Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Frontend/CodeGenOptions.h"
     15 #include "CodeGenFunction.h"
     16 #include "CGCXXABI.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "CGDebugInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtVisitor.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "llvm/Constants.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/GlobalVariable.h"
     28 #include "llvm/Intrinsics.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/Support/CFG.h"
     31 #include "llvm/Target/TargetData.h"
     32 #include <cstdarg>
     33 
     34 using namespace clang;
     35 using namespace CodeGen;
     36 using llvm::Value;
     37 
     38 //===----------------------------------------------------------------------===//
     39 //                         Scalar Expression Emitter
     40 //===----------------------------------------------------------------------===//
     41 
     42 namespace {
     43 struct BinOpInfo {
     44   Value *LHS;
     45   Value *RHS;
     46   QualType Ty;  // Computation Type.
     47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     49 };
     50 
     51 static bool MustVisitNullValue(const Expr *E) {
     52   // If a null pointer expression's type is the C++0x nullptr_t, then
     53   // it's not necessarily a simple constant and it must be evaluated
     54   // for its potential side effects.
     55   return E->getType()->isNullPtrType();
     56 }
     57 
     58 class ScalarExprEmitter
     59   : public StmtVisitor<ScalarExprEmitter, Value*> {
     60   CodeGenFunction &CGF;
     61   CGBuilderTy &Builder;
     62   bool IgnoreResultAssign;
     63   llvm::LLVMContext &VMContext;
     64 public:
     65 
     66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     68       VMContext(cgf.getLLVMContext()) {
     69   }
     70 
     71   //===--------------------------------------------------------------------===//
     72   //                               Utilities
     73   //===--------------------------------------------------------------------===//
     74 
     75   bool TestAndClearIgnoreResultAssign() {
     76     bool I = IgnoreResultAssign;
     77     IgnoreResultAssign = false;
     78     return I;
     79   }
     80 
     81   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
     84 
     85   Value *EmitLoadOfLValue(LValue LV) {
     86     return CGF.EmitLoadOfLValue(LV).getScalarVal();
     87   }
     88 
     89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
     90   /// value l-value, this method emits the address of the l-value, then loads
     91   /// and returns the result.
     92   Value *EmitLoadOfLValue(const Expr *E) {
     93     return EmitLoadOfLValue(EmitCheckedLValue(E));
     94   }
     95 
     96   /// EmitConversionToBool - Convert the specified expression value to a
     97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
     98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
     99 
    100   /// EmitScalarConversion - Emit a conversion from the specified type to the
    101   /// specified destination type, both of which are LLVM scalar types.
    102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
    103 
    104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
    105   /// complex type to the specified destination type, where the destination type
    106   /// is an LLVM scalar type.
    107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    108                                        QualType SrcTy, QualType DstTy);
    109 
    110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    111   Value *EmitNullValue(QualType Ty);
    112 
    113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    114   Value *EmitFloatToBoolConversion(Value *V) {
    115     // Compare against 0.0 for fp scalars.
    116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    118   }
    119 
    120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    121   Value *EmitPointerToBoolConversion(Value *V) {
    122     Value *Zero = llvm::ConstantPointerNull::get(
    123                                       cast<llvm::PointerType>(V->getType()));
    124     return Builder.CreateICmpNE(V, Zero, "tobool");
    125   }
    126 
    127   Value *EmitIntToBoolConversion(Value *V) {
    128     // Because of the type rules of C, we often end up computing a
    129     // logical value, then zero extending it to int, then wanting it
    130     // as a logical value again.  Optimize this common case.
    131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    133         Value *Result = ZI->getOperand(0);
    134         // If there aren't any more uses, zap the instruction to save space.
    135         // Note that there can be more uses, for example if this
    136         // is the result of an assignment.
    137         if (ZI->use_empty())
    138           ZI->eraseFromParent();
    139         return Result;
    140       }
    141     }
    142 
    143     return Builder.CreateIsNotNull(V, "tobool");
    144   }
    145 
    146   //===--------------------------------------------------------------------===//
    147   //                            Visitor Methods
    148   //===--------------------------------------------------------------------===//
    149 
    150   Value *Visit(Expr *E) {
    151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    152   }
    153 
    154   Value *VisitStmt(Stmt *S) {
    155     S->dump(CGF.getContext().getSourceManager());
    156     assert(0 && "Stmt can't have complex result type!");
    157     return 0;
    158   }
    159   Value *VisitExpr(Expr *S);
    160 
    161   Value *VisitParenExpr(ParenExpr *PE) {
    162     return Visit(PE->getSubExpr());
    163   }
    164   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    165     return Visit(E->getReplacement());
    166   }
    167   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    168     return Visit(GE->getResultExpr());
    169   }
    170 
    171   // Leaves.
    172   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    173     return Builder.getInt(E->getValue());
    174   }
    175   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    176     return llvm::ConstantFP::get(VMContext, E->getValue());
    177   }
    178   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    180   }
    181   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    182     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    183   }
    184   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    185     return EmitNullValue(E->getType());
    186   }
    187   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    188     return EmitNullValue(E->getType());
    189   }
    190   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    191   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    192   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    193     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    194     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    195   }
    196 
    197   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    198     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    199   }
    200 
    201   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    202     if (E->isGLValue())
    203       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
    204 
    205     // Otherwise, assume the mapping is the scalar directly.
    206     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    207   }
    208 
    209   // l-values.
    210   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    211     Expr::EvalResult Result;
    212     if (!E->Evaluate(Result, CGF.getContext()))
    213       return EmitLoadOfLValue(E);
    214 
    215     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
    216 
    217     llvm::Constant *C;
    218     if (Result.Val.isInt())
    219       C = Builder.getInt(Result.Val.getInt());
    220     else if (Result.Val.isFloat())
    221       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
    222     else
    223       return EmitLoadOfLValue(E);
    224 
    225     // Make sure we emit a debug reference to the global variable.
