1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements semantic analysis for C++ templates. 10 //===----------------------------------------------------------------------===/ 11 12 #include "clang/Sema/SemaInternal.h" 13 #include "clang/Sema/Lookup.h" 14 #include "clang/Sema/Scope.h" 15 #include "clang/Sema/Template.h" 16 #include "clang/Sema/TemplateDeduction.h" 17 #include "TreeTransform.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/DeclFriend.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/RecursiveASTVisitor.h" 24 #include "clang/AST/TypeVisitor.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "clang/Sema/ParsedTemplate.h" 27 #include "clang/Basic/LangOptions.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "llvm/ADT/StringExtras.h" 30 using namespace clang; 31 using namespace sema; 32 33 // Exported for use by Parser. 34 SourceRange 35 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39 } 40 41 /// \brief Determine whether the declaration found is acceptable as the name 42 /// of a template and, if so, return that template declaration. Otherwise, 43 /// returns NULL. 44 static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77 } 78 79 void Sema::FilterAcceptableTemplateNames(LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is used as a template-name, the reference refers to the class 96 // template itself and not a specialization thereof, and is not 97 // ambiguous. 98 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 99 if (!ClassTemplates.insert(ClassTmpl)) { 100 filter.erase(); 101 continue; 102 } 103 104 // FIXME: we promote access to public here as a workaround to 105 // the fact that LookupResult doesn't let us remember that we 106 // found this template through a particular injected class name, 107 // which means we end up doing nasty things to the invariants. 108 // Pretending that access is public is *much* safer. 109 filter.replace(Repl, AS_public); 110 } 111 } 112 filter.done(); 113 } 114 115 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) { 116 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 117 if (isAcceptableTemplateName(Context, *I)) 118 return true; 119 120 return false; 121 } 122 123 TemplateNameKind Sema::isTemplateName(Scope *S, 124 CXXScopeSpec &SS, 125 bool hasTemplateKeyword, 126 UnqualifiedId &Name, 127 ParsedType ObjectTypePtr, 128 bool EnteringContext, 129 TemplateTy &TemplateResult, 130 bool &MemberOfUnknownSpecialization) { 131 assert(getLangOptions().CPlusPlus && "No template names in C!"); 132 133 DeclarationName TName; 134 MemberOfUnknownSpecialization = false; 135 136 switch (Name.getKind()) { 137 case UnqualifiedId::IK_Identifier: 138 TName = DeclarationName(Name.Identifier); 139 break; 140 141 case UnqualifiedId::IK_OperatorFunctionId: 142 TName = Context.DeclarationNames.getCXXOperatorName( 143 Name.OperatorFunctionId.Operator); 144 break; 145 146 case UnqualifiedId::IK_LiteralOperatorId: 147 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 148 break; 149 150 default: 151 return TNK_Non_template; 152 } 153 154 QualType ObjectType = ObjectTypePtr.get(); 155 156 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 157 LookupOrdinaryName); 158 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 159 MemberOfUnknownSpecialization); 160 if (R.empty()) return TNK_Non_template; 161 if (R.isAmbiguous()) { 162 // Suppress diagnostics; we'll redo this lookup later. 163 R.suppressDiagnostics(); 164 165 // FIXME: we might have ambiguous templates, in which case we 166 // should at least parse them properly! 167 return TNK_Non_template; 168 } 169 170 TemplateName Template; 171 TemplateNameKind TemplateKind; 172 173 unsigned ResultCount = R.end() - R.begin(); 174 if (ResultCount > 1) { 175 // We assume that we'll preserve the qualifier from a function 176 // template name in other ways. 177 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 178 TemplateKind = TNK_Function_template; 179 180 // We'll do this lookup again later. 181 R.suppressDiagnostics(); 182 } else { 183 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 184 185 if (SS.isSet() && !SS.isInvalid()) { 186 NestedNameSpecifier *Qualifier 187 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 188 Template = Context.getQualifiedTemplateName(Qualifier, 189 hasTemplateKeyword, TD); 190 } else { 191 Template = TemplateName(TD); 192 } 193 194 if (isa<FunctionTemplateDecl>(TD)) { 195 TemplateKind = TNK_Function_template; 196 197 // We'll do this lookup again later. 198 R.suppressDiagnostics(); 199 } else { 200 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 201 isa<TypeAliasTemplateDecl>(TD)); 202 TemplateKind = TNK_Type_template; 203 } 204 } 205 206 TemplateResult = TemplateTy::make(Template); 207 return TemplateKind; 208 } 209 210 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 211 SourceLocation IILoc, 212 Scope *S, 213 const CXXScopeSpec *SS, 214 TemplateTy &SuggestedTemplate, 215 TemplateNameKind &SuggestedKind) { 216 // We can't recover unless there's a dependent scope specifier preceding the 217 // template name. 218 // FIXME: Typo correction? 219 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 220 computeDeclContext(*SS)) 221 return false; 222 223 // The code is missing a 'template' keyword prior to the dependent template 224 // name. 225 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 226 Diag(IILoc, diag::err_template_kw_missing) 227 << Qualifier << II.getName() 228 << FixItHint::CreateInsertion(IILoc, "template "); 229 SuggestedTemplate 230 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 231 SuggestedKind = TNK_Dependent_template_name; 232 return true; 233 } 234 235 void Sema::LookupTemplateName(LookupResult &Found, 236 Scope *S, CXXScopeSpec &SS, 237 QualType ObjectType, 238 bool EnteringContext, 239 bool &MemberOfUnknownSpecialization) { 240 // Determine where to perform name lookup 241 MemberOfUnknownSpecialization = false; 242 DeclContext *LookupCtx = 0; 243 bool isDependent = false; 244 if (!ObjectType.isNull()) { 245 // This nested-name-specifier occurs in a member access expression, e.g., 246 // x->B::f, and we are looking into the type of the object. 247 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 248 LookupCtx = computeDeclContext(ObjectType); 249 isDependent = ObjectType->isDependentType(); 250 assert((isDependent || !ObjectType->isIncompleteType()) && 251 "Caller should have completed object type"); 252 } else if (SS.isSet()) { 253 // This nested-name-specifier occurs after another nested-name-specifier, 254 // so long into the context associated with the prior nested-name-specifier. 255 LookupCtx = computeDeclContext(SS, EnteringContext); 256 isDependent = isDependentScopeSpecifier(SS); 257 258 // The declaration context must be complete. 259 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 260 return; 261 } 262 263 bool ObjectTypeSearchedInScope = false; 264 if (LookupCtx) { 265 // Perform "qualified" name lookup into the declaration context we 266 // computed, which is either the type of the base of a member access 267 // expression or the declaration context associated with a prior 268 // nested-name-specifier. 269 LookupQualifiedName(Found, LookupCtx); 270 271 if (!ObjectType.isNull() && Found.empty()) { 272 // C++ [basic.lookup.classref]p1: 273 // In a class member access expression (5.2.5), if the . or -> token is 274 // immediately followed by an identifier followed by a <, the 275 // identifier must be looked up to determine whether the < is the 276 // beginning of a template argument list (14.2) or a less-than operator. 277 // The identifier is first looked up in the class of the object 278 // expression. If the identifier is not found, it is then looked up in 279 // the context of the entire postfix-expression and shall name a class 280 // or function template. 281 if (S) LookupName(Found, S); 282 ObjectTypeSearchedInScope = true; 283 } 284 } else if (isDependent && (!S || ObjectType.isNull())) { 285 // We cannot look into a dependent object type or nested nme 286 // specifier. 287 MemberOfUnknownSpecialization = true; 288 return; 289 } else { 290 // Perform unqualified name lookup in the current scope. 291 LookupName(Found, S); 292 } 293 294 if (Found.empty() && !isDependent) { 295 // If we did not find any names, attempt to correct any typos. 296 DeclarationName Name = Found.getLookupName(); 297 Found.clear(); 298 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 299 Found.getLookupKind(), S, &SS, 300 LookupCtx, false, 301 CTC_CXXCasts)) { 302 Found.setLookupName(Corrected.getCorrection()); 303 if (Corrected.getCorrectionDecl()) 304 Found.addDecl(Corrected.getCorrectionDecl()); 305 FilterAcceptableTemplateNames(Found); 306 if (!Found.empty()) { 307 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 308 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 309 if (LookupCtx) 310 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 311 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 312 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 313 else 314 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 315 << Name << CorrectedQuotedStr 316 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 317 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 318 Diag(Template->getLocation(), diag::note_previous_decl) 319 << CorrectedQuotedStr; 320 } 321 } else { 322 Found.setLookupName(Name); 323 } 324 } 325 326 FilterAcceptableTemplateNames(Found); 327 if (Found.empty()) { 328 if (isDependent) 329 MemberOfUnknownSpecialization = true; 330 return; 331 } 332 333 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 334 // C++ [basic.lookup.classref]p1: 335 // [...] If the lookup in the class of the object expression finds a 336 // template, the name is also looked up in the context of the entire 337 // postfix-expression and [...] 338 // 339 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 340 LookupOrdinaryName); 341 LookupName(FoundOuter, S); 342 FilterAcceptableTemplateNames(FoundOuter); 343 344 if (FoundOuter.empty()) { 345 // - if the name is not found, the name found in the class of the 346 // object expression is used, otherwise 347 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 348 // - if the name is found in the context of the entire 349 // postfix-expression and does not name a class template, the name 350 // found in the class of the object expression is used, otherwise 351 } else if (!Found.isSuppressingDiagnostics()) { 352 // - if the name found is a class template, it must refer to the same 353 // entity as the one found in the class of the object expression, 354 // otherwise the program is ill-formed. 355 if (!Found.isSingleResult() || 356 Found.getFoundDecl()->getCanonicalDecl() 357 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 358 Diag(Found.getNameLoc(), 359 diag::ext_nested_name_member_ref_lookup_ambiguous) 360 << Found.getLookupName() 361 << ObjectType; 362 Diag(Found.getRepresentativeDecl()->getLocation(), 363 diag::note_ambig_member_ref_object_type) 364 << ObjectType; 365 Diag(FoundOuter.getFoundDecl()->getLocation(), 366 diag::note_ambig_member_ref_scope); 367 368 // Recover by taking the template that we found in the object 369 // expression's type. 370 } 371 } 372 } 373 } 374 375 /// ActOnDependentIdExpression - Handle a dependent id-expression that 376 /// was just parsed. This is only possible with an explicit scope 377 /// specifier naming a dependent type. 378 ExprResult 379 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 380 const DeclarationNameInfo &NameInfo, 381 bool isAddressOfOperand, 382 const TemplateArgumentListInfo *TemplateArgs) { 383 DeclContext *DC = getFunctionLevelDeclContext(); 384 385 if (!isAddressOfOperand && 386 isa<CXXMethodDecl>(DC) && 387 cast<CXXMethodDecl>(DC)->isInstance()) { 388 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 389 390 // Since the 'this' expression is synthesized, we don't need to 391 // perform the double-lookup check. 392 NamedDecl *FirstQualifierInScope = 0; 393 394 return Owned(CXXDependentScopeMemberExpr::Create(Context, 395 /*This*/ 0, ThisType, 396 /*IsArrow*/ true, 397 /*Op*/ SourceLocation(), 398 SS.getWithLocInContext(Context), 399 FirstQualifierInScope, 400 NameInfo, 401 TemplateArgs)); 402 } 403 404 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 405 } 406 407 ExprResult 408 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 409 const DeclarationNameInfo &NameInfo, 410 const TemplateArgumentListInfo *TemplateArgs) { 411 return Owned(DependentScopeDeclRefExpr::Create(Context, 412 SS.getWithLocInContext(Context), 413 NameInfo, 414 TemplateArgs)); 415 } 416 417 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 418 /// that the template parameter 'PrevDecl' is being shadowed by a new 419 /// declaration at location Loc. Returns true to indicate that this is 420 /// an error, and false otherwise. 421 bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 422 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 423 424 // Microsoft Visual C++ permits template parameters to be shadowed. 425 if (getLangOptions().Microsoft) 426 return false; 427 428 // C++ [temp.local]p4: 429 // A template-parameter shall not be redeclared within its 430 // scope (including nested scopes). 431 Diag(Loc, diag::err_template_param_shadow) 432 << cast<NamedDecl>(PrevDecl)->getDeclName(); 433 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 434 return true; 435 } 436 437 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 438 /// the parameter D to reference the templated declaration and return a pointer 439 /// to the template declaration. Otherwise, do nothing to D and return null. 440 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 441 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 442 D = Temp->getTemplatedDecl(); 443 return Temp; 444 } 445 return 0; 446 } 447 448 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 449 SourceLocation EllipsisLoc) const { 450 assert(Kind == Template && 451 "Only template template arguments can be pack expansions here"); 452 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 453 "Template template argument pack expansion without packs"); 454 ParsedTemplateArgument Result(*this); 455 Result.EllipsisLoc = EllipsisLoc; 456 return Result; 457 } 458 459 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 460 const ParsedTemplateArgument &Arg) { 461 462 switch (Arg.getKind()) { 463 case ParsedTemplateArgument::Type: { 464 TypeSourceInfo *DI; 465 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 466 if (!DI) 467 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 468 return TemplateArgumentLoc(TemplateArgument(T), DI); 469 } 470 471 case ParsedTemplateArgument::NonType: { 472 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 473 return TemplateArgumentLoc(TemplateArgument(E), E); 474 } 475 476 case ParsedTemplateArgument::Template: { 477 TemplateName Template = Arg.getAsTemplate().get(); 478 TemplateArgument TArg; 479 if (Arg.getEllipsisLoc().isValid()) 480 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 481 else 482 TArg = Template; 483 return TemplateArgumentLoc(TArg, 484 Arg.getScopeSpec().getWithLocInContext( 485 SemaRef.Context), 486 Arg.getLocation(), 487 Arg.getEllipsisLoc()); 488 } 489 } 490 491 llvm_unreachable("Unhandled parsed template argument"); 492 return TemplateArgumentLoc(); 493 } 494 495 /// \brief Translates template arguments as provided by the parser 496 /// into template arguments used by semantic analysis. 497 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 498 TemplateArgumentListInfo &TemplateArgs) { 499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 500 TemplateArgs.addArgument(translateTemplateArgument(*this, 501 TemplateArgsIn[I])); 502 } 503 504 /// ActOnTypeParameter - Called when a C++ template type parameter 505 /// (e.g., "typename T") has been parsed. Typename specifies whether 506 /// the keyword "typename" was used to declare the type parameter 507 /// (otherwise, "class" was used), and KeyLoc is the location of the 508 /// "class" or "typename" keyword. ParamName is the name of the 509 /// parameter (NULL indicates an unnamed template parameter) and 510 /// ParamNameLoc is the location of the parameter name (if any). 511 /// If the type parameter has a default argument, it will be added 512 /// later via ActOnTypeParameterDefault. 513 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 514 SourceLocation EllipsisLoc, 515 SourceLocation KeyLoc, 516 IdentifierInfo *ParamName, 517 SourceLocation ParamNameLoc, 518 unsigned Depth, unsigned Position, 519 SourceLocation EqualLoc, 520 ParsedType DefaultArg) { 521 assert(S->isTemplateParamScope() && 522 "Template type parameter not in template parameter scope!"); 523 bool Invalid = false; 524 525 if (ParamName) { 526 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 527 LookupOrdinaryName, 528 ForRedeclaration); 529 if (PrevDecl && PrevDecl->isTemplateParameter()) 530 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 531 PrevDecl); 532 } 533 534 SourceLocation Loc = ParamNameLoc; 535 if (!ParamName) 536 Loc = KeyLoc; 537 538 TemplateTypeParmDecl *Param 539 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 540 KeyLoc, Loc, Depth, Position, ParamName, 541 Typename, Ellipsis); 542 Param->setAccess(AS_public); 543 if (Invalid) 544 Param->setInvalidDecl(); 545 546 if (ParamName) { 547 // Add the template parameter into the current scope. 548 S->AddDecl(Param); 549 IdResolver.AddDecl(Param); 550 } 551 552 // C++0x [temp.param]p9: 553 // A default template-argument may be specified for any kind of 554 // template-parameter that is not a template parameter pack. 555 if (DefaultArg && Ellipsis) { 556 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 557 DefaultArg = ParsedType(); 558 } 559 560 // Handle the default argument, if provided. 561 if (DefaultArg) { 562 TypeSourceInfo *DefaultTInfo; 563 GetTypeFromParser(DefaultArg, &DefaultTInfo); 564 565 assert(DefaultTInfo && "expected source information for type"); 566 567 // Check for unexpanded parameter packs. 568 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 569 UPPC_DefaultArgument)) 570 return Param; 571 572 // Check the template argument itself. 573 if (CheckTemplateArgument(Param, DefaultTInfo)) { 574 Param->setInvalidDecl(); 575 return Param; 576 } 577 578 Param->setDefaultArgument(DefaultTInfo, false); 579 } 580 581 return Param; 582 } 583 584 /// \brief Check that the type of a non-type template parameter is 585 /// well-formed. 586 /// 587 /// \returns the (possibly-promoted) parameter type if valid; 588 /// otherwise, produces a diagnostic and returns a NULL type. 589 QualType 590 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 591 // We don't allow variably-modified types as the type of non-type template 592 // parameters. 593 if (T->isVariablyModifiedType()) { 594 Diag(Loc, diag::err_variably_modified_nontype_template_param) 595 << T; 596 return QualType(); 597 } 598 599 // C++ [temp.param]p4: 600 // 601 // A non-type template-parameter shall have one of the following 602 // (optionally cv-qualified) types: 603 // 604 // -- integral or enumeration type, 605 if (T->isIntegralOrEnumerationType() || 606 // -- pointer to object or pointer to function, 607 T->isPointerType() || 608 // -- reference to object or reference to function, 609 T->isReferenceType() || 610 // -- pointer to member, 611 T->isMemberPointerType() || 612 // -- std::nullptr_t. 613 T->isNullPtrType() || 614 // If T is a dependent type, we can't do the check now, so we 615 // assume that it is well-formed. 616 T->isDependentType()) 617 return T; 618 // C++ [temp.param]p8: 619 // 620 // A non-type template-parameter of type "array of T" or 621 // "function returning T" is adjusted to be of type "pointer to 622 // T" or "pointer to function returning T", respectively. 623 else if (T->isArrayType()) 624 // FIXME: Keep the type prior to promotion? 625 return Context.getArrayDecayedType(T); 626 else if (T->isFunctionType()) 627 // FIXME: Keep the type prior to promotion? 628 return Context.getPointerType(T); 629 630 Diag(Loc, diag::err_template_nontype_parm_bad_type) 631 << T; 632 633 return QualType(); 634 } 635 636 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 637 unsigned Depth, 638 unsigned Position, 639 SourceLocation EqualLoc, 640 Expr *Default) { 641 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 642 QualType T = TInfo->getType(); 643 644 assert(S->isTemplateParamScope() && 645 "Non-type template parameter not in template parameter scope!"); 646 bool Invalid = false; 647 648 IdentifierInfo *ParamName = D.getIdentifier(); 649 if (ParamName) { 650 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 651 LookupOrdinaryName, 652 ForRedeclaration); 653 if (PrevDecl && PrevDecl->isTemplateParameter()) 654 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 655 PrevDecl); 656 } 657 658 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 659 if (T.isNull()) { 660 T = Context.IntTy; // Recover with an 'int' type. 661 Invalid = true; 662 } 663 664 bool IsParameterPack = D.hasEllipsis(); 665 NonTypeTemplateParmDecl *Param 666 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 667 D.getSourceRange().getBegin(), 668 D.getIdentifierLoc(), 669 Depth, Position, ParamName, T, 670 IsParameterPack, TInfo); 671 Param->setAccess(AS_public); 672 673 if (Invalid) 674 Param->setInvalidDecl(); 675 676 if (D.getIdentifier()) { 677 // Add the template parameter into the current scope. 678 S->AddDecl(Param); 679 IdResolver.AddDecl(Param); 680 } 681 682 // C++0x [temp.param]p9: 683 // A default template-argument may be specified for any kind of 684 // template-parameter that is not a template parameter pack. 685 if (Default && IsParameterPack) { 686 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 687 Default = 0; 688 } 689 690 // Check the well-formedness of the default template argument, if provided. 691 if (Default) { 692 // Check for unexpanded parameter packs. 693 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 694 return Param; 695 696 TemplateArgument Converted; 697 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 698 if (DefaultRes.isInvalid()) { 699 Param->setInvalidDecl(); 700 return Param; 701 } 702 Default = DefaultRes.take(); 703 704 Param->setDefaultArgument(Default, false); 705 } 706 707 return Param; 708 } 709 710 /// ActOnTemplateTemplateParameter - Called when a C++ template template 711 /// parameter (e.g. T in template <template <typename> class T> class array) 712 /// has been parsed. S is the current scope. 713 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 714 SourceLocation TmpLoc, 715 TemplateParamsTy *Params, 716 SourceLocation EllipsisLoc, 717 IdentifierInfo *Name, 718 SourceLocation NameLoc, 719 unsigned Depth, 720 unsigned Position, 721 SourceLocation EqualLoc, 722 ParsedTemplateArgument Default) { 723 assert(S->isTemplateParamScope() && 724 "Template template parameter not in template parameter scope!"); 725 726 // Construct the parameter object. 727 bool IsParameterPack = EllipsisLoc.isValid(); 728 TemplateTemplateParmDecl *Param = 729 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 730 NameLoc.isInvalid()? TmpLoc : NameLoc, 731 Depth, Position, IsParameterPack, 732 Name, Params); 733 Param->setAccess(AS_public); 734 735 // If the template template parameter has a name, then link the identifier 736 // into the scope and lookup mechanisms. 737 if (Name) { 738 S->AddDecl(Param); 739 IdResolver.AddDecl(Param); 740 } 741 742 if (Params->size() == 0) { 743 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 744 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 745 Param->setInvalidDecl(); 746 } 747 748 // C++0x [temp.param]p9: 749 // A default template-argument may be specified for any kind of 750 // template-parameter that is not a template parameter pack. 751 if (IsParameterPack && !Default.isInvalid()) { 752 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 753 Default = ParsedTemplateArgument(); 754 } 755 756 if (!Default.isInvalid()) { 757 // Check only that we have a template template argument. We don't want to 758 // try to check well-formedness now, because our template template parameter 759 // might have dependent types in its template parameters, which we wouldn't 760 // be able to match now. 761 // 762 // If none of the template template parameter's template arguments mention 763 // other template parameters, we could actually perform more checking here. 764 // However, it isn't worth doing. 765 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 766 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 767 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 768 << DefaultArg.getSourceRange(); 769 return Param; 770 } 771 772 // Check for unexpanded parameter packs. 773 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 774 DefaultArg.getArgument().getAsTemplate(), 775 UPPC_DefaultArgument)) 776 return Param; 777 778 Param->setDefaultArgument(DefaultArg, false); 779 } 780 781 return Param; 782 } 783 784 /// ActOnTemplateParameterList - Builds a TemplateParameterList that 785 /// contains the template parameters in Params/NumParams. 786 Sema::TemplateParamsTy * 787 Sema::ActOnTemplateParameterList(unsigned Depth, 788 SourceLocation ExportLoc, 789 SourceLocation TemplateLoc, 790 SourceLocation LAngleLoc, 791 Decl **Params, unsigned NumParams, 792 SourceLocation RAngleLoc) { 793 if (ExportLoc.isValid()) 794 Diag(ExportLoc, diag::warn_template_export_unsupported); 795 796 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 797 (NamedDecl**)Params, NumParams, 798 RAngleLoc); 799 } 800 801 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 802 if (SS.isSet()) 803 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 804 } 805 806 DeclResult 807 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 808 SourceLocation KWLoc, CXXScopeSpec &SS, 809 IdentifierInfo *Name, SourceLocation NameLoc, 810 AttributeList *Attr, 811 TemplateParameterList *TemplateParams, 812 AccessSpecifier AS, 813 unsigned NumOuterTemplateParamLists, 814 TemplateParameterList** OuterTemplateParamLists) { 815 assert(TemplateParams && TemplateParams->size() > 0 && 816 "No template parameters"); 817 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 818 bool Invalid = false; 819 820 // Check that we can declare a template here. 821 if (CheckTemplateDeclScope(S, TemplateParams)) 822 return true; 823 824 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 825 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 826 827 // There is no such thing as an unnamed class template. 828 if (!Name) { 829 Diag(KWLoc, diag::err_template_unnamed_class); 830 return true; 831 } 832 833 // Find any previous declaration with this name. 834 DeclContext *SemanticContext; 835 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 836 ForRedeclaration); 837 if (SS.isNotEmpty() && !SS.isInvalid()) { 838 SemanticContext = computeDeclContext(SS, true); 839 if (!SemanticContext) { 840 // FIXME: Produce a reasonable diagnostic here 841 return true; 842 } 843 844 if (RequireCompleteDeclContext(SS, SemanticContext)) 845 return true; 846 847 LookupQualifiedName(Previous, SemanticContext); 848 } else { 849 SemanticContext = CurContext; 850 LookupName(Previous, S); 851 } 852 853 if (Previous.isAmbiguous()) 854 return true; 855 856 NamedDecl *PrevDecl = 0; 857 if (Previous.begin() != Previous.end()) 858 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 859 860 // If there is a previous declaration with the same name, check 861 // whether this is a valid redeclaration. 862 ClassTemplateDecl *PrevClassTemplate 863 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 864 865 // We may have found the injected-class-name of a class template, 866 // class template partial specialization, or class template specialization. 867 // In these cases, grab the template that is being defined or specialized. 868 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 869 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 870 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 871 PrevClassTemplate 872 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 873 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 874 PrevClassTemplate 875 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 876 ->getSpecializedTemplate(); 877 } 878 } 879 880 if (TUK == TUK_Friend) { 881 // C++ [namespace.memdef]p3: 882 // [...] When looking for a prior declaration of a class or a function 883 // declared as a friend, and when the name of the friend class or 884 // function is neither a qualified name nor a template-id, scopes outside 885 // the innermost enclosing namespace scope are not considered. 886 if (!SS.isSet()) { 887 DeclContext *OutermostContext = CurContext; 888 while (!OutermostContext->isFileContext()) 889 OutermostContext = OutermostContext->getLookupParent(); 890 891 if (PrevDecl && 892 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 893 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 894 SemanticContext = PrevDecl->getDeclContext(); 895 } else { 896 // Declarations in outer scopes don't matter. However, the outermost 897 // context we computed is the semantic context for our new 898 // declaration. 899 PrevDecl = PrevClassTemplate = 0; 900 SemanticContext = OutermostContext; 901 } 902 } 903 904 if (CurContext->isDependentContext()) { 905 // If this is a dependent context, we don't want to link the friend 906 // class template to the template in scope, because that would perform 907 // checking of the template parameter lists that can't be performed 908 // until the outer context is instantiated. 909 PrevDecl = PrevClassTemplate = 0; 910 } 911 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 912 PrevDecl = PrevClassTemplate = 0; 913 914 if (PrevClassTemplate) { 915 // Ensure that the template parameter lists are compatible. 916 if (!TemplateParameterListsAreEqual(TemplateParams, 917 PrevClassTemplate->getTemplateParameters(), 918 /*Complain=*/true, 919 TPL_TemplateMatch)) 920 return true; 921 922 // C++ [temp.class]p4: 923 // In a redeclaration, partial specialization, explicit 924 // specialization or explicit instantiation of a class template, 925 // the class-key shall agree in kind with the original class 926 // template declaration (7.1.5.3). 927 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 928 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 929 TUK == TUK_Definition, KWLoc, *Name)) { 930 Diag(KWLoc, diag::err_use_with_wrong_tag) 931 << Name 932 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 933 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 934 Kind = PrevRecordDecl->getTagKind(); 935 } 936 937 // Check for redefinition of this class template. 