset(L, false); 1333 beq(scratch, zero_reg, offset); 1334 } 1335 break; 1336 // Unsigned comparison. 1337 case Ugreater: 1338 if (rt.imm32_ == 0) { 1339 offset = shifted_branch_offset(L, false); 1340 bgtz(rs, offset); 1341 } else { 1342 r2 = scratch; 1343 li(r2, rt); 1344 sltu(scratch, r2, rs); 1345 offset = shifted_branch_offset(L, false); 1346 bne(scratch, zero_reg, offset); 1347 } 1348 break; 1349 case Ugreater_equal: 1350 if (rt.imm32_ == 0) { 1351 offset = shifted_branch_offset(L, false); 1352 bgez(rs, offset); 1353 } else if (is_int16(rt.imm32_)) { 1354 sltiu(scratch, rs, rt.imm32_); 1355 offset = shifted_branch_offset(L, false); 1356 beq(scratch, zero_reg, offset); 1357 } else { 1358 r2 = scratch; 1359 li(r2, rt); 1360 sltu(scratch, rs, r2); 1361 offset = shifted_branch_offset(L, false); 1362 beq(scratch, zero_reg, offset); 1363 } 1364 break; 1365 case Uless: 1366 if (rt.imm32_ == 0) { 1367 offset = shifted_branch_offset(L, false); 1368 b(offset); 1369 } else if (is_int16(rt.imm32_)) { 1370 sltiu(scratch, rs, rt.imm32_); 1371 offset = shifted_branch_offset(L, false); 1372 bne(scratch, zero_reg, offset); 1373 } else { 1374 r2 = scratch; 1375 li(r2, rt); 1376 sltu(scratch, rs, r2); 1377 offset = shifted_branch_offset(L, false); 1378 bne(scratch, zero_reg, offset); 1379 } 1380 break; 1381 case Uless_equal: 1382 if (rt.imm32_ == 0) { 1383 offset = shifted_branch_offset(L, false); 1384 b(offset); 1385 } else { 1386 r2 = scratch; 1387 li(r2, rt); 1388 sltu(scratch, r2, rs); 1389 offset = shifted_branch_offset(L, false); 1390 beq(scratch, zero_reg, offset); 1391 } 1392 break; 1393 default: 1394 UNREACHABLE(); 1395 } 1396 } 1397 // Check that offset could actually hold on an int16_t. 1398 ASSERT(is_int16(offset)); 1399 // Emit a nop in the branch delay slot if required. 1400 if (bdslot == PROTECT) 1401 nop(); 1402 } 1403 1404 1405 // We need to use a bgezal or bltzal, but they can't be used directly with the 1406 // slt instructions. We could use sub or add instead but we would miss overflow 1407 // cases, so we keep slt and add an intermediate third instruction. 1408 void MacroAssembler::BranchAndLink(int16_t offset, 1409 BranchDelaySlot bdslot) { 1410 bal(offset); 1411 1412 // Emit a nop in the branch delay slot if required. 1413 if (bdslot == PROTECT) 1414 nop(); 1415 } 1416 1417 1418 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, 1419 const Operand& rt, 1420 BranchDelaySlot bdslot) { 1421 BRANCH_ARGS_CHECK(cond, rs, rt); 1422 Register r2 = no_reg; 1423 Register scratch = at; 1424 1425 if (rt.is_reg()) { 1426 r2 = rt.rm_; 1427 } else if (cond != cc_always) { 1428 r2 = scratch; 1429 li(r2, rt); 1430 } 1431 1432 switch (cond) { 1433 case cc_always: 1434 bal(offset); 1435 break; 1436 case eq: 1437 bne(rs, r2, 2); 1438 nop(); 1439 bal(offset); 1440 break; 1441 case ne: 1442 beq(rs, r2, 2); 1443 nop(); 1444 bal(offset); 1445 break; 1446 1447 // Signed comparison 1448 case greater: 1449 slt(scratch, r2, rs); 1450 addiu(scratch, scratch, -1); 1451 bgezal(scratch, offset); 1452 break; 1453 case greater_equal: 1454 slt(scratch, rs, r2); 1455 addiu(scratch, scratch, -1); 1456 bltzal(scratch, offset); 1457 break; 1458 case less: 1459 slt(scratch, rs, r2); 1460 addiu(scratch, scratch, -1); 1461 bgezal(scratch, offset); 1462 break; 1463 case less_equal: 1464 slt(scratch, r2, rs); 1465 addiu(scratch, scratch, -1); 1466 bltzal(scratch, offset); 1467 break; 1468 1469 // Unsigned comparison. 1470 case Ugreater: 1471 sltu(scratch, r2, rs); 1472 addiu(scratch, scratch, -1); 1473 bgezal(scratch, offset); 1474 break; 1475 case Ugreater_equal: 1476 sltu(scratch, rs, r2); 1477 addiu(scratch, scratch, -1); 1478 bltzal(scratch, offset); 1479 break; 1480 case Uless: 1481 sltu(scratch, rs, r2); 1482 addiu(scratch, scratch, -1); 1483 bgezal(scratch, offset); 1484 break; 1485 case Uless_equal: 1486 sltu(scratch, r2, rs); 1487 addiu(scratch, scratch, -1); 1488 bltzal(scratch, offset); 1489 break; 1490 1491 default: 1492 UNREACHABLE(); 1493 } 1494 // Emit a nop in the branch delay slot if required. 1495 if (bdslot == PROTECT) 1496 nop(); 1497 } 1498 1499 1500 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { 1501 bal(shifted_branch_offset(L, false)); 1502 1503 // Emit a nop in the branch delay slot if required. 1504 if (bdslot == PROTECT) 1505 nop(); 1506 } 1507 1508 1509 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, 1510 const Operand& rt, 1511 BranchDelaySlot bdslot) { 1512 BRANCH_ARGS_CHECK(cond, rs, rt); 1513 1514 int32_t offset; 1515 Register r2 = no_reg; 1516 Register scratch = at; 1517 if (rt.is_reg()) { 1518 r2 = rt.rm_; 1519 } else if (cond != cc_always) { 1520 r2 = scratch; 1521 li(r2, rt); 1522 } 1523 1524 switch (cond) { 1525 case cc_always: 1526 offset = shifted_branch_offset(L, false); 1527 bal(offset); 1528 break; 1529 case eq: 1530 bne(rs, r2, 2); 1531 nop(); 1532 offset = shifted_branch_offset(L, false); 1533 bal(offset); 1534 break; 1535 case ne: 1536 beq(rs, r2, 2); 1537 nop(); 1538 offset = shifted_branch_offset(L, false); 1539 bal(offset); 1540 break; 1541 1542 // Signed comparison 1543 case greater: 1544 slt(scratch, r2, rs); 1545 addiu(scratch, scratch, -1); 1546 offset = shifted_branch_offset(L, false); 1547 bgezal(scratch, offset); 1548 break; 1549 case greater_equal: 1550 slt(scratch, rs, r2); 1551 addiu(scratch, scratch, -1); 1552 offset = shifted_branch_offset(L, false); 1553 bltzal(scratch, offset); 1554 break; 1555 case less: 1556 slt(scratch, rs, r2); 1557 addiu(scratch, scratch, -1); 1558 offset = shifted_branch_offset(L, false); 1559 bgezal(scratch, offset); 1560 break; 1561 case less_equal: 1562 slt(scratch, r2, rs); 1563 addiu(scratch, scratch, -1); 1564 offset = shifted_branch_offset(L, false); 1565 bltzal(scratch, offset); 1566 break; 1567 1568 // Unsigned comparison. 1569 case Ugreater: 1570 sltu(scratch, r2, rs); 1571 addiu(scratch, scratch, -1); 1572 offset = shifted_branch_offset(L, false); 1573 bgezal(scratch, offset); 1574 break; 1575 case Ugreater_equal: 1576 sltu(scratch, rs, r2); 1577 addiu(scratch, scratch, -1); 1578 offset = shifted_branch_offset(L, false); 1579 bltzal(scratch, offset); 1580 break; 1581 case Uless: 1582 sltu(scratch, rs, r2); 1583 addiu(scratch, scratch, -1); 1584 offset = shifted_branch_offset(L, false); 1585 bgezal(scratch, offset); 1586 break; 1587 case Uless_equal: 1588 sltu(scratch, r2, rs); 1589 addiu(scratch, scratch, -1); 1590 offset = shifted_branch_offset(L, false); 1591 bltzal(scratch, offset); 1592 break; 1593 1594 default: 1595 UNREACHABLE(); 1596 } 1597 1598 // Check that offset could actually hold on an int16_t. 1599 ASSERT(is_int16(offset)); 1600 1601 // Emit a nop in the branch delay slot if required. 1602 if (bdslot == PROTECT) 1603 nop(); 1604 } 1605 1606 1607 void MacroAssembler::Jump(const Operand& target, BranchDelaySlot bdslot) { 1608 BlockTrampolinePoolScope block_trampoline_pool(this); 1609 if (target.is_reg()) { 1610 jr(target.rm()); 1611 } else { 1612 if (!MustUseReg(target.rmode_)) { 1613 j(target.imm32_); 1614 } else { 1615 li(t9, target); 1616 jr(t9); 1617 } 1618 } 1619 // Emit a nop in the branch delay slot if required. 1620 if (bdslot == PROTECT) 1621 nop(); 1622 } 1623 1624 1625 void MacroAssembler::Jump(const Operand& target, 1626 Condition cond, Register rs, const Operand& rt, 1627 BranchDelaySlot bdslot) { 1628 BlockTrampolinePoolScope block_trampoline_pool(this); 1629 BRANCH_ARGS_CHECK(cond, rs, rt); 1630 if (target.is_reg()) { 1631 if (cond == cc_always) { 1632 jr(target.rm()); 1633 } else { 1634 Branch(2, NegateCondition(cond), rs, rt); 1635 jr(target.rm()); 1636 } 1637 } else { // Not register target. 1638 if (!MustUseReg(target.rmode_)) { 1639 if (cond == cc_always) { 1640 j(target.imm32_); 1641 } else { 1642 Branch(2, NegateCondition(cond), rs, rt); 1643 j(target.imm32_); // Will generate only one instruction. 1644 } 1645 } else { // MustUseReg(target) 1646 li(t9, target); 1647 if (cond == cc_always) { 1648 jr(t9); 1649 } else { 1650 Branch(2, NegateCondition(cond), rs, rt); 1651 jr(t9); // Will generate only one instruction. 