    226     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
    227       if (!CGF.getContext().DeclMustBeEmitted(VD))
    228         CGF.EmitDeclRefExprDbgValue(E, C);
    229     } else if (isa<EnumConstantDecl>(E->getDecl())) {
    230       CGF.EmitDeclRefExprDbgValue(E, C);
    231     }
    232 
    233     return C;
    234   }
    235   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    236     return CGF.EmitObjCSelectorExpr(E);
    237   }
    238   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    239     return CGF.EmitObjCProtocolExpr(E);
    240   }
    241   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    242     return EmitLoadOfLValue(E);
    243   }
    244   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
    245     assert(E->getObjectKind() == OK_Ordinary &&
    246            "reached property reference without lvalue-to-rvalue");
    247     return EmitLoadOfLValue(E);
    248   }
    249   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    250     if (E->getMethodDecl() &&
    251         E->getMethodDecl()->getResultType()->isReferenceType())
    252       return EmitLoadOfLValue(E);
    253     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    254   }
    255 
    256   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    257     LValue LV = CGF.EmitObjCIsaExpr(E);
    258     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
    259     return V;
    260   }
    261 
    262   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    263   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    264   Value *VisitMemberExpr(MemberExpr *E);
    265   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    266   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    267     return EmitLoadOfLValue(E);
    268   }
    269 
    270   Value *VisitInitListExpr(InitListExpr *E);
    271 
    272   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    273     return CGF.CGM.EmitNullConstant(E->getType());
    274   }
    275   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    276     if (E->getType()->isVariablyModifiedType())
    277       CGF.EmitVariablyModifiedType(E->getType());
    278     return VisitCastExpr(E);
    279   }
    280   Value *VisitCastExpr(CastExpr *E);
    281 
    282   Value *VisitCallExpr(const CallExpr *E) {
    283     if (E->getCallReturnType()->isReferenceType())
    284       return EmitLoadOfLValue(E);
    285 
    286     return CGF.EmitCallExpr(E).getScalarVal();
    287   }
    288 
    289   Value *VisitStmtExpr(const StmtExpr *E);
    290 
    291   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
    292 
    293   // Unary Operators.
    294   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    295     LValue LV = EmitLValue(E->getSubExpr());
    296     return EmitScalarPrePostIncDec(E, LV, false, false);
    297   }
    298   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    299     LValue LV = EmitLValue(E->getSubExpr());
    300     return EmitScalarPrePostIncDec(E, LV, true, false);
    301   }
    302   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    303     LValue LV = EmitLValue(E->getSubExpr());
    304     return EmitScalarPrePostIncDec(E, LV, false, true);
    305   }
    306   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    307     LValue LV = EmitLValue(E->getSubExpr());
    308     return EmitScalarPrePostIncDec(E, LV, true, true);
    309   }
    310 
    311   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
    312                                                llvm::Value *InVal,
    313                                                llvm::Value *NextVal,
    314                                                bool IsInc);
    315 
    316   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    317                                        bool isInc, bool isPre);
    318 
    319 
    320   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    321     if (isa<MemberPointerType>(E->getType())) // never sugared
    322       return CGF.CGM.getMemberPointerConstant(E);
    323 
    324     return EmitLValue(E->getSubExpr()).getAddress();
    325   }
    326   Value *VisitUnaryDeref(const UnaryOperator *E) {
    327     if (E->getType()->isVoidType())
    328       return Visit(E->getSubExpr()); // the actual value should be unused
    329     return EmitLoadOfLValue(E);
    330   }
    331   Value *VisitUnaryPlus(const UnaryOperator *E) {
    332     // This differs from gcc, though, most likely due to a bug in gcc.
    333     TestAndClearIgnoreResultAssign();
    334     return Visit(E->getSubExpr());
    335   }
    336   Value *VisitUnaryMinus    (const UnaryOperator *E);
    337   Value *VisitUnaryNot      (const UnaryOperator *E);
    338   Value *VisitUnaryLNot     (const UnaryOperator *E);
    339   Value *VisitUnaryReal     (const UnaryOperator *E);
    340   Value *VisitUnaryImag     (const UnaryOperator *E);
    341   Value *VisitUnaryExtension(const UnaryOperator *E) {
    342     return Visit(E->getSubExpr());
    343   }
    344 
    345   // C++
    346   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    347     return Visit(DAE->getExpr());
    348   }
    349   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    350     return CGF.LoadCXXThis();
    351   }
    352 
    353   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    354     return CGF.EmitExprWithCleanups(E).getScalarVal();
    355   }
    356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    357     return CGF.EmitCXXNewExpr(E);
    358   }
    359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    360     CGF.EmitCXXDeleteExpr(E);
    361     return 0;
    362   }
    363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
    364     return Builder.getInt1(E->getValue());
    365   }
    366 
    367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
    368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    369   }
    370 
    371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    373   }
    374 
    375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    377   }
    378 
    379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    380     // C++ [expr.pseudo]p1:
    381     //   The result shall only be used as the operand for the function call
    382     //   operator (), and the result of such a call has type void. The only
    383     //   effect is the evaluation of the postfix-expression before the dot or
    384     //   arrow.
    385     CGF.EmitScalarExpr(E->getBase());
    386     return 0;
    387   }
    388 
    389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    390     return EmitNullValue(E->getType());
    391   }
    392 
    393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    394     CGF.EmitCXXThrowExpr(E);
    395     return 0;
    396   }
    397 
    398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    399     return Builder.getInt1(E->getValue());
    400   }
    401 
    402   // Binary Operators.
    403   Value *EmitMul(const BinOpInfo &Ops) {
    404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    405       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
    406       case LangOptions::SOB_Undefined:
    407         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    408       case LangOptions::SOB_Defined:
    409         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    410       case LangOptions::SOB_Trapping:
    411         return EmitOverflowCheckedBinOp(Ops);
    412       }
    413     }
    414 
    415     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    416       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    417     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    418   }
    419   bool isTrapvOverflowBehavior() {
    420     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
    421                == LangOptions::SOB_Trapping;
    422   }
    423   /// Create a binary op that checks for overflow.
    424   /// Currently only supports +, - and *.
    425   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    426   // Emit the overflow BB when -ftrapv option is activated.
    427   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
    428     Builder.SetInsertPoint(overflowBB);
    429     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
    430     Builder.CreateCall(Trap);
    431     Builder.CreateUnreachable();
    432   }
    433   // Check for undefined division and modulus behaviors.
