Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass moves instructions into successor blocks when possible, so that
     11 // they aren't executed on paths where their results aren't needed.
     12 //
     13 // This pass is not intended to be a replacement or a complete alternative
     14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
     15 // constructs that are not exposed before lowering and instruction selection.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define DEBUG_TYPE "machine-sink"
     20 #include "llvm/CodeGen/Passes.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/MachineDominators.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Target/TargetRegisterInfo.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 using namespace llvm;
     34 
     35 static cl::opt<bool>
     36 SplitEdges("machine-sink-split",
     37            cl::desc("Split critical edges during machine sinking"),
     38            cl::init(true), cl::Hidden);
     39 
     40 STATISTIC(NumSunk,      "Number of machine instructions sunk");
     41 STATISTIC(NumSplit,     "Number of critical edges split");
     42 STATISTIC(NumCoalesces, "Number of copies coalesced");
     43 
     44 namespace {
     45   class MachineSinking : public MachineFunctionPass {
     46     const TargetInstrInfo *TII;
     47     const TargetRegisterInfo *TRI;
     48     MachineRegisterInfo  *MRI;  // Machine register information
     49     MachineDominatorTree *DT;   // Machine dominator tree
     50     MachineLoopInfo *LI;
     51     AliasAnalysis *AA;
     52     BitVector AllocatableSet;   // Which physregs are allocatable?
     53 
     54     // Remember which edges have been considered for breaking.
     55     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
     56     CEBCandidates;
     57 
     58   public:
     59     static char ID; // Pass identification
     60     MachineSinking() : MachineFunctionPass(ID) {
     61       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
     62     }
     63 
     64     virtual bool runOnMachineFunction(MachineFunction &MF);
     65 
     66     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     67       AU.setPreservesCFG();
     68       MachineFunctionPass::getAnalysisUsage(AU);
     69       AU.addRequired<AliasAnalysis>();
     70       AU.addRequired<MachineDominatorTree>();
     71       AU.addRequired<MachineLoopInfo>();
     72       AU.addPreserved<MachineDominatorTree>();
     73       AU.addPreserved<MachineLoopInfo>();
     74     }
     75 
     76     virtual void releaseMemory() {
     77       CEBCandidates.clear();
     78     }
     79 
     80   private:
     81     bool ProcessBlock(MachineBasicBlock &MBB);
     82     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
     83                                      MachineBasicBlock *From,
     84                                      MachineBasicBlock *To);
     85     MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
     86                                          MachineBasicBlock *From,
     87                                          MachineBasicBlock *To,
     88                                          bool BreakPHIEdge);
     89     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
     90     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
     91                                  MachineBasicBlock *DefMBB,
     92                                  bool &BreakPHIEdge, bool &LocalUse) const;
     93     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
     94                                          MachineBasicBlock *MBB);
     95   };
     96 } // end anonymous namespace
     97 
     98 char MachineSinking::ID = 0;
     99 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
    100                 "Machine code sinking", false, false)
    101 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    102 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    103 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    104 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
    105                 "Machine code sinking", false, false)
    106 
    107 FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
    108 
    109 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
    110                                                      MachineBasicBlock *MBB) {
    111   if (!MI->isCopy())
    112     return false;
    113 
    114   unsigned SrcReg = MI->getOperand(1).getReg();
    115   unsigned DstReg = MI->getOperand(0).getReg();
    116   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
    117       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
    118       !MRI->hasOneNonDBGUse(SrcReg))
    119     return false;
    120 
    121   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
    122   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
    123   if (SRC != DRC)
    124     return false;
    125 
    126   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    127   if (DefMI->isCopyLike())
    128     return false;
    129   DEBUG(dbgs() << "Coalescing: " << *DefMI);
    130   DEBUG(dbgs() << "*** to: " << *MI);
    131   MRI->replaceRegWith(DstReg, SrcReg);
    132   MI->eraseFromParent();
    133   ++NumCoalesces;
    134   return true;
    135 }
    136 
    137 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
    138 /// occur in blocks dominated by the specified block. If any use is in the
    139 /// definition block, then return false since it is never legal to move def
    140 /// after uses.