938 if (TUK == TUK_Definition) { 939 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 940 Diag(NameLoc, diag::err_redefinition) << Name; 941 Diag(Def->getLocation(), diag::note_previous_definition); 942 // FIXME: Would it make sense to try to "forget" the previous 943 // definition, as part of error recovery? 944 return true; 945 } 946 } 947 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 948 // Maybe we will complain about the shadowed template parameter. 949 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 950 // Just pretend that we didn't see the previous declaration. 951 PrevDecl = 0; 952 } else if (PrevDecl) { 953 // C++ [temp]p5: 954 // A class template shall not have the same name as any other 955 // template, class, function, object, enumeration, enumerator, 956 // namespace, or type in the same scope (3.3), except as specified 957 // in (14.5.4). 958 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 959 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 960 return true; 961 } 962 963 // Check the template parameter list of this declaration, possibly 964 // merging in the template parameter list from the previous class 965 // template declaration. 966 if (CheckTemplateParameterList(TemplateParams, 967 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 968 (SS.isSet() && SemanticContext && 969 SemanticContext->isRecord() && 970 SemanticContext->isDependentContext()) 971 ? TPC_ClassTemplateMember 972 : TPC_ClassTemplate)) 973 Invalid = true; 974 975 if (SS.isSet()) { 976 // If the name of the template was qualified, we must be defining the 977 // template out-of-line. 978 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 979 !(TUK == TUK_Friend && CurContext->isDependentContext())) 980 Diag(NameLoc, diag::err_member_def_does_not_match) 981 << Name << SemanticContext << SS.getRange(); 982 } 983 984 CXXRecordDecl *NewClass = 985 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 986 PrevClassTemplate? 987 PrevClassTemplate->getTemplatedDecl() : 0, 988 /*DelayTypeCreation=*/true); 989 SetNestedNameSpecifier(NewClass, SS); 990 if (NumOuterTemplateParamLists > 0) 991 NewClass->setTemplateParameterListsInfo(Context, 992 NumOuterTemplateParamLists, 993 OuterTemplateParamLists); 994 995 ClassTemplateDecl *NewTemplate 996 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 997 DeclarationName(Name), TemplateParams, 998 NewClass, PrevClassTemplate); 999 NewClass->setDescribedClassTemplate(NewTemplate); 1000 1001 // Build the type for the class template declaration now. 1002 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1003 T = Context.getInjectedClassNameType(NewClass, T); 1004 assert(T->isDependentType() && "Class template type is not dependent?"); 1005 (void)T; 1006 1007 // If we are providing an explicit specialization of a member that is a 1008 // class template, make a note of that. 1009 if (PrevClassTemplate && 1010 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1011 PrevClassTemplate->setMemberSpecialization(); 1012 1013 // Set the access specifier. 1014 if (!Invalid && TUK != TUK_Friend) 1015 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1016 1017 // Set the lexical context of these templates 1018 NewClass->setLexicalDeclContext(CurContext); 1019 NewTemplate->setLexicalDeclContext(CurContext); 1020 1021 if (TUK == TUK_Definition) 1022 NewClass->startDefinition(); 1023 1024 if (Attr) 1025 ProcessDeclAttributeList(S, NewClass, Attr); 1026 1027 if (TUK != TUK_Friend) 1028 PushOnScopeChains(NewTemplate, S); 1029 else { 1030 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1031 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1032 NewClass->setAccess(PrevClassTemplate->getAccess()); 1033 } 1034 1035 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1036 PrevClassTemplate != NULL); 1037 1038 // Friend templates are visible in fairly strange ways. 1039 if (!CurContext->isDependentContext()) { 1040 DeclContext *DC = SemanticContext->getRedeclContext(); 1041 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1042 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1043 PushOnScopeChains(NewTemplate, EnclosingScope, 1044 /* AddToContext = */ false); 1045 } 1046 1047 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1048 NewClass->getLocation(), 1049 NewTemplate, 1050 /*FIXME:*/NewClass->getLocation()); 1051 Friend->setAccess(AS_public); 1052 CurContext->addDecl(Friend); 1053 } 1054 1055 if (Invalid) { 1056 NewTemplate->setInvalidDecl(); 1057 NewClass->setInvalidDecl(); 1058 } 1059 return NewTemplate; 1060 } 1061 1062 /// \brief Diagnose the presence of a default template argument on a 1063 /// template parameter, which is ill-formed in certain contexts. 1064 /// 1065 /// \returns true if the default template argument should be dropped. 1066 static bool DiagnoseDefaultTemplateArgument(Sema &S, 1067 Sema::TemplateParamListContext TPC, 1068 SourceLocation ParamLoc, 1069 SourceRange DefArgRange) { 1070 switch (TPC) { 1071 case Sema::TPC_ClassTemplate: 1072 case Sema::TPC_TypeAliasTemplate: 1073 return false; 1074 1075 case Sema::TPC_FunctionTemplate: 1076 case Sema::TPC_FriendFunctionTemplateDefinition: 1077 // C++ [temp.param]p9: 1078 // A default template-argument shall not be specified in a 1079 // function template declaration or a function template 1080 // definition [...] 1081 // If a friend function template declaration specifies a default 1082 // template-argument, that declaration shall be a definition and shall be 1083 // the only declaration of the function template in the translation unit. 1084 // (C++98/03 doesn't have this wording; see DR226). 1085 if (!S.getLangOptions().CPlusPlus0x) 1086 S.Diag(ParamLoc, 1087 diag::ext_template_parameter_default_in_function_template) 1088 << DefArgRange; 1089 return false; 1090 1091 case Sema::TPC_ClassTemplateMember: 1092 // C++0x [temp.param]p9: 1093 // A default template-argument shall not be specified in the 1094 // template-parameter-lists of the definition of a member of a 1095 // class template that appears outside of the member's class. 1096 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1097 << DefArgRange; 1098 return true; 1099 1100 case Sema::TPC_FriendFunctionTemplate: 1101 // C++ [temp.param]p9: 1102 // A default template-argument shall not be specified in a 1103 // friend template declaration. 1104 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1105 << DefArgRange; 1106 return true; 1107 1108 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1109 // for friend function templates if there is only a single 1110 // declaration (and it is a definition). Strange! 1111 } 1112 1113 return false; 1114 } 1115 1116 /// \brief Check for unexpanded parameter packs within the template parameters 1117 /// of a template template parameter, recursively. 1118 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1119 TemplateTemplateParmDecl *TTP) { 1120 TemplateParameterList *Params = TTP->getTemplateParameters(); 1121 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1122 NamedDecl *P = Params->getParam(I); 1123 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1124 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1125 NTTP->getTypeSourceInfo(), 1126 Sema::UPPC_NonTypeTemplateParameterType)) 1127 return true; 1128 1129 continue; 1130 } 1131 1132 if (TemplateTemplateParmDecl *InnerTTP 1133 = dyn_cast<TemplateTemplateParmDecl>(P)) 1134 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1135 return true; 1136 } 1137 1138 return false; 1139 } 1140 1141 /// \brief Checks the validity of a template parameter list, possibly 1142 /// considering the template parameter list from a previous 1143 /// declaration. 1144 /// 1145 /// If an "old" template parameter list is provided, it must be 1146 /// equivalent (per TemplateParameterListsAreEqual) to the "new" 1147 /// template parameter list. 1148 /// 1149 /// \param NewParams Template parameter list for a new template 1150 /// declaration. This template parameter list will be updated with any 1151 /// default arguments that are carried through from the previous 1152 /// template parameter list. 1153 /// 1154 /// \param OldParams If provided, template parameter list from a 1155 /// previous declaration of the same template. Default template 1156 /// arguments will be merged from the old template parameter list to 1157 /// the new template parameter list. 1158 /// 1159 /// \param TPC Describes the context in which we are checking the given 1160 /// template parameter list. 1161 /// 1162 /// \returns true if an error occurred, false otherwise. 1163 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1164 TemplateParameterList *OldParams, 1165 TemplateParamListContext TPC) { 1166 bool Invalid = false; 1167 1168 // C++ [temp.param]p10: 1169 // The set of default template-arguments available for use with a 1170 // template declaration or definition is obtained by merging the 1171 // default arguments from the definition (if in scope) and all 1172 // declarations in scope in the same way default function 1173 // arguments are (8.3.6). 1174 bool SawDefaultArgument = false; 1175 SourceLocation PreviousDefaultArgLoc; 1176 1177 bool SawParameterPack = false; 1178 SourceLocation ParameterPackLoc; 1179 1180 // Dummy initialization to avoid warnings. 1181 TemplateParameterList::iterator OldParam = NewParams->end(); 1182 if (OldParams) 1183 OldParam = OldParams->begin(); 1184 1185 bool RemoveDefaultArguments = false; 1186 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1187 NewParamEnd = NewParams->end(); 1188 NewParam != NewParamEnd; ++NewParam) { 1189 // Variables used to diagnose redundant default arguments 1190 bool RedundantDefaultArg = false; 1191 SourceLocation OldDefaultLoc; 1192 SourceLocation NewDefaultLoc; 1193 1194 // Variables used to diagnose missing default arguments 1195 bool MissingDefaultArg = false; 1196 1197 // C++0x [temp.param]p11: 1198 // If a template parameter of a primary class template or alias template 1199 // is a template parameter pack, it shall be the last template parameter. 1200 if (SawParameterPack && 1201 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1202 Diag(ParameterPackLoc, 1203 diag::err_template_param_pack_must_be_last_template_parameter); 1204 Invalid = true; 1205 } 1206 1207 if (TemplateTypeParmDecl *NewTypeParm 1208 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1209 // Check the presence of a default argument here. 1210 if (NewTypeParm->hasDefaultArgument() && 1211 DiagnoseDefaultTemplateArgument(*this, TPC, 1212 NewTypeParm->getLocation(), 1213 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1214 .getSourceRange())) 1215 NewTypeParm->removeDefaultArgument(); 1216 1217 // Merge default arguments for template type parameters. 1218 TemplateTypeParmDecl *OldTypeParm 1219 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1220 1221 if (NewTypeParm->isParameterPack()) { 1222 assert(!NewTypeParm->hasDefaultArgument() && 1223 "Parameter packs can't have a default argument!"); 1224 SawParameterPack = true; 1225 ParameterPackLoc = NewTypeParm->getLocation(); 1226 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1227 NewTypeParm->hasDefaultArgument()) { 1228 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1229 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1230 SawDefaultArgument = true; 1231 RedundantDefaultArg = true; 1232 PreviousDefaultArgLoc = NewDefaultLoc; 1233 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1234 // Merge the default argument from the old declaration to the 1235 // new declaration. 1236 SawDefaultArgument = true; 1237 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1238 true); 1239 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1240 } else if (NewTypeParm->hasDefaultArgument()) { 1241 SawDefaultArgument = true; 1242 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1243 } else if (SawDefaultArgument) 1244 MissingDefaultArg = true; 1245 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1246 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1247 // Check for unexpanded parameter packs. 1248 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1249 NewNonTypeParm->getTypeSourceInfo(), 1250 UPPC_NonTypeTemplateParameterType)) { 1251 Invalid = true; 1252 continue; 1253 } 1254 1255 // Check the presence of a default argument here. 1256 if (NewNonTypeParm->hasDefaultArgument() && 1257 DiagnoseDefaultTemplateArgument(*this, TPC, 1258 NewNonTypeParm->getLocation(), 1259 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1260 NewNonTypeParm->removeDefaultArgument(); 1261 } 1262 1263 // Merge default arguments for non-type template parameters 1264 NonTypeTemplateParmDecl *OldNonTypeParm 1265 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1266 if (NewNonTypeParm->isParameterPack()) { 1267 assert(!NewNonTypeParm->hasDefaultArgument() && 1268 "Parameter packs can't have a default argument!"); 1269 SawParameterPack = true; 1270 ParameterPackLoc = NewNonTypeParm->getLocation(); 1271 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1272 NewNonTypeParm->hasDefaultArgument()) { 1273 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1274 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1275 SawDefaultArgument = true; 1276 RedundantDefaultArg = true; 1277 PreviousDefaultArgLoc = NewDefaultLoc; 1278 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1279 // Merge the default argument from the old declaration to the 1280 // new declaration. 1281 SawDefaultArgument = true; 1282 // FIXME: We need to create a new kind of "default argument" 1283 // expression that points to a previous non-type template 1284 // parameter. 1285 NewNonTypeParm->setDefaultArgument( 1286 OldNonTypeParm->getDefaultArgument(), 1287 /*Inherited=*/ true); 1288 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1289 } else if (NewNonTypeParm->hasDefaultArgument()) { 1290 SawDefaultArgument = true; 1291 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1292 } else if (SawDefaultArgument) 1293 MissingDefaultArg = true; 1294 } else { 1295 // Check the presence of a default argument here. 1296 TemplateTemplateParmDecl *NewTemplateParm 1297 = cast<TemplateTemplateParmDecl>(*NewParam); 1298 1299 // Check for unexpanded parameter packs, recursively. 1300 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1301 Invalid = true; 1302 continue; 1303 } 1304 1305 if (NewTemplateParm->hasDefaultArgument() && 1306 DiagnoseDefaultTemplateArgument(*this, TPC, 1307 NewTemplateParm->getLocation(), 1308 NewTemplateParm->getDefaultArgument().getSourceRange())) 1309 NewTemplateParm->removeDefaultArgument(); 1310 1311 // Merge default arguments for template template parameters 1312 TemplateTemplateParmDecl *OldTemplateParm 1313 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1314 if (NewTemplateParm->isParameterPack()) { 1315 assert(!NewTemplateParm->hasDefaultArgument() && 1316 "Parameter packs can't have a default argument!"); 1317 SawParameterPack = true; 1318 ParameterPackLoc = NewTemplateParm->getLocation(); 1319 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1320 NewTemplateParm->hasDefaultArgument()) { 1321 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1322 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1323 SawDefaultArgument = true; 1324 RedundantDefaultArg = true; 1325 PreviousDefaultArgLoc = NewDefaultLoc; 1326 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1327 // Merge the default argument from the old declaration to the 1328 // new declaration. 1329 SawDefaultArgument = true; 1330 // FIXME: We need to create a new kind of "default argument" expression 1331 // that points to a previous template template parameter. 1332 NewTemplateParm->setDefaultArgument( 1333 OldTemplateParm->getDefaultArgument(), 1334 /*Inherited=*/ true); 1335 PreviousDefaultArgLoc 1336 = OldTemplateParm->getDefaultArgument().getLocation(); 1337 } else if (NewTemplateParm->hasDefaultArgument()) { 1338 SawDefaultArgument = true; 1339 PreviousDefaultArgLoc 1340 = NewTemplateParm->getDefaultArgument().getLocation(); 1341 } else if (SawDefaultArgument) 1342 MissingDefaultArg = true; 1343 } 1344 1345 if (RedundantDefaultArg) { 1346 // C++ [temp.param]p12: 1347 // A template-parameter shall not be given default arguments 1348 // by two different declarations in the same scope. 1349 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1350 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1351 Invalid = true; 1352 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1353 // C++ [temp.param]p11: 1354 // If a template-parameter of a class template has a default 1355 // template-argument, each subsequent template-parameter shall either 1356 // have a default template-argument supplied or be a template parameter 1357 // pack. 1358 Diag((*NewParam)->getLocation(), 1359 diag::err_template_param_default_arg_missing); 1360 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1361 Invalid = true; 1362 RemoveDefaultArguments = true; 1363 } 1364 1365 // If we have an old template parameter list that we're merging 1366 // in, move on to the next parameter. 1367 if (OldParams) 1368 ++OldParam; 1369 } 1370 1371 // We were missing some default arguments at the end of the list, so remove 1372 // all of the default arguments. 1373 if (RemoveDefaultArguments) { 1374 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1375 NewParamEnd = NewParams->end(); 1376 NewParam != NewParamEnd; ++NewParam) { 1377 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1378 TTP->removeDefaultArgument(); 1379 else if (NonTypeTemplateParmDecl *NTTP 1380 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1381 NTTP->removeDefaultArgument(); 1382 else 1383 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1384 } 1385 } 1386 1387 return Invalid; 1388 } 1389 1390 namespace { 1391 1392 /// A class which looks for a use of a certain level of template 1393 /// parameter. 1394 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1395 typedef RecursiveASTVisitor<DependencyChecker> super; 1396 1397 unsigned Depth; 1398 bool Match; 1399 1400 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1401 NamedDecl *ND = Params->getParam(0); 1402 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1403 Depth = PD->getDepth(); 1404 } else if (NonTypeTemplateParmDecl *PD = 1405 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1406 Depth = PD->getDepth(); 1407 } else { 1408 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1409 } 1410 } 1411 1412 bool Matches(unsigned ParmDepth) { 1413 if (ParmDepth >= Depth) { 1414 Match = true; 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1421 return !Matches(T->getDepth()); 1422 } 1423 1424 bool TraverseTemplateName(TemplateName N) { 1425 if (TemplateTemplateParmDecl *PD = 1426 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1427 if (Matches(PD->getDepth())) return false; 1428 return super::TraverseTemplateName(N); 1429 } 1430 1431 bool VisitDeclRefExpr(DeclRefExpr *E) { 1432 if (NonTypeTemplateParmDecl *PD = 1433 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1434 if (PD->getDepth() == Depth) { 1435 Match = true; 1436 return false; 1437 } 1438 } 1439 return super::VisitDeclRefExpr(E); 1440 } 1441 1442 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1443 return TraverseType(T->getInjectedSpecializationType()); 1444 } 1445 }; 1446 } 1447 1448 /// Determines whether a given type depends on the given parameter 1449 /// list. 1450 static bool 1451 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1452 DependencyChecker Checker(Params); 1453 Checker.TraverseType(T); 1454 return Checker.Match; 1455 } 1456 1457 // Find the source range corresponding to the named type in the given 1458 // nested-name-specifier, if any. 1459 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1460 QualType T, 1461 const CXXScopeSpec &SS) { 1462 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1463 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1464 if (const Type *CurType = NNS->getAsType()) { 1465 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1466 return NNSLoc.getTypeLoc().getSourceRange(); 1467 } else 1468 break; 1469 1470 NNSLoc = NNSLoc.getPrefix(); 1471 } 1472 1473 return SourceRange(); 1474 } 1475 1476 /// \brief Match the given template parameter lists to the given scope 1477 /// specifier, returning the template parameter list that applies to the 1478 /// name. 1479 /// 1480 /// \param DeclStartLoc the start of the declaration that has a scope 1481 /// specifier or a template parameter list. 1482 /// 1483 /// \param DeclLoc The location of the declaration itself. 1484 /// 1485 /// \param SS the scope specifier that will be matched to the given template 1486 /// parameter lists. This scope specifier precedes a qualified name that is 1487 /// being declared. 1488 /// 1489 /// \param ParamLists the template parameter lists, from the outermost to the 1490 /// innermost template parameter lists. 1491 /// 1492 /// \param NumParamLists the number of template parameter lists in ParamLists. 1493 /// 1494 /// \param IsFriend Whether to apply the slightly different rules for 1495 /// matching template parameters to scope specifiers in friend 1496 /// declarations. 1497 /// 1498 /// \param IsExplicitSpecialization will be set true if the entity being 1499 /// declared is an explicit specialization, false otherwise. 1500 /// 1501 /// \returns the template parameter list, if any, that corresponds to the 1502 /// name that is preceded by the scope specifier @p SS. This template 1503 /// parameter list may have template parameters (if we're declaring a 1504 /// template) or may have no template parameters (if we're declaring a 1505 /// template specialization), or may be NULL (if what we're declaring isn't 1506 /// itself a template). 1507 TemplateParameterList * 1508 Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1509 SourceLocation DeclLoc, 1510 const CXXScopeSpec &SS, 1511 TemplateParameterList **ParamLists, 1512 unsigned NumParamLists, 1513 bool IsFriend, 1514 bool &IsExplicitSpecialization, 1515 bool &Invalid) { 1516 IsExplicitSpecialization = false; 1517 Invalid = false; 1518 1519 // The sequence of nested types to which we will match up the template 1520 // parameter lists. We first build this list by starting with the type named 1521 // by the nested-name-specifier and walking out until we run out of types. 1522 llvm::SmallVector<QualType, 4> NestedTypes; 1523 QualType T; 1524 if (SS.getScopeRep()) { 1525 if (CXXRecordDecl *Record 1526 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1527 T = Context.getTypeDeclType(Record); 1528 else 1529 T = QualType(SS.getScopeRep()->getAsType(), 0); 1530 } 1531 1532 // If we found an explicit specialization that prevents us from needing 1533 // 'template<>' headers, this will be set to the location of that 1534 // explicit specialization. 1535 SourceLocation ExplicitSpecLoc; 1536 1537 while (!T.isNull()) { 1538 NestedTypes.push_back(T); 1539 1540 // Retrieve the parent of a record type. 1541 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1542 // If this type is an explicit specialization, we're done. 1543 if (ClassTemplateSpecializationDecl *Spec 1544 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1545 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1546 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1547 ExplicitSpecLoc = Spec->getLocation(); 1548 break; 1549 } 1550 } else if (Record->getTemplateSpecializationKind() 1551 == TSK_ExplicitSpecialization) { 1552 ExplicitSpecLoc = Record->getLocation(); 1553 break; 1554 } 1555 1556 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1557 T = Context.getTypeDeclType(Parent); 1558 else 1559 T = QualType(); 1560 continue; 1561 } 1562 1563 if (const TemplateSpecializationType *TST 1564 = T->getAs<TemplateSpecializationType>()) { 1565 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1566 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1567 T = Context.getTypeDeclType(Parent); 1568 else 1569 T = QualType(); 1570 continue; 1571 } 1572 } 1573 1574 // Look one step prior in a dependent template specialization type. 1575 if (const DependentTemplateSpecializationType *DependentTST 1576 = T->getAs<DependentTemplateSpecializationType>()) { 1577 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1578 T = QualType(NNS->getAsType(), 0); 1579 else 1580 T = QualType(); 1581 continue; 1582 } 1583 1584 // Look one step prior in a dependent name type. 1585 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1586 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1587 T = QualType(NNS->getAsType(), 0); 1588 else 1589 T = QualType(); 1590 continue; 1591 } 1592 1593 // Retrieve the parent of an enumeration type. 1594 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1595 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1596 // check here. 1597 EnumDecl *Enum = EnumT->getDecl(); 1598 1599 // Get to the parent type. 1600 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1601 T = Context.getTypeDeclType(Parent); 1602 else 1603 T = QualType(); 1604 continue; 1605 } 1606 1607 T = QualType(); 1608 } 1609 // Reverse the nested types list, since we want to traverse from the outermost 1610 // to the innermost while checking template-parameter-lists. 1611 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1612 1613 // C++0x [temp.expl.spec]p17: 1614 // A member or a member template may be nested within many 1615 // enclosing class templates. In an explicit specialization for 1616 // such a member, the member declaration shall be preceded by a 1617 // template<> for each enclosing class template that is 1618 // explicitly specialized. 1619 bool SawNonEmptyTemplateParameterList = false; 1620 unsigned ParamIdx = 0; 1621 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1622 ++TypeIdx) { 1623 T = NestedTypes[TypeIdx]; 1624 1625 // Whether we expect a 'template<>' header. 1626 bool NeedEmptyTemplateHeader = false; 1627 1628 // Whether we expect a template header with parameters. 1629 bool NeedNonemptyTemplateHeader = false; 1630 1631 // For a dependent type, the set of template parameters that we 1632 // expect to see. 1633 TemplateParameterList *ExpectedTemplateParams = 0; 1634 1635 // C++0x [temp.expl.spec]p15: 1636 // A member or a member template may be nested within many enclosing 1637 // class templates. In an explicit specialization for such a member, the 1638 // member declaration shall be preceded by a template<> for each 1639 // enclosing class template that is explicitly specialized. 1640 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1641 if (ClassTemplatePartialSpecializationDecl *Partial 1642 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1643 ExpectedTemplateParams = Partial->getTemplateParameters(); 1644 NeedNonemptyTemplateHeader = true; 1645 } else if (Record->isDependentType()) { 1646 if (Record->getDescribedClassTemplate()) { 1647 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1648 ->getTemplateParameters(); 1649 NeedNonemptyTemplateHeader = true; 1650 } 1651 } else if (ClassTemplateSpecializationDecl *Spec 1652 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1653 // C++0x [temp.expl.spec]p4: 1654 // Members of an explicitly specialized class template are defined 1655 // in the same manner as members of normal classes, and not using 1656 // the template<> syntax. 1657 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1658 NeedEmptyTemplateHeader = true; 1659 else 1660 continue; 1661 } else if (Record->getTemplateSpecializationKind()) { 1662 if (Record->getTemplateSpecializationKind() 1663 != TSK_ExplicitSpecialization && 1664 TypeIdx == NumTypes - 1) 1665 IsExplicitSpecialization = true; 1666 1667 continue; 1668 } 1669 } else if (const TemplateSpecializationType *TST 1670 = T->getAs<TemplateSpecializationType>()) { 1671 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1672 ExpectedTemplateParams = Template->getTemplateParameters(); 1673 NeedNonemptyTemplateHeader = true; 1674 } 1675 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1676 // FIXME: We actually could/should check the template arguments here 1677 // against the corresponding template parameter list. 1678 NeedNonemptyTemplateHeader = false; 1679 } 1680 1681 // C++ [temp.expl.spec]p16: 1682 // In an explicit specialization declaration for a member of a class 1683 // template or a member template that ap- pears in namespace scope, the 1684 // member template and some of its enclosing class templates may remain 1685 // unspecialized, except that the declaration shall not explicitly 1686 // specialize a class member template if its en- closing class templates 1687 // are not explicitly specialized as well. 1688 if (ParamIdx < NumParamLists) { 1689 if (ParamLists[ParamIdx]->size() == 0) { 1690 if (SawNonEmptyTemplateParameterList) { 1691 Diag(DeclLoc, diag::err_specialize_member_of_template) 1692 << ParamLists[ParamIdx]->getSourceRange(); 1693 Invalid = true; 1694 IsExplicitSpecialization = false; 1695 return 0; 1696 } 1697 } else 1698 SawNonEmptyTemplateParameterList = true; 1699 } 1700 1701 if (NeedEmptyTemplateHeader) { 1702 // If we're on the last of the types, and we need a 'template<>' header 1703 // here, then it's an explicit specialization. 1704 if (TypeIdx == NumTypes - 1) 1705 IsExplicitSpecialization = true; 1706 1707 if (ParamIdx < NumParamLists) { 1708 if (ParamLists[ParamIdx]->size() > 0) { 1709 // The header has template parameters when it shouldn't. Complain. 1710 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1711 diag::err_template_param_list_matches_nontemplate) 1712 << T 1713 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1714 ParamLists[ParamIdx]->getRAngleLoc()) 1715 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1716 Invalid = true; 1717 return 0; 1718 } 1719 1720 // Consume this template header. 1721 ++ParamIdx; 1722 continue; 1723 } 1724 1725 if (!IsFriend) { 1726 // We don't have a template header, but we should. 