    434   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    435                                                   llvm::Value *Zero,bool isDiv);
    436   Value *EmitDiv(const BinOpInfo &Ops);
    437   Value *EmitRem(const BinOpInfo &Ops);
    438   Value *EmitAdd(const BinOpInfo &Ops);
    439   Value *EmitSub(const BinOpInfo &Ops);
    440   Value *EmitShl(const BinOpInfo &Ops);
    441   Value *EmitShr(const BinOpInfo &Ops);
    442   Value *EmitAnd(const BinOpInfo &Ops) {
    443     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    444   }
    445   Value *EmitXor(const BinOpInfo &Ops) {
    446     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    447   }
    448   Value *EmitOr (const BinOpInfo &Ops) {
    449     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    450   }
    451 
    452   BinOpInfo EmitBinOps(const BinaryOperator *E);
    453   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    454                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    455                                   Value *&Result);
    456 
    457   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    459 
    460   // Binary operators and binary compound assignment operators.
    461 #define HANDLEBINOP(OP) \
    462   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    463     return Emit ## OP(EmitBinOps(E));                                      \
    464   }                                                                        \
    465   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    466     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    467   }
    468   HANDLEBINOP(Mul)
    469   HANDLEBINOP(Div)
    470   HANDLEBINOP(Rem)
    471   HANDLEBINOP(Add)
    472   HANDLEBINOP(Sub)
    473   HANDLEBINOP(Shl)
    474   HANDLEBINOP(Shr)
    475   HANDLEBINOP(And)
    476   HANDLEBINOP(Xor)
    477   HANDLEBINOP(Or)
    478 #undef HANDLEBINOP
    479 
    480   // Comparisons.
    481   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
    482                      unsigned SICmpOpc, unsigned FCmpOpc);
    483 #define VISITCOMP(CODE, UI, SI, FP) \
    484     Value *VisitBin##CODE(const BinaryOperator *E) { \
    485       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    486                          llvm::FCmpInst::FP); }
    487   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    488   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    489   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    490   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    491   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    492   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    493 #undef VISITCOMP
    494 
    495   Value *VisitBinAssign     (const BinaryOperator *E);
    496 
    497   Value *VisitBinLAnd       (const BinaryOperator *E);
    498   Value *VisitBinLOr        (const BinaryOperator *E);
    499   Value *VisitBinComma      (const BinaryOperator *E);
    500 
    501   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    502   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    503 
    504   // Other Operators.
    505   Value *VisitBlockExpr(const BlockExpr *BE);
    506   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    507   Value *VisitChooseExpr(ChooseExpr *CE);
    508   Value *VisitVAArgExpr(VAArgExpr *VE);
    509   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    510     return CGF.EmitObjCStringLiteral(E);
    511   }
    512   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    513 };
    514 }  // end anonymous namespace.
    515 
    516 //===----------------------------------------------------------------------===//
    517 //                                Utilities
    518 //===----------------------------------------------------------------------===//
    519 
    520 /// EmitConversionToBool - Convert the specified expression value to a
    521 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    522 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    523   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    524 
    525   if (SrcType->isRealFloatingType())
    526     return EmitFloatToBoolConversion(Src);
    527 
    528   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    529     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    530 
    531   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    532          "Unknown scalar type to convert");
    533 
    534   if (isa<llvm::IntegerType>(Src->getType()))
    535     return EmitIntToBoolConversion(Src);
    536 
    537   assert(isa<llvm::PointerType>(Src->getType()));
    538   return EmitPointerToBoolConversion(Src);
    539 }
    540 
    541 /// EmitScalarConversion - Emit a conversion from the specified type to the
    542 /// specified destination type, both of which are LLVM scalar types.
    543 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    544                                                QualType DstType) {
    545   SrcType = CGF.getContext().getCanonicalType(SrcType);
    546   DstType = CGF.getContext().getCanonicalType(DstType);
    547   if (SrcType == DstType) return Src;
    548 
    549   if (DstType->isVoidType()) return 0;
    550 
    551   // Handle conversions to bool first, they are special: comparisons against 0.
    552   if (DstType->isBooleanType())
    553     return EmitConversionToBool(Src, SrcType);
    554 
    555   llvm::Type *DstTy = ConvertType(DstType);
    556 
    557   // Ignore conversions like int -> uint.
    558   if (Src->getType() == DstTy)
    559     return Src;
    560 
    561   // Handle pointer conversions next: pointers can only be converted to/from
    562   // other pointers and integers. Check for pointer types in terms of LLVM, as
    563   // some native types (like Obj-C id) may map to a pointer type.
    564   if (isa<llvm::PointerType>(DstTy)) {
    565     // The source value may be an integer, or a pointer.
    566     if (isa<llvm::PointerType>(Src->getType()))
    567       return Builder.CreateBitCast(Src, DstTy, "conv");
    568 
    569     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    570     // First, convert to the correct width so that we control the kind of
    571     // extension.
    572     llvm::Type *MiddleTy = CGF.IntPtrTy;
    573     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    574     llvm::Value* IntResult =
    575         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    576     // Then, cast to pointer.
    577     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    578   }
    579 
    580   if (isa<llvm::PointerType>(Src->getType())) {
    581     // Must be an ptr to int cast.
    582     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    583     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    584   }
    585 
    586   // A scalar can be splatted to an extended vector of the same element type
    587   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    588     // Cast the scalar to element type
    589     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    590     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
    591 
    592     // Insert the element in element zero of an undef vector
    593     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
    594     llvm::Value *Idx = Builder.getInt32(0);
    595     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
    596 
    597     // Splat the element across to all elements
    598     llvm::SmallVector<llvm::Constant*, 16> Args;
    599     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    600     for (unsigned i = 0; i != NumElements; ++i)
    601       Args.push_back(Builder.getInt32(0));
    602 
    603     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    604     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
    605     return Yay;
    606   }
    607 
    608   // Allow bitcast from vector to integer/fp of the same size.
    609   if (isa<llvm::VectorType>(Src->getType()) ||
    610       isa<llvm::VectorType>(DstTy))
    611     return Builder.CreateBitCast(Src, DstTy, "conv");
    612 
    613   // Finally, we have the arithmetic types: real int/float.