    141 bool
    142 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
    143                                         MachineBasicBlock *MBB,
    144                                         MachineBasicBlock *DefMBB,
    145                                         bool &BreakPHIEdge,
    146                                         bool &LocalUse) const {
    147   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    148          "Only makes sense for vregs");
    149 
    150   if (MRI->use_nodbg_empty(Reg))
    151     return true;
    152 
    153   // Ignoring debug uses is necessary so debug info doesn't affect the code.
    154   // This may leave a referencing dbg_value in the original block, before
    155   // the definition of the vreg.  Dwarf generator handles this although the
    156   // user might not get the right info at runtime.
    157 
    158   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
    159   // into and they are all PHI nodes. In this case, machine-sink must break
    160   // the critical edge first. e.g.
    161   //
    162   // BB#1: derived from LLVM BB %bb4.preheader
    163   //   Predecessors according to CFG: BB#0
    164   //     ...
    165   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
    166   //     ...
    167   //     JE_4 <BB#37>, %EFLAGS<imp-use>
    168   //   Successors according to CFG: BB#37 BB#2
    169   //
    170   // BB#2: derived from LLVM BB %bb.nph
    171   //   Predecessors according to CFG: BB#0 BB#1
    172   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
    173   BreakPHIEdge = true;
    174   for (MachineRegisterInfo::use_nodbg_iterator
    175          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
    176        I != E; ++I) {
    177     MachineInstr *UseInst = &*I;
    178     MachineBasicBlock *UseBlock = UseInst->getParent();
    179     if (!(UseBlock == MBB && UseInst->isPHI() &&
    180           UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) {
    181       BreakPHIEdge = false;
    182       break;
    183     }
    184   }
    185   if (BreakPHIEdge)
    186     return true;
    187 
    188   for (MachineRegisterInfo::use_nodbg_iterator
    189          I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
    190        I != E; ++I) {
    191     // Determine the block of the use.
    192     MachineInstr *UseInst = &*I;
    193     MachineBasicBlock *UseBlock = UseInst->getParent();
    194     if (UseInst->isPHI()) {
    195       // PHI nodes use the operand in the predecessor block, not the block with
    196       // the PHI.
    197       UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
    198     } else if (UseBlock == DefMBB) {
    199       LocalUse = true;
    200       return false;
    201     }
    202 
    203     // Check that it dominates.
    204     if (!DT->dominates(MBB, UseBlock))
    205       return false;
    206   }
    207 
    208   return true;
    209 }
    210 
    211 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
    212   DEBUG(dbgs() << "******** Machine Sinking ********\n");
    213 
    214   const TargetMachine &TM = MF.getTarget();
    215   TII = TM.getInstrInfo();
    216   TRI = TM.getRegisterInfo();
    217   MRI = &MF.getRegInfo();
    218   DT = &getAnalysis<MachineDominatorTree>();
    219   LI = &getAnalysis<MachineLoopInfo>();
    220   AA = &getAnalysis<AliasAnalysis>();
    221   AllocatableSet = TRI->getAllocatableSet(MF);
    222 
    223   bool EverMadeChange = false;
    224 
    225   while (1) {
    226     bool MadeChange = false;
    227 
    228     // Process all basic blocks.
    229     CEBCandidates.clear();
    230     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
    231          I != E; ++I)
    232       MadeChange |= ProcessBlock(*I);
    233 
    234     // If this iteration over the code changed anything, keep iterating.
    235     if (!MadeChange) break;
    236     EverMadeChange = true;
    237   }
    238   return EverMadeChange;
    239 }
    240 
    241 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
    242   // Can't sink anything out of a block that has less than two successors.
    243   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
    244 
    245   // Don't bother sinking code out of unreachable blocks. In addition to being
    246   // unprofitable, it can also lead to infinite looping, because in an
    247   // unreachable loop there may be nowhere to stop.