1652 } 1653 } 1654 } 1655 // Emit a nop in the branch delay slot if required. 1656 if (bdslot == PROTECT) 1657 nop(); 1658 } 1659 1660 1661 // Note: To call gcc-compiled C code on mips, you must call thru t9. 1662 void MacroAssembler::Call(const Operand& target, BranchDelaySlot bdslot) { 1663 BlockTrampolinePoolScope block_trampoline_pool(this); 1664 if (target.is_reg()) { 1665 jalr(target.rm()); 1666 } else { // !target.is_reg() 1667 if (!MustUseReg(target.rmode_)) { 1668 jal(target.imm32_); 1669 } else { // MustUseReg(target) 1670 li(t9, target); 1671 jalr(t9); 1672 } 1673 } 1674 // Emit a nop in the branch delay slot if required. 1675 if (bdslot == PROTECT) 1676 nop(); 1677 } 1678 1679 1680 // Note: To call gcc-compiled C code on mips, you must call thru t9. 1681 void MacroAssembler::Call(const Operand& target, 1682 Condition cond, Register rs, const Operand& rt, 1683 BranchDelaySlot bdslot) { 1684 BlockTrampolinePoolScope block_trampoline_pool(this); 1685 BRANCH_ARGS_CHECK(cond, rs, rt); 1686 if (target.is_reg()) { 1687 if (cond == cc_always) { 1688 jalr(target.rm()); 1689 } else { 1690 Branch(2, NegateCondition(cond), rs, rt); 1691 jalr(target.rm()); 1692 } 1693 } else { // !target.is_reg() 1694 if (!MustUseReg(target.rmode_)) { 1695 if (cond == cc_always) { 1696 jal(target.imm32_); 1697 } else { 1698 Branch(2, NegateCondition(cond), rs, rt); 1699 jal(target.imm32_); // Will generate only one instruction. 1700 } 1701 } else { // MustUseReg(target) 1702 li(t9, target); 1703 if (cond == cc_always) { 1704 jalr(t9); 1705 } else { 1706 Branch(2, NegateCondition(cond), rs, rt); 1707 jalr(t9); // Will generate only one instruction. 1708 } 1709 } 1710 } 1711 // Emit a nop in the branch delay slot if required. 1712 if (bdslot == PROTECT) 1713 nop(); 1714 } 1715 1716 1717 void MacroAssembler::Drop(int count, 1718 Condition cond, 1719 Register reg, 1720 const Operand& op) { 1721 if (count <= 0) { 1722 return; 1723 } 1724 1725 Label skip; 1726 1727 if (cond != al) { 1728 Branch(&skip, NegateCondition(cond), reg, op); 1729 } 1730 1731 if (count > 0) { 1732 addiu(sp, sp, count * kPointerSize); 1733 } 1734 1735 if (cond != al) { 1736 bind(&skip); 1737 } 1738 } 1739 1740 1741 void MacroAssembler::DropAndRet(int drop, 1742 Condition cond, 1743 Register r1, 1744 const Operand& r2) { 1745 // This is a workaround to make sure only one branch instruction is 1746 // generated. It relies on Drop and Ret not creating branches if 1747 // cond == cc_always. 1748 Label skip; 1749 if (cond != cc_always) { 1750 Branch(&skip, NegateCondition(cond), r1, r2); 1751 } 1752 1753 Drop(drop); 1754 Ret(); 1755 1756 if (cond != cc_always) { 1757 bind(&skip); 1758 } 1759 } 1760 1761 1762 void MacroAssembler::Swap(Register reg1, 1763 Register reg2, 1764 Register scratch) { 1765 if (scratch.is(no_reg)) { 1766 Xor(reg1, reg1, Operand(reg2)); 1767 Xor(reg2, reg2, Operand(reg1)); 1768 Xor(reg1, reg1, Operand(reg2)); 1769 } else { 1770 mov(scratch, reg1); 1771 mov(reg1, reg2); 1772 mov(reg2, scratch); 1773 } 1774 } 1775 1776 1777 void MacroAssembler::Call(Label* target) { 1778 BranchAndLink(target); 1779 } 1780 1781 1782 void MacroAssembler::Move(Register dst, Register src) { 1783 if (!dst.is(src)) { 1784 mov(dst, src); 1785 } 1786 } 1787 1788 1789 #ifdef ENABLE_DEBUGGER_SUPPORT 1790 1791 void MacroAssembler::DebugBreak() { 1792 ASSERT(allow_stub_calls()); 1793 mov(a0, zero_reg); 1794 li(a1, Operand(ExternalReference(Runtime::kDebugBreak, isolate()))); 1795 CEntryStub ces(1); 1796 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); 1797 } 1798 1799 #endif // ENABLE_DEBUGGER_SUPPORT 1800 1801 1802 // --------------------------------------------------------------------------- 1803 // Exception handling 1804 1805 void MacroAssembler::PushTryHandler(CodeLocation try_location, 1806 HandlerType type) { 1807 // Adjust this code if not the case. 1808 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); 1809 // The return address is passed in register ra. 1810 if (try_location == IN_JAVASCRIPT) { 1811 if (type == TRY_CATCH_HANDLER) { 1812 li(t0, Operand(StackHandler::TRY_CATCH)); 1813 } else { 1814 li(t0, Operand(StackHandler::TRY_FINALLY)); 1815 } 1816 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize 1817 && StackHandlerConstants::kFPOffset == 2 * kPointerSize 1818 && StackHandlerConstants::kPCOffset == 3 * kPointerSize 1819 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); 1820 // Save the current handler as the next handler. 1821 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); 1822 lw(t1, MemOperand(t2)); 1823 1824 addiu(sp, sp, -StackHandlerConstants::kSize); 1825 sw(ra, MemOperand(sp, 12)); 1826 sw(fp, MemOperand(sp, 8)); 1827 sw(t0, MemOperand(sp, 4)); 1828 sw(t1, MemOperand(sp, 0)); 1829 1830 // Link this handler as the new current one. 1831 sw(sp, MemOperand(t2)); 1832 1833 } else { 1834 // Must preserve a0-a3, and s0 (argv). 1835 ASSERT(try_location == IN_JS_ENTRY); 1836 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize 1837 && StackHandlerConstants::kFPOffset == 2 * kPointerSize 1838 && StackHandlerConstants::kPCOffset == 3 * kPointerSize 1839 && StackHandlerConstants::kNextOffset == 0 * kPointerSize); 1840 1841 // The frame pointer does not point to a JS frame so we save NULL 1842 // for fp. We expect the code throwing an exception to check fp 1843 // before dereferencing it to restore the context. 1844 li(t0, Operand(StackHandler::ENTRY)); 1845 1846 // Save the current handler as the next handler. 1847 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); 1848 lw(t1, MemOperand(t2)); 1849 1850 addiu(sp, sp, -StackHandlerConstants::kSize); 1851 sw(ra, MemOperand(sp, 12)); 1852 sw(zero_reg, MemOperand(sp, 8)); 1853 sw(t0, MemOperand(sp, 4)); 1854 sw(t1, MemOperand(sp, 0)); 1855 1856 // Link this handler as the new current one. 1857 sw(sp, MemOperand(t2)); 1858 } 1859 } 1860 1861 1862 void MacroAssembler::PopTryHandler() { 1863 ASSERT_EQ(0, StackHandlerConstants::kNextOffset); 1864 pop(a1); 1865 Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); 1866 li(at, Operand(ExternalReference(Isolate::k_handler_address, isolate()))); 1867 sw(a1, MemOperand(at)); 1868 } 1869 1870 1871 void MacroAssembler::AllocateInNewSpace(int object_size, 1872 Register result, 1873 Register scratch1, 1874 Register scratch2, 1875 Label* gc_required, 1876 AllocationFlags flags) { 1877 if (!FLAG_inline_new) { 1878 if (FLAG_debug_code) { 1879 // Trash the registers to simulate an allocation failure. 1880 li(result, 0x7091); 1881 li(scratch1, 0x7191); 1882 li(scratch2, 0x7291); 1883 } 1884 jmp(gc_required); 1885 return; 1886 } 1887 1888 ASSERT(!result.is(scratch1)); 1889 ASSERT(!result.is(scratch2)); 1890 ASSERT(!scratch1.is(scratch2)); 1891 ASSERT(!scratch1.is(t9)); 1892 ASSERT(!scratch2.is(t9)); 1893 ASSERT(!result.is(t9)); 1894 1895 // Make object size into bytes. 1896 if ((flags & SIZE_IN_WORDS) != 0) { 1897 object_size *= kPointerSize; 1898 } 1899 ASSERT_EQ(0, object_size & kObjectAlignmentMask); 1900 1901 // Check relative positions of allocation top and limit addresses. 1902 // ARM adds additional checks to make sure the ldm instruction can be 1903 // used. On MIPS we don't have ldm so we don't need additional checks either. 1904 ExternalReference new_space_allocation_top = 1905 ExternalReference::new_space_allocation_top_address(isolate()); 1906 ExternalReference new_space_allocation_limit = 1907 ExternalReference::new_space_allocation_limit_address(isolate()); 1908 intptr_t top = 1909 reinterpret_cast<intptr_t>(new_space_allocation_top.address()); 1910 intptr_t limit = 1911 reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); 1912 ASSERT((limit - top) == kPointerSize); 1913 1914 // Set up allocation top address and object size registers. 