Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements semantic analysis for C++ templates.
     10 //===----------------------------------------------------------------------===/
     11 
     12 #include "clang/Sema/SemaInternal.h"
     13 #include "clang/Sema/Lookup.h"
     14 #include "clang/Sema/Scope.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "TreeTransform.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/DeclFriend.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/TypeVisitor.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "clang/Sema/ParsedTemplate.h"
     27 #include "clang/Basic/LangOptions.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "llvm/ADT/StringExtras.h"
     30 using namespace clang;
     31 using namespace sema;
     32 
     33 // Exported for use by Parser.
     34 SourceRange
     35 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
     36                               unsigned N) {
     37   if (!N) return SourceRange();
     38   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
     39 }
     40 
     41 /// \brief Determine whether the declaration found is acceptable as the name
     42 /// of a template and, if so, return that template declaration. Otherwise,
     43 /// returns NULL.
     44 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
     45                                            NamedDecl *Orig) {
     46   NamedDecl *D = Orig->getUnderlyingDecl();
     47 
     48   if (isa<TemplateDecl>(D))
     49     return Orig;
     50 
     51   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
     52     // C++ [temp.local]p1:
     53     //   Like normal (non-template) classes, class templates have an
     54     //   injected-class-name (Clause 9). The injected-class-name
     55     //   can be used with or without a template-argument-list. When
     56     //   it is used without a template-argument-list, it is
     57     //   equivalent to the injected-class-name followed by the
     58     //   template-parameters of the class template enclosed in
     59     //   <>. When it is used with a template-argument-list, it
     60     //   refers to the specified class template specialization,
     61     //   which could be the current specialization or another
     62     //   specialization.
     63     if (Record->isInjectedClassName()) {
     64       Record = cast<CXXRecordDecl>(Record->getDeclContext());
     65       if (Record->getDescribedClassTemplate())
     66         return Record->getDescribedClassTemplate();
     67 
     68       if (ClassTemplateSpecializationDecl *Spec
     69             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
     70         return Spec->getSpecializedTemplate();
     71     }
     72 
     73     return 0;
     74   }
     75 
     76   return 0;
     77 }
     78 
     79 void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
     80   // The set of class templates we've already seen.
     81   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
     82   LookupResult::Filter filter = R.makeFilter();
     83   while (filter.hasNext()) {
     84     NamedDecl *Orig = filter.next();
     85     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
     86     if (!Repl)
     87       filter.erase();
     88     else if (Repl != Orig) {
     89 
     90       // C++ [temp.local]p3:
     91       //   A lookup that finds an injected-class-name (10.2) can result in an
     92       //   ambiguity in certain cases (for example, if it is found in more than
     93       //   one base class). If all of the injected-class-names that are found
     94       //   refer to specializations of the same class template, and if the name
     95       //   is used as a template-name, the reference refers to the class
     96       //   template itself and not a specialization thereof, and is not
     97       //   ambiguous.
     98       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
     99         if (!ClassTemplates.insert(ClassTmpl)) {
    100           filter.erase();
    101           continue;
    102         }
    103 
    104       // FIXME: we promote access to public here as a workaround to
    105       // the fact that LookupResult doesn't let us remember that we
    106       // found this template through a particular injected class name,
    107       // which means we end up doing nasty things to the invariants.
    108       // Pretending that access is public is *much* safer.
    109       filter.replace(Repl, AS_public);
    110     }
    111   }
    112   filter.done();
    113 }
    114 
    115 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
    116   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
    117     if (isAcceptableTemplateName(Context, *I))
    118       return true;
    119 
    120   return false;
    121 }
    122 
    123 TemplateNameKind Sema::isTemplateName(Scope *S,
    124                                       CXXScopeSpec &SS,
    125                                       bool hasTemplateKeyword,
    126                                       UnqualifiedId &Name,
    127                                       ParsedType ObjectTypePtr,
    128                                       bool EnteringContext,
    129                                       TemplateTy &TemplateResult,
    130                                       bool &MemberOfUnknownSpecialization) {
    131   assert(getLangOptions().CPlusPlus && "No template names in C!");
    132 
    133   DeclarationName TName;
    134   MemberOfUnknownSpecialization = false;
    135 
    136   switch (Name.getKind()) {
    137   case UnqualifiedId::IK_Identifier:
    138     TName = DeclarationName(Name.Identifier);
    139     break;
    140 
    141   case UnqualifiedId::IK_OperatorFunctionId:
    142     TName = Context.DeclarationNames.getCXXOperatorName(
    143                                               Name.OperatorFunctionId.Operator);
    144     break;
    145 
    146   case UnqualifiedId::IK_LiteralOperatorId:
    147     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
    148     break;
    149 
    150   default:
    151     return TNK_Non_template;
    152   }
    153 
    154   QualType ObjectType = ObjectTypePtr.get();
    155 
    156   LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
    157                  LookupOrdinaryName);
    158   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
    159                      MemberOfUnknownSpecialization);
    160   if (R.empty()) return TNK_Non_template;
    161   if (R.isAmbiguous()) {
    162     // Suppress diagnostics;  we'll redo this lookup later.
    163     R.suppressDiagnostics();
    164 
    165     // FIXME: we might have ambiguous templates, in which case we
    166     // should at least parse them properly!
    167     return TNK_Non_template;
    168   }
    169 
    170   TemplateName Template;
    171   TemplateNameKind TemplateKind;
    172 
    173   unsigned ResultCount = R.end() - R.begin();
    174   if (ResultCount > 1) {
    175     // We assume that we'll preserve the qualifier from a function
    176     // template name in other ways.
    177     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
    178     TemplateKind = TNK_Function_template;
    179 
    180     // We'll do this lookup again later.
    181     R.suppressDiagnostics();
    182   } else {
    183     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
    184 
    185     if (SS.isSet() && !SS.isInvalid()) {
    186       NestedNameSpecifier *Qualifier
    187         = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
    188       Template = Context.getQualifiedTemplateName(Qualifier,
    189                                                   hasTemplateKeyword, TD);
    190     } else {
    191       Template = TemplateName(TD);
    192     }
    193 
    194     if (isa<FunctionTemplateDecl>(TD)) {
    195       TemplateKind = TNK_Function_template;
    196 
    197       // We'll do this lookup again later.
    198       R.suppressDiagnostics();
    199     } else {
    200       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
    201              isa<TypeAliasTemplateDecl>(TD));
    202       TemplateKind = TNK_Type_template;
    203     }
    204   }
    205 
    206   TemplateResult = TemplateTy::make(Template);
    207   return TemplateKind;
    208 }
    209 
    210 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
    211                                        SourceLocation IILoc,
    212                                        Scope *S,
    213                                        const CXXScopeSpec *SS,
    214                                        TemplateTy &SuggestedTemplate,
    215                                        TemplateNameKind &SuggestedKind) {
    216   // We can't recover unless there's a dependent scope specifier preceding the
    217   // template name.
    218   // FIXME: Typo correction?
    219   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
    220       computeDeclContext(*SS))
    221     return false;
    222 
    223   // The code is missing a 'template' keyword prior to the dependent template
    224   // name.
    225   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
    226   Diag(IILoc, diag::err_template_kw_missing)
    227     << Qualifier << II.getName()
    228     << FixItHint::CreateInsertion(IILoc, "template ");
    229   SuggestedTemplate
    230     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
    231   SuggestedKind = TNK_Dependent_template_name;
    232   return true;
    233 }
    234 
    235 void Sema::LookupTemplateName(LookupResult &Found,
    236                               Scope *S, CXXScopeSpec &SS,
    237                               QualType ObjectType,
    238                               bool EnteringContext,
    239                               bool &MemberOfUnknownSpecialization) {
    240   // Determine where to perform name lookup
    241   MemberOfUnknownSpecialization = false;
    242   DeclContext *LookupCtx = 0;
    243   bool isDependent = false;
    244   if (!ObjectType.isNull()) {
    245     // This nested-name-specifier occurs in a member access expression, e.g.,
    246     // x->B::f, and we are looking into the type of the object.
    247     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    248     LookupCtx = computeDeclContext(ObjectType);
    249     isDependent = ObjectType->isDependentType();
    250     assert((isDependent || !ObjectType->isIncompleteType()) &&
    251            "Caller should have completed object type");
    252   } else if (SS.isSet()) {
    253     // This nested-name-specifier occurs after another nested-name-specifier,
    254     // so long into the context associated with the prior nested-name-specifier.
    255     LookupCtx = computeDeclContext(SS, EnteringContext);
    256     isDependent = isDependentScopeSpecifier(SS);
    257 
    258     // The declaration context must be complete.
    259     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
    260       return;
    261   }
    262 
    263   bool ObjectTypeSearchedInScope = false;
    264   if (LookupCtx) {
    265     // Perform "qualified" name lookup into the declaration context we
    266     // computed, which is either the type of the base of a member access
    267     // expression or the declaration context associated with a prior
    268     // nested-name-specifier.
    269     LookupQualifiedName(Found, LookupCtx);
    270 
    271     if (!ObjectType.isNull() && Found.empty()) {
    272       // C++ [basic.lookup.classref]p1:
    273       //   In a class member access expression (5.2.5), if the . or -> token is
    274       //   immediately followed by an identifier followed by a <, the
    275       //   identifier must be looked up to determine whether the < is the
    276       //   beginning of a template argument list (14.2) or a less-than operator.
    277       //   The identifier is first looked up in the class of the object
    278       //   expression. If the identifier is not found, it is then looked up in
    279       //   the context of the entire postfix-expression and shall name a class
    280       //   or function template.
    281       if (S) LookupName(Found, S);
    282       ObjectTypeSearchedInScope = true;
    283     }
    284   } else if (isDependent && (!S || ObjectType.isNull())) {
    285     // We cannot look into a dependent object type or nested nme
    286     // specifier.
    287     MemberOfUnknownSpecialization = true;
    288     return;
    289   } else {
    290     // Perform unqualified name lookup in the current scope.
    291     LookupName(Found, S);
    292   }
    293 
    294   if (Found.empty() && !isDependent) {
    295     // If we did not find any names, attempt to correct any typos.
    296     DeclarationName Name = Found.getLookupName();
    297     Found.clear();
    298     if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
    299                                                Found.getLookupKind(), S, &SS,
    300                                                LookupCtx, false,
    301                                                CTC_CXXCasts)) {
    302       Found.setLookupName(Corrected.getCorrection());
    303       if (Corrected.getCorrectionDecl())
    304         Found.addDecl(Corrected.getCorrectionDecl());
    305       FilterAcceptableTemplateNames(Found);
    306       if (!Found.empty()) {
    307         std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
    308         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
    309         if (LookupCtx)
    310           Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
    311             << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
    312             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    313         else
    314           Diag(Found.getNameLoc(), diag::err_no_template_suggest)
    315             << Name << CorrectedQuotedStr
    316             << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
    317         if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
    318           Diag(Template->getLocation(), diag::note_previous_decl)
    319             << CorrectedQuotedStr;
    320       }
    321     } else {
    322       Found.setLookupName(Name);
    323     }
    324   }
    325 
    326   FilterAcceptableTemplateNames(Found);
    327   if (Found.empty()) {
    328     if (isDependent)
    329       MemberOfUnknownSpecialization = true;
    330     return;
    331   }
    332 
    333   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
    334     // C++ [basic.lookup.classref]p1:
    335     //   [...] If the lookup in the class of the object expression finds a
    336     //   template, the name is also looked up in the context of the entire
    337     //   postfix-expression and [...]
    338     //
    339     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
    340                             LookupOrdinaryName);
    341     LookupName(FoundOuter, S);
    342     FilterAcceptableTemplateNames(FoundOuter);
    343 
    344     if (FoundOuter.empty()) {
    345       //   - if the name is not found, the name found in the class of the
    346       //     object expression is used, otherwise
    347     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
    348       //   - if the name is found in the context of the entire
    349       //     postfix-expression and does not name a class template, the name
    350       //     found in the class of the object expression is used, otherwise
    351     } else if (!Found.isSuppressingDiagnostics()) {
    352       //   - if the name found is a class template, it must refer to the same
    353       //     entity as the one found in the class of the object expression,
    354       //     otherwise the program is ill-formed.
    355       if (!Found.isSingleResult() ||
    356           Found.getFoundDecl()->getCanonicalDecl()
    357             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
    358         Diag(Found.getNameLoc(),
    359              diag::ext_nested_name_member_ref_lookup_ambiguous)
    360           << Found.getLookupName()
    361           << ObjectType;
    362         Diag(Found.getRepresentativeDecl()->getLocation(),
    363              diag::note_ambig_member_ref_object_type)
    364           << ObjectType;
    365         Diag(FoundOuter.getFoundDecl()->getLocation(),
    366              diag::note_ambig_member_ref_scope);
    367 
    368         // Recover by taking the template that we found in the object
    369         // expression's type.
    370       }
    371     }
    372   }
    373 }
    374 
    375 /// ActOnDependentIdExpression - Handle a dependent id-expression that
    376 /// was just parsed.  This is only possible with an explicit scope
    377 /// specifier naming a dependent type.
    378 ExprResult
    379 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
    380                                  const DeclarationNameInfo &NameInfo,
    381                                  bool isAddressOfOperand,
    382                            const TemplateArgumentListInfo *TemplateArgs) {
    383   DeclContext *DC = getFunctionLevelDeclContext();
    384 
    385   if (!isAddressOfOperand &&
    386       isa<CXXMethodDecl>(DC) &&
    387       cast<CXXMethodDecl>(DC)->isInstance()) {
    388     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
    389 
    390     // Since the 'this' expression is synthesized, we don't need to
    391     // perform the double-lookup check.
    392     NamedDecl *FirstQualifierInScope = 0;
    393 
    394     return Owned(CXXDependentScopeMemberExpr::Create(Context,
    395                                                      /*This*/ 0, ThisType,
    396                                                      /*IsArrow*/ true,
    397                                                      /*Op*/ SourceLocation(),
    398                                                SS.getWithLocInContext(Context),
    399                                                      FirstQualifierInScope,
    400                                                      NameInfo,
    401                                                      TemplateArgs));
    402   }
    403 
    404   return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
    405 }
    406 
    407 ExprResult
    408 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
    409                                 const DeclarationNameInfo &NameInfo,
    410                                 const TemplateArgumentListInfo *TemplateArgs) {
    411   return Owned(DependentScopeDeclRefExpr::Create(Context,
    412                                                SS.getWithLocInContext(Context),
    413                                                  NameInfo,
    414                                                  TemplateArgs));
    415 }
    416 
    417 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
    418 /// that the template parameter 'PrevDecl' is being shadowed by a new
    419 /// declaration at location Loc. Returns true to indicate that this is
    420 /// an error, and false otherwise.
    421 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
    422   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
    423 
    424   // Microsoft Visual C++ permits template parameters to be shadowed.
    425   if (getLangOptions().Microsoft)
    426     return false;
    427 
    428   // C++ [temp.local]p4:
    429   //   A template-parameter shall not be redeclared within its
    430   //   scope (including nested scopes).
    431   Diag(Loc, diag::err_template_param_shadow)
    432     << cast<NamedDecl>(PrevDecl)->getDeclName();
    433   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
    434   return true;
    435 }
    436 
    437 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
    438 /// the parameter D to reference the templated declaration and return a pointer
    439 /// to the template declaration. Otherwise, do nothing to D and return null.
    440 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
    441   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
    442     D = Temp->getTemplatedDecl();
    443     return Temp;
    444   }
    445   return 0;
    446 }
    447 
    448 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
    449                                              SourceLocation EllipsisLoc) const {
    450   assert(Kind == Template &&
    451          "Only template template arguments can be pack expansions here");
    452   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
    453          "Template template argument pack expansion without packs");
    454   ParsedTemplateArgument Result(*this);
    455   Result.EllipsisLoc = EllipsisLoc;
    456   return Result;
    457 }
    458 
    459 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
    460                                             const ParsedTemplateArgument &Arg) {
    461 
    462   switch (Arg.getKind()) {
    463   case ParsedTemplateArgument::Type: {
    464     TypeSourceInfo *DI;
    465     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
    466     if (!DI)
    467       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
    468     return TemplateArgumentLoc(TemplateArgument(T), DI);
    469   }
    470 
    471   case ParsedTemplateArgument::NonType: {
    472     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
    473     return TemplateArgumentLoc(TemplateArgument(E), E);
    474   }
    475 
    476   case ParsedTemplateArgument::Template: {
    477     TemplateName Template = Arg.getAsTemplate().get();
    478     TemplateArgument TArg;
    479     if (Arg.getEllipsisLoc().isValid())
    480       TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
    481     else
    482       TArg = Template;
    483     return TemplateArgumentLoc(TArg,
    484                                Arg.getScopeSpec().getWithLocInContext(
    485                                                               SemaRef.Context),
    486                                Arg.getLocation(),
    487                                Arg.getEllipsisLoc());
    488   }
    489   }
    490 
    491   llvm_unreachable("Unhandled parsed template argument");
    492   return TemplateArgumentLoc();
    493 }
    494 
    495 /// \brief Translates template arguments as provided by the parser
    496 /// into template arguments used by semantic analysis.
    497 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
    498                                       TemplateArgumentListInfo &TemplateArgs) {
    499  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
    500    TemplateArgs.addArgument(translateTemplateArgument(*this,
    501                                                       TemplateArgsIn[I]));
    502 }
    503 
    504 /// ActOnTypeParameter - Called when a C++ template type parameter
    505 /// (e.g., "typename T") has been parsed. Typename specifies whether
    506 /// the keyword "typename" was used to declare the type parameter
    507 /// (otherwise, "class" was used), and KeyLoc is the location of the
    508 /// "class" or "typename" keyword. ParamName is the name of the
    509 /// parameter (NULL indicates an unnamed template parameter) and
    510 /// ParamNameLoc is the location of the parameter name (if any).
    511 /// If the type parameter has a default argument, it will be added
    512 /// later via ActOnTypeParameterDefault.
    513 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
    514                                SourceLocation EllipsisLoc,
    515                                SourceLocation KeyLoc,
    516                                IdentifierInfo *ParamName,
    517                                SourceLocation ParamNameLoc,
    518                                unsigned Depth, unsigned Position,
    519                                SourceLocation EqualLoc,
    520                                ParsedType DefaultArg) {
    521   assert(S->isTemplateParamScope() &&
    522          "Template type parameter not in template parameter scope!");
    523   bool Invalid = false;
    524 
    525   if (ParamName) {
    526     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
    527                                            LookupOrdinaryName,
    528                                            ForRedeclaration);
    529     if (PrevDecl && PrevDecl->isTemplateParameter())
    530       Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
    531                                                            PrevDecl);
    532   }
    533 
    534   SourceLocation Loc = ParamNameLoc;
    535   if (!ParamName)
    536     Loc = KeyLoc;
    537 
    538   TemplateTypeParmDecl *Param
    539     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    540                                    KeyLoc, Loc, Depth, Position, ParamName,
    541                                    Typename, Ellipsis);
    542   Param->setAccess(AS_public);
    543   if (Invalid)
    544     Param->setInvalidDecl();
    545 
    546   if (ParamName) {
    547     // Add the template parameter into the current scope.
    548     S->AddDecl(Param);
    549     IdResolver.AddDecl(Param);
    550   }
    551 
    552   // C++0x [temp.param]p9:
    553   //   A default template-argument may be specified for any kind of
    554   //   template-parameter that is not a template parameter pack.
    555   if (DefaultArg && Ellipsis) {
    556     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    557     DefaultArg = ParsedType();
    558   }
    559 
    560   // Handle the default argument, if provided.
    561   if (DefaultArg) {
    562     TypeSourceInfo *DefaultTInfo;
    563     GetTypeFromParser(DefaultArg, &DefaultTInfo);
    564 
    565     assert(DefaultTInfo && "expected source information for type");
    566 
    567     // Check for unexpanded parameter packs.
    568     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
    569                                         UPPC_DefaultArgument))
    570       return Param;
    571 
    572     // Check the template argument itself.
    573     if (CheckTemplateArgument(Param, DefaultTInfo)) {
    574       Param->setInvalidDecl();
    575       return Param;
    576     }
    577 
    578     Param->setDefaultArgument(DefaultTInfo, false);
    579   }
    580 
    581   return Param;
    582 }
    583 
    584 /// \brief Check that the type of a non-type template parameter is
    585 /// well-formed.
    586 ///
    587 /// \returns the (possibly-promoted) parameter type if valid;
    588 /// otherwise, produces a diagnostic and returns a NULL type.
    589 QualType
    590 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
    591   // We don't allow variably-modified types as the type of non-type template
    592   // parameters.
    593   if (T->isVariablyModifiedType()) {
    594     Diag(Loc, diag::err_variably_modified_nontype_template_param)
    595       << T;
    596     return QualType();
    597   }
    598 
    599   // C++ [temp.param]p4:
    600   //
    601   // A non-type template-parameter shall have one of the following
    602   // (optionally cv-qualified) types:
    603   //
    604   //       -- integral or enumeration type,
    605   if (T->isIntegralOrEnumerationType() ||
    606       //   -- pointer to object or pointer to function,
    607       T->isPointerType() ||
    608       //   -- reference to object or reference to function,
    609       T->isReferenceType() ||
    610       //   -- pointer to member,
    611       T->isMemberPointerType() ||
    612       //   -- std::nullptr_t.
    613       T->isNullPtrType() ||
    614       // If T is a dependent type, we can't do the check now, so we
    615       // assume that it is well-formed.
    616       T->isDependentType())
    617     return T;
    618   // C++ [temp.param]p8:
    619   //
    620   //   A non-type template-parameter of type "array of T" or
    621   //   "function returning T" is adjusted to be of type "pointer to
    622   //   T" or "pointer to function returning T", respectively.
    623   else if (T->isArrayType())
    624     // FIXME: Keep the type prior to promotion?
    625     return Context.getArrayDecayedType(T);
    626   else if (T->isFunctionType())
    627     // FIXME: Keep the type prior to promotion?
    628     return Context.getPointerType(T);
    629 
    630   Diag(Loc, diag::err_template_nontype_parm_bad_type)
    631     << T;
    632 
    633   return QualType();
    634 }
    635 
    636 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
    637                                           unsigned Depth,
    638                                           unsigned Position,
    639                                           SourceLocation EqualLoc,
    640                                           Expr *Default) {
    641   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
    642   QualType T = TInfo->getType();
    643 
    644   assert(S->isTemplateParamScope() &&
    645          "Non-type template parameter not in template parameter scope!");
    646   bool Invalid = false;
    647 
    648   IdentifierInfo *ParamName = D.getIdentifier();
    649   if (ParamName) {
    650     NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
    651                                            LookupOrdinaryName,
    652                                            ForRedeclaration);
    653     if (PrevDecl && PrevDecl->isTemplateParameter())
    654       Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
    655                                                            PrevDecl);
    656   }
    657 
    658   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
    659   if (T.isNull()) {
    660     T = Context.IntTy; // Recover with an 'int' type.
    661     Invalid = true;
    662   }
    663 
    664   bool IsParameterPack = D.hasEllipsis();
    665   NonTypeTemplateParmDecl *Param
    666     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    667                                       D.getSourceRange().getBegin(),
    668                                       D.getIdentifierLoc(),
    669                                       Depth, Position, ParamName, T,
    670                                       IsParameterPack, TInfo);
    671   Param->setAccess(AS_public);
    672 
    673   if (Invalid)
    674     Param->setInvalidDecl();
    675 
    676   if (D.getIdentifier()) {
    677     // Add the template parameter into the current scope.
    678     S->AddDecl(Param);
    679     IdResolver.AddDecl(Param);
    680   }
    681 
    682   // C++0x [temp.param]p9:
    683   //   A default template-argument may be specified for any kind of
    684   //   template-parameter that is not a template parameter pack.
    685   if (Default && IsParameterPack) {
    686     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    687     Default = 0;
    688   }
    689 
    690   // Check the well-formedness of the default template argument, if provided.
    691   if (Default) {
    692     // Check for unexpanded parameter packs.
    693     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
    694       return Param;
    695 
    696     TemplateArgument Converted;
    697     ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
    698     if (DefaultRes.isInvalid()) {
    699       Param->setInvalidDecl();
    700       return Param;
    701     }
    702     Default = DefaultRes.take();
    703 
    704     Param->setDefaultArgument(Default, false);
    705   }
    706 
    707   return Param;
    708 }
    709 
    710 /// ActOnTemplateTemplateParameter - Called when a C++ template template
    711 /// parameter (e.g. T in template <template <typename> class T> class array)
    712 /// has been parsed. S is the current scope.
    713 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
    714                                            SourceLocation TmpLoc,
    715                                            TemplateParamsTy *Params,
    716                                            SourceLocation EllipsisLoc,
    717                                            IdentifierInfo *Name,
    718                                            SourceLocation NameLoc,
    719                                            unsigned Depth,
    720                                            unsigned Position,
    721                                            SourceLocation EqualLoc,
    722                                            ParsedTemplateArgument Default) {
    723   assert(S->isTemplateParamScope() &&
    724          "Template template parameter not in template parameter scope!");
    725 
    726   // Construct the parameter object.
    727   bool IsParameterPack = EllipsisLoc.isValid();
    728   TemplateTemplateParmDecl *Param =
    729     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    730                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
    731                                      Depth, Position, IsParameterPack,
    732                                      Name, Params);
    733   Param->setAccess(AS_public);
    734 
    735   // If the template template parameter has a name, then link the identifier
    736   // into the scope and lookup mechanisms.
    737   if (Name) {
    738     S->AddDecl(Param);
    739     IdResolver.AddDecl(Param);
    740   }
    741 
    742   if (Params->size() == 0) {
    743     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
    744     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
    745     Param->setInvalidDecl();
    746   }
    747 
    748   // C++0x [temp.param]p9:
    749   //   A default template-argument may be specified for any kind of
    750   //   template-parameter that is not a template parameter pack.
    751   if (IsParameterPack && !Default.isInvalid()) {
    752     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    753     Default = ParsedTemplateArgument();
    754   }
    755 
    756   if (!Default.isInvalid()) {
    757     // Check only that we have a template template argument. We don't want to
    758     // try to check well-formedness now, because our template template parameter
    759     // might have dependent types in its template parameters, which we wouldn't
    760     // be able to match now.
    761     //
    762     // If none of the template template parameter's template arguments mention
    763     // other template parameters, we could actually perform more checking here.
    764     // However, it isn't worth doing.
    765     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
    766     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
    767       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
    768         << DefaultArg.getSourceRange();
    769       return Param;
    770     }
    771 
    772     // Check for unexpanded parameter packs.
    773     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
    774                                         DefaultArg.getArgument().getAsTemplate(),
    775                                         UPPC_DefaultArgument))
    776       return Param;
    777 
    778     Param->setDefaultArgument(DefaultArg, false);
    779   }
    780 
    781   return Param;
    782 }
    783 
    784 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
    785 /// contains the template parameters in Params/NumParams.
    786 Sema::TemplateParamsTy *
    787 Sema::ActOnTemplateParameterList(unsigned Depth,
    788                                  SourceLocation ExportLoc,
    789                                  SourceLocation TemplateLoc,
    790                                  SourceLocation LAngleLoc,
    791                                  Decl **Params, unsigned NumParams,
    792                                  SourceLocation RAngleLoc) {
    793   if (ExportLoc.isValid())
    794     Diag(ExportLoc, diag::warn_template_export_unsupported);
    795 
    796   return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
    797                                        (NamedDecl**)Params, NumParams,
    798                                        RAngleLoc);
    799 }
    800 
    801 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
    802   if (SS.isSet())
    803     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
    804 }
    805 
    806 DeclResult
    807 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
    808                          SourceLocation KWLoc, CXXScopeSpec &SS,
    809                          IdentifierInfo *Name, SourceLocation NameLoc,
    810                          AttributeList *Attr,
    811                          TemplateParameterList *TemplateParams,
    812                          AccessSpecifier AS,
    813                          unsigned NumOuterTemplateParamLists,
    814                          TemplateParameterList** OuterTemplateParamLists) {
    815   assert(TemplateParams && TemplateParams->size() > 0 &&
    816          "No template parameters");
    817   assert(TUK != TUK_Reference && "Can only declare or define class templates");
    818   bool Invalid = false;
    819 
    820   // Check that we can declare a template here.
    821   if (CheckTemplateDeclScope(S, TemplateParams))
    822     return true;
    823 
    824   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
    825   assert(Kind != TTK_Enum && "can't build template of enumerated type");
    826 
    827   // There is no such thing as an unnamed class template.
    828   if (!Name) {
    829     Diag(KWLoc, diag::err_template_unnamed_class);
    830     return true;
    831   }
    832 
    833   // Find any previous declaration with this name.
    834   DeclContext *SemanticContext;
    835   LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
    836                         ForRedeclaration);
    837   if (SS.isNotEmpty() && !SS.isInvalid()) {
    838     SemanticContext = computeDeclContext(SS, true);
    839     if (!SemanticContext) {
    840       // FIXME: Produce a reasonable diagnostic here
    841       return true;
    842     }
    843 
    844     if (RequireCompleteDeclContext(SS, SemanticContext))
    845       return true;
    846 
    847     LookupQualifiedName(Previous, SemanticContext);
    848   } else {
    849     SemanticContext = CurContext;
    850     LookupName(Previous, S);
    851   }
    852 
    853   if (Previous.isAmbiguous())
    854     return true;
    855 
    856   NamedDecl *PrevDecl = 0;
    857   if (Previous.begin() != Previous.end())
    858     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    859 
    860   // If there is a previous declaration with the same name, check
    861   // whether this is a valid redeclaration.
    862   ClassTemplateDecl *PrevClassTemplate
    863     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
    864 
    865   // We may have found the injected-class-name of a class template,
    866   // class template partial specialization, or class template specialization.
    867   // In these cases, grab the template that is being defined or specialized.
    868   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
    869       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
    870     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
    871     PrevClassTemplate
    872       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
    873     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
    874       PrevClassTemplate
    875         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
    876             ->getSpecializedTemplate();
    877     }
    878   }
    879 
    880   if (TUK == TUK_Friend) {
    881     // C++ [namespace.memdef]p3:
    882     //   [...] When looking for a prior declaration of a class or a function
    883     //   declared as a friend, and when the name of the friend class or
    884     //   function is neither a qualified name nor a template-id, scopes outside
    885     //   the innermost enclosing namespace scope are not considered.
    886     if (!SS.isSet()) {
    887       DeclContext *OutermostContext = CurContext;
    888       while (!OutermostContext->isFileContext())
    889         OutermostContext = OutermostContext->getLookupParent();
    890 
    891       if (PrevDecl &&
    892           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
    893            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
    894         SemanticContext = PrevDecl->getDeclContext();
    895       } else {
    896         // Declarations in outer scopes don't matter. However, the outermost
    897         // context we computed is the semantic context for our new
    898         // declaration.