    248   if (!DT->isReachableFromEntry(&MBB)) return false;
    249 
    250   bool MadeChange = false;
    251 
    252   // Walk the basic block bottom-up.  Remember if we saw a store.
    253   MachineBasicBlock::iterator I = MBB.end();
    254   --I;
    255   bool ProcessedBegin, SawStore = false;
    256   do {
    257     MachineInstr *MI = I;  // The instruction to sink.
    258 
    259     // Predecrement I (if it's not begin) so that it isn't invalidated by
    260     // sinking.
    261     ProcessedBegin = I == MBB.begin();
    262     if (!ProcessedBegin)
    263       --I;
    264 
    265     if (MI->isDebugValue())
    266       continue;
    267 
    268     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
    269     if (Joined) {
    270       MadeChange = true;
    271       continue;
    272     }
    273 
    274     if (SinkInstruction(MI, SawStore))
    275       ++NumSunk, MadeChange = true;
    276 
    277     // If we just processed the first instruction in the block, we're done.
    278   } while (!ProcessedBegin);
    279 
    280   return MadeChange;
    281 }
    282 
    283 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
    284                                                  MachineBasicBlock *From,
    285                                                  MachineBasicBlock *To) {
    286   // FIXME: Need much better heuristics.
    287 
    288   // If the pass has already considered breaking this edge (during this pass
    289   // through the function), then let's go ahead and break it. This means
    290   // sinking multiple "cheap" instructions into the same block.
    291   if (!CEBCandidates.insert(std::make_pair(From, To)))
    292     return true;
    293 
    294   if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove())
    295     return true;
    296 
    297   // MI is cheap, we probably don't want to break the critical edge for it.
    298   // However, if this would allow some definitions of its source operands
    299   // to be sunk then it's probably worth it.
    300   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    301     const MachineOperand &MO = MI->getOperand(i);
    302     if (!MO.isReg()) continue;
    303     unsigned Reg = MO.getReg();
    304     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
    305       continue;
    306     if (MRI->hasOneNonDBGUse(Reg))
    307       return true;
    308   }
    309 
    310   return false;
    311 }
    312 
    313 MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
    314                                                      MachineBasicBlock *FromBB,
    315                                                      MachineBasicBlock *ToBB,
    316                                                      bool BreakPHIEdge) {
    317   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    318     return 0;
    319 
    320   // Avoid breaking back edge. From == To means backedge for single BB loop.
    321   if (!SplitEdges || FromBB == ToBB)
    322     return 0;
    323 
    324   // Check for backedges of more "complex" loops.
    325   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
    326       LI->isLoopHeader(ToBB))
    327     return 0;
    328 
    329   // It's not always legal to break critical edges and sink the computation
    330   // to the edge.
    331   //
    332   // BB#1:
    333   // v1024
    334   // Beq BB#3
    335   // <fallthrough>
    336   // BB#2:
    337   // ... no uses of v1024
    338   // <fallthrough>
    339   // BB#3:
    340   // ...
    341   //       = v1024
    342   //
    343   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
    344   //
    345   // BB#1:
    346   // ...
    347   // Bne BB#2
    348   // BB#4:
    349   // v1024 =
    350   // B BB#3
    351   // BB#2:
    352   // ... no uses of v1024
    353   // <fallthrough>
    354   // BB#3:
    355   // ...
    356   //       = v1024
    357   //
    358   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
    359   // flow. We need to ensure the new basic block where the computation is
    360   // sunk to dominates all the uses.
    361   // It's only legal to break critical edge and sink the computation to the
    362   // new block if all the predecessors of "To", except for "From", are
    363   // not dominated by "From". Given SSA property, this means these
    364   // predecessors are dominated by "To".
    365   //
    366   // There is no need to do this check if all the uses are PHI nodes. PHI
    367   // sources are only defined on the specific predecessor edges.