    614   if (isa<llvm::IntegerType>(Src->getType())) {
    615     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    616     if (isa<llvm::IntegerType>(DstTy))
    617       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    618     else if (InputSigned)
    619       return Builder.CreateSIToFP(Src, DstTy, "conv");
    620     else
    621       return Builder.CreateUIToFP(Src, DstTy, "conv");
    622   }
    623 
    624   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
    625   if (isa<llvm::IntegerType>(DstTy)) {
    626     if (DstType->isSignedIntegerOrEnumerationType())
    627       return Builder.CreateFPToSI(Src, DstTy, "conv");
    628     else
    629       return Builder.CreateFPToUI(Src, DstTy, "conv");
    630   }
    631 
    632   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
    633   if (DstTy->getTypeID() < Src->getType()->getTypeID())
    634     return Builder.CreateFPTrunc(Src, DstTy, "conv");
    635   else
    636     return Builder.CreateFPExt(Src, DstTy, "conv");
    637 }
    638 
    639 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
    640 /// type to the specified destination type, where the destination type is an
    641 /// LLVM scalar type.
    642 Value *ScalarExprEmitter::
    643 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    644                               QualType SrcTy, QualType DstTy) {
    645   // Get the source element type.
    646   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
    647 
    648   // Handle conversions to bool first, they are special: comparisons against 0.
    649   if (DstTy->isBooleanType()) {
    650     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    651     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
    652     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
    653     return Builder.CreateOr(Src.first, Src.second, "tobool");
    654   }
    655 
    656   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    657   // the imaginary part of the complex value is discarded and the value of the
    658   // real part is converted according to the conversion rules for the
    659   // corresponding real type.
    660   return EmitScalarConversion(Src.first, SrcTy, DstTy);
    661 }
    662 
    663 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    664   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
    665     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
    666 
    667   return llvm::Constant::getNullValue(ConvertType(Ty));
    668 }
    669 
    670 //===----------------------------------------------------------------------===//
    671 //                            Visitor Methods
    672 //===----------------------------------------------------------------------===//
    673 
    674 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    675   CGF.ErrorUnsupported(E, "scalar expression");
    676   if (E->getType()->isVoidType())
    677     return 0;
    678   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    679 }
    680 
    681 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    682   // Vector Mask Case
    683   if (E->getNumSubExprs() == 2 ||
    684       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
    685     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    686     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    687     Value *Mask;
    688 
    689     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    690     unsigned LHSElts = LTy->getNumElements();
    691 
    692     if (E->getNumSubExprs() == 3) {
    693       Mask = CGF.EmitScalarExpr(E->getExpr(2));
    694 
    695       // Shuffle LHS & RHS into one input vector.
    696       llvm::SmallVector<llvm::Constant*, 32> concat;
    697       for (unsigned i = 0; i != LHSElts; ++i) {
    698         concat.push_back(Builder.getInt32(2*i));
    699         concat.push_back(Builder.getInt32(2*i+1));
    700       }
    701 
    702       Value* CV = llvm::ConstantVector::get(concat);
    703       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
    704       LHSElts *= 2;
    705     } else {
    706       Mask = RHS;
    707     }
    708 
    709     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
    710     llvm::Constant* EltMask;
    711 
    712     // Treat vec3 like vec4.
    713     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
    714       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    715                                        (1 << llvm::Log2_32(LHSElts+2))-1);
    716     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
    717       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    718                                        (1 << llvm::Log2_32(LHSElts+1))-1);
    719     else
    720       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
    721                                        (1 << llvm::Log2_32(LHSElts))-1);
    722 
    723     // Mask off the high bits of each shuffle index.
    724     llvm::SmallVector<llvm::Constant *, 32> MaskV;
    725     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
    726       MaskV.push_back(EltMask);
    727 
    728     Value* MaskBits = llvm::ConstantVector::get(MaskV);
    729     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
    730 
    731     // newv = undef
    732     // mask = mask & maskbits
    733     // for each elt
    734     //   n = extract mask i
    735     //   x = extract val n
    736     //   newv = insert newv, x, i
    737     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
    738                                                         MTy->getNumElements());
    739     Value* NewV = llvm::UndefValue::get(RTy);
    740     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
    741       Value *Indx = Builder.getInt32(i);
    742       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
    743       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
    744 
    745       // Handle vec3 special since the index will be off by one for the RHS.
    746       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
    747         Value *cmpIndx, *newIndx;
    748         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
    749                                         "cmp_shuf_idx");
    750         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
    751         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
    752       }
    753       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
    754       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
    755     }
    756     return NewV;
    757   }
    758 
    759   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
    760   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
    761 
    762   // Handle vec3 special since the index will be off by one for the RHS.
    763   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
    764   llvm::SmallVector<llvm::Constant*, 32> indices;
    765   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
    766     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
    767     if (VTy->getNumElements() == 3 && Idx > 3)
    768       Idx -= 1;
    769     indices.push_back(Builder.getInt32(Idx));
    770   }
    771 
    772   Value *SV = llvm::ConstantVector::get(indices);
    773   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
    774 }
    775 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
    776   Expr::EvalResult Result;
    777   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
    778     if (E->isArrow())
    779       CGF.EmitScalarExpr(E->getBase());
    780     else
    781       EmitLValue(E->getBase());
    782     return Builder.getInt(Result.Val.getInt());
    783   }
    784 
    785   // Emit debug info for aggregate now, if it was delayed to reduce
    786   // debug info size.
    787   CGDebugInfo *DI = CGF.getDebugInfo();
    788   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
    789     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
    790     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
    791       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
    792         DI->getOrCreateRecordType(PTy->getPointeeType(),
    793                                   M->getParent()->getLocation());
    794   }
    795   return EmitLoadOfLValue(E);
    796 }
    797 
    798 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    799   TestAndClearIgnoreResultAssign();
    800 
    801   // Emit subscript expressions in rvalue context's.  For most cases, this just
    802   // loads the lvalue formed by the subscript expr.  However, we have to be
    803   // careful, because the base of a vector subscript is occasionally an rvalue,
    804   // so we can't get it as an lvalue.
    805   if (!E->getBase()->getType()->isVectorType())
    806     return EmitLoadOfLValue(E);
    807 
    808   // Handle the vector case.  The base must be a vector, the index must be an
    809   // integer value.
    810   Value *Base = Visit(E->getBase());
    811   Value *Idx  = Visit(E->getIdx());
    812   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
    813   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
    814   return Builder.CreateExtractElement(Base, Idx, "vecext");
    815 }
    816 
    817 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
    818                                   unsigned Off, llvm::Type *I32Ty) {
    819   int MV = SVI->getMaskValue(Idx);
    820   if (MV == -1)
    821     return llvm::UndefValue::get(I32Ty);
    822   return llvm::ConstantInt::get(I32Ty, Off+MV);
    823 }
    824 
    825 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
    826   bool Ignore = TestAndClearIgnoreResultAssign();
    827   (void)Ignore;
    828   assert (Ignore == false && "init list ignored");
    829   unsigned NumInitElements = E->getNumInits();
    830 
    831   if (E->hadArrayRangeDesignator())
    832     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    833 
    834   llvm::VectorType *VType =
    835     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
    836 
    837   // We have a scalar in braces. Just use the first element.