    899         PrevDecl = PrevClassTemplate = 0;
    900         SemanticContext = OutermostContext;
    901       }
    902     }
    903 
    904     if (CurContext->isDependentContext()) {
    905       // If this is a dependent context, we don't want to link the friend
    906       // class template to the template in scope, because that would perform
    907       // checking of the template parameter lists that can't be performed
    908       // until the outer context is instantiated.
    909       PrevDecl = PrevClassTemplate = 0;
    910     }
    911   } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
    912     PrevDecl = PrevClassTemplate = 0;
    913 
    914   if (PrevClassTemplate) {
    915     // Ensure that the template parameter lists are compatible.
    916     if (!TemplateParameterListsAreEqual(TemplateParams,
    917                                    PrevClassTemplate->getTemplateParameters(),
    918                                         /*Complain=*/true,
    919                                         TPL_TemplateMatch))
    920       return true;
    921 
    922     // C++ [temp.class]p4:
    923     //   In a redeclaration, partial specialization, explicit
    924     //   specialization or explicit instantiation of a class template,
    925     //   the class-key shall agree in kind with the original class
    926     //   template declaration (7.1.5.3).
    927     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
    928     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
    929                                       TUK == TUK_Definition,  KWLoc, *Name)) {
    930       Diag(KWLoc, diag::err_use_with_wrong_tag)
    931         << Name
    932         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
    933       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
    934       Kind = PrevRecordDecl->getTagKind();
    935     }
    936 
    937     // Check for redefinition of this class template.
    938     if (TUK == TUK_Definition) {
    939       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
    940         Diag(NameLoc, diag::err_redefinition) << Name;
    941         Diag(Def->getLocation(), diag::note_previous_definition);
    942         // FIXME: Would it make sense to try to "forget" the previous
    943         // definition, as part of error recovery?
    944         return true;
    945       }
    946     }
    947   } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
    948     // Maybe we will complain about the shadowed template parameter.
    949     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
    950     // Just pretend that we didn't see the previous declaration.
    951     PrevDecl = 0;
    952   } else if (PrevDecl) {
    953     // C++ [temp]p5:
    954     //   A class template shall not have the same name as any other
    955     //   template, class, function, object, enumeration, enumerator,
    956     //   namespace, or type in the same scope (3.3), except as specified
    957     //   in (14.5.4).
    958     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
    959     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    960     return true;
    961   }
    962 
    963   // Check the template parameter list of this declaration, possibly
    964   // merging in the template parameter list from the previous class
    965   // template declaration.
    966   if (CheckTemplateParameterList(TemplateParams,
    967             PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
    968                                  (SS.isSet() && SemanticContext &&
    969                                   SemanticContext->isRecord() &&
    970                                   SemanticContext->isDependentContext())
    971                                    ? TPC_ClassTemplateMember
    972                                    : TPC_ClassTemplate))
    973     Invalid = true;
    974 
    975   if (SS.isSet()) {
    976     // If the name of the template was qualified, we must be defining the
    977     // template out-of-line.
    978     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
    979         !(TUK == TUK_Friend && CurContext->isDependentContext()))
    980       Diag(NameLoc, diag::err_member_def_does_not_match)
    981         << Name << SemanticContext << SS.getRange();
    982   }
    983 
    984   CXXRecordDecl *NewClass =
    985     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
    986                           PrevClassTemplate?
    987                             PrevClassTemplate->getTemplatedDecl() : 0,
    988                           /*DelayTypeCreation=*/true);
    989   SetNestedNameSpecifier(NewClass, SS);
    990   if (NumOuterTemplateParamLists > 0)
    991     NewClass->setTemplateParameterListsInfo(Context,
    992                                             NumOuterTemplateParamLists,
    993                                             OuterTemplateParamLists);
    994 
    995   ClassTemplateDecl *NewTemplate
    996     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
    997                                 DeclarationName(Name), TemplateParams,
    998                                 NewClass, PrevClassTemplate);
    999   NewClass->setDescribedClassTemplate(NewTemplate);
   1000 
   1001   // Build the type for the class template declaration now.
   1002   QualType T = NewTemplate->getInjectedClassNameSpecialization();
   1003   T = Context.getInjectedClassNameType(NewClass, T);
   1004   assert(T->isDependentType() && "Class template type is not dependent?");
   1005   (void)T;
   1006 
   1007   // If we are providing an explicit specialization of a member that is a
   1008   // class template, make a note of that.
   1009   if (PrevClassTemplate &&
   1010       PrevClassTemplate->getInstantiatedFromMemberTemplate())
   1011     PrevClassTemplate->setMemberSpecialization();
   1012 
   1013   // Set the access specifier.
   1014   if (!Invalid && TUK != TUK_Friend)
   1015     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
   1016 
   1017   // Set the lexical context of these templates
   1018   NewClass->setLexicalDeclContext(CurContext);
   1019   NewTemplate->setLexicalDeclContext(CurContext);
   1020 
   1021   if (TUK == TUK_Definition)
   1022     NewClass->startDefinition();
   1023 
   1024   if (Attr)
   1025     ProcessDeclAttributeList(S, NewClass, Attr);
   1026 
   1027   if (TUK != TUK_Friend)
   1028     PushOnScopeChains(NewTemplate, S);
   1029   else {
   1030     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
   1031       NewTemplate->setAccess(PrevClassTemplate->getAccess());
   1032       NewClass->setAccess(PrevClassTemplate->getAccess());
   1033     }
   1034 
   1035     NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
   1036                                        PrevClassTemplate != NULL);
   1037 
   1038     // Friend templates are visible in fairly strange ways.
   1039     if (!CurContext->isDependentContext()) {
   1040       DeclContext *DC = SemanticContext->getRedeclContext();
   1041       DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
   1042       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   1043         PushOnScopeChains(NewTemplate, EnclosingScope,
   1044                           /* AddToContext = */ false);
   1045     }
   1046 
   1047     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   1048                                             NewClass->getLocation(),
   1049                                             NewTemplate,
   1050                                     /*FIXME:*/NewClass->getLocation());
   1051     Friend->setAccess(AS_public);
   1052     CurContext->addDecl(Friend);
   1053   }
   1054 
   1055   if (Invalid) {
   1056     NewTemplate->setInvalidDecl();
   1057     NewClass->setInvalidDecl();
   1058   }
   1059   return NewTemplate;
   1060 }
   1061 
   1062 /// \brief Diagnose the presence of a default template argument on a
   1063 /// template parameter, which is ill-formed in certain contexts.
   1064 ///
   1065 /// \returns true if the default template argument should be dropped.
   1066 static bool DiagnoseDefaultTemplateArgument(Sema &S,
   1067                                             Sema::TemplateParamListContext TPC,
   1068                                             SourceLocation ParamLoc,
   1069                                             SourceRange DefArgRange) {
   1070   switch (TPC) {
   1071   case Sema::TPC_ClassTemplate:
   1072   case Sema::TPC_TypeAliasTemplate:
   1073     return false;
   1074 
   1075   case Sema::TPC_FunctionTemplate:
   1076   case Sema::TPC_FriendFunctionTemplateDefinition:
   1077     // C++ [temp.param]p9:
   1078     //   A default template-argument shall not be specified in a
   1079     //   function template declaration or a function template
   1080     //   definition [...]
   1081     //   If a friend function template declaration specifies a default
   1082     //   template-argument, that declaration shall be a definition and shall be
   1083     //   the only declaration of the function template in the translation unit.
   1084     // (C++98/03 doesn't have this wording; see DR226).
   1085     if (!S.getLangOptions().CPlusPlus0x)
   1086       S.Diag(ParamLoc,
   1087              diag::ext_template_parameter_default_in_function_template)
   1088         << DefArgRange;
   1089     return false;
   1090 
   1091   case Sema::TPC_ClassTemplateMember:
   1092     // C++0x [temp.param]p9:
   1093     //   A default template-argument shall not be specified in the
   1094     //   template-parameter-lists of the definition of a member of a
   1095     //   class template that appears outside of the member's class.
   1096     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
   1097       << DefArgRange;
   1098     return true;
   1099 
   1100   case Sema::TPC_FriendFunctionTemplate:
   1101     // C++ [temp.param]p9:
   1102     //   A default template-argument shall not be specified in a
   1103     //   friend template declaration.
   1104     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
   1105       << DefArgRange;
   1106     return true;
   1107 
   1108     // FIXME: C++0x [temp.param]p9 allows default template-arguments
   1109     // for friend function templates if there is only a single
   1110     // declaration (and it is a definition). Strange!
   1111   }
   1112 
   1113   return false;
   1114 }
   1115 
   1116 /// \brief Check for unexpanded parameter packs within the template parameters
   1117 /// of a template template parameter, recursively.
   1118 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
   1119                                              TemplateTemplateParmDecl *TTP) {
   1120   TemplateParameterList *Params = TTP->getTemplateParameters();
   1121   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   1122     NamedDecl *P = Params->getParam(I);
   1123     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
   1124       if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
   1125                                             NTTP->getTypeSourceInfo(),
   1126                                       Sema::UPPC_NonTypeTemplateParameterType))
   1127         return true;
   1128 
   1129       continue;
   1130     }
   1131 
   1132     if (TemplateTemplateParmDecl *InnerTTP
   1133                                         = dyn_cast<TemplateTemplateParmDecl>(P))
   1134       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
   1135         return true;
   1136   }
   1137 
   1138   return false;
   1139 }
   1140 
   1141 /// \brief Checks the validity of a template parameter list, possibly
   1142 /// considering the template parameter list from a previous
   1143 /// declaration.
   1144 ///
   1145 /// If an "old" template parameter list is provided, it must be
   1146 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
   1147 /// template parameter list.
   1148 ///
   1149 /// \param NewParams Template parameter list for a new template
   1150 /// declaration. This template parameter list will be updated with any
   1151 /// default arguments that are carried through from the previous
   1152 /// template parameter list.
   1153 ///
   1154 /// \param OldParams If provided, template parameter list from a
   1155 /// previous declaration of the same template. Default template
   1156 /// arguments will be merged from the old template parameter list to
   1157 /// the new template parameter list.
   1158 ///
   1159 /// \param TPC Describes the context in which we are checking the given
   1160 /// template parameter list.
   1161 ///
   1162 /// \returns true if an error occurred, false otherwise.
   1163 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
   1164                                       TemplateParameterList *OldParams,
   1165                                       TemplateParamListContext TPC) {
   1166   bool Invalid = false;
   1167 
   1168   // C++ [temp.param]p10:
   1169   //   The set of default template-arguments available for use with a
   1170   //   template declaration or definition is obtained by merging the
   1171   //   default arguments from the definition (if in scope) and all
   1172   //   declarations in scope in the same way default function
   1173   //   arguments are (8.3.6).
   1174   bool SawDefaultArgument = false;
   1175   SourceLocation PreviousDefaultArgLoc;
   1176 
   1177   bool SawParameterPack = false;
   1178   SourceLocation ParameterPackLoc;
   1179 
   1180   // Dummy initialization to avoid warnings.
   1181   TemplateParameterList::iterator OldParam = NewParams->end();
   1182   if (OldParams)
   1183     OldParam = OldParams->begin();
   1184 
   1185   bool RemoveDefaultArguments = false;
   1186   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1187                                     NewParamEnd = NewParams->end();
   1188        NewParam != NewParamEnd; ++NewParam) {
   1189     // Variables used to diagnose redundant default arguments
   1190     bool RedundantDefaultArg = false;
   1191     SourceLocation OldDefaultLoc;
   1192     SourceLocation NewDefaultLoc;
   1193 
   1194     // Variables used to diagnose missing default arguments
   1195     bool MissingDefaultArg = false;
   1196 
   1197     // C++0x [temp.param]p11:
   1198     //   If a template parameter of a primary class template or alias template
   1199     //   is a template parameter pack, it shall be the last template parameter.
   1200     if (SawParameterPack &&
   1201         (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
   1202       Diag(ParameterPackLoc,
   1203            diag::err_template_param_pack_must_be_last_template_parameter);
   1204       Invalid = true;
   1205     }
   1206 
   1207     if (TemplateTypeParmDecl *NewTypeParm
   1208           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
   1209       // Check the presence of a default argument here.
   1210       if (NewTypeParm->hasDefaultArgument() &&
   1211           DiagnoseDefaultTemplateArgument(*this, TPC,
   1212                                           NewTypeParm->getLocation(),
   1213                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
   1214                                                        .getSourceRange()))
   1215         NewTypeParm->removeDefaultArgument();
   1216 
   1217       // Merge default arguments for template type parameters.
   1218       TemplateTypeParmDecl *OldTypeParm
   1219           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
   1220 
   1221       if (NewTypeParm->isParameterPack()) {
   1222         assert(!NewTypeParm->hasDefaultArgument() &&
   1223                "Parameter packs can't have a default argument!");
   1224         SawParameterPack = true;
   1225         ParameterPackLoc = NewTypeParm->getLocation();
   1226       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
   1227                  NewTypeParm->hasDefaultArgument()) {
   1228         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
   1229         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
   1230         SawDefaultArgument = true;
   1231         RedundantDefaultArg = true;
   1232         PreviousDefaultArgLoc = NewDefaultLoc;
   1233       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
   1234         // Merge the default argument from the old declaration to the
   1235         // new declaration.
   1236         SawDefaultArgument = true;
   1237         NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
   1238                                         true);
   1239         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
   1240       } else if (NewTypeParm->hasDefaultArgument()) {
   1241         SawDefaultArgument = true;
   1242         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
   1243       } else if (SawDefaultArgument)
   1244         MissingDefaultArg = true;
   1245     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
   1246                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
   1247       // Check for unexpanded parameter packs.
   1248       if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
   1249                                           NewNonTypeParm->getTypeSourceInfo(),
   1250                                           UPPC_NonTypeTemplateParameterType)) {
   1251         Invalid = true;
   1252         continue;
   1253       }
   1254 
   1255       // Check the presence of a default argument here.
   1256       if (NewNonTypeParm->hasDefaultArgument() &&
   1257           DiagnoseDefaultTemplateArgument(*this, TPC,
   1258                                           NewNonTypeParm->getLocation(),
   1259                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
   1260         NewNonTypeParm->removeDefaultArgument();
   1261       }
   1262 
   1263       // Merge default arguments for non-type template parameters
   1264       NonTypeTemplateParmDecl *OldNonTypeParm
   1265         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
   1266       if (NewNonTypeParm->isParameterPack()) {
   1267         assert(!NewNonTypeParm->hasDefaultArgument() &&
   1268                "Parameter packs can't have a default argument!");
   1269         SawParameterPack = true;
   1270         ParameterPackLoc = NewNonTypeParm->getLocation();
   1271       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
   1272           NewNonTypeParm->hasDefaultArgument()) {
   1273         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1274         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1275         SawDefaultArgument = true;
   1276         RedundantDefaultArg = true;
   1277         PreviousDefaultArgLoc = NewDefaultLoc;
   1278       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
   1279         // Merge the default argument from the old declaration to the
   1280         // new declaration.
   1281         SawDefaultArgument = true;
   1282         // FIXME: We need to create a new kind of "default argument"
   1283         // expression that points to a previous non-type template
   1284         // parameter.
   1285         NewNonTypeParm->setDefaultArgument(
   1286                                          OldNonTypeParm->getDefaultArgument(),
   1287                                          /*Inherited=*/ true);
   1288         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1289       } else if (NewNonTypeParm->hasDefaultArgument()) {
   1290         SawDefaultArgument = true;
   1291         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1292       } else if (SawDefaultArgument)
   1293         MissingDefaultArg = true;
   1294     } else {
   1295       // Check the presence of a default argument here.
   1296       TemplateTemplateParmDecl *NewTemplateParm
   1297         = cast<TemplateTemplateParmDecl>(*NewParam);
   1298 
   1299       // Check for unexpanded parameter packs, recursively.
   1300       if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
   1301         Invalid = true;
   1302         continue;
   1303       }
   1304 
   1305       if (NewTemplateParm->hasDefaultArgument() &&
   1306           DiagnoseDefaultTemplateArgument(*this, TPC,
   1307                                           NewTemplateParm->getLocation(),
   1308                      NewTemplateParm->getDefaultArgument().getSourceRange()))
   1309         NewTemplateParm->removeDefaultArgument();
   1310 
   1311       // Merge default arguments for template template parameters
   1312       TemplateTemplateParmDecl *OldTemplateParm
   1313         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
   1314       if (NewTemplateParm->isParameterPack()) {
   1315         assert(!NewTemplateParm->hasDefaultArgument() &&
   1316                "Parameter packs can't have a default argument!");
   1317         SawParameterPack = true;
   1318         ParameterPackLoc = NewTemplateParm->getLocation();
   1319       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
   1320           NewTemplateParm->hasDefaultArgument()) {
   1321         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
   1322         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
   1323         SawDefaultArgument = true;
   1324         RedundantDefaultArg = true;
   1325         PreviousDefaultArgLoc = NewDefaultLoc;
   1326       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
   1327         // Merge the default argument from the old declaration to the
   1328         // new declaration.
   1329         SawDefaultArgument = true;
   1330         // FIXME: We need to create a new kind of "default argument" expression
   1331         // that points to a previous template template parameter.
   1332         NewTemplateParm->setDefaultArgument(
   1333                                           OldTemplateParm->getDefaultArgument(),
   1334                                           /*Inherited=*/ true);
   1335         PreviousDefaultArgLoc
   1336           = OldTemplateParm->getDefaultArgument().getLocation();
   1337       } else if (NewTemplateParm->hasDefaultArgument()) {
   1338         SawDefaultArgument = true;
   1339         PreviousDefaultArgLoc
   1340           = NewTemplateParm->getDefaultArgument().getLocation();
   1341       } else if (SawDefaultArgument)
   1342         MissingDefaultArg = true;
   1343     }
   1344 
   1345     if (RedundantDefaultArg) {
   1346       // C++ [temp.param]p12:
   1347       //   A template-parameter shall not be given default arguments
   1348       //   by two different declarations in the same scope.
   1349       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
   1350       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
   1351       Invalid = true;
   1352     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
   1353       // C++ [temp.param]p11:
   1354       //   If a template-parameter of a class template has a default
   1355       //   template-argument, each subsequent template-parameter shall either
   1356       //   have a default template-argument supplied or be a template parameter
   1357       //   pack.
   1358       Diag((*NewParam)->getLocation(),
   1359            diag::err_template_param_default_arg_missing);
   1360       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
   1361       Invalid = true;
   1362       RemoveDefaultArguments = true;
   1363     }
   1364 
   1365     // If we have an old template parameter list that we're merging
   1366     // in, move on to the next parameter.
   1367     if (OldParams)
   1368       ++OldParam;
   1369   }
   1370 
   1371   // We were missing some default arguments at the end of the list, so remove
   1372   // all of the default arguments.
   1373   if (RemoveDefaultArguments) {
   1374     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1375                                       NewParamEnd = NewParams->end();
   1376          NewParam != NewParamEnd; ++NewParam) {
   1377       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
   1378         TTP->removeDefaultArgument();
   1379       else if (NonTypeTemplateParmDecl *NTTP
   1380                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
   1381         NTTP->removeDefaultArgument();
   1382       else
   1383         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
   1384     }
   1385   }
   1386 
   1387   return Invalid;
   1388 }
   1389 
   1390 namespace {
   1391 
   1392 /// A class which looks for a use of a certain level of template
   1393 /// parameter.
   1394 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
   1395   typedef RecursiveASTVisitor<DependencyChecker> super;
   1396 
   1397   unsigned Depth;
   1398   bool Match;
   1399 
   1400   DependencyChecker(TemplateParameterList *Params) : Match(false) {
   1401     NamedDecl *ND = Params->getParam(0);
   1402     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
   1403       Depth = PD->getDepth();
   1404     } else if (NonTypeTemplateParmDecl *PD =
   1405                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
   1406       Depth = PD->getDepth();
   1407     } else {
   1408       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
   1409     }
   1410   }
   1411 
   1412   bool Matches(unsigned ParmDepth) {
   1413     if (ParmDepth >= Depth) {
   1414       Match = true;
   1415       return true;
   1416     }
   1417     return false;
   1418   }
   1419 
   1420   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
   1421     return !Matches(T->getDepth());
   1422   }
   1423 
   1424   bool TraverseTemplateName(TemplateName N) {
   1425     if (TemplateTemplateParmDecl *PD =
   1426           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
   1427       if (Matches(PD->getDepth())) return false;
   1428     return super::TraverseTemplateName(N);
   1429   }
   1430 
   1431   bool VisitDeclRefExpr(DeclRefExpr *E) {
   1432     if (NonTypeTemplateParmDecl *PD =
   1433           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
   1434       if (PD->getDepth() == Depth) {
   1435         Match = true;
   1436         return false;
   1437       }
   1438     }
   1439     return super::VisitDeclRefExpr(E);
   1440   }
   1441 
   1442   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
   1443     return TraverseType(T->getInjectedSpecializationType());
   1444   }
   1445 };
   1446 }
   1447 
   1448 /// Determines whether a given type depends on the given parameter
   1449 /// list.
   1450 static bool
   1451 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
   1452   DependencyChecker Checker(Params);
   1453   Checker.TraverseType(T);
   1454   return Checker.Match;
   1455 }
   1456 
   1457 // Find the source range corresponding to the named type in the given
   1458 // nested-name-specifier, if any.
   1459 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
   1460                                                        QualType T,
   1461                                                        const CXXScopeSpec &SS) {
   1462   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
   1463   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
   1464     if (const Type *CurType = NNS->getAsType()) {
   1465       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
   1466         return NNSLoc.getTypeLoc().getSourceRange();
   1467     } else
   1468       break;
   1469 
   1470     NNSLoc = NNSLoc.getPrefix();
   1471   }
   1472 
   1473   return SourceRange();
   1474 }
   1475 
   1476 /// \brief Match the given template parameter lists to the given scope
   1477 /// specifier, returning the template parameter list that applies to the
   1478 /// name.
   1479 ///
   1480 /// \param DeclStartLoc the start of the declaration that has a scope
   1481 /// specifier or a template parameter list.
   1482 ///
   1483 /// \param DeclLoc The location of the declaration itself.
   1484 ///
   1485 /// \param SS the scope specifier that will be matched to the given template
   1486 /// parameter lists. This scope specifier precedes a qualified name that is
   1487 /// being declared.
   1488 ///
   1489 /// \param ParamLists the template parameter lists, from the outermost to the
   1490 /// innermost template parameter lists.
   1491 ///
   1492 /// \param NumParamLists the number of template parameter lists in ParamLists.
   1493 ///
   1494 /// \param IsFriend Whether to apply the slightly different rules for
   1495 /// matching template parameters to scope specifiers in friend
   1496 /// declarations.
   1497 ///
   1498 /// \param IsExplicitSpecialization will be set true if the entity being
   1499 /// declared is an explicit specialization, false otherwise.
   1500 ///
   1501 /// \returns the template parameter list, if any, that corresponds to the
   1502 /// name that is preceded by the scope specifier @p SS. This template
   1503 /// parameter list may have template parameters (if we're declaring a
   1504 /// template) or may have no template parameters (if we're declaring a
   1505 /// template specialization), or may be NULL (if what we're declaring isn't
   1506 /// itself a template).
   1507 TemplateParameterList *
   1508 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
   1509                                               SourceLocation DeclLoc,
   1510                                               const CXXScopeSpec &SS,
   1511                                           TemplateParameterList **ParamLists,
   1512                                               unsigned NumParamLists,
   1513                                               bool IsFriend,
   1514                                               bool &IsExplicitSpecialization,
   1515                                               bool &Invalid) {
   1516   IsExplicitSpecialization = false;
   1517   Invalid = false;
   1518 
   1519   // The sequence of nested types to which we will match up the template
   1520   // parameter lists. We first build this list by starting with the type named
   1521   // by the nested-name-specifier and walking out until we run out of types.
   1522   llvm::SmallVector<QualType, 4> NestedTypes;
   1523   QualType T;
   1524   if (SS.getScopeRep()) {
   1525     if (CXXRecordDecl *Record
   1526               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
   1527       T = Context.getTypeDeclType(Record);
   1528     else
   1529       T = QualType(SS.getScopeRep()->getAsType(), 0);
   1530   }
   1531 
   1532   // If we found an explicit specialization that prevents us from needing
   1533   // 'template<>' headers, this will be set to the location of that
   1534   // explicit specialization.
   1535   SourceLocation ExplicitSpecLoc;
   1536 
   1537   while (!T.isNull()) {
   1538     NestedTypes.push_back(T);
   1539 
   1540     // Retrieve the parent of a record type.
   1541     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1542       // If this type is an explicit specialization, we're done.
   1543       if (ClassTemplateSpecializationDecl *Spec
   1544           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1545         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
   1546             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
   1547           ExplicitSpecLoc = Spec->getLocation();
   1548           break;
   1549         }
   1550       } else if (Record->getTemplateSpecializationKind()
   1551                                                 == TSK_ExplicitSpecialization) {
   1552         ExplicitSpecLoc = Record->getLocation();
   1553         break;
   1554       }
   1555 
   1556       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
   1557         T = Context.getTypeDeclType(Parent);
   1558       else
   1559         T = QualType();
   1560       continue;
   1561     }
   1562 
   1563     if (const TemplateSpecializationType *TST
   1564                                      = T->getAs<TemplateSpecializationType>()) {
   1565       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1566         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
   1567           T = Context.getTypeDeclType(Parent);
   1568         else
   1569           T = QualType();
   1570         continue;
   1571       }
   1572     }
   1573 
   1574     // Look one step prior in a dependent template specialization type.
   1575     if (const DependentTemplateSpecializationType *DependentTST
   1576                           = T->getAs<DependentTemplateSpecializationType>()) {
   1577       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
   1578         T = QualType(NNS->getAsType(), 0);
   1579       else
   1580         T = QualType();
   1581       continue;
   1582     }
   1583 
   1584     // Look one step prior in a dependent name type.
   1585     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
   1586       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
   1587         T = QualType(NNS->getAsType(), 0);
   1588       else
   1589         T = QualType();
   1590       continue;
   1591     }
   1592 
   1593     // Retrieve the parent of an enumeration type.
   1594     if (const EnumType *EnumT = T->getAs<EnumType>()) {
   1595       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
   1596       // check here.
   1597       EnumDecl *Enum = EnumT->getDecl();
   1598 
   1599       // Get to the parent type.
   1600       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
   1601         T = Context.getTypeDeclType(Parent);
   1602       else
   1603         T = QualType();
   1604       continue;
   1605     }
   1606 
   1607     T = QualType();
   1608   }
   1609   // Reverse the nested types list, since we want to traverse from the outermost
   1610   // to the innermost while checking template-parameter-lists.
   1611   std::reverse(NestedTypes.begin(), NestedTypes.end());
   1612 
   1613   // C++0x [temp.expl.spec]p17:
   1614   //   A member or a member template may be nested within many
   1615   //   enclosing class templates. In an explicit specialization for
   1616   //   such a member, the member declaration shall be preceded by a
   1617   //   template<> for each enclosing class template that is
   1618   //   explicitly specialized.
   1619   bool SawNonEmptyTemplateParameterList = false;
   1620   unsigned ParamIdx = 0;
   1621   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
   1622        ++TypeIdx) {
   1623     T = NestedTypes[TypeIdx];
   1624 
   1625     // Whether we expect a 'template<>' header.
   1626     bool NeedEmptyTemplateHeader = false;
   1627 
   1628     // Whether we expect a template header with parameters.
   1629     bool NeedNonemptyTemplateHeader = false;
   1630 
   1631     // For a dependent type, the set of template parameters that we
   1632     // expect to see.
   1633     TemplateParameterList *ExpectedTemplateParams = 0;
   1634 
   1635     // C++0x [temp.expl.spec]p15:
   1636     //   A member or a member template may be nested within many enclosing
   1637     //   class templates. In an explicit specialization for such a member, the
   1638     //   member declaration shall be preceded by a template<> for each
   1639     //   enclosing class template that is explicitly specialized.
   1640     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1641       if (ClassTemplatePartialSpecializationDecl *Partial
   1642             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
   1643         ExpectedTemplateParams = Partial->getTemplateParameters();
   1644         NeedNonemptyTemplateHeader = true;
   1645       } else if (Record->isDependentType()) {
   1646         if (Record->getDescribedClassTemplate()) {
   1647           ExpectedTemplateParams = Record->getDescribedClassTemplate()
   1648                                                       ->getTemplateParameters();
   1649           NeedNonemptyTemplateHeader = true;
   1650         }
   1651       } else if (ClassTemplateSpecializationDecl *Spec
   1652                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1653         // C++0x [temp.expl.spec]p4:
   1654         //   Members of an explicitly specialized class template are defined
   1655         //   in the same manner as members of normal classes, and not using
   1656         //   the template<> syntax.
   1657         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
   1658           NeedEmptyTemplateHeader = true;
   1659         else
   1660           continue;
   1661       } else if (Record->getTemplateSpecializationKind()) {
   1662         if (Record->getTemplateSpecializationKind()
   1663                                                 != TSK_ExplicitSpecialization &&
   1664             TypeIdx == NumTypes - 1)
   1665           IsExplicitSpecialization = true;
   1666 
   1667         continue;
   1668       }
   1669     } else if (const TemplateSpecializationType *TST
   1670                                      = T->getAs<TemplateSpecializationType>()) {
   1671       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1672         ExpectedTemplateParams = Template->getTemplateParameters();
   1673         NeedNonemptyTemplateHeader = true;
   1674       }
   1675     } else if (T->getAs<DependentTemplateSpecializationType>()) {
   1676       // FIXME:  We actually could/should check the template arguments here
   1677       // against the corresponding template parameter list.
   1678       NeedNonemptyTemplateHeader = false;
   1679     }
   1680 
   1681     // C++ [temp.expl.spec]p16:
   1682     //   In an explicit specialization declaration for a member of a class
   1683     //   template or a member template that ap- pears in namespace scope, the
   1684     //   member template and some of its enclosing class templates may remain
   1685     //   unspecialized, except that the declaration shall not explicitly
   1686     //   specialize a class member template if its en- closing class templates
   1687     //   are not explicitly specialized as well.
   1688     if (ParamIdx < NumParamLists) {
   1689       if (ParamLists[ParamIdx]->size() == 0) {
   1690         if (SawNonEmptyTemplateParameterList) {
   1691           Diag(DeclLoc, diag::err_specialize_member_of_template)
   1692             << ParamLists[ParamIdx]->getSourceRange();
   1693           Invalid = true;
   1694           IsExplicitSpecialization = false;
   1695           return 0;
   1696         }
   1697       } else
   1698         SawNonEmptyTemplateParameterList = true;
   1699     }
   1700 
   1701     if (NeedEmptyTemplateHeader) {
   1702       // If we're on the last of the types, and we need a 'template<>' header
   1703       // here, then it's an explicit specialization.