1727 SourceLocation ExpectedTemplateLoc; 1728 if (NumParamLists > 0) 1729 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1730 else 1731 ExpectedTemplateLoc = DeclStartLoc; 1732 1733 Diag(DeclLoc, diag::err_template_spec_needs_header) 1734 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1735 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1736 } 1737 1738 continue; 1739 } 1740 1741 if (NeedNonemptyTemplateHeader) { 1742 // In friend declarations we can have template-ids which don't 1743 // depend on the corresponding template parameter lists. But 1744 // assume that empty parameter lists are supposed to match this 1745 // template-id. 1746 if (IsFriend && T->isDependentType()) { 1747 if (ParamIdx < NumParamLists && 1748 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1749 ExpectedTemplateParams = 0; 1750 else 1751 continue; 1752 } 1753 1754 if (ParamIdx < NumParamLists) { 1755 // Check the template parameter list, if we can. 1756 if (ExpectedTemplateParams && 1757 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1758 ExpectedTemplateParams, 1759 true, TPL_TemplateMatch)) 1760 Invalid = true; 1761 1762 if (!Invalid && 1763 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1764 TPC_ClassTemplateMember)) 1765 Invalid = true; 1766 1767 ++ParamIdx; 1768 continue; 1769 } 1770 1771 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1772 << T 1773 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1774 Invalid = true; 1775 continue; 1776 } 1777 } 1778 1779 // If there were at least as many template-ids as there were template 1780 // parameter lists, then there are no template parameter lists remaining for 1781 // the declaration itself. 1782 if (ParamIdx >= NumParamLists) 1783 return 0; 1784 1785 // If there were too many template parameter lists, complain about that now. 1786 if (ParamIdx < NumParamLists - 1) { 1787 bool HasAnyExplicitSpecHeader = false; 1788 bool AllExplicitSpecHeaders = true; 1789 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1790 if (ParamLists[I]->size() == 0) 1791 HasAnyExplicitSpecHeader = true; 1792 else 1793 AllExplicitSpecHeaders = false; 1794 } 1795 1796 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1797 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1798 : diag::err_template_spec_extra_headers) 1799 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1800 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1801 1802 // If there was a specialization somewhere, such that 'template<>' is 1803 // not required, and there were any 'template<>' headers, note where the 1804 // specialization occurred. 1805 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1806 Diag(ExplicitSpecLoc, 1807 diag::note_explicit_template_spec_does_not_need_header) 1808 << NestedTypes.back(); 1809 1810 // We have a template parameter list with no corresponding scope, which 1811 // means that the resulting template declaration can't be instantiated 1812 // properly (we'll end up with dependent nodes when we shouldn't). 1813 if (!AllExplicitSpecHeaders) 1814 Invalid = true; 1815 } 1816 1817 // C++ [temp.expl.spec]p16: 1818 // In an explicit specialization declaration for a member of a class 1819 // template or a member template that ap- pears in namespace scope, the 1820 // member template and some of its enclosing class templates may remain 1821 // unspecialized, except that the declaration shall not explicitly 1822 // specialize a class member template if its en- closing class templates 1823 // are not explicitly specialized as well. 1824 if (ParamLists[NumParamLists - 1]->size() == 0 && 1825 SawNonEmptyTemplateParameterList) { 1826 Diag(DeclLoc, diag::err_specialize_member_of_template) 1827 << ParamLists[ParamIdx]->getSourceRange(); 1828 Invalid = true; 1829 IsExplicitSpecialization = false; 1830 return 0; 1831 } 1832 1833 // Return the last template parameter list, which corresponds to the 1834 // entity being declared. 1835 return ParamLists[NumParamLists - 1]; 1836 } 1837 1838 void Sema::NoteAllFoundTemplates(TemplateName Name) { 1839 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1840 Diag(Template->getLocation(), diag::note_template_declared_here) 1841 << (isa<FunctionTemplateDecl>(Template)? 0 1842 : isa<ClassTemplateDecl>(Template)? 1 1843 : isa<TypeAliasTemplateDecl>(Template)? 2 1844 : 3) 1845 << Template->getDeclName(); 1846 return; 1847 } 1848 1849 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1850 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1851 IEnd = OST->end(); 1852 I != IEnd; ++I) 1853 Diag((*I)->getLocation(), diag::note_template_declared_here) 1854 << 0 << (*I)->getDeclName(); 1855 1856 return; 1857 } 1858 } 1859 1860 1861 QualType Sema::CheckTemplateIdType(TemplateName Name, 1862 SourceLocation TemplateLoc, 1863 TemplateArgumentListInfo &TemplateArgs) { 1864 DependentTemplateName *DTN 1865 = Name.getUnderlying().getAsDependentTemplateName(); 1866 if (DTN && DTN->isIdentifier()) 1867 // When building a template-id where the template-name is dependent, 1868 // assume the template is a type template. Either our assumption is 1869 // correct, or the code is ill-formed and will be diagnosed when the 1870 // dependent name is substituted. 1871 return Context.getDependentTemplateSpecializationType(ETK_None, 1872 DTN->getQualifier(), 1873 DTN->getIdentifier(), 1874 TemplateArgs); 1875 1876 TemplateDecl *Template = Name.getAsTemplateDecl(); 1877 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1878 // We might have a substituted template template parameter pack. If so, 1879 // build a template specialization type for it. 1880 if (Name.getAsSubstTemplateTemplateParmPack()) 1881 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1882 1883 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1884 << Name; 1885 NoteAllFoundTemplates(Name); 1886 return QualType(); 1887 } 1888 1889 // Check that the template argument list is well-formed for this 1890 // template. 1891 llvm::SmallVector<TemplateArgument, 4> Converted; 1892 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1893 false, Converted)) 1894 return QualType(); 1895 1896 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1897 "Converted template argument list is too short!"); 1898 1899 QualType CanonType; 1900 1901 bool InstantiationDependent = false; 1902 if (TypeAliasTemplateDecl *AliasTemplate 1903 = dyn_cast<TypeAliasTemplateDecl>(Template)) { 1904 // Find the canonical type for this type alias template specialization. 1905 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1906 if (Pattern->isInvalidDecl()) 1907 return QualType(); 1908 1909 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1910 Converted.data(), Converted.size()); 1911 1912 // Only substitute for the innermost template argument list. 1913 MultiLevelTemplateArgumentList TemplateArgLists; 1914 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1915 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1916 for (unsigned I = 0; I < Depth; ++I) 1917 TemplateArgLists.addOuterTemplateArguments(0, 0); 1918 1919 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1920 CanonType = SubstType(Pattern->getUnderlyingType(), 1921 TemplateArgLists, AliasTemplate->getLocation(), 1922 AliasTemplate->getDeclName()); 1923 if (CanonType.isNull()) 1924 return QualType(); 1925 } else if (Name.isDependent() || 1926 TemplateSpecializationType::anyDependentTemplateArguments( 1927 TemplateArgs, InstantiationDependent)) { 1928 // This class template specialization is a dependent 1929 // type. Therefore, its canonical type is another class template 1930 // specialization type that contains all of the converted 1931 // arguments in canonical form. This ensures that, e.g., A<T> and 1932 // A<T, T> have identical types when A is declared as: 1933 // 1934 // template<typename T, typename U = T> struct A; 1935 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1936 CanonType = Context.getTemplateSpecializationType(CanonName, 1937 Converted.data(), 1938 Converted.size()); 1939 1940 // FIXME: CanonType is not actually the canonical type, and unfortunately 1941 // it is a TemplateSpecializationType that we will never use again. 1942 // In the future, we need to teach getTemplateSpecializationType to only 1943 // build the canonical type and return that to us. 1944 CanonType = Context.getCanonicalType(CanonType); 1945 1946 // This might work out to be a current instantiation, in which 1947 // case the canonical type needs to be the InjectedClassNameType. 1948 // 1949 // TODO: in theory this could be a simple hashtable lookup; most 1950 // changes to CurContext don't change the set of current 1951 // instantiations. 1952 if (isa<ClassTemplateDecl>(Template)) { 1953 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1954 // If we get out to a namespace, we're done. 1955 if (Ctx->isFileContext()) break; 1956 1957 // If this isn't a record, keep looking. 1958 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1959 if (!Record) continue; 1960 1961 // Look for one of the two cases with InjectedClassNameTypes 1962 // and check whether it's the same template. 1963 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1964 !Record->getDescribedClassTemplate()) 1965 continue; 1966 1967 // Fetch the injected class name type and check whether its 1968 // injected type is equal to the type we just built. 1969 QualType ICNT = Context.getTypeDeclType(Record); 1970 QualType Injected = cast<InjectedClassNameType>(ICNT) 1971 ->getInjectedSpecializationType(); 1972 1973 if (CanonType != Injected->getCanonicalTypeInternal()) 1974 continue; 1975 1976 // If so, the canonical type of this TST is the injected 1977 // class name type of the record we just found. 1978 assert(ICNT.isCanonical()); 1979 CanonType = ICNT; 1980 break; 1981 } 1982 } 1983 } else if (ClassTemplateDecl *ClassTemplate 1984 = dyn_cast<ClassTemplateDecl>(Template)) { 1985 // Find the class template specialization declaration that 1986 // corresponds to these arguments. 1987 void *InsertPos = 0; 1988 ClassTemplateSpecializationDecl *Decl 1989 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1990 InsertPos); 1991 if (!Decl) { 1992 // This is the first time we have referenced this class template 1993 // specialization. Create the canonical declaration and add it to 1994 // the set of specializations. 1995 Decl = ClassTemplateSpecializationDecl::Create(Context, 1996 ClassTemplate->getTemplatedDecl()->getTagKind(), 1997 ClassTemplate->getDeclContext(), 1998 ClassTemplate->getLocation(), 1999 ClassTemplate->getLocation(), 2000 ClassTemplate, 2001 Converted.data(), 2002 Converted.size(), 0); 2003 ClassTemplate->AddSpecialization(Decl, InsertPos); 2004 Decl->setLexicalDeclContext(CurContext); 2005 } 2006 2007 CanonType = Context.getTypeDeclType(Decl); 2008 assert(isa<RecordType>(CanonType) && 2009 "type of non-dependent specialization is not a RecordType"); 2010 } 2011 2012 // Build the fully-sugared type for this class template 2013 // specialization, which refers back to the class template 2014 // specialization we created or found. 2015 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2016 } 2017 2018 TypeResult 2019 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, 2020 TemplateTy TemplateD, SourceLocation TemplateLoc, 2021 SourceLocation LAngleLoc, 2022 ASTTemplateArgsPtr TemplateArgsIn, 2023 SourceLocation RAngleLoc) { 2024 if (SS.isInvalid()) 2025 return true; 2026 2027 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2028 2029 // Translate the parser's template argument list in our AST format. 2030 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2031 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2032 2033 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2034 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 2035 DTN->getQualifier(), 2036 DTN->getIdentifier(), 2037 TemplateArgs); 2038 2039 // Build type-source information. 2040 TypeLocBuilder TLB; 2041 DependentTemplateSpecializationTypeLoc SpecTL 2042 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2043 SpecTL.setKeywordLoc(SourceLocation()); 2044 SpecTL.setNameLoc(TemplateLoc); 2045 SpecTL.setLAngleLoc(LAngleLoc); 2046 SpecTL.setRAngleLoc(RAngleLoc); 2047 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2048 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2049 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2050 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2051 } 2052 2053 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2054 TemplateArgsIn.release(); 2055 2056 if (Result.isNull()) 2057 return true; 2058 2059 // Build type-source information. 2060 TypeLocBuilder TLB; 2061 TemplateSpecializationTypeLoc SpecTL 2062 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2063 SpecTL.setTemplateNameLoc(TemplateLoc); 2064 SpecTL.setLAngleLoc(LAngleLoc); 2065 SpecTL.setRAngleLoc(RAngleLoc); 2066 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2067 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2068 2069 if (SS.isNotEmpty()) { 2070 // Create an elaborated-type-specifier containing the nested-name-specifier. 2071 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2072 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2073 ElabTL.setKeywordLoc(SourceLocation()); 2074 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2075 } 2076 2077 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2078 } 2079 2080 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2081 TypeSpecifierType TagSpec, 2082 SourceLocation TagLoc, 2083 CXXScopeSpec &SS, 2084 TemplateTy TemplateD, 2085 SourceLocation TemplateLoc, 2086 SourceLocation LAngleLoc, 2087 ASTTemplateArgsPtr TemplateArgsIn, 2088 SourceLocation RAngleLoc) { 2089 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2090 2091 // Translate the parser's template argument list in our AST format. 2092 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2093 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2094 2095 // Determine the tag kind 2096 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2097 ElaboratedTypeKeyword Keyword 2098 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2099 2100 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2101 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2102 DTN->getQualifier(), 2103 DTN->getIdentifier(), 2104 TemplateArgs); 2105 2106 // Build type-source information. 2107 TypeLocBuilder TLB; 2108 DependentTemplateSpecializationTypeLoc SpecTL 2109 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2110 SpecTL.setKeywordLoc(TagLoc); 2111 SpecTL.setNameLoc(TemplateLoc); 2112 SpecTL.setLAngleLoc(LAngleLoc); 2113 SpecTL.setRAngleLoc(RAngleLoc); 2114 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2115 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2116 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2117 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2118 } 2119 2120 if (TypeAliasTemplateDecl *TAT = 2121 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2122 // C++0x [dcl.type.elab]p2: 2123 // If the identifier resolves to a typedef-name or the simple-template-id 2124 // resolves to an alias template specialization, the 2125 // elaborated-type-specifier is ill-formed. 2126 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2127 Diag(TAT->getLocation(), diag::note_declared_at); 2128 } 2129 2130 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2131 if (Result.isNull()) 2132 return TypeResult(); 2133 2134 // Check the tag kind 2135 if (const RecordType *RT = Result->getAs<RecordType>()) { 2136 RecordDecl *D = RT->getDecl(); 2137 2138 IdentifierInfo *Id = D->getIdentifier(); 2139 assert(Id && "templated class must have an identifier"); 2140 2141 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2142 TagLoc, *Id)) { 2143 Diag(TagLoc, diag::err_use_with_wrong_tag) 2144 << Result 2145 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2146 Diag(D->getLocation(), diag::note_previous_use); 2147 } 2148 } 2149 2150 // Provide source-location information for the template specialization. 2151 TypeLocBuilder TLB; 2152 TemplateSpecializationTypeLoc SpecTL 2153 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2154 SpecTL.setTemplateNameLoc(TemplateLoc); 2155 SpecTL.setLAngleLoc(LAngleLoc); 2156 SpecTL.setRAngleLoc(RAngleLoc); 2157 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2158 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2159 2160 // Construct an elaborated type containing the nested-name-specifier (if any) 2161 // and keyword. 2162 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2163 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2164 ElabTL.setKeywordLoc(TagLoc); 2165 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2166 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2167 } 2168 2169 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2170 LookupResult &R, 2171 bool RequiresADL, 2172 const TemplateArgumentListInfo &TemplateArgs) { 2173 // FIXME: Can we do any checking at this point? I guess we could check the 2174 // template arguments that we have against the template name, if the template 2175 // name refers to a single template. That's not a terribly common case, 2176 // though. 2177 // foo<int> could identify a single function unambiguously 2178 // This approach does NOT work, since f<int>(1); 2179 // gets resolved prior to resorting to overload resolution 2180 // i.e., template<class T> void f(double); 2181 // vs template<class T, class U> void f(U); 2182 2183 // These should be filtered out by our callers. 2184 assert(!R.empty() && "empty lookup results when building templateid"); 2185 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2186 2187 // We don't want lookup warnings at this point. 2188 R.suppressDiagnostics(); 2189 2190 UnresolvedLookupExpr *ULE 2191 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2192 SS.getWithLocInContext(Context), 2193 R.getLookupNameInfo(), 2194 RequiresADL, TemplateArgs, 2195 R.begin(), R.end()); 2196 2197 return Owned(ULE); 2198 } 2199 2200 // We actually only call this from template instantiation. 2201 ExprResult 2202 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2203 const DeclarationNameInfo &NameInfo, 2204 const TemplateArgumentListInfo &TemplateArgs) { 2205 DeclContext *DC; 2206 if (!(DC = computeDeclContext(SS, false)) || 2207 DC->isDependentContext() || 2208 RequireCompleteDeclContext(SS, DC)) 2209 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 2210 2211 bool MemberOfUnknownSpecialization; 2212 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2213 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2214 MemberOfUnknownSpecialization); 2215 2216 if (R.isAmbiguous()) 2217 return ExprError(); 2218 2219 if (R.empty()) { 2220 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2221 << NameInfo.getName() << SS.getRange(); 2222 return ExprError(); 2223 } 2224 2225 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2226 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2227 << (NestedNameSpecifier*) SS.getScopeRep() 2228 << NameInfo.getName() << SS.getRange(); 2229 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2230 return ExprError(); 2231 } 2232 2233 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 2234 } 2235 2236 /// \brief Form a dependent template name. 2237 /// 2238 /// This action forms a dependent template name given the template 2239 /// name and its (presumably dependent) scope specifier. For 2240 /// example, given "MetaFun::template apply", the scope specifier \p 2241 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2242 /// of the "template" keyword, and "apply" is the \p Name. 2243 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2244 SourceLocation TemplateKWLoc, 2245 CXXScopeSpec &SS, 2246 UnqualifiedId &Name, 2247 ParsedType ObjectType, 2248 bool EnteringContext, 2249 TemplateTy &Result) { 2250 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 2251 !getLangOptions().CPlusPlus0x) 2252 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 2253 << FixItHint::CreateRemoval(TemplateKWLoc); 2254 2255 DeclContext *LookupCtx = 0; 2256 if (SS.isSet()) 2257 LookupCtx = computeDeclContext(SS, EnteringContext); 2258 if (!LookupCtx && ObjectType) 2259 LookupCtx = computeDeclContext(ObjectType.get()); 2260 if (LookupCtx) { 2261 // C++0x [temp.names]p5: 2262 // If a name prefixed by the keyword template is not the name of 2263 // a template, the program is ill-formed. [Note: the keyword 2264 // template may not be applied to non-template members of class 2265 // templates. -end note ] [ Note: as is the case with the 2266 // typename prefix, the template prefix is allowed in cases 2267 // where it is not strictly necessary; i.e., when the 2268 // nested-name-specifier or the expression on the left of the -> 2269 // or . is not dependent on a template-parameter, or the use 2270 // does not appear in the scope of a template. -end note] 2271 // 2272 // Note: C++03 was more strict here, because it banned the use of 2273 // the "template" keyword prior to a template-name that was not a 2274 // dependent name. C++ DR468 relaxed this requirement (the 2275 // "template" keyword is now permitted). We follow the C++0x 2276 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2277 bool MemberOfUnknownSpecialization; 2278 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2279 ObjectType, EnteringContext, Result, 2280 MemberOfUnknownSpecialization); 2281 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2282 isa<CXXRecordDecl>(LookupCtx) && 2283 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2284 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2285 // This is a dependent template. Handle it below. 2286 } else if (TNK == TNK_Non_template) { 2287 Diag(Name.getSourceRange().getBegin(), 2288 diag::err_template_kw_refers_to_non_template) 2289 << GetNameFromUnqualifiedId(Name).getName() 2290 << Name.getSourceRange() 2291 << TemplateKWLoc; 2292 return TNK_Non_template; 2293 } else { 2294 // We found something; return it. 2295 return TNK; 2296 } 2297 } 2298 2299 NestedNameSpecifier *Qualifier 2300 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2301 2302 switch (Name.getKind()) { 2303 case UnqualifiedId::IK_Identifier: 2304 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2305 Name.Identifier)); 2306 return TNK_Dependent_template_name; 2307 2308 case UnqualifiedId::IK_OperatorFunctionId: 2309 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2310 Name.OperatorFunctionId.Operator)); 2311 return TNK_Dependent_template_name; 2312 2313 case UnqualifiedId::IK_LiteralOperatorId: 2314 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 2315 2316 default: 2317 break; 2318 } 2319 2320 Diag(Name.getSourceRange().getBegin(), 2321 diag::err_template_kw_refers_to_non_template) 2322 << GetNameFromUnqualifiedId(Name).getName() 2323 << Name.getSourceRange() 2324 << TemplateKWLoc; 2325 return TNK_Non_template; 2326 } 2327 2328 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2329 const TemplateArgumentLoc &AL, 2330 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2331 const TemplateArgument &Arg = AL.getArgument(); 2332 2333 // Check template type parameter. 2334 switch(Arg.getKind()) { 2335 case TemplateArgument::Type: 2336 // C++ [temp.arg.type]p1: 2337 // A template-argument for a template-parameter which is a 2338 // type shall be a type-id. 2339 break; 2340 case TemplateArgument::Template: { 2341 // We have a template type parameter but the template argument 2342 // is a template without any arguments. 2343 SourceRange SR = AL.getSourceRange(); 2344 TemplateName Name = Arg.getAsTemplate(); 2345 Diag(SR.getBegin(), diag::err_template_missing_args) 2346 << Name << SR; 2347 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2348 Diag(Decl->getLocation(), diag::note_template_decl_here); 2349 2350 return true; 2351 } 2352 default: { 2353 // We have a template type parameter but the template argument 2354 // is not a type. 2355 SourceRange SR = AL.getSourceRange(); 2356 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2357 Diag(Param->getLocation(), diag::note_template_param_here); 2358 2359 return true; 2360 } 2361 } 2362 2363 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2364 return true; 2365 2366 // Add the converted template type argument. 2367 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2368 2369 // Objective-C ARC: 2370 // If an explicitly-specified template argument type is a lifetime type 2371 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2372 if (getLangOptions().ObjCAutoRefCount && 2373 ArgType->isObjCLifetimeType() && 2374 !ArgType.getObjCLifetime()) { 2375 Qualifiers Qs; 2376 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2377 ArgType = Context.getQualifiedType(ArgType, Qs); 2378 } 2379 2380 Converted.push_back(TemplateArgument(ArgType)); 2381 return false; 2382 } 2383 2384 /// \brief Substitute template arguments into the default template argument for 2385 /// the given template type parameter. 2386 /// 2387 /// \param SemaRef the semantic analysis object for which we are performing 2388 /// the substitution. 2389 /// 2390 /// \param Template the template that we are synthesizing template arguments 2391 /// for. 2392 /// 2393 /// \param TemplateLoc the location of the template name that started the 2394 /// template-id we are checking. 2395 /// 2396 /// \param RAngleLoc the location of the right angle bracket ('>') that 2397 /// terminates the template-id. 2398 /// 2399 /// \param Param the template template parameter whose default we are 2400 /// substituting into. 2401 /// 2402 /// \param Converted the list of template arguments provided for template 2403 /// parameters that precede \p Param in the template parameter list. 2404 /// \returns the substituted template argument, or NULL if an error occurred. 2405 static TypeSourceInfo * 2406 SubstDefaultTemplateArgument(Sema &SemaRef, 2407 TemplateDecl *Template, 2408 SourceLocation TemplateLoc, 2409 SourceLocation RAngleLoc, 2410 TemplateTypeParmDecl *Param, 2411 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2412 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2413 2414 // If the argument type is dependent, instantiate it now based 2415 // on the previously-computed template arguments. 2416 if (ArgType->getType()->isDependentType()) { 2417 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2418 Converted.data(), Converted.size()); 2419 2420 MultiLevelTemplateArgumentList AllTemplateArgs 2421 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2422 2423 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2424 Template, Converted.data(), 2425 Converted.size(), 2426 SourceRange(TemplateLoc, RAngleLoc)); 2427 2428 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2429 Param->getDefaultArgumentLoc(), 2430 Param->getDeclName()); 2431 } 2432 2433 return ArgType; 2434 } 2435 2436 /// \brief Substitute template arguments into the default template argument for 2437 /// the given non-type template parameter. 2438 /// 2439 /// \param SemaRef the semantic analysis object for which we are performing 2440 /// the substitution. 2441 /// 2442 /// \param Template the template that we are synthesizing template arguments 2443 /// for. 2444 /// 2445 /// \param TemplateLoc the location of the template name that started the 2446 /// template-id we are checking. 2447 /// 2448 /// \param RAngleLoc the location of the right angle bracket ('>') that 2449 /// terminates the template-id. 2450 /// 2451 /// \param Param the non-type template parameter whose default we are 2452 /// substituting into. 2453 /// 2454 /// \param Converted the list of template arguments provided for template 2455 /// parameters that precede \p Param in the template parameter list. 2456 /// 2457 /// \returns the substituted template argument, or NULL if an error occurred. 2458 static ExprResult 2459 SubstDefaultTemplateArgument(Sema &SemaRef, 2460 TemplateDecl *Template, 2461 SourceLocation TemplateLoc, 2462 SourceLocation RAngleLoc, 2463 NonTypeTemplateParmDecl *Param, 2464 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2465 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2466 Converted.data(), Converted.size()); 2467 2468 MultiLevelTemplateArgumentList AllTemplateArgs 2469 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2470 2471 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2472 Template, Converted.data(), 2473 Converted.size(), 2474 SourceRange(TemplateLoc, RAngleLoc)); 2475 2476 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2477 } 2478 2479 /// \brief Substitute template arguments into the default template argument for 2480 /// the given template template parameter. 2481 /// 2482 /// \param SemaRef the semantic analysis object for which we are performing 2483 /// the substitution. 2484 /// 2485 /// \param Template the template that we are synthesizing template arguments 2486 /// for. 2487 /// 2488 /// \param TemplateLoc the location of the template name that started the 2489 /// template-id we are checking. 2490 /// 2491 /// \param RAngleLoc the location of the right angle bracket ('>') that 2492 /// terminates the template-id. 2493 /// 2494 /// \param Param the template template parameter whose default we are 2495 /// substituting into. 2496 /// 2497 /// \param Converted the list of template arguments provided for template 2498 /// parameters that precede \p Param in the template parameter list. 2499 /// 2500 /// \param QualifierLoc Will be set to the nested-name-specifier (with 2501 /// source-location information) that precedes the template name. 2502 /// 2503 /// \returns the substituted template argument, or NULL if an error occurred. 2504 static TemplateName 2505 SubstDefaultTemplateArgument(Sema &SemaRef, 2506 TemplateDecl *Template, 2507 SourceLocation TemplateLoc, 2508 SourceLocation RAngleLoc, 2509 TemplateTemplateParmDecl *Param, 2510 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2511 NestedNameSpecifierLoc &QualifierLoc) { 2512 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2513 Converted.data(), Converted.size()); 2514 2515 MultiLevelTemplateArgumentList AllTemplateArgs 2516 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2517 2518 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2519 Template, Converted.data(), 2520 Converted.size(), 2521 SourceRange(TemplateLoc, RAngleLoc)); 2522 2523 // Substitute into the nested-name-specifier first, 2524 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2525 if (QualifierLoc) { 2526 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2527 AllTemplateArgs); 2528 if (!QualifierLoc) 2529 return TemplateName(); 2530 } 2531 2532 return SemaRef.SubstTemplateName(QualifierLoc, 2533 Param->getDefaultArgument().getArgument().getAsTemplate(), 2534 Param->getDefaultArgument().getTemplateNameLoc(), 2535 AllTemplateArgs); 2536 } 2537 2538 /// \brief If the given template parameter has a default template 2539 /// argument, substitute into that default template argument and 2540 /// return the corresponding template argument. 