    838   if (!VType)
    839     return Visit(E->getInit(0));
    840 
    841   unsigned ResElts = VType->getNumElements();
    842 
    843   // Loop over initializers collecting the Value for each, and remembering
    844   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
    845   // us to fold the shuffle for the swizzle into the shuffle for the vector
    846   // initializer, since LLVM optimizers generally do not want to touch
    847   // shuffles.
    848   unsigned CurIdx = 0;
    849   bool VIsUndefShuffle = false;
    850   llvm::Value *V = llvm::UndefValue::get(VType);
    851   for (unsigned i = 0; i != NumInitElements; ++i) {
    852     Expr *IE = E->getInit(i);
    853     Value *Init = Visit(IE);
    854     llvm::SmallVector<llvm::Constant*, 16> Args;
    855 
    856     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
    857 
    858     // Handle scalar elements.  If the scalar initializer is actually one
    859     // element of a different vector of the same width, use shuffle instead of
    860     // extract+insert.
    861     if (!VVT) {
    862       if (isa<ExtVectorElementExpr>(IE)) {
    863         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
    864 
    865         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
    866           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
    867           Value *LHS = 0, *RHS = 0;
    868           if (CurIdx == 0) {
    869             // insert into undef -> shuffle (src, undef)
    870             Args.push_back(C);
    871             for (unsigned j = 1; j != ResElts; ++j)
    872               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    873 
    874             LHS = EI->getVectorOperand();
    875             RHS = V;
    876             VIsUndefShuffle = true;
    877           } else if (VIsUndefShuffle) {
    878             // insert into undefshuffle && size match -> shuffle (v, src)
    879             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
    880             for (unsigned j = 0; j != CurIdx; ++j)
    881               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
    882             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
    883             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
    884               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    885 
    886             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
    887             RHS = EI->getVectorOperand();
    888             VIsUndefShuffle = false;
    889           }
    890           if (!Args.empty()) {
    891             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    892             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
    893             ++CurIdx;
    894             continue;
    895           }
    896         }
    897       }
    898       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
    899                                       "vecinit");
    900       VIsUndefShuffle = false;
    901       ++CurIdx;
    902       continue;
    903     }
    904 
    905     unsigned InitElts = VVT->getNumElements();
    906 
    907     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
    908     // input is the same width as the vector being constructed, generate an
    909     // optimized shuffle of the swizzle input into the result.
    910     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
    911     if (isa<ExtVectorElementExpr>(IE)) {
    912       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
    913       Value *SVOp = SVI->getOperand(0);
    914       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
    915 
    916       if (OpTy->getNumElements() == ResElts) {
    917         for (unsigned j = 0; j != CurIdx; ++j) {
    918           // If the current vector initializer is a shuffle with undef, merge
    919           // this shuffle directly into it.
    920           if (VIsUndefShuffle) {
    921             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
    922                                       CGF.Int32Ty));
    923           } else {
    924             Args.push_back(Builder.getInt32(j));
    925           }
    926         }
    927         for (unsigned j = 0, je = InitElts; j != je; ++j)
    928           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
    929         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
    930           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    931 
    932         if (VIsUndefShuffle)
    933           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
    934 
    935         Init = SVOp;
    936       }
    937     }
    938 
    939     // Extend init to result vector length, and then shuffle its contribution
    940     // to the vector initializer into V.
    941     if (Args.empty()) {
    942       for (unsigned j = 0; j != InitElts; ++j)
    943         Args.push_back(Builder.getInt32(j));
    944       for (unsigned j = InitElts; j != ResElts; ++j)
    945         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    946       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    947       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
    948                                          Mask, "vext");
    949 
    950       Args.clear();
    951       for (unsigned j = 0; j != CurIdx; ++j)
    952         Args.push_back(Builder.getInt32(j));
    953       for (unsigned j = 0; j != InitElts; ++j)
    954         Args.push_back(Builder.getInt32(j+Offset));
    955       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
    956         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
    957     }
    958 
    959     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
    960     // merging subsequent shuffles into this one.
    961     if (CurIdx == 0)
    962       std::swap(V, Init);
    963     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
    964     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
    965     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
    966     CurIdx += InitElts;
    967   }
    968 
    969   // FIXME: evaluate codegen vs. shuffling against constant null vector.
    970   // Emit remaining default initializers.
    971   llvm::Type *EltTy = VType->getElementType();
    972 
    973   // Emit remaining default initializers
    974   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
    975     Value *Idx = Builder.getInt32(CurIdx);
    976     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
    977     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
    978   }
    979   return V;
    980 }
    981 
    982 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
    983   const Expr *E = CE->getSubExpr();
    984 
    985   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
    986     return false;
    987 
    988   if (isa<CXXThisExpr>(E)) {
    989     // We always assume that 'this' is never null.
    990     return false;
    991   }
    992 
    993   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
    994     // And that glvalue casts are never null.
    995     if (ICE->getValueKind() != VK_RValue)
    996       return false;
    997   }
    998 
    999   return true;
   1000 }
   1001 
   1002 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1003 // have to handle a more broad range of conversions than explicit casts, as they
   1004 // handle things like function to ptr-to-function decay etc.
   1005 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1006   Expr *E = CE->getSubExpr();
   1007   QualType DestTy = CE->getType();
   1008   CastKind Kind = CE->getCastKind();
   1009 
   1010   if (!DestTy->isVoidType())
   1011     TestAndClearIgnoreResultAssign();
   1012 
   1013   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1014   // a default case, so the compiler will warn on a missing case.  The cases
   1015   // are in the same order as in the CastKind enum.