    368   if (!BreakPHIEdge) {
    369     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
    370            E = ToBB->pred_end(); PI != E; ++PI) {
    371       if (*PI == FromBB)
    372         continue;
    373       if (!DT->dominates(ToBB, *PI))
    374         return 0;
    375     }
    376   }
    377 
    378   return FromBB->SplitCriticalEdge(ToBB, this);
    379 }
    380 
    381 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
    382   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
    383 }
    384 
    385 /// SinkInstruction - Determine whether it is safe to sink the specified machine
    386 /// instruction out of its current block into a successor.
    387 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
    388   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
    389   // be close to the source to make it easier to coalesce.
    390   if (AvoidsSinking(MI, MRI))
    391     return false;
    392 
    393   // Check if it's safe to move the instruction.
    394   if (!MI->isSafeToMove(TII, AA, SawStore))
    395     return false;
    396 
    397   // FIXME: This should include support for sinking instructions within the
    398   // block they are currently in to shorten the live ranges.  We often get
    399   // instructions sunk into the top of a large block, but it would be better to
    400   // also sink them down before their first use in the block.  This xform has to
    401   // be careful not to *increase* register pressure though, e.g. sinking
    402   // "x = y + z" down if it kills y and z would increase the live ranges of y
    403   // and z and only shrink the live range of x.
    404 
    405   // Loop over all the operands of the specified instruction.  If there is
    406   // anything we can't handle, bail out.
    407   MachineBasicBlock *ParentBlock = MI->getParent();
    408 
    409   // SuccToSinkTo - This is the successor to sink this instruction to, once we
    410   // decide.
    411   MachineBasicBlock *SuccToSinkTo = 0;
    412 
    413   bool BreakPHIEdge = false;
    414   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    415     const MachineOperand &MO = MI->getOperand(i);
    416     if (!MO.isReg()) continue;  // Ignore non-register operands.
    417 
    418     unsigned Reg = MO.getReg();
    419     if (Reg == 0) continue;
    420 
    421     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    422       if (MO.isUse()) {
    423         // If the physreg has no defs anywhere, it's just an ambient register
    424         // and we can freely move its uses. Alternatively, if it's allocatable,
    425         // it could get allocated to something with a def during allocation.
    426         if (!MRI->def_empty(Reg))
    427           return false;
    428 
    429         if (AllocatableSet.test(Reg))
    430           return false;
    431 
    432         // Check for a def among the register's aliases too.
    433         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
    434           unsigned AliasReg = *Alias;
    435           if (!MRI->def_empty(AliasReg))
    436             return false;
    437 
    438           if (AllocatableSet.test(AliasReg))
    439             return false;
    440         }
    441       } else if (!MO.isDead()) {
    442         // A def that isn't dead. We can't move it.
    443         return false;
    444       }
    445     } else {
    446       // Virtual register uses are always safe to sink.
    447       if (MO.isUse()) continue;
    448 
    449       // If it's not safe to move defs of the register class, then abort.
    450       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
    451         return false;
    452 
    453       // FIXME: This picks a successor to sink into based on having one
    454       // successor that dominates all the uses.  However, there are cases where
    455       // sinking can happen but where the sink point isn't a successor.  For
    456       // example:
    457       //
    458       //   x = computation
    459       //   if () {} else {}
    460       //   use x
    461       //
    462       // the instruction could be sunk over the whole diamond for the
    463       // if/then/else (or loop, etc), allowing it to be sunk into other blocks
    464       // after that.
    465 
    466       // Virtual register defs can only be sunk if all their uses are in blocks
    467       // dominated by one of the successors.
    468       if (SuccToSinkTo) {
    469         // If a previous operand picked a block to sink to, then this operand
    470         // must be sinkable to the same block.
    471         bool LocalUse = false;
    472         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock,
    473                                      BreakPHIEdge, LocalUse))
    474           return false;
    475 
    476         continue;
    477       }
    478 
    479       // Otherwise, we should look at all the successors and decide which one
    480       // we should sink to.
    481       for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
    482            E = ParentBlock->succ_end(); SI != E; ++SI) {
    483         bool LocalUse = false;
    484         if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock,
    485                                     BreakPHIEdge, LocalUse)) {
    486           SuccToSinkTo = *SI;
    487           break;
    488         }
    489         if (LocalUse)
    490           // Def is used locally, it's never safe to move this def.