   1704       if (TypeIdx == NumTypes - 1)
   1705         IsExplicitSpecialization = true;
   1706 
   1707       if (ParamIdx < NumParamLists) {
   1708         if (ParamLists[ParamIdx]->size() > 0) {
   1709           // The header has template parameters when it shouldn't. Complain.
   1710           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1711                diag::err_template_param_list_matches_nontemplate)
   1712             << T
   1713             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
   1714                            ParamLists[ParamIdx]->getRAngleLoc())
   1715             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1716           Invalid = true;
   1717           return 0;
   1718         }
   1719 
   1720         // Consume this template header.
   1721         ++ParamIdx;
   1722         continue;
   1723       }
   1724 
   1725       if (!IsFriend) {
   1726         // We don't have a template header, but we should.
   1727         SourceLocation ExpectedTemplateLoc;
   1728         if (NumParamLists > 0)
   1729           ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
   1730         else
   1731           ExpectedTemplateLoc = DeclStartLoc;
   1732 
   1733         Diag(DeclLoc, diag::err_template_spec_needs_header)
   1734           << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
   1735           << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
   1736       }
   1737 
   1738       continue;
   1739     }
   1740 
   1741     if (NeedNonemptyTemplateHeader) {
   1742       // In friend declarations we can have template-ids which don't
   1743       // depend on the corresponding template parameter lists.  But
   1744       // assume that empty parameter lists are supposed to match this
   1745       // template-id.
   1746       if (IsFriend && T->isDependentType()) {
   1747         if (ParamIdx < NumParamLists &&
   1748             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
   1749           ExpectedTemplateParams = 0;
   1750         else
   1751           continue;
   1752       }
   1753 
   1754       if (ParamIdx < NumParamLists) {
   1755         // Check the template parameter list, if we can.
   1756         if (ExpectedTemplateParams &&
   1757             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
   1758                                             ExpectedTemplateParams,
   1759                                             true, TPL_TemplateMatch))
   1760           Invalid = true;
   1761 
   1762         if (!Invalid &&
   1763             CheckTemplateParameterList(ParamLists[ParamIdx], 0,
   1764                                        TPC_ClassTemplateMember))
   1765           Invalid = true;
   1766 
   1767         ++ParamIdx;
   1768         continue;
   1769       }
   1770 
   1771       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
   1772         << T
   1773         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1774       Invalid = true;
   1775       continue;
   1776     }
   1777   }
   1778 
   1779   // If there were at least as many template-ids as there were template
   1780   // parameter lists, then there are no template parameter lists remaining for
   1781   // the declaration itself.
   1782   if (ParamIdx >= NumParamLists)
   1783     return 0;
   1784 
   1785   // If there were too many template parameter lists, complain about that now.
   1786   if (ParamIdx < NumParamLists - 1) {
   1787     bool HasAnyExplicitSpecHeader = false;
   1788     bool AllExplicitSpecHeaders = true;
   1789     for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
   1790       if (ParamLists[I]->size() == 0)
   1791         HasAnyExplicitSpecHeader = true;
   1792       else
   1793         AllExplicitSpecHeaders = false;
   1794     }
   1795 
   1796     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1797          AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
   1798                                : diag::err_template_spec_extra_headers)
   1799       << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
   1800                      ParamLists[NumParamLists - 2]->getRAngleLoc());
   1801 
   1802     // If there was a specialization somewhere, such that 'template<>' is
   1803     // not required, and there were any 'template<>' headers, note where the
   1804     // specialization occurred.
   1805     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
   1806       Diag(ExplicitSpecLoc,
   1807            diag::note_explicit_template_spec_does_not_need_header)
   1808         << NestedTypes.back();
   1809 
   1810     // We have a template parameter list with no corresponding scope, which
   1811     // means that the resulting template declaration can't be instantiated
   1812     // properly (we'll end up with dependent nodes when we shouldn't).
   1813     if (!AllExplicitSpecHeaders)
   1814       Invalid = true;
   1815   }
   1816 
   1817   // C++ [temp.expl.spec]p16:
   1818   //   In an explicit specialization declaration for a member of a class
   1819   //   template or a member template that ap- pears in namespace scope, the
   1820   //   member template and some of its enclosing class templates may remain
   1821   //   unspecialized, except that the declaration shall not explicitly
   1822   //   specialize a class member template if its en- closing class templates
   1823   //   are not explicitly specialized as well.
   1824   if (ParamLists[NumParamLists - 1]->size() == 0 &&
   1825       SawNonEmptyTemplateParameterList) {
   1826     Diag(DeclLoc, diag::err_specialize_member_of_template)
   1827       << ParamLists[ParamIdx]->getSourceRange();
   1828     Invalid = true;
   1829     IsExplicitSpecialization = false;
   1830     return 0;
   1831   }
   1832 
   1833   // Return the last template parameter list, which corresponds to the
   1834   // entity being declared.
   1835   return ParamLists[NumParamLists - 1];
   1836 }
   1837 
   1838 void Sema::NoteAllFoundTemplates(TemplateName Name) {
   1839   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   1840     Diag(Template->getLocation(), diag::note_template_declared_here)
   1841       << (isa<FunctionTemplateDecl>(Template)? 0
   1842           : isa<ClassTemplateDecl>(Template)? 1
   1843           : isa<TypeAliasTemplateDecl>(Template)? 2
   1844           : 3)
   1845       << Template->getDeclName();
   1846     return;
   1847   }
   1848 
   1849   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
   1850     for (OverloadedTemplateStorage::iterator I = OST->begin(),
   1851                                           IEnd = OST->end();
   1852          I != IEnd; ++I)
   1853       Diag((*I)->getLocation(), diag::note_template_declared_here)
   1854         << 0 << (*I)->getDeclName();
   1855 
   1856     return;
   1857   }
   1858 }
   1859 
   1860 
   1861 QualType Sema::CheckTemplateIdType(TemplateName Name,
   1862                                    SourceLocation TemplateLoc,
   1863                                    TemplateArgumentListInfo &TemplateArgs) {
   1864   DependentTemplateName *DTN
   1865     = Name.getUnderlying().getAsDependentTemplateName();
   1866   if (DTN && DTN->isIdentifier())
   1867     // When building a template-id where the template-name is dependent,
   1868     // assume the template is a type template. Either our assumption is
   1869     // correct, or the code is ill-formed and will be diagnosed when the
   1870     // dependent name is substituted.
   1871     return Context.getDependentTemplateSpecializationType(ETK_None,
   1872                                                           DTN->getQualifier(),
   1873                                                           DTN->getIdentifier(),
   1874                                                           TemplateArgs);
   1875 
   1876   TemplateDecl *Template = Name.getAsTemplateDecl();
   1877   if (!Template || isa<FunctionTemplateDecl>(Template)) {
   1878     // We might have a substituted template template parameter pack. If so,
   1879     // build a template specialization type for it.
   1880     if (Name.getAsSubstTemplateTemplateParmPack())
   1881       return Context.getTemplateSpecializationType(Name, TemplateArgs);
   1882 
   1883     Diag(TemplateLoc, diag::err_template_id_not_a_type)
   1884       << Name;
   1885     NoteAllFoundTemplates(Name);
   1886     return QualType();
   1887   }
   1888 
   1889   // Check that the template argument list is well-formed for this
   1890   // template.
   1891   llvm::SmallVector<TemplateArgument, 4> Converted;
   1892   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
   1893                                 false, Converted))
   1894     return QualType();
   1895 
   1896   assert((Converted.size() == Template->getTemplateParameters()->size()) &&
   1897          "Converted template argument list is too short!");
   1898 
   1899   QualType CanonType;
   1900 
   1901   bool InstantiationDependent = false;
   1902   if (TypeAliasTemplateDecl *AliasTemplate
   1903         = dyn_cast<TypeAliasTemplateDecl>(Template)) {
   1904     // Find the canonical type for this type alias template specialization.
   1905     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
   1906     if (Pattern->isInvalidDecl())
   1907       return QualType();
   1908 
   1909     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   1910                                       Converted.data(), Converted.size());
   1911 
   1912     // Only substitute for the innermost template argument list.
   1913     MultiLevelTemplateArgumentList TemplateArgLists;
   1914     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   1915     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
   1916     for (unsigned I = 0; I < Depth; ++I)
   1917       TemplateArgLists.addOuterTemplateArguments(0, 0);
   1918 
   1919     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
   1920     CanonType = SubstType(Pattern->getUnderlyingType(),
   1921                           TemplateArgLists, AliasTemplate->getLocation(),
   1922                           AliasTemplate->getDeclName());
   1923     if (CanonType.isNull())
   1924       return QualType();
   1925   } else if (Name.isDependent() ||
   1926              TemplateSpecializationType::anyDependentTemplateArguments(
   1927                TemplateArgs, InstantiationDependent)) {
   1928     // This class template specialization is a dependent
   1929     // type. Therefore, its canonical type is another class template
   1930     // specialization type that contains all of the converted
   1931     // arguments in canonical form. This ensures that, e.g., A<T> and
   1932     // A<T, T> have identical types when A is declared as:
   1933     //
   1934     //   template<typename T, typename U = T> struct A;
   1935     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
   1936     CanonType = Context.getTemplateSpecializationType(CanonName,
   1937                                                       Converted.data(),
   1938                                                       Converted.size());
   1939 
   1940     // FIXME: CanonType is not actually the canonical type, and unfortunately
   1941     // it is a TemplateSpecializationType that we will never use again.
   1942     // In the future, we need to teach getTemplateSpecializationType to only
   1943     // build the canonical type and return that to us.
   1944     CanonType = Context.getCanonicalType(CanonType);
   1945 
   1946     // This might work out to be a current instantiation, in which
   1947     // case the canonical type needs to be the InjectedClassNameType.
   1948     //
   1949     // TODO: in theory this could be a simple hashtable lookup; most
   1950     // changes to CurContext don't change the set of current
   1951     // instantiations.
   1952     if (isa<ClassTemplateDecl>(Template)) {
   1953       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
   1954         // If we get out to a namespace, we're done.
   1955         if (Ctx->isFileContext()) break;
   1956 
   1957         // If this isn't a record, keep looking.
   1958         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
   1959         if (!Record) continue;
   1960 
   1961         // Look for one of the two cases with InjectedClassNameTypes
   1962         // and check whether it's the same template.
   1963         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
   1964             !Record->getDescribedClassTemplate())
   1965           continue;
   1966 
   1967         // Fetch the injected class name type and check whether its
   1968         // injected type is equal to the type we just built.
   1969         QualType ICNT = Context.getTypeDeclType(Record);
   1970         QualType Injected = cast<InjectedClassNameType>(ICNT)
   1971           ->getInjectedSpecializationType();
   1972 
   1973         if (CanonType != Injected->getCanonicalTypeInternal())
   1974           continue;
   1975 
   1976         // If so, the canonical type of this TST is the injected
   1977         // class name type of the record we just found.
   1978         assert(ICNT.isCanonical());
   1979         CanonType = ICNT;
   1980         break;
   1981       }
   1982     }
   1983   } else if (ClassTemplateDecl *ClassTemplate
   1984                = dyn_cast<ClassTemplateDecl>(Template)) {
   1985     // Find the class template specialization declaration that
   1986     // corresponds to these arguments.
   1987     void *InsertPos = 0;
   1988     ClassTemplateSpecializationDecl *Decl
   1989       = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
   1990                                           InsertPos);
   1991     if (!Decl) {
   1992       // This is the first time we have referenced this class template
   1993       // specialization. Create the canonical declaration and add it to
   1994       // the set of specializations.
   1995       Decl = ClassTemplateSpecializationDecl::Create(Context,
   1996                             ClassTemplate->getTemplatedDecl()->getTagKind(),
   1997                                                 ClassTemplate->getDeclContext(),
   1998                                                 ClassTemplate->getLocation(),
   1999                                                 ClassTemplate->getLocation(),
   2000                                                      ClassTemplate,
   2001                                                      Converted.data(),
   2002                                                      Converted.size(), 0);
   2003       ClassTemplate->AddSpecialization(Decl, InsertPos);
   2004       Decl->setLexicalDeclContext(CurContext);
   2005     }
   2006 
   2007     CanonType = Context.getTypeDeclType(Decl);
   2008     assert(isa<RecordType>(CanonType) &&
   2009            "type of non-dependent specialization is not a RecordType");
   2010   }
   2011 
   2012   // Build the fully-sugared type for this class template
   2013   // specialization, which refers back to the class template
   2014   // specialization we created or found.
   2015   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
   2016 }
   2017 
   2018 TypeResult
   2019 Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
   2020                           TemplateTy TemplateD, SourceLocation TemplateLoc,
   2021                           SourceLocation LAngleLoc,
   2022                           ASTTemplateArgsPtr TemplateArgsIn,
   2023                           SourceLocation RAngleLoc) {
   2024   if (SS.isInvalid())
   2025     return true;
   2026 
   2027   TemplateName Template = TemplateD.getAsVal<TemplateName>();
   2028 
   2029   // Translate the parser's template argument list in our AST format.
   2030   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2031   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2032 
   2033   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2034     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
   2035                                                            DTN->getQualifier(),
   2036                                                            DTN->getIdentifier(),
   2037                                                                 TemplateArgs);
   2038 
   2039     // Build type-source information.
   2040     TypeLocBuilder TLB;
   2041     DependentTemplateSpecializationTypeLoc SpecTL
   2042       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2043     SpecTL.setKeywordLoc(SourceLocation());
   2044     SpecTL.setNameLoc(TemplateLoc);
   2045     SpecTL.setLAngleLoc(LAngleLoc);
   2046     SpecTL.setRAngleLoc(RAngleLoc);
   2047     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2048     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2049       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2050     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2051   }
   2052 
   2053   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2054   TemplateArgsIn.release();
   2055 
   2056   if (Result.isNull())
   2057     return true;
   2058 
   2059   // Build type-source information.
   2060   TypeLocBuilder TLB;
   2061   TemplateSpecializationTypeLoc SpecTL
   2062     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2063   SpecTL.setTemplateNameLoc(TemplateLoc);
   2064   SpecTL.setLAngleLoc(LAngleLoc);
   2065   SpecTL.setRAngleLoc(RAngleLoc);
   2066   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2067     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2068 
   2069   if (SS.isNotEmpty()) {
   2070     // Create an elaborated-type-specifier containing the nested-name-specifier.
   2071     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
   2072     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2073     ElabTL.setKeywordLoc(SourceLocation());
   2074     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2075   }
   2076 
   2077   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2078 }
   2079 
   2080 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
   2081                                         TypeSpecifierType TagSpec,
   2082                                         SourceLocation TagLoc,
   2083                                         CXXScopeSpec &SS,
   2084                                         TemplateTy TemplateD,
   2085                                         SourceLocation TemplateLoc,
   2086                                         SourceLocation LAngleLoc,
   2087                                         ASTTemplateArgsPtr TemplateArgsIn,
   2088                                         SourceLocation RAngleLoc) {
   2089   TemplateName Template = TemplateD.getAsVal<TemplateName>();
   2090 
   2091   // Translate the parser's template argument list in our AST format.
   2092   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2093   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2094 
   2095   // Determine the tag kind
   2096   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   2097   ElaboratedTypeKeyword Keyword
   2098     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
   2099 
   2100   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2101     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
   2102                                                           DTN->getQualifier(),
   2103                                                           DTN->getIdentifier(),
   2104                                                                 TemplateArgs);
   2105 
   2106     // Build type-source information.
   2107     TypeLocBuilder TLB;
   2108     DependentTemplateSpecializationTypeLoc SpecTL
   2109     = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2110     SpecTL.setKeywordLoc(TagLoc);
   2111     SpecTL.setNameLoc(TemplateLoc);
   2112     SpecTL.setLAngleLoc(LAngleLoc);
   2113     SpecTL.setRAngleLoc(RAngleLoc);
   2114     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2115     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2116       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2117     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2118   }
   2119 
   2120   if (TypeAliasTemplateDecl *TAT =
   2121         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
   2122     // C++0x [dcl.type.elab]p2:
   2123     //   If the identifier resolves to a typedef-name or the simple-template-id
   2124     //   resolves to an alias template specialization, the
   2125     //   elaborated-type-specifier is ill-formed.
   2126     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
   2127     Diag(TAT->getLocation(), diag::note_declared_at);
   2128   }
   2129 
   2130   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2131   if (Result.isNull())
   2132     return TypeResult();
   2133 
   2134   // Check the tag kind
   2135   if (const RecordType *RT = Result->getAs<RecordType>()) {
   2136     RecordDecl *D = RT->getDecl();
   2137 
   2138     IdentifierInfo *Id = D->getIdentifier();
   2139     assert(Id && "templated class must have an identifier");
   2140 
   2141     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
   2142                                       TagLoc, *Id)) {
   2143       Diag(TagLoc, diag::err_use_with_wrong_tag)
   2144         << Result
   2145         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
   2146       Diag(D->getLocation(), diag::note_previous_use);
   2147     }
   2148   }
   2149 
   2150   // Provide source-location information for the template specialization.
   2151   TypeLocBuilder TLB;
   2152   TemplateSpecializationTypeLoc SpecTL
   2153     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2154   SpecTL.setTemplateNameLoc(TemplateLoc);
   2155   SpecTL.setLAngleLoc(LAngleLoc);
   2156   SpecTL.setRAngleLoc(RAngleLoc);
   2157   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2158     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2159 
   2160   // Construct an elaborated type containing the nested-name-specifier (if any)
   2161   // and keyword.
   2162   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
   2163   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2164   ElabTL.setKeywordLoc(TagLoc);
   2165   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2166   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2167 }
   2168 
   2169 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
   2170                                      LookupResult &R,
   2171                                      bool RequiresADL,
   2172                                  const TemplateArgumentListInfo &TemplateArgs) {
   2173   // FIXME: Can we do any checking at this point? I guess we could check the
   2174   // template arguments that we have against the template name, if the template
   2175   // name refers to a single template. That's not a terribly common case,
   2176   // though.
   2177   // foo<int> could identify a single function unambiguously
   2178   // This approach does NOT work, since f<int>(1);
   2179   // gets resolved prior to resorting to overload resolution
   2180   // i.e., template<class T> void f(double);
   2181   //       vs template<class T, class U> void f(U);
   2182 
   2183   // These should be filtered out by our callers.
   2184   assert(!R.empty() && "empty lookup results when building templateid");
   2185   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
   2186 
   2187   // We don't want lookup warnings at this point.
   2188   R.suppressDiagnostics();
   2189 
   2190   UnresolvedLookupExpr *ULE
   2191     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2192                                    SS.getWithLocInContext(Context),
   2193                                    R.getLookupNameInfo(),
   2194                                    RequiresADL, TemplateArgs,
   2195                                    R.begin(), R.end());
   2196 
   2197   return Owned(ULE);
   2198 }
   2199 
   2200 // We actually only call this from template instantiation.
   2201 ExprResult
   2202 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
   2203                                    const DeclarationNameInfo &NameInfo,
   2204                              const TemplateArgumentListInfo &TemplateArgs) {
   2205   DeclContext *DC;
   2206   if (!(DC = computeDeclContext(SS, false)) ||
   2207       DC->isDependentContext() ||
   2208       RequireCompleteDeclContext(SS, DC))
   2209     return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
   2210 
   2211   bool MemberOfUnknownSpecialization;
   2212   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2213   LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
   2214                      MemberOfUnknownSpecialization);
   2215 
   2216   if (R.isAmbiguous())
   2217     return ExprError();
   2218 
   2219   if (R.empty()) {
   2220     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
   2221       << NameInfo.getName() << SS.getRange();
   2222     return ExprError();
   2223   }
   2224 
   2225   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
   2226     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
   2227       << (NestedNameSpecifier*) SS.getScopeRep()
   2228       << NameInfo.getName() << SS.getRange();
   2229     Diag(Temp->getLocation(), diag::note_referenced_class_template);
   2230     return ExprError();
   2231   }
   2232 
   2233   return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
   2234 }
   2235 
   2236 /// \brief Form a dependent template name.
   2237 ///
   2238 /// This action forms a dependent template name given the template
   2239 /// name and its (presumably dependent) scope specifier. For
   2240 /// example, given "MetaFun::template apply", the scope specifier \p
   2241 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
   2242 /// of the "template" keyword, and "apply" is the \p Name.
   2243 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
   2244                                                   SourceLocation TemplateKWLoc,
   2245                                                   CXXScopeSpec &SS,
   2246                                                   UnqualifiedId &Name,
   2247                                                   ParsedType ObjectType,
   2248                                                   bool EnteringContext,
   2249                                                   TemplateTy &Result) {
   2250   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
   2251       !getLangOptions().CPlusPlus0x)
   2252     Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
   2253       << FixItHint::CreateRemoval(TemplateKWLoc);
   2254 
   2255   DeclContext *LookupCtx = 0;
   2256   if (SS.isSet())
   2257     LookupCtx = computeDeclContext(SS, EnteringContext);
   2258   if (!LookupCtx && ObjectType)
   2259     LookupCtx = computeDeclContext(ObjectType.get());
   2260   if (LookupCtx) {
   2261     // C++0x [temp.names]p5:
   2262     //   If a name prefixed by the keyword template is not the name of
   2263     //   a template, the program is ill-formed. [Note: the keyword
   2264     //   template may not be applied to non-template members of class
   2265     //   templates. -end note ] [ Note: as is the case with the
   2266     //   typename prefix, the template prefix is allowed in cases
   2267     //   where it is not strictly necessary; i.e., when the
   2268     //   nested-name-specifier or the expression on the left of the ->
   2269     //   or . is not dependent on a template-parameter, or the use
   2270     //   does not appear in the scope of a template. -end note]
   2271     //
   2272     // Note: C++03 was more strict here, because it banned the use of
   2273     // the "template" keyword prior to a template-name that was not a
   2274     // dependent name. C++ DR468 relaxed this requirement (the
   2275     // "template" keyword is now permitted). We follow the C++0x
   2276     // rules, even in C++03 mode with a warning, retroactively applying the DR.
   2277     bool MemberOfUnknownSpecialization;
   2278     TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
   2279                                           ObjectType, EnteringContext, Result,
   2280                                           MemberOfUnknownSpecialization);
   2281     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
   2282         isa<CXXRecordDecl>(LookupCtx) &&
   2283         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
   2284          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
   2285       // This is a dependent template. Handle it below.
   2286     } else if (TNK == TNK_Non_template) {
   2287       Diag(Name.getSourceRange().getBegin(),
   2288            diag::err_template_kw_refers_to_non_template)
   2289         << GetNameFromUnqualifiedId(Name).getName()
   2290         << Name.getSourceRange()
   2291         << TemplateKWLoc;
   2292       return TNK_Non_template;
   2293     } else {
   2294       // We found something; return it.
   2295       return TNK;
   2296     }
   2297   }
   2298 
   2299   NestedNameSpecifier *Qualifier
   2300     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   2301 
   2302   switch (Name.getKind()) {
   2303   case UnqualifiedId::IK_Identifier:
   2304     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2305                                                               Name.Identifier));
   2306     return TNK_Dependent_template_name;
   2307 
   2308   case UnqualifiedId::IK_OperatorFunctionId:
   2309     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   2310                                              Name.OperatorFunctionId.Operator));
   2311     return TNK_Dependent_template_name;
   2312 
   2313   case UnqualifiedId::IK_LiteralOperatorId:
   2314     assert(false && "We don't support these; Parse shouldn't have allowed propagation");
   2315 
   2316   default:
   2317     break;
   2318   }
   2319 
   2320   Diag(Name.getSourceRange().getBegin(),
   2321        diag::err_template_kw_refers_to_non_template)
   2322     << GetNameFromUnqualifiedId(Name).getName()
   2323     << Name.getSourceRange()
   2324     << TemplateKWLoc;
   2325   return TNK_Non_template;
   2326 }
   2327 
   2328 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
   2329                                      const TemplateArgumentLoc &AL,
   2330                           llvm::SmallVectorImpl<TemplateArgument> &Converted) {
   2331   const TemplateArgument &Arg = AL.getArgument();
   2332 
   2333   // Check template type parameter.
   2334   switch(Arg.getKind()) {
   2335   case TemplateArgument::Type:
   2336     // C++ [temp.arg.type]p1:
   2337     //   A template-argument for a template-parameter which is a
   2338     //   type shall be a type-id.
   2339     break;
   2340   case TemplateArgument::Template: {
   2341     // We have a template type parameter but the template argument
   2342     // is a template without any arguments.
   2343     SourceRange SR = AL.getSourceRange();
   2344     TemplateName Name = Arg.getAsTemplate();
   2345     Diag(SR.getBegin(), diag::err_template_missing_args)
   2346       << Name << SR;
   2347     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
   2348       Diag(Decl->getLocation(), diag::note_template_decl_here);
   2349 
   2350     return true;
   2351   }
   2352   default: {
   2353     // We have a template type parameter but the template argument
   2354     // is not a type.
   2355     SourceRange SR = AL.getSourceRange();
   2356     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
   2357     Diag(Param->getLocation(), diag::note_template_param_here);
   2358 
   2359     return true;
   2360   }
   2361   }
   2362 
   2363   if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
   2364     return true;
   2365 
   2366   // Add the converted template type argument.
   2367   QualType ArgType = Context.getCanonicalType(Arg.getAsType());
   2368 
   2369   // Objective-C ARC:
   2370   //   If an explicitly-specified template argument type is a lifetime type
   2371   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
   2372   if (getLangOptions().ObjCAutoRefCount &&
   2373       ArgType->isObjCLifetimeType() &&
   2374       !ArgType.getObjCLifetime()) {
   2375     Qualifiers Qs;
   2376     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
   2377     ArgType = Context.getQualifiedType(ArgType, Qs);
   2378   }
   2379 
   2380   Converted.push_back(TemplateArgument(ArgType));
   2381   return false;
   2382 }
   2383 
   2384 /// \brief Substitute template arguments into the default template argument for
   2385 /// the given template type parameter.
   2386 ///
   2387 /// \param SemaRef the semantic analysis object for which we are performing
   2388 /// the substitution.
   2389 ///
   2390 /// \param Template the template that we are synthesizing template arguments
   2391 /// for.
   2392 ///
   2393 /// \param TemplateLoc the location of the template name that started the
   2394 /// template-id we are checking.
   2395 ///
   2396 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2397 /// terminates the template-id.
   2398 ///
   2399 /// \param Param the template template parameter whose default we are
   2400 /// substituting into.
   2401 ///
   2402 /// \param Converted the list of template arguments provided for template
   2403 /// parameters that precede \p Param in the template parameter list.
   2404 /// \returns the substituted template argument, or NULL if an error occurred.
   2405 static TypeSourceInfo *
   2406 SubstDefaultTemplateArgument(Sema &SemaRef,
   2407                              TemplateDecl *Template,
   2408                              SourceLocation TemplateLoc,
   2409                              SourceLocation RAngleLoc,
   2410                              TemplateTypeParmDecl *Param,
   2411                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
   2412   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
   2413 
   2414   // If the argument type is dependent, instantiate it now based
   2415   // on the previously-computed template arguments.
   2416   if (ArgType->getType()->isDependentType()) {
   2417     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2418                                       Converted.data(), Converted.size());
   2419 
   2420     MultiLevelTemplateArgumentList AllTemplateArgs
   2421       = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2422 
   2423     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2424                                      Template, Converted.data(),
   2425                                      Converted.size(),
   2426                                      SourceRange(TemplateLoc, RAngleLoc));
   2427 
   2428     ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
   2429                                 Param->getDefaultArgumentLoc(),
   2430                                 Param->getDeclName());
   2431   }
   2432 
   2433   return ArgType;
   2434 }
   2435 
   2436 /// \brief Substitute template arguments into the default template argument for
   2437 /// the given non-type template parameter.
   2438 ///
   2439 /// \param SemaRef the semantic analysis object for which we are performing
   2440 /// the substitution.
   2441 ///
   2442 /// \param Template the template that we are synthesizing template arguments
   2443 /// for.
   2444 ///
   2445 /// \param TemplateLoc the location of the template name that started the
   2446 /// template-id we are checking.
   2447 ///
   2448 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2449 /// terminates the template-id.
   2450 ///
   2451 /// \param Param the non-type template parameter whose default we are
   2452 /// substituting into.
   2453 ///
   2454 /// \param Converted the list of template arguments provided for template
   2455 /// parameters that precede \p Param in the template parameter list.
   2456 ///
   2457 /// \returns the substituted template argument, or NULL if an error occurred.
   2458 static ExprResult
   2459 SubstDefaultTemplateArgument(Sema &SemaRef,
   2460                              TemplateDecl *Template,
   2461                              SourceLocation TemplateLoc,
   2462                              SourceLocation RAngleLoc,
   2463                              NonTypeTemplateParmDecl *Param,
   2464                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
   2465   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2466                                     Converted.data(), Converted.size());
   2467 
   2468   MultiLevelTemplateArgumentList AllTemplateArgs
   2469     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2470 
   2471   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2472                                    Template, Converted.data(),
   2473                                    Converted.size(),
   2474                                    SourceRange(TemplateLoc, RAngleLoc));
   2475 
   2476   return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
   2477 }
   2478 
   2479 /// \brief Substitute template arguments into the default template argument for
   2480 /// the given template template parameter.
   2481 ///
   2482 /// \param SemaRef the semantic analysis object for which we are performing
   2483 /// the substitution.
   2484 ///
   2485 /// \param Template the template that we are synthesizing template arguments
   2486 /// for.
   2487 ///
   2488 /// \param TemplateLoc the location of the template name that started the
   2489 /// template-id we are checking.
   2490 ///
   2491 /// \param RAngleLoc the location of the right angle bracket ('>') that
   2492 /// terminates the template-id.
   2493 ///
   2494 /// \param Param the template template parameter whose default we are
   2495 /// substituting into.
   2496 ///
   2497 /// \param Converted the list of template arguments provided for template
   2498 /// parameters that precede \p Param in the template parameter list.
   2499 ///
   2500 /// \param QualifierLoc Will be set to the nested-name-specifier (with
   2501 /// source-location information) that precedes the template name.
   2502 ///
   2503 /// \returns the substituted template argument, or NULL if an error occurred.