2541 TemplateArgumentLoc 2542 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2543 SourceLocation TemplateLoc, 2544 SourceLocation RAngleLoc, 2545 Decl *Param, 2546 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2547 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2548 if (!TypeParm->hasDefaultArgument()) 2549 return TemplateArgumentLoc(); 2550 2551 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2552 TemplateLoc, 2553 RAngleLoc, 2554 TypeParm, 2555 Converted); 2556 if (DI) 2557 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2558 2559 return TemplateArgumentLoc(); 2560 } 2561 2562 if (NonTypeTemplateParmDecl *NonTypeParm 2563 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2564 if (!NonTypeParm->hasDefaultArgument()) 2565 return TemplateArgumentLoc(); 2566 2567 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2568 TemplateLoc, 2569 RAngleLoc, 2570 NonTypeParm, 2571 Converted); 2572 if (Arg.isInvalid()) 2573 return TemplateArgumentLoc(); 2574 2575 Expr *ArgE = Arg.takeAs<Expr>(); 2576 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2577 } 2578 2579 TemplateTemplateParmDecl *TempTempParm 2580 = cast<TemplateTemplateParmDecl>(Param); 2581 if (!TempTempParm->hasDefaultArgument()) 2582 return TemplateArgumentLoc(); 2583 2584 2585 NestedNameSpecifierLoc QualifierLoc; 2586 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2587 TemplateLoc, 2588 RAngleLoc, 2589 TempTempParm, 2590 Converted, 2591 QualifierLoc); 2592 if (TName.isNull()) 2593 return TemplateArgumentLoc(); 2594 2595 return TemplateArgumentLoc(TemplateArgument(TName), 2596 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2597 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2598 } 2599 2600 /// \brief Check that the given template argument corresponds to the given 2601 /// template parameter. 2602 /// 2603 /// \param Param The template parameter against which the argument will be 2604 /// checked. 2605 /// 2606 /// \param Arg The template argument. 2607 /// 2608 /// \param Template The template in which the template argument resides. 2609 /// 2610 /// \param TemplateLoc The location of the template name for the template 2611 /// whose argument list we're matching. 2612 /// 2613 /// \param RAngleLoc The location of the right angle bracket ('>') that closes 2614 /// the template argument list. 2615 /// 2616 /// \param ArgumentPackIndex The index into the argument pack where this 2617 /// argument will be placed. Only valid if the parameter is a parameter pack. 2618 /// 2619 /// \param Converted The checked, converted argument will be added to the 2620 /// end of this small vector. 2621 /// 2622 /// \param CTAK Describes how we arrived at this particular template argument: 2623 /// explicitly written, deduced, etc. 2624 /// 2625 /// \returns true on error, false otherwise. 2626 bool Sema::CheckTemplateArgument(NamedDecl *Param, 2627 const TemplateArgumentLoc &Arg, 2628 NamedDecl *Template, 2629 SourceLocation TemplateLoc, 2630 SourceLocation RAngleLoc, 2631 unsigned ArgumentPackIndex, 2632 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2633 CheckTemplateArgumentKind CTAK) { 2634 // Check template type parameters. 2635 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2636 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2637 2638 // Check non-type template parameters. 2639 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2640 // Do substitution on the type of the non-type template parameter 2641 // with the template arguments we've seen thus far. But if the 2642 // template has a dependent context then we cannot substitute yet. 2643 QualType NTTPType = NTTP->getType(); 2644 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2645 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2646 2647 if (NTTPType->isDependentType() && 2648 !isa<TemplateTemplateParmDecl>(Template) && 2649 !Template->getDeclContext()->isDependentContext()) { 2650 // Do substitution on the type of the non-type template parameter. 2651 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2652 NTTP, Converted.data(), Converted.size(), 2653 SourceRange(TemplateLoc, RAngleLoc)); 2654 2655 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2656 Converted.data(), Converted.size()); 2657 NTTPType = SubstType(NTTPType, 2658 MultiLevelTemplateArgumentList(TemplateArgs), 2659 NTTP->getLocation(), 2660 NTTP->getDeclName()); 2661 // If that worked, check the non-type template parameter type 2662 // for validity. 2663 if (!NTTPType.isNull()) 2664 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2665 NTTP->getLocation()); 2666 if (NTTPType.isNull()) 2667 return true; 2668 } 2669 2670 switch (Arg.getArgument().getKind()) { 2671 case TemplateArgument::Null: 2672 assert(false && "Should never see a NULL template argument here"); 2673 return true; 2674 2675 case TemplateArgument::Expression: { 2676 TemplateArgument Result; 2677 ExprResult Res = 2678 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2679 Result, CTAK); 2680 if (Res.isInvalid()) 2681 return true; 2682 2683 Converted.push_back(Result); 2684 break; 2685 } 2686 2687 case TemplateArgument::Declaration: 2688 case TemplateArgument::Integral: 2689 // We've already checked this template argument, so just copy 2690 // it to the list of converted arguments. 2691 Converted.push_back(Arg.getArgument()); 2692 break; 2693 2694 case TemplateArgument::Template: 2695 case TemplateArgument::TemplateExpansion: 2696 // We were given a template template argument. It may not be ill-formed; 2697 // see below. 2698 if (DependentTemplateName *DTN 2699 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2700 .getAsDependentTemplateName()) { 2701 // We have a template argument such as \c T::template X, which we 2702 // parsed as a template template argument. However, since we now 2703 // know that we need a non-type template argument, convert this 2704 // template name into an expression. 2705 2706 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2707 Arg.getTemplateNameLoc()); 2708 2709 CXXScopeSpec SS; 2710 SS.Adopt(Arg.getTemplateQualifierLoc()); 2711 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2712 SS.getWithLocInContext(Context), 2713 NameInfo)); 2714 2715 // If we parsed the template argument as a pack expansion, create a 2716 // pack expansion expression. 2717 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2718 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2719 if (E.isInvalid()) 2720 return true; 2721 } 2722 2723 TemplateArgument Result; 2724 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2725 if (E.isInvalid()) 2726 return true; 2727 2728 Converted.push_back(Result); 2729 break; 2730 } 2731 2732 // We have a template argument that actually does refer to a class 2733 // template, alias template, or template template parameter, and 2734 // therefore cannot be a non-type template argument. 2735 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2736 << Arg.getSourceRange(); 2737 2738 Diag(Param->getLocation(), diag::note_template_param_here); 2739 return true; 2740 2741 case TemplateArgument::Type: { 2742 // We have a non-type template parameter but the template 2743 // argument is a type. 2744 2745 // C++ [temp.arg]p2: 2746 // In a template-argument, an ambiguity between a type-id and 2747 // an expression is resolved to a type-id, regardless of the 2748 // form of the corresponding template-parameter. 2749 // 2750 // We warn specifically about this case, since it can be rather 2751 // confusing for users. 2752 QualType T = Arg.getArgument().getAsType(); 2753 SourceRange SR = Arg.getSourceRange(); 2754 if (T->isFunctionType()) 2755 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2756 else 2757 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2758 Diag(Param->getLocation(), diag::note_template_param_here); 2759 return true; 2760 } 2761 2762 case TemplateArgument::Pack: 2763 llvm_unreachable("Caller must expand template argument packs"); 2764 break; 2765 } 2766 2767 return false; 2768 } 2769 2770 2771 // Check template template parameters. 2772 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2773 2774 // Substitute into the template parameter list of the template 2775 // template parameter, since previously-supplied template arguments 2776 // may appear within the template template parameter. 2777 { 2778 // Set up a template instantiation context. 2779 LocalInstantiationScope Scope(*this); 2780 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2781 TempParm, Converted.data(), Converted.size(), 2782 SourceRange(TemplateLoc, RAngleLoc)); 2783 2784 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2785 Converted.data(), Converted.size()); 2786 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2787 SubstDecl(TempParm, CurContext, 2788 MultiLevelTemplateArgumentList(TemplateArgs))); 2789 if (!TempParm) 2790 return true; 2791 } 2792 2793 switch (Arg.getArgument().getKind()) { 2794 case TemplateArgument::Null: 2795 assert(false && "Should never see a NULL template argument here"); 2796 return true; 2797 2798 case TemplateArgument::Template: 2799 case TemplateArgument::TemplateExpansion: 2800 if (CheckTemplateArgument(TempParm, Arg)) 2801 return true; 2802 2803 Converted.push_back(Arg.getArgument()); 2804 break; 2805 2806 case TemplateArgument::Expression: 2807 case TemplateArgument::Type: 2808 // We have a template template parameter but the template 2809 // argument does not refer to a template. 2810 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2811 << getLangOptions().CPlusPlus0x; 2812 return true; 2813 2814 case TemplateArgument::Declaration: 2815 llvm_unreachable( 2816 "Declaration argument with template template parameter"); 2817 break; 2818 case TemplateArgument::Integral: 2819 llvm_unreachable( 2820 "Integral argument with template template parameter"); 2821 break; 2822 2823 case TemplateArgument::Pack: 2824 llvm_unreachable("Caller must expand template argument packs"); 2825 break; 2826 } 2827 2828 return false; 2829 } 2830 2831 /// \brief Check that the given template argument list is well-formed 2832 /// for specializing the given template. 2833 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2834 SourceLocation TemplateLoc, 2835 TemplateArgumentListInfo &TemplateArgs, 2836 bool PartialTemplateArgs, 2837 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2838 TemplateParameterList *Params = Template->getTemplateParameters(); 2839 unsigned NumParams = Params->size(); 2840 unsigned NumArgs = TemplateArgs.size(); 2841 bool Invalid = false; 2842 2843 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2844 2845 bool HasParameterPack = 2846 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2847 2848 if ((NumArgs > NumParams && !HasParameterPack) || 2849 (NumArgs < Params->getMinRequiredArguments() && 2850 !PartialTemplateArgs)) { 2851 // FIXME: point at either the first arg beyond what we can handle, 2852 // or the '>', depending on whether we have too many or too few 2853 // arguments. 2854 SourceRange Range; 2855 if (NumArgs > NumParams) 2856 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2857 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2858 << (NumArgs > NumParams) 2859 << (isa<ClassTemplateDecl>(Template)? 0 : 2860 isa<FunctionTemplateDecl>(Template)? 1 : 2861 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2862 << Template << Range; 2863 Diag(Template->getLocation(), diag::note_template_decl_here) 2864 << Params->getSourceRange(); 2865 Invalid = true; 2866 } 2867 2868 // C++ [temp.arg]p1: 2869 // [...] The type and form of each template-argument specified in 2870 // a template-id shall match the type and form specified for the 2871 // corresponding parameter declared by the template in its 2872 // template-parameter-list. 2873 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 2874 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2875 TemplateParameterList::iterator Param = Params->begin(), 2876 ParamEnd = Params->end(); 2877 unsigned ArgIdx = 0; 2878 LocalInstantiationScope InstScope(*this, true); 2879 while (Param != ParamEnd) { 2880 if (ArgIdx < NumArgs) { 2881 // If we have an expanded parameter pack, make sure we don't have too 2882 // many arguments. 2883 if (NonTypeTemplateParmDecl *NTTP 2884 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2885 if (NTTP->isExpandedParameterPack() && 2886 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2887 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2888 << true 2889 << (isa<ClassTemplateDecl>(Template)? 0 : 2890 isa<FunctionTemplateDecl>(Template)? 1 : 2891 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2892 << Template; 2893 Diag(Template->getLocation(), diag::note_template_decl_here) 2894 << Params->getSourceRange(); 2895 return true; 2896 } 2897 } 2898 2899 // Check the template argument we were given. 2900 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2901 TemplateLoc, RAngleLoc, 2902 ArgumentPack.size(), Converted)) 2903 return true; 2904 2905 if ((*Param)->isTemplateParameterPack()) { 2906 // The template parameter was a template parameter pack, so take the 2907 // deduced argument and place it on the argument pack. Note that we 2908 // stay on the same template parameter so that we can deduce more 2909 // arguments. 2910 ArgumentPack.push_back(Converted.back()); 2911 Converted.pop_back(); 2912 } else { 2913 // Move to the next template parameter. 2914 ++Param; 2915 } 2916 ++ArgIdx; 2917 continue; 2918 } 2919 2920 // If we're checking a partial template argument list, we're done. 2921 if (PartialTemplateArgs) { 2922 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 2923 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2924 ArgumentPack.data(), 2925 ArgumentPack.size())); 2926 2927 return Invalid; 2928 } 2929 2930 // If we have a template parameter pack with no more corresponding 2931 // arguments, just break out now and we'll fill in the argument pack below. 2932 if ((*Param)->isTemplateParameterPack()) 2933 break; 2934 2935 // We have a default template argument that we will use. 2936 TemplateArgumentLoc Arg; 2937 2938 // Retrieve the default template argument from the template 2939 // parameter. For each kind of template parameter, we substitute the 2940 // template arguments provided thus far and any "outer" template arguments 2941 // (when the template parameter was part of a nested template) into 2942 // the default argument. 2943 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2944 if (!TTP->hasDefaultArgument()) { 2945 assert(Invalid && "Missing default argument"); 2946 break; 2947 } 2948 2949 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2950 Template, 2951 TemplateLoc, 2952 RAngleLoc, 2953 TTP, 2954 Converted); 2955 if (!ArgType) 2956 return true; 2957 2958 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2959 ArgType); 2960 } else if (NonTypeTemplateParmDecl *NTTP 2961 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2962 if (!NTTP->hasDefaultArgument()) { 2963 assert(Invalid && "Missing default argument"); 2964 break; 2965 } 2966 2967 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2968 TemplateLoc, 2969 RAngleLoc, 2970 NTTP, 2971 Converted); 2972 if (E.isInvalid()) 2973 return true; 2974 2975 Expr *Ex = E.takeAs<Expr>(); 2976 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2977 } else { 2978 TemplateTemplateParmDecl *TempParm 2979 = cast<TemplateTemplateParmDecl>(*Param); 2980 2981 if (!TempParm->hasDefaultArgument()) { 2982 assert(Invalid && "Missing default argument"); 2983 break; 2984 } 2985 2986 NestedNameSpecifierLoc QualifierLoc; 2987 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2988 TemplateLoc, 2989 RAngleLoc, 2990 TempParm, 2991 Converted, 2992 QualifierLoc); 2993 if (Name.isNull()) 2994 return true; 2995 2996 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 2997 TempParm->getDefaultArgument().getTemplateNameLoc()); 2998 } 2999 3000 // Introduce an instantiation record that describes where we are using 3001 // the default template argument. 3002 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 3003 Converted.data(), Converted.size(), 3004 SourceRange(TemplateLoc, RAngleLoc)); 3005 3006 // Check the default template argument. 3007 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3008 RAngleLoc, 0, Converted)) 3009 return true; 3010 3011 // Core issue 150 (assumed resolution): if this is a template template 3012 // parameter, keep track of the default template arguments from the 3013 // template definition. 3014 if (isTemplateTemplateParameter) 3015 TemplateArgs.addArgument(Arg); 3016 3017 // Move to the next template parameter and argument. 3018 ++Param; 3019 ++ArgIdx; 3020 } 3021 3022 // Form argument packs for each of the parameter packs remaining. 3023 while (Param != ParamEnd) { 3024 // If we're checking a partial list of template arguments, don't fill 3025 // in arguments for non-template parameter packs. 3026 3027 if ((*Param)->isTemplateParameterPack()) { 3028 if (ArgumentPack.empty()) 3029 Converted.push_back(TemplateArgument(0, 0)); 3030 else { 3031 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3032 ArgumentPack.data(), 3033 ArgumentPack.size())); 3034 ArgumentPack.clear(); 3035 } 3036 } 3037 3038 ++Param; 3039 } 3040 3041 return Invalid; 3042 } 3043 3044 namespace { 3045 class UnnamedLocalNoLinkageFinder 3046 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3047 { 3048 Sema &S; 3049 SourceRange SR; 3050 3051 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3052 3053 public: 3054 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3055 3056 bool Visit(QualType T) { 3057 return inherited::Visit(T.getTypePtr()); 3058 } 3059 3060 #define TYPE(Class, Parent) \ 3061 bool Visit##Class##Type(const Class##Type *); 3062 #define ABSTRACT_TYPE(Class, Parent) \ 3063 bool Visit##Class##Type(const Class##Type *) { return false; } 3064 #define NON_CANONICAL_TYPE(Class, Parent) \ 3065 bool Visit##Class##Type(const Class##Type *) { return false; } 3066 #include "clang/AST/TypeNodes.def" 3067 3068 bool VisitTagDecl(const TagDecl *Tag); 3069 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3070 }; 3071 } 3072 3073 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3074 return false; 3075 } 3076 3077 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3078 return Visit(T->getElementType()); 3079 } 3080 3081 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3082 return Visit(T->getPointeeType()); 3083 } 3084 3085 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3086 const BlockPointerType* T) { 3087 return Visit(T->getPointeeType()); 3088 } 3089 3090 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3091 const LValueReferenceType* T) { 3092 return Visit(T->getPointeeType()); 3093 } 3094 3095 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3096 const RValueReferenceType* T) { 3097 return Visit(T->getPointeeType()); 3098 } 3099 3100 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3101 const MemberPointerType* T) { 3102 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3103 } 3104 3105 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3106 const ConstantArrayType* T) { 3107 return Visit(T->getElementType()); 3108 } 3109 3110 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3111 const IncompleteArrayType* T) { 3112 return Visit(T->getElementType()); 3113 } 3114 3115 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3116 const VariableArrayType* T) { 3117 return Visit(T->getElementType()); 3118 } 3119 3120 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3121 const DependentSizedArrayType* T) { 3122 return Visit(T->getElementType()); 3123 } 3124 3125 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3126 const DependentSizedExtVectorType* T) { 3127 return Visit(T->getElementType()); 3128 } 3129 3130 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3131 return Visit(T->getElementType()); 3132 } 3133 3134 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3135 return Visit(T->getElementType()); 3136 } 3137 3138 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3139 const FunctionProtoType* T) { 3140 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3141 AEnd = T->arg_type_end(); 3142 A != AEnd; ++A) { 3143 if (Visit(*A)) 3144 return true; 3145 } 3146 3147 return Visit(T->getResultType()); 3148 } 3149 3150 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3151 const FunctionNoProtoType* T) { 3152 return Visit(T->getResultType()); 3153 } 3154 3155 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3156 const UnresolvedUsingType*) { 3157 return false; 3158 } 3159 3160 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3161 return false; 3162 } 3163 3164 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3165 return Visit(T->getUnderlyingType()); 3166 } 3167 3168 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3169 return false; 3170 } 3171 3172 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3173 const UnaryTransformType*) { 3174 return false; 3175 } 3176 3177 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3178 return Visit(T->getDeducedType()); 3179 } 3180 3181 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3182 return VisitTagDecl(T->getDecl()); 3183 } 3184 3185 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3186 return VisitTagDecl(T->getDecl()); 3187 } 3188 3189 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3190 const TemplateTypeParmType*) { 3191 return false; 3192 } 3193 3194 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3195 const SubstTemplateTypeParmPackType *) { 3196 return false; 3197 } 3198 3199 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3200 const TemplateSpecializationType*) { 3201 return false; 3202 } 3203 3204 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3205 const InjectedClassNameType* T) { 3206 return VisitTagDecl(T->getDecl()); 3207 } 3208 3209 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3210 const DependentNameType* T) { 3211 return VisitNestedNameSpecifier(T->getQualifier()); 3212 } 3213 3214 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3215 const DependentTemplateSpecializationType* T) { 3216 return VisitNestedNameSpecifier(T->getQualifier()); 3217 } 3218 3219 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3220 const PackExpansionType* T) { 3221 return Visit(T->getPattern()); 3222 } 3223 3224 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3225 return false; 3226 } 3227 3228 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3229 const ObjCInterfaceType *) { 3230 return false; 3231 } 3232 3233 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3234 const ObjCObjectPointerType *) { 3235 return false; 3236 } 3237 3238 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3239 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3240 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 3241 << S.Context.getTypeDeclType(Tag) << SR; 3242 return true; 3243 } 3244 3245 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3246 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 3247 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3248 return true; 3249 } 3250 3251 return false; 3252 } 3253 3254 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3255 NestedNameSpecifier *NNS) { 3256 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3257 return true; 3258 3259 switch (NNS->getKind()) { 3260 case NestedNameSpecifier::Identifier: 3261 case NestedNameSpecifier::Namespace: 3262 case NestedNameSpecifier::NamespaceAlias: 3263 case NestedNameSpecifier::Global: 3264 return false; 3265 3266 case NestedNameSpecifier::TypeSpec: 3267 case NestedNameSpecifier::TypeSpecWithTemplate: 3268 return Visit(QualType(NNS->getAsType(), 0)); 3269 } 3270 return false; 3271 } 3272 3273 3274 /// \brief Check a template argument against its corresponding 3275 /// template type parameter. 3276 /// 3277 /// This routine implements the semantics of C++ [temp.arg.type]. It 3278 /// returns true if an error occurred, and false otherwise. 3279 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3280 TypeSourceInfo *ArgInfo) { 3281 assert(ArgInfo && "invalid TypeSourceInfo"); 3282 QualType Arg = ArgInfo->getType(); 3283 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3284 3285 if (Arg->isVariablyModifiedType()) { 3286 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3287 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3288 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3289 } 3290 3291 // C++03 [temp.arg.type]p2: 3292 // A local type, a type with no linkage, an unnamed type or a type 3293 // compounded from any of these types shall not be used as a 3294 // template-argument for a template type-parameter. 3295 // 3296 // C++0x allows these, and even in C++03 we allow them as an extension with 3297 // a warning. 3298 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 3299 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3300 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3301 } 3302 3303 return false; 3304 } 3305 3306 /// \brief Checks whether the given template argument is the address 3307 /// of an object or function according to C++ [temp.arg.nontype]p1. 3308 static bool 3309 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3310 NonTypeTemplateParmDecl *Param, 3311 QualType ParamType, 3312 Expr *ArgIn, 3313 TemplateArgument &Converted) { 3314 bool Invalid = false; 3315 Expr *Arg = ArgIn; 3316 QualType ArgType = Arg->getType(); 3317 3318 // See through any implicit casts we added to fix the type. 3319 Arg = Arg->IgnoreImpCasts(); 3320 3321 // C++ [temp.arg.nontype]p1: 3322 // 3323 // A template-argument for a non-type, non-template 3324 // template-parameter shall be one of: [...] 3325 // 3326 // -- the address of an object or function with external 3327 // linkage, including function templates and function 3328 // template-ids but excluding non-static class members, 3329 // expressed as & id-expression where the & is optional if 3330 // the name refers to a function or array, or if the 3331 // corresponding template-parameter is a reference; or 3332 3333 // In C++98/03 mode, give an extension warning on any extra parentheses. 3334 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3335 bool ExtraParens = false; 3336 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3337 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 3338 S.Diag(Arg->getSourceRange().getBegin(), 3339 diag::ext_template_arg_extra_parens) 3340 << Arg->getSourceRange(); 3341 ExtraParens = true; 3342 } 3343 3344 Arg = Parens->getSubExpr(); 3345 } 3346 3347 while (SubstNonTypeTemplateParmExpr *subst = 3348 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3349 Arg = subst->getReplacement()->IgnoreImpCasts(); 3350 3351 bool AddressTaken = false; 3352 SourceLocation AddrOpLoc; 3353 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3354 if (UnOp->getOpcode() == UO_AddrOf) { 3355 Arg = UnOp->getSubExpr(); 3356 AddressTaken = true; 3357 AddrOpLoc = UnOp->getOperatorLoc(); 3358 } 3359 } 3360 3361 if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) { 3362 Converted = TemplateArgument(ArgIn); 3363 return false; 3364 } 3365 3366 while (SubstNonTypeTemplateParmExpr *subst = 3367 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3368 Arg = subst->getReplacement()->IgnoreImpCasts(); 3369 3370 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3371 if (!DRE) { 3372 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3373 << Arg->getSourceRange(); 3374 S.Diag(Param->getLocation(), diag::note_template_param_here); 3375 return true; 3376 } 3377 3378 // Stop checking the precise nature of the argument if it is value dependent, 3379 // it should be checked when instantiated. 3380 if (Arg->isValueDependent()) { 3381 Converted = TemplateArgument(ArgIn); 3382 return false; 3383 } 3384 3385 if (!isa<ValueDecl>(DRE->getDecl())) { 3386 S.Diag(Arg->getSourceRange().getBegin(), 3387 diag::err_template_arg_not_object_or_func_form) 3388 << Arg->getSourceRange(); 3389 S.Diag(Param->getLocation(), diag::note_template_param_here); 3390 return true; 3391 } 3392 3393 NamedDecl *Entity = 0; 3394 3395 // Cannot refer to non-static data members 3396 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 3397 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 3398 << Field << Arg->getSourceRange(); 3399 S.Diag(Param->getLocation(), diag::note_template_param_here); 3400 return true; 3401 } 3402 3403 // Cannot refer to non-static member functions 3404 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3405 if (!Method->isStatic()) { 3406 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3407 << Method << Arg->getSourceRange(); 3408 S.Diag(Param->getLocation(), diag::note_template_param_here); 3409 return true; 3410 } 3411 3412 // Functions must have external linkage. 3413 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3414 if (!isExternalLinkage(Func->getLinkage())) { 3415 S.Diag(Arg->getSourceRange().getBegin(), 3416 diag::err_template_arg_function_not_extern) 3417 << Func << Arg->getSourceRange(); 3418 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3419 << true; 3420 return true; 3421 } 3422 3423 // Okay: we've named a function with external linkage. 3424 Entity = Func; 3425 3426 // If the template parameter has pointer type, the function decays. 3427 if (ParamType->isPointerType() && !AddressTaken) 3428 ArgType = S.Context.getPointerType(Func->getType()); 3429 else if (AddressTaken && ParamType->isReferenceType()) { 3430 // If we originally had an address-of operator, but the 3431 // parameter has reference type, complain and (if things look 3432 // like they will work) drop the address-of operator. 3433 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3434 ParamType.getNonReferenceType())) { 3435 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3436 << ParamType; 3437 S.Diag(Param->getLocation(), diag::note_template_param_here); 3438 return true; 3439 } 3440 3441 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3442 << ParamType 3443 << FixItHint::CreateRemoval(AddrOpLoc); 3444 S.Diag(Param->getLocation(), diag::note_template_param_here); 3445 3446 ArgType = Func->getType(); 3447 } 3448 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3449 if (!isExternalLinkage(Var->getLinkage())) { 3450 S.Diag(Arg->getSourceRange().getBegin(), 3451 diag::err_template_arg_object_not_extern) 3452 << Var << Arg->getSourceRange(); 3453 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3454 << true; 3455 return true; 3456 } 3457 3458 // A value of reference type is not an object. 3459 if (Var->getType()->isReferenceType()) { 3460 S.Diag(Arg->getSourceRange().getBegin(), 3461 diag::err_template_arg_reference_var) 3462 << Var->getType() << Arg->getSourceRange(); 3463 S.Diag(Param->getLocation(), diag::note_template_param_here); 3464 return true; 3465 } 3466 3467 // Okay: we've named an object with external linkage 3468 Entity = Var; 3469 3470 // If the template parameter has pointer type, we must have taken 3471 // the address of this object. 3472 if (ParamType->isReferenceType()) { 3473 if (AddressTaken) { 3474 // If we originally had an address-of operator, but the 3475 // parameter has reference type, complain and (if things look 3476 // like they will work) drop the address-of operator. 