    491           return false;
    492       }
    493 
    494       // If we couldn't find a block to sink to, ignore this instruction.
    495       if (SuccToSinkTo == 0)
    496         return false;
    497     }
    498   }
    499 
    500   // If there are no outputs, it must have side-effects.
    501   if (SuccToSinkTo == 0)
    502     return false;
    503 
    504   // It's not safe to sink instructions to EH landing pad. Control flow into
    505   // landing pad is implicitly defined.
    506   if (SuccToSinkTo->isLandingPad())
    507     return false;
    508 
    509   // It is not possible to sink an instruction into its own block.  This can
    510   // happen with loops.
    511   if (MI->getParent() == SuccToSinkTo)
    512     return false;
    513 
    514   // If the instruction to move defines a dead physical register which is live
    515   // when leaving the basic block, don't move it because it could turn into a
    516   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
    517   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    518     const MachineOperand &MO = MI->getOperand(I);
    519     if (!MO.isReg()) continue;
    520     unsigned Reg = MO.getReg();
    521     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    522     if (SuccToSinkTo->isLiveIn(Reg))
    523       return false;
    524   }
    525 
    526   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
    527 
    528   // If the block has multiple predecessors, this would introduce computation on
    529   // a path that it doesn't already exist.  We could split the critical edge,
    530   // but for now we just punt.
    531   if (SuccToSinkTo->pred_size() > 1) {
    532     // We cannot sink a load across a critical edge - there may be stores in
    533     // other code paths.
    534     bool TryBreak = false;
    535     bool store = true;
    536     if (!MI->isSafeToMove(TII, AA, store)) {
    537       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
    538       TryBreak = true;
    539     }
    540 
    541     // We don't want to sink across a critical edge if we don't dominate the
    542     // successor. We could be introducing calculations to new code paths.
    543     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
    544       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
    545       TryBreak = true;
    546     }
    547 
    548     // Don't sink instructions into a loop.
    549     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
    550       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
    551       TryBreak = true;
    552     }
    553 
    554     // Otherwise we are OK with sinking along a critical edge.
    555     if (!TryBreak)
    556       DEBUG(dbgs() << "Sinking along critical edge.\n");
    557     else {
    558       MachineBasicBlock *NewSucc =
    559         SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
    560       if (!NewSucc) {
    561         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    562                         "break critical edge\n");
    563         return false;
    564       } else {
    565         DEBUG(dbgs() << " *** Splitting critical edge:"
    566               " BB#" << ParentBlock->getNumber()
    567               << " -- BB#" << NewSucc->getNumber()
    568               << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
    569         SuccToSinkTo = NewSucc;
    570         ++NumSplit;
    571         BreakPHIEdge = false;
    572       }
    573     }
    574   }
    575 
    576   if (BreakPHIEdge) {
    577     // BreakPHIEdge is true if all the uses are in the successor MBB being
    578     // sunken into and they are all PHI nodes. In this case, machine-sink must
    579     // break the critical edge first.
    580     MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock,
    581                                                    SuccToSinkTo, BreakPHIEdge);
    582     if (!NewSucc) {
    583       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
    584             "break critical edge\n");
    585       return false;
    586     }
    587 
    588     DEBUG(dbgs() << " *** Splitting critical edge:"
    589           " BB#" << ParentBlock->getNumber()
    590           << " -- BB#" << NewSucc->getNumber()
    591           << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
    592     SuccToSinkTo = NewSucc;
    593     ++NumSplit;
    594   }
    595 
    596   // Determine where to insert into. Skip phi nodes.
    597   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
    598   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
    599     ++InsertPos;
    600 
    601   // Move the instruction.
    602   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
    603                        ++MachineBasicBlock::iterator(MI));
    604 
    605   // Conservatively, clear any kill flags, since it's possible that they are no
    606   // longer correct.
    607   MI->clearKillInfo();
    608 
    609   return true;
    610 }
    611