   2504 static TemplateName
   2505 SubstDefaultTemplateArgument(Sema &SemaRef,
   2506                              TemplateDecl *Template,
   2507                              SourceLocation TemplateLoc,
   2508                              SourceLocation RAngleLoc,
   2509                              TemplateTemplateParmDecl *Param,
   2510                        llvm::SmallVectorImpl<TemplateArgument> &Converted,
   2511                              NestedNameSpecifierLoc &QualifierLoc) {
   2512   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2513                                     Converted.data(), Converted.size());
   2514 
   2515   MultiLevelTemplateArgumentList AllTemplateArgs
   2516     = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
   2517 
   2518   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   2519                                    Template, Converted.data(),
   2520                                    Converted.size(),
   2521                                    SourceRange(TemplateLoc, RAngleLoc));
   2522 
   2523   // Substitute into the nested-name-specifier first,
   2524   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
   2525   if (QualifierLoc) {
   2526     QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
   2527                                                        AllTemplateArgs);
   2528     if (!QualifierLoc)
   2529       return TemplateName();
   2530   }
   2531 
   2532   return SemaRef.SubstTemplateName(QualifierLoc,
   2533                       Param->getDefaultArgument().getArgument().getAsTemplate(),
   2534                               Param->getDefaultArgument().getTemplateNameLoc(),
   2535                                    AllTemplateArgs);
   2536 }
   2537 
   2538 /// \brief If the given template parameter has a default template
   2539 /// argument, substitute into that default template argument and
   2540 /// return the corresponding template argument.
   2541 TemplateArgumentLoc
   2542 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
   2543                                               SourceLocation TemplateLoc,
   2544                                               SourceLocation RAngleLoc,
   2545                                               Decl *Param,
   2546                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
   2547    if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
   2548     if (!TypeParm->hasDefaultArgument())
   2549       return TemplateArgumentLoc();
   2550 
   2551     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
   2552                                                       TemplateLoc,
   2553                                                       RAngleLoc,
   2554                                                       TypeParm,
   2555                                                       Converted);
   2556     if (DI)
   2557       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
   2558 
   2559     return TemplateArgumentLoc();
   2560   }
   2561 
   2562   if (NonTypeTemplateParmDecl *NonTypeParm
   2563         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2564     if (!NonTypeParm->hasDefaultArgument())
   2565       return TemplateArgumentLoc();
   2566 
   2567     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
   2568                                                   TemplateLoc,
   2569                                                   RAngleLoc,
   2570                                                   NonTypeParm,
   2571                                                   Converted);
   2572     if (Arg.isInvalid())
   2573       return TemplateArgumentLoc();
   2574 
   2575     Expr *ArgE = Arg.takeAs<Expr>();
   2576     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
   2577   }
   2578 
   2579   TemplateTemplateParmDecl *TempTempParm
   2580     = cast<TemplateTemplateParmDecl>(Param);
   2581   if (!TempTempParm->hasDefaultArgument())
   2582     return TemplateArgumentLoc();
   2583 
   2584 
   2585   NestedNameSpecifierLoc QualifierLoc;
   2586   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
   2587                                                     TemplateLoc,
   2588                                                     RAngleLoc,
   2589                                                     TempTempParm,
   2590                                                     Converted,
   2591                                                     QualifierLoc);
   2592   if (TName.isNull())
   2593     return TemplateArgumentLoc();
   2594 
   2595   return TemplateArgumentLoc(TemplateArgument(TName),
   2596                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
   2597                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
   2598 }
   2599 
   2600 /// \brief Check that the given template argument corresponds to the given
   2601 /// template parameter.
   2602 ///
   2603 /// \param Param The template parameter against which the argument will be
   2604 /// checked.
   2605 ///
   2606 /// \param Arg The template argument.
   2607 ///
   2608 /// \param Template The template in which the template argument resides.
   2609 ///
   2610 /// \param TemplateLoc The location of the template name for the template
   2611 /// whose argument list we're matching.
   2612 ///
   2613 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
   2614 /// the template argument list.
   2615 ///
   2616 /// \param ArgumentPackIndex The index into the argument pack where this
   2617 /// argument will be placed. Only valid if the parameter is a parameter pack.
   2618 ///
   2619 /// \param Converted The checked, converted argument will be added to the
   2620 /// end of this small vector.
   2621 ///
   2622 /// \param CTAK Describes how we arrived at this particular template argument:
   2623 /// explicitly written, deduced, etc.
   2624 ///
   2625 /// \returns true on error, false otherwise.
   2626 bool Sema::CheckTemplateArgument(NamedDecl *Param,
   2627                                  const TemplateArgumentLoc &Arg,
   2628                                  NamedDecl *Template,
   2629                                  SourceLocation TemplateLoc,
   2630                                  SourceLocation RAngleLoc,
   2631                                  unsigned ArgumentPackIndex,
   2632                             llvm::SmallVectorImpl<TemplateArgument> &Converted,
   2633                                  CheckTemplateArgumentKind CTAK) {
   2634   // Check template type parameters.
   2635   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
   2636     return CheckTemplateTypeArgument(TTP, Arg, Converted);
   2637 
   2638   // Check non-type template parameters.
   2639   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2640     // Do substitution on the type of the non-type template parameter
   2641     // with the template arguments we've seen thus far.  But if the
   2642     // template has a dependent context then we cannot substitute yet.
   2643     QualType NTTPType = NTTP->getType();
   2644     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
   2645       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
   2646 
   2647     if (NTTPType->isDependentType() &&
   2648         !isa<TemplateTemplateParmDecl>(Template) &&
   2649         !Template->getDeclContext()->isDependentContext()) {
   2650       // Do substitution on the type of the non-type template parameter.
   2651       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   2652                                  NTTP, Converted.data(), Converted.size(),
   2653                                  SourceRange(TemplateLoc, RAngleLoc));
   2654 
   2655       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2656                                         Converted.data(), Converted.size());
   2657       NTTPType = SubstType(NTTPType,
   2658                            MultiLevelTemplateArgumentList(TemplateArgs),
   2659                            NTTP->getLocation(),
   2660                            NTTP->getDeclName());
   2661       // If that worked, check the non-type template parameter type
   2662       // for validity.
   2663       if (!NTTPType.isNull())
   2664         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
   2665                                                      NTTP->getLocation());
   2666       if (NTTPType.isNull())
   2667         return true;
   2668     }
   2669 
   2670     switch (Arg.getArgument().getKind()) {
   2671     case TemplateArgument::Null:
   2672       assert(false && "Should never see a NULL template argument here");
   2673       return true;
   2674 
   2675     case TemplateArgument::Expression: {
   2676       TemplateArgument Result;
   2677       ExprResult Res =
   2678         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
   2679                               Result, CTAK);
   2680       if (Res.isInvalid())
   2681         return true;
   2682 
   2683       Converted.push_back(Result);
   2684       break;
   2685     }
   2686 
   2687     case TemplateArgument::Declaration:
   2688     case TemplateArgument::Integral:
   2689       // We've already checked this template argument, so just copy
   2690       // it to the list of converted arguments.
   2691       Converted.push_back(Arg.getArgument());
   2692       break;
   2693 
   2694     case TemplateArgument::Template:
   2695     case TemplateArgument::TemplateExpansion:
   2696       // We were given a template template argument. It may not be ill-formed;
   2697       // see below.
   2698       if (DependentTemplateName *DTN
   2699             = Arg.getArgument().getAsTemplateOrTemplatePattern()
   2700                                               .getAsDependentTemplateName()) {
   2701         // We have a template argument such as \c T::template X, which we
   2702         // parsed as a template template argument. However, since we now
   2703         // know that we need a non-type template argument, convert this
   2704         // template name into an expression.
   2705 
   2706         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
   2707                                      Arg.getTemplateNameLoc());
   2708 
   2709         CXXScopeSpec SS;
   2710         SS.Adopt(Arg.getTemplateQualifierLoc());
   2711         ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
   2712                                                 SS.getWithLocInContext(Context),
   2713                                                     NameInfo));
   2714 
   2715         // If we parsed the template argument as a pack expansion, create a
   2716         // pack expansion expression.
   2717         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
   2718           E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
   2719           if (E.isInvalid())
   2720             return true;
   2721         }
   2722 
   2723         TemplateArgument Result;
   2724         E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
   2725         if (E.isInvalid())
   2726           return true;
   2727 
   2728         Converted.push_back(Result);
   2729         break;
   2730       }
   2731 
   2732       // We have a template argument that actually does refer to a class
   2733       // template, alias template, or template template parameter, and
   2734       // therefore cannot be a non-type template argument.
   2735       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
   2736         << Arg.getSourceRange();
   2737 
   2738       Diag(Param->getLocation(), diag::note_template_param_here);
   2739       return true;
   2740 
   2741     case TemplateArgument::Type: {
   2742       // We have a non-type template parameter but the template
   2743       // argument is a type.
   2744 
   2745       // C++ [temp.arg]p2:
   2746       //   In a template-argument, an ambiguity between a type-id and
   2747       //   an expression is resolved to a type-id, regardless of the
   2748       //   form of the corresponding template-parameter.
   2749       //
   2750       // We warn specifically about this case, since it can be rather
   2751       // confusing for users.
   2752       QualType T = Arg.getArgument().getAsType();
   2753       SourceRange SR = Arg.getSourceRange();
   2754       if (T->isFunctionType())
   2755         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
   2756       else
   2757         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
   2758       Diag(Param->getLocation(), diag::note_template_param_here);
   2759       return true;
   2760     }
   2761 
   2762     case TemplateArgument::Pack:
   2763       llvm_unreachable("Caller must expand template argument packs");
   2764       break;
   2765     }
   2766 
   2767     return false;
   2768   }
   2769 
   2770 
   2771   // Check template template parameters.
   2772   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
   2773 
   2774   // Substitute into the template parameter list of the template
   2775   // template parameter, since previously-supplied template arguments
   2776   // may appear within the template template parameter.
   2777   {
   2778     // Set up a template instantiation context.
   2779     LocalInstantiationScope Scope(*this);
   2780     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   2781                                TempParm, Converted.data(), Converted.size(),
   2782                                SourceRange(TemplateLoc, RAngleLoc));
   2783 
   2784     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2785                                       Converted.data(), Converted.size());
   2786     TempParm = cast_or_null<TemplateTemplateParmDecl>(
   2787                       SubstDecl(TempParm, CurContext,
   2788                                 MultiLevelTemplateArgumentList(TemplateArgs)));
   2789     if (!TempParm)
   2790       return true;
   2791   }
   2792 
   2793   switch (Arg.getArgument().getKind()) {
   2794   case TemplateArgument::Null:
   2795     assert(false && "Should never see a NULL template argument here");
   2796     return true;
   2797 
   2798   case TemplateArgument::Template:
   2799   case TemplateArgument::TemplateExpansion:
   2800     if (CheckTemplateArgument(TempParm, Arg))
   2801       return true;
   2802 
   2803     Converted.push_back(Arg.getArgument());
   2804     break;
   2805 
   2806   case TemplateArgument::Expression:
   2807   case TemplateArgument::Type:
   2808     // We have a template template parameter but the template
   2809     // argument does not refer to a template.
   2810     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
   2811       << getLangOptions().CPlusPlus0x;
   2812     return true;
   2813 
   2814   case TemplateArgument::Declaration:
   2815     llvm_unreachable(
   2816                        "Declaration argument with template template parameter");
   2817     break;
   2818   case TemplateArgument::Integral:
   2819     llvm_unreachable(
   2820                           "Integral argument with template template parameter");
   2821     break;
   2822 
   2823   case TemplateArgument::Pack:
   2824     llvm_unreachable("Caller must expand template argument packs");
   2825     break;
   2826   }
   2827 
   2828   return false;
   2829 }
   2830 
   2831 /// \brief Check that the given template argument list is well-formed
   2832 /// for specializing the given template.
   2833 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
   2834                                      SourceLocation TemplateLoc,
   2835                                      TemplateArgumentListInfo &TemplateArgs,
   2836                                      bool PartialTemplateArgs,
   2837                           llvm::SmallVectorImpl<TemplateArgument> &Converted) {
   2838   TemplateParameterList *Params = Template->getTemplateParameters();
   2839   unsigned NumParams = Params->size();
   2840   unsigned NumArgs = TemplateArgs.size();
   2841   bool Invalid = false;
   2842 
   2843   SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
   2844 
   2845   bool HasParameterPack =
   2846     NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
   2847 
   2848   if ((NumArgs > NumParams && !HasParameterPack) ||
   2849       (NumArgs < Params->getMinRequiredArguments() &&
   2850        !PartialTemplateArgs)) {
   2851     // FIXME: point at either the first arg beyond what we can handle,
   2852     // or the '>', depending on whether we have too many or too few
   2853     // arguments.
   2854     SourceRange Range;
   2855     if (NumArgs > NumParams)
   2856       Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
   2857     Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   2858       << (NumArgs > NumParams)
   2859       << (isa<ClassTemplateDecl>(Template)? 0 :
   2860           isa<FunctionTemplateDecl>(Template)? 1 :
   2861           isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   2862       << Template << Range;
   2863     Diag(Template->getLocation(), diag::note_template_decl_here)
   2864       << Params->getSourceRange();
   2865     Invalid = true;
   2866   }
   2867 
   2868   // C++ [temp.arg]p1:
   2869   //   [...] The type and form of each template-argument specified in
   2870   //   a template-id shall match the type and form specified for the
   2871   //   corresponding parameter declared by the template in its
   2872   //   template-parameter-list.
   2873   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
   2874   llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
   2875   TemplateParameterList::iterator Param = Params->begin(),
   2876                                ParamEnd = Params->end();
   2877   unsigned ArgIdx = 0;
   2878   LocalInstantiationScope InstScope(*this, true);
   2879   while (Param != ParamEnd) {
   2880     if (ArgIdx < NumArgs) {
   2881       // If we have an expanded parameter pack, make sure we don't have too
   2882       // many arguments.
   2883       if (NonTypeTemplateParmDecl *NTTP
   2884                                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   2885         if (NTTP->isExpandedParameterPack() &&
   2886             ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
   2887           Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   2888             << true
   2889             << (isa<ClassTemplateDecl>(Template)? 0 :
   2890                 isa<FunctionTemplateDecl>(Template)? 1 :
   2891                 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   2892             << Template;
   2893           Diag(Template->getLocation(), diag::note_template_decl_here)
   2894             << Params->getSourceRange();
   2895           return true;
   2896         }
   2897       }
   2898 
   2899       // Check the template argument we were given.
   2900       if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
   2901                                 TemplateLoc, RAngleLoc,
   2902                                 ArgumentPack.size(), Converted))
   2903         return true;
   2904 
   2905       if ((*Param)->isTemplateParameterPack()) {
   2906         // The template parameter was a template parameter pack, so take the
   2907         // deduced argument and place it on the argument pack. Note that we
   2908         // stay on the same template parameter so that we can deduce more
   2909         // arguments.
   2910         ArgumentPack.push_back(Converted.back());
   2911         Converted.pop_back();
   2912       } else {
   2913         // Move to the next template parameter.
   2914         ++Param;
   2915       }
   2916       ++ArgIdx;
   2917       continue;
   2918     }
   2919 
   2920     // If we're checking a partial template argument list, we're done.
   2921     if (PartialTemplateArgs) {
   2922       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
   2923         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   2924                                                          ArgumentPack.data(),
   2925                                                          ArgumentPack.size()));
   2926 
   2927       return Invalid;
   2928     }
   2929 
   2930     // If we have a template parameter pack with no more corresponding
   2931     // arguments, just break out now and we'll fill in the argument pack below.
   2932     if ((*Param)->isTemplateParameterPack())
   2933       break;
   2934 
   2935     // We have a default template argument that we will use.
   2936     TemplateArgumentLoc Arg;
   2937 
   2938     // Retrieve the default template argument from the template
   2939     // parameter. For each kind of template parameter, we substitute the
   2940     // template arguments provided thus far and any "outer" template arguments
   2941     // (when the template parameter was part of a nested template) into
   2942     // the default argument.
   2943     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
   2944       if (!TTP->hasDefaultArgument()) {
   2945         assert(Invalid && "Missing default argument");
   2946         break;
   2947       }
   2948 
   2949       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
   2950                                                              Template,
   2951                                                              TemplateLoc,
   2952                                                              RAngleLoc,
   2953                                                              TTP,
   2954                                                              Converted);
   2955       if (!ArgType)
   2956         return true;
   2957 
   2958       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
   2959                                 ArgType);
   2960     } else if (NonTypeTemplateParmDecl *NTTP
   2961                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   2962       if (!NTTP->hasDefaultArgument()) {
   2963         assert(Invalid && "Missing default argument");
   2964         break;
   2965       }
   2966 
   2967       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
   2968                                                               TemplateLoc,
   2969                                                               RAngleLoc,
   2970                                                               NTTP,
   2971                                                               Converted);
   2972       if (E.isInvalid())
   2973         return true;
   2974 
   2975       Expr *Ex = E.takeAs<Expr>();
   2976       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
   2977     } else {
   2978       TemplateTemplateParmDecl *TempParm
   2979         = cast<TemplateTemplateParmDecl>(*Param);
   2980 
   2981       if (!TempParm->hasDefaultArgument()) {
   2982         assert(Invalid && "Missing default argument");
   2983         break;
   2984       }
   2985 
   2986       NestedNameSpecifierLoc QualifierLoc;
   2987       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
   2988                                                        TemplateLoc,
   2989                                                        RAngleLoc,
   2990                                                        TempParm,
   2991                                                        Converted,
   2992                                                        QualifierLoc);
   2993       if (Name.isNull())
   2994         return true;
   2995 
   2996       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
   2997                            TempParm->getDefaultArgument().getTemplateNameLoc());
   2998     }
   2999 
   3000     // Introduce an instantiation record that describes where we are using
   3001     // the default template argument.
   3002     InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
   3003                                         Converted.data(), Converted.size(),
   3004                                         SourceRange(TemplateLoc, RAngleLoc));
   3005 
   3006     // Check the default template argument.
   3007     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
   3008                               RAngleLoc, 0, Converted))
   3009       return true;
   3010 
   3011     // Core issue 150 (assumed resolution): if this is a template template
   3012     // parameter, keep track of the default template arguments from the
   3013     // template definition.
   3014     if (isTemplateTemplateParameter)
   3015       TemplateArgs.addArgument(Arg);
   3016 
   3017     // Move to the next template parameter and argument.
   3018     ++Param;
   3019     ++ArgIdx;
   3020   }
   3021 
   3022   // Form argument packs for each of the parameter packs remaining.
   3023   while (Param != ParamEnd) {
   3024     // If we're checking a partial list of template arguments, don't fill
   3025     // in arguments for non-template parameter packs.
   3026 
   3027     if ((*Param)->isTemplateParameterPack()) {
   3028       if (ArgumentPack.empty())
   3029         Converted.push_back(TemplateArgument(0, 0));
   3030       else {
   3031         Converted.push_back(TemplateArgument::CreatePackCopy(Context,
   3032                                                           ArgumentPack.data(),
   3033                                                          ArgumentPack.size()));
   3034         ArgumentPack.clear();
   3035       }
   3036     }
   3037 
   3038     ++Param;
   3039   }
   3040 
   3041   return Invalid;
   3042 }
   3043 
   3044 namespace {
   3045   class UnnamedLocalNoLinkageFinder
   3046     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
   3047   {
   3048     Sema &S;
   3049     SourceRange SR;
   3050 
   3051     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
   3052 
   3053   public:
   3054     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
   3055 
   3056     bool Visit(QualType T) {
   3057       return inherited::Visit(T.getTypePtr());
   3058     }
   3059 
   3060 #define TYPE(Class, Parent) \
   3061     bool Visit##Class##Type(const Class##Type *);
   3062 #define ABSTRACT_TYPE(Class, Parent) \
   3063     bool Visit##Class##Type(const Class##Type *) { return false; }
   3064 #define NON_CANONICAL_TYPE(Class, Parent) \
   3065     bool Visit##Class##Type(const Class##Type *) { return false; }
   3066 #include "clang/AST/TypeNodes.def"
   3067 
   3068     bool VisitTagDecl(const TagDecl *Tag);
   3069     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
   3070   };
   3071 }
   3072 
   3073 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
   3074   return false;
   3075 }
   3076 
   3077 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
   3078   return Visit(T->getElementType());
   3079 }
   3080 
   3081 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
   3082   return Visit(T->getPointeeType());
   3083 }
   3084 
   3085 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
   3086                                                     const BlockPointerType* T) {
   3087   return Visit(T->getPointeeType());
   3088 }
   3089 
   3090 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
   3091                                                 const LValueReferenceType* T) {
   3092   return Visit(T->getPointeeType());
   3093 }
   3094 
   3095 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
   3096                                                 const RValueReferenceType* T) {
   3097   return Visit(T->getPointeeType());
   3098 }
   3099 
   3100 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
   3101                                                   const MemberPointerType* T) {
   3102   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
   3103 }
   3104 
   3105 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
   3106                                                   const ConstantArrayType* T) {
   3107   return Visit(T->getElementType());
   3108 }
   3109 
   3110 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
   3111                                                  const IncompleteArrayType* T) {
   3112   return Visit(T->getElementType());
   3113 }
   3114 
   3115 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
   3116                                                    const VariableArrayType* T) {
   3117   return Visit(T->getElementType());
   3118 }
   3119 
   3120 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
   3121                                             const DependentSizedArrayType* T) {
   3122   return Visit(T->getElementType());
   3123 }
   3124 
   3125 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
   3126                                          const DependentSizedExtVectorType* T) {
   3127   return Visit(T->getElementType());
   3128 }
   3129 
   3130 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
   3131   return Visit(T->getElementType());
   3132 }
   3133 
   3134 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
   3135   return Visit(T->getElementType());
   3136 }
   3137 
   3138 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
   3139                                                   const FunctionProtoType* T) {
   3140   for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
   3141                                          AEnd = T->arg_type_end();
   3142        A != AEnd; ++A) {
   3143     if (Visit(*A))
   3144       return true;
   3145   }
   3146 
   3147   return Visit(T->getResultType());
   3148 }
   3149 
   3150 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
   3151                                                const FunctionNoProtoType* T) {
   3152   return Visit(T->getResultType());
   3153 }
   3154 
   3155 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
   3156                                                   const UnresolvedUsingType*) {
   3157   return false;
   3158 }
   3159 
   3160 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
   3161   return false;
   3162 }
   3163 
   3164 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
   3165   return Visit(T->getUnderlyingType());
   3166 }
   3167 
   3168 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
   3169   return false;
   3170 }
   3171 
   3172 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
   3173                                                     const UnaryTransformType*) {
   3174   return false;
   3175 }
   3176 
   3177 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
   3178   return Visit(T->getDeducedType());
   3179 }
   3180 
   3181 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
   3182   return VisitTagDecl(T->getDecl());
   3183 }
   3184 
   3185 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
   3186   return VisitTagDecl(T->getDecl());
   3187 }
   3188 
   3189 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
   3190                                                  const TemplateTypeParmType*) {
   3191   return false;
   3192 }
   3193 
   3194 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
   3195                                         const SubstTemplateTypeParmPackType *) {
   3196   return false;
   3197 }
   3198 
   3199 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
   3200                                             const TemplateSpecializationType*) {
   3201   return false;
   3202 }
   3203 
   3204 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
   3205                                               const InjectedClassNameType* T) {
   3206   return VisitTagDecl(T->getDecl());
   3207 }
   3208 
   3209 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
   3210                                                    const DependentNameType* T) {
   3211   return VisitNestedNameSpecifier(T->getQualifier());
   3212 }
   3213 
   3214 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
   3215                                  const DependentTemplateSpecializationType* T) {
   3216   return VisitNestedNameSpecifier(T->getQualifier());
   3217 }
   3218 
   3219 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
   3220                                                    const PackExpansionType* T) {
   3221   return Visit(T->getPattern());
   3222 }
   3223 
   3224 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
   3225   return false;
   3226 }
   3227 
   3228 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
   3229                                                    const ObjCInterfaceType *) {
   3230   return false;
   3231 }
   3232 
   3233 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
   3234                                                 const ObjCObjectPointerType *) {
   3235   return false;
   3236 }
   3237 
   3238 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
   3239   if (Tag->getDeclContext()->isFunctionOrMethod()) {
   3240     S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
   3241       << S.Context.getTypeDeclType(Tag) << SR;
   3242     return true;
   3243   }
   3244 
   3245   if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
   3246     S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
   3247     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
   3248     return true;
   3249   }
   3250 
   3251   return false;
   3252 }
   3253 
   3254 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
   3255                                                     NestedNameSpecifier *NNS) {
   3256   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
   3257     return true;
   3258 
   3259   switch (NNS->getKind()) {
   3260   case NestedNameSpecifier::Identifier:
   3261   case NestedNameSpecifier::Namespace:
   3262   case NestedNameSpecifier::NamespaceAlias:
   3263   case NestedNameSpecifier::Global:
   3264     return false;
   3265 
   3266   case NestedNameSpecifier::TypeSpec:
   3267   case NestedNameSpecifier::TypeSpecWithTemplate:
   3268     return Visit(QualType(NNS->getAsType(), 0));
   3269   }
   3270   return false;
   3271 }
   3272 
   3273 
   3274 /// \brief Check a template argument against its corresponding
   3275 /// template type parameter.
   3276 ///
   3277 /// This routine implements the semantics of C++ [temp.arg.type]. It
   3278 /// returns true if an error occurred, and false otherwise.
   3279 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
   3280                                  TypeSourceInfo *ArgInfo) {
   3281   assert(ArgInfo && "invalid TypeSourceInfo");
   3282   QualType Arg = ArgInfo->getType();
   3283   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
   3284 
   3285   if (Arg->isVariablyModifiedType()) {
   3286     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
   3287   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
   3288     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
   3289   }
   3290 
   3291   // C++03 [temp.arg.type]p2:
   3292   //   A local type, a type with no linkage, an unnamed type or a type
   3293   //   compounded from any of these types shall not be used as a
   3294   //   template-argument for a template type-parameter.
   3295   //
   3296   // C++0x allows these, and even in C++03 we allow them as an extension with
   3297   // a warning.
   3298   if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
   3299     UnnamedLocalNoLinkageFinder Finder(*this, SR);
   3300     (void)Finder.Visit(Context.getCanonicalType(Arg));
   3301   }
   3302 
   3303   return false;
   3304 }
   3305 
   3306 /// \brief Checks whether the given template argument is the address
   3307 /// of an object or function according to C++ [temp.arg.nontype]p1.
   3308 static bool
   3309 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
   3310                                                NonTypeTemplateParmDecl *Param,
   3311                                                QualType ParamType,
   3312                                                Expr *ArgIn,
   3313                                                TemplateArgument &Converted) {
   3314   bool Invalid = false;
   3315   Expr *Arg = ArgIn;
   3316   QualType ArgType = Arg->getType();
   3317 
   3318   // See through any implicit casts we added to fix the type.
   3319   Arg = Arg->IgnoreImpCasts();
   3320 
   3321   // C++ [temp.arg.nontype]p1:
   3322   //
   3323   //   A template-argument for a non-type, non-template
   3324   //   template-parameter shall be one of: [...]
   3325   //
   3326   //     -- the address of an object or function with external
   3327   //        linkage, including function templates and function
   3328   //        template-ids but excluding non-static class members,
   3329   //        expressed as & id-expression where the & is optional if
   3330   //        the name refers to a function or array, or if the
   3331   //        corresponding template-parameter is a reference; or
   3332 
   3333   // In C++98/03 mode, give an extension warning on any extra parentheses.
   3334   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   3335   bool ExtraParens = false;
   3336   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   3337     if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
   3338       S.Diag(Arg->getSourceRange().getBegin(),
   3339              diag::ext_template_arg_extra_parens)
   3340         << Arg->getSourceRange();
   3341       ExtraParens = true;
   3342     }
   3343 
   3344     Arg = Parens->getSubExpr();
   3345   }
   3346 
   3347   while (SubstNonTypeTemplateParmExpr *subst =
   3348            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3349     Arg = subst->getReplacement()->IgnoreImpCasts();
   3350 
   3351   bool AddressTaken = false;
   3352   SourceLocation AddrOpLoc;
   3353   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   3354     if (UnOp->getOpcode() == UO_AddrOf) {
   3355       Arg = UnOp->getSubExpr();
   3356       AddressTaken = true;
   3357       AddrOpLoc = UnOp->getOperatorLoc();
   3358     }
   3359   }
   3360 
   3361   if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
   3362     Converted = TemplateArgument(ArgIn);
   3363     return false;
   3364   }
   3365 
   3366   while (SubstNonTypeTemplateParmExpr *subst =
   3367            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3368     Arg = subst->getReplacement()->IgnoreImpCasts();
   3369 
   3370   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
   3371   if (!DRE) {
   3372     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   3373       << Arg->getSourceRange();
   3374     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3375     return true;
   3376   }
   3377 
   3378   // Stop checking the precise nature of the argument if it is value dependent,
   3379   // it should be checked when instantiated.
   3380   if (Arg->isValueDependent()) {
   3381     Converted = TemplateArgument(ArgIn);
   3382     return false;
   3383   }
   3384 
   3385   if (!isa<ValueDecl>(DRE->getDecl())) {
   3386     S.Diag(Arg->getSourceRange().getBegin(),
   3387            diag::err_template_arg_not_object_or_func_form)
   3388       << Arg->getSourceRange();
   3389     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3390     return true;
   3391   }
   3392 
   3393   NamedDecl *Entity = 0;
   3394 
   3395   // Cannot refer to non-static data members
   3396   if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
   3397     S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
   3398       << Field << Arg->getSourceRange();
   3399     S.Diag(Param->getLocation(), diag::note_template_param_here);
   3400     return true;
   3401   }
   3402 
   3403   // Cannot refer to non-static member functions
   3404   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
   3405     if (!Method->isStatic()) {
   3406       S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
   3407         << Method << Arg->getSourceRange();
   3408       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3409       return true;
   3410     }
   3411 
   3412   // Functions must have external linkage.
   3413   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
   3414     if (!isExternalLinkage(Func->getLinkage())) {
   3415       S.Diag(Arg->getSourceRange().getBegin(),
   3416              diag::err_template_arg_function_not_extern)
   3417         << Func << Arg->getSourceRange();
   3418       S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
   3419         << true;
   3420       return true;
   3421     }
   3422 
   3423     // Okay: we've named a function with external linkage.
   3424     Entity = Func;
   3425 
   3426     // If the template parameter has pointer type, the function decays.
   3427     if (ParamType->isPointerType() && !AddressTaken)
   3428       ArgType = S.Context.getPointerType(Func->getType());
   3429     else if (AddressTaken && ParamType->isReferenceType()) {
   3430       // If we originally had an address-of operator, but the
   3431       // parameter has reference type, complain and (if things look
   3432       // like they will work) drop the address-of operator.