1915 Register topaddr = scratch1; 1916 Register obj_size_reg = scratch2; 1917 li(topaddr, Operand(new_space_allocation_top)); 1918 li(obj_size_reg, Operand(object_size)); 1919 1920 // This code stores a temporary value in t9. 1921 if ((flags & RESULT_CONTAINS_TOP) == 0) { 1922 // Load allocation top into result and allocation limit into t9. 1923 lw(result, MemOperand(topaddr)); 1924 lw(t9, MemOperand(topaddr, kPointerSize)); 1925 } else { 1926 if (FLAG_debug_code) { 1927 // Assert that result actually contains top on entry. t9 is used 1928 // immediately below so this use of t9 does not cause difference with 1929 // respect to register content between debug and release mode. 1930 lw(t9, MemOperand(topaddr)); 1931 Check(eq, "Unexpected allocation top", result, Operand(t9)); 1932 } 1933 // Load allocation limit into t9. Result already contains allocation top. 1934 lw(t9, MemOperand(topaddr, limit - top)); 1935 } 1936 1937 // Calculate new top and bail out if new space is exhausted. Use result 1938 // to calculate the new top. 1939 Addu(scratch2, result, Operand(obj_size_reg)); 1940 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 1941 sw(scratch2, MemOperand(topaddr)); 1942 1943 // Tag object if requested. 1944 if ((flags & TAG_OBJECT) != 0) { 1945 Addu(result, result, Operand(kHeapObjectTag)); 1946 } 1947 } 1948 1949 1950 void MacroAssembler::AllocateInNewSpace(Register object_size, 1951 Register result, 1952 Register scratch1, 1953 Register scratch2, 1954 Label* gc_required, 1955 AllocationFlags flags) { 1956 if (!FLAG_inline_new) { 1957 if (FLAG_debug_code) { 1958 // Trash the registers to simulate an allocation failure. 1959 li(result, 0x7091); 1960 li(scratch1, 0x7191); 1961 li(scratch2, 0x7291); 1962 } 1963 jmp(gc_required); 1964 return; 1965 } 1966 1967 ASSERT(!result.is(scratch1)); 1968 ASSERT(!result.is(scratch2)); 1969 ASSERT(!scratch1.is(scratch2)); 1970 ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); 1971 1972 // Check relative positions of allocation top and limit addresses. 1973 // ARM adds additional checks to make sure the ldm instruction can be 1974 // used. On MIPS we don't have ldm so we don't need additional checks either. 1975 ExternalReference new_space_allocation_top = 1976 ExternalReference::new_space_allocation_top_address(isolate()); 1977 ExternalReference new_space_allocation_limit = 1978 ExternalReference::new_space_allocation_limit_address(isolate()); 1979 intptr_t top = 1980 reinterpret_cast<intptr_t>(new_space_allocation_top.address()); 1981 intptr_t limit = 1982 reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); 1983 ASSERT((limit - top) == kPointerSize); 1984 1985 // Set up allocation top address and object size registers. 1986 Register topaddr = scratch1; 1987 li(topaddr, Operand(new_space_allocation_top)); 1988 1989 // This code stores a temporary value in t9. 1990 if ((flags & RESULT_CONTAINS_TOP) == 0) { 1991 // Load allocation top into result and allocation limit into t9. 1992 lw(result, MemOperand(topaddr)); 1993 lw(t9, MemOperand(topaddr, kPointerSize)); 1994 } else { 1995 if (FLAG_debug_code) { 1996 // Assert that result actually contains top on entry. t9 is used 1997 // immediately below so this use of t9 does not cause difference with 1998 // respect to register content between debug and release mode. 1999 lw(t9, MemOperand(topaddr)); 2000 Check(eq, "Unexpected allocation top", result, Operand(t9)); 2001 } 2002 // Load allocation limit into t9. Result already contains allocation top. 2003 lw(t9, MemOperand(topaddr, limit - top)); 2004 } 2005 2006 // Calculate new top and bail out if new space is exhausted. Use result 2007 // to calculate the new top. Object size may be in words so a shift is 2008 // required to get the number of bytes. 2009 if ((flags & SIZE_IN_WORDS) != 0) { 2010 sll(scratch2, object_size, kPointerSizeLog2); 2011 Addu(scratch2, result, scratch2); 2012 } else { 2013 Addu(scratch2, result, Operand(object_size)); 2014 } 2015 Branch(gc_required, Ugreater, scratch2, Operand(t9)); 2016 2017 // Update allocation top. result temporarily holds the new top. 2018 if (FLAG_debug_code) { 2019 And(t9, scratch2, Operand(kObjectAlignmentMask)); 2020 Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg)); 2021 } 2022 sw(scratch2, MemOperand(topaddr)); 2023 2024 // Tag object if requested. 2025 if ((flags & TAG_OBJECT) != 0) { 2026 Addu(result, result, Operand(kHeapObjectTag)); 2027 } 2028 } 2029 2030 2031 void MacroAssembler::UndoAllocationInNewSpace(Register object, 2032 Register scratch) { 2033 ExternalReference new_space_allocation_top = 2034 ExternalReference::new_space_allocation_top_address(isolate()); 2035 2036 // Make sure the object has no tag before resetting top. 2037 And(object, object, Operand(~kHeapObjectTagMask)); 2038 #ifdef DEBUG 2039 // Check that the object un-allocated is below the current top. 2040 li(scratch, Operand(new_space_allocation_top)); 2041 lw(scratch, MemOperand(scratch)); 2042 Check(less, "Undo allocation of non allocated memory", 2043 object, Operand(scratch)); 2044 #endif 2045 // Write the address of the object to un-allocate as the current top. 2046 li(scratch, Operand(new_space_allocation_top)); 2047 sw(object, MemOperand(scratch)); 2048 } 2049 2050 2051 void MacroAssembler::AllocateTwoByteString(Register result, 2052 Register length, 2053 Register scratch1, 2054 Register scratch2, 2055 Register scratch3, 2056 Label* gc_required) { 2057 // Calculate the number of bytes needed for the characters in the string while 2058 // observing object alignment. 2059 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 2060 sll(scratch1, length, 1); // Length in bytes, not chars. 2061 addiu(scratch1, scratch1, 2062 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); 2063 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 2064 2065 // Allocate two-byte string in new space. 2066 AllocateInNewSpace(scratch1, 2067 result, 2068 scratch2, 2069 scratch3, 2070 gc_required, 2071 TAG_OBJECT); 2072 2073 // Set the map, length and hash field. 2074 InitializeNewString(result, 2075 length, 2076 Heap::kStringMapRootIndex, 2077 scratch1, 2078 scratch2); 2079 } 2080 2081 2082 void MacroAssembler::AllocateAsciiString(Register result, 2083 Register length, 2084 Register scratch1, 2085 Register scratch2, 2086 Register scratch3, 2087 Label* gc_required) { 2088 // Calculate the number of bytes needed for the characters in the string 2089 // while observing object alignment. 2090 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); 2091 ASSERT(kCharSize == 1); 2092 addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize); 2093 And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); 2094 2095 // Allocate ASCII string in new space. 2096 AllocateInNewSpace(scratch1, 2097 result, 2098 scratch2, 2099 scratch3, 2100 gc_required, 2101 TAG_OBJECT); 2102 2103 // Set the map, length and hash field. 2104 InitializeNewString(result, 2105 length, 2106 Heap::kAsciiStringMapRootIndex, 2107 scratch1, 2108 scratch2); 2109 } 2110 2111 2112 void MacroAssembler::AllocateTwoByteConsString(Register result, 2113 Register length, 2114 Register scratch1, 2115 Register scratch2, 2116 Label* gc_required) { 2117 AllocateInNewSpace(ConsString::kSize, 2118 result, 2119 scratch1, 2120 scratch2, 2121 gc_required, 2122 TAG_OBJECT); 2123 InitializeNewString(result, 2124 length, 2125 Heap::kConsStringMapRootIndex, 2126 scratch1, 2127 scratch2); 2128 } 2129 2130 2131 void MacroAssembler::AllocateAsciiConsString(Register result, 2132 Register length, 2133 Register scratch1, 2134 Register scratch2, 2135 Label* gc_required) { 2136 AllocateInNewSpace(ConsString::kSize, 2137 result, 2138 scratch1, 2139 scratch2, 2140 gc_required, 2141 TAG_OBJECT); 2142 InitializeNewString(result, 2143 length, 2144 Heap::kConsAsciiStringMapRootIndex, 2145 scratch1, 2146 scratch2); 2147 } 2148 2149 2150 // Allocates a heap number or jumps to the label if the young space is full and 2151 // a scavenge is needed. 