Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global common subexpression elimination on machine
     11 // instructions using a scoped hash table based value numbering scheme. It
     12 // must be run while the machine function is still in SSA form.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "machine-cse"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/CodeGen/MachineDominators.h"
     19 #include "llvm/CodeGen/MachineInstr.h"
     20 #include "llvm/CodeGen/MachineRegisterInfo.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/ScopedHashTable.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/RecyclingAllocator.h"
     29 
     30 using namespace llvm;
     31 
     32 STATISTIC(NumCoalesces, "Number of copies coalesced");
     33 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
     34 STATISTIC(NumPhysCSEs,
     35           "Number of physreg referencing common subexpr eliminated");
     36 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
     37 
     38 namespace {
     39   class MachineCSE : public MachineFunctionPass {
     40     const TargetInstrInfo *TII;
     41     const TargetRegisterInfo *TRI;
     42     AliasAnalysis *AA;
     43     MachineDominatorTree *DT;
     44     MachineRegisterInfo *MRI;
     45   public:
     46     static char ID; // Pass identification
     47     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
     48       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
     49     }
     50 
     51     virtual bool runOnMachineFunction(MachineFunction &MF);
     52 
     53     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     54       AU.setPreservesCFG();
     55       MachineFunctionPass::getAnalysisUsage(AU);
     56       AU.addRequired<AliasAnalysis>();
     57       AU.addPreservedID(MachineLoopInfoID);
     58       AU.addRequired<MachineDominatorTree>();
     59       AU.addPreserved<MachineDominatorTree>();
     60     }
     61 
     62     virtual void releaseMemory() {
     63       ScopeMap.clear();
     64       Exps.clear();
     65     }
     66 
     67   private:
     68     const unsigned LookAheadLimit;
     69     typedef RecyclingAllocator<BumpPtrAllocator,
     70         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
     71     typedef ScopedHashTable<MachineInstr*, unsigned,
     72         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
     73     typedef ScopedHTType::ScopeTy ScopeType;
     74     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
     75     ScopedHTType VNT;
     76     SmallVector<MachineInstr*, 64> Exps;
     77     unsigned CurrVN;
     78 
     79     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
     80     bool isPhysDefTriviallyDead(unsigned Reg,
     81                                 MachineBasicBlock::const_iterator I,
     82                                 MachineBasicBlock::const_iterator E) const ;
     83     bool hasLivePhysRegDefUses(const MachineInstr *MI,
     84                                const MachineBasicBlock *MBB,
     85                                SmallSet<unsigned,8> &PhysRefs) const;
     86     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
     87                           SmallSet<unsigned,8> &PhysRefs) const;
     88     bool isCSECandidate(MachineInstr *MI);
     89     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
     90                            MachineInstr *CSMI, MachineInstr *MI);
     91     void EnterScope(MachineBasicBlock *MBB);
     92     void ExitScope(MachineBasicBlock *MBB);
     93     bool ProcessBlock(MachineBasicBlock *MBB);
     94     void ExitScopeIfDone(MachineDomTreeNode *Node,
     95                  DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
     96                  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
     97     bool PerformCSE(MachineDomTreeNode *Node);
     98   };
     99 } // end anonymous namespace
    100 
    101 char MachineCSE::ID = 0;
    102 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
    103                 "Machine Common Subexpression Elimination", false, false)
    104 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    105 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    106 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
    107                 "Machine Common Subexpression Elimination", false, false)
    108 
    109 FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
    110 
    111 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
    112                                           MachineBasicBlock *MBB) {
    113   bool Changed = false;
    114   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    115     MachineOperand &MO = MI->getOperand(i);
    116     if (!MO.isReg() || !MO.isUse())
    117       continue;
    118     unsigned Reg = MO.getReg();
    119     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    120       continue;
    121     if (!MRI->hasOneNonDBGUse(Reg))
    122       // Only coalesce single use copies. This ensure the copy will be
    123       // deleted.