   1016   switch (Kind) {
   1017   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1018 
   1019   case CK_LValueBitCast:
   1020   case CK_ObjCObjectLValueCast: {
   1021     Value *V = EmitLValue(E).getAddress();
   1022     V = Builder.CreateBitCast(V,
   1023                           ConvertType(CGF.getContext().getPointerType(DestTy)));
   1024     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy));
   1025   }
   1026 
   1027   case CK_AnyPointerToObjCPointerCast:
   1028   case CK_AnyPointerToBlockPointerCast:
   1029   case CK_BitCast: {
   1030     Value *Src = Visit(const_cast<Expr*>(E));
   1031     return Builder.CreateBitCast(Src, ConvertType(DestTy));
   1032   }
   1033   case CK_NoOp:
   1034   case CK_UserDefinedConversion:
   1035     return Visit(const_cast<Expr*>(E));
   1036 
   1037   case CK_BaseToDerived: {
   1038     const CXXRecordDecl *DerivedClassDecl =
   1039       DestTy->getCXXRecordDeclForPointerType();
   1040 
   1041     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
   1042                                         CE->path_begin(), CE->path_end(),
   1043                                         ShouldNullCheckClassCastValue(CE));
   1044   }
   1045   case CK_UncheckedDerivedToBase:
   1046   case CK_DerivedToBase: {
   1047     const RecordType *DerivedClassTy =
   1048       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
   1049     CXXRecordDecl *DerivedClassDecl =
   1050       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   1051 
   1052     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
   1053                                      CE->path_begin(), CE->path_end(),
   1054                                      ShouldNullCheckClassCastValue(CE));
   1055   }
   1056   case CK_Dynamic: {
   1057     Value *V = Visit(const_cast<Expr*>(E));
   1058     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1059     return CGF.EmitDynamicCast(V, DCE);
   1060   }
   1061 
   1062   case CK_ArrayToPointerDecay: {
   1063     assert(E->getType()->isArrayType() &&
   1064            "Array to pointer decay must have array source type!");
   1065 
   1066     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
   1067 
   1068     // Note that VLA pointers are always decayed, so we don't need to do
   1069     // anything here.
   1070     if (!E->getType()->isVariableArrayType()) {
   1071       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
   1072       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
   1073                                  ->getElementType()) &&
   1074              "Expected pointer to array");
   1075       V = Builder.CreateStructGEP(V, 0, "arraydecay");
   1076     }
   1077 
   1078     // Make sure the array decay ends up being the right type.  This matters if
   1079     // the array type was of an incomplete type.
   1080     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
   1081   }
   1082   case CK_FunctionToPointerDecay:
   1083     return EmitLValue(E).getAddress();
   1084 
   1085   case CK_NullToPointer:
   1086     if (MustVisitNullValue(E))
   1087       (void) Visit(E);
   1088 
   1089     return llvm::ConstantPointerNull::get(
   1090                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1091 
   1092   case CK_NullToMemberPointer: {
   1093     if (MustVisitNullValue(E))
   1094       (void) Visit(E);
   1095 
   1096     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1097     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1098   }
   1099 
   1100   case CK_BaseToDerivedMemberPointer:
   1101   case CK_DerivedToBaseMemberPointer: {
   1102     Value *Src = Visit(E);
   1103 
   1104     // Note that the AST doesn't distinguish between checked and
   1105     // unchecked member pointer conversions, so we always have to
   1106     // implement checked conversions here.  This is inefficient when
   1107     // actual control flow may be required in order to perform the
   1108     // check, which it is for data member pointers (but not member
   1109     // function pointers on Itanium and ARM).
   1110     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1111   }
   1112 
   1113   case CK_ObjCProduceObject:
   1114     return CGF.EmitARCRetainScalarExpr(E);
   1115   case CK_ObjCConsumeObject:
   1116     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1117   case CK_ObjCReclaimReturnedObject: {
   1118     llvm::Value *value = Visit(E);
   1119     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   1120     return CGF.EmitObjCConsumeObject(E->getType(), value);
   1121   }
   1122 
   1123   case CK_FloatingRealToComplex:
   1124   case CK_FloatingComplexCast:
   1125   case CK_IntegralRealToComplex:
   1126   case CK_IntegralComplexCast:
   1127   case CK_IntegralComplexToFloatingComplex:
   1128   case CK_FloatingComplexToIntegralComplex:
   1129   case CK_ConstructorConversion:
   1130   case CK_ToUnion:
   1131     llvm_unreachable("scalar cast to non-scalar value");
   1132     break;
   1133 
   1134   case CK_GetObjCProperty: {
   1135     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1136     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
   1137            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
   1138     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E));
   1139     return RV.getScalarVal();
   1140   }
   1141 
   1142   case CK_LValueToRValue:
   1143     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1144     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1145     return Visit(const_cast<Expr*>(E));
   1146 
   1147   case CK_IntegralToPointer: {
   1148     Value *Src = Visit(const_cast<Expr*>(E));
   1149 
   1150     // First, convert to the correct width so that we control the kind of
   1151     // extension.
