1 //===- InstCombineAddSub.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/GetElementPtrTypeIterator.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// AddOne - Add one to a ConstantInt. 23 static Constant *AddOne(Constant *C) { 24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 25 } 26 /// SubOne - Subtract one from a ConstantInt. 27 static Constant *SubOne(ConstantInt *C) { 28 return ConstantInt::get(C->getContext(), C->getValue()-1); 29 } 30 31 32 // dyn_castFoldableMul - If this value is a multiply that can be folded into 33 // other computations (because it has a constant operand), return the 34 // non-constant operand of the multiply, and set CST to point to the multiplier. 35 // Otherwise, return null. 36 // 37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { 38 if (!V->hasOneUse() || !V->getType()->isIntegerTy()) 39 return 0; 40 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (I == 0) return 0; 43 44 if (I->getOpcode() == Instruction::Mul) 45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) 46 return I->getOperand(0); 47 if (I->getOpcode() == Instruction::Shl) 48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { 49 // The multiplier is really 1 << CST. 50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 51 uint32_t CSTVal = CST->getLimitedValue(BitWidth); 52 CST = ConstantInt::get(V->getType()->getContext(), 53 APInt(BitWidth, 1).shl(CSTVal)); 54 return I->getOperand(0); 55 } 56 return 0; 57 } 58 59 60 /// WillNotOverflowSignedAdd - Return true if we can prove that: 61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 62 /// This basically requires proving that the add in the original type would not 63 /// overflow to change the sign bit or have a carry out. 64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { 65 // There are different heuristics we can use for this. Here are some simple 66 // ones. 67 68 // Add has the property that adding any two 2's complement numbers can only 69 // have one carry bit which can change a sign. As such, if LHS and RHS each 70 // have at least two sign bits, we know that the addition of the two values 71 // will sign extend fine. 72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) 73 return true; 74 75 76 // If one of the operands only has one non-zero bit, and if the other operand 77 // has a known-zero bit in a more significant place than it (not including the 78 // sign bit) the ripple may go up to and fill the zero, but won't change the 79 // sign. For example, (X & ~4) + 1. 80 81 // TODO: Implement. 82 83 return false; 84 } 85 86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 87 bool Changed = SimplifyAssociativeOrCommutative(I); 88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 89 90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 91 I.hasNoUnsignedWrap(), TD)) 92 return ReplaceInstUsesWith(I, V); 93 94 // (A*B)+(A*C) -> A*(B+C) etc 95 if (Value *V = SimplifyUsingDistributiveLaws(I)) 96 return ReplaceInstUsesWith(I, V); 97 98 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 99 // X + (signbit) --> X ^ signbit 100 const APInt &Val = CI->getValue(); 101 if (Val.isSignBit()) 102 return BinaryOperator::CreateXor(LHS, RHS); 103 104 // See if SimplifyDemandedBits can simplify this. This handles stuff like 105 // (X & 254)+1 -> (X&254)|1 106 if (SimplifyDemandedInstructionBits(I)) 107 return &I; 108 109 // zext(bool) + C -> bool ? C + 1 : C 110 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 111 if (ZI->getSrcTy()->isIntegerTy(1)) 112 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 113 114 Value *XorLHS = 0; ConstantInt *XorRHS = 0; 115 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 116 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 117 const APInt &RHSVal = CI->getValue(); 118 unsigned ExtendAmt = 0; 119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 121 if (XorRHS->getValue() == -RHSVal) { 122 if (RHSVal.isPowerOf2()) 123 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 124 else if (XorRHS->getValue().isPowerOf2()) 125 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 126 } 127 128 if (ExtendAmt) { 129 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 130 if (!MaskedValueIsZero(XorLHS, Mask)) 131 ExtendAmt = 0; 132 } 133 134 if (ExtendAmt) { 135 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 136 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 137 return BinaryOperator::CreateAShr(NewShl, ShAmt); 138 } 139 } 140 } 141 142 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 143 if (Instruction *NV = FoldOpIntoPhi(I)) 144 return NV; 145 146 if (I.getType()->isIntegerTy(1)) 147 return BinaryOperator::CreateXor(LHS, RHS); 148 149 // X + X --> X << 1 150 if (LHS == RHS) { 151 BinaryOperator *New = 152 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 153 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 154 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 155 return New; 156 } 157 158 // -A + B --> B - A 159 // -A + -B --> -(A + B) 160 if (Value *LHSV = dyn_castNegVal(LHS)) { 161 if (Value *RHSV = dyn_castNegVal(RHS)) { 162 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 163 return BinaryOperator::CreateNeg(NewAdd); 164 } 165 166 return BinaryOperator::CreateSub(RHS, LHSV); 167 } 168 169 // A + -B --> A - B 170 if (!isa<Constant>(RHS)) 171 if (Value *V = dyn_castNegVal(RHS)) 172 return BinaryOperator::CreateSub(LHS, V); 173 174 175 ConstantInt *C2; 176 if (Value *X = dyn_castFoldableMul(LHS, C2)) { 177 if (X == RHS) // X*C + X --> X * (C+1) 178 return BinaryOperator::CreateMul(RHS, AddOne(C2)); 179 180 // X*C1 + X*C2 --> X * (C1+C2) 181 ConstantInt *C1; 182 if (X == dyn_castFoldableMul(RHS, C1)) 183 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); 184 } 185 186 // X + X*C --> X * (C+1) 187 if (dyn_castFoldableMul(RHS, C2) == LHS) 188 return BinaryOperator::CreateMul(LHS, AddOne(C2)); 189 190 // A+B --> A|B iff A and B have no bits set in common. 191 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 192 APInt Mask = APInt::getAllOnesValue(IT->getBitWidth()); 193 APInt LHSKnownOne(IT->getBitWidth(), 0); 194 APInt LHSKnownZero(IT->getBitWidth(), 0); 195 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); 196 if (LHSKnownZero != 0) { 197 APInt RHSKnownOne(IT->getBitWidth(), 0); 198 APInt RHSKnownZero(IT->getBitWidth(), 0); 199 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); 200 201 // No bits in common -> bitwise or. 202 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 203 return BinaryOperator::CreateOr(LHS, RHS); 204 } 205 } 206 207 // W*X + Y*Z --> W * (X+Z) iff W == Y 208 { 209 Value *W, *X, *Y, *Z; 210 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && 211 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { 212 if (W != Y) { 213 if (W == Z) { 214 std::swap(Y, Z); 215 } else if (Y == X) { 216 std::swap(W, X); 217 } else if (X == Z) { 218 std::swap(Y, Z); 219 std::swap(W, X); 220 } 221 } 222 223 if (W == Y) { 224 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); 225 return BinaryOperator::CreateMul(W, NewAdd); 226 } 227 } 228 } 229 230 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 231 Value *X = 0; 232 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 233 return BinaryOperator::CreateSub(SubOne(CRHS), X); 234 235 // (X & FF00) + xx00 -> (X+xx00) & FF00 236 if (LHS->hasOneUse() && 237 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 238 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 239 // See if all bits from the first bit set in the Add RHS up are included 240 // in the mask. First, get the rightmost bit. 241 const APInt &AddRHSV = CRHS->getValue(); 242 243 // Form a mask of all bits from the lowest bit added through the top. 244 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 245 246 // See if the and mask includes all of these bits. 247 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 248 249 if (AddRHSHighBits == AddRHSHighBitsAnd) { 250 // Okay, the xform is safe. Insert the new add pronto. 251 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 252 return BinaryOperator::CreateAnd(NewAdd, C2); 253 } 254 } 255 256 // Try to fold constant add into select arguments. 257 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 258 if (Instruction *R = FoldOpIntoSelect(I, SI)) 259 return R; 260 } 261 262 // add (select X 0 (sub n A)) A --> select X A n 263 { 264 SelectInst *SI = dyn_cast<SelectInst>(LHS); 265 Value *A = RHS; 266 if (!SI) { 267 SI = dyn_cast<SelectInst>(RHS); 268 A = LHS; 269 } 270 if (SI && SI->hasOneUse()) { 271 Value *TV = SI->getTrueValue(); 272 Value *FV = SI->getFalseValue(); 273 Value *N; 274 275 // Can we fold the add into the argument of the select? 276 // We check both true and false select arguments for a matching subtract. 277 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 278 // Fold the add into the true select value. 279 return SelectInst::Create(SI->getCondition(), N, A); 280 281 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 282 // Fold the add into the false select value. 