2152 void MacroAssembler::AllocateHeapNumber(Register result, 2153 Register scratch1, 2154 Register scratch2, 2155 Register heap_number_map, 2156 Label* need_gc) { 2157 // Allocate an object in the heap for the heap number and tag it as a heap 2158 // object. 2159 AllocateInNewSpace(HeapNumber::kSize, 2160 result, 2161 scratch1, 2162 scratch2, 2163 need_gc, 2164 TAG_OBJECT); 2165 2166 // Store heap number map in the allocated object. 2167 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 2168 sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); 2169 } 2170 2171 2172 void MacroAssembler::AllocateHeapNumberWithValue(Register result, 2173 FPURegister value, 2174 Register scratch1, 2175 Register scratch2, 2176 Label* gc_required) { 2177 LoadRoot(t6, Heap::kHeapNumberMapRootIndex); 2178 AllocateHeapNumber(result, scratch1, scratch2, t6, gc_required); 2179 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); 2180 } 2181 2182 2183 // Copies a fixed number of fields of heap objects from src to dst. 2184 void MacroAssembler::CopyFields(Register dst, 2185 Register src, 2186 RegList temps, 2187 int field_count) { 2188 ASSERT((temps & dst.bit()) == 0); 2189 ASSERT((temps & src.bit()) == 0); 2190 // Primitive implementation using only one temporary register. 2191 2192 Register tmp = no_reg; 2193 // Find a temp register in temps list. 2194 for (int i = 0; i < kNumRegisters; i++) { 2195 if ((temps & (1 << i)) != 0) { 2196 tmp.code_ = i; 2197 break; 2198 } 2199 } 2200 ASSERT(!tmp.is(no_reg)); 2201 2202 for (int i = 0; i < field_count; i++) { 2203 lw(tmp, FieldMemOperand(src, i * kPointerSize)); 2204 sw(tmp, FieldMemOperand(dst, i * kPointerSize)); 2205 } 2206 } 2207 2208 2209 void MacroAssembler::CheckMap(Register obj, 2210 Register scratch, 2211 Handle<Map> map, 2212 Label* fail, 2213 bool is_heap_object) { 2214 if (!is_heap_object) { 2215 JumpIfSmi(obj, fail); 2216 } 2217 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 2218 li(at, Operand(map)); 2219 Branch(fail, ne, scratch, Operand(at)); 2220 } 2221 2222 2223 void MacroAssembler::CheckMap(Register obj, 2224 Register scratch, 2225 Heap::RootListIndex index, 2226 Label* fail, 2227 bool is_heap_object) { 2228 if (!is_heap_object) { 2229 JumpIfSmi(obj, fail); 2230 } 2231 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); 2232 LoadRoot(at, index); 2233 Branch(fail, ne, scratch, Operand(at)); 2234 } 2235 2236 2237 // ----------------------------------------------------------------------------- 2238 // JavaScript invokes 2239 2240 void MacroAssembler::InvokePrologue(const ParameterCount& expected, 2241 const ParameterCount& actual, 2242 Handle<Code> code_constant, 2243 Register code_reg, 2244 Label* done, 2245 InvokeFlag flag, 2246 PostCallGenerator* post_call_generator) { 2247 bool definitely_matches = false; 2248 Label regular_invoke; 2249 2250 // Check whether the expected and actual arguments count match. If not, 2251 // setup registers according to contract with ArgumentsAdaptorTrampoline: 2252 // a0: actual arguments count 2253 // a1: function (passed through to callee) 2254 // a2: expected arguments count 2255 // a3: callee code entry 2256 2257 // The code below is made a lot easier because the calling code already sets 2258 // up actual and expected registers according to the contract if values are 2259 // passed in registers. 2260 ASSERT(actual.is_immediate() || actual.reg().is(a0)); 2261 ASSERT(expected.is_immediate() || expected.reg().is(a2)); 2262 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); 2263 2264 if (expected.is_immediate()) { 2265 ASSERT(actual.is_immediate()); 2266 if (expected.immediate() == actual.immediate()) { 2267 definitely_matches = true; 2268 } else { 2269 li(a0, Operand(actual.immediate())); 2270 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; 2271 if (expected.immediate() == sentinel) { 2272 // Don't worry about adapting arguments for builtins that 2273 // don't want that done. Skip adaption code by making it look 2274 // like we have a match between expected and actual number of 2275 // arguments. 2276 definitely_matches = true; 2277 } else { 2278 li(a2, Operand(expected.immediate())); 2279 } 2280 } 2281 } else { 2282 if (actual.is_immediate()) { 2283 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); 2284 li(a0, Operand(actual.immediate())); 2285 } else { 2286 Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); 2287 } 2288 } 2289 2290 if (!definitely_matches) { 2291 if (!code_constant.is_null()) { 2292 li(a3, Operand(code_constant)); 2293 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); 2294 } 2295 2296 Handle<Code> adaptor = 2297 isolate()->builtins()->ArgumentsAdaptorTrampoline(); 2298 if (flag == CALL_FUNCTION) { 2299 Call(adaptor, RelocInfo::CODE_TARGET); 2300 if (post_call_generator != NULL) post_call_generator->Generate(); 2301 jmp(done); 2302 } else { 2303 Jump(adaptor, RelocInfo::CODE_TARGET); 2304 } 2305 bind(®ular_invoke); 2306 } 2307 } 2308 2309 2310 void MacroAssembler::InvokeCode(Register code, 2311 const ParameterCount& expected, 2312 const ParameterCount& actual, 2313 InvokeFlag flag, 2314 PostCallGenerator* post_call_generator) { 2315 Label done; 2316 2317 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag, 2318 post_call_generator); 2319 if (flag == CALL_FUNCTION) { 2320 Call(code); 2321 } else { 2322 ASSERT(flag == JUMP_FUNCTION); 2323 Jump(code); 2324 } 2325 // Continue here if InvokePrologue does handle the invocation due to 2326 // mismatched parameter counts. 2327 bind(&done); 2328 } 2329 2330 2331 void MacroAssembler::InvokeCode(Handle<Code> code, 2332 const ParameterCount& expected, 2333 const ParameterCount& actual, 2334 RelocInfo::Mode rmode, 2335 InvokeFlag flag) { 2336 Label done; 2337 2338 InvokePrologue(expected, actual, code, no_reg, &done, flag); 2339 if (flag == CALL_FUNCTION) { 2340 Call(code, rmode); 2341 } else { 2342 Jump(code, rmode); 2343 } 2344 // Continue here if InvokePrologue does handle the invocation due to 2345 // mismatched parameter counts. 2346 bind(&done); 2347 } 2348 2349 2350 void MacroAssembler::InvokeFunction(Register function, 2351 const ParameterCount& actual, 2352 InvokeFlag flag, 2353 PostCallGenerator* post_call_generator) { 2354 // Contract with called JS functions requires that function is passed in a1. 2355 ASSERT(function.is(a1)); 2356 Register expected_reg = a2; 2357 Register code_reg = a3; 2358 2359 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); 2360 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 2361 lw(expected_reg, 2362 FieldMemOperand(code_reg, 2363 SharedFunctionInfo::kFormalParameterCountOffset)); 2364 sra(expected_reg, expected_reg, kSmiTagSize); 2365 lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 2366 2367 ParameterCount expected(expected_reg); 2368 InvokeCode(code_reg, expected, actual, flag, post_call_generator); 2369 } 2370 2371 2372 void MacroAssembler::InvokeFunction(JSFunction* function, 2373 const ParameterCount& actual, 2374 InvokeFlag flag) { 2375 ASSERT(function->is_compiled()); 2376 2377 // Get the function and setup the context. 2378 li(a1, Operand(Handle<JSFunction>(function))); 2379 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); 2380 2381 // Invoke the cached code. 2382 Handle<Code> code(function->code()); 2383 ParameterCount expected(function->shared()->formal_parameter_count()); 2384 if (V8::UseCrankshaft()) { 2385 UNIMPLEMENTED_MIPS(); 2386 } else { 2387 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); 2388 } 2389 } 2390 2391 2392 void MacroAssembler::IsObjectJSObjectType(Register heap_object, 2393 Register map, 2394 Register scratch, 2395 Label* fail) { 2396 lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); 2397 IsInstanceJSObjectType(map, scratch, fail); 2398 } 2399 2400 2401 void MacroAssembler::IsInstanceJSObjectType(Register map, 2402 Register scratch, 2403 Label* fail) { 2404 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); 2405 Branch(fail, lt, scratch, Operand(FIRST_JS_OBJECT_TYPE)); 2406 Branch(fail, gt, scratch, Operand(LAST_JS_OBJECT_TYPE)); 2407 } 2408 2409 2410 void MacroAssembler::IsObjectJSStringType(Register object, 2411 Register scratch, 2412 Label* fail) { 2413 ASSERT(kNotStringTag != 0); 2414 2415 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 2416 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 2417 And(scratch, scratch, Operand(kIsNotStringMask)); 2418 Branch(fail, ne, scratch, Operand(zero_reg)); 2419 } 2420 2421 2422 // --------------------------------------------------------------------------- 2423 // Support functions. 