    124       continue;
    125     MachineInstr *DefMI = MRI->getVRegDef(Reg);
    126     if (DefMI->getParent() != MBB)
    127       continue;
    128     if (!DefMI->isCopy())
    129       continue;
    130     unsigned SrcReg = DefMI->getOperand(1).getReg();
    131     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    132       continue;
    133     if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
    134       continue;
    135     if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
    136       continue;
    137     DEBUG(dbgs() << "Coalescing: " << *DefMI);
    138     DEBUG(dbgs() << "***     to: " << *MI);
    139     MO.setReg(SrcReg);
    140     MRI->clearKillFlags(SrcReg);
    141     DefMI->eraseFromParent();
    142     ++NumCoalesces;
    143     Changed = true;
    144   }
    145 
    146   return Changed;
    147 }
    148 
    149 bool
    150 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
    151                                    MachineBasicBlock::const_iterator I,
    152                                    MachineBasicBlock::const_iterator E) const {
    153   unsigned LookAheadLeft = LookAheadLimit;
    154   while (LookAheadLeft) {
    155     // Skip over dbg_value's.
    156     while (I != E && I->isDebugValue())
    157       ++I;
    158 
    159     if (I == E)
    160       // Reached end of block, register is obviously dead.
    161       return true;
    162 
    163     bool SeenDef = false;
    164     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    165       const MachineOperand &MO = I->getOperand(i);
    166       if (!MO.isReg() || !MO.getReg())
    167         continue;
    168       if (!TRI->regsOverlap(MO.getReg(), Reg))
    169         continue;
    170       if (MO.isUse())
    171         // Found a use!
    172         return false;
    173       SeenDef = true;
    174     }
    175     if (SeenDef)
    176       // See a def of Reg (or an alias) before encountering any use, it's
    177       // trivially dead.
    178       return true;
    179 
    180     --LookAheadLeft;
    181     ++I;
    182   }
    183   return false;
    184 }
    185 
    186 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
    187 /// physical registers (except for dead defs of physical registers). It also
    188 /// returns the physical register def by reference if it's the only one and the
    189 /// instruction does not uses a physical register.
    190 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
    191                                        const MachineBasicBlock *MBB,
    192                                        SmallSet<unsigned,8> &PhysRefs) const {
    193   MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
    194   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    195     const MachineOperand &MO = MI->getOperand(i);
    196     if (!MO.isReg())
    197       continue;
    198     unsigned Reg = MO.getReg();
    199     if (!Reg)
    200       continue;
    201     if (TargetRegisterInfo::isVirtualRegister(Reg))
    202       continue;
    203     // If the def is dead, it's ok. But the def may not marked "dead". That's
    204     // common since this pass is run before livevariables. We can scan
    205     // forward a few instructions and check if it is obviously dead.
    206     if (MO.isDef() &&
    207         (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
    208       continue;
    209     PhysRefs.insert(Reg);
    210     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
    211       PhysRefs.insert(*Alias);
    212   }
    213 
    214   return !PhysRefs.empty();
    215 }
    216 
    217 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
    218                                   SmallSet<unsigned,8> &PhysRefs) const {
    219   // For now conservatively returns false if the common subexpression is
    220   // not in the same basic block as the given instruction.
    221   MachineBasicBlock *MBB = MI->getParent();
    222   if (CSMI->getParent() != MBB)
    223     return false;
    224   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
    225   MachineBasicBlock::const_iterator E = MI;
    226   unsigned LookAheadLeft = LookAheadLimit;
    227   while (LookAheadLeft) {
    228     // Skip over dbg_value's.
    229     while (I != E && I->isDebugValue())
    230       ++I;
    231 
    232     if (I == E)
    233       return true;
    234 
    235     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    236       const MachineOperand &MO = I->getOperand(i);
    237       if (!MO.isReg() || !MO.isDef())
    238         continue;
    239       unsigned MOReg = MO.getReg();
    240       if (TargetRegisterInfo::isVirtualRegister(MOReg))
    241         continue;
    242       if (PhysRefs.count(MOReg))
    243         return false;
    244     }
    245 
    246     --LookAheadLeft;
    247     ++I;
    248   }
    249 
    250   return false;
    251 }
    252 
    253 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
    254   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
    255       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
    256     return false;
    257 
    258   // Ignore copies.
    259   if (MI->isCopyLike())
    260     return false;
    261 
    262   // Ignore stuff that we obviously can't move.
    263   const MCInstrDesc &MCID = MI->getDesc();
    264   if (MCID.mayStore() || MCID.isCall() || MCID.isTerminator() ||
    265       MI->hasUnmodeledSideEffects())
    266     return false;
    267 
    268   if (MCID.mayLoad()) {
    269     // Okay, this instruction does a load. As a refinement, we allow the target
    270     // to decide whether the loaded value is actually a constant. If so, we can
    271     // actually use it as a load.