283 return SelectInst::Create(SI->getCondition(), A, N); 284 } 285 } 286 287 // Check for (add (sext x), y), see if we can merge this into an 288 // integer add followed by a sext. 289 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 290 // (add (sext x), cst) --> (sext (add x, cst')) 291 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 292 Constant *CI = 293 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 294 if (LHSConv->hasOneUse() && 295 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 296 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 297 // Insert the new, smaller add. 298 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 299 CI, "addconv"); 300 return new SExtInst(NewAdd, I.getType()); 301 } 302 } 303 304 // (add (sext x), (sext y)) --> (sext (add int x, y)) 305 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 306 // Only do this if x/y have the same type, if at last one of them has a 307 // single use (so we don't increase the number of sexts), and if the 308 // integer add will not overflow. 309 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 310 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 311 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 312 RHSConv->getOperand(0))) { 313 // Insert the new integer add. 314 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 315 RHSConv->getOperand(0), "addconv"); 316 return new SExtInst(NewAdd, I.getType()); 317 } 318 } 319 } 320 321 return Changed ? &I : 0; 322 } 323 324 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 325 bool Changed = SimplifyAssociativeOrCommutative(I); 326 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 327 328 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 329 // X + 0 --> X 330 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 331 if (CFP->isExactlyValue(ConstantFP::getNegativeZero 332 (I.getType())->getValueAPF())) 333 return ReplaceInstUsesWith(I, LHS); 334 } 335 336 if (isa<PHINode>(LHS)) 337 if (Instruction *NV = FoldOpIntoPhi(I)) 338 return NV; 339 } 340 341 // -A + B --> B - A 342 // -A + -B --> -(A + B) 343 if (Value *LHSV = dyn_castFNegVal(LHS)) 344 return BinaryOperator::CreateFSub(RHS, LHSV); 345 346 // A + -B --> A - B 347 if (!isa<Constant>(RHS)) 348 if (Value *V = dyn_castFNegVal(RHS)) 349 return BinaryOperator::CreateFSub(LHS, V); 350 351 // Check for X+0.0. Simplify it to X if we know X is not -0.0. 352 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 353 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) 354 return ReplaceInstUsesWith(I, LHS); 355 356 // Check for (fadd double (sitofp x), y), see if we can merge this into an 357 // integer add followed by a promotion. 358 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 359 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 360 // ... if the constant fits in the integer value. This is useful for things 361 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 362 // requires a constant pool load, and generally allows the add to be better 363 // instcombined. 364 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 365 Constant *CI = 366 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 367 if (LHSConv->hasOneUse() && 368 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 369 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 370 // Insert the new integer add. 371 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 372 CI, "addconv"); 373 return new SIToFPInst(NewAdd, I.getType()); 374 } 375 } 376 377 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 378 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 379 // Only do this if x/y have the same type, if at last one of them has a 380 // single use (so we don't increase the number of int->fp conversions), 381 // and if the integer add will not overflow. 382 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 383 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 384 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 385 RHSConv->getOperand(0))) { 386 // Insert the new integer add. 387 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 388 RHSConv->getOperand(0),"addconv"); 389 return new SIToFPInst(NewAdd, I.getType()); 390 } 391 } 392 } 393 394 return Changed ? &I : 0; 395 } 396 397 398 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the 399 /// code necessary to compute the offset from the base pointer (without adding 400 /// in the base pointer). Return the result as a signed integer of intptr size. 401 Value *InstCombiner::EmitGEPOffset(User *GEP) { 402 TargetData &TD = *getTargetData(); 403 gep_type_iterator GTI = gep_type_begin(GEP); 404 Type *IntPtrTy = TD.getIntPtrType(GEP->getContext()); 405 Value *Result = Constant::getNullValue(IntPtrTy); 406 407 // If the GEP is inbounds, we know that none of the addressing operations will 408 // overflow in an unsigned sense. 