   3433       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
   3434                                             ParamType.getNonReferenceType())) {
   3435         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3436           << ParamType;
   3437         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3438         return true;
   3439       }
   3440 
   3441       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3442         << ParamType
   3443         << FixItHint::CreateRemoval(AddrOpLoc);
   3444       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3445 
   3446       ArgType = Func->getType();
   3447     }
   3448   } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
   3449     if (!isExternalLinkage(Var->getLinkage())) {
   3450       S.Diag(Arg->getSourceRange().getBegin(),
   3451              diag::err_template_arg_object_not_extern)
   3452         << Var << Arg->getSourceRange();
   3453       S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
   3454         << true;
   3455       return true;
   3456     }
   3457 
   3458     // A value of reference type is not an object.
   3459     if (Var->getType()->isReferenceType()) {
   3460       S.Diag(Arg->getSourceRange().getBegin(),
   3461              diag::err_template_arg_reference_var)
   3462         << Var->getType() << Arg->getSourceRange();
   3463       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3464       return true;
   3465     }
   3466 
   3467     // Okay: we've named an object with external linkage
   3468     Entity = Var;
   3469 
   3470     // If the template parameter has pointer type, we must have taken
   3471     // the address of this object.
   3472     if (ParamType->isReferenceType()) {
   3473       if (AddressTaken) {
   3474         // If we originally had an address-of operator, but the
   3475         // parameter has reference type, complain and (if things look
   3476         // like they will work) drop the address-of operator.
   3477         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
   3478                                             ParamType.getNonReferenceType())) {
   3479           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3480             << ParamType;
   3481           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3482           return true;
   3483         }
   3484 
   3485         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   3486           << ParamType
   3487           << FixItHint::CreateRemoval(AddrOpLoc);
   3488         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3489 
   3490         ArgType = Var->getType();
   3491       }
   3492     } else if (!AddressTaken && ParamType->isPointerType()) {
   3493       if (Var->getType()->isArrayType()) {
   3494         // Array-to-pointer decay.
   3495         ArgType = S.Context.getArrayDecayedType(Var->getType());
   3496       } else {
   3497         // If the template parameter has pointer type but the address of
   3498         // this object was not taken, complain and (possibly) recover by
   3499         // taking the address of the entity.
   3500         ArgType = S.Context.getPointerType(Var->getType());
   3501         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
   3502           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   3503             << ParamType;
   3504           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3505           return true;
   3506         }
   3507 
   3508         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   3509           << ParamType
   3510           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
   3511 
   3512         S.Diag(Param->getLocation(), diag::note_template_param_here);
   3513       }
   3514     }
   3515   } else {
   3516     // We found something else, but we don't know specifically what it is.
   3517     S.Diag(Arg->getSourceRange().getBegin(),
   3518            diag::err_template_arg_not_object_or_func)
   3519       << Arg->getSourceRange();
   3520     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   3521     return true;
   3522   }
   3523 
   3524   bool ObjCLifetimeConversion;
   3525   if (ParamType->isPointerType() &&
   3526       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
   3527       S.IsQualificationConversion(ArgType, ParamType, false,
   3528                                   ObjCLifetimeConversion)) {
   3529     // For pointer-to-object types, qualification conversions are
   3530     // permitted.
   3531   } else {
   3532     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
   3533       if (!ParamRef->getPointeeType()->isFunctionType()) {
   3534         // C++ [temp.arg.nontype]p5b3:
   3535         //   For a non-type template-parameter of type reference to
   3536         //   object, no conversions apply. The type referred to by the
   3537         //   reference may be more cv-qualified than the (otherwise
   3538         //   identical) type of the template- argument. The
   3539         //   template-parameter is bound directly to the
   3540         //   template-argument, which shall be an lvalue.
   3541 
   3542         // FIXME: Other qualifiers?
   3543         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
   3544         unsigned ArgQuals = ArgType.getCVRQualifiers();
   3545 
   3546         if ((ParamQuals | ArgQuals) != ParamQuals) {
   3547           S.Diag(Arg->getSourceRange().getBegin(),
   3548                  diag::err_template_arg_ref_bind_ignores_quals)
   3549             << ParamType << Arg->getType()
   3550             << Arg->getSourceRange();
   3551           S.Diag(Param->getLocation(), diag::note_template_param_here);
   3552           return true;
   3553         }
   3554       }
   3555     }
   3556 
   3557     // At this point, the template argument refers to an object or
   3558     // function with external linkage. We now need to check whether the
   3559     // argument and parameter types are compatible.
   3560     if (!S.Context.hasSameUnqualifiedType(ArgType,
   3561                                           ParamType.getNonReferenceType())) {
   3562       // We can't perform this conversion or binding.
   3563       if (ParamType->isReferenceType())
   3564         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
   3565           << ParamType << ArgIn->getType() << Arg->getSourceRange();
   3566       else
   3567         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
   3568           << ArgIn->getType() << ParamType << Arg->getSourceRange();
   3569       S.Diag(Param->getLocation(), diag::note_template_param_here);
   3570       return true;
   3571     }
   3572   }
   3573 
   3574   // Create the template argument.
   3575   Converted = TemplateArgument(Entity->getCanonicalDecl());
   3576   S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
   3577   return false;
   3578 }
   3579 
   3580 /// \brief Checks whether the given template argument is a pointer to
   3581 /// member constant according to C++ [temp.arg.nontype]p1.
   3582 bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
   3583                                                 TemplateArgument &Converted) {
   3584   bool Invalid = false;
   3585 
   3586   // See through any implicit casts we added to fix the type.
   3587   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
   3588     Arg = Cast->getSubExpr();
   3589 
   3590   // C++ [temp.arg.nontype]p1:
   3591   //
   3592   //   A template-argument for a non-type, non-template
   3593   //   template-parameter shall be one of: [...]
   3594   //
   3595   //     -- a pointer to member expressed as described in 5.3.1.
   3596   DeclRefExpr *DRE = 0;
   3597 
   3598   // In C++98/03 mode, give an extension warning on any extra parentheses.
   3599   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   3600   bool ExtraParens = false;
   3601   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   3602     if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
   3603       Diag(Arg->getSourceRange().getBegin(),
   3604            diag::ext_template_arg_extra_parens)
   3605         << Arg->getSourceRange();
   3606       ExtraParens = true;
   3607     }
   3608 
   3609     Arg = Parens->getSubExpr();
   3610   }
   3611 
   3612   while (SubstNonTypeTemplateParmExpr *subst =
   3613            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   3614     Arg = subst->getReplacement()->IgnoreImpCasts();
   3615 
   3616   // A pointer-to-member constant written &Class::member.
   3617   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   3618     if (UnOp->getOpcode() == UO_AddrOf) {
   3619       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
   3620       if (DRE && !DRE->getQualifier())
   3621         DRE = 0;
   3622     }
   3623   }
   3624   // A constant of pointer-to-member type.
   3625   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
   3626     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
   3627       if (VD->getType()->isMemberPointerType()) {
   3628         if (isa<NonTypeTemplateParmDecl>(VD) ||
   3629             (isa<VarDecl>(VD) &&
   3630              Context.getCanonicalType(VD->getType()).isConstQualified())) {
   3631           if (Arg->isTypeDependent() || Arg->isValueDependent())
   3632             Converted = TemplateArgument(Arg);
   3633           else
   3634             Converted = TemplateArgument(VD->getCanonicalDecl());
   3635           return Invalid;
   3636         }
   3637       }
   3638     }
   3639 
   3640     DRE = 0;
   3641   }
   3642 
   3643   if (!DRE)
   3644     return Diag(Arg->getSourceRange().getBegin(),
   3645                 diag::err_template_arg_not_pointer_to_member_form)
   3646       << Arg->getSourceRange();
   3647 
   3648   if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
   3649     assert((isa<FieldDecl>(DRE->getDecl()) ||
   3650             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
   3651            "Only non-static member pointers can make it here");
   3652 
   3653     // Okay: this is the address of a non-static member, and therefore
   3654     // a member pointer constant.
   3655     if (Arg->isTypeDependent() || Arg->isValueDependent())
   3656       Converted = TemplateArgument(Arg);
   3657     else
   3658       Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
   3659     return Invalid;
   3660   }
   3661 
   3662   // We found something else, but we don't know specifically what it is.
   3663   Diag(Arg->getSourceRange().getBegin(),
   3664        diag::err_template_arg_not_pointer_to_member_form)
   3665       << Arg->getSourceRange();
   3666   Diag(DRE->getDecl()->getLocation(),
   3667        diag::note_template_arg_refers_here);
   3668   return true;
   3669 }
   3670 
   3671 /// \brief Check a template argument against its corresponding
   3672 /// non-type template parameter.
   3673 ///
   3674 /// This routine implements the semantics of C++ [temp.arg.nontype].
   3675 /// If an error occurred, it returns ExprError(); otherwise, it
   3676 /// returns the converted template argument. \p
   3677 /// InstantiatedParamType is the type of the non-type template
   3678 /// parameter after it has been instantiated.
   3679 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
   3680                                        QualType InstantiatedParamType, Expr *Arg,
   3681                                        TemplateArgument &Converted,
   3682                                        CheckTemplateArgumentKind CTAK) {
   3683   SourceLocation StartLoc = Arg->getSourceRange().getBegin();
   3684 
   3685   // If either the parameter has a dependent type or the argument is
   3686   // type-dependent, there's nothing we can check now.
   3687   if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
   3688     // FIXME: Produce a cloned, canonical expression?
   3689     Converted = TemplateArgument(Arg);
   3690     return Owned(Arg);
   3691   }
   3692 
   3693   // C++ [temp.arg.nontype]p5:
   3694   //   The following conversions are performed on each expression used
   3695   //   as a non-type template-argument. If a non-type
   3696   //   template-argument cannot be converted to the type of the
   3697   //   corresponding template-parameter then the program is
   3698   //   ill-formed.
   3699   //
   3700   //     -- for a non-type template-parameter of integral or
   3701   //        enumeration type, integral promotions (4.5) and integral
   3702   //        conversions (4.7) are applied.
   3703   QualType ParamType = InstantiatedParamType;
   3704   QualType ArgType = Arg->getType();
   3705   if (ParamType->isIntegralOrEnumerationType()) {
   3706     // C++ [temp.arg.nontype]p1:
   3707     //   A template-argument for a non-type, non-template
   3708     //   template-parameter shall be one of:
   3709     //
   3710     //     -- an integral constant-expression of integral or enumeration
   3711     //        type; or
   3712     //     -- the name of a non-type template-parameter; or
   3713     SourceLocation NonConstantLoc;
   3714     llvm::APSInt Value;
   3715     if (!ArgType->isIntegralOrEnumerationType()) {
   3716       Diag(Arg->getSourceRange().getBegin(),
   3717            diag::err_template_arg_not_integral_or_enumeral)
   3718         << ArgType << Arg->getSourceRange();
   3719       Diag(Param->getLocation(), diag::note_template_param_here);
   3720       return ExprError();
   3721     } else if (!Arg->isValueDependent() &&
   3722                !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
   3723       Diag(NonConstantLoc, diag::err_template_arg_not_ice)
   3724         << ArgType << Arg->getSourceRange();
   3725       return ExprError();
   3726     }
   3727 
   3728     // From here on out, all we care about are the unqualified forms
   3729     // of the parameter and argument types.
   3730     ParamType = ParamType.getUnqualifiedType();
   3731     ArgType = ArgType.getUnqualifiedType();
   3732 
   3733     // Try to convert the argument to the parameter's type.
   3734     if (Context.hasSameType(ParamType, ArgType)) {
   3735       // Okay: no conversion necessary
   3736     } else if (CTAK == CTAK_Deduced) {
   3737       // C++ [temp.deduct.type]p17:
   3738       //   If, in the declaration of a function template with a non-type
   3739       //   template-parameter, the non-type template- parameter is used
   3740       //   in an expression in the function parameter-list and, if the
   3741       //   corresponding template-argument is deduced, the
   3742       //   template-argument type shall match the type of the
   3743       //   template-parameter exactly, except that a template-argument
   3744       //   deduced from an array bound may be of any integral type.
   3745       Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
   3746         << ArgType << ParamType;
   3747       Diag(Param->getLocation(), diag::note_template_param_here);
   3748       return ExprError();
   3749     } else if (ParamType->isBooleanType()) {
   3750       // This is an integral-to-boolean conversion.
   3751       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
   3752     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
   3753                !ParamType->isEnumeralType()) {
   3754       // This is an integral promotion or conversion.
   3755       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
   3756     } else {
   3757       // We can't perform this conversion.
   3758       Diag(Arg->getSourceRange().getBegin(),
   3759            diag::err_template_arg_not_convertible)
   3760         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
   3761       Diag(Param->getLocation(), diag::note_template_param_here);
   3762       return ExprError();
   3763     }
   3764 
   3765     // Add the value of this argument to the list of converted
   3766     // arguments. We use the bitwidth and signedness of the template
   3767     // parameter.
   3768     if (Arg->isValueDependent()) {
   3769       // The argument is value-dependent. Create a new
   3770       // TemplateArgument with the converted expression.
   3771       Converted = TemplateArgument(Arg);
   3772       return Owned(Arg);
   3773     }
   3774 
   3775     QualType IntegerType = Context.getCanonicalType(ParamType);
   3776     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   3777       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
   3778 
   3779     if (ParamType->isBooleanType()) {
   3780       // Value must be zero or one.
   3781       Value = Value != 0;
   3782       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   3783       if (Value.getBitWidth() != AllowedBits)
   3784         Value = Value.extOrTrunc(AllowedBits);
   3785       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   3786     } else {
   3787       llvm::APSInt OldValue = Value;
   3788 
   3789       // Coerce the template argument's value to the value it will have
   3790       // based on the template parameter's type.
   3791       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   3792       if (Value.getBitWidth() != AllowedBits)
   3793         Value = Value.extOrTrunc(AllowedBits);
   3794       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   3795 
   3796       // Complain if an unsigned parameter received a negative value.
   3797       if (IntegerType->isUnsignedIntegerOrEnumerationType()
   3798                && (OldValue.isSigned() && OldValue.isNegative())) {
   3799         Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
   3800           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   3801           << Arg->getSourceRange();
   3802         Diag(Param->getLocation(), diag::note_template_param_here);
   3803       }
   3804 
   3805       // Complain if we overflowed the template parameter's type.
   3806       unsigned RequiredBits;
   3807       if (IntegerType->isUnsignedIntegerOrEnumerationType())
   3808         RequiredBits = OldValue.getActiveBits();
   3809       else if (OldValue.isUnsigned())
   3810         RequiredBits = OldValue.getActiveBits() + 1;
   3811       else
   3812         RequiredBits = OldValue.getMinSignedBits();
   3813       if (RequiredBits > AllowedBits) {
   3814         Diag(Arg->getSourceRange().getBegin(),
   3815              diag::warn_template_arg_too_large)
   3816           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   3817           << Arg->getSourceRange();
   3818         Diag(Param->getLocation(), diag::note_template_param_here);
   3819       }
   3820     }
   3821 
   3822     Converted = TemplateArgument(Value,
   3823                                  ParamType->isEnumeralType() ? ParamType
   3824                                                              : IntegerType);
   3825     return Owned(Arg);
   3826   }
   3827 
   3828   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
   3829 
   3830   // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
   3831   // from a template argument of type std::nullptr_t to a non-type
   3832   // template parameter of type pointer to object, pointer to
   3833   // function, or pointer-to-member, respectively.
   3834   if (ArgType->isNullPtrType()) {
   3835     if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
   3836       Converted = TemplateArgument((NamedDecl *)0);
   3837       return Owned(Arg);
   3838     }
   3839 
   3840     if (ParamType->isNullPtrType()) {
   3841       llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
   3842       Converted = TemplateArgument(Zero, Context.NullPtrTy);
   3843       return Owned(Arg);
   3844     }
   3845   }
   3846 
   3847   // Handle pointer-to-function, reference-to-function, and
   3848   // pointer-to-member-function all in (roughly) the same way.
   3849   if (// -- For a non-type template-parameter of type pointer to
   3850       //    function, only the function-to-pointer conversion (4.3) is
   3851       //    applied. If the template-argument represents a set of
   3852       //    overloaded functions (or a pointer to such), the matching
   3853       //    function is selected from the set (13.4).
   3854       (ParamType->isPointerType() &&
   3855        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
   3856       // -- For a non-type template-parameter of type reference to
   3857       //    function, no conversions apply. If the template-argument
   3858       //    represents a set of overloaded functions, the matching
   3859       //    function is selected from the set (13.4).
   3860       (ParamType->isReferenceType() &&
   3861        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
   3862       // -- For a non-type template-parameter of type pointer to
   3863       //    member function, no conversions apply. If the
   3864       //    template-argument represents a set of overloaded member
   3865       //    functions, the matching member function is selected from
   3866       //    the set (13.4).
   3867       (ParamType->isMemberPointerType() &&
   3868        ParamType->getAs<MemberPointerType>()->getPointeeType()
   3869          ->isFunctionType())) {
   3870 
   3871     if (Arg->getType() == Context.OverloadTy) {
   3872       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
   3873                                                                 true,
   3874                                                                 FoundResult)) {
   3875         if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
   3876           return ExprError();
   3877 
   3878         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   3879         ArgType = Arg->getType();
   3880       } else
   3881         return ExprError();
   3882     }
   3883 
   3884     if (!ParamType->isMemberPointerType()) {
   3885       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   3886                                                          ParamType,
   3887                                                          Arg, Converted))
   3888         return ExprError();
   3889       return Owned(Arg);
   3890     }
   3891 
   3892     bool ObjCLifetimeConversion;
   3893     if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
   3894                                   false, ObjCLifetimeConversion)) {
   3895       Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
   3896     } else if (!Context.hasSameUnqualifiedType(ArgType,
   3897                                            ParamType.getNonReferenceType())) {
   3898       // We can't perform this conversion.
   3899       Diag(Arg->getSourceRange().getBegin(),
   3900            diag::err_template_arg_not_convertible)
   3901         << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
   3902       Diag(Param->getLocation(), diag::note_template_param_here);
   3903       return ExprError();
   3904     }
   3905 
   3906     if (CheckTemplateArgumentPointerToMember(Arg, Converted))
   3907       return ExprError();
   3908     return Owned(Arg);
   3909   }
   3910 
   3911   if (ParamType->isPointerType()) {
   3912     //   -- for a non-type template-parameter of type pointer to
   3913     //      object, qualification conversions (4.4) and the
   3914     //      array-to-pointer conversion (4.2) are applied.
   3915     // C++0x also allows a value of std::nullptr_t.
   3916     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
   3917            "Only object pointers allowed here");
   3918 
   3919     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   3920                                                        ParamType,
   3921                                                        Arg, Converted))
   3922       return ExprError();
   3923     return Owned(Arg);
   3924   }
   3925 
   3926   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
   3927     //   -- For a non-type template-parameter of type reference to
   3928     //      object, no conversions apply. The type referred to by the
   3929     //      reference may be more cv-qualified than the (otherwise
   3930     //      identical) type of the template-argument. The
   3931     //      template-parameter is bound directly to the
   3932     //      template-argument, which must be an lvalue.
   3933     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
   3934            "Only object references allowed here");
   3935 
   3936     if (Arg->getType() == Context.OverloadTy) {
   3937       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
   3938                                                  ParamRefType->getPointeeType(),
   3939                                                                 true,
   3940                                                                 FoundResult)) {
   3941         if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
   3942           return ExprError();
   3943 
   3944         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   3945         ArgType = Arg->getType();
   3946       } else
   3947         return ExprError();
   3948     }
   3949 
   3950     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   3951                                                        ParamType,
   3952                                                        Arg, Converted))
   3953       return ExprError();
   3954     return Owned(Arg);
   3955   }
   3956 
   3957   //     -- For a non-type template-parameter of type pointer to data
   3958   //        member, qualification conversions (4.4) are applied.
   3959   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
   3960 
   3961   bool ObjCLifetimeConversion;
   3962   if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
   3963     // Types match exactly: nothing more to do here.
   3964   } else if (IsQualificationConversion(ArgType, ParamType, false,
   3965                                        ObjCLifetimeConversion)) {
   3966     Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
   3967   } else {
   3968     // We can't perform this conversion.
   3969     Diag(Arg->getSourceRange().getBegin(),
   3970          diag::err_template_arg_not_convertible)
   3971       << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
   3972     Diag(Param->getLocation(), diag::note_template_param_here);
   3973     return ExprError();
   3974   }
   3975 
   3976   if (CheckTemplateArgumentPointerToMember(Arg, Converted))
   3977     return ExprError();
   3978   return Owned(Arg);
   3979 }
   3980 
   3981 /// \brief Check a template argument against its corresponding
   3982 /// template template parameter.
   3983 ///
   3984 /// This routine implements the semantics of C++ [temp.arg.template].
   3985 /// It returns true if an error occurred, and false otherwise.
   3986 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
   3987                                  const TemplateArgumentLoc &Arg) {
   3988   TemplateName Name = Arg.getArgument().getAsTemplate();
   3989   TemplateDecl *Template = Name.getAsTemplateDecl();
   3990   if (!Template) {
   3991     // Any dependent template name is fine.
   3992     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
   3993     return false;
   3994   }
   3995 
   3996   // C++0x [temp.arg.template]p1:
   3997   //   A template-argument for a template template-parameter shall be
   3998   //   the name of a class template or an alias template, expressed as an
   3999   //   id-expression. When the template-argument names a class template, only
   4000   //   primary class templates are considered when matching the
   4001   //   template template argument with the corresponding parameter;
   4002   //   partial specializations are not considered even if their
   4003   //   parameter lists match that of the template template parameter.
   4004   //
   4005   // Note that we also allow template template parameters here, which
   4006   // will happen when we are dealing with, e.g., class template
   4007   // partial specializations.
   4008   if (!isa<ClassTemplateDecl>(Template) &&
   4009       !isa<TemplateTemplateParmDecl>(Template) &&
   4010       !isa<TypeAliasTemplateDecl>(Template)) {
   4011     assert(isa<FunctionTemplateDecl>(Template) &&
   4012            "Only function templates are possible here");
   4013     Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
   4014     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
   4015       << Template;
   4016   }
   4017 
   4018   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
   4019                                          Param->getTemplateParameters(),
   4020                                          true,
   4021                                          TPL_TemplateTemplateArgumentMatch,
   4022                                          Arg.getLocation());
   4023 }
   4024 
   4025 /// \brief Given a non-type template argument that refers to a
   4026 /// declaration and the type of its corresponding non-type template
   4027 /// parameter, produce an expression that properly refers to that
   4028 /// declaration.
   4029 ExprResult
   4030 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
   4031                                               QualType ParamType,
   4032                                               SourceLocation Loc) {
   4033   assert(Arg.getKind() == TemplateArgument::Declaration &&
   4034          "Only declaration template arguments permitted here");
   4035   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
   4036 
   4037   if (VD->getDeclContext()->isRecord() &&
   4038       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
   4039     // If the value is a class member, we might have a pointer-to-member.
   4040     // Determine whether the non-type template template parameter is of
   4041     // pointer-to-member type. If so, we need to build an appropriate
   4042     // expression for a pointer-to-member, since a "normal" DeclRefExpr
   4043     // would refer to the member itself.
   4044     if (ParamType->isMemberPointerType()) {
   4045       QualType ClassType
   4046         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
   4047       NestedNameSpecifier *Qualifier
   4048         = NestedNameSpecifier::Create(Context, 0, false,
   4049                                       ClassType.getTypePtr());
   4050       CXXScopeSpec SS;
   4051       SS.MakeTrivial(Context, Qualifier, Loc);
   4052 
   4053       // The actual value-ness of this is unimportant, but for
   4054       // internal consistency's sake, references to instance methods
   4055       // are r-values.
   4056       ExprValueKind VK = VK_LValue;
   4057       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
   4058         VK = VK_RValue;
   4059 
   4060       ExprResult RefExpr = BuildDeclRefExpr(VD,
   4061                                             VD->getType().getNonReferenceType(),
   4062                                             VK,
   4063                                             Loc,
   4064                                             &SS);
   4065       if (RefExpr.isInvalid())
   4066         return ExprError();
   4067 
   4068       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   4069 
   4070       // We might need to perform a trailing qualification conversion, since
   4071       // the element type on the parameter could be more qualified than the
   4072       // element type in the expression we constructed.
   4073       bool ObjCLifetimeConversion;
   4074       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
   4075                                     ParamType.getUnqualifiedType(), false,
   4076                                     ObjCLifetimeConversion))
   4077         RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
   4078 
   4079       assert(!RefExpr.isInvalid() &&
   4080              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
   4081                                  ParamType.getUnqualifiedType()));
   4082       return move(RefExpr);
   4083     }
   4084   }
   4085 
   4086   QualType T = VD->getType().getNonReferenceType();
   4087   if (ParamType->isPointerType()) {
   4088     // When the non-type template parameter is a pointer, take the
   4089     // address of the declaration.
   4090     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
   4091     if (RefExpr.isInvalid())
   4092       return ExprError();
   4093 
   4094     if (T->isFunctionType() || T->isArrayType()) {
   4095       // Decay functions and arrays.
   4096       RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
   4097       if (RefExpr.isInvalid())
   4098         return ExprError();
   4099 
   4100       return move(RefExpr);
   4101     }
   4102 
   4103     // Take the address of everything else
   4104     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   4105   }
   4106 
   4107   ExprValueKind VK = VK_RValue;
   4108 
   4109   // If the non-type template parameter has reference type, qualify the
   4110   // resulting declaration reference with the extra qualifiers on the
   4111   // type that the reference refers to.
   4112   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
   4113     VK = VK_LValue;
   4114     T = Context.getQualifiedType(T,
   4115                               TargetRef->getPointeeType().getQualifiers());
   4116   }
   4117 
   4118   return BuildDeclRefExpr(VD, T, VK, Loc);
   4119 }
   4120 
   4121 /// \brief Construct a new expression that refers to the given
   4122 /// integral template argument with the given source-location
   4123 /// information.
   4124 ///
   4125 /// This routine takes care of the mapping from an integral template
   4126 /// argument (which may have any integral type) to the appropriate
   4127 /// literal value.
   4128 ExprResult
   4129 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
   4130                                                   SourceLocation Loc) {
   4131   assert(Arg.getKind() == TemplateArgument::Integral &&
   4132          "Operation is only valid for integral template arguments");
   4133   QualType T = Arg.getIntegralType();
   4134   if (T->isCharType() || T->isWideCharType())
   4135     return Owned(new (Context) CharacterLiteral(
   4136                                              Arg.getAsIntegral()->getZExtValue(),
   4137                                              T->isWideCharType(), T, Loc));
   4138   if (T->isBooleanType())
   4139     return Owned(new (Context) CXXBoolLiteralExpr(
   4140                                             Arg.getAsIntegral()->getBoolValue(),
   4141                                             T, Loc));
   4142 
   4143   if (T->isNullPtrType())
   4144     return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
   4145 
   4146   // If this is an enum type that we're instantiating, we need to use an integer
   4147   // type the same size as the enumerator.  We don't want to build an
   4148   // IntegerLiteral with enum type.
   4149   QualType BT;
   4150   if (const EnumType *ET = T->getAs<EnumType>())
   4151     BT = ET->getDecl()->getIntegerType();
   4152   else
   4153     BT = T;
   4154 
   4155   Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
   4156   if (T->isEnumeralType()) {
   4157     // FIXME: This is a hack. We need a better way to handle substituted
   4158     // non-type template parameters.
   4159     E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
   4160                                Context.getTrivialTypeSourceInfo(T, Loc),
   4161                                Loc, Loc);
   4162   }
   4163 
   4164   return Owned(E);
   4165 }
   4166 
   4167 /// \brief Match two template parameters within template parameter lists.
   4168 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
   4169                                        bool Complain,
   4170                                      Sema::TemplateParameterListEqualKind Kind,
   4171                                        SourceLocation TemplateArgLoc) {
   4172   // Check the actual kind (type, non-type, template).
   4173   if (Old->getKind() != New->getKind()) {
   4174     if (Complain) {
   4175       unsigned NextDiag = diag::err_template_param_different_kind;
   4176       if (TemplateArgLoc.isValid()) {
   4177         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   4178         NextDiag = diag::note_template_param_different_kind;
   4179       }
   4180       S.Diag(New->getLocation(), NextDiag)
   4181         << (Kind != Sema::TPL_TemplateMatch);
   4182       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
   4183         << (Kind != Sema::TPL_TemplateMatch);
   4184     }
   4185 
   4186     return false;
   4187   }
   4188 
   4189   // Check that both are parameter packs are neither are parameter packs.
   4190   // However, if we are matching a template template argument to a
   4191   // template template parameter, the template template parameter can have
   4192   // a parameter pack where the template template argument does not.
   4193   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
   4194       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   4195         Old->isTemplateParameterPack())) {
   4196     if (Complain) {
   4197       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
   4198       if (TemplateArgLoc.isValid()) {
   4199         S.Diag(TemplateArgLoc,
   4200              diag::err_template_arg_template_params_mismatch);
   4201         NextDiag = diag::note_template_parameter_pack_non_pack;
   4202       }
   4203 
   4204       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
   4205                       : isa<NonTypeTemplateParmDecl>(New)? 1
   4206                       : 2;
   4207       S.Diag(New->getLocation(), NextDiag)
   4208         << ParamKind << New->isParameterPack();
   4209       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
   4210         << ParamKind << Old->isParameterPack();
   4211     }
   4212 
   4213     return false;
   4214   }
   4215 
   4216   // For non-type template parameters, check the type of the parameter.
   4217   if (NonTypeTemplateParmDecl *OldNTTP
   4218                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
   4219     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
   4220 
   4221     // If we are matching a template template argument to a template
   4222     // template parameter and one of the non-type template parameter types
   4223     // is dependent, then we must wait until template instantiation time
   4224     // to actually compare the arguments.
   4225     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   4226         (OldNTTP->getType()->isDependentType() ||
   4227          NewNTTP->getType()->isDependentType()))
   4228       return true;
   4229 
   4230     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
   4231       if (Complain) {
   4232         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
   4233         if (TemplateArgLoc.isValid()) {
   4234           S.Diag(TemplateArgLoc,
   4235                  diag::err_template_arg_template_params_mismatch);
   4236           NextDiag = diag::note_template_nontype_parm_different_type;
   4237         }
   4238         S.Diag(NewNTTP->getLocation(), NextDiag)
   4239           << NewNTTP->getType()
   4240           << (Kind != Sema::TPL_TemplateMatch);
   4241         S.Diag(OldNTTP->getLocation(),
   4242                diag::note_template_nontype_parm_prev_declaration)
   4243           << OldNTTP->getType();
   4244       }
   4245 
   4246       return false;
   4247     }
   4248 
   4249     return true;
   4250   }
   4251 
   4252   // For template template parameters, check the template parameter types.