3477 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3478 ParamType.getNonReferenceType())) { 3479 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3480 << ParamType; 3481 S.Diag(Param->getLocation(), diag::note_template_param_here); 3482 return true; 3483 } 3484 3485 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3486 << ParamType 3487 << FixItHint::CreateRemoval(AddrOpLoc); 3488 S.Diag(Param->getLocation(), diag::note_template_param_here); 3489 3490 ArgType = Var->getType(); 3491 } 3492 } else if (!AddressTaken && ParamType->isPointerType()) { 3493 if (Var->getType()->isArrayType()) { 3494 // Array-to-pointer decay. 3495 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3496 } else { 3497 // If the template parameter has pointer type but the address of 3498 // this object was not taken, complain and (possibly) recover by 3499 // taking the address of the entity. 3500 ArgType = S.Context.getPointerType(Var->getType()); 3501 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3502 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3503 << ParamType; 3504 S.Diag(Param->getLocation(), diag::note_template_param_here); 3505 return true; 3506 } 3507 3508 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3509 << ParamType 3510 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3511 3512 S.Diag(Param->getLocation(), diag::note_template_param_here); 3513 } 3514 } 3515 } else { 3516 // We found something else, but we don't know specifically what it is. 3517 S.Diag(Arg->getSourceRange().getBegin(), 3518 diag::err_template_arg_not_object_or_func) 3519 << Arg->getSourceRange(); 3520 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3521 return true; 3522 } 3523 3524 bool ObjCLifetimeConversion; 3525 if (ParamType->isPointerType() && 3526 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3527 S.IsQualificationConversion(ArgType, ParamType, false, 3528 ObjCLifetimeConversion)) { 3529 // For pointer-to-object types, qualification conversions are 3530 // permitted. 3531 } else { 3532 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3533 if (!ParamRef->getPointeeType()->isFunctionType()) { 3534 // C++ [temp.arg.nontype]p5b3: 3535 // For a non-type template-parameter of type reference to 3536 // object, no conversions apply. The type referred to by the 3537 // reference may be more cv-qualified than the (otherwise 3538 // identical) type of the template- argument. The 3539 // template-parameter is bound directly to the 3540 // template-argument, which shall be an lvalue. 3541 3542 // FIXME: Other qualifiers? 3543 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3544 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3545 3546 if ((ParamQuals | ArgQuals) != ParamQuals) { 3547 S.Diag(Arg->getSourceRange().getBegin(), 3548 diag::err_template_arg_ref_bind_ignores_quals) 3549 << ParamType << Arg->getType() 3550 << Arg->getSourceRange(); 3551 S.Diag(Param->getLocation(), diag::note_template_param_here); 3552 return true; 3553 } 3554 } 3555 } 3556 3557 // At this point, the template argument refers to an object or 3558 // function with external linkage. We now need to check whether the 3559 // argument and parameter types are compatible. 3560 if (!S.Context.hasSameUnqualifiedType(ArgType, 3561 ParamType.getNonReferenceType())) { 3562 // We can't perform this conversion or binding. 3563 if (ParamType->isReferenceType()) 3564 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3565 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3566 else 3567 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3568 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3569 S.Diag(Param->getLocation(), diag::note_template_param_here); 3570 return true; 3571 } 3572 } 3573 3574 // Create the template argument. 3575 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3576 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3577 return false; 3578 } 3579 3580 /// \brief Checks whether the given template argument is a pointer to 3581 /// member constant according to C++ [temp.arg.nontype]p1. 3582 bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3583 TemplateArgument &Converted) { 3584 bool Invalid = false; 3585 3586 // See through any implicit casts we added to fix the type. 3587 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3588 Arg = Cast->getSubExpr(); 3589 3590 // C++ [temp.arg.nontype]p1: 3591 // 3592 // A template-argument for a non-type, non-template 3593 // template-parameter shall be one of: [...] 3594 // 3595 // -- a pointer to member expressed as described in 5.3.1. 3596 DeclRefExpr *DRE = 0; 3597 3598 // In C++98/03 mode, give an extension warning on any extra parentheses. 3599 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3600 bool ExtraParens = false; 3601 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3602 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3603 Diag(Arg->getSourceRange().getBegin(), 3604 diag::ext_template_arg_extra_parens) 3605 << Arg->getSourceRange(); 3606 ExtraParens = true; 3607 } 3608 3609 Arg = Parens->getSubExpr(); 3610 } 3611 3612 while (SubstNonTypeTemplateParmExpr *subst = 3613 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3614 Arg = subst->getReplacement()->IgnoreImpCasts(); 3615 3616 // A pointer-to-member constant written &Class::member. 3617 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3618 if (UnOp->getOpcode() == UO_AddrOf) { 3619 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3620 if (DRE && !DRE->getQualifier()) 3621 DRE = 0; 3622 } 3623 } 3624 // A constant of pointer-to-member type. 3625 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3626 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3627 if (VD->getType()->isMemberPointerType()) { 3628 if (isa<NonTypeTemplateParmDecl>(VD) || 3629 (isa<VarDecl>(VD) && 3630 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3631 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3632 Converted = TemplateArgument(Arg); 3633 else 3634 Converted = TemplateArgument(VD->getCanonicalDecl()); 3635 return Invalid; 3636 } 3637 } 3638 } 3639 3640 DRE = 0; 3641 } 3642 3643 if (!DRE) 3644 return Diag(Arg->getSourceRange().getBegin(), 3645 diag::err_template_arg_not_pointer_to_member_form) 3646 << Arg->getSourceRange(); 3647 3648 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3649 assert((isa<FieldDecl>(DRE->getDecl()) || 3650 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3651 "Only non-static member pointers can make it here"); 3652 3653 // Okay: this is the address of a non-static member, and therefore 3654 // a member pointer constant. 3655 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3656 Converted = TemplateArgument(Arg); 3657 else 3658 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3659 return Invalid; 3660 } 3661 3662 // We found something else, but we don't know specifically what it is. 3663 Diag(Arg->getSourceRange().getBegin(), 3664 diag::err_template_arg_not_pointer_to_member_form) 3665 << Arg->getSourceRange(); 3666 Diag(DRE->getDecl()->getLocation(), 3667 diag::note_template_arg_refers_here); 3668 return true; 3669 } 3670 3671 /// \brief Check a template argument against its corresponding 3672 /// non-type template parameter. 3673 /// 3674 /// This routine implements the semantics of C++ [temp.arg.nontype]. 3675 /// If an error occurred, it returns ExprError(); otherwise, it 3676 /// returns the converted template argument. \p 3677 /// InstantiatedParamType is the type of the non-type template 3678 /// parameter after it has been instantiated. 3679 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3680 QualType InstantiatedParamType, Expr *Arg, 3681 TemplateArgument &Converted, 3682 CheckTemplateArgumentKind CTAK) { 3683 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3684 3685 // If either the parameter has a dependent type or the argument is 3686 // type-dependent, there's nothing we can check now. 3687 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3688 // FIXME: Produce a cloned, canonical expression? 3689 Converted = TemplateArgument(Arg); 3690 return Owned(Arg); 3691 } 3692 3693 // C++ [temp.arg.nontype]p5: 3694 // The following conversions are performed on each expression used 3695 // as a non-type template-argument. If a non-type 3696 // template-argument cannot be converted to the type of the 3697 // corresponding template-parameter then the program is 3698 // ill-formed. 3699 // 3700 // -- for a non-type template-parameter of integral or 3701 // enumeration type, integral promotions (4.5) and integral 3702 // conversions (4.7) are applied. 3703 QualType ParamType = InstantiatedParamType; 3704 QualType ArgType = Arg->getType(); 3705 if (ParamType->isIntegralOrEnumerationType()) { 3706 // C++ [temp.arg.nontype]p1: 3707 // A template-argument for a non-type, non-template 3708 // template-parameter shall be one of: 3709 // 3710 // -- an integral constant-expression of integral or enumeration 3711 // type; or 3712 // -- the name of a non-type template-parameter; or 3713 SourceLocation NonConstantLoc; 3714 llvm::APSInt Value; 3715 if (!ArgType->isIntegralOrEnumerationType()) { 3716 Diag(Arg->getSourceRange().getBegin(), 3717 diag::err_template_arg_not_integral_or_enumeral) 3718 << ArgType << Arg->getSourceRange(); 3719 Diag(Param->getLocation(), diag::note_template_param_here); 3720 return ExprError(); 3721 } else if (!Arg->isValueDependent() && 3722 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3723 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3724 << ArgType << Arg->getSourceRange(); 3725 return ExprError(); 3726 } 3727 3728 // From here on out, all we care about are the unqualified forms 3729 // of the parameter and argument types. 3730 ParamType = ParamType.getUnqualifiedType(); 3731 ArgType = ArgType.getUnqualifiedType(); 3732 3733 // Try to convert the argument to the parameter's type. 3734 if (Context.hasSameType(ParamType, ArgType)) { 3735 // Okay: no conversion necessary 3736 } else if (CTAK == CTAK_Deduced) { 3737 // C++ [temp.deduct.type]p17: 3738 // If, in the declaration of a function template with a non-type 3739 // template-parameter, the non-type template- parameter is used 3740 // in an expression in the function parameter-list and, if the 3741 // corresponding template-argument is deduced, the 3742 // template-argument type shall match the type of the 3743 // template-parameter exactly, except that a template-argument 3744 // deduced from an array bound may be of any integral type. 3745 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3746 << ArgType << ParamType; 3747 Diag(Param->getLocation(), diag::note_template_param_here); 3748 return ExprError(); 3749 } else if (ParamType->isBooleanType()) { 3750 // This is an integral-to-boolean conversion. 3751 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 3752 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3753 !ParamType->isEnumeralType()) { 3754 // This is an integral promotion or conversion. 3755 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 3756 } else { 3757 // We can't perform this conversion. 3758 Diag(Arg->getSourceRange().getBegin(), 3759 diag::err_template_arg_not_convertible) 3760 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3761 Diag(Param->getLocation(), diag::note_template_param_here); 3762 return ExprError(); 3763 } 3764 3765 // Add the value of this argument to the list of converted 3766 // arguments. We use the bitwidth and signedness of the template 3767 // parameter. 3768 if (Arg->isValueDependent()) { 3769 // The argument is value-dependent. Create a new 3770 // TemplateArgument with the converted expression. 3771 Converted = TemplateArgument(Arg); 3772 return Owned(Arg); 3773 } 3774 3775 QualType IntegerType = Context.getCanonicalType(ParamType); 3776 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3777 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3778 3779 if (ParamType->isBooleanType()) { 3780 // Value must be zero or one. 3781 Value = Value != 0; 3782 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3783 if (Value.getBitWidth() != AllowedBits) 3784 Value = Value.extOrTrunc(AllowedBits); 3785 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3786 } else { 3787 llvm::APSInt OldValue = Value; 3788 3789 // Coerce the template argument's value to the value it will have 3790 // based on the template parameter's type. 3791 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3792 if (Value.getBitWidth() != AllowedBits) 3793 Value = Value.extOrTrunc(AllowedBits); 3794 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 3795 3796 // Complain if an unsigned parameter received a negative value. 3797 if (IntegerType->isUnsignedIntegerOrEnumerationType() 3798 && (OldValue.isSigned() && OldValue.isNegative())) { 3799 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3800 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3801 << Arg->getSourceRange(); 3802 Diag(Param->getLocation(), diag::note_template_param_here); 3803 } 3804 3805 // Complain if we overflowed the template parameter's type. 3806 unsigned RequiredBits; 3807 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 3808 RequiredBits = OldValue.getActiveBits(); 3809 else if (OldValue.isUnsigned()) 3810 RequiredBits = OldValue.getActiveBits() + 1; 3811 else 3812 RequiredBits = OldValue.getMinSignedBits(); 3813 if (RequiredBits > AllowedBits) { 3814 Diag(Arg->getSourceRange().getBegin(), 3815 diag::warn_template_arg_too_large) 3816 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3817 << Arg->getSourceRange(); 3818 Diag(Param->getLocation(), diag::note_template_param_here); 3819 } 3820 } 3821 3822 Converted = TemplateArgument(Value, 3823 ParamType->isEnumeralType() ? ParamType 3824 : IntegerType); 3825 return Owned(Arg); 3826 } 3827 3828 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3829 3830 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3831 // from a template argument of type std::nullptr_t to a non-type 3832 // template parameter of type pointer to object, pointer to 3833 // function, or pointer-to-member, respectively. 3834 if (ArgType->isNullPtrType()) { 3835 if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 3836 Converted = TemplateArgument((NamedDecl *)0); 3837 return Owned(Arg); 3838 } 3839 3840 if (ParamType->isNullPtrType()) { 3841 llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true); 3842 Converted = TemplateArgument(Zero, Context.NullPtrTy); 3843 return Owned(Arg); 3844 } 3845 } 3846 3847 // Handle pointer-to-function, reference-to-function, and 3848 // pointer-to-member-function all in (roughly) the same way. 3849 if (// -- For a non-type template-parameter of type pointer to 3850 // function, only the function-to-pointer conversion (4.3) is 3851 // applied. If the template-argument represents a set of 3852 // overloaded functions (or a pointer to such), the matching 3853 // function is selected from the set (13.4). 3854 (ParamType->isPointerType() && 3855 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3856 // -- For a non-type template-parameter of type reference to 3857 // function, no conversions apply. If the template-argument 3858 // represents a set of overloaded functions, the matching 3859 // function is selected from the set (13.4). 3860 (ParamType->isReferenceType() && 3861 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3862 // -- For a non-type template-parameter of type pointer to 3863 // member function, no conversions apply. If the 3864 // template-argument represents a set of overloaded member 3865 // functions, the matching member function is selected from 3866 // the set (13.4). 3867 (ParamType->isMemberPointerType() && 3868 ParamType->getAs<MemberPointerType>()->getPointeeType() 3869 ->isFunctionType())) { 3870 3871 if (Arg->getType() == Context.OverloadTy) { 3872 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3873 true, 3874 FoundResult)) { 3875 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3876 return ExprError(); 3877 3878 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3879 ArgType = Arg->getType(); 3880 } else 3881 return ExprError(); 3882 } 3883 3884 if (!ParamType->isMemberPointerType()) { 3885 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3886 ParamType, 3887 Arg, Converted)) 3888 return ExprError(); 3889 return Owned(Arg); 3890 } 3891 3892 bool ObjCLifetimeConversion; 3893 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3894 false, ObjCLifetimeConversion)) { 3895 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3896 } else if (!Context.hasSameUnqualifiedType(ArgType, 3897 ParamType.getNonReferenceType())) { 3898 // We can't perform this conversion. 3899 Diag(Arg->getSourceRange().getBegin(), 3900 diag::err_template_arg_not_convertible) 3901 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3902 Diag(Param->getLocation(), diag::note_template_param_here); 3903 return ExprError(); 3904 } 3905 3906 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3907 return ExprError(); 3908 return Owned(Arg); 3909 } 3910 3911 if (ParamType->isPointerType()) { 3912 // -- for a non-type template-parameter of type pointer to 3913 // object, qualification conversions (4.4) and the 3914 // array-to-pointer conversion (4.2) are applied. 3915 // C++0x also allows a value of std::nullptr_t. 3916 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3917 "Only object pointers allowed here"); 3918 3919 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3920 ParamType, 3921 Arg, Converted)) 3922 return ExprError(); 3923 return Owned(Arg); 3924 } 3925 3926 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3927 // -- For a non-type template-parameter of type reference to 3928 // object, no conversions apply. The type referred to by the 3929 // reference may be more cv-qualified than the (otherwise 3930 // identical) type of the template-argument. The 3931 // template-parameter is bound directly to the 3932 // template-argument, which must be an lvalue. 3933 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3934 "Only object references allowed here"); 3935 3936 if (Arg->getType() == Context.OverloadTy) { 3937 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3938 ParamRefType->getPointeeType(), 3939 true, 3940 FoundResult)) { 3941 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3942 return ExprError(); 3943 3944 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3945 ArgType = Arg->getType(); 3946 } else 3947 return ExprError(); 3948 } 3949 3950 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3951 ParamType, 3952 Arg, Converted)) 3953 return ExprError(); 3954 return Owned(Arg); 3955 } 3956 3957 // -- For a non-type template-parameter of type pointer to data 3958 // member, qualification conversions (4.4) are applied. 3959 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3960 3961 bool ObjCLifetimeConversion; 3962 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3963 // Types match exactly: nothing more to do here. 3964 } else if (IsQualificationConversion(ArgType, ParamType, false, 3965 ObjCLifetimeConversion)) { 3966 Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take(); 3967 } else { 3968 // We can't perform this conversion. 3969 Diag(Arg->getSourceRange().getBegin(), 3970 diag::err_template_arg_not_convertible) 3971 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3972 Diag(Param->getLocation(), diag::note_template_param_here); 3973 return ExprError(); 3974 } 3975 3976 if (CheckTemplateArgumentPointerToMember(Arg, Converted)) 3977 return ExprError(); 3978 return Owned(Arg); 3979 } 3980 3981 /// \brief Check a template argument against its corresponding 3982 /// template template parameter. 3983 /// 3984 /// This routine implements the semantics of C++ [temp.arg.template]. 3985 /// It returns true if an error occurred, and false otherwise. 3986 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3987 const TemplateArgumentLoc &Arg) { 3988 TemplateName Name = Arg.getArgument().getAsTemplate(); 3989 TemplateDecl *Template = Name.getAsTemplateDecl(); 3990 if (!Template) { 3991 // Any dependent template name is fine. 3992 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3993 return false; 3994 } 3995 3996 // C++0x [temp.arg.template]p1: 3997 // A template-argument for a template template-parameter shall be 3998 // the name of a class template or an alias template, expressed as an 3999 // id-expression. When the template-argument names a class template, only 4000 // primary class templates are considered when matching the 4001 // template template argument with the corresponding parameter; 4002 // partial specializations are not considered even if their 4003 // parameter lists match that of the template template parameter. 4004 // 4005 // Note that we also allow template template parameters here, which 4006 // will happen when we are dealing with, e.g., class template 4007 // partial specializations. 4008 if (!isa<ClassTemplateDecl>(Template) && 4009 !isa<TemplateTemplateParmDecl>(Template) && 4010 !isa<TypeAliasTemplateDecl>(Template)) { 4011 assert(isa<FunctionTemplateDecl>(Template) && 4012 "Only function templates are possible here"); 4013 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4014 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4015 << Template; 4016 } 4017 4018 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4019 Param->getTemplateParameters(), 4020 true, 4021 TPL_TemplateTemplateArgumentMatch, 4022 Arg.getLocation()); 4023 } 4024 4025 /// \brief Given a non-type template argument that refers to a 4026 /// declaration and the type of its corresponding non-type template 4027 /// parameter, produce an expression that properly refers to that 4028 /// declaration. 4029 ExprResult 4030 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4031 QualType ParamType, 4032 SourceLocation Loc) { 4033 assert(Arg.getKind() == TemplateArgument::Declaration && 4034 "Only declaration template arguments permitted here"); 4035 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4036 4037 if (VD->getDeclContext()->isRecord() && 4038 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4039 // If the value is a class member, we might have a pointer-to-member. 4040 // Determine whether the non-type template template parameter is of 4041 // pointer-to-member type. If so, we need to build an appropriate 4042 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4043 // would refer to the member itself. 4044 if (ParamType->isMemberPointerType()) { 4045 QualType ClassType 4046 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4047 NestedNameSpecifier *Qualifier 4048 = NestedNameSpecifier::Create(Context, 0, false, 4049 ClassType.getTypePtr()); 4050 CXXScopeSpec SS; 4051 SS.MakeTrivial(Context, Qualifier, Loc); 4052 4053 // The actual value-ness of this is unimportant, but for 4054 // internal consistency's sake, references to instance methods 4055 // are r-values. 4056 ExprValueKind VK = VK_LValue; 4057 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4058 VK = VK_RValue; 4059 4060 ExprResult RefExpr = BuildDeclRefExpr(VD, 4061 VD->getType().getNonReferenceType(), 4062 VK, 4063 Loc, 4064 &SS); 4065 if (RefExpr.isInvalid()) 4066 return ExprError(); 4067 4068 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4069 4070 // We might need to perform a trailing qualification conversion, since 4071 // the element type on the parameter could be more qualified than the 4072 // element type in the expression we constructed. 4073 bool ObjCLifetimeConversion; 4074 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4075 ParamType.getUnqualifiedType(), false, 4076 ObjCLifetimeConversion)) 4077 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4078 4079 assert(!RefExpr.isInvalid() && 4080 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4081 ParamType.getUnqualifiedType())); 4082 return move(RefExpr); 4083 } 4084 } 4085 4086 QualType T = VD->getType().getNonReferenceType(); 4087 if (ParamType->isPointerType()) { 4088 // When the non-type template parameter is a pointer, take the 4089 // address of the declaration. 4090 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4091 if (RefExpr.isInvalid()) 4092 return ExprError(); 4093 4094 if (T->isFunctionType() || T->isArrayType()) { 4095 // Decay functions and arrays. 4096 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4097 if (RefExpr.isInvalid()) 4098 return ExprError(); 4099 4100 return move(RefExpr); 4101 } 4102 4103 // Take the address of everything else 4104 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4105 } 4106 4107 ExprValueKind VK = VK_RValue; 4108 4109 // If the non-type template parameter has reference type, qualify the 4110 // resulting declaration reference with the extra qualifiers on the 4111 // type that the reference refers to. 4112 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4113 VK = VK_LValue; 4114 T = Context.getQualifiedType(T, 4115 TargetRef->getPointeeType().getQualifiers()); 4116 } 4117 4118 return BuildDeclRefExpr(VD, T, VK, Loc); 4119 } 4120 4121 /// \brief Construct a new expression that refers to the given 4122 /// integral template argument with the given source-location 4123 /// information. 4124 /// 4125 /// This routine takes care of the mapping from an integral template 4126 /// argument (which may have any integral type) to the appropriate 4127 /// literal value. 4128 ExprResult 4129 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4130 SourceLocation Loc) { 4131 assert(Arg.getKind() == TemplateArgument::Integral && 4132 "Operation is only valid for integral template arguments"); 4133 QualType T = Arg.getIntegralType(); 4134 if (T->isCharType() || T->isWideCharType()) 4135 return Owned(new (Context) CharacterLiteral( 4136 Arg.getAsIntegral()->getZExtValue(), 4137 T->isWideCharType(), T, Loc)); 4138 if (T->isBooleanType()) 4139 return Owned(new (Context) CXXBoolLiteralExpr( 4140 Arg.getAsIntegral()->getBoolValue(), 4141 T, Loc)); 4142 4143 if (T->isNullPtrType()) 4144 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4145 4146 // If this is an enum type that we're instantiating, we need to use an integer 4147 // type the same size as the enumerator. We don't want to build an 4148 // IntegerLiteral with enum type. 4149 QualType BT; 4150 if (const EnumType *ET = T->getAs<EnumType>()) 4151 BT = ET->getDecl()->getIntegerType(); 4152 else 4153 BT = T; 4154 4155 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 4156 if (T->isEnumeralType()) { 4157 // FIXME: This is a hack. We need a better way to handle substituted 4158 // non-type template parameters. 4159 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4160 Context.getTrivialTypeSourceInfo(T, Loc), 4161 Loc, Loc); 4162 } 4163 4164 return Owned(E); 4165 } 4166 4167 /// \brief Match two template parameters within template parameter lists. 4168 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4169 bool Complain, 4170 Sema::TemplateParameterListEqualKind Kind, 4171 SourceLocation TemplateArgLoc) { 4172 // Check the actual kind (type, non-type, template). 4173 if (Old->getKind() != New->getKind()) { 4174 if (Complain) { 4175 unsigned NextDiag = diag::err_template_param_different_kind; 4176 if (TemplateArgLoc.isValid()) { 4177 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4178 NextDiag = diag::note_template_param_different_kind; 4179 } 4180 S.Diag(New->getLocation(), NextDiag) 4181 << (Kind != Sema::TPL_TemplateMatch); 4182 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4183 << (Kind != Sema::TPL_TemplateMatch); 4184 } 4185 4186 return false; 4187 } 4188 4189 // Check that both are parameter packs are neither are parameter packs. 4190 // However, if we are matching a template template argument to a 4191 // template template parameter, the template template parameter can have 4192 // a parameter pack where the template template argument does not. 4193 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4194 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4195 Old->isTemplateParameterPack())) { 4196 if (Complain) { 4197 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4198 if (TemplateArgLoc.isValid()) { 4199 S.Diag(TemplateArgLoc, 4200 diag::err_template_arg_template_params_mismatch); 4201 NextDiag = diag::note_template_parameter_pack_non_pack; 4202 } 4203 4204 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4205 : isa<NonTypeTemplateParmDecl>(New)? 1 4206 : 2; 4207 S.Diag(New->getLocation(), NextDiag) 4208 << ParamKind << New->isParameterPack(); 4209 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4210 << ParamKind << Old->isParameterPack(); 4211 } 4212 4213 return false; 4214 } 4215 4216 // For non-type template parameters, check the type of the parameter. 4217 if (NonTypeTemplateParmDecl *OldNTTP 4218 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4219 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4220 4221 // If we are matching a template template argument to a template 4222 // template parameter and one of the non-type template parameter types 4223 // is dependent, then we must wait until template instantiation time 4224 // to actually compare the arguments. 4225 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4226 (OldNTTP->getType()->isDependentType() || 4227 NewNTTP->getType()->isDependentType())) 4228 return true; 4229 4230 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4231 if (Complain) { 4232 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4233 if (TemplateArgLoc.isValid()) { 4234 S.Diag(TemplateArgLoc, 4235 diag::err_template_arg_template_params_mismatch); 4236 NextDiag = diag::note_template_nontype_parm_different_type; 4237 } 4238 S.Diag(NewNTTP->getLocation(), NextDiag) 4239 << NewNTTP->getType() 4240 << (Kind != Sema::TPL_TemplateMatch); 4241 S.Diag(OldNTTP->getLocation(), 4242 diag::note_template_nontype_parm_prev_declaration) 4243 << OldNTTP->getType(); 4244 } 4245 4246 return false; 4247 } 4248 4249 return true; 4250 } 4251 4252 // For template template parameters, check the template parameter types. 4253 // The template parameter lists of template template 4254 // parameters must agree. 4255 if (TemplateTemplateParmDecl *OldTTP 4256 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4257 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4258 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4259 OldTTP->getTemplateParameters(), 4260 Complain, 4261 (Kind == Sema::TPL_TemplateMatch 4262 ? Sema::TPL_TemplateTemplateParmMatch 4263 : Kind), 4264 TemplateArgLoc); 4265 } 4266 4267 return true; 4268 } 4269 4270 /// \brief Diagnose a known arity mismatch when comparing template argument 4271 /// lists. 