2424 2425 2426 void MacroAssembler::TryGetFunctionPrototype(Register function, 2427 Register result, 2428 Register scratch, 2429 Label* miss) { 2430 // Check that the receiver isn't a smi. 2431 JumpIfSmi(function, miss); 2432 2433 // Check that the function really is a function. Load map into result reg. 2434 GetObjectType(function, result, scratch); 2435 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); 2436 2437 // Make sure that the function has an instance prototype. 2438 Label non_instance; 2439 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); 2440 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); 2441 Branch(&non_instance, ne, scratch, Operand(zero_reg)); 2442 2443 // Get the prototype or initial map from the function. 2444 lw(result, 2445 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 2446 2447 // If the prototype or initial map is the hole, don't return it and 2448 // simply miss the cache instead. This will allow us to allocate a 2449 // prototype object on-demand in the runtime system. 2450 LoadRoot(t8, Heap::kTheHoleValueRootIndex); 2451 Branch(miss, eq, result, Operand(t8)); 2452 2453 // If the function does not have an initial map, we're done. 2454 Label done; 2455 GetObjectType(result, scratch, scratch); 2456 Branch(&done, ne, scratch, Operand(MAP_TYPE)); 2457 2458 // Get the prototype from the initial map. 2459 lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); 2460 jmp(&done); 2461 2462 // Non-instance prototype: Fetch prototype from constructor field 2463 // in initial map. 2464 bind(&non_instance); 2465 lw(result, FieldMemOperand(result, Map::kConstructorOffset)); 2466 2467 // All done. 2468 bind(&done); 2469 } 2470 2471 2472 void MacroAssembler::GetObjectType(Register object, 2473 Register map, 2474 Register type_reg) { 2475 lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); 2476 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); 2477 } 2478 2479 2480 // ----------------------------------------------------------------------------- 2481 // Runtime calls 2482 2483 void MacroAssembler::CallStub(CodeStub* stub, Condition cond, 2484 Register r1, const Operand& r2) { 2485 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs. 2486 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2); 2487 } 2488 2489 2490 void MacroAssembler::TailCallStub(CodeStub* stub) { 2491 ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs 2492 Jump(stub->GetCode(), RelocInfo::CODE_TARGET); 2493 } 2494 2495 2496 void MacroAssembler::IllegalOperation(int num_arguments) { 2497 if (num_arguments > 0) { 2498 addiu(sp, sp, num_arguments * kPointerSize); 2499 } 2500 LoadRoot(v0, Heap::kUndefinedValueRootIndex); 2501 } 2502 2503 2504 void MacroAssembler::IndexFromHash(Register hash, 2505 Register index) { 2506 // If the hash field contains an array index pick it out. The assert checks 2507 // that the constants for the maximum number of digits for an array index 2508 // cached in the hash field and the number of bits reserved for it does not 2509 // conflict. 2510 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < 2511 (1 << String::kArrayIndexValueBits)); 2512 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in 2513 // the low kHashShift bits. 2514 STATIC_ASSERT(kSmiTag == 0); 2515 Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits); 2516 sll(index, hash, kSmiTagSize); 2517 } 2518 2519 2520 void MacroAssembler::ObjectToDoubleFPURegister(Register object, 2521 FPURegister result, 2522 Register scratch1, 2523 Register scratch2, 2524 Register heap_number_map, 2525 Label* not_number, 2526 ObjectToDoubleFlags flags) { 2527 Label done; 2528 if ((flags & OBJECT_NOT_SMI) == 0) { 2529 Label not_smi; 2530 JumpIfNotSmi(object, ¬_smi); 2531 // Remove smi tag and convert to double. 2532 sra(scratch1, object, kSmiTagSize); 2533 mtc1(scratch1, result); 2534 cvt_d_w(result, result); 2535 Branch(&done); 2536 bind(¬_smi); 2537 } 2538 // Check for heap number and load double value from it. 2539 lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); 2540 Branch(not_number, ne, scratch1, Operand(heap_number_map)); 2541 2542 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { 2543 // If exponent is all ones the number is either a NaN or +/-Infinity. 2544 Register exponent = scratch1; 2545 Register mask_reg = scratch2; 2546 lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); 2547 li(mask_reg, HeapNumber::kExponentMask); 2548 2549 And(exponent, exponent, mask_reg); 2550 Branch(not_number, eq, exponent, Operand(mask_reg)); 2551 } 2552 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); 2553 bind(&done); 2554 } 2555 2556 2557 2558 void MacroAssembler::SmiToDoubleFPURegister(Register smi, 2559 FPURegister value, 2560 Register scratch1) { 2561 sra(scratch1, smi, kSmiTagSize); 2562 mtc1(scratch1, value); 2563 cvt_d_w(value, value); 2564 } 2565 2566 2567 void MacroAssembler::CallRuntime(const Runtime::Function* f, 2568 int num_arguments) { 2569 // All parameters are on the stack. v0 has the return value after call. 2570 2571 // If the expected number of arguments of the runtime function is 2572 // constant, we check that the actual number of arguments match the 2573 // expectation. 2574 if (f->nargs >= 0 && f->nargs != num_arguments) { 2575 IllegalOperation(num_arguments); 2576 return; 2577 } 2578 2579 // TODO(1236192): Most runtime routines don't need the number of 2580 // arguments passed in because it is constant. At some point we 2581 // should remove this need and make the runtime routine entry code 2582 // smarter. 2583 li(a0, num_arguments); 2584 li(a1, Operand(ExternalReference(f, isolate()))); 2585 CEntryStub stub(1); 2586 CallStub(&stub); 2587 } 2588 2589 2590 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { 2591 const Runtime::Function* function = Runtime::FunctionForId(id); 2592 li(a0, Operand(function->nargs)); 2593 li(a1, Operand(ExternalReference(function, isolate()))); 2594 CEntryStub stub(1); 2595 stub.SaveDoubles(); 2596 CallStub(&stub); 2597 } 2598 2599 2600 void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { 2601 CallRuntime(Runtime::FunctionForId(fid), num_arguments); 2602 } 2603 2604 2605 void MacroAssembler::CallExternalReference(const ExternalReference& ext, 2606 int num_arguments) { 2607 li(a0, Operand(num_arguments)); 2608 li(a1, Operand(ext)); 2609 2610 CEntryStub stub(1); 2611 CallStub(&stub); 2612 } 2613 2614 2615 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, 2616 int num_arguments, 2617 int result_size) { 2618 // TODO(1236192): Most runtime routines don't need the number of 2619 // arguments passed in because it is constant. At some point we 2620 // should remove this need and make the runtime routine entry code 2621 // smarter. 2622 li(a0, Operand(num_arguments)); 2623 JumpToExternalReference(ext); 2624 } 2625 2626 2627 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, 2628 int num_arguments, 2629 int result_size) { 2630 TailCallExternalReference(ExternalReference(fid, isolate()), 2631 num_arguments, 2632 result_size); 2633 } 2634 2635 2636 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { 2637 li(a1, Operand(builtin)); 2638 CEntryStub stub(1); 2639 Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 2640 } 2641 2642 2643 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, 2644 InvokeJSFlags flags, 2645 PostCallGenerator* post_call_generator) { 2646 GetBuiltinEntry(t9, id); 2647 if (flags == CALL_JS) { 2648 Call(t9); 2649 if (post_call_generator != NULL) post_call_generator->Generate(); 2650 } else { 2651 ASSERT(flags == JUMP_JS); 2652 Jump(t9); 2653 } 2654 } 2655 2656 2657 void MacroAssembler::GetBuiltinFunction(Register target, 2658 Builtins::JavaScript id) { 2659 // Load the builtins object into target register. 