   4253   // The template parameter lists of template template
   4254   // parameters must agree.
   4255   if (TemplateTemplateParmDecl *OldTTP
   4256                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
   4257     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
   4258     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
   4259                                             OldTTP->getTemplateParameters(),
   4260                                             Complain,
   4261                                         (Kind == Sema::TPL_TemplateMatch
   4262                                            ? Sema::TPL_TemplateTemplateParmMatch
   4263                                            : Kind),
   4264                                             TemplateArgLoc);
   4265   }
   4266 
   4267   return true;
   4268 }
   4269 
   4270 /// \brief Diagnose a known arity mismatch when comparing template argument
   4271 /// lists.
   4272 static
   4273 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
   4274                                                 TemplateParameterList *New,
   4275                                                 TemplateParameterList *Old,
   4276                                       Sema::TemplateParameterListEqualKind Kind,
   4277                                                 SourceLocation TemplateArgLoc) {
   4278   unsigned NextDiag = diag::err_template_param_list_different_arity;
   4279   if (TemplateArgLoc.isValid()) {
   4280     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   4281     NextDiag = diag::note_template_param_list_different_arity;
   4282   }
   4283   S.Diag(New->getTemplateLoc(), NextDiag)
   4284     << (New->size() > Old->size())
   4285     << (Kind != Sema::TPL_TemplateMatch)
   4286     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
   4287   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
   4288     << (Kind != Sema::TPL_TemplateMatch)
   4289     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
   4290 }
   4291 
   4292 /// \brief Determine whether the given template parameter lists are
   4293 /// equivalent.
   4294 ///
   4295 /// \param New  The new template parameter list, typically written in the
   4296 /// source code as part of a new template declaration.
   4297 ///
   4298 /// \param Old  The old template parameter list, typically found via
   4299 /// name lookup of the template declared with this template parameter
   4300 /// list.
   4301 ///
   4302 /// \param Complain  If true, this routine will produce a diagnostic if
   4303 /// the template parameter lists are not equivalent.
   4304 ///
   4305 /// \param Kind describes how we are to match the template parameter lists.
   4306 ///
   4307 /// \param TemplateArgLoc If this source location is valid, then we
   4308 /// are actually checking the template parameter list of a template
   4309 /// argument (New) against the template parameter list of its
   4310 /// corresponding template template parameter (Old). We produce
   4311 /// slightly different diagnostics in this scenario.
   4312 ///
   4313 /// \returns True if the template parameter lists are equal, false
   4314 /// otherwise.
   4315 bool
   4316 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
   4317                                      TemplateParameterList *Old,
   4318                                      bool Complain,
   4319                                      TemplateParameterListEqualKind Kind,
   4320                                      SourceLocation TemplateArgLoc) {
   4321   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
   4322     if (Complain)
   4323       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4324                                                  TemplateArgLoc);
   4325 
   4326     return false;
   4327   }
   4328 
   4329   // C++0x [temp.arg.template]p3:
   4330   //   A template-argument matches a template template-parameter (call it P)
   4331   //   when each of the template parameters in the template-parameter-list of
   4332   //   the template-argument's corresponding class template or alias template
   4333   //   (call it A) matches the corresponding template parameter in the
   4334   //   template-parameter-list of P. [...]
   4335   TemplateParameterList::iterator NewParm = New->begin();
   4336   TemplateParameterList::iterator NewParmEnd = New->end();
   4337   for (TemplateParameterList::iterator OldParm = Old->begin(),
   4338                                     OldParmEnd = Old->end();
   4339        OldParm != OldParmEnd; ++OldParm) {
   4340     if (Kind != TPL_TemplateTemplateArgumentMatch ||
   4341         !(*OldParm)->isTemplateParameterPack()) {
   4342       if (NewParm == NewParmEnd) {
   4343         if (Complain)
   4344           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4345                                                      TemplateArgLoc);
   4346 
   4347         return false;
   4348       }
   4349 
   4350       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   4351                                       Kind, TemplateArgLoc))
   4352         return false;
   4353 
   4354       ++NewParm;
   4355       continue;
   4356     }
   4357 
   4358     // C++0x [temp.arg.template]p3:
   4359     //   [...] When P's template- parameter-list contains a template parameter
   4360     //   pack (14.5.3), the template parameter pack will match zero or more
   4361     //   template parameters or template parameter packs in the
   4362     //   template-parameter-list of A with the same type and form as the
   4363     //   template parameter pack in P (ignoring whether those template
   4364     //   parameters are template parameter packs).
   4365     for (; NewParm != NewParmEnd; ++NewParm) {
   4366       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   4367                                       Kind, TemplateArgLoc))
   4368         return false;
   4369     }
   4370   }
   4371 
   4372   // Make sure we exhausted all of the arguments.
   4373   if (NewParm != NewParmEnd) {
   4374     if (Complain)
   4375       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   4376                                                  TemplateArgLoc);
   4377 
   4378     return false;
   4379   }
   4380 
   4381   return true;
   4382 }
   4383 
   4384 /// \brief Check whether a template can be declared within this scope.
   4385 ///
   4386 /// If the template declaration is valid in this scope, returns
   4387 /// false. Otherwise, issues a diagnostic and returns true.
   4388 bool
   4389 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
   4390   // Find the nearest enclosing declaration scope.
   4391   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4392          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4393     S = S->getParent();
   4394 
   4395   // C++ [temp]p2:
   4396   //   A template-declaration can appear only as a namespace scope or
   4397   //   class scope declaration.
   4398   DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
   4399   if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
   4400       cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
   4401     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
   4402              << TemplateParams->getSourceRange();
   4403 
   4404   while (Ctx && isa<LinkageSpecDecl>(Ctx))
   4405     Ctx = Ctx->getParent();
   4406 
   4407   if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
   4408     return false;
   4409 
   4410   return Diag(TemplateParams->getTemplateLoc(),
   4411               diag::err_template_outside_namespace_or_class_scope)
   4412     << TemplateParams->getSourceRange();
   4413 }
   4414 
   4415 /// \brief Determine what kind of template specialization the given declaration
   4416 /// is.
   4417 static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
   4418   if (!D)
   4419     return TSK_Undeclared;
   4420 
   4421   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
   4422     return Record->getTemplateSpecializationKind();
   4423   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   4424     return Function->getTemplateSpecializationKind();
   4425   if (VarDecl *Var = dyn_cast<VarDecl>(D))
   4426     return Var->getTemplateSpecializationKind();
   4427 
   4428   return TSK_Undeclared;
   4429 }
   4430 
   4431 /// \brief Check whether a specialization is well-formed in the current
   4432 /// context.
   4433 ///
   4434 /// This routine determines whether a template specialization can be declared
   4435 /// in the current context (C++ [temp.expl.spec]p2).
   4436 ///
   4437 /// \param S the semantic analysis object for which this check is being
   4438 /// performed.
   4439 ///
   4440 /// \param Specialized the entity being specialized or instantiated, which
   4441 /// may be a kind of template (class template, function template, etc.) or
   4442 /// a member of a class template (member function, static data member,
   4443 /// member class).
   4444 ///
   4445 /// \param PrevDecl the previous declaration of this entity, if any.
   4446 ///
   4447 /// \param Loc the location of the explicit specialization or instantiation of
   4448 /// this entity.
   4449 ///
   4450 /// \param IsPartialSpecialization whether this is a partial specialization of
   4451 /// a class template.
   4452 ///
   4453 /// \returns true if there was an error that we cannot recover from, false
   4454 /// otherwise.
   4455 static bool CheckTemplateSpecializationScope(Sema &S,
   4456                                              NamedDecl *Specialized,
   4457                                              NamedDecl *PrevDecl,
   4458                                              SourceLocation Loc,
   4459                                              bool IsPartialSpecialization) {
   4460   // Keep these "kind" numbers in sync with the %select statements in the
   4461   // various diagnostics emitted by this routine.
   4462   int EntityKind = 0;
   4463   if (isa<ClassTemplateDecl>(Specialized))
   4464     EntityKind = IsPartialSpecialization? 1 : 0;
   4465   else if (isa<FunctionTemplateDecl>(Specialized))
   4466     EntityKind = 2;
   4467   else if (isa<CXXMethodDecl>(Specialized))
   4468     EntityKind = 3;
   4469   else if (isa<VarDecl>(Specialized))
   4470     EntityKind = 4;
   4471   else if (isa<RecordDecl>(Specialized))
   4472     EntityKind = 5;
   4473   else {
   4474     S.Diag(Loc, diag::err_template_spec_unknown_kind);
   4475     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4476     return true;
   4477   }
   4478 
   4479   // C++ [temp.expl.spec]p2:
   4480   //   An explicit specialization shall be declared in the namespace
   4481   //   of which the template is a member, or, for member templates, in
   4482   //   the namespace of which the enclosing class or enclosing class
   4483   //   template is a member. An explicit specialization of a member
   4484   //   function, member class or static data member of a class
   4485   //   template shall be declared in the namespace of which the class
   4486   //   template is a member. Such a declaration may also be a
   4487   //   definition. If the declaration is not a definition, the
   4488   //   specialization may be defined later in the name- space in which
   4489   //   the explicit specialization was declared, or in a namespace
   4490   //   that encloses the one in which the explicit specialization was
   4491   //   declared.
   4492   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4493     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
   4494       << Specialized;
   4495     return true;
   4496   }
   4497 
   4498   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
   4499     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   4500       << Specialized;
   4501     return true;
   4502   }
   4503 
   4504   // C++ [temp.class.spec]p6:
   4505   //   A class template partial specialization may be declared or redeclared
   4506   //   in any namespace scope in which its definition may be defined (14.5.1
   4507   //   and 14.5.2).
   4508   bool ComplainedAboutScope = false;
   4509   DeclContext *SpecializedContext
   4510     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
   4511   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
   4512   if ((!PrevDecl ||
   4513        getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
   4514        getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
   4515     // C++ [temp.exp.spec]p2:
   4516     //   An explicit specialization shall be declared in the namespace of which
   4517     //   the template is a member, or, for member templates, in the namespace
   4518     //   of which the enclosing class or enclosing class template is a member.
   4519     //   An explicit specialization of a member function, member class or
   4520     //   static data member of a class template shall be declared in the
   4521     //   namespace of which the class template is a member.
   4522     //
   4523     // C++0x [temp.expl.spec]p2:
   4524     //   An explicit specialization shall be declared in a namespace enclosing
   4525     //   the specialized template.
   4526     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
   4527         !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
   4528       bool IsCPlusPlus0xExtension
   4529         = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
   4530       if (isa<TranslationUnitDecl>(SpecializedContext))
   4531         S.Diag(Loc, IsCPlusPlus0xExtension
   4532                       ? diag::ext_template_spec_decl_out_of_scope_global
   4533                       : diag::err_template_spec_decl_out_of_scope_global)
   4534           << EntityKind << Specialized;
   4535       else if (isa<NamespaceDecl>(SpecializedContext))
   4536         S.Diag(Loc, IsCPlusPlus0xExtension
   4537                       ? diag::ext_template_spec_decl_out_of_scope
   4538                       : diag::err_template_spec_decl_out_of_scope)
   4539           << EntityKind << Specialized
   4540           << cast<NamedDecl>(SpecializedContext);
   4541 
   4542       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4543       ComplainedAboutScope = true;
   4544     }
   4545   }
   4546 
   4547   // Make sure that this redeclaration (or definition) occurs in an enclosing
   4548   // namespace.
   4549   // Note that HandleDeclarator() performs this check for explicit
   4550   // specializations of function templates, static data members, and member
   4551   // functions, so we skip the check here for those kinds of entities.
   4552   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
   4553   // Should we refactor that check, so that it occurs later?
   4554   if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
   4555       !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
   4556         isa<FunctionDecl>(Specialized))) {
   4557     if (isa<TranslationUnitDecl>(SpecializedContext))
   4558       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
   4559         << EntityKind << Specialized;
   4560     else if (isa<NamespaceDecl>(SpecializedContext))
   4561       S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
   4562         << EntityKind << Specialized
   4563         << cast<NamedDecl>(SpecializedContext);
   4564 
   4565     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   4566   }
   4567 
   4568   // FIXME: check for specialization-after-instantiation errors and such.
   4569 
   4570   return false;
   4571 }
   4572 
   4573 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
   4574 /// that checks non-type template partial specialization arguments.
   4575 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
   4576                                                 NonTypeTemplateParmDecl *Param,
   4577                                                   const TemplateArgument *Args,
   4578                                                         unsigned NumArgs) {
   4579   for (unsigned I = 0; I != NumArgs; ++I) {
   4580     if (Args[I].getKind() == TemplateArgument::Pack) {
   4581       if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
   4582                                                            Args[I].pack_begin(),
   4583                                                            Args[I].pack_size()))
   4584         return true;
   4585 
   4586       continue;
   4587     }
   4588 
   4589     Expr *ArgExpr = Args[I].getAsExpr();
   4590     if (!ArgExpr) {
   4591       continue;
   4592     }
   4593 
   4594     // We can have a pack expansion of any of the bullets below.
   4595     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
   4596       ArgExpr = Expansion->getPattern();
   4597 
   4598     // Strip off any implicit casts we added as part of type checking.
   4599     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   4600       ArgExpr = ICE->getSubExpr();
   4601 
   4602     // C++ [temp.class.spec]p8:
   4603     //   A non-type argument is non-specialized if it is the name of a
   4604     //   non-type parameter. All other non-type arguments are
   4605     //   specialized.
   4606     //
   4607     // Below, we check the two conditions that only apply to
   4608     // specialized non-type arguments, so skip any non-specialized
   4609     // arguments.
   4610     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
   4611       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
   4612         continue;
   4613 
   4614     // C++ [temp.class.spec]p9:
   4615     //   Within the argument list of a class template partial
   4616     //   specialization, the following restrictions apply:
   4617     //     -- A partially specialized non-type argument expression
   4618     //        shall not involve a template parameter of the partial
   4619     //        specialization except when the argument expression is a
   4620     //        simple identifier.
   4621     if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
   4622       S.Diag(ArgExpr->getLocStart(),
   4623            diag::err_dependent_non_type_arg_in_partial_spec)
   4624         << ArgExpr->getSourceRange();
   4625       return true;
   4626     }
   4627 
   4628     //     -- The type of a template parameter corresponding to a
   4629     //        specialized non-type argument shall not be dependent on a
   4630     //        parameter of the specialization.
   4631     if (Param->getType()->isDependentType()) {
   4632       S.Diag(ArgExpr->getLocStart(),
   4633            diag::err_dependent_typed_non_type_arg_in_partial_spec)
   4634         << Param->getType()
   4635         << ArgExpr->getSourceRange();
   4636       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4637       return true;
   4638     }
   4639   }
   4640 
   4641   return false;
   4642 }
   4643 
   4644 /// \brief Check the non-type template arguments of a class template
   4645 /// partial specialization according to C++ [temp.class.spec]p9.
   4646 ///
   4647 /// \param TemplateParams the template parameters of the primary class
   4648 /// template.
   4649 ///
   4650 /// \param TemplateArg the template arguments of the class template
   4651 /// partial specialization.
   4652 ///
   4653 /// \returns true if there was an error, false otherwise.
   4654 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
   4655                                         TemplateParameterList *TemplateParams,
   4656                        llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
   4657   const TemplateArgument *ArgList = TemplateArgs.data();
   4658 
   4659   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   4660     NonTypeTemplateParmDecl *Param
   4661       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
   4662     if (!Param)
   4663       continue;
   4664 
   4665     if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
   4666                                                            &ArgList[I], 1))
   4667       return true;
   4668   }
   4669 
   4670   return false;
   4671 }
   4672 
   4673 /// \brief Retrieve the previous declaration of the given declaration.
   4674 static NamedDecl *getPreviousDecl(NamedDecl *ND) {
   4675   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
   4676     return VD->getPreviousDeclaration();
   4677   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
   4678     return FD->getPreviousDeclaration();
   4679   if (TagDecl *TD = dyn_cast<TagDecl>(ND))
   4680     return TD->getPreviousDeclaration();
   4681   if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
   4682     return TD->getPreviousDeclaration();
   4683   if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
   4684     return FTD->getPreviousDeclaration();
   4685   if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
   4686     return CTD->getPreviousDeclaration();
   4687   return 0;
   4688 }
   4689 
   4690 DeclResult
   4691 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
   4692                                        TagUseKind TUK,
   4693                                        SourceLocation KWLoc,
   4694                                        CXXScopeSpec &SS,
   4695                                        TemplateTy TemplateD,
   4696                                        SourceLocation TemplateNameLoc,
   4697                                        SourceLocation LAngleLoc,
   4698                                        ASTTemplateArgsPtr TemplateArgsIn,
   4699                                        SourceLocation RAngleLoc,
   4700                                        AttributeList *Attr,
   4701                                MultiTemplateParamsArg TemplateParameterLists) {
   4702   assert(TUK != TUK_Reference && "References are not specializations");
   4703 
   4704   // NOTE: KWLoc is the location of the tag keyword. This will instead
   4705   // store the location of the outermost template keyword in the declaration.
   4706   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
   4707     ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
   4708 
   4709   // Find the class template we're specializing
   4710   TemplateName Name = TemplateD.getAsVal<TemplateName>();
   4711   ClassTemplateDecl *ClassTemplate
   4712     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
   4713 
   4714   if (!ClassTemplate) {
   4715     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
   4716       << (Name.getAsTemplateDecl() &&
   4717           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
   4718     return true;
   4719   }
   4720 
   4721   bool isExplicitSpecialization = false;
   4722   bool isPartialSpecialization = false;
   4723 
   4724   // Check the validity of the template headers that introduce this
   4725   // template.
   4726   // FIXME: We probably shouldn't complain about these headers for
   4727   // friend declarations.
   4728   bool Invalid = false;
   4729   TemplateParameterList *TemplateParams
   4730     = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
   4731                                               TemplateNameLoc,
   4732                                               SS,
   4733                         (TemplateParameterList**)TemplateParameterLists.get(),
   4734                                               TemplateParameterLists.size(),
   4735                                               TUK == TUK_Friend,
   4736                                               isExplicitSpecialization,
   4737                                               Invalid);
   4738   if (Invalid)
   4739     return true;
   4740 
   4741   if (TemplateParams && TemplateParams->size() > 0) {
   4742     isPartialSpecialization = true;
   4743 
   4744     if (TUK == TUK_Friend) {
   4745       Diag(KWLoc, diag::err_partial_specialization_friend)
   4746         << SourceRange(LAngleLoc, RAngleLoc);
   4747       return true;
   4748     }
   4749 
   4750     // C++ [temp.class.spec]p10:
   4751     //   The template parameter list of a specialization shall not
   4752     //   contain default template argument values.
   4753     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   4754       Decl *Param = TemplateParams->getParam(I);
   4755       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
   4756         if (TTP->hasDefaultArgument()) {
   4757           Diag(TTP->getDefaultArgumentLoc(),
   4758                diag::err_default_arg_in_partial_spec);
   4759           TTP->removeDefaultArgument();
   4760         }
   4761       } else if (NonTypeTemplateParmDecl *NTTP
   4762                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   4763         if (Expr *DefArg = NTTP->getDefaultArgument()) {
   4764           Diag(NTTP->getDefaultArgumentLoc(),
   4765                diag::err_default_arg_in_partial_spec)
   4766             << DefArg->getSourceRange();
   4767           NTTP->removeDefaultArgument();
   4768         }
   4769       } else {
   4770         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
   4771         if (TTP->hasDefaultArgument()) {
   4772           Diag(TTP->getDefaultArgument().getLocation(),
   4773                diag::err_default_arg_in_partial_spec)
   4774             << TTP->getDefaultArgument().getSourceRange();
   4775           TTP->removeDefaultArgument();
   4776         }
   4777       }
   4778     }
   4779   } else if (TemplateParams) {
   4780     if (TUK == TUK_Friend)
   4781       Diag(KWLoc, diag::err_template_spec_friend)
   4782         << FixItHint::CreateRemoval(
   4783                                 SourceRange(TemplateParams->getTemplateLoc(),
   4784                                             TemplateParams->getRAngleLoc()))
   4785         << SourceRange(LAngleLoc, RAngleLoc);
   4786     else
   4787       isExplicitSpecialization = true;
   4788   } else if (TUK != TUK_Friend) {
   4789     Diag(KWLoc, diag::err_template_spec_needs_header)
   4790       << FixItHint::CreateInsertion(KWLoc, "template<> ");
   4791     isExplicitSpecialization = true;
   4792   }
   4793 
   4794   // Check that the specialization uses the same tag kind as the
   4795   // original template.
   4796   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   4797   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
   4798   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   4799                                     Kind, TUK == TUK_Definition, KWLoc,
   4800                                     *ClassTemplate->getIdentifier())) {
   4801     Diag(KWLoc, diag::err_use_with_wrong_tag)
   4802       << ClassTemplate
   4803       << FixItHint::CreateReplacement(KWLoc,
   4804                             ClassTemplate->getTemplatedDecl()->getKindName());
   4805     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   4806          diag::note_previous_use);
   4807     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   4808   }
   4809 
   4810   // Translate the parser's template argument list in our AST format.
   4811   TemplateArgumentListInfo TemplateArgs;
   4812   TemplateArgs.setLAngleLoc(LAngleLoc);
   4813   TemplateArgs.setRAngleLoc(RAngleLoc);
   4814   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   4815 
   4816   // Check for unexpanded parameter packs in any of the template arguments.
   4817   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4818     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   4819                                         UPPC_PartialSpecialization))
   4820       return true;
   4821 
   4822   // Check that the template argument list is well-formed for this
   4823   // template.
   4824   llvm::SmallVector<TemplateArgument, 4> Converted;
   4825   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   4826                                 TemplateArgs, false, Converted))
   4827     return true;
   4828 
   4829   assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
   4830          "Converted template argument list is too short!");
   4831 
   4832   // Find the class template (partial) specialization declaration that
   4833   // corresponds to these arguments.
   4834   if (isPartialSpecialization) {
   4835     if (CheckClassTemplatePartialSpecializationArgs(*this,
   4836                                          ClassTemplate->getTemplateParameters(),
   4837                                          Converted))
   4838       return true;
   4839 
   4840     bool InstantiationDependent;
   4841     if (!Name.isDependent() &&
   4842         !TemplateSpecializationType::anyDependentTemplateArguments(
   4843                                              TemplateArgs.getArgumentArray(),
   4844                                                          TemplateArgs.size(),
   4845                                                      InstantiationDependent)) {
   4846       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   4847         << ClassTemplate->getDeclName();
   4848       isPartialSpecialization = false;
   4849     }
   4850   }
   4851 
   4852   void *InsertPos = 0;
   4853   ClassTemplateSpecializationDecl *PrevDecl = 0;
   4854 
   4855   if (isPartialSpecialization)
   4856     // FIXME: Template parameter list matters, too
   4857     PrevDecl
   4858       = ClassTemplate->findPartialSpecialization(Converted.data(),
   4859                                                  Converted.size(),
   4860                                                  InsertPos);
   4861   else
   4862     PrevDecl
   4863       = ClassTemplate->findSpecialization(Converted.data(),
   4864                                           Converted.size(), InsertPos);
   4865 
   4866   ClassTemplateSpecializationDecl *Specialization = 0;
   4867 
   4868   // Check whether we can declare a class template specialization in
   4869   // the current scope.
   4870   if (TUK != TUK_Friend &&
   4871       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
   4872                                        TemplateNameLoc,
   4873                                        isPartialSpecialization))
   4874     return true;
   4875 
   4876   // The canonical type
   4877   QualType CanonType;
   4878   if (PrevDecl &&
   4879       (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
   4880                TUK == TUK_Friend)) {
   4881     // Since the only prior class template specialization with these
   4882     // arguments was referenced but not declared, or we're only
   4883     // referencing this specialization as a friend, reuse that
   4884     // declaration node as our own, updating its source location and
   4885     // the list of outer template parameters to reflect our new declaration.
   4886     Specialization = PrevDecl;
   4887     Specialization->setLocation(TemplateNameLoc);
   4888     if (TemplateParameterLists.size() > 0) {
   4889       Specialization->setTemplateParameterListsInfo(Context,
   4890                                               TemplateParameterLists.size(),
   4891                     (TemplateParameterList**) TemplateParameterLists.release());
   4892     }
   4893     PrevDecl = 0;
   4894     CanonType = Context.getTypeDeclType(Specialization);
   4895   } else if (isPartialSpecialization) {
   4896     // Build the canonical type that describes the converted template
   4897     // arguments of the class template partial specialization.
   4898     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   4899     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
   4900                                                       Converted.data(),
   4901                                                       Converted.size());
   4902 
   4903     if (Context.hasSameType(CanonType,
   4904                         ClassTemplate->getInjectedClassNameSpecialization())) {
   4905       // C++ [temp.class.spec]p9b3:
   4906       //
   4907       //   -- The argument list of the specialization shall not be identical
   4908       //      to the implicit argument list of the primary template.
   4909       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   4910       << (TUK == TUK_Definition)
   4911       << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   4912       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
   4913                                 ClassTemplate->getIdentifier(),
   4914                                 TemplateNameLoc,
   4915                                 Attr,
   4916                                 TemplateParams,
   4917                                 AS_none,
   4918                                 TemplateParameterLists.size() - 1,
   4919                   (TemplateParameterList**) TemplateParameterLists.release());
   4920     }
   4921 
   4922     // Create a new class template partial specialization declaration node.
   4923     ClassTemplatePartialSpecializationDecl *PrevPartial
   4924       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
   4925     unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
   4926                             : ClassTemplate->getNextPartialSpecSequenceNumber();
   4927     ClassTemplatePartialSpecializationDecl *Partial
   4928       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
   4929                                              ClassTemplate->getDeclContext(),
   4930                                                        KWLoc, TemplateNameLoc,
   4931                                                        TemplateParams,
   4932                                                        ClassTemplate,
   4933                                                        Converted.data(),
   4934                                                        Converted.size(),
   4935                                                        TemplateArgs,
   4936                                                        CanonType,
   4937                                                        PrevPartial,
   4938                                                        SequenceNumber);
   4939     SetNestedNameSpecifier(Partial, SS);
   4940     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
   4941       Partial->setTemplateParameterListsInfo(Context,
   4942                                              TemplateParameterLists.size() - 1,
   4943                     (TemplateParameterList**) TemplateParameterLists.release());
   4944     }
   4945 
   4946     if (!PrevPartial)
   4947       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
   4948     Specialization = Partial;
   4949 
   4950     // If we are providing an explicit specialization of a member class
   4951     // template specialization, make a note of that.
   4952     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   4953       PrevPartial->setMemberSpecialization();
   4954 
   4955     // Check that all of the template parameters of the class template
   4956     // partial specialization are deducible from the template
   4957     // arguments. If not, this class template partial specialization
   4958     // will never be used.
   4959     llvm::SmallVector<bool, 8> DeducibleParams;
   4960     DeducibleParams.resize(TemplateParams->size());
   4961     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   4962                                TemplateParams->getDepth(),
   4963                                DeducibleParams);
   4964     unsigned NumNonDeducible = 0;
   4965     for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
   4966       if (!DeducibleParams[I])
   4967         ++NumNonDeducible;
   4968 
   4969     if (NumNonDeducible) {
   4970       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   4971         << (NumNonDeducible > 1)
   4972         << SourceRange(TemplateNameLoc, RAngleLoc);
   4973       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   4974         if (!DeducibleParams[I]) {
   4975           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   4976           if (Param->getDeclName())
   4977             Diag(Param->getLocation(),
   4978                  diag::note_partial_spec_unused_parameter)
   4979               << Param->getDeclName();
   4980           else
   4981             Diag(Param->getLocation(),
   4982                  diag::note_partial_spec_unused_parameter)
   4983               << "<anonymous>";
   4984         }
   4985       }
   4986     }
   4987   } else {
   4988     // Create a new class template specialization declaration node for
   4989     // this explicit specialization or friend declaration.
   4990     Specialization
   4991       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   4992                                              ClassTemplate->getDeclContext(),
   4993                                                 KWLoc, TemplateNameLoc,
   4994                                                 ClassTemplate,
   4995                                                 Converted.data(),
   4996                                                 Converted.size(),
   4997                                                 PrevDecl);
   4998     SetNestedNameSpecifier(Specialization, SS);
   4999     if (TemplateParameterLists.size() > 0) {
   5000       Specialization->setTemplateParameterListsInfo(Context,
   5001                                               TemplateParameterLists.size(),
   5002                     (TemplateParameterList**) TemplateParameterLists.release());
   5003     }
   5004 
   5005     if (!PrevDecl)
   5006       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   5007 
   5008     CanonType = Context.getTypeDeclType(Specialization);
   5009   }
   5010 
   5011   // C++ [temp.expl.spec]p6:
   5012   //   If a template, a member template or the member of a class template is
   5013   //   explicitly specialized then that specialization shall be declared
   5014   //   before the first use of that specialization that would cause an implicit
   5015   //   instantiation to take place, in every translation unit in which such a
   5016   //   use occurs; no diagnostic is required.
   5017   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   5018     bool Okay = false;
   5019     for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
   5020       // Is there any previous explicit specialization declaration?
   5021       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   5022         Okay = true;
   5023         break;
   5024       }
   5025     }
   5026 
   5027     if (!Okay) {
   5028       SourceRange Range(TemplateNameLoc, RAngleLoc);
   5029       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   5030         << Context.getTypeDeclType(Specialization) << Range;
   5031 
   5032       Diag(PrevDecl->getPointOfInstantiation(),
   5033            diag::note_instantiation_required_here)
   5034         << (PrevDecl->getTemplateSpecializationKind()
   5035                                                 != TSK_ImplicitInstantiation);
   5036       return true;
   5037     }
   5038   }
   5039 
   5040   // If this is not a friend, note that this is an explicit specialization.
   5041   if (TUK != TUK_Friend)
   5042     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   5043 
   5044   // Check that this isn't a redefinition of this specialization.
   5045   if (TUK == TUK_Definition) {
   5046     if (RecordDecl *Def = Specialization->getDefinition()) {
   5047       SourceRange Range(TemplateNameLoc, RAngleLoc);
   5048       Diag(TemplateNameLoc, diag::err_redefinition)
   5049         << Context.getTypeDeclType(Specialization) << Range;
   5050       Diag(Def->getLocation(), diag::note_previous_definition);
   5051       Specialization->setInvalidDecl();
   5052       return true;
   5053     }
   5054   }
   5055 
   5056   if (Attr)
   5057     ProcessDeclAttributeList(S, Specialization, Attr);
   5058 
   5059   // Build the fully-sugared type for this class template
   5060   // specialization as the user wrote in the specialization
   5061   // itself. This means that we'll pretty-print the type retrieved
   5062   // from the specialization's declaration the way that the user
   5063   // actually wrote the specialization, rather than formatting the
   5064   // name based on the "canonical" representation used to store the
   5065   // template arguments in the specialization.