    272     if (!MI->isInvariantLoad(AA))
    273       // FIXME: we should be able to hoist loads with no other side effects if
    274       // there are no other instructions which can change memory in this loop.
    275       // This is a trivial form of alias analysis.
    276       return false;
    277   }
    278   return true;
    279 }
    280 
    281 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
    282 /// common expression that defines Reg.
    283 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
    284                                    MachineInstr *CSMI, MachineInstr *MI) {
    285   // FIXME: Heuristics that works around the lack the live range splitting.
    286 
    287   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
    288   // an immediate predecessor. We don't want to increase register pressure and
    289   // end up causing other computation to be spilled.
    290   if (MI->getDesc().isAsCheapAsAMove()) {
    291     MachineBasicBlock *CSBB = CSMI->getParent();
    292     MachineBasicBlock *BB = MI->getParent();
    293     if (CSBB != BB && !CSBB->isSuccessor(BB))
    294       return false;
    295   }
    296 
    297   // Heuristics #2: If the expression doesn't not use a vr and the only use
    298   // of the redundant computation are copies, do not cse.
    299   bool HasVRegUse = false;
    300   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    301     const MachineOperand &MO = MI->getOperand(i);
    302     if (MO.isReg() && MO.isUse() &&
    303         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    304       HasVRegUse = true;
    305       break;
    306     }
    307   }
    308   if (!HasVRegUse) {
    309     bool HasNonCopyUse = false;
    310     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
    311            E = MRI->use_nodbg_end(); I != E; ++I) {
    312       MachineInstr *Use = &*I;
    313       // Ignore copies.
    314       if (!Use->isCopyLike()) {
    315         HasNonCopyUse = true;
    316         break;
    317       }
    318     }
    319     if (!HasNonCopyUse)
    320       return false;
    321   }
    322 
    323   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
    324   // it unless the defined value is already used in the BB of the new use.
    325   bool HasPHI = false;
    326   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
    327   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
    328        E = MRI->use_nodbg_end(); I != E; ++I) {
    329     MachineInstr *Use = &*I;
    330     HasPHI |= Use->isPHI();
    331     CSBBs.insert(Use->getParent());
    332   }
    333 
    334   if (!HasPHI)
    335     return true;
    336   return CSBBs.count(MI->getParent());
    337 }
    338 
    339 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
    340   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    341   ScopeType *Scope = new ScopeType(VNT);
    342   ScopeMap[MBB] = Scope;
    343 }
    344 
    345 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
    346   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    347   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
    348   assert(SI != ScopeMap.end());
    349   ScopeMap.erase(SI);
    350   delete SI->second;
    351 }
    352 
    353 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
    354   bool Changed = false;
    355 
    356   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
    357   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    358     MachineInstr *MI = &*I;
    359     ++I;
    360 
    361     if (!isCSECandidate(MI))
    362       continue;
    363 
    364     bool FoundCSE = VNT.count(MI);
    365     if (!FoundCSE) {
    366       // Look for trivial copy coalescing opportunities.
    367       if (PerformTrivialCoalescing(MI, MBB)) {
    368         Changed = true;
    369 
    370         // After coalescing MI itself may become a copy.
    371         if (MI->isCopyLike())
    372           continue;
    373         FoundCSE = VNT.count(MI);
    374       }
    375     }
    376 
    377     // Commute commutable instructions.
    378     bool Commuted = false;
    379     if (!FoundCSE && MI->getDesc().isCommutable()) {
    380       MachineInstr *NewMI = TII->commuteInstruction(MI);
    381       if (NewMI) {
    382         Commuted = true;
    383         FoundCSE = VNT.count(NewMI);
    384         if (NewMI != MI) {
    385           // New instruction. It doesn't need to be kept.
    386           NewMI->eraseFromParent();
    387           Changed = true;
    388         } else if (!FoundCSE)
    389           // MI was changed but it didn't help, commute it back!
    390           (void)TII->commuteInstruction(MI);
    391       }
    392     }
    393 
    394     // If the instruction defines physical registers and the values *may* be
    395     // used, then it's not safe to replace it with a common subexpression.
    396     // It's also not safe if the instruction uses physical registers.
    397     SmallSet<unsigned,8> PhysRefs;
    398     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs)) {
    399       FoundCSE = false;
    400 
    401       // ... Unless the CS is local and it also defines the physical register
    402       // which is not clobbered in between and the physical register uses
    403       // were not clobbered.