2660 lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 2661 lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); 2662 // Load the JavaScript builtin function from the builtins object. 2663 lw(target, FieldMemOperand(target, 2664 JSBuiltinsObject::OffsetOfFunctionWithId(id))); 2665 } 2666 2667 2668 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { 2669 ASSERT(!target.is(a1)); 2670 GetBuiltinFunction(a1, id); 2671 // Load the code entry point from the builtins object. 2672 lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); 2673 } 2674 2675 2676 void MacroAssembler::SetCounter(StatsCounter* counter, int value, 2677 Register scratch1, Register scratch2) { 2678 if (FLAG_native_code_counters && counter->Enabled()) { 2679 li(scratch1, Operand(value)); 2680 li(scratch2, Operand(ExternalReference(counter))); 2681 sw(scratch1, MemOperand(scratch2)); 2682 } 2683 } 2684 2685 2686 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, 2687 Register scratch1, Register scratch2) { 2688 ASSERT(value > 0); 2689 if (FLAG_native_code_counters && counter->Enabled()) { 2690 li(scratch2, Operand(ExternalReference(counter))); 2691 lw(scratch1, MemOperand(scratch2)); 2692 Addu(scratch1, scratch1, Operand(value)); 2693 sw(scratch1, MemOperand(scratch2)); 2694 } 2695 } 2696 2697 2698 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, 2699 Register scratch1, Register scratch2) { 2700 ASSERT(value > 0); 2701 if (FLAG_native_code_counters && counter->Enabled()) { 2702 li(scratch2, Operand(ExternalReference(counter))); 2703 lw(scratch1, MemOperand(scratch2)); 2704 Subu(scratch1, scratch1, Operand(value)); 2705 sw(scratch1, MemOperand(scratch2)); 2706 } 2707 } 2708 2709 2710 // ----------------------------------------------------------------------------- 2711 // Debugging 2712 2713 void MacroAssembler::Assert(Condition cc, const char* msg, 2714 Register rs, Operand rt) { 2715 if (FLAG_debug_code) 2716 Check(cc, msg, rs, rt); 2717 } 2718 2719 2720 void MacroAssembler::AssertRegisterIsRoot(Register reg, 2721 Heap::RootListIndex index) { 2722 if (FLAG_debug_code) { 2723 LoadRoot(at, index); 2724 Check(eq, "Register did not match expected root", reg, Operand(at)); 2725 } 2726 } 2727 2728 2729 void MacroAssembler::AssertFastElements(Register elements) { 2730 if (FLAG_debug_code) { 2731 ASSERT(!elements.is(at)); 2732 Label ok; 2733 Push(elements); 2734 lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); 2735 LoadRoot(at, Heap::kFixedArrayMapRootIndex); 2736 Branch(&ok, eq, elements, Operand(at)); 2737 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); 2738 Branch(&ok, eq, elements, Operand(at)); 2739 Abort("JSObject with fast elements map has slow elements"); 2740 bind(&ok); 2741 Pop(elements); 2742 } 2743 } 2744 2745 2746 void MacroAssembler::Check(Condition cc, const char* msg, 2747 Register rs, Operand rt) { 2748 Label L; 2749 Branch(&L, cc, rs, rt); 2750 Abort(msg); 2751 // will not return here 2752 bind(&L); 2753 } 2754 2755 2756 void MacroAssembler::Abort(const char* msg) { 2757 Label abort_start; 2758 bind(&abort_start); 2759 // We want to pass the msg string like a smi to avoid GC 2760 // problems, however msg is not guaranteed to be aligned 2761 // properly. Instead, we pass an aligned pointer that is 2762 // a proper v8 smi, but also pass the alignment difference 2763 // from the real pointer as a smi. 2764 intptr_t p1 = reinterpret_cast<intptr_t>(msg); 2765 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; 2766 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); 2767 #ifdef DEBUG 2768 if (msg != NULL) { 2769 RecordComment("Abort message: "); 2770 RecordComment(msg); 2771 } 2772 #endif 2773 // Disable stub call restrictions to always allow calls to abort. 2774 AllowStubCallsScope allow_scope(this, true); 2775 2776 li(a0, Operand(p0)); 2777 Push(a0); 2778 li(a0, Operand(Smi::FromInt(p1 - p0))); 2779 Push(a0); 2780 CallRuntime(Runtime::kAbort, 2); 2781 // will not return here 2782 if (is_trampoline_pool_blocked()) { 2783 // If the calling code cares about the exact number of 2784 // instructions generated, we insert padding here to keep the size 2785 // of the Abort macro constant. 2786 // Currently in debug mode with debug_code enabled the number of 2787 // generated instructions is 14, so we use this as a maximum value. 2788 static const int kExpectedAbortInstructions = 14; 2789 int abort_instructions = InstructionsGeneratedSince(&abort_start); 2790 ASSERT(abort_instructions <= kExpectedAbortInstructions); 2791 while (abort_instructions++ < kExpectedAbortInstructions) { 2792 nop(); 2793 } 2794 } 2795 } 2796 2797 2798 void MacroAssembler::LoadContext(Register dst, int context_chain_length) { 2799 if (context_chain_length > 0) { 2800 // Move up the chain of contexts to the context containing the slot. 2801 lw(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX))); 2802 // Load the function context (which is the incoming, outer context). 2803 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); 2804 for (int i = 1; i < context_chain_length; i++) { 2805 lw(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); 2806 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); 2807 } 2808 // The context may be an intermediate context, not a function context. 2809 lw(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); 2810 } else { // Slot is in the current function context. 2811 // The context may be an intermediate context, not a function context. 2812 lw(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX))); 2813 } 2814 } 2815 2816 2817 void MacroAssembler::LoadGlobalFunction(int index, Register function) { 2818 // Load the global or builtins object from the current context. 2819 lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); 2820 // Load the global context from the global or builtins object. 2821 lw(function, FieldMemOperand(function, 2822 GlobalObject::kGlobalContextOffset)); 2823 // Load the function from the global context. 2824 lw(function, MemOperand(function, Context::SlotOffset(index))); 2825 } 2826 2827 2828 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, 2829 Register map, 2830 Register scratch) { 2831 // Load the initial map. The global functions all have initial maps. 2832 lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 2833 if (FLAG_debug_code) { 2834 Label ok, fail; 2835 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false); 2836 Branch(&ok); 2837 bind(&fail); 2838 Abort("Global functions must have initial map"); 2839 bind(&ok); 2840 } 2841 } 2842 2843 2844 void MacroAssembler::EnterFrame(StackFrame::Type type) { 2845 addiu(sp, sp, -5 * kPointerSize); 2846 li(t8, Operand(Smi::FromInt(type))); 2847 li(t9, Operand(CodeObject())); 2848 sw(ra, MemOperand(sp, 4 * kPointerSize)); 2849 sw(fp, MemOperand(sp, 3 * kPointerSize)); 2850 sw(cp, MemOperand(sp, 2 * kPointerSize)); 2851 sw(t8, MemOperand(sp, 1 * kPointerSize)); 2852 sw(t9, MemOperand(sp, 0 * kPointerSize)); 2853 addiu(fp, sp, 3 * kPointerSize); 2854 } 2855 2856 2857 void MacroAssembler::LeaveFrame(StackFrame::Type type) { 2858 mov(sp, fp); 2859 lw(fp, MemOperand(sp, 0 * kPointerSize)); 2860 lw(ra, MemOperand(sp, 1 * kPointerSize)); 2861 addiu(sp, sp, 2 * kPointerSize); 2862 } 2863 2864 2865 void MacroAssembler::EnterExitFrame(Register hold_argc, 2866 Register hold_argv, 2867 Register hold_function, 2868 bool save_doubles) { 2869 // a0 is argc. 2870 sll(t8, a0, kPointerSizeLog2); 2871 addu(hold_argv, sp, t8); 2872 addiu(hold_argv, hold_argv, -kPointerSize); 2873 2874 // Compute callee's stack pointer before making changes and save it as 2875 // t9 register so that it is restored as sp register on exit, thereby 2876 // popping the args. 2877 // t9 = sp + kPointerSize * #args 2878 addu(t9, sp, t8); 2879 2880 // Compute the argv pointer and keep it in a callee-saved register. 