   5066   TypeSourceInfo *WrittenTy
   5067     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   5068                                                 TemplateArgs, CanonType);
   5069   if (TUK != TUK_Friend) {
   5070     Specialization->setTypeAsWritten(WrittenTy);
   5071     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   5072   }
   5073   TemplateArgsIn.release();
   5074 
   5075   // C++ [temp.expl.spec]p9:
   5076   //   A template explicit specialization is in the scope of the
   5077   //   namespace in which the template was defined.
   5078   //
   5079   // We actually implement this paragraph where we set the semantic
   5080   // context (in the creation of the ClassTemplateSpecializationDecl),
   5081   // but we also maintain the lexical context where the actual
   5082   // definition occurs.
   5083   Specialization->setLexicalDeclContext(CurContext);
   5084 
   5085   // We may be starting the definition of this specialization.
   5086   if (TUK == TUK_Definition)
   5087     Specialization->startDefinition();
   5088 
   5089   if (TUK == TUK_Friend) {
   5090     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   5091                                             TemplateNameLoc,
   5092                                             WrittenTy,
   5093                                             /*FIXME:*/KWLoc);
   5094     Friend->setAccess(AS_public);
   5095     CurContext->addDecl(Friend);
   5096   } else {
   5097     // Add the specialization into its lexical context, so that it can
   5098     // be seen when iterating through the list of declarations in that
   5099     // context. However, specializations are not found by name lookup.
   5100     CurContext->addDecl(Specialization);
   5101   }
   5102   return Specialization;
   5103 }
   5104 
   5105 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
   5106                               MultiTemplateParamsArg TemplateParameterLists,
   5107                                     Declarator &D) {
   5108   return HandleDeclarator(S, D, move(TemplateParameterLists), false);
   5109 }
   5110 
   5111 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
   5112                                MultiTemplateParamsArg TemplateParameterLists,
   5113                                             Declarator &D) {
   5114   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   5115   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5116 
   5117   if (FTI.hasPrototype) {
   5118     // FIXME: Diagnose arguments without names in C.
   5119   }
   5120 
   5121   Scope *ParentScope = FnBodyScope->getParent();
   5122 
   5123   Decl *DP = HandleDeclarator(ParentScope, D,
   5124                               move(TemplateParameterLists),
   5125                               /*IsFunctionDefinition=*/true);
   5126   if (FunctionTemplateDecl *FunctionTemplate
   5127         = dyn_cast_or_null<FunctionTemplateDecl>(DP))
   5128     return ActOnStartOfFunctionDef(FnBodyScope,
   5129                                    FunctionTemplate->getTemplatedDecl());
   5130   if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
   5131     return ActOnStartOfFunctionDef(FnBodyScope, Function);
   5132   return 0;
   5133 }
   5134 
   5135 /// \brief Strips various properties off an implicit instantiation
   5136 /// that has just been explicitly specialized.
   5137 static void StripImplicitInstantiation(NamedDecl *D) {
   5138   D->dropAttrs();
   5139 
   5140   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   5141     FD->setInlineSpecified(false);
   5142   }
   5143 }
   5144 
   5145 /// \brief Diagnose cases where we have an explicit template specialization
   5146 /// before/after an explicit template instantiation, producing diagnostics
   5147 /// for those cases where they are required and determining whether the
   5148 /// new specialization/instantiation will have any effect.
   5149 ///
   5150 /// \param NewLoc the location of the new explicit specialization or
   5151 /// instantiation.
   5152 ///
   5153 /// \param NewTSK the kind of the new explicit specialization or instantiation.
   5154 ///
   5155 /// \param PrevDecl the previous declaration of the entity.
   5156 ///
   5157 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
   5158 ///
   5159 /// \param PrevPointOfInstantiation if valid, indicates where the previus
   5160 /// declaration was instantiated (either implicitly or explicitly).
   5161 ///
   5162 /// \param HasNoEffect will be set to true to indicate that the new
   5163 /// specialization or instantiation has no effect and should be ignored.
   5164 ///
   5165 /// \returns true if there was an error that should prevent the introduction of
   5166 /// the new declaration into the AST, false otherwise.
   5167 bool
   5168 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
   5169                                              TemplateSpecializationKind NewTSK,
   5170                                              NamedDecl *PrevDecl,
   5171                                              TemplateSpecializationKind PrevTSK,
   5172                                         SourceLocation PrevPointOfInstantiation,
   5173                                              bool &HasNoEffect) {
   5174   HasNoEffect = false;
   5175 
   5176   switch (NewTSK) {
   5177   case TSK_Undeclared:
   5178   case TSK_ImplicitInstantiation:
   5179     assert(false && "Don't check implicit instantiations here");
   5180     return false;
   5181 
   5182   case TSK_ExplicitSpecialization:
   5183     switch (PrevTSK) {
   5184     case TSK_Undeclared:
   5185     case TSK_ExplicitSpecialization:
   5186       // Okay, we're just specializing something that is either already
   5187       // explicitly specialized or has merely been mentioned without any
   5188       // instantiation.
   5189       return false;
   5190 
   5191     case TSK_ImplicitInstantiation:
   5192       if (PrevPointOfInstantiation.isInvalid()) {
   5193         // The declaration itself has not actually been instantiated, so it is
   5194         // still okay to specialize it.
   5195         StripImplicitInstantiation(PrevDecl);
   5196         return false;
   5197       }
   5198       // Fall through
   5199 
   5200     case TSK_ExplicitInstantiationDeclaration:
   5201     case TSK_ExplicitInstantiationDefinition:
   5202       assert((PrevTSK == TSK_ImplicitInstantiation ||
   5203               PrevPointOfInstantiation.isValid()) &&
   5204              "Explicit instantiation without point of instantiation?");
   5205 
   5206       // C++ [temp.expl.spec]p6:
   5207       //   If a template, a member template or the member of a class template
   5208       //   is explicitly specialized then that specialization shall be declared
   5209       //   before the first use of that specialization that would cause an
   5210       //   implicit instantiation to take place, in every translation unit in
   5211       //   which such a use occurs; no diagnostic is required.
   5212       for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
   5213         // Is there any previous explicit specialization declaration?
   5214         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
   5215           return false;
   5216       }
   5217 
   5218       Diag(NewLoc, diag::err_specialization_after_instantiation)
   5219         << PrevDecl;
   5220       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
   5221         << (PrevTSK != TSK_ImplicitInstantiation);
   5222 
   5223       return true;
   5224     }
   5225     break;
   5226 
   5227   case TSK_ExplicitInstantiationDeclaration:
   5228     switch (PrevTSK) {
   5229     case TSK_ExplicitInstantiationDeclaration:
   5230       // This explicit instantiation declaration is redundant (that's okay).
   5231       HasNoEffect = true;
   5232       return false;
   5233 
   5234     case TSK_Undeclared:
   5235     case TSK_ImplicitInstantiation:
   5236       // We're explicitly instantiating something that may have already been
   5237       // implicitly instantiated; that's fine.
   5238       return false;
   5239 
   5240     case TSK_ExplicitSpecialization:
   5241       // C++0x [temp.explicit]p4:
   5242       //   For a given set of template parameters, if an explicit instantiation
   5243       //   of a template appears after a declaration of an explicit
   5244       //   specialization for that template, the explicit instantiation has no
   5245       //   effect.
   5246       HasNoEffect = true;
   5247       return false;
   5248 
   5249     case TSK_ExplicitInstantiationDefinition:
   5250       // C++0x [temp.explicit]p10:
   5251       //   If an entity is the subject of both an explicit instantiation
   5252       //   declaration and an explicit instantiation definition in the same
   5253       //   translation unit, the definition shall follow the declaration.
   5254       Diag(NewLoc,
   5255            diag::err_explicit_instantiation_declaration_after_definition);
   5256       Diag(PrevPointOfInstantiation,
   5257            diag::note_explicit_instantiation_definition_here);
   5258       assert(PrevPointOfInstantiation.isValid() &&
   5259              "Explicit instantiation without point of instantiation?");
   5260       HasNoEffect = true;
   5261       return false;
   5262     }
   5263     break;
   5264 
   5265   case TSK_ExplicitInstantiationDefinition:
   5266     switch (PrevTSK) {
   5267     case TSK_Undeclared:
   5268     case TSK_ImplicitInstantiation:
   5269       // We're explicitly instantiating something that may have already been
   5270       // implicitly instantiated; that's fine.
   5271       return false;
   5272 
   5273     case TSK_ExplicitSpecialization:
   5274       // C++ DR 259, C++0x [temp.explicit]p4:
   5275       //   For a given set of template parameters, if an explicit
   5276       //   instantiation of a template appears after a declaration of
   5277       //   an explicit specialization for that template, the explicit
   5278       //   instantiation has no effect.
   5279       //
   5280       // In C++98/03 mode, we only give an extension warning here, because it
   5281       // is not harmful to try to explicitly instantiate something that
   5282       // has been explicitly specialized.
   5283       if (!getLangOptions().CPlusPlus0x) {
   5284         Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
   5285           << PrevDecl;
   5286         Diag(PrevDecl->getLocation(),
   5287              diag::note_previous_template_specialization);
   5288       }
   5289       HasNoEffect = true;
   5290       return false;
   5291 
   5292     case TSK_ExplicitInstantiationDeclaration:
   5293       // We're explicity instantiating a definition for something for which we
   5294       // were previously asked to suppress instantiations. That's fine.
   5295       return false;
   5296 
   5297     case TSK_ExplicitInstantiationDefinition:
   5298       // C++0x [temp.spec]p5:
   5299       //   For a given template and a given set of template-arguments,
   5300       //     - an explicit instantiation definition shall appear at most once
   5301       //       in a program,
   5302       Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
   5303         << PrevDecl;
   5304       Diag(PrevPointOfInstantiation,
   5305            diag::note_previous_explicit_instantiation);
   5306       HasNoEffect = true;
   5307       return false;
   5308     }
   5309     break;
   5310   }
   5311 
   5312   assert(false && "Missing specialization/instantiation case?");
   5313 
   5314   return false;
   5315 }
   5316 
   5317 /// \brief Perform semantic analysis for the given dependent function
   5318 /// template specialization.  The only possible way to get a dependent
   5319 /// function template specialization is with a friend declaration,
   5320 /// like so:
   5321 ///
   5322 ///   template <class T> void foo(T);
   5323 ///   template <class T> class A {
   5324 ///     friend void foo<>(T);
   5325 ///   };
   5326 ///
   5327 /// There really isn't any useful analysis we can do here, so we
   5328 /// just store the information.
   5329 bool
   5330 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
   5331                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
   5332                                                    LookupResult &Previous) {
   5333   // Remove anything from Previous that isn't a function template in
   5334   // the correct context.
   5335   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   5336   LookupResult::Filter F = Previous.makeFilter();
   5337   while (F.hasNext()) {
   5338     NamedDecl *D = F.next()->getUnderlyingDecl();
   5339     if (!isa<FunctionTemplateDecl>(D) ||
   5340         !FDLookupContext->InEnclosingNamespaceSetOf(
   5341                               D->getDeclContext()->getRedeclContext()))
   5342       F.erase();
   5343   }
   5344   F.done();
   5345 
   5346   // Should this be diagnosed here?
   5347   if (Previous.empty()) return true;
   5348 
   5349   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
   5350                                          ExplicitTemplateArgs);
   5351   return false;
   5352 }
   5353 
   5354 /// \brief Perform semantic analysis for the given function template
   5355 /// specialization.
   5356 ///
   5357 /// This routine performs all of the semantic analysis required for an
   5358 /// explicit function template specialization. On successful completion,
   5359 /// the function declaration \p FD will become a function template
   5360 /// specialization.
   5361 ///
   5362 /// \param FD the function declaration, which will be updated to become a
   5363 /// function template specialization.
   5364 ///
   5365 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
   5366 /// if any. Note that this may be valid info even when 0 arguments are
   5367 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
   5368 /// as it anyway contains info on the angle brackets locations.
   5369 ///
   5370 /// \param Previous the set of declarations that may be specialized by
   5371 /// this function specialization.
   5372 bool
   5373 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
   5374                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5375                                           LookupResult &Previous) {
   5376   // The set of function template specializations that could match this
   5377   // explicit function template specialization.
   5378   UnresolvedSet<8> Candidates;
   5379 
   5380   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   5381   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5382          I != E; ++I) {
   5383     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
   5384     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
   5385       // Only consider templates found within the same semantic lookup scope as
   5386       // FD.
   5387       if (!FDLookupContext->InEnclosingNamespaceSetOf(
   5388                                 Ovl->getDeclContext()->getRedeclContext()))
   5389         continue;
   5390 
   5391       // C++ [temp.expl.spec]p11:
   5392       //   A trailing template-argument can be left unspecified in the
   5393       //   template-id naming an explicit function template specialization
   5394       //   provided it can be deduced from the function argument type.
   5395       // Perform template argument deduction to determine whether we may be
   5396       // specializing this template.
   5397       // FIXME: It is somewhat wasteful to build
   5398       TemplateDeductionInfo Info(Context, FD->getLocation());
   5399       FunctionDecl *Specialization = 0;
   5400       if (TemplateDeductionResult TDK
   5401             = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
   5402                                       FD->getType(),
   5403                                       Specialization,
   5404                                       Info)) {
   5405         // FIXME: Template argument deduction failed; record why it failed, so
   5406         // that we can provide nifty diagnostics.
   5407         (void)TDK;
   5408         continue;
   5409       }
   5410 
   5411       // Record this candidate.
   5412       Candidates.addDecl(Specialization, I.getAccess());
   5413     }
   5414   }
   5415 
   5416   // Find the most specialized function template.
   5417   UnresolvedSetIterator Result
   5418     = getMostSpecialized(Candidates.begin(), Candidates.end(),
   5419                          TPOC_Other, 0, FD->getLocation(),
   5420                   PDiag(diag::err_function_template_spec_no_match)
   5421                     << FD->getDeclName(),
   5422                   PDiag(diag::err_function_template_spec_ambiguous)
   5423                     << FD->getDeclName() << (ExplicitTemplateArgs != 0),
   5424                   PDiag(diag::note_function_template_spec_matched));
   5425   if (Result == Candidates.end())
   5426     return true;
   5427 
   5428   // Ignore access information;  it doesn't figure into redeclaration checking.
   5429   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   5430 
   5431   FunctionTemplateSpecializationInfo *SpecInfo
   5432     = Specialization->getTemplateSpecializationInfo();
   5433   assert(SpecInfo && "Function template specialization info missing?");
   5434 
   5435   // Note: do not overwrite location info if previous template
   5436   // specialization kind was explicit.
   5437   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
   5438   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
   5439     Specialization->setLocation(FD->getLocation());
   5440 
   5441   // FIXME: Check if the prior specialization has a point of instantiation.
   5442   // If so, we have run afoul of .
   5443 
   5444   // If this is a friend declaration, then we're not really declaring
   5445   // an explicit specialization.
   5446   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
   5447 
   5448   // Check the scope of this explicit specialization.
   5449   if (!isFriend &&
   5450       CheckTemplateSpecializationScope(*this,
   5451                                        Specialization->getPrimaryTemplate(),
   5452                                        Specialization, FD->getLocation(),
   5453                                        false))
   5454     return true;
   5455 
   5456   // C++ [temp.expl.spec]p6:
   5457   //   If a template, a member template or the member of a class template is
   5458   //   explicitly specialized then that specialization shall be declared
   5459   //   before the first use of that specialization that would cause an implicit
   5460   //   instantiation to take place, in every translation unit in which such a
   5461   //   use occurs; no diagnostic is required.
   5462   bool HasNoEffect = false;
   5463   if (!isFriend &&
   5464       CheckSpecializationInstantiationRedecl(FD->getLocation(),
   5465                                              TSK_ExplicitSpecialization,
   5466                                              Specialization,
   5467                                    SpecInfo->getTemplateSpecializationKind(),
   5468                                          SpecInfo->getPointOfInstantiation(),
   5469                                              HasNoEffect))
   5470     return true;
   5471 
   5472   // Mark the prior declaration as an explicit specialization, so that later
   5473   // clients know that this is an explicit specialization.
   5474   if (!isFriend) {
   5475     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
   5476     MarkUnusedFileScopedDecl(Specialization);
   5477   }
   5478 
   5479   // Turn the given function declaration into a function template
   5480   // specialization, with the template arguments from the previous
   5481   // specialization.
   5482   // Take copies of (semantic and syntactic) template argument lists.
   5483   const TemplateArgumentList* TemplArgs = new (Context)
   5484     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
   5485   const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
   5486     ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
   5487   FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
   5488                                         TemplArgs, /*InsertPos=*/0,
   5489                                     SpecInfo->getTemplateSpecializationKind(),
   5490                                         TemplArgsAsWritten);
   5491   FD->setStorageClass(Specialization->getStorageClass());
   5492 
   5493   // The "previous declaration" for this function template specialization is
   5494   // the prior function template specialization.
   5495   Previous.clear();
   5496   Previous.addDecl(Specialization);
   5497   return false;
   5498 }
   5499 
   5500 /// \brief Perform semantic analysis for the given non-template member
   5501 /// specialization.
   5502 ///
   5503 /// This routine performs all of the semantic analysis required for an
   5504 /// explicit member function specialization. On successful completion,
   5505 /// the function declaration \p FD will become a member function
   5506 /// specialization.
   5507 ///
   5508 /// \param Member the member declaration, which will be updated to become a
   5509 /// specialization.
   5510 ///
   5511 /// \param Previous the set of declarations, one of which may be specialized
   5512 /// by this function specialization;  the set will be modified to contain the
   5513 /// redeclared member.
   5514 bool
   5515 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
   5516   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
   5517 
   5518   // Try to find the member we are instantiating.
   5519   NamedDecl *Instantiation = 0;
   5520   NamedDecl *InstantiatedFrom = 0;
   5521   MemberSpecializationInfo *MSInfo = 0;
   5522 
   5523   if (Previous.empty()) {
   5524     // Nowhere to look anyway.
   5525   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
   5526     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   5527            I != E; ++I) {
   5528       NamedDecl *D = (*I)->getUnderlyingDecl();
   5529       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   5530         if (Context.hasSameType(Function->getType(), Method->getType())) {
   5531           Instantiation = Method;
   5532           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
   5533           MSInfo = Method->getMemberSpecializationInfo();
   5534           break;
   5535         }
   5536       }
   5537     }
   5538   } else if (isa<VarDecl>(Member)) {
   5539     VarDecl *PrevVar;
   5540     if (Previous.isSingleResult() &&
   5541         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
   5542       if (PrevVar->isStaticDataMember()) {
   5543         Instantiation = PrevVar;
   5544         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
   5545         MSInfo = PrevVar->getMemberSpecializationInfo();
   5546       }
   5547   } else if (isa<RecordDecl>(Member)) {
   5548     CXXRecordDecl *PrevRecord;
   5549     if (Previous.isSingleResult() &&
   5550         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
   5551       Instantiation = PrevRecord;
   5552       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
   5553       MSInfo = PrevRecord->getMemberSpecializationInfo();
   5554     }
   5555   }
   5556 
   5557   if (!Instantiation) {
   5558     // There is no previous declaration that matches. Since member
   5559     // specializations are always out-of-line, the caller will complain about
   5560     // this mismatch later.
   5561     return false;
   5562   }
   5563 
   5564   // If this is a friend, just bail out here before we start turning
   5565   // things into explicit specializations.
   5566   if (Member->getFriendObjectKind() != Decl::FOK_None) {
   5567     // Preserve instantiation information.
   5568     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
   5569       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
   5570                                       cast<CXXMethodDecl>(InstantiatedFrom),
   5571         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
   5572     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
   5573       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   5574                                       cast<CXXRecordDecl>(InstantiatedFrom),
   5575         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
   5576     }
   5577 
   5578     Previous.clear();
   5579     Previous.addDecl(Instantiation);
   5580     return false;
   5581   }
   5582 
   5583   // Make sure that this is a specialization of a member.
   5584   if (!InstantiatedFrom) {
   5585     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
   5586       << Member;
   5587     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
   5588     return true;
   5589   }
   5590 
   5591   // C++ [temp.expl.spec]p6:
   5592   //   If a template, a member template or the member of a class template is
   5593   //   explicitly specialized then that spe- cialization shall be declared
   5594   //   before the first use of that specialization that would cause an implicit
   5595   //   instantiation to take place, in every translation unit in which such a
   5596   //   use occurs; no diagnostic is required.
   5597   assert(MSInfo && "Member specialization info missing?");
   5598 
   5599   bool HasNoEffect = false;
   5600   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
   5601                                              TSK_ExplicitSpecialization,
   5602                                              Instantiation,
   5603                                      MSInfo->getTemplateSpecializationKind(),
   5604                                            MSInfo->getPointOfInstantiation(),
   5605                                              HasNoEffect))
   5606     return true;
   5607 
   5608   // Check the scope of this explicit specialization.
   5609   if (CheckTemplateSpecializationScope(*this,
   5610                                        InstantiatedFrom,
   5611                                        Instantiation, Member->getLocation(),
   5612                                        false))
   5613     return true;
   5614 
   5615   // Note that this is an explicit instantiation of a member.
   5616   // the original declaration to note that it is an explicit specialization
   5617   // (if it was previously an implicit instantiation). This latter step
   5618   // makes bookkeeping easier.
   5619   if (isa<FunctionDecl>(Member)) {
   5620     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
   5621     if (InstantiationFunction->getTemplateSpecializationKind() ==
   5622           TSK_ImplicitInstantiation) {
   5623       InstantiationFunction->setTemplateSpecializationKind(
   5624                                                   TSK_ExplicitSpecialization);
   5625       InstantiationFunction->setLocation(Member->getLocation());
   5626     }
   5627 
   5628     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
   5629                                         cast<CXXMethodDecl>(InstantiatedFrom),
   5630                                                   TSK_ExplicitSpecialization);
   5631     MarkUnusedFileScopedDecl(InstantiationFunction);
   5632   } else if (isa<VarDecl>(Member)) {
   5633     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
   5634     if (InstantiationVar->getTemplateSpecializationKind() ==
   5635           TSK_ImplicitInstantiation) {
   5636       InstantiationVar->setTemplateSpecializationKind(
   5637                                                   TSK_ExplicitSpecialization);
   5638       InstantiationVar->setLocation(Member->getLocation());
   5639     }
   5640 
   5641     Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
   5642                                                 cast<VarDecl>(InstantiatedFrom),
   5643                                                 TSK_ExplicitSpecialization);
   5644     MarkUnusedFileScopedDecl(InstantiationVar);
   5645   } else {
   5646     assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
   5647     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
   5648     if (InstantiationClass->getTemplateSpecializationKind() ==
   5649           TSK_ImplicitInstantiation) {
   5650       InstantiationClass->setTemplateSpecializationKind(
   5651                                                    TSK_ExplicitSpecialization);
   5652       InstantiationClass->setLocation(Member->getLocation());
   5653     }
   5654 
   5655     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   5656                                         cast<CXXRecordDecl>(InstantiatedFrom),
   5657                                                    TSK_ExplicitSpecialization);
   5658   }
   5659 
   5660   // Save the caller the trouble of having to figure out which declaration
   5661   // this specialization matches.
   5662   Previous.clear();
   5663   Previous.addDecl(Instantiation);
   5664   return false;
   5665 }
   5666 
   5667 /// \brief Check the scope of an explicit instantiation.
   5668 ///
   5669 /// \returns true if a serious error occurs, false otherwise.
   5670 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
   5671                                             SourceLocation InstLoc,
   5672                                             bool WasQualifiedName) {
   5673   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
   5674   DeclContext *CurContext = S.CurContext->getRedeclContext();
   5675 
   5676   if (CurContext->isRecord()) {
   5677     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
   5678       << D;
   5679     return true;
   5680   }
   5681 
   5682   // C++0x [temp.explicit]p2:
   5683   //   An explicit instantiation shall appear in an enclosing namespace of its
   5684   //   template.
   5685   //
   5686   // This is DR275, which we do not retroactively apply to C++98/03.
   5687   if (S.getLangOptions().CPlusPlus0x &&
   5688       !CurContext->Encloses(OrigContext)) {
   5689     if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
   5690       S.Diag(InstLoc,
   5691              S.getLangOptions().CPlusPlus0x?
   5692                  diag::err_explicit_instantiation_out_of_scope
   5693                : diag::warn_explicit_instantiation_out_of_scope_0x)
   5694         << D << NS;
   5695     else
   5696       S.Diag(InstLoc,
   5697              S.getLangOptions().CPlusPlus0x?
   5698                  diag::err_explicit_instantiation_must_be_global
   5699                : diag::warn_explicit_instantiation_out_of_scope_0x)
   5700         << D;
   5701     S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
   5702     return false;
   5703   }
   5704 
   5705   // C++0x [temp.explicit]p2:
   5706   //   If the name declared in the explicit instantiation is an unqualified
   5707   //   name, the explicit instantiation shall appear in the namespace where
   5708   //   its template is declared or, if that namespace is inline (7.3.1), any
   5709   //   namespace from its enclosing namespace set.
   5710   if (WasQualifiedName)
   5711     return false;
   5712 
   5713   if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
   5714     return false;
   5715 
   5716   S.Diag(InstLoc,
   5717          S.getLangOptions().CPlusPlus0x?
   5718              diag::err_explicit_instantiation_unqualified_wrong_namespace
   5719            : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
   5720     << D << OrigContext;
   5721   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
   5722   return false;
   5723 }
   5724 
   5725 /// \brief Determine whether the given scope specifier has a template-id in it.
   5726 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
   5727   if (!SS.isSet())
   5728     return false;
   5729 
   5730   // C++0x [temp.explicit]p2:
   5731   //   If the explicit instantiation is for a member function, a member class
   5732   //   or a static data member of a class template specialization, the name of
   5733   //   the class template specialization in the qualified-id for the member
   5734   //   name shall be a simple-template-id.
   5735   //
   5736   // C++98 has the same restriction, just worded differently.
   5737   for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
   5738        NNS; NNS = NNS->getPrefix())
   5739     if (const Type *T = NNS->getAsType())
   5740       if (isa<TemplateSpecializationType>(T))
   5741         return true;
   5742 
   5743   return false;
   5744 }
   5745 
   5746 // Explicit instantiation of a class template specialization
   5747 DeclResult
   5748 Sema::ActOnExplicitInstantiation(Scope *S,
   5749                                  SourceLocation ExternLoc,
   5750                                  SourceLocation TemplateLoc,
   5751                                  unsigned TagSpec,
   5752                                  SourceLocation KWLoc,
   5753                                  const CXXScopeSpec &SS,
   5754                                  TemplateTy TemplateD,
   5755                                  SourceLocation TemplateNameLoc,
   5756                                  SourceLocation LAngleLoc,
   5757                                  ASTTemplateArgsPtr TemplateArgsIn,
   5758                                  SourceLocation RAngleLoc,
   5759                                  AttributeList *Attr) {
   5760   // Find the class template we're specializing
   5761   TemplateName Name = TemplateD.getAsVal<TemplateName>();
   5762   ClassTemplateDecl *ClassTemplate
   5763     = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
   5764 
   5765   // Check that the specialization uses the same tag kind as the
   5766   // original template.
   5767   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   5768   assert(Kind != TTK_Enum &&
   5769          "Invalid enum tag in class template explicit instantiation!");
   5770   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   5771                                     Kind, /*isDefinition*/false, KWLoc,
   5772                                     *ClassTemplate->getIdentifier())) {
   5773     Diag(KWLoc, diag::err_use_with_wrong_tag)
   5774       << ClassTemplate
   5775       << FixItHint::CreateReplacement(KWLoc,
   5776                             ClassTemplate->getTemplatedDecl()->getKindName());
   5777     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   5778          diag::note_previous_use);
   5779     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   5780   }
   5781 
   5782   // C++0x [temp.explicit]p2:
   5783   //   There are two forms of explicit instantiation: an explicit instantiation
   5784   //   definition and an explicit instantiation declaration. An explicit
   5785   //   instantiation declaration begins with the extern keyword. [...]
   5786   TemplateSpecializationKind TSK
   5787     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   5788                            : TSK_ExplicitInstantiationDeclaration;
   5789 
   5790   // Translate the parser's template argument list in our AST format.
   5791   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   5792   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   5793 
   5794   // Check that the template argument list is well-formed for this
   5795   // template.
   5796   llvm::SmallVector<TemplateArgument, 4> Converted;
   5797   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   5798                                 TemplateArgs, false, Converted))
   5799     return true;
   5800 
   5801   assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
   5802          "Converted template argument list is too short!");
   5803 
   5804   // Find the class template specialization declaration that
   5805   // corresponds to these arguments.
   5806   void *InsertPos = 0;
   5807   ClassTemplateSpecializationDecl *PrevDecl
   5808     = ClassTemplate->findSpecialization(Converted.data(),
   5809                                         Converted.size(), InsertPos);
   5810 
   5811   TemplateSpecializationKind PrevDecl_TSK
   5812     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
   5813 
   5814   // C++0x [temp.explicit]p2:
   5815   //   [...] An explicit instantiation shall appear in an enclosing
   5816   //   namespace of its template. [...]
   5817   //
   5818   // This is C++ DR 275.
   5819   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
   5820                                       SS.isSet()))
   5821     return true;
   5822 
   5823   ClassTemplateSpecializationDecl *Specialization = 0;
   5824 
   5825   bool HasNoEffect = false;
   5826   if (PrevDecl) {
   5827     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
   5828                                                PrevDecl, PrevDecl_TSK,
   5829                                             PrevDecl->getPointOfInstantiation(),
   5830                                                HasNoEffect))
   5831       return PrevDecl;
   5832 
   5833     // Even though HasNoEffect == true means that this explicit instantiation
   5834     // has no effect on semantics, we go on to put its syntax in the AST.
   5835 
   5836     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
   5837         PrevDecl_TSK == TSK_Undeclared) {
   5838       // Since the only prior class template specialization with these
   5839       // arguments was referenced but not declared, reuse that
   5840       // declaration node as our own, updating the source location
   5841       // for the template name to reflect our new declaration.
   5842       // (Other source locations will be updated later.)
   5843       Specialization = PrevDecl;
   5844       Specialization->setLocation(TemplateNameLoc);
   5845       PrevDecl = 0;
   5846     }
   5847   }
   5848 
   5849   if (!Specialization) {
   5850     // Create a new class template specialization declaration node for
   5851     // this explicit specialization.