409 bool isInBounds = cast<GEPOperator>(GEP)->isInBounds(); 410 411 // Build a mask for high order bits. 412 unsigned IntPtrWidth = TD.getPointerSizeInBits(); 413 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 414 415 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e; 416 ++i, ++GTI) { 417 Value *Op = *i; 418 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask; 419 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) { 420 if (OpC->isZero()) continue; 421 422 // Handle a struct index, which adds its field offset to the pointer. 423 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 424 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 425 426 if (Size) 427 Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size), 428 GEP->getName()+".offs"); 429 continue; 430 } 431 432 Constant *Scale = ConstantInt::get(IntPtrTy, Size); 433 Constant *OC = 434 ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); 435 Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/); 436 // Emit an add instruction. 437 Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs"); 438 continue; 439 } 440 // Convert to correct type. 441 if (Op->getType() != IntPtrTy) 442 Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c"); 443 if (Size != 1) { 444 // We'll let instcombine(mul) convert this to a shl if possible. 445 Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size), 446 GEP->getName()+".idx", isInBounds /*NUW*/); 447 } 448 449 // Emit an add instruction. 450 Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs"); 451 } 452 return Result; 453 } 454 455 456 457 458 /// Optimize pointer differences into the same array into a size. Consider: 459 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 460 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 461 /// 462 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 463 Type *Ty) { 464 assert(TD && "Must have target data info for this"); 465 466 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 467 // this. 468 bool Swapped = false; 469 GetElementPtrInst *GEP = 0; 470 ConstantExpr *CstGEP = 0; 471 472 // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo". 473 // For now we require one side to be the base pointer "A" or a constant 474 // expression derived from it. 475 if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) { 476 // (gep X, ...) - X 477 if (LHSGEP->getOperand(0) == RHS) { 478 GEP = LHSGEP; 479 Swapped = false; 480 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) { 481 // (gep X, ...) - (ce_gep X, ...) 482 if (CE->getOpcode() == Instruction::GetElementPtr && 483 LHSGEP->getOperand(0) == CE->getOperand(0)) { 484 CstGEP = CE; 485 GEP = LHSGEP; 486 Swapped = false; 487 } 488 } 489 } 490 491 if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) { 492 // X - (gep X, ...) 493 if (RHSGEP->getOperand(0) == LHS) { 494 GEP = RHSGEP; 495 Swapped = true; 496 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) { 497 // (ce_gep X, ...) - (gep X, ...) 498 if (CE->getOpcode() == Instruction::GetElementPtr && 499 RHSGEP->getOperand(0) == CE->getOperand(0)) { 500 CstGEP = CE; 501 GEP = RHSGEP; 502 Swapped = true; 503 } 504 } 505 } 506 507 if (GEP == 0) 508 return 0; 509 510 // Emit the offset of the GEP and an intptr_t. 511 Value *Result = EmitGEPOffset(GEP); 512 513 // If we had a constant expression GEP on the other side offsetting the 514 // pointer, subtract it from the offset we have. 515 if (CstGEP) { 516 Value *CstOffset = EmitGEPOffset(CstGEP); 517 Result = Builder->CreateSub(Result, CstOffset); 518 } 519 520 521 // If we have p - gep(p, ...) then we have to negate the result. 522 if (Swapped) 523 Result = Builder->CreateNeg(Result, "diff.neg"); 524 525 return Builder->CreateIntCast(Result, Ty, true); 526 } 527 528 529 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 530 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 531 532 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 533 I.hasNoUnsignedWrap(), TD)) 534 return ReplaceInstUsesWith(I, V); 535 536 // (A*B)-(A*C) -> A*(B-C) etc 537 if (Value *V = SimplifyUsingDistributiveLaws(I)) 538 return ReplaceInstUsesWith(I, V); 539 540 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. 541 if (Value *V = dyn_castNegVal(Op1)) { 542 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 543 Res->setHasNoSignedWrap(I.hasNoSignedWrap()); 544 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 545 return Res; 546 } 547 548 if (I.getType()->isIntegerTy(1)) 549 return BinaryOperator::CreateXor(Op0, Op1); 550 551 // Replace (-1 - A) with (~A). 