2881 // This only seems to be needed for crankshaft and may cause problems 2882 // so it's disabled for now. 2883 // Subu(s6, t9, Operand(kPointerSize)); 2884 2885 // Align the stack at this point. 2886 AlignStack(0); 2887 2888 // Save registers. 2889 addiu(sp, sp, -12); 2890 sw(t9, MemOperand(sp, 8)); 2891 sw(ra, MemOperand(sp, 4)); 2892 sw(fp, MemOperand(sp, 0)); 2893 mov(fp, sp); // Setup new frame pointer. 2894 2895 li(t8, Operand(CodeObject())); 2896 Push(t8); // Accessed from ExitFrame::code_slot. 2897 2898 // Save the frame pointer and the context in top. 2899 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate()))); 2900 sw(fp, MemOperand(t8)); 2901 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate()))); 2902 sw(cp, MemOperand(t8)); 2903 2904 // Setup argc and the builtin function in callee-saved registers. 2905 mov(hold_argc, a0); 2906 mov(hold_function, a1); 2907 2908 // Optionally save all double registers. 2909 if (save_doubles) { 2910 #ifdef DEBUG 2911 int frame_alignment = ActivationFrameAlignment(); 2912 #endif 2913 // The stack alignment code above made sp unaligned, so add space for one 2914 // more double register and use aligned addresses. 2915 ASSERT(kDoubleSize == frame_alignment); 2916 // Mark the frame as containing doubles by pushing a non-valid return 2917 // address, i.e. 0. 2918 ASSERT(ExitFrameConstants::kMarkerOffset == -2 * kPointerSize); 2919 push(zero_reg); // Marker and alignment word. 2920 int space = FPURegister::kNumRegisters * kDoubleSize + kPointerSize; 2921 Subu(sp, sp, Operand(space)); 2922 // Remember: we only need to save every 2nd double FPU value. 2923 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { 2924 FPURegister reg = FPURegister::from_code(i); 2925 sdc1(reg, MemOperand(sp, i * kDoubleSize + kPointerSize)); 2926 } 2927 // Note that f0 will be accessible at fp - 2*kPointerSize - 2928 // FPURegister::kNumRegisters * kDoubleSize, since the code slot and the 2929 // alignment word were pushed after the fp. 2930 } 2931 } 2932 2933 2934 void MacroAssembler::LeaveExitFrame(bool save_doubles) { 2935 // Optionally restore all double registers. 2936 if (save_doubles) { 2937 // TODO(regis): Use vldrm instruction. 2938 // Remember: we only need to restore every 2nd double FPU value. 2939 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { 2940 FPURegister reg = FPURegister::from_code(i); 2941 // Register f30-f31 is just below the marker. 2942 const int offset = ExitFrameConstants::kMarkerOffset; 2943 ldc1(reg, MemOperand(fp, 2944 (i - FPURegister::kNumRegisters) * kDoubleSize + offset)); 2945 } 2946 } 2947 2948 // Clear top frame. 2949 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate()))); 2950 sw(zero_reg, MemOperand(t8)); 2951 2952 // Restore current context from top and clear it in debug mode. 2953 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate()))); 2954 lw(cp, MemOperand(t8)); 2955 #ifdef DEBUG 2956 sw(a3, MemOperand(t8)); 2957 #endif 2958 2959 // Pop the arguments, restore registers, and return. 2960 mov(sp, fp); // Respect ABI stack constraint. 2961 lw(fp, MemOperand(sp, 0)); 2962 lw(ra, MemOperand(sp, 4)); 2963 lw(sp, MemOperand(sp, 8)); 2964 jr(ra); 2965 nop(); // Branch delay slot nop. 2966 } 2967 2968 2969 void MacroAssembler::InitializeNewString(Register string, 2970 Register length, 2971 Heap::RootListIndex map_index, 2972 Register scratch1, 2973 Register scratch2) { 2974 sll(scratch1, length, kSmiTagSize); 2975 LoadRoot(scratch2, map_index); 2976 sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); 2977 li(scratch1, Operand(String::kEmptyHashField)); 2978 sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); 2979 sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); 2980 } 2981 2982 2983 int MacroAssembler::ActivationFrameAlignment() { 2984 #if defined(V8_HOST_ARCH_MIPS) 2985 // Running on the real platform. Use the alignment as mandated by the local 2986 // environment. 2987 // Note: This will break if we ever start generating snapshots on one Mips 2988 // platform for another Mips platform with a different alignment. 2989 return OS::ActivationFrameAlignment(); 2990 #else // defined(V8_HOST_ARCH_MIPS) 2991 // If we are using the simulator then we should always align to the expected 2992 // alignment. As the simulator is used to generate snapshots we do not know 2993 // if the target platform will need alignment, so this is controlled from a 2994 // flag. 2995 return FLAG_sim_stack_alignment; 2996 #endif // defined(V8_HOST_ARCH_MIPS) 2997 } 2998 2999 3000 void MacroAssembler::AlignStack(int offset) { 3001 // On MIPS an offset of 0 aligns to 0 modulo 8 bytes, 3002 // and an offset of 1 aligns to 4 modulo 8 bytes. 3003 #if defined(V8_HOST_ARCH_MIPS) 3004 // Running on the real platform. Use the alignment as mandated by the local 3005 // environment. 3006 // Note: This will break if we ever start generating snapshots on one MIPS 3007 // platform for another MIPS platform with a different alignment. 3008 int activation_frame_alignment = OS::ActivationFrameAlignment(); 3009 #else // defined(V8_HOST_ARCH_MIPS) 3010 // If we are using the simulator then we should always align to the expected 3011 // alignment. As the simulator is used to generate snapshots we do not know 3012 // if the target platform will need alignment, so we will always align at 3013 // this point here. 3014 int activation_frame_alignment = 2 * kPointerSize; 3015 #endif // defined(V8_HOST_ARCH_MIPS) 3016 if (activation_frame_alignment != kPointerSize) { 3017 // This code needs to be made more general if this assert doesn't hold. 3018 ASSERT(activation_frame_alignment == 2 * kPointerSize); 3019 if (offset == 0) { 3020 andi(t8, sp, activation_frame_alignment - 1); 3021 Push(zero_reg, eq, t8, zero_reg); 3022 } else { 3023 andi(t8, sp, activation_frame_alignment - 1); 3024 addiu(t8, t8, -4); 3025 Push(zero_reg, eq, t8, zero_reg); 3026 } 3027 } 3028 } 3029 3030 3031 3032 void MacroAssembler::JumpIfNotPowerOfTwoOrZero( 3033 Register reg, 3034 Register scratch, 3035 Label* not_power_of_two_or_zero) { 3036 Subu(scratch, reg, Operand(1)); 3037 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, 3038 scratch, Operand(zero_reg)); 3039 and_(at, scratch, reg); // In the delay slot. 3040 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); 3041 } 3042 3043 3044 void MacroAssembler::JumpIfNotBothSmi(Register reg1, 3045 Register reg2, 3046 Label* on_not_both_smi) { 3047 STATIC_ASSERT(kSmiTag == 0); 3048 ASSERT_EQ(1, kSmiTagMask); 3049 or_(at, reg1, reg2); 3050 andi(at, at, kSmiTagMask); 3051 Branch(on_not_both_smi, ne, at, Operand(zero_reg)); 3052 } 3053 3054 3055 void MacroAssembler::JumpIfEitherSmi(Register reg1, 3056 Register reg2, 3057 Label* on_either_smi) { 3058 STATIC_ASSERT(kSmiTag == 0); 3059 ASSERT_EQ(1, kSmiTagMask); 3060 // Both Smi tags must be 1 (not Smi). 3061 and_(at, reg1, reg2); 3062 andi(at, at, kSmiTagMask); 3063 Branch(on_either_smi, eq, at, Operand(zero_reg)); 3064 } 3065 3066 3067 void MacroAssembler::AbortIfSmi(Register object) { 3068 STATIC_ASSERT(kSmiTag == 0); 3069 andi(at, object, kSmiTagMask); 3070 Assert(ne, "Operand is a smi", at, Operand(zero_reg)); 3071 } 3072 3073 3074 void MacroAssembler::AbortIfNotSmi(Register object) { 3075 STATIC_ASSERT(kSmiTag == 0); 3076 andi(at, object, kSmiTagMask); 3077 Assert(eq, "Operand is a smi", at, Operand(zero_reg)); 3078 } 3079 3080 3081 void MacroAssembler::AbortIfNotRootValue(Register src, 3082 Heap::RootListIndex root_value_index, 3083 const char* message) { 3084 ASSERT(!src.is(at)); 3085 LoadRoot(at, root_value_index); 3086 Assert(eq, message, src, Operand(at)); 3087 } 3088 3089 3090 void MacroAssembler::JumpIfNotHeapNumber(Register object, 3091 Register heap_number_map, 3092 Register scratch, 3093 Label* on_not_heap_number) { 3094 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 3095 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); 3096 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); 3097 } 3098 3099 3100 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( 3101 Register first, 3102 Register second, 3103 Register scratch1, 3104 Register scratch2, 3105 Label* failure) { 3106 // Test that both first and second are sequential ASCII strings. 