    404       unsigned CSVN = VNT.lookup(MI);
    405       MachineInstr *CSMI = Exps[CSVN];
    406       if (PhysRegDefsReach(CSMI, MI, PhysRefs))
    407         FoundCSE = true;
    408     }
    409 
    410     if (!FoundCSE) {
    411       VNT.insert(MI, CurrVN++);
    412       Exps.push_back(MI);
    413       continue;
    414     }
    415 
    416     // Found a common subexpression, eliminate it.
    417     unsigned CSVN = VNT.lookup(MI);
    418     MachineInstr *CSMI = Exps[CSVN];
    419     DEBUG(dbgs() << "Examining: " << *MI);
    420     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    421 
    422     // Check if it's profitable to perform this CSE.
    423     bool DoCSE = true;
    424     unsigned NumDefs = MI->getDesc().getNumDefs();
    425     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
    426       MachineOperand &MO = MI->getOperand(i);
    427       if (!MO.isReg() || !MO.isDef())
    428         continue;
    429       unsigned OldReg = MO.getReg();
    430       unsigned NewReg = CSMI->getOperand(i).getReg();
    431       if (OldReg == NewReg)
    432         continue;
    433       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
    434              TargetRegisterInfo::isVirtualRegister(NewReg) &&
    435              "Do not CSE physical register defs!");
    436       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
    437         DoCSE = false;
    438         break;
    439       }
    440       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
    441       --NumDefs;
    442     }
    443 
    444     // Actually perform the elimination.
    445     if (DoCSE) {
    446       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
    447         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
    448         MRI->clearKillFlags(CSEPairs[i].second);
    449       }
    450       MI->eraseFromParent();
    451       ++NumCSEs;
    452       if (!PhysRefs.empty())
    453         ++NumPhysCSEs;
    454       if (Commuted)
    455         ++NumCommutes;
    456       Changed = true;
    457     } else {
    458       DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
    459       VNT.insert(MI, CurrVN++);
    460       Exps.push_back(MI);
    461     }
    462     CSEPairs.clear();
    463   }
    464 
    465   return Changed;
    466 }
    467 
    468 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    469 /// dominator tree node if its a leaf or all of its children are done. Walk
    470 /// up the dominator tree to destroy ancestors which are now done.
    471 void
    472 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
    473                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
    474                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
    475   if (OpenChildren[Node])
    476     return;
    477 
    478   // Pop scope.
    479   ExitScope(Node->getBlock());
    480 
    481   // Now traverse upwards to pop ancestors whose offsprings are all done.
    482   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
    483     unsigned Left = --OpenChildren[Parent];
    484     if (Left != 0)
    485       break;
    486     ExitScope(Parent->getBlock());
    487     Node = Parent;
    488   }
    489 }
    490 
    491 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
    492   SmallVector<MachineDomTreeNode*, 32> Scopes;
    493   SmallVector<MachineDomTreeNode*, 8> WorkList;
    494   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
    495   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    496 
    497   CurrVN = 0;
    498 
    499   // Perform a DFS walk to determine the order of visit.
    500   WorkList.push_back(Node);
    501   do {
    502     Node = WorkList.pop_back_val();
    503     Scopes.push_back(Node);
    504     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    505     unsigned NumChildren = Children.size();
    506     OpenChildren[Node] = NumChildren;
    507     for (unsigned i = 0; i != NumChildren; ++i) {
    508       MachineDomTreeNode *Child = Children[i];
    509       ParentMap[Child] = Node;
    510       WorkList.push_back(Child);
    511     }
    512   } while (!WorkList.empty());
    513 
    514   // Now perform CSE.
    515   bool Changed = false;
    516   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    517     MachineDomTreeNode *Node = Scopes[i];
    518     MachineBasicBlock *MBB = Node->getBlock();
    519     EnterScope(MBB);
    520     Changed |= ProcessBlock(MBB);
    521     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    522     ExitScopeIfDone(Node, OpenChildren, ParentMap);
    523   }
    524 
    525   return Changed;
    526 }
    527 
    528 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
    529   TII = MF.getTarget().getInstrInfo();
    530   TRI = MF.getTarget().getRegisterInfo();
    531   MRI = &MF.getRegInfo();
    532   AA = &getAnalysis<AliasAnalysis>();
    533   DT = &getAnalysis<MachineDominatorTree>();
    534   return PerformCSE(DT->getRootNode());
    535 }
    536