552 if (match(Op0, m_AllOnes())) 553 return BinaryOperator::CreateNot(Op1); 554 555 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 556 // C - ~X == X + (1+C) 557 Value *X = 0; 558 if (match(Op1, m_Not(m_Value(X)))) 559 return BinaryOperator::CreateAdd(X, AddOne(C)); 560 561 // -(X >>u 31) -> (X >>s 31) 562 // -(X >>s 31) -> (X >>u 31) 563 if (C->isZero()) { 564 Value *X; ConstantInt *CI; 565 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 566 // Verify we are shifting out everything but the sign bit. 567 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 568 return BinaryOperator::CreateAShr(X, CI); 569 570 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 571 // Verify we are shifting out everything but the sign bit. 572 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 573 return BinaryOperator::CreateLShr(X, CI); 574 } 575 576 // Try to fold constant sub into select arguments. 577 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 578 if (Instruction *R = FoldOpIntoSelect(I, SI)) 579 return R; 580 581 // C - zext(bool) -> bool ? C - 1 : C 582 if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1)) 583 if (ZI->getSrcTy()->isIntegerTy(1)) 584 return SelectInst::Create(ZI->getOperand(0), SubOne(C), C); 585 586 // C-(X+C2) --> (C-C2)-X 587 ConstantInt *C2; 588 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2)))) 589 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 590 } 591 592 593 { Value *Y; 594 // X-(X+Y) == -Y X-(Y+X) == -Y 595 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 596 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 597 return BinaryOperator::CreateNeg(Y); 598 599 // (X-Y)-X == -Y 600 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 601 return BinaryOperator::CreateNeg(Y); 602 } 603 604 if (Op1->hasOneUse()) { 605 Value *X = 0, *Y = 0, *Z = 0; 606 Constant *C = 0; 607 ConstantInt *CI = 0; 608 609 // (X - (Y - Z)) --> (X + (Z - Y)). 610 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 611 return BinaryOperator::CreateAdd(Op0, 612 Builder->CreateSub(Z, Y, Op1->getName())); 613 614 // (X - (X & Y)) --> (X & ~Y) 615 // 616 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 617 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 618 return BinaryOperator::CreateAnd(Op0, 619 Builder->CreateNot(Y, Y->getName() + ".not")); 620 621 // 0 - (X sdiv C) -> (X sdiv -C) 622 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && 623 match(Op0, m_Zero())) 624 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 625 626 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 627 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 628 if (Value *XNeg = dyn_castNegVal(X)) 629 return BinaryOperator::CreateShl(XNeg, Y); 630 631 // X - X*C --> X * (1-C) 632 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) { 633 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); 634 return BinaryOperator::CreateMul(Op0, CP1); 635 } 636 637 // X - X<<C --> X * (1-(1<<C)) 638 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) { 639 Constant *One = ConstantInt::get(I.getType(), 1); 640 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); 641 return BinaryOperator::CreateMul(Op0, C); 642 } 643 644 // X - A*-B -> X + A*B 645 // X - -A*B -> X + A*B 646 Value *A, *B; 647 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 648 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 649 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 650 651 // X - A*CI -> X + A*-CI 652 // X - CI*A -> X + A*-CI 653 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) || 654 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) { 655 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 656 return BinaryOperator::CreateAdd(Op0, NewMul); 657 } 658 } 659 660 ConstantInt *C1; 661 if (Value *X = dyn_castFoldableMul(Op0, C1)) { 662 if (X == Op1) // X*C - X --> X * (C-1) 663 return BinaryOperator::CreateMul(Op1, SubOne(C1)); 664 665 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) 666 if (X == dyn_castFoldableMul(Op1, C2)) 667 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); 668 } 669 670 // Optimize pointer differences into the same array into a size. Consider: 671 // &A[10] - &A[0]: we should compile this to "10". 672 if (TD) { 673 Value *LHSOp, *RHSOp; 674 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 675 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 676 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 677 return ReplaceInstUsesWith(I, Res); 678 679 // trunc(p)-trunc(q) -> trunc(p-q) 680 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 681 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 682 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 683 return ReplaceInstUsesWith(I, Res); 684 } 685 686 return 0; 687 } 688 689 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 690 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 691 692 // If this is a 'B = x-(-A)', change to B = x+A... 693 if (Value *V = dyn_castFNegVal(Op1)) 694 return BinaryOperator::CreateFAdd(Op0, V); 695 696 return 0; 697 } 698