3107 // Assume that they are non-smis. 3108 lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); 3109 lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); 3110 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); 3111 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); 3112 3113 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, 3114 scratch2, 3115 scratch1, 3116 scratch2, 3117 failure); 3118 } 3119 3120 3121 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, 3122 Register second, 3123 Register scratch1, 3124 Register scratch2, 3125 Label* failure) { 3126 // Check that neither is a smi. 3127 STATIC_ASSERT(kSmiTag == 0); 3128 And(scratch1, first, Operand(second)); 3129 And(scratch1, scratch1, Operand(kSmiTagMask)); 3130 Branch(failure, eq, scratch1, Operand(zero_reg)); 3131 JumpIfNonSmisNotBothSequentialAsciiStrings(first, 3132 second, 3133 scratch1, 3134 scratch2, 3135 failure); 3136 } 3137 3138 3139 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( 3140 Register first, 3141 Register second, 3142 Register scratch1, 3143 Register scratch2, 3144 Label* failure) { 3145 int kFlatAsciiStringMask = 3146 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 3147 int kFlatAsciiStringTag = ASCII_STRING_TYPE; 3148 ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed. 3149 andi(scratch1, first, kFlatAsciiStringMask); 3150 Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag)); 3151 andi(scratch2, second, kFlatAsciiStringMask); 3152 Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag)); 3153 } 3154 3155 3156 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, 3157 Register scratch, 3158 Label* failure) { 3159 int kFlatAsciiStringMask = 3160 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; 3161 int kFlatAsciiStringTag = ASCII_STRING_TYPE; 3162 And(scratch, type, Operand(kFlatAsciiStringMask)); 3163 Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag)); 3164 } 3165 3166 3167 static const int kRegisterPassedArguments = 4; 3168 3169 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { 3170 int frame_alignment = ActivationFrameAlignment(); 3171 3172 // Reserve space for Isolate address which is always passed as last parameter 3173 num_arguments += 1; 3174 3175 // Up to four simple arguments are passed in registers a0..a3. 3176 // Those four arguments must have reserved argument slots on the stack for 3177 // mips, even though those argument slots are not normally used. 3178 // Remaining arguments are pushed on the stack, above (higher address than) 3179 // the argument slots. 3180 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0); 3181 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ? 3182 0 : num_arguments - kRegisterPassedArguments) + 3183 (StandardFrameConstants::kCArgsSlotsSize / 3184 kPointerSize); 3185 if (frame_alignment > kPointerSize) { 3186 // Make stack end at alignment and make room for num_arguments - 4 words 3187 // and the original value of sp. 3188 mov(scratch, sp); 3189 Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); 3190 ASSERT(IsPowerOf2(frame_alignment)); 3191 And(sp, sp, Operand(-frame_alignment)); 3192 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); 3193 } else { 3194 Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); 3195 } 3196 } 3197 3198 3199 void MacroAssembler::CallCFunction(ExternalReference function, 3200 int num_arguments) { 3201 CallCFunctionHelper(no_reg, function, at, num_arguments); 3202 } 3203 3204 3205 void MacroAssembler::CallCFunction(Register function, 3206 Register scratch, 3207 int num_arguments) { 3208 CallCFunctionHelper(function, 3209 ExternalReference::the_hole_value_location(isolate()), 3210 scratch, 3211 num_arguments); 3212 } 3213 3214 3215 void MacroAssembler::CallCFunctionHelper(Register function, 3216 ExternalReference function_reference, 3217 Register scratch, 3218 int num_arguments) { 3219 // Push Isolate address as the last argument. 3220 if (num_arguments < kRegisterPassedArguments) { 3221 Register arg_to_reg[] = {a0, a1, a2, a3}; 3222 Register r = arg_to_reg[num_arguments]; 3223 li(r, Operand(ExternalReference::isolate_address())); 3224 } else { 3225 int stack_passed_arguments = num_arguments - kRegisterPassedArguments + 3226 (StandardFrameConstants::kCArgsSlotsSize / 3227 kPointerSize); 3228 // Push Isolate address on the stack after the arguments. 3229 li(scratch, Operand(ExternalReference::isolate_address())); 3230 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); 3231 } 3232 num_arguments += 1; 3233 3234 // Make sure that the stack is aligned before calling a C function unless 3235 // running in the simulator. The simulator has its own alignment check which 3236 // provides more information. 3237 // The argument stots are presumed to have been set up by 3238 // PrepareCallCFunction. The C function must be called via t9, for mips ABI. 3239 3240 #if defined(V8_HOST_ARCH_MIPS) 3241 if (emit_debug_code()) { 3242 int frame_alignment = OS::ActivationFrameAlignment(); 3243 int frame_alignment_mask = frame_alignment - 1; 3244 if (frame_alignment > kPointerSize) { 3245 ASSERT(IsPowerOf2(frame_alignment)); 3246 Label alignment_as_expected; 3247 And(at, sp, Operand(frame_alignment_mask)); 3248 Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); 3249 // Don't use Check here, as it will call Runtime_Abort possibly 3250 // re-entering here. 3251 stop("Unexpected alignment in CallCFunction"); 3252 bind(&alignment_as_expected); 3253 } 3254 } 3255 #endif // V8_HOST_ARCH_MIPS 3256 3257 // Just call directly. The function called cannot cause a GC, or 3258 // allow preemption, so the return address in the link register 3259 // stays correct. 3260 if (!function.is(t9)) { 3261 mov(t9, function); 3262 function = t9; 3263 } 3264 3265 if (function.is(no_reg)) { 3266 li(t9, Operand(function_reference)); 3267 function = t9; 3268 } 3269 3270 Call(function); 3271 3272 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0); 3273 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ? 3274 0 : num_arguments - kRegisterPassedArguments) + 3275 (StandardFrameConstants::kCArgsSlotsSize / 3276 kPointerSize); 3277 3278 if (OS::ActivationFrameAlignment() > kPointerSize) { 3279 lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); 3280 } else { 3281 Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); 3282 } 3283 } 3284 3285 3286 #undef BRANCH_ARGS_CHECK 3287 3288 3289 #ifdef ENABLE_DEBUGGER_SUPPORT 3290 CodePatcher::CodePatcher(byte* address, int instructions) 3291 : address_(address), 3292 instructions_(instructions), 3293 size_(instructions * Assembler::kInstrSize), 3294 masm_(address, size_ + Assembler::kGap) { 3295 // Create a new macro assembler pointing to the address of the code to patch. 3296 // The size is adjusted with kGap on order for the assembler to generate size 3297 // bytes of instructions without failing with buffer size constraints. 3298 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 3299 } 3300 3301 3302 CodePatcher::~CodePatcher() { 3303 // Indicate that code has changed. 3304 CPU::FlushICache(address_, size_); 3305 3306 // Check that the code was patched as expected. 3307 ASSERT(masm_.pc_ == address_ + size_); 3308 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); 3309 } 3310 3311 3312 void CodePatcher::Emit(Instr x) { 3313 masm()->emit(x); 3314 } 3315 3316 3317 void CodePatcher::Emit(Address addr) { 3318 masm()->emit(reinterpret_cast<Instr>(addr)); 3319 } 3320 3321 3322 #endif // ENABLE_DEBUGGER_SUPPORT 3323 3324 3325 } } // namespace v8::internal 3326 3327 #endif // V8_TARGET_ARCH_MIPS 3328