   1152     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1153     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1154     llvm::Value* IntResult =
   1155       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1156 
   1157     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1158   }
   1159   case CK_PointerToIntegral:
   1160     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1161     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1162 
   1163   case CK_ToVoid: {
   1164     CGF.EmitIgnoredExpr(E);
   1165     return 0;
   1166   }
   1167   case CK_VectorSplat: {
   1168     llvm::Type *DstTy = ConvertType(DestTy);
   1169     Value *Elt = Visit(const_cast<Expr*>(E));
   1170 
   1171     // Insert the element in element zero of an undef vector
   1172     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
   1173     llvm::Value *Idx = Builder.getInt32(0);
   1174     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
   1175 
   1176     // Splat the element across to all elements
   1177     llvm::SmallVector<llvm::Constant*, 16> Args;
   1178     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
   1179     llvm::Constant *Zero = Builder.getInt32(0);
   1180     for (unsigned i = 0; i < NumElements; i++)
   1181       Args.push_back(Zero);
   1182 
   1183     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1184     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
   1185     return Yay;
   1186   }
   1187 
   1188   case CK_IntegralCast:
   1189   case CK_IntegralToFloating:
   1190   case CK_FloatingToIntegral:
   1191   case CK_FloatingCast:
   1192     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
   1193 
   1194   case CK_IntegralToBoolean:
   1195     return EmitIntToBoolConversion(Visit(E));
   1196   case CK_PointerToBoolean:
   1197     return EmitPointerToBoolConversion(Visit(E));
   1198   case CK_FloatingToBoolean:
   1199     return EmitFloatToBoolConversion(Visit(E));
   1200   case CK_MemberPointerToBoolean: {
   1201     llvm::Value *MemPtr = Visit(E);
   1202     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1203     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1204   }
   1205 
   1206   case CK_FloatingComplexToReal:
   1207   case CK_IntegralComplexToReal:
   1208     return CGF.EmitComplexExpr(E, false, true).first;
   1209 
   1210   case CK_FloatingComplexToBoolean:
   1211   case CK_IntegralComplexToBoolean: {
   1212     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1213 
   1214     // TODO: kill this function off, inline appropriate case here
   1215     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
   1216   }
   1217 
   1218   }
   1219 
   1220   llvm_unreachable("unknown scalar cast");
   1221   return 0;
   1222 }
   1223 
   1224 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1225   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1226   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
   1227     .getScalarVal();
   1228 }
   1229 
   1230 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
   1231   LValue LV = CGF.EmitBlockDeclRefLValue(E);
   1232   return CGF.EmitLoadOfLValue(LV).getScalarVal();
   1233 }
   1234 
   1235 //===----------------------------------------------------------------------===//
   1236 //                             Unary Operators
   1237 //===----------------------------------------------------------------------===//
   1238 
   1239 llvm::Value *ScalarExprEmitter::
   1240 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
   1241                                 llvm::Value *InVal,
   1242                                 llvm::Value *NextVal, bool IsInc) {
   1243   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
   1244   case LangOptions::SOB_Undefined:
   1245     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1246     break;
   1247   case LangOptions::SOB_Defined:
   1248     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
   1249     break;
   1250   case LangOptions::SOB_Trapping:
   1251     BinOpInfo BinOp;
   1252     BinOp.LHS = InVal;
   1253     BinOp.RHS = NextVal;
   1254     BinOp.Ty = E->getType();
   1255     BinOp.Opcode = BO_Add;
   1256     BinOp.E = E;
   1257     return EmitOverflowCheckedBinOp(BinOp);
   1258     break;
   1259   }
   1260   assert(false && "Unknown SignedOverflowBehaviorTy");
   1261   return 0;
   1262 }
   1263 
   1264 llvm::Value *
   1265 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1266                                            bool isInc, bool isPre) {
   1267 
   1268   QualType type = E->getSubExpr()->getType();
   1269   llvm::Value *value = EmitLoadOfLValue(LV);
   1270   llvm::Value *input = value;
   1271 
   1272   int amount = (isInc ? 1 : -1);
   1273 
   1274   // Special case of integer increment that we have to check first: bool++.
   1275   // Due to promotion rules, we get:
   1276   //   bool++ -> bool = bool + 1
   1277   //          -> bool = (int)bool + 1
   1278   //          -> bool = ((int)bool + 1 != 0)
   1279   // An interesting aspect of this is that increment is always true.
   1280   // Decrement does not have this property.
   1281   if (isInc && type->isBooleanType()) {
   1282     value = Builder.getTrue();
   1283 
   1284   // Most common case by far: integer increment.
   1285   } else if (type->isIntegerType()) {
   1286 
   1287     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1288 
   1289     // Note that signed integer inc/dec with width less than int can't
   1290     // overflow because of promotion rules; we're just eliding a few steps here.
   1291     if (type->isSignedIntegerOrEnumerationType() &&
   1292         value->getType()->getPrimitiveSizeInBits() >=
   1293             CGF.IntTy->getBitWidth())
   1294       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
   1295     else
   1296       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1297 
   1298   // Next most common: pointer increment.
   1299   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1300     QualType type = ptr->getPointeeType();
   1301 
   1302     // VLA types don't have constant size.
   1303     if (const VariableArrayType *vla
   1304           = CGF.getContext().getAsVariableArrayType(type)) {
   1305       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1306       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1307       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
   1308         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1309       else
   1310         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1311 
   1312     // Arithmetic on function pointers (!) is just +-1.
   1313     } else if (type->isFunctionType()) {
   1314       llvm::Value *amt = Builder.getInt32(amount);
   1315 
   1316       value = CGF.EmitCastToVoidPtr(value);
   1317       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
   1318         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1319       else
   1320         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1321       value = Builder.CreateBitCast(value, input->getType());
   1322 
   1323     // For everything else, we can just do a simple increment.
   1324     } else {
   1325       llvm::Value *amt = Builder.getInt32(amount);
   1326       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
   1327         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1328       else
   1329         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1330     }
   1331 
   1332   // Vector increment/decrement.
   1333   } else if (type->isVectorType()) {
   1334     if (type->hasIntegerRepresentation()) {
   1335       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1336 
   1337       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1338     } else {
   1339       value = Builder.CreateFAdd(
   1340                   value,
   1341                   llvm::ConstantFP::get(value->getType(), amount),
   1342                   isInc ? "inc" : "dec");
   1343     }
   1344 
   1345   // Floating point.
   1346   } else if (type->isRealFloatingType()) {
   1347     // Add the inc/dec to the real part.
   1348     llvm::Value *amt;
   1349     if (value->getType()->isFloatTy())
   1350       amt = llvm::ConstantFP::get(VMContext,
   1351                                   llvm::APFloat(static_cast<float>(amount)));
   1352     else if (value->getType()->isDoubleTy())
   1353       amt = llvm::ConstantFP::get(VMContext,
   1354                                   llvm::APFloat(static_cast<double>(amount)));
   1355     else {
   1356       llvm::APFloat F(static_cast<float>(amount));
   1357       bool ignored;
   1358       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
   1359                 &ignored);
   1360       amt = llvm::ConstantFP::get(VMContext, F);
   1361     }
   1362     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1363 
   1364   // Objective-C pointer types.
   1365   } else {
   1366     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1367     value = CGF.EmitCastToVoidPtr(value);
   1368 
   1369     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1370     if (!isInc) size = -size;
   1371     llvm::Value *sizeValue =
   1372       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1373 
   1374     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
   1375       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1376     else
   1377       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1378     value = Builder.CreateBitCast(value, input->getType());
   1379   }
   1380 
   1381   // Store the updated result through the lvalue.
   1382   if (LV.isBitField())
   1383     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1384   else
   1385     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1386 
   1387   // If this is a postinc, return the value read from memory, otherwise use the
   1388   // updated value.