   5852     Specialization
   5853       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   5854                                              ClassTemplate->getDeclContext(),
   5855                                                 KWLoc, TemplateNameLoc,
   5856                                                 ClassTemplate,
   5857                                                 Converted.data(),
   5858                                                 Converted.size(),
   5859                                                 PrevDecl);
   5860     SetNestedNameSpecifier(Specialization, SS);
   5861 
   5862     if (!HasNoEffect && !PrevDecl) {
   5863       // Insert the new specialization.
   5864       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   5865     }
   5866   }
   5867 
   5868   // Build the fully-sugared type for this explicit instantiation as
   5869   // the user wrote in the explicit instantiation itself. This means
   5870   // that we'll pretty-print the type retrieved from the
   5871   // specialization's declaration the way that the user actually wrote
   5872   // the explicit instantiation, rather than formatting the name based
   5873   // on the "canonical" representation used to store the template
   5874   // arguments in the specialization.
   5875   TypeSourceInfo *WrittenTy
   5876     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   5877                                                 TemplateArgs,
   5878                                   Context.getTypeDeclType(Specialization));
   5879   Specialization->setTypeAsWritten(WrittenTy);
   5880   TemplateArgsIn.release();
   5881 
   5882   // Set source locations for keywords.
   5883   Specialization->setExternLoc(ExternLoc);
   5884   Specialization->setTemplateKeywordLoc(TemplateLoc);
   5885 
   5886   // Add the explicit instantiation into its lexical context. However,
   5887   // since explicit instantiations are never found by name lookup, we
   5888   // just put it into the declaration context directly.
   5889   Specialization->setLexicalDeclContext(CurContext);
   5890   CurContext->addDecl(Specialization);
   5891 
   5892   // Syntax is now OK, so return if it has no other effect on semantics.
   5893   if (HasNoEffect) {
   5894     // Set the template specialization kind.
   5895     Specialization->setTemplateSpecializationKind(TSK);
   5896     return Specialization;
   5897   }
   5898 
   5899   // C++ [temp.explicit]p3:
   5900   //   A definition of a class template or class member template
   5901   //   shall be in scope at the point of the explicit instantiation of
   5902   //   the class template or class member template.
   5903   //
   5904   // This check comes when we actually try to perform the
   5905   // instantiation.
   5906   ClassTemplateSpecializationDecl *Def
   5907     = cast_or_null<ClassTemplateSpecializationDecl>(
   5908                                               Specialization->getDefinition());
   5909   if (!Def)
   5910     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
   5911   else if (TSK == TSK_ExplicitInstantiationDefinition) {
   5912     MarkVTableUsed(TemplateNameLoc, Specialization, true);
   5913     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
   5914   }
   5915 
   5916   // Instantiate the members of this class template specialization.
   5917   Def = cast_or_null<ClassTemplateSpecializationDecl>(
   5918                                        Specialization->getDefinition());
   5919   if (Def) {
   5920     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
   5921 
   5922     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
   5923     // TSK_ExplicitInstantiationDefinition
   5924     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
   5925         TSK == TSK_ExplicitInstantiationDefinition)
   5926       Def->setTemplateSpecializationKind(TSK);
   5927 
   5928     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
   5929   }
   5930 
   5931   // Set the template specialization kind.
   5932   Specialization->setTemplateSpecializationKind(TSK);
   5933   return Specialization;
   5934 }
   5935 
   5936 // Explicit instantiation of a member class of a class template.
   5937 DeclResult
   5938 Sema::ActOnExplicitInstantiation(Scope *S,
   5939                                  SourceLocation ExternLoc,
   5940                                  SourceLocation TemplateLoc,
   5941                                  unsigned TagSpec,
   5942                                  SourceLocation KWLoc,
   5943                                  CXXScopeSpec &SS,
   5944                                  IdentifierInfo *Name,
   5945                                  SourceLocation NameLoc,
   5946                                  AttributeList *Attr) {
   5947 
   5948   bool Owned = false;
   5949   bool IsDependent = false;
   5950   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
   5951                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
   5952                         MultiTemplateParamsArg(*this, 0, 0),
   5953                         Owned, IsDependent, false, false,
   5954                         TypeResult());
   5955   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
   5956 
   5957   if (!TagD)
   5958     return true;
   5959 
   5960   TagDecl *Tag = cast<TagDecl>(TagD);
   5961   if (Tag->isEnum()) {
   5962     Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
   5963       << Context.getTypeDeclType(Tag);
   5964     return true;
   5965   }
   5966 
   5967   if (Tag->isInvalidDecl())
   5968     return true;
   5969 
   5970   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
   5971   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
   5972   if (!Pattern) {
   5973     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
   5974       << Context.getTypeDeclType(Record);
   5975     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
   5976     return true;
   5977   }
   5978 
   5979   // C++0x [temp.explicit]p2:
   5980   //   If the explicit instantiation is for a class or member class, the
   5981   //   elaborated-type-specifier in the declaration shall include a
   5982   //   simple-template-id.
   5983   //
   5984   // C++98 has the same restriction, just worded differently.
   5985   if (!ScopeSpecifierHasTemplateId(SS))
   5986     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
   5987       << Record << SS.getRange();
   5988 
   5989   // C++0x [temp.explicit]p2:
   5990   //   There are two forms of explicit instantiation: an explicit instantiation
   5991   //   definition and an explicit instantiation declaration. An explicit
   5992   //   instantiation declaration begins with the extern keyword. [...]
   5993   TemplateSpecializationKind TSK
   5994     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   5995                            : TSK_ExplicitInstantiationDeclaration;
   5996 
   5997   // C++0x [temp.explicit]p2:
   5998   //   [...] An explicit instantiation shall appear in an enclosing
   5999   //   namespace of its template. [...]
   6000   //
   6001   // This is C++ DR 275.
   6002   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
   6003 
   6004   // Verify that it is okay to explicitly instantiate here.
   6005   CXXRecordDecl *PrevDecl
   6006     = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
   6007   if (!PrevDecl && Record->getDefinition())
   6008     PrevDecl = Record;
   6009   if (PrevDecl) {
   6010     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
   6011     bool HasNoEffect = false;
   6012     assert(MSInfo && "No member specialization information?");
   6013     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
   6014                                                PrevDecl,
   6015                                         MSInfo->getTemplateSpecializationKind(),
   6016                                              MSInfo->getPointOfInstantiation(),
   6017                                                HasNoEffect))
   6018       return true;
   6019     if (HasNoEffect)
   6020       return TagD;
   6021   }
   6022 
   6023   CXXRecordDecl *RecordDef
   6024     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   6025   if (!RecordDef) {
   6026     // C++ [temp.explicit]p3:
   6027     //   A definition of a member class of a class template shall be in scope
   6028     //   at the point of an explicit instantiation of the member class.
   6029     CXXRecordDecl *Def
   6030       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
   6031     if (!Def) {
   6032       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
   6033         << 0 << Record->getDeclName() << Record->getDeclContext();
   6034       Diag(Pattern->getLocation(), diag::note_forward_declaration)
   6035         << Pattern;
   6036       return true;
   6037     } else {
   6038       if (InstantiateClass(NameLoc, Record, Def,
   6039                            getTemplateInstantiationArgs(Record),
   6040                            TSK))
   6041         return true;
   6042 
   6043       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   6044       if (!RecordDef)
   6045         return true;
   6046     }
   6047   }
   6048 
   6049   // Instantiate all of the members of the class.
   6050   InstantiateClassMembers(NameLoc, RecordDef,
   6051                           getTemplateInstantiationArgs(Record), TSK);
   6052 
   6053   if (TSK == TSK_ExplicitInstantiationDefinition)
   6054     MarkVTableUsed(NameLoc, RecordDef, true);
   6055 
   6056   // FIXME: We don't have any representation for explicit instantiations of
   6057   // member classes. Such a representation is not needed for compilation, but it
   6058   // should be available for clients that want to see all of the declarations in
   6059   // the source code.
   6060   return TagD;
   6061 }
   6062 
   6063 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
   6064                                             SourceLocation ExternLoc,
   6065                                             SourceLocation TemplateLoc,
   6066                                             Declarator &D) {
   6067   // Explicit instantiations always require a name.
   6068   // TODO: check if/when DNInfo should replace Name.
   6069   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   6070   DeclarationName Name = NameInfo.getName();
   6071   if (!Name) {
   6072     if (!D.isInvalidType())
   6073       Diag(D.getDeclSpec().getSourceRange().getBegin(),
   6074            diag::err_explicit_instantiation_requires_name)
   6075         << D.getDeclSpec().getSourceRange()
   6076         << D.getSourceRange();
   6077 
   6078     return true;
   6079   }
   6080 
   6081   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   6082   // we find one that is.
   6083   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   6084          (S->getFlags() & Scope::TemplateParamScope) != 0)
   6085     S = S->getParent();
   6086 
   6087   // Determine the type of the declaration.
   6088   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
   6089   QualType R = T->getType();
   6090   if (R.isNull())
   6091     return true;
   6092 
   6093   // C++ [dcl.stc]p1:
   6094   //   A storage-class-specifier shall not be specified in [...] an explicit
   6095   //   instantiation (14.7.2) directive.
   6096   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   6097     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
   6098       << Name;
   6099     return true;
   6100   } else if (D.getDeclSpec().getStorageClassSpec()
   6101                                                 != DeclSpec::SCS_unspecified) {
   6102     // Complain about then remove the storage class specifier.
   6103     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
   6104       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   6105 
   6106     D.getMutableDeclSpec().ClearStorageClassSpecs();
   6107   }
   6108 
   6109   // C++0x [temp.explicit]p1:
   6110   //   [...] An explicit instantiation of a function template shall not use the
   6111   //   inline or constexpr specifiers.
   6112   // Presumably, this also applies to member functions of class templates as
   6113   // well.
   6114   if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
   6115     Diag(D.getDeclSpec().getInlineSpecLoc(),
   6116          diag::err_explicit_instantiation_inline)
   6117       <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   6118 
   6119   // FIXME: check for constexpr specifier.
   6120 
   6121   // C++0x [temp.explicit]p2:
   6122   //   There are two forms of explicit instantiation: an explicit instantiation
   6123   //   definition and an explicit instantiation declaration. An explicit
   6124   //   instantiation declaration begins with the extern keyword. [...]
   6125   TemplateSpecializationKind TSK
   6126     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   6127                            : TSK_ExplicitInstantiationDeclaration;
   6128 
   6129   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
   6130   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
   6131 
   6132   if (!R->isFunctionType()) {
   6133     // C++ [temp.explicit]p1:
   6134     //   A [...] static data member of a class template can be explicitly
   6135     //   instantiated from the member definition associated with its class
   6136     //   template.
   6137     if (Previous.isAmbiguous())
   6138       return true;
   6139 
   6140     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
   6141     if (!Prev || !Prev->isStaticDataMember()) {
   6142       // We expect to see a data data member here.
   6143       Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
   6144         << Name;
   6145       for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   6146            P != PEnd; ++P)
   6147         Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
   6148       return true;
   6149     }
   6150 
   6151     if (!Prev->getInstantiatedFromStaticDataMember()) {
   6152       // FIXME: Check for explicit specialization?
   6153       Diag(D.getIdentifierLoc(),
   6154            diag::err_explicit_instantiation_data_member_not_instantiated)
   6155         << Prev;
   6156       Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
   6157       // FIXME: Can we provide a note showing where this was declared?
   6158       return true;
   6159     }
   6160 
   6161     // C++0x [temp.explicit]p2:
   6162     //   If the explicit instantiation is for a member function, a member class
   6163     //   or a static data member of a class template specialization, the name of
   6164     //   the class template specialization in the qualified-id for the member
   6165     //   name shall be a simple-template-id.
   6166     //
   6167     // C++98 has the same restriction, just worded differently.
   6168     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   6169       Diag(D.getIdentifierLoc(),
   6170            diag::ext_explicit_instantiation_without_qualified_id)
   6171         << Prev << D.getCXXScopeSpec().getRange();
   6172 
   6173     // Check the scope of this explicit instantiation.
   6174     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
   6175 
   6176     // Verify that it is okay to explicitly instantiate here.
   6177     MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
   6178     assert(MSInfo && "Missing static data member specialization info?");
   6179     bool HasNoEffect = false;
   6180     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
   6181                                         MSInfo->getTemplateSpecializationKind(),
   6182                                               MSInfo->getPointOfInstantiation(),
   6183                                                HasNoEffect))
   6184       return true;
   6185     if (HasNoEffect)
   6186       return (Decl*) 0;
   6187 
   6188     // Instantiate static data member.
   6189     Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   6190     if (TSK == TSK_ExplicitInstantiationDefinition)
   6191       InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
   6192 
   6193     // FIXME: Create an ExplicitInstantiation node?
   6194     return (Decl*) 0;
   6195   }
   6196 
   6197   // If the declarator is a template-id, translate the parser's template
   6198   // argument list into our AST format.
   6199   bool HasExplicitTemplateArgs = false;
   6200   TemplateArgumentListInfo TemplateArgs;
   6201   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   6202     TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   6203     TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   6204     TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   6205     ASTTemplateArgsPtr TemplateArgsPtr(*this,
   6206                                        TemplateId->getTemplateArgs(),
   6207                                        TemplateId->NumArgs);
   6208     translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
   6209     HasExplicitTemplateArgs = true;
   6210     TemplateArgsPtr.release();
   6211   }
   6212 
   6213   // C++ [temp.explicit]p1:
   6214   //   A [...] function [...] can be explicitly instantiated from its template.
   6215   //   A member function [...] of a class template can be explicitly
   6216   //  instantiated from the member definition associated with its class
   6217   //  template.
   6218   UnresolvedSet<8> Matches;
   6219   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   6220        P != PEnd; ++P) {
   6221     NamedDecl *Prev = *P;
   6222     if (!HasExplicitTemplateArgs) {
   6223       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
   6224         if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
   6225           Matches.clear();
   6226 
   6227           Matches.addDecl(Method, P.getAccess());
   6228           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
   6229             break;
   6230         }
   6231       }
   6232     }
   6233 
   6234     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
   6235     if (!FunTmpl)
   6236       continue;
   6237 
   6238     TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
   6239     FunctionDecl *Specialization = 0;
   6240     if (TemplateDeductionResult TDK
   6241           = DeduceTemplateArguments(FunTmpl,
   6242                                (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   6243                                     R, Specialization, Info)) {
   6244       // FIXME: Keep track of almost-matches?
   6245       (void)TDK;
   6246       continue;
   6247     }
   6248 
   6249     Matches.addDecl(Specialization, P.getAccess());
   6250   }
   6251 
   6252   // Find the most specialized function template specialization.
   6253   UnresolvedSetIterator Result
   6254     = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
   6255                          D.getIdentifierLoc(),
   6256                      PDiag(diag::err_explicit_instantiation_not_known) << Name,
   6257                      PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
   6258                          PDiag(diag::note_explicit_instantiation_candidate));
   6259 
   6260   if (Result == Matches.end())
   6261     return true;
   6262 
   6263   // Ignore access control bits, we don't need them for redeclaration checking.
   6264   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   6265 
   6266   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
   6267     Diag(D.getIdentifierLoc(),
   6268          diag::err_explicit_instantiation_member_function_not_instantiated)
   6269       << Specialization
   6270       << (Specialization->getTemplateSpecializationKind() ==
   6271           TSK_ExplicitSpecialization);
   6272     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
   6273     return true;
   6274   }
   6275 
   6276   FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
   6277   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
   6278     PrevDecl = Specialization;
   6279 
   6280   if (PrevDecl) {
   6281     bool HasNoEffect = false;
   6282     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
   6283                                                PrevDecl,
   6284                                      PrevDecl->getTemplateSpecializationKind(),
   6285                                           PrevDecl->getPointOfInstantiation(),
   6286                                                HasNoEffect))
   6287       return true;
   6288 
   6289     // FIXME: We may still want to build some representation of this
   6290     // explicit specialization.
   6291     if (HasNoEffect)
   6292       return (Decl*) 0;
   6293   }
   6294 
   6295   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   6296 
   6297   if (TSK == TSK_ExplicitInstantiationDefinition)
   6298     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
   6299 
   6300   // C++0x [temp.explicit]p2:
   6301   //   If the explicit instantiation is for a member function, a member class
   6302   //   or a static data member of a class template specialization, the name of
   6303   //   the class template specialization in the qualified-id for the member
   6304   //   name shall be a simple-template-id.
   6305   //
   6306   // C++98 has the same restriction, just worded differently.
   6307   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
   6308   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
   6309       D.getCXXScopeSpec().isSet() &&
   6310       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   6311     Diag(D.getIdentifierLoc(),
   6312          diag::ext_explicit_instantiation_without_qualified_id)
   6313     << Specialization << D.getCXXScopeSpec().getRange();
   6314 
   6315   CheckExplicitInstantiationScope(*this,
   6316                    FunTmpl? (NamedDecl *)FunTmpl
   6317                           : Specialization->getInstantiatedFromMemberFunction(),
   6318                                   D.getIdentifierLoc(),
   6319                                   D.getCXXScopeSpec().isSet());
   6320 
   6321   // FIXME: Create some kind of ExplicitInstantiationDecl here.
   6322   return (Decl*) 0;
   6323 }
   6324 
   6325 TypeResult
   6326 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   6327                         const CXXScopeSpec &SS, IdentifierInfo *Name,
   6328                         SourceLocation TagLoc, SourceLocation NameLoc) {
   6329   // This has to hold, because SS is expected to be defined.
   6330   assert(Name && "Expected a name in a dependent tag");
   6331 
   6332   NestedNameSpecifier *NNS
   6333     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
   6334   if (!NNS)
   6335     return true;
   6336 
   6337   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6338 
   6339   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
   6340     Diag(NameLoc, diag::err_dependent_tag_decl)
   6341       << (TUK == TUK_Definition) << Kind << SS.getRange();
   6342     return true;
   6343   }
   6344 
   6345   // Create the resulting type.
   6346   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   6347   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
   6348 
   6349   // Create type-source location information for this type.
   6350   TypeLocBuilder TLB;
   6351   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
   6352   TL.setKeywordLoc(TagLoc);
   6353   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   6354   TL.setNameLoc(NameLoc);
   6355   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   6356 }
   6357 
   6358 TypeResult
   6359 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
   6360                         const CXXScopeSpec &SS, const IdentifierInfo &II,
   6361                         SourceLocation IdLoc) {
   6362   if (SS.isInvalid())
   6363     return true;
   6364 
   6365   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
   6366       !getLangOptions().CPlusPlus0x)
   6367     Diag(TypenameLoc, diag::ext_typename_outside_of_template)
   6368       << FixItHint::CreateRemoval(TypenameLoc);
   6369 
   6370   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   6371   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
   6372                                  TypenameLoc, QualifierLoc, II, IdLoc);
   6373   if (T.isNull())
   6374     return true;
   6375 
   6376   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   6377   if (isa<DependentNameType>(T)) {
   6378     DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
   6379     TL.setKeywordLoc(TypenameLoc);
   6380     TL.setQualifierLoc(QualifierLoc);
   6381     TL.setNameLoc(IdLoc);
   6382   } else {
   6383     ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
   6384     TL.setKeywordLoc(TypenameLoc);
   6385     TL.setQualifierLoc(QualifierLoc);
   6386     cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
   6387   }
   6388 
   6389   return CreateParsedType(T, TSI);
   6390 }
   6391 
   6392 TypeResult
   6393 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
   6394                         const CXXScopeSpec &SS,
   6395                         SourceLocation TemplateLoc,
   6396                         TemplateTy TemplateIn,
   6397                         SourceLocation TemplateNameLoc,
   6398                         SourceLocation LAngleLoc,
   6399                         ASTTemplateArgsPtr TemplateArgsIn,
   6400                         SourceLocation RAngleLoc) {
   6401   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
   6402       !getLangOptions().CPlusPlus0x)
   6403     Diag(TypenameLoc, diag::ext_typename_outside_of_template)
   6404     << FixItHint::CreateRemoval(TypenameLoc);
   6405 
   6406   // Translate the parser's template argument list in our AST format.
   6407   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   6408   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   6409 
   6410   TemplateName Template = TemplateIn.get();
   6411   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   6412     // Construct a dependent template specialization type.
   6413     assert(DTN && "dependent template has non-dependent name?");
   6414     assert(DTN->getQualifier()
   6415            == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
   6416     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
   6417                                                           DTN->getQualifier(),
   6418                                                           DTN->getIdentifier(),
   6419                                                                 TemplateArgs);
   6420 
   6421     // Create source-location information for this type.
   6422     TypeLocBuilder Builder;
   6423     DependentTemplateSpecializationTypeLoc SpecTL
   6424     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
   6425     SpecTL.setLAngleLoc(LAngleLoc);
   6426     SpecTL.setRAngleLoc(RAngleLoc);
   6427     SpecTL.setKeywordLoc(TypenameLoc);
   6428     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   6429     SpecTL.setNameLoc(TemplateNameLoc);
   6430     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6431       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   6432     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
   6433   }
   6434 
   6435   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
   6436   if (T.isNull())
   6437     return true;
   6438 
   6439   // Provide source-location information for the template specialization
   6440   // type.
   6441   TypeLocBuilder Builder;
   6442   TemplateSpecializationTypeLoc SpecTL
   6443     = Builder.push<TemplateSpecializationTypeLoc>(T);
   6444 
   6445   // FIXME: No place to set the location of the 'template' keyword!
   6446   SpecTL.setLAngleLoc(LAngleLoc);
   6447   SpecTL.setRAngleLoc(RAngleLoc);
   6448   SpecTL.setTemplateNameLoc(TemplateNameLoc);
   6449   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6450     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   6451 
   6452   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
   6453   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
   6454   TL.setKeywordLoc(TypenameLoc);
   6455   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   6456 
   6457   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
   6458   return CreateParsedType(T, TSI);
   6459 }
   6460 
   6461 
   6462 /// \brief Build the type that describes a C++ typename specifier,
   6463 /// e.g., "typename T::type".
   6464 QualType
   6465 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
   6466                         SourceLocation KeywordLoc,
   6467                         NestedNameSpecifierLoc QualifierLoc,
   6468                         const IdentifierInfo &II,
   6469                         SourceLocation IILoc) {
   6470   CXXScopeSpec SS;
   6471   SS.Adopt(QualifierLoc);
   6472 
   6473   DeclContext *Ctx = computeDeclContext(SS);
   6474   if (!Ctx) {
   6475     // If the nested-name-specifier is dependent and couldn't be
   6476     // resolved to a type, build a typename type.
   6477     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
   6478     return Context.getDependentNameType(Keyword,
   6479                                         QualifierLoc.getNestedNameSpecifier(),
   6480                                         &II);
   6481   }
   6482 
   6483   // If the nested-name-specifier refers to the current instantiation,
   6484   // the "typename" keyword itself is superfluous. In C++03, the
   6485   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
   6486   // allows such extraneous "typename" keywords, and we retroactively
   6487   // apply this DR to C++03 code with only a warning. In any case we continue.
   6488 
   6489   if (RequireCompleteDeclContext(SS, Ctx))
   6490     return QualType();
   6491 
   6492   DeclarationName Name(&II);
   6493   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
   6494   LookupQualifiedName(Result, Ctx);
   6495   unsigned DiagID = 0;
   6496   Decl *Referenced = 0;
   6497   switch (Result.getResultKind()) {
   6498   case LookupResult::NotFound:
   6499     DiagID = diag::err_typename_nested_not_found;
   6500     break;
   6501 
   6502   case LookupResult::FoundUnresolvedValue: {
   6503     // We found a using declaration that is a value. Most likely, the using
   6504     // declaration itself is meant to have the 'typename' keyword.
   6505     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   6506                           IILoc);
   6507     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
   6508       << Name << Ctx << FullRange;
   6509     if (UnresolvedUsingValueDecl *Using
   6510           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
   6511       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
   6512       Diag(Loc, diag::note_using_value_decl_missing_typename)
   6513         << FixItHint::CreateInsertion(Loc, "typename ");
   6514     }
   6515   }
   6516   // Fall through to create a dependent typename type, from which we can recover
   6517   // better.
   6518 
   6519   case LookupResult::NotFoundInCurrentInstantiation:
   6520     // Okay, it's a member of an unknown instantiation.
   6521     return Context.getDependentNameType(Keyword,
   6522                                         QualifierLoc.getNestedNameSpecifier(),
   6523                                         &II);
   6524 
   6525   case LookupResult::Found:
   6526     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
   6527       // We found a type. Build an ElaboratedType, since the
   6528       // typename-specifier was just sugar.
   6529       return Context.getElaboratedType(ETK_Typename,
   6530                                        QualifierLoc.getNestedNameSpecifier(),
   6531                                        Context.getTypeDeclType(Type));
   6532     }
   6533 
   6534     DiagID = diag::err_typename_nested_not_type;
   6535     Referenced = Result.getFoundDecl();
   6536     break;
   6537 
   6538 
   6539     llvm_unreachable("unresolved using decl in non-dependent context");
   6540     return QualType();
   6541 
   6542   case LookupResult::FoundOverloaded:
   6543     DiagID = diag::err_typename_nested_not_type;
   6544     Referenced = *Result.begin();
   6545     break;
   6546 
   6547   case LookupResult::Ambiguous:
   6548     return QualType();
   6549   }
   6550 
   6551   // If we get here, it's because name lookup did not find a
   6552   // type. Emit an appropriate diagnostic and return an error.
   6553   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   6554                         IILoc);
   6555   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
   6556   if (Referenced)
   6557     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
   6558       << Name;
   6559   return QualType();
   6560 }
   6561 
   6562 namespace {
   6563   // See Sema::RebuildTypeInCurrentInstantiation
   6564   class CurrentInstantiationRebuilder
   6565     : public TreeTransform<CurrentInstantiationRebuilder> {
   6566     SourceLocation Loc;
   6567     DeclarationName Entity;
   6568 
   6569   public:
   6570     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
   6571 
   6572     CurrentInstantiationRebuilder(Sema &SemaRef,
   6573                                   SourceLocation Loc,
   6574                                   DeclarationName Entity)
   6575     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
   6576       Loc(Loc), Entity(Entity) { }
   6577 
   6578     /// \brief Determine whether the given type \p T has already been
   6579     /// transformed.
   6580     ///
   6581     /// For the purposes of type reconstruction, a type has already been
   6582     /// transformed if it is NULL or if it is not dependent.
   6583     bool AlreadyTransformed(QualType T) {
   6584       return T.isNull() || !T->isDependentType();
   6585     }
   6586 
   6587     /// \brief Returns the location of the entity whose type is being
   6588     /// rebuilt.
   6589     SourceLocation getBaseLocation() { return Loc; }
   6590 
   6591     /// \brief Returns the name of the entity whose type is being rebuilt.
   6592     DeclarationName getBaseEntity() { return Entity; }
   6593 
   6594     /// \brief Sets the "base" location and entity when that
   6595     /// information is known based on another transformation.
   6596     void setBase(SourceLocation Loc, DeclarationName Entity) {
   6597       this->Loc = Loc;
   6598       this->Entity = Entity;
   6599     }
   6600   };
   6601 }
   6602 
   6603 /// \brief Rebuilds a type within the context of the current instantiation.
   6604 ///
   6605 /// The type \p T is part of the type of an out-of-line member definition of
   6606 /// a class template (or class template partial specialization) that was parsed
   6607 /// and constructed before we entered the scope of the class template (or
   6608 /// partial specialization thereof). This routine will rebuild that type now
   6609 /// that we have entered the declarator's scope, which may produce different
   6610 /// canonical types, e.g.,
   6611 ///
   6612 /// \code
   6613 /// template<typename T>
   6614 /// struct X {
   6615 ///   typedef T* pointer;
   6616 ///   pointer data();
   6617 /// };
   6618 ///
   6619 /// template<typename T>
   6620 /// typename X<T>::pointer X<T>::data() { ... }
   6621 /// \endcode
   6622 ///
   6623 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
   6624 /// since we do not know that we can look into X<T> when we parsed the type.
   6625 /// This function will rebuild the type, performing the lookup of "pointer"
   6626 /// in X<T> and returning an ElaboratedType whose canonical type is the same
   6627 /// as the canonical type of T*, allowing the return types of the out-of-line
   6628 /// definition and the declaration to match.
   6629 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
   6630                                                         SourceLocation Loc,
   6631                                                         DeclarationName Name) {
   6632   if (!T || !T->getType()->isDependentType())
   6633     return T;
   6634 
   6635   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
   6636   return Rebuilder.TransformType(T);
   6637 }
   6638 
   6639 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
   6640   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
   6641                                           DeclarationName());
   6642   return Rebuilder.TransformExpr(E);
   6643 }
   6644 
   6645 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
   6646   if (SS.isInvalid())
   6647     return true;
   6648 
   6649   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   6650   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
   6651                                           DeclarationName());
   6652   NestedNameSpecifierLoc Rebuilt
   6653     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
   6654   if (!Rebuilt)
   6655     return true;
   6656 
   6657   SS.Adopt(Rebuilt);
   6658   return false;
   6659 }
   6660 
   6661 /// \brief Produces a formatted string that describes the binding of
   6662 /// template parameters to template arguments.
   6663 std::string
   6664 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   6665                                       const TemplateArgumentList &Args) {
   6666   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
   6667 }
   6668 
   6669 std::string
   6670 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   6671                                       const TemplateArgument *Args,
   6672                                       unsigned NumArgs) {
   6673   llvm::SmallString<128> Str;
   6674   llvm::raw_svector_ostream Out(Str);
   6675 
   6676   if (!Params || Params->size() == 0 || NumArgs == 0)
   6677     return std::string();
   6678 
   6679   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   6680     if (I >= NumArgs)
   6681       break;
   6682 
   6683     if (I == 0)
   6684       Out << "[with ";
   6685     else
   6686       Out << ", ";
   6687 
   6688     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
   6689       Out << Id->getName();
   6690     } else {
   6691       Out << '$' << I;
   6692     }
   6693 
   6694     Out << " = ";
   6695     Args[I].print(Context.PrintingPolicy, Out);
   6696   }
   6697 
   6698   Out << ']';
   6699   return Out.str();
   6700 }
   6701 
   6702 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
   6703   if (!FD)
   6704     return;
   6705   FD->setLateTemplateParsed(Flag);
   6706 }
   6707 
   6708 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
   6709   DeclContext *DC = CurContext;
   6710 
   6711   while (DC) {
   6712     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
   6713       const FunctionDecl *FD = RD->isLocalClass();
   6714       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
   6715     } else if (DC->isTranslationUnit() || DC->isNamespace())
   6716       return false;
   6717 
   6718     DC = DC->getParent();
   6719   }
   6720   return false;
   6721 }
   6722