4272 static 4273 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4274 TemplateParameterList *New, 4275 TemplateParameterList *Old, 4276 Sema::TemplateParameterListEqualKind Kind, 4277 SourceLocation TemplateArgLoc) { 4278 unsigned NextDiag = diag::err_template_param_list_different_arity; 4279 if (TemplateArgLoc.isValid()) { 4280 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4281 NextDiag = diag::note_template_param_list_different_arity; 4282 } 4283 S.Diag(New->getTemplateLoc(), NextDiag) 4284 << (New->size() > Old->size()) 4285 << (Kind != Sema::TPL_TemplateMatch) 4286 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4287 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4288 << (Kind != Sema::TPL_TemplateMatch) 4289 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4290 } 4291 4292 /// \brief Determine whether the given template parameter lists are 4293 /// equivalent. 4294 /// 4295 /// \param New The new template parameter list, typically written in the 4296 /// source code as part of a new template declaration. 4297 /// 4298 /// \param Old The old template parameter list, typically found via 4299 /// name lookup of the template declared with this template parameter 4300 /// list. 4301 /// 4302 /// \param Complain If true, this routine will produce a diagnostic if 4303 /// the template parameter lists are not equivalent. 4304 /// 4305 /// \param Kind describes how we are to match the template parameter lists. 4306 /// 4307 /// \param TemplateArgLoc If this source location is valid, then we 4308 /// are actually checking the template parameter list of a template 4309 /// argument (New) against the template parameter list of its 4310 /// corresponding template template parameter (Old). We produce 4311 /// slightly different diagnostics in this scenario. 4312 /// 4313 /// \returns True if the template parameter lists are equal, false 4314 /// otherwise. 4315 bool 4316 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4317 TemplateParameterList *Old, 4318 bool Complain, 4319 TemplateParameterListEqualKind Kind, 4320 SourceLocation TemplateArgLoc) { 4321 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4322 if (Complain) 4323 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4324 TemplateArgLoc); 4325 4326 return false; 4327 } 4328 4329 // C++0x [temp.arg.template]p3: 4330 // A template-argument matches a template template-parameter (call it P) 4331 // when each of the template parameters in the template-parameter-list of 4332 // the template-argument's corresponding class template or alias template 4333 // (call it A) matches the corresponding template parameter in the 4334 // template-parameter-list of P. [...] 4335 TemplateParameterList::iterator NewParm = New->begin(); 4336 TemplateParameterList::iterator NewParmEnd = New->end(); 4337 for (TemplateParameterList::iterator OldParm = Old->begin(), 4338 OldParmEnd = Old->end(); 4339 OldParm != OldParmEnd; ++OldParm) { 4340 if (Kind != TPL_TemplateTemplateArgumentMatch || 4341 !(*OldParm)->isTemplateParameterPack()) { 4342 if (NewParm == NewParmEnd) { 4343 if (Complain) 4344 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4345 TemplateArgLoc); 4346 4347 return false; 4348 } 4349 4350 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4351 Kind, TemplateArgLoc)) 4352 return false; 4353 4354 ++NewParm; 4355 continue; 4356 } 4357 4358 // C++0x [temp.arg.template]p3: 4359 // [...] When P's template- parameter-list contains a template parameter 4360 // pack (14.5.3), the template parameter pack will match zero or more 4361 // template parameters or template parameter packs in the 4362 // template-parameter-list of A with the same type and form as the 4363 // template parameter pack in P (ignoring whether those template 4364 // parameters are template parameter packs). 4365 for (; NewParm != NewParmEnd; ++NewParm) { 4366 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4367 Kind, TemplateArgLoc)) 4368 return false; 4369 } 4370 } 4371 4372 // Make sure we exhausted all of the arguments. 4373 if (NewParm != NewParmEnd) { 4374 if (Complain) 4375 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4376 TemplateArgLoc); 4377 4378 return false; 4379 } 4380 4381 return true; 4382 } 4383 4384 /// \brief Check whether a template can be declared within this scope. 4385 /// 4386 /// If the template declaration is valid in this scope, returns 4387 /// false. Otherwise, issues a diagnostic and returns true. 4388 bool 4389 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4390 // Find the nearest enclosing declaration scope. 4391 while ((S->getFlags() & Scope::DeclScope) == 0 || 4392 (S->getFlags() & Scope::TemplateParamScope) != 0) 4393 S = S->getParent(); 4394 4395 // C++ [temp]p2: 4396 // A template-declaration can appear only as a namespace scope or 4397 // class scope declaration. 4398 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4399 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4400 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4401 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4402 << TemplateParams->getSourceRange(); 4403 4404 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4405 Ctx = Ctx->getParent(); 4406 4407 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4408 return false; 4409 4410 return Diag(TemplateParams->getTemplateLoc(), 4411 diag::err_template_outside_namespace_or_class_scope) 4412 << TemplateParams->getSourceRange(); 4413 } 4414 4415 /// \brief Determine what kind of template specialization the given declaration 4416 /// is. 4417 static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 4418 if (!D) 4419 return TSK_Undeclared; 4420 4421 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4422 return Record->getTemplateSpecializationKind(); 4423 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4424 return Function->getTemplateSpecializationKind(); 4425 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4426 return Var->getTemplateSpecializationKind(); 4427 4428 return TSK_Undeclared; 4429 } 4430 4431 /// \brief Check whether a specialization is well-formed in the current 4432 /// context. 4433 /// 4434 /// This routine determines whether a template specialization can be declared 4435 /// in the current context (C++ [temp.expl.spec]p2). 4436 /// 4437 /// \param S the semantic analysis object for which this check is being 4438 /// performed. 4439 /// 4440 /// \param Specialized the entity being specialized or instantiated, which 4441 /// may be a kind of template (class template, function template, etc.) or 4442 /// a member of a class template (member function, static data member, 4443 /// member class). 4444 /// 4445 /// \param PrevDecl the previous declaration of this entity, if any. 4446 /// 4447 /// \param Loc the location of the explicit specialization or instantiation of 4448 /// this entity. 4449 /// 4450 /// \param IsPartialSpecialization whether this is a partial specialization of 4451 /// a class template. 4452 /// 4453 /// \returns true if there was an error that we cannot recover from, false 4454 /// otherwise. 4455 static bool CheckTemplateSpecializationScope(Sema &S, 4456 NamedDecl *Specialized, 4457 NamedDecl *PrevDecl, 4458 SourceLocation Loc, 4459 bool IsPartialSpecialization) { 4460 // Keep these "kind" numbers in sync with the %select statements in the 4461 // various diagnostics emitted by this routine. 4462 int EntityKind = 0; 4463 if (isa<ClassTemplateDecl>(Specialized)) 4464 EntityKind = IsPartialSpecialization? 1 : 0; 4465 else if (isa<FunctionTemplateDecl>(Specialized)) 4466 EntityKind = 2; 4467 else if (isa<CXXMethodDecl>(Specialized)) 4468 EntityKind = 3; 4469 else if (isa<VarDecl>(Specialized)) 4470 EntityKind = 4; 4471 else if (isa<RecordDecl>(Specialized)) 4472 EntityKind = 5; 4473 else { 4474 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4475 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4476 return true; 4477 } 4478 4479 // C++ [temp.expl.spec]p2: 4480 // An explicit specialization shall be declared in the namespace 4481 // of which the template is a member, or, for member templates, in 4482 // the namespace of which the enclosing class or enclosing class 4483 // template is a member. An explicit specialization of a member 4484 // function, member class or static data member of a class 4485 // template shall be declared in the namespace of which the class 4486 // template is a member. Such a declaration may also be a 4487 // definition. If the declaration is not a definition, the 4488 // specialization may be defined later in the name- space in which 4489 // the explicit specialization was declared, or in a namespace 4490 // that encloses the one in which the explicit specialization was 4491 // declared. 4492 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4493 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4494 << Specialized; 4495 return true; 4496 } 4497 4498 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4499 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4500 << Specialized; 4501 return true; 4502 } 4503 4504 // C++ [temp.class.spec]p6: 4505 // A class template partial specialization may be declared or redeclared 4506 // in any namespace scope in which its definition may be defined (14.5.1 4507 // and 14.5.2). 4508 bool ComplainedAboutScope = false; 4509 DeclContext *SpecializedContext 4510 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4511 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4512 if ((!PrevDecl || 4513 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4514 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4515 // C++ [temp.exp.spec]p2: 4516 // An explicit specialization shall be declared in the namespace of which 4517 // the template is a member, or, for member templates, in the namespace 4518 // of which the enclosing class or enclosing class template is a member. 4519 // An explicit specialization of a member function, member class or 4520 // static data member of a class template shall be declared in the 4521 // namespace of which the class template is a member. 4522 // 4523 // C++0x [temp.expl.spec]p2: 4524 // An explicit specialization shall be declared in a namespace enclosing 4525 // the specialized template. 4526 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4527 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4528 bool IsCPlusPlus0xExtension 4529 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4530 if (isa<TranslationUnitDecl>(SpecializedContext)) 4531 S.Diag(Loc, IsCPlusPlus0xExtension 4532 ? diag::ext_template_spec_decl_out_of_scope_global 4533 : diag::err_template_spec_decl_out_of_scope_global) 4534 << EntityKind << Specialized; 4535 else if (isa<NamespaceDecl>(SpecializedContext)) 4536 S.Diag(Loc, IsCPlusPlus0xExtension 4537 ? diag::ext_template_spec_decl_out_of_scope 4538 : diag::err_template_spec_decl_out_of_scope) 4539 << EntityKind << Specialized 4540 << cast<NamedDecl>(SpecializedContext); 4541 4542 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4543 ComplainedAboutScope = true; 4544 } 4545 } 4546 4547 // Make sure that this redeclaration (or definition) occurs in an enclosing 4548 // namespace. 4549 // Note that HandleDeclarator() performs this check for explicit 4550 // specializations of function templates, static data members, and member 4551 // functions, so we skip the check here for those kinds of entities. 4552 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4553 // Should we refactor that check, so that it occurs later? 4554 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4555 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4556 isa<FunctionDecl>(Specialized))) { 4557 if (isa<TranslationUnitDecl>(SpecializedContext)) 4558 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4559 << EntityKind << Specialized; 4560 else if (isa<NamespaceDecl>(SpecializedContext)) 4561 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4562 << EntityKind << Specialized 4563 << cast<NamedDecl>(SpecializedContext); 4564 4565 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4566 } 4567 4568 // FIXME: check for specialization-after-instantiation errors and such. 4569 4570 return false; 4571 } 4572 4573 /// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4574 /// that checks non-type template partial specialization arguments. 4575 static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4576 NonTypeTemplateParmDecl *Param, 4577 const TemplateArgument *Args, 4578 unsigned NumArgs) { 4579 for (unsigned I = 0; I != NumArgs; ++I) { 4580 if (Args[I].getKind() == TemplateArgument::Pack) { 4581 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4582 Args[I].pack_begin(), 4583 Args[I].pack_size())) 4584 return true; 4585 4586 continue; 4587 } 4588 4589 Expr *ArgExpr = Args[I].getAsExpr(); 4590 if (!ArgExpr) { 4591 continue; 4592 } 4593 4594 // We can have a pack expansion of any of the bullets below. 4595 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4596 ArgExpr = Expansion->getPattern(); 4597 4598 // Strip off any implicit casts we added as part of type checking. 4599 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4600 ArgExpr = ICE->getSubExpr(); 4601 4602 // C++ [temp.class.spec]p8: 4603 // A non-type argument is non-specialized if it is the name of a 4604 // non-type parameter. All other non-type arguments are 4605 // specialized. 4606 // 4607 // Below, we check the two conditions that only apply to 4608 // specialized non-type arguments, so skip any non-specialized 4609 // arguments. 4610 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4611 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4612 continue; 4613 4614 // C++ [temp.class.spec]p9: 4615 // Within the argument list of a class template partial 4616 // specialization, the following restrictions apply: 4617 // -- A partially specialized non-type argument expression 4618 // shall not involve a template parameter of the partial 4619 // specialization except when the argument expression is a 4620 // simple identifier. 4621 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4622 S.Diag(ArgExpr->getLocStart(), 4623 diag::err_dependent_non_type_arg_in_partial_spec) 4624 << ArgExpr->getSourceRange(); 4625 return true; 4626 } 4627 4628 // -- The type of a template parameter corresponding to a 4629 // specialized non-type argument shall not be dependent on a 4630 // parameter of the specialization. 4631 if (Param->getType()->isDependentType()) { 4632 S.Diag(ArgExpr->getLocStart(), 4633 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4634 << Param->getType() 4635 << ArgExpr->getSourceRange(); 4636 S.Diag(Param->getLocation(), diag::note_template_param_here); 4637 return true; 4638 } 4639 } 4640 4641 return false; 4642 } 4643 4644 /// \brief Check the non-type template arguments of a class template 4645 /// partial specialization according to C++ [temp.class.spec]p9. 4646 /// 4647 /// \param TemplateParams the template parameters of the primary class 4648 /// template. 4649 /// 4650 /// \param TemplateArg the template arguments of the class template 4651 /// partial specialization. 4652 /// 4653 /// \returns true if there was an error, false otherwise. 4654 static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4655 TemplateParameterList *TemplateParams, 4656 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4657 const TemplateArgument *ArgList = TemplateArgs.data(); 4658 4659 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4660 NonTypeTemplateParmDecl *Param 4661 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4662 if (!Param) 4663 continue; 4664 4665 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4666 &ArgList[I], 1)) 4667 return true; 4668 } 4669 4670 return false; 4671 } 4672 4673 /// \brief Retrieve the previous declaration of the given declaration. 4674 static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4675 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4676 return VD->getPreviousDeclaration(); 4677 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4678 return FD->getPreviousDeclaration(); 4679 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4680 return TD->getPreviousDeclaration(); 4681 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 4682 return TD->getPreviousDeclaration(); 4683 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4684 return FTD->getPreviousDeclaration(); 4685 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4686 return CTD->getPreviousDeclaration(); 4687 return 0; 4688 } 4689 4690 DeclResult 4691 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4692 TagUseKind TUK, 4693 SourceLocation KWLoc, 4694 CXXScopeSpec &SS, 4695 TemplateTy TemplateD, 4696 SourceLocation TemplateNameLoc, 4697 SourceLocation LAngleLoc, 4698 ASTTemplateArgsPtr TemplateArgsIn, 4699 SourceLocation RAngleLoc, 4700 AttributeList *Attr, 4701 MultiTemplateParamsArg TemplateParameterLists) { 4702 assert(TUK != TUK_Reference && "References are not specializations"); 4703 4704 // NOTE: KWLoc is the location of the tag keyword. This will instead 4705 // store the location of the outermost template keyword in the declaration. 4706 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 4707 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 4708 4709 // Find the class template we're specializing 4710 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4711 ClassTemplateDecl *ClassTemplate 4712 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4713 4714 if (!ClassTemplate) { 4715 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4716 << (Name.getAsTemplateDecl() && 4717 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4718 return true; 4719 } 4720 4721 bool isExplicitSpecialization = false; 4722 bool isPartialSpecialization = false; 4723 4724 // Check the validity of the template headers that introduce this 4725 // template. 4726 // FIXME: We probably shouldn't complain about these headers for 4727 // friend declarations. 4728 bool Invalid = false; 4729 TemplateParameterList *TemplateParams 4730 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 4731 TemplateNameLoc, 4732 SS, 4733 (TemplateParameterList**)TemplateParameterLists.get(), 4734 TemplateParameterLists.size(), 4735 TUK == TUK_Friend, 4736 isExplicitSpecialization, 4737 Invalid); 4738 if (Invalid) 4739 return true; 4740 4741 if (TemplateParams && TemplateParams->size() > 0) { 4742 isPartialSpecialization = true; 4743 4744 if (TUK == TUK_Friend) { 4745 Diag(KWLoc, diag::err_partial_specialization_friend) 4746 << SourceRange(LAngleLoc, RAngleLoc); 4747 return true; 4748 } 4749 4750 // C++ [temp.class.spec]p10: 4751 // The template parameter list of a specialization shall not 4752 // contain default template argument values. 4753 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4754 Decl *Param = TemplateParams->getParam(I); 4755 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4756 if (TTP->hasDefaultArgument()) { 4757 Diag(TTP->getDefaultArgumentLoc(), 4758 diag::err_default_arg_in_partial_spec); 4759 TTP->removeDefaultArgument(); 4760 } 4761 } else if (NonTypeTemplateParmDecl *NTTP 4762 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4763 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4764 Diag(NTTP->getDefaultArgumentLoc(), 4765 diag::err_default_arg_in_partial_spec) 4766 << DefArg->getSourceRange(); 4767 NTTP->removeDefaultArgument(); 4768 } 4769 } else { 4770 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4771 if (TTP->hasDefaultArgument()) { 4772 Diag(TTP->getDefaultArgument().getLocation(), 4773 diag::err_default_arg_in_partial_spec) 4774 << TTP->getDefaultArgument().getSourceRange(); 4775 TTP->removeDefaultArgument(); 4776 } 4777 } 4778 } 4779 } else if (TemplateParams) { 4780 if (TUK == TUK_Friend) 4781 Diag(KWLoc, diag::err_template_spec_friend) 4782 << FixItHint::CreateRemoval( 4783 SourceRange(TemplateParams->getTemplateLoc(), 4784 TemplateParams->getRAngleLoc())) 4785 << SourceRange(LAngleLoc, RAngleLoc); 4786 else 4787 isExplicitSpecialization = true; 4788 } else if (TUK != TUK_Friend) { 4789 Diag(KWLoc, diag::err_template_spec_needs_header) 4790 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4791 isExplicitSpecialization = true; 4792 } 4793 4794 // Check that the specialization uses the same tag kind as the 4795 // original template. 4796 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4797 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4798 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4799 Kind, TUK == TUK_Definition, KWLoc, 4800 *ClassTemplate->getIdentifier())) { 4801 Diag(KWLoc, diag::err_use_with_wrong_tag) 4802 << ClassTemplate 4803 << FixItHint::CreateReplacement(KWLoc, 4804 ClassTemplate->getTemplatedDecl()->getKindName()); 4805 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4806 diag::note_previous_use); 4807 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4808 } 4809 4810 // Translate the parser's template argument list in our AST format. 4811 TemplateArgumentListInfo TemplateArgs; 4812 TemplateArgs.setLAngleLoc(LAngleLoc); 4813 TemplateArgs.setRAngleLoc(RAngleLoc); 4814 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4815 4816 // Check for unexpanded parameter packs in any of the template arguments. 4817 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4818 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4819 UPPC_PartialSpecialization)) 4820 return true; 4821 4822 // Check that the template argument list is well-formed for this 4823 // template. 4824 llvm::SmallVector<TemplateArgument, 4> Converted; 4825 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4826 TemplateArgs, false, Converted)) 4827 return true; 4828 4829 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4830 "Converted template argument list is too short!"); 4831 4832 // Find the class template (partial) specialization declaration that 4833 // corresponds to these arguments. 4834 if (isPartialSpecialization) { 4835 if (CheckClassTemplatePartialSpecializationArgs(*this, 4836 ClassTemplate->getTemplateParameters(), 4837 Converted)) 4838 return true; 4839 4840 bool InstantiationDependent; 4841 if (!Name.isDependent() && 4842 !TemplateSpecializationType::anyDependentTemplateArguments( 4843 TemplateArgs.getArgumentArray(), 4844 TemplateArgs.size(), 4845 InstantiationDependent)) { 4846 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4847 << ClassTemplate->getDeclName(); 4848 isPartialSpecialization = false; 4849 } 4850 } 4851 4852 void *InsertPos = 0; 4853 ClassTemplateSpecializationDecl *PrevDecl = 0; 4854 4855 if (isPartialSpecialization) 4856 // FIXME: Template parameter list matters, too 4857 PrevDecl 4858 = ClassTemplate->findPartialSpecialization(Converted.data(), 4859 Converted.size(), 4860 InsertPos); 4861 else 4862 PrevDecl 4863 = ClassTemplate->findSpecialization(Converted.data(), 4864 Converted.size(), InsertPos); 4865 4866 ClassTemplateSpecializationDecl *Specialization = 0; 4867 4868 // Check whether we can declare a class template specialization in 4869 // the current scope. 4870 if (TUK != TUK_Friend && 4871 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4872 TemplateNameLoc, 4873 isPartialSpecialization)) 4874 return true; 4875 4876 // The canonical type 4877 QualType CanonType; 4878 if (PrevDecl && 4879 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4880 TUK == TUK_Friend)) { 4881 // Since the only prior class template specialization with these 4882 // arguments was referenced but not declared, or we're only 4883 // referencing this specialization as a friend, reuse that 4884 // declaration node as our own, updating its source location and 4885 // the list of outer template parameters to reflect our new declaration. 4886 Specialization = PrevDecl; 4887 Specialization->setLocation(TemplateNameLoc); 4888 if (TemplateParameterLists.size() > 0) { 4889 Specialization->setTemplateParameterListsInfo(Context, 4890 TemplateParameterLists.size(), 4891 (TemplateParameterList**) TemplateParameterLists.release()); 4892 } 4893 PrevDecl = 0; 4894 CanonType = Context.getTypeDeclType(Specialization); 4895 } else if (isPartialSpecialization) { 4896 // Build the canonical type that describes the converted template 4897 // arguments of the class template partial specialization. 4898 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4899 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4900 Converted.data(), 4901 Converted.size()); 4902 4903 if (Context.hasSameType(CanonType, 4904 ClassTemplate->getInjectedClassNameSpecialization())) { 4905 // C++ [temp.class.spec]p9b3: 4906 // 4907 // -- The argument list of the specialization shall not be identical 4908 // to the implicit argument list of the primary template. 4909 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4910 << (TUK == TUK_Definition) 4911 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4912 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4913 ClassTemplate->getIdentifier(), 4914 TemplateNameLoc, 4915 Attr, 4916 TemplateParams, 4917 AS_none, 4918 TemplateParameterLists.size() - 1, 4919 (TemplateParameterList**) TemplateParameterLists.release()); 4920 } 4921 4922 // Create a new class template partial specialization declaration node. 4923 ClassTemplatePartialSpecializationDecl *PrevPartial 4924 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4925 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4926 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4927 ClassTemplatePartialSpecializationDecl *Partial 4928 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4929 ClassTemplate->getDeclContext(), 4930 KWLoc, TemplateNameLoc, 4931 TemplateParams, 4932 ClassTemplate, 4933 Converted.data(), 4934 Converted.size(), 4935 TemplateArgs, 4936 CanonType, 4937 PrevPartial, 4938 SequenceNumber); 4939 SetNestedNameSpecifier(Partial, SS); 4940 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 4941 Partial->setTemplateParameterListsInfo(Context, 4942 TemplateParameterLists.size() - 1, 4943 (TemplateParameterList**) TemplateParameterLists.release()); 4944 } 4945 4946 if (!PrevPartial) 4947 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4948 Specialization = Partial; 4949 4950 // If we are providing an explicit specialization of a member class 4951 // template specialization, make a note of that. 4952 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4953 PrevPartial->setMemberSpecialization(); 4954 4955 // Check that all of the template parameters of the class template 4956 // partial specialization are deducible from the template 4957 // arguments. If not, this class template partial specialization 4958 // will never be used. 4959 llvm::SmallVector<bool, 8> DeducibleParams; 4960 DeducibleParams.resize(TemplateParams->size()); 4961 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4962 TemplateParams->getDepth(), 4963 DeducibleParams); 4964 unsigned NumNonDeducible = 0; 4965 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4966 if (!DeducibleParams[I]) 4967 ++NumNonDeducible; 4968 4969 if (NumNonDeducible) { 4970 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4971 << (NumNonDeducible > 1) 4972 << SourceRange(TemplateNameLoc, RAngleLoc); 4973 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4974 if (!DeducibleParams[I]) { 4975 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4976 if (Param->getDeclName()) 4977 Diag(Param->getLocation(), 4978 diag::note_partial_spec_unused_parameter) 4979 << Param->getDeclName(); 4980 else 4981 Diag(Param->getLocation(), 4982 diag::note_partial_spec_unused_parameter) 4983 << "<anonymous>"; 4984 } 4985 } 4986 } 4987 } else { 4988 // Create a new class template specialization declaration node for 4989 // this explicit specialization or friend declaration. 4990 Specialization 4991 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4992 ClassTemplate->getDeclContext(), 4993 KWLoc, TemplateNameLoc, 4994 ClassTemplate, 4995 Converted.data(), 4996 Converted.size(), 4997 PrevDecl); 4998 SetNestedNameSpecifier(Specialization, SS); 4999 if (TemplateParameterLists.size() > 0) { 5000 Specialization->setTemplateParameterListsInfo(Context, 5001 TemplateParameterLists.size(), 5002 (TemplateParameterList**) TemplateParameterLists.release()); 5003 } 5004 5005 if (!PrevDecl) 5006 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5007 5008 CanonType = Context.getTypeDeclType(Specialization); 5009 } 5010 5011 // C++ [temp.expl.spec]p6: 5012 // If a template, a member template or the member of a class template is 5013 // explicitly specialized then that specialization shall be declared 5014 // before the first use of that specialization that would cause an implicit 5015 // instantiation to take place, in every translation unit in which such a 5016 // use occurs; no diagnostic is required. 5017 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5018 bool Okay = false; 5019 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5020 // Is there any previous explicit specialization declaration? 5021 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5022 Okay = true; 5023 break; 5024 } 5025 } 5026 5027 if (!Okay) { 5028 SourceRange Range(TemplateNameLoc, RAngleLoc); 5029 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5030 << Context.getTypeDeclType(Specialization) << Range; 5031 5032 Diag(PrevDecl->getPointOfInstantiation(), 5033 diag::note_instantiation_required_here) 5034 << (PrevDecl->getTemplateSpecializationKind() 5035 != TSK_ImplicitInstantiation); 5036 return true; 5037 } 5038 } 5039 5040 // If this is not a friend, note that this is an explicit specialization. 5041 if (TUK != TUK_Friend) 5042 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5043 5044 // Check that this isn't a redefinition of this specialization. 5045 if (TUK == TUK_Definition) { 5046 if (RecordDecl *Def = Specialization->getDefinition()) { 5047 SourceRange Range(TemplateNameLoc, RAngleLoc); 5048 Diag(TemplateNameLoc, diag::err_redefinition) 5049 << Context.getTypeDeclType(Specialization) << Range; 5050 Diag(Def->getLocation(), diag::note_previous_definition); 5051 Specialization->setInvalidDecl(); 5052 return true; 5053 } 5054 } 5055 5056 if (Attr) 5057 ProcessDeclAttributeList(S, Specialization, Attr); 5058 5059 // Build the fully-sugared type for this class template 5060 // specialization as the user wrote in the specialization 5061 // itself. This means that we'll pretty-print the type retrieved 5062 // from the specialization's declaration the way that the user 5063 // actually wrote the specialization, rather than formatting the 5064 // name based on the "canonical" representation used to store the 5065 // template arguments in the specialization. 5066 TypeSourceInfo *WrittenTy 5067 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5068 TemplateArgs, CanonType); 5069 if (TUK != TUK_Friend) { 5070 Specialization->setTypeAsWritten(WrittenTy); 5071 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5072 } 5073 TemplateArgsIn.release(); 5074 5075 // C++ [temp.expl.spec]p9: 5076 // A template explicit specialization is in the scope of the 5077 // namespace in which the template was defined. 5078 // 5079 // We actually implement this paragraph where we set the semantic 5080 // context (in the creation of the ClassTemplateSpecializationDecl), 5081 // but we also maintain the lexical context where the actual 5082 // definition occurs. 5083 Specialization->setLexicalDeclContext(CurContext); 5084 5085 // We may be starting the definition of this specialization. 5086 if (TUK == TUK_Definition) 5087 Specialization->startDefinition(); 5088 5089 if (TUK == TUK_Friend) { 5090 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5091 TemplateNameLoc, 5092 WrittenTy, 5093 /*FIXME:*/KWLoc); 5094 Friend->setAccess(AS_public); 5095 CurContext->addDecl(Friend); 5096 } else { 5097 // Add the specialization into its lexical context, so that it can 5098 // be seen when iterating through the list of declarations in that 5099 // context. However, specializations are not found by name lookup. 5100 CurContext->addDecl(Specialization); 5101 } 5102 return Specialization; 5103 } 5104 5105 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5106 MultiTemplateParamsArg TemplateParameterLists, 5107 Declarator &D) { 5108 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 5109 } 5110 5111 Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5112 MultiTemplateParamsArg TemplateParameterLists, 5113 Declarator &D) { 5114 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5115 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5116 5117 if (FTI.hasPrototype) { 5118 // FIXME: Diagnose arguments without names in C. 5119 } 5120 5121 Scope *ParentScope = FnBodyScope->getParent(); 5122 5123 Decl *DP = HandleDeclarator(ParentScope, D, 5124 move(TemplateParameterLists), 5125 /*IsFunctionDefinition=*/true); 5126 if (FunctionTemplateDecl *FunctionTemplate 5127 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5128 return ActOnStartOfFunctionDef(FnBodyScope, 5129 FunctionTemplate->getTemplatedDecl()); 5130 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5131 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5132 return 0; 5133 } 5134 5135 /// \brief Strips various properties off an implicit instantiation 5136 /// that has just been explicitly specialized. 5137 static void StripImplicitInstantiation(NamedDecl *D) { 5138 D->dropAttrs(); 5139 5140 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5141 FD->setInlineSpecified(false); 5142 } 5143 } 5144 5145 /// \brief Diagnose cases where we have an explicit template specialization 5146 /// before/after an explicit template instantiation, producing diagnostics 5147 /// for those cases where they are required and determining whether the 5148 /// new specialization/instantiation will have any effect. 5149 /// 5150 /// \param NewLoc the location of the new explicit specialization or 5151 /// instantiation. 5152 /// 5153 /// \param NewTSK the kind of the new explicit specialization or instantiation. 5154 /// 5155 /// \param PrevDecl the previous declaration of the entity. 5156 /// 5157 /// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5158 /// 5159 /// \param PrevPointOfInstantiation if valid, indicates where the previus 5160 /// declaration was instantiated (either implicitly or explicitly). 5161 /// 5162 /// \param HasNoEffect will be set to true to indicate that the new 5163 /// specialization or instantiation has no effect and should be ignored. 5164 /// 5165 /// \returns true if there was an error that should prevent the introduction of 5166 /// the new declaration into the AST, false otherwise. 5167 bool 5168 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5169 TemplateSpecializationKind NewTSK, 5170 NamedDecl *PrevDecl, 5171 TemplateSpecializationKind PrevTSK, 5172 SourceLocation PrevPointOfInstantiation, 5173 bool &HasNoEffect) { 5174 HasNoEffect = false; 5175 5176 switch (NewTSK) { 5177 case TSK_Undeclared: 5178 case TSK_ImplicitInstantiation: 5179 assert(false && "Don't check implicit instantiations here"); 5180 return false; 5181 5182 case TSK_ExplicitSpecialization: 5183 switch (PrevTSK) { 5184 case TSK_Undeclared: 5185 case TSK_ExplicitSpecialization: 5186 // Okay, we're just specializing something that is either already 5187 // explicitly specialized or has merely been mentioned without any 5188 // instantiation. 5189 return false; 5190 5191 case TSK_ImplicitInstantiation: 5192 if (PrevPointOfInstantiation.isInvalid()) { 5193 // The declaration itself has not actually been instantiated, so it is 5194 // still okay to specialize it. 5195 StripImplicitInstantiation(PrevDecl); 5196 return false; 5197 } 5198 // Fall through 5199 5200 case TSK_ExplicitInstantiationDeclaration: 5201 case TSK_ExplicitInstantiationDefinition: 5202 assert((PrevTSK == TSK_ImplicitInstantiation || 5203 PrevPointOfInstantiation.isValid()) && 5204 "Explicit instantiation without point of instantiation?"); 5205 5206 // C++ [temp.expl.spec]p6: 5207 // If a template, a member template or the member of a class template 5208 // is explicitly specialized then that specialization shall be declared 5209 // before the first use of that specialization that would cause an 5210 // implicit instantiation to take place, in every translation unit in 5211 // which such a use occurs; no diagnostic is required. 5212 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 5213 // Is there any previous explicit specialization declaration? 5214 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5215 return false; 5216 } 5217 5218 Diag(NewLoc, diag::err_specialization_after_instantiation) 5219 << PrevDecl; 5220 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5221 << (PrevTSK != TSK_ImplicitInstantiation); 5222 5223 return true; 5224 } 5225 break; 5226 5227 case TSK_ExplicitInstantiationDeclaration: 5228 switch (PrevTSK) { 5229 case TSK_ExplicitInstantiationDeclaration: 5230 // This explicit instantiation declaration is redundant (that's okay). 5231 HasNoEffect = true; 5232 return false; 5233 5234 case TSK_Undeclared: 5235 case TSK_ImplicitInstantiation: 5236 // We're explicitly instantiating something that may have already been 5237 // implicitly instantiated; that's fine. 5238 return false; 5239 5240 case TSK_ExplicitSpecialization: 5241 // C++0x [temp.explicit]p4: 5242 // For a given set of template parameters, if an explicit instantiation 5243 // of a template appears after a declaration of an explicit 5244 // specialization for that template, the explicit instantiation has no 5245 // effect. 5246 HasNoEffect = true; 5247 return false; 5248 5249 case TSK_ExplicitInstantiationDefinition: 5250 // C++0x [temp.explicit]p10: 5251 // If an entity is the subject of both an explicit instantiation 5252 // declaration and an explicit instantiation definition in the same 5253 // translation unit, the definition shall follow the declaration. 5254 Diag(NewLoc, 5255 diag::err_explicit_instantiation_declaration_after_definition); 5256 Diag(PrevPointOfInstantiation, 5257 diag::note_explicit_instantiation_definition_here); 5258 assert(PrevPointOfInstantiation.isValid() && 5259 "Explicit instantiation without point of instantiation?"); 5260 HasNoEffect = true; 5261 return false; 5262 } 5263 break; 5264 5265 case TSK_ExplicitInstantiationDefinition: 5266 switch (PrevTSK) { 5267 case TSK_Undeclared: 5268 case TSK_ImplicitInstantiation: 5269 // We're explicitly instantiating something that may have already been 5270 // implicitly instantiated; that's fine. 5271 return false; 5272 5273 case TSK_ExplicitSpecialization: 5274 // C++ DR 259, C++0x [temp.explicit]p4: 5275 // For a given set of template parameters, if an explicit 5276 // instantiation of a template appears after a declaration of 5277 // an explicit specialization for that template, the explicit 5278 // instantiation has no effect. 5279 // 5280 // In C++98/03 mode, we only give an extension warning here, because it 5281 // is not harmful to try to explicitly instantiate something that 5282 // has been explicitly specialized. 5283 if (!getLangOptions().CPlusPlus0x) { 5284 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 5285 << PrevDecl; 5286 Diag(PrevDecl->getLocation(), 5287 diag::note_previous_template_specialization); 5288 } 5289 HasNoEffect = true; 5290 return false; 5291 5292 case TSK_ExplicitInstantiationDeclaration: 5293 // We're explicity instantiating a definition for something for which we 5294 // were previously asked to suppress instantiations. That's fine. 5295 return false; 5296 5297 case TSK_ExplicitInstantiationDefinition: 5298 // C++0x [temp.spec]p5: 5299 // For a given template and a given set of template-arguments, 5300 // - an explicit instantiation definition shall appear at most once 5301 // in a program, 5302 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5303 << PrevDecl; 5304 Diag(PrevPointOfInstantiation, 5305 diag::note_previous_explicit_instantiation); 5306 HasNoEffect = true; 5307 return false; 5308 } 5309 break; 5310 } 5311 5312 assert(false && "Missing specialization/instantiation case?"); 5313 5314 return false; 5315 } 5316 5317 /// \brief Perform semantic analysis for the given dependent function 5318 /// template specialization. The only possible way to get a dependent 5319 /// function template specialization is with a friend declaration, 5320 /// like so: 5321 /// 5322 /// template <class T> void foo(T); 5323 /// template <class T> class A { 5324 /// friend void foo<>(T); 5325 /// }; 5326 /// 5327 /// There really isn't any useful analysis we can do here, so we 5328 /// just store the information. 5329 bool 5330 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5331 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5332 LookupResult &Previous) { 5333 // Remove anything from Previous that isn't a function template in 5334 // the correct context. 5335 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5336 LookupResult::Filter F = Previous.makeFilter(); 5337 while (F.hasNext()) { 5338 NamedDecl *D = F.next()->getUnderlyingDecl(); 5339 if (!isa<FunctionTemplateDecl>(D) || 5340 !FDLookupContext->InEnclosingNamespaceSetOf( 5341 D->getDeclContext()->getRedeclContext())) 5342 F.erase(); 5343 } 5344 F.done(); 5345 5346 // Should this be diagnosed here? 5347 if (Previous.empty()) return true; 5348 5349 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5350 ExplicitTemplateArgs); 5351 return false; 5352 } 5353 5354 /// \brief Perform semantic analysis for the given function template 5355 /// specialization. 5356 /// 5357 /// This routine performs all of the semantic analysis required for an 5358 /// explicit function template specialization. On successful completion, 5359 /// the function declaration \p FD will become a function template 5360 /// specialization. 5361 /// 5362 /// \param FD the function declaration, which will be updated to become a 5363 /// function template specialization. 5364 /// 5365 /// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5366 /// if any. Note that this may be valid info even when 0 arguments are 5367 /// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5368 /// as it anyway contains info on the angle brackets locations. 5369 /// 5370 /// \param Previous the set of declarations that may be specialized by 5371 /// this function specialization. 5372 bool 5373 Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5374 TemplateArgumentListInfo *ExplicitTemplateArgs, 5375 LookupResult &Previous) { 5376 // The set of function template specializations that could match this 5377 // explicit function template specialization. 5378 UnresolvedSet<8> Candidates; 5379 5380 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5381 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5382 I != E; ++I) { 5383 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5384 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5385 // Only consider templates found within the same semantic lookup scope as 5386 // FD. 5387 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5388 Ovl->getDeclContext()->getRedeclContext())) 5389 continue; 5390 5391 // C++ [temp.expl.spec]p11: 5392 // A trailing template-argument can be left unspecified in the 5393 // template-id naming an explicit function template specialization 5394 // provided it can be deduced from the function argument type. 5395 // Perform template argument deduction to determine whether we may be 5396 // specializing this template. 5397 // FIXME: It is somewhat wasteful to build 5398 TemplateDeductionInfo Info(Context, FD->getLocation()); 5399 FunctionDecl *Specialization = 0; 5400 if (TemplateDeductionResult TDK 5401 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5402 FD->getType(), 5403 Specialization, 5404 Info)) { 5405 // FIXME: Template argument deduction failed; record why it failed, so 5406 // that we can provide nifty diagnostics. 5407 (void)TDK; 5408 continue; 5409 } 5410 5411 // Record this candidate. 5412 Candidates.addDecl(Specialization, I.getAccess()); 5413 } 5414 } 5415 5416 // Find the most specialized function template. 5417 UnresolvedSetIterator Result 5418 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5419 TPOC_Other, 0, FD->getLocation(), 5420 PDiag(diag::err_function_template_spec_no_match) 5421 << FD->getDeclName(), 5422 PDiag(diag::err_function_template_spec_ambiguous) 5423 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5424 PDiag(diag::note_function_template_spec_matched)); 5425 if (Result == Candidates.end()) 5426 return true; 5427 5428 // Ignore access information; it doesn't figure into redeclaration checking. 5429 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5430 5431 FunctionTemplateSpecializationInfo *SpecInfo 5432 = Specialization->getTemplateSpecializationInfo(); 5433 assert(SpecInfo && "Function template specialization info missing?"); 5434 5435 // Note: do not overwrite location info if previous template 5436 // specialization kind was explicit. 5437 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5438 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) 5439 Specialization->setLocation(FD->getLocation()); 5440 5441 // FIXME: Check if the prior specialization has a point of instantiation. 5442 // If so, we have run afoul of . 5443 5444 // If this is a friend declaration, then we're not really declaring 5445 // an explicit specialization. 5446 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5447 5448 // Check the scope of this explicit specialization. 5449 if (!isFriend && 5450 CheckTemplateSpecializationScope(*this, 5451 Specialization->getPrimaryTemplate(), 5452 Specialization, FD->getLocation(), 5453 false)) 5454 return true; 5455 5456 // C++ [temp.expl.spec]p6: 5457 // If a template, a member template or the member of a class template is 5458 // explicitly specialized then that specialization shall be declared 5459 // before the first use of that specialization that would cause an implicit 5460 // instantiation to take place, in every translation unit in which such a 5461 // use occurs; no diagnostic is required. 5462 bool HasNoEffect = false; 5463 if (!isFriend && 5464 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5465 TSK_ExplicitSpecialization, 5466 Specialization, 5467 SpecInfo->getTemplateSpecializationKind(), 5468 SpecInfo->getPointOfInstantiation(), 5469 HasNoEffect)) 5470 return true; 5471 5472 // Mark the prior declaration as an explicit specialization, so that later 5473 // clients know that this is an explicit specialization. 5474 if (!isFriend) { 5475 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5476 MarkUnusedFileScopedDecl(Specialization); 5477 } 5478 5479 // Turn the given function declaration into a function template 5480 // specialization, with the template arguments from the previous 5481 // specialization. 5482 // Take copies of (semantic and syntactic) template argument lists. 5483 const TemplateArgumentList* TemplArgs = new (Context) 5484 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5485 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5486 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5487 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5488 TemplArgs, /*InsertPos=*/0, 5489 SpecInfo->getTemplateSpecializationKind(), 5490 TemplArgsAsWritten); 5491 FD->setStorageClass(Specialization->getStorageClass()); 5492 5493 // The "previous declaration" for this function template specialization is 5494 // the prior function template specialization. 5495 Previous.clear(); 5496 Previous.addDecl(Specialization); 5497 return false; 5498 } 5499 5500 /// \brief Perform semantic analysis for the given non-template member 5501 /// specialization. 5502 /// 5503 /// This routine performs all of the semantic analysis required for an 5504 /// explicit member function specialization. On successful completion, 5505 /// the function declaration \p FD will become a member function 5506 /// specialization. 5507 /// 5508 /// \param Member the member declaration, which will be updated to become a 5509 /// specialization. 5510 /// 5511 /// \param Previous the set of declarations, one of which may be specialized 5512 /// by this function specialization; the set will be modified to contain the 5513 /// redeclared member. 5514 bool 5515 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5516 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5517 5518 // Try to find the member we are instantiating. 5519 NamedDecl *Instantiation = 0; 5520 NamedDecl *InstantiatedFrom = 0; 5521 MemberSpecializationInfo *MSInfo = 0; 5522 5523 if (Previous.empty()) { 5524 // Nowhere to look anyway. 5525 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5526 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5527 I != E; ++I) { 5528 NamedDecl *D = (*I)->getUnderlyingDecl(); 5529 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5530 if (Context.hasSameType(Function->getType(), Method->getType())) { 5531 Instantiation = Method; 5532 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5533 MSInfo = Method->getMemberSpecializationInfo(); 5534 break; 5535 } 5536 } 5537 } 5538 } else if (isa<VarDecl>(Member)) { 5539 VarDecl *PrevVar; 5540 if (Previous.isSingleResult() && 5541 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5542 if (PrevVar->isStaticDataMember()) { 5543 Instantiation = PrevVar; 5544 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5545 MSInfo = PrevVar->getMemberSpecializationInfo(); 5546 } 5547 } else if (isa<RecordDecl>(Member)) { 5548 CXXRecordDecl *PrevRecord; 5549 if (Previous.isSingleResult() && 5550 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5551 Instantiation = PrevRecord; 5552 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5553 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5554 } 5555 } 5556 5557 if (!Instantiation) { 5558 // There is no previous declaration that matches. Since member 5559 // specializations are always out-of-line, the caller will complain about 5560 // this mismatch later. 5561 return false; 5562 } 5563 5564 // If this is a friend, just bail out here before we start turning 5565 // things into explicit specializations. 5566 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5567 // Preserve instantiation information. 5568 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5569 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5570 cast<CXXMethodDecl>(InstantiatedFrom), 5571 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5572 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5573 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5574 cast<CXXRecordDecl>(InstantiatedFrom), 5575 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5576 } 5577 5578 Previous.clear(); 5579 Previous.addDecl(Instantiation); 5580 return false; 5581 } 5582 5583 // Make sure that this is a specialization of a member. 5584 if (!InstantiatedFrom) { 5585 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5586 << Member; 5587 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5588 return true; 5589 } 5590 5591 // C++ [temp.expl.spec]p6: 5592 // If a template, a member template or the member of a class template is 5593 // explicitly specialized then that spe- cialization shall be declared 5594 // before the first use of that specialization that would cause an implicit 5595 // instantiation to take place, in every translation unit in which such a 5596 // use occurs; no diagnostic is required. 5597 assert(MSInfo && "Member specialization info missing?"); 5598 5599 bool HasNoEffect = false; 5600 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5601 TSK_ExplicitSpecialization, 5602 Instantiation, 5603 MSInfo->getTemplateSpecializationKind(), 5604 MSInfo->getPointOfInstantiation(), 5605 HasNoEffect)) 5606 return true; 5607 5608 // Check the scope of this explicit specialization. 5609 if (CheckTemplateSpecializationScope(*this, 5610 InstantiatedFrom, 5611 Instantiation, Member->getLocation(), 5612 false)) 5613 return true; 5614 5615 // Note that this is an explicit instantiation of a member. 5616 // the original declaration to note that it is an explicit specialization 5617 // (if it was previously an implicit instantiation). This latter step 5618 // makes bookkeeping easier. 5619 if (isa<FunctionDecl>(Member)) { 5620 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5621 if (InstantiationFunction->getTemplateSpecializationKind() == 5622 TSK_ImplicitInstantiation) { 5623 InstantiationFunction->setTemplateSpecializationKind( 5624 TSK_ExplicitSpecialization); 5625 InstantiationFunction->setLocation(Member->getLocation()); 5626 } 5627 5628 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5629 cast<CXXMethodDecl>(InstantiatedFrom), 5630 TSK_ExplicitSpecialization); 5631 MarkUnusedFileScopedDecl(InstantiationFunction); 5632 } else if (isa<VarDecl>(Member)) { 5633 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5634 if (InstantiationVar->getTemplateSpecializationKind() == 5635 TSK_ImplicitInstantiation) { 5636 InstantiationVar->setTemplateSpecializationKind( 5637 TSK_ExplicitSpecialization); 5638 InstantiationVar->setLocation(Member->getLocation()); 5639 } 5640 5641 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5642 cast<VarDecl>(InstantiatedFrom), 5643 TSK_ExplicitSpecialization); 5644 MarkUnusedFileScopedDecl(InstantiationVar); 5645 } else { 5646 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5647 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5648 if (InstantiationClass->getTemplateSpecializationKind() == 5649 TSK_ImplicitInstantiation) { 5650 InstantiationClass->setTemplateSpecializationKind( 5651 TSK_ExplicitSpecialization); 5652 InstantiationClass->setLocation(Member->getLocation()); 5653 } 5654 5655 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5656 cast<CXXRecordDecl>(InstantiatedFrom), 5657 TSK_ExplicitSpecialization); 5658 } 5659 5660 // Save the caller the trouble of having to figure out which declaration 5661 // this specialization matches. 5662 Previous.clear(); 5663 Previous.addDecl(Instantiation); 5664 return false; 5665 } 5666 5667 /// \brief Check the scope of an explicit instantiation. 5668 /// 5669 /// \returns true if a serious error occurs, false otherwise. 5670 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5671 SourceLocation InstLoc, 5672 bool WasQualifiedName) { 5673 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5674 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5675 5676 if (CurContext->isRecord()) { 5677 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5678 << D; 5679 return true; 5680 } 5681 5682 // C++0x [temp.explicit]p2: 5683 // An explicit instantiation shall appear in an enclosing namespace of its 5684 // template. 5685 // 5686 // This is DR275, which we do not retroactively apply to C++98/03. 5687 if (S.getLangOptions().CPlusPlus0x && 5688 !CurContext->Encloses(OrigContext)) { 5689 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5690 S.Diag(InstLoc, 5691 S.getLangOptions().CPlusPlus0x? 5692 diag::err_explicit_instantiation_out_of_scope 5693 : diag::warn_explicit_instantiation_out_of_scope_0x) 5694 << D << NS; 5695 else 5696 S.Diag(InstLoc, 5697 S.getLangOptions().CPlusPlus0x? 5698 diag::err_explicit_instantiation_must_be_global 5699 : diag::warn_explicit_instantiation_out_of_scope_0x) 5700 << D; 5701 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5702 return false; 5703 } 5704 5705 // C++0x [temp.explicit]p2: 5706 // If the name declared in the explicit instantiation is an unqualified 5707 // name, the explicit instantiation shall appear in the namespace where 5708 // its template is declared or, if that namespace is inline (7.3.1), any 5709 // namespace from its enclosing namespace set. 5710 if (WasQualifiedName) 5711 return false; 5712 5713 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5714 return false; 5715 5716 S.Diag(InstLoc, 5717 S.getLangOptions().CPlusPlus0x? 5718 diag::err_explicit_instantiation_unqualified_wrong_namespace 5719 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5720 << D << OrigContext; 5721 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5722 return false; 5723 } 5724 5725 /// \brief Determine whether the given scope specifier has a template-id in it. 5726 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5727 if (!SS.isSet()) 5728 return false; 5729 5730 // C++0x [temp.explicit]p2: 5731 // If the explicit instantiation is for a member function, a member class 5732 // or a static data member of a class template specialization, the name of 5733 // the class template specialization in the qualified-id for the member 5734 // name shall be a simple-template-id. 5735 // 5736 // C++98 has the same restriction, just worded differently. 5737 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5738 NNS; NNS = NNS->getPrefix()) 5739 if (const Type *T = NNS->getAsType()) 5740 if (isa<TemplateSpecializationType>(T)) 5741 return true; 5742 5743 return false; 5744 } 5745 5746 // Explicit instantiation of a class template specialization 5747 DeclResult 5748 Sema::ActOnExplicitInstantiation(Scope *S, 5749 SourceLocation ExternLoc, 5750 SourceLocation TemplateLoc, 5751 unsigned TagSpec, 5752 SourceLocation KWLoc, 5753 const CXXScopeSpec &SS, 5754 TemplateTy TemplateD, 5755 SourceLocation TemplateNameLoc, 5756 SourceLocation LAngleLoc, 5757 ASTTemplateArgsPtr TemplateArgsIn, 5758 SourceLocation RAngleLoc, 5759 AttributeList *Attr) { 5760 // Find the class template we're specializing 5761 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5762 ClassTemplateDecl *ClassTemplate 5763 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5764 5765 // Check that the specialization uses the same tag kind as the 5766 // original template. 5767 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5768 assert(Kind != TTK_Enum && 5769 "Invalid enum tag in class template explicit instantiation!"); 5770 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5771 Kind, /*isDefinition*/false, KWLoc, 5772 *ClassTemplate->getIdentifier())) { 5773 Diag(KWLoc, diag::err_use_with_wrong_tag) 5774 << ClassTemplate 5775 << FixItHint::CreateReplacement(KWLoc, 5776 ClassTemplate->getTemplatedDecl()->getKindName()); 5777 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5778 diag::note_previous_use); 5779 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5780 } 5781 5782 // C++0x [temp.explicit]p2: 5783 // There are two forms of explicit instantiation: an explicit instantiation 5784 // definition and an explicit instantiation declaration. An explicit 5785 // instantiation declaration begins with the extern keyword. [...] 5786 TemplateSpecializationKind TSK 5787 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5788 : TSK_ExplicitInstantiationDeclaration; 5789 5790 // Translate the parser's template argument list in our AST format. 5791 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5792 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5793 5794 // Check that the template argument list is well-formed for this 5795 // template. 5796 llvm::SmallVector<TemplateArgument, 4> Converted; 5797 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5798 TemplateArgs, false, Converted)) 5799 return true; 5800 5801 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5802 "Converted template argument list is too short!"); 5803 5804 // Find the class template specialization declaration that 5805 // corresponds to these arguments. 5806 void *InsertPos = 0; 5807 ClassTemplateSpecializationDecl *PrevDecl 5808 = ClassTemplate->findSpecialization(Converted.data(), 5809 Converted.size(), InsertPos); 5810 5811 TemplateSpecializationKind PrevDecl_TSK 5812 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5813 5814 // C++0x [temp.explicit]p2: 5815 // [...] An explicit instantiation shall appear in an enclosing 5816 // namespace of its template. [...] 5817 // 5818 // This is C++ DR 275. 5819 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5820 SS.isSet())) 5821 return true; 5822 5823 ClassTemplateSpecializationDecl *Specialization = 0; 5824 5825 bool HasNoEffect = false; 5826 if (PrevDecl) { 5827 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5828 PrevDecl, PrevDecl_TSK, 5829 PrevDecl->getPointOfInstantiation(), 5830 HasNoEffect)) 5831 return PrevDecl; 5832 5833 // Even though HasNoEffect == true means that this explicit instantiation 5834 // has no effect on semantics, we go on to put its syntax in the AST. 5835 5836 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5837 PrevDecl_TSK == TSK_Undeclared) { 5838 // Since the only prior class template specialization with these 5839 // arguments was referenced but not declared, reuse that 5840 // declaration node as our own, updating the source location 5841 // for the template name to reflect our new declaration. 5842 // (Other source locations will be updated later.) 5843 Specialization = PrevDecl; 5844 Specialization->setLocation(TemplateNameLoc); 5845 PrevDecl = 0; 5846 } 5847 } 5848 5849 if (!Specialization) { 5850 // Create a new class template specialization declaration node for 5851 // this explicit specialization. 5852 Specialization 5853 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5854 ClassTemplate->getDeclContext(), 5855 KWLoc, TemplateNameLoc, 5856 ClassTemplate, 5857 Converted.data(), 5858 Converted.size(), 5859 PrevDecl); 5860 SetNestedNameSpecifier(Specialization, SS); 5861 5862 if (!HasNoEffect && !PrevDecl) { 5863 // Insert the new specialization. 5864 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5865 } 5866 } 5867 5868 // Build the fully-sugared type for this explicit instantiation as 5869 // the user wrote in the explicit instantiation itself. This means 5870 // that we'll pretty-print the type retrieved from the 5871 // specialization's declaration the way that the user actually wrote 5872 // the explicit instantiation, rather than formatting the name based 5873 // on the "canonical" representation used to store the template 5874 // arguments in the specialization. 5875 TypeSourceInfo *WrittenTy 5876 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5877 TemplateArgs, 5878 Context.getTypeDeclType(Specialization)); 5879 Specialization->setTypeAsWritten(WrittenTy); 5880 TemplateArgsIn.release(); 5881 5882 // Set source locations for keywords. 5883 Specialization->setExternLoc(ExternLoc); 5884 Specialization->setTemplateKeywordLoc(TemplateLoc); 5885 5886 // Add the explicit instantiation into its lexical context. However, 5887 // since explicit instantiations are never found by name lookup, we 5888 // just put it into the declaration context directly. 5889 Specialization->setLexicalDeclContext(CurContext); 5890 CurContext->addDecl(Specialization); 5891 5892 // Syntax is now OK, so return if it has no other effect on semantics. 5893 if (HasNoEffect) { 5894 // Set the template specialization kind. 5895 Specialization->setTemplateSpecializationKind(TSK); 5896 return Specialization; 5897 } 5898 5899 // C++ [temp.explicit]p3: 5900 // A definition of a class template or class member template 5901 // shall be in scope at the point of the explicit instantiation of 5902 // the class template or class member template. 5903 // 5904 // This check comes when we actually try to perform the 5905 // instantiation. 5906 ClassTemplateSpecializationDecl *Def 5907 = cast_or_null<ClassTemplateSpecializationDecl>( 5908 Specialization->getDefinition()); 5909 if (!Def) 5910 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5911 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5912 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5913 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5914 } 5915 5916 // Instantiate the members of this class template specialization. 5917 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5918 Specialization->getDefinition()); 5919 if (Def) { 5920 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5921 5922 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5923 // TSK_ExplicitInstantiationDefinition 5924 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5925 TSK == TSK_ExplicitInstantiationDefinition) 5926 Def->setTemplateSpecializationKind(TSK); 5927 5928 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5929 } 5930 5931 // Set the template specialization kind. 5932 Specialization->setTemplateSpecializationKind(TSK); 5933 return Specialization; 5934 } 5935 5936 // Explicit instantiation of a member class of a class template. 5937 DeclResult 5938 Sema::ActOnExplicitInstantiation(Scope *S, 5939 SourceLocation ExternLoc, 5940 SourceLocation TemplateLoc, 5941 unsigned TagSpec, 5942 SourceLocation KWLoc, 5943 CXXScopeSpec &SS, 5944 IdentifierInfo *Name, 5945 SourceLocation NameLoc, 5946 AttributeList *Attr) { 5947 5948 bool Owned = false; 5949 bool IsDependent = false; 5950 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5951 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5952 MultiTemplateParamsArg(*this, 0, 0), 5953 Owned, IsDependent, false, false, 5954 TypeResult()); 5955 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5956 5957 if (!TagD) 5958 return true; 5959 5960 TagDecl *Tag = cast<TagDecl>(TagD); 5961 if (Tag->isEnum()) { 5962 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5963 << Context.getTypeDeclType(Tag); 5964 return true; 5965 } 5966 5967 if (Tag->isInvalidDecl()) 5968 return true; 5969 5970 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5971 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5972 if (!Pattern) { 5973 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5974 << Context.getTypeDeclType(Record); 5975 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5976 return true; 5977 } 5978 5979 // C++0x [temp.explicit]p2: 5980 // If the explicit instantiation is for a class or member class, the 5981 // elaborated-type-specifier in the declaration shall include a 5982 // simple-template-id. 5983 // 5984 // C++98 has the same restriction, just worded differently. 5985 if (!ScopeSpecifierHasTemplateId(SS)) 5986 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5987 << Record << SS.getRange(); 5988 5989 // C++0x [temp.explicit]p2: 5990 // There are two forms of explicit instantiation: an explicit instantiation 5991 // definition and an explicit instantiation declaration. An explicit 5992 // instantiation declaration begins with the extern keyword. [...] 5993 TemplateSpecializationKind TSK 5994 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5995 : TSK_ExplicitInstantiationDeclaration; 5996 5997 // C++0x [temp.explicit]p2: 5998 // [...] An explicit instantiation shall appear in an enclosing 5999 // namespace of its template. [...] 6000 // 6001 // This is C++ DR 275. 6002 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6003 6004 // Verify that it is okay to explicitly instantiate here. 6005 CXXRecordDecl *PrevDecl 6006 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 6007 if (!PrevDecl && Record->getDefinition()) 6008 PrevDecl = Record; 6009 if (PrevDecl) { 6010 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6011 bool HasNoEffect = false; 6012 assert(MSInfo && "No member specialization information?"); 6013 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6014 PrevDecl, 6015 MSInfo->getTemplateSpecializationKind(), 6016 MSInfo->getPointOfInstantiation(), 6017 HasNoEffect)) 6018 return true; 6019 if (HasNoEffect) 6020 return TagD; 6021 } 6022 6023 CXXRecordDecl *RecordDef 6024 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6025 if (!RecordDef) { 6026 // C++ [temp.explicit]p3: 6027 // A definition of a member class of a class template shall be in scope 6028 // at the point of an explicit instantiation of the member class. 6029 CXXRecordDecl *Def 6030 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6031 if (!Def) { 6032 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6033 << 0 << Record->getDeclName() << Record->getDeclContext(); 6034 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6035 << Pattern; 6036 return true; 6037 } else { 6038 if (InstantiateClass(NameLoc, Record, Def, 6039 getTemplateInstantiationArgs(Record), 6040 TSK)) 6041 return true; 6042 6043 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6044 if (!RecordDef) 6045 return true; 6046 } 6047 } 6048 6049 // Instantiate all of the members of the class. 6050 InstantiateClassMembers(NameLoc, RecordDef, 6051 getTemplateInstantiationArgs(Record), TSK); 6052 6053 if (TSK == TSK_ExplicitInstantiationDefinition) 6054 MarkVTableUsed(NameLoc, RecordDef, true); 6055 6056 // FIXME: We don't have any representation for explicit instantiations of 6057 // member classes. Such a representation is not needed for compilation, but it 6058 // should be available for clients that want to see all of the declarations in 6059 // the source code. 6060 return TagD; 6061 } 6062 6063 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6064 SourceLocation ExternLoc, 6065 SourceLocation TemplateLoc, 6066 Declarator &D) { 6067 // Explicit instantiations always require a name. 6068 // TODO: check if/when DNInfo should replace Name. 6069 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6070 DeclarationName Name = NameInfo.getName(); 6071 if (!Name) { 6072 if (!D.isInvalidType()) 6073 Diag(D.getDeclSpec().getSourceRange().getBegin(), 6074 diag::err_explicit_instantiation_requires_name) 6075 << D.getDeclSpec().getSourceRange() 6076 << D.getSourceRange(); 6077 6078 return true; 6079 } 6080 6081 // The scope passed in may not be a decl scope. Zip up the scope tree until 6082 // we find one that is. 6083 while ((S->getFlags() & Scope::DeclScope) == 0 || 6084 (S->getFlags() & Scope::TemplateParamScope) != 0) 6085 S = S->getParent(); 6086 6087 // Determine the type of the declaration. 6088 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6089 QualType R = T->getType(); 6090 if (R.isNull()) 6091 return true; 6092 6093 // C++ [dcl.stc]p1: 6094 // A storage-class-specifier shall not be specified in [...] an explicit 6095 // instantiation (14.7.2) directive. 6096 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6097 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6098 << Name; 6099 return true; 6100 } else if (D.getDeclSpec().getStorageClassSpec() 6101 != DeclSpec::SCS_unspecified) { 6102 // Complain about then remove the storage class specifier. 6103 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6104 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6105 6106 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6107 } 6108 6109 // C++0x [temp.explicit]p1: 6110 // [...] An explicit instantiation of a function template shall not use the 6111 // inline or constexpr specifiers. 6112 // Presumably, this also applies to member functions of class templates as 6113 // well. 6114 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 6115 Diag(D.getDeclSpec().getInlineSpecLoc(), 6116 diag::err_explicit_instantiation_inline) 6117 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6118 6119 // FIXME: check for constexpr specifier. 6120 6121 // C++0x [temp.explicit]p2: 6122 // There are two forms of explicit instantiation: an explicit instantiation 6123 // definition and an explicit instantiation declaration. An explicit 6124 // instantiation declaration begins with the extern keyword. [...] 6125 TemplateSpecializationKind TSK 6126 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6127 : TSK_ExplicitInstantiationDeclaration; 6128 6129 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6130 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6131 6132 if (!R->isFunctionType()) { 6133 // C++ [temp.explicit]p1: 6134 // A [...] static data member of a class template can be explicitly 6135 // instantiated from the member definition associated with its class 6136 // template. 6137 if (Previous.isAmbiguous()) 6138 return true; 6139 6140 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6141 if (!Prev || !Prev->isStaticDataMember()) { 6142 // We expect to see a data data member here. 6143 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6144 << Name; 6145 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6146 P != PEnd; ++P) 6147 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6148 return true; 6149 } 6150 6151 if (!Prev->getInstantiatedFromStaticDataMember()) { 6152 // FIXME: Check for explicit specialization? 6153 Diag(D.getIdentifierLoc(), 6154 diag::err_explicit_instantiation_data_member_not_instantiated) 6155 << Prev; 6156 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6157 // FIXME: Can we provide a note showing where this was declared? 6158 return true; 6159 } 6160 6161 // C++0x [temp.explicit]p2: 6162 // If the explicit instantiation is for a member function, a member class 6163 // or a static data member of a class template specialization, the name of 6164 // the class template specialization in the qualified-id for the member 6165 // name shall be a simple-template-id. 6166 // 6167 // C++98 has the same restriction, just worded differently. 6168 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6169 Diag(D.getIdentifierLoc(), 6170 diag::ext_explicit_instantiation_without_qualified_id) 6171 << Prev << D.getCXXScopeSpec().getRange(); 6172 6173 // Check the scope of this explicit instantiation. 6174 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6175 6176 // Verify that it is okay to explicitly instantiate here. 6177 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6178 assert(MSInfo && "Missing static data member specialization info?"); 6179 bool HasNoEffect = false; 6180 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6181 MSInfo->getTemplateSpecializationKind(), 6182 MSInfo->getPointOfInstantiation(), 6183 HasNoEffect)) 6184 return true; 6185 if (HasNoEffect) 6186 return (Decl*) 0; 6187 6188 // Instantiate static data member. 6189 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6190 if (TSK == TSK_ExplicitInstantiationDefinition) 6191 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6192 6193 // FIXME: Create an ExplicitInstantiation node? 6194 return (Decl*) 0; 6195 } 6196 6197 // If the declarator is a template-id, translate the parser's template 6198 // argument list into our AST format. 6199 bool HasExplicitTemplateArgs = false; 6200 TemplateArgumentListInfo TemplateArgs; 6201 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6202 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6203 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6204 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6205 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6206 TemplateId->getTemplateArgs(), 6207 TemplateId->NumArgs); 6208 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6209 HasExplicitTemplateArgs = true; 6210 TemplateArgsPtr.release(); 6211 } 6212 6213 // C++ [temp.explicit]p1: 6214 // A [...] function [...] can be explicitly instantiated from its template. 6215 // A member function [...] of a class template can be explicitly 6216 // instantiated from the member definition associated with its class 6217 // template. 6218 UnresolvedSet<8> Matches; 6219 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6220 P != PEnd; ++P) { 6221 NamedDecl *Prev = *P; 6222 if (!HasExplicitTemplateArgs) { 6223 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6224 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6225 Matches.clear(); 6226 6227 Matches.addDecl(Method, P.getAccess()); 6228 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6229 break; 6230 } 6231 } 6232 } 6233 6234 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6235 if (!FunTmpl) 6236 continue; 6237 6238 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6239 FunctionDecl *Specialization = 0; 6240 if (TemplateDeductionResult TDK 6241 = DeduceTemplateArguments(FunTmpl, 6242 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6243 R, Specialization, Info)) { 6244 // FIXME: Keep track of almost-matches? 6245 (void)TDK; 6246 continue; 6247 } 6248 6249 Matches.addDecl(Specialization, P.getAccess()); 6250 } 6251 6252 // Find the most specialized function template specialization. 6253 UnresolvedSetIterator Result 6254 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6255 D.getIdentifierLoc(), 6256 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6257 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6258 PDiag(diag::note_explicit_instantiation_candidate)); 6259 6260 if (Result == Matches.end()) 6261 return true; 6262 6263 // Ignore access control bits, we don't need them for redeclaration checking. 6264 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6265 6266 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6267 Diag(D.getIdentifierLoc(), 6268 diag::err_explicit_instantiation_member_function_not_instantiated) 6269 << Specialization 6270 << (Specialization->getTemplateSpecializationKind() == 6271 TSK_ExplicitSpecialization); 6272 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6273 return true; 6274 } 6275 6276 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 6277 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6278 PrevDecl = Specialization; 6279 6280 if (PrevDecl) { 6281 bool HasNoEffect = false; 6282 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6283 PrevDecl, 6284 PrevDecl->getTemplateSpecializationKind(), 6285 PrevDecl->getPointOfInstantiation(), 6286 HasNoEffect)) 6287 return true; 6288 6289 // FIXME: We may still want to build some representation of this 6290 // explicit specialization. 6291 if (HasNoEffect) 6292 return (Decl*) 0; 6293 } 6294 6295 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6296 6297 if (TSK == TSK_ExplicitInstantiationDefinition) 6298 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6299 6300 // C++0x [temp.explicit]p2: 6301 // If the explicit instantiation is for a member function, a member class 6302 // or a static data member of a class template specialization, the name of 6303 // the class template specialization in the qualified-id for the member 6304 // name shall be a simple-template-id. 6305 // 6306 // C++98 has the same restriction, just worded differently. 6307 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6308 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6309 D.getCXXScopeSpec().isSet() && 6310 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6311 Diag(D.getIdentifierLoc(), 6312 diag::ext_explicit_instantiation_without_qualified_id) 6313 << Specialization << D.getCXXScopeSpec().getRange(); 6314 6315 CheckExplicitInstantiationScope(*this, 6316 FunTmpl? (NamedDecl *)FunTmpl 6317 : Specialization->getInstantiatedFromMemberFunction(), 6318 D.getIdentifierLoc(), 6319 D.getCXXScopeSpec().isSet()); 6320 6321 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6322 return (Decl*) 0; 6323 } 6324 6325 TypeResult 6326 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6327 const CXXScopeSpec &SS, IdentifierInfo *Name, 6328 SourceLocation TagLoc, SourceLocation NameLoc) { 6329 // This has to hold, because SS is expected to be defined. 6330 assert(Name && "Expected a name in a dependent tag"); 6331 6332 NestedNameSpecifier *NNS 6333 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6334 if (!NNS) 6335 return true; 6336 6337 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6338 6339 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6340 Diag(NameLoc, diag::err_dependent_tag_decl) 6341 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6342 return true; 6343 } 6344 6345 // Create the resulting type. 6346 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6347 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6348 6349 // Create type-source location information for this type. 6350 TypeLocBuilder TLB; 6351 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6352 TL.setKeywordLoc(TagLoc); 6353 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6354 TL.setNameLoc(NameLoc); 6355 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6356 } 6357 6358 TypeResult 6359 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6360 const CXXScopeSpec &SS, const IdentifierInfo &II, 6361 SourceLocation IdLoc) { 6362 if (SS.isInvalid()) 6363 return true; 6364 6365 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6366 !getLangOptions().CPlusPlus0x) 6367 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6368 << FixItHint::CreateRemoval(TypenameLoc); 6369 6370 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6371 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6372 TypenameLoc, QualifierLoc, II, IdLoc); 6373 if (T.isNull()) 6374 return true; 6375 6376 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6377 if (isa<DependentNameType>(T)) { 6378 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6379 TL.setKeywordLoc(TypenameLoc); 6380 TL.setQualifierLoc(QualifierLoc); 6381 TL.setNameLoc(IdLoc); 6382 } else { 6383 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6384 TL.setKeywordLoc(TypenameLoc); 6385 TL.setQualifierLoc(QualifierLoc); 6386 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6387 } 6388 6389 return CreateParsedType(T, TSI); 6390 } 6391 6392 TypeResult 6393 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6394 const CXXScopeSpec &SS, 6395 SourceLocation TemplateLoc, 6396 TemplateTy TemplateIn, 6397 SourceLocation TemplateNameLoc, 6398 SourceLocation LAngleLoc, 6399 ASTTemplateArgsPtr TemplateArgsIn, 6400 SourceLocation RAngleLoc) { 6401 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 6402 !getLangOptions().CPlusPlus0x) 6403 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 6404 << FixItHint::CreateRemoval(TypenameLoc); 6405 6406 // Translate the parser's template argument list in our AST format. 6407 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6408 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6409 6410 TemplateName Template = TemplateIn.get(); 6411 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6412 // Construct a dependent template specialization type. 6413 assert(DTN && "dependent template has non-dependent name?"); 6414 assert(DTN->getQualifier() 6415 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6416 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6417 DTN->getQualifier(), 6418 DTN->getIdentifier(), 6419 TemplateArgs); 6420 6421 // Create source-location information for this type. 6422 TypeLocBuilder Builder; 6423 DependentTemplateSpecializationTypeLoc SpecTL 6424 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6425 SpecTL.setLAngleLoc(LAngleLoc); 6426 SpecTL.setRAngleLoc(RAngleLoc); 6427 SpecTL.setKeywordLoc(TypenameLoc); 6428 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6429 SpecTL.setNameLoc(TemplateNameLoc); 6430 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6431 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6432 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6433 } 6434 6435 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6436 if (T.isNull()) 6437 return true; 6438 6439 // Provide source-location information for the template specialization 6440 // type. 6441 TypeLocBuilder Builder; 6442 TemplateSpecializationTypeLoc SpecTL 6443 = Builder.push<TemplateSpecializationTypeLoc>(T); 6444 6445 // FIXME: No place to set the location of the 'template' keyword! 6446 SpecTL.setLAngleLoc(LAngleLoc); 6447 SpecTL.setRAngleLoc(RAngleLoc); 6448 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6449 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6450 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6451 6452 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6453 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6454 TL.setKeywordLoc(TypenameLoc); 6455 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6456 6457 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6458 return CreateParsedType(T, TSI); 6459 } 6460 6461 6462 /// \brief Build the type that describes a C++ typename specifier, 6463 /// e.g., "typename T::type". 6464 QualType 6465 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 6466 SourceLocation KeywordLoc, 6467 NestedNameSpecifierLoc QualifierLoc, 6468 const IdentifierInfo &II, 6469 SourceLocation IILoc) { 6470 CXXScopeSpec SS; 6471 SS.Adopt(QualifierLoc); 6472 6473 DeclContext *Ctx = computeDeclContext(SS); 6474 if (!Ctx) { 6475 // If the nested-name-specifier is dependent and couldn't be 6476 // resolved to a type, build a typename type. 6477 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 6478 return Context.getDependentNameType(Keyword, 6479 QualifierLoc.getNestedNameSpecifier(), 6480 &II); 6481 } 6482 6483 // If the nested-name-specifier refers to the current instantiation, 6484 // the "typename" keyword itself is superfluous. In C++03, the 6485 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6486 // allows such extraneous "typename" keywords, and we retroactively 6487 // apply this DR to C++03 code with only a warning. In any case we continue. 6488 6489 if (RequireCompleteDeclContext(SS, Ctx)) 6490 return QualType(); 6491 6492 DeclarationName Name(&II); 6493 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6494 LookupQualifiedName(Result, Ctx); 6495 unsigned DiagID = 0; 6496 Decl *Referenced = 0; 6497 switch (Result.getResultKind()) { 6498 case LookupResult::NotFound: 6499 DiagID = diag::err_typename_nested_not_found; 6500 break; 6501 6502 case LookupResult::FoundUnresolvedValue: { 6503 // We found a using declaration that is a value. Most likely, the using 6504 // declaration itself is meant to have the 'typename' keyword. 6505 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6506 IILoc); 6507 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6508 << Name << Ctx << FullRange; 6509 if (UnresolvedUsingValueDecl *Using 6510 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6511 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 6512 Diag(Loc, diag::note_using_value_decl_missing_typename) 6513 << FixItHint::CreateInsertion(Loc, "typename "); 6514 } 6515 } 6516 // Fall through to create a dependent typename type, from which we can recover 6517 // better. 6518 6519 case LookupResult::NotFoundInCurrentInstantiation: 6520 // Okay, it's a member of an unknown instantiation. 6521 return Context.getDependentNameType(Keyword, 6522 QualifierLoc.getNestedNameSpecifier(), 6523 &II); 6524 6525 case LookupResult::Found: 6526 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6527 // We found a type. Build an ElaboratedType, since the 6528 // typename-specifier was just sugar. 6529 return Context.getElaboratedType(ETK_Typename, 6530 QualifierLoc.getNestedNameSpecifier(), 6531 Context.getTypeDeclType(Type)); 6532 } 6533 6534 DiagID = diag::err_typename_nested_not_type; 6535 Referenced = Result.getFoundDecl(); 6536 break; 6537 6538 6539 llvm_unreachable("unresolved using decl in non-dependent context"); 6540 return QualType(); 6541 6542 case LookupResult::FoundOverloaded: 6543 DiagID = diag::err_typename_nested_not_type; 6544 Referenced = *Result.begin(); 6545 break; 6546 6547 case LookupResult::Ambiguous: 6548 return QualType(); 6549 } 6550 6551 // If we get here, it's because name lookup did not find a 6552 // type. Emit an appropriate diagnostic and return an error. 6553 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 6554 IILoc); 6555 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6556 if (Referenced) 6557 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6558 << Name; 6559 return QualType(); 6560 } 6561 6562 namespace { 6563 // See Sema::RebuildTypeInCurrentInstantiation 6564 class CurrentInstantiationRebuilder 6565 : public TreeTransform<CurrentInstantiationRebuilder> { 6566 SourceLocation Loc; 6567 DeclarationName Entity; 6568 6569 public: 6570 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6571 6572 CurrentInstantiationRebuilder(Sema &SemaRef, 6573 SourceLocation Loc, 6574 DeclarationName Entity) 6575 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6576 Loc(Loc), Entity(Entity) { } 6577 6578 /// \brief Determine whether the given type \p T has already been 6579 /// transformed. 6580 /// 6581 /// For the purposes of type reconstruction, a type has already been 6582 /// transformed if it is NULL or if it is not dependent. 6583 bool AlreadyTransformed(QualType T) { 6584 return T.isNull() || !T->isDependentType(); 6585 } 6586 6587 /// \brief Returns the location of the entity whose type is being 6588 /// rebuilt. 6589 SourceLocation getBaseLocation() { return Loc; } 6590 6591 /// \brief Returns the name of the entity whose type is being rebuilt. 6592 DeclarationName getBaseEntity() { return Entity; } 6593 6594 /// \brief Sets the "base" location and entity when that 6595 /// information is known based on another transformation. 6596 void setBase(SourceLocation Loc, DeclarationName Entity) { 6597 this->Loc = Loc; 6598 this->Entity = Entity; 6599 } 6600 }; 6601 } 6602 6603 /// \brief Rebuilds a type within the context of the current instantiation. 6604 /// 6605 /// The type \p T is part of the type of an out-of-line member definition of 6606 /// a class template (or class template partial specialization) that was parsed 6607 /// and constructed before we entered the scope of the class template (or 6608 /// partial specialization thereof). This routine will rebuild that type now 6609 /// that we have entered the declarator's scope, which may produce different 6610 /// canonical types, e.g., 6611 /// 6612 /// \code 6613 /// template<typename T> 6614 /// struct X { 6615 /// typedef T* pointer; 6616 /// pointer data(); 6617 /// }; 6618 /// 6619 /// template<typename T> 6620 /// typename X<T>::pointer X<T>::data() { ... } 6621 /// \endcode 6622 /// 6623 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6624 /// since we do not know that we can look into X<T> when we parsed the type. 6625 /// This function will rebuild the type, performing the lookup of "pointer" 6626 /// in X<T> and returning an ElaboratedType whose canonical type is the same 6627 /// as the canonical type of T*, allowing the return types of the out-of-line 6628 /// definition and the declaration to match. 6629 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6630 SourceLocation Loc, 6631 DeclarationName Name) { 6632 if (!T || !T->getType()->isDependentType()) 6633 return T; 6634 6635 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6636 return Rebuilder.TransformType(T); 6637 } 6638 6639 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6640 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6641 DeclarationName()); 6642 return Rebuilder.TransformExpr(E); 6643 } 6644 6645 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6646 if (SS.isInvalid()) 6647 return true; 6648 6649 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6650 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6651 DeclarationName()); 6652 NestedNameSpecifierLoc Rebuilt 6653 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 6654 if (!Rebuilt) 6655 return true; 6656 6657 SS.Adopt(Rebuilt); 6658 return false; 6659 } 6660 6661 /// \brief Produces a formatted string that describes the binding of 6662 /// template parameters to template arguments. 6663 std::string 6664 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6665 const TemplateArgumentList &Args) { 6666 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6667 } 6668 6669 std::string 6670 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6671 const TemplateArgument *Args, 6672 unsigned NumArgs) { 6673 llvm::SmallString<128> Str; 6674 llvm::raw_svector_ostream Out(Str); 6675 6676 if (!Params || Params->size() == 0 || NumArgs == 0) 6677 return std::string(); 6678 6679 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6680 if (I >= NumArgs) 6681 break; 6682 6683 if (I == 0) 6684 Out << "[with "; 6685 else 6686 Out << ", "; 6687 6688 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6689 Out << Id->getName(); 6690 } else { 6691 Out << '$' << I; 6692 } 6693 6694 Out << " = "; 6695 Args[I].print(Context.PrintingPolicy, Out); 6696 } 6697 6698 Out << ']'; 6699 return Out.str(); 6700 } 6701 6702 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 6703 if (!FD) 6704 return; 6705 FD->setLateTemplateParsed(Flag); 6706 } 6707 6708 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 6709 DeclContext *DC = CurContext; 6710 6711 while (DC) { 6712 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 6713 const FunctionDecl *FD = RD->isLocalClass(); 6714 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 6715 } else if (DC->isTranslationUnit() || DC->isNamespace()) 6716 return false; 6717 6718 DC = DC->getParent(); 6719 } 6720 return false; 6721 } 6722