   1389   return isPre ? value : input;
   1390 }
   1391 
   1392 
   1393 
   1394 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1395   TestAndClearIgnoreResultAssign();
   1396   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1397   BinOpInfo BinOp;
   1398   BinOp.RHS = Visit(E->getSubExpr());
   1399 
   1400   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1401     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1402   else
   1403     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1404   BinOp.Ty = E->getType();
   1405   BinOp.Opcode = BO_Sub;
   1406   BinOp.E = E;
   1407   return EmitSub(BinOp);
   1408 }
   1409 
   1410 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1411   TestAndClearIgnoreResultAssign();
   1412   Value *Op = Visit(E->getSubExpr());
   1413   return Builder.CreateNot(Op, "neg");
   1414 }
   1415 
   1416 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1417   // Compare operand to zero.
   1418   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1419 
   1420   // Invert value.
   1421   // TODO: Could dynamically modify easy computations here.  For example, if
   1422   // the operand is an icmp ne, turn into icmp eq.
   1423   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1424 
   1425   // ZExt result to the expr type.
   1426   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1427 }
   1428 
   1429 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1430   // Try folding the offsetof to a constant.
   1431   Expr::EvalResult EvalResult;
   1432   if (E->Evaluate(EvalResult, CGF.getContext()))
   1433     return Builder.getInt(EvalResult.Val.getInt());
   1434 
   1435   // Loop over the components of the offsetof to compute the value.
   1436   unsigned n = E->getNumComponents();
   1437   llvm::Type* ResultType = ConvertType(E->getType());
   1438   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1439   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1440   for (unsigned i = 0; i != n; ++i) {
   1441     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
   1442     llvm::Value *Offset = 0;
   1443     switch (ON.getKind()) {
   1444     case OffsetOfExpr::OffsetOfNode::Array: {
   1445       // Compute the index
   1446       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1447       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1448       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1449       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1450 
   1451       // Save the element type
   1452       CurrentType =
   1453           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1454 
   1455       // Compute the element size
   1456       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1457           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1458 
   1459       // Multiply out to compute the result
   1460       Offset = Builder.CreateMul(Idx, ElemSize);
   1461       break;
   1462     }
   1463 
   1464     case OffsetOfExpr::OffsetOfNode::Field: {
   1465       FieldDecl *MemberDecl = ON.getField();
   1466       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1467       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1468 
   1469       // Compute the index of the field in its parent.
   1470       unsigned i = 0;
   1471       // FIXME: It would be nice if we didn't have to loop here!
   1472       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1473                                       FieldEnd = RD->field_end();
   1474            Field != FieldEnd; (void)++Field, ++i) {
   1475         if (*Field == MemberDecl)
   1476           break;
   1477       }
   1478       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1479 
   1480       // Compute the offset to the field
   1481       int64_t OffsetInt = RL.getFieldOffset(i) /
   1482                           CGF.getContext().getCharWidth();
   1483       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1484 
   1485       // Save the element type.
   1486       CurrentType = MemberDecl->getType();
   1487       break;
   1488     }
   1489 
   1490     case OffsetOfExpr::OffsetOfNode::Identifier:
   1491       llvm_unreachable("dependent __builtin_offsetof");
   1492 
   1493     case OffsetOfExpr::OffsetOfNode::Base: {
   1494       if (ON.getBase()->isVirtual()) {
   1495         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1496         continue;
   1497       }
   1498 
   1499       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1500       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1501 
   1502       // Save the element type.
   1503       CurrentType = ON.getBase()->getType();
   1504 
   1505       // Compute the offset to the base.
   1506       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1507       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1508       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
   1509                           CGF.getContext().getCharWidth();
   1510       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1511       break;
   1512     }
   1513     }
   1514     Result = Builder.CreateAdd(Result, Offset);
   1515   }
   1516   return Result;
   1517 }
   1518 
   1519 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   1520 /// argument of the sizeof expression as an integer.
   1521 Value *
   1522 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   1523                               const UnaryExprOrTypeTraitExpr *E) {
   1524   QualType TypeToSize = E->getTypeOfArgument();
   1525   if (E->getKind() == UETT_SizeOf) {
   1526     if (const VariableArrayType *VAT =
   1527           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   1528       if (E->isArgumentType()) {
   1529         // sizeof(type) - make sure to emit the VLA size.
   1530         CGF.EmitVariablyModifiedType(TypeToSize);
   1531       } else {
   1532         // C99 6.5.3.4p2: If the argument is an expression of type
   1533         // VLA, it is evaluated.
   1534         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   1535       }
   1536 
   1537       QualType eltType;
   1538       llvm::Value *numElts;
   1539       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
   1540 
   1541       llvm::Value *size = numElts;
   1542 
   1543       // Scale the number of non-VLA elements by the non-VLA element size.
   1544       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   1545       if (!eltSize.isOne())
   1546         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   1547 
   1548       return size;
   1549     }
   1550   }
   1551 
   1552   // If this isn't sizeof(vla), the result must be constant; use the constant
   1553   // folding logic so we don't have to duplicate it here.
   1554   Expr::EvalResult Result;
   1555   E->Evaluate(Result, CGF.getContext());
   1556   return Builder.getInt(Result.Val.getInt());
   1557 }
   1558 
   1559 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   1560   Expr *Op = E->getSubExpr();
   1561   if (Op->getType()->isAnyComplexType()) {
   1562     // If it's an l-value, load through the appropriate subobject l-value.
   1563     // Note that we have to ask E because Op might be an l-value that
   1564     // this won't work for, e.g. an Obj-C property.
   1565     if (E->isGLValue())
   1566       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
   1567 
   1568     // Otherwise, calculate and project.
   1569     return CGF.EmitComplexExpr(Op, false, true).first;
   1570   }
   1571 
   1572   return Visit(Op);
   1573 }
   1574 
   1575 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   1576   Expr *Op = E->getSubExpr();
   1577   if (Op->getType()->isAnyComplexType()) {
   1578     // If it's an l-value, load through the appropriate subobject l-value.
   1579     // Note that we have to ask E because Op might be an l-value that
   1580     // this won't work for, e.g. an Obj-C property.
   1581     if (Op->isGLValue())
   1582       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
   1583 
   1584     // Otherwise, calculate and project.
   1585     return CGF.EmitComplexExpr(Op, true, false).second;
   1586   }
   1587 
   1588   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   1589   // effects are evaluated, but not the actual value.
   1590   CGF.EmitScalarExpr(Op, true);
   1591   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   1592 }
   1593 
   1594 //===----------------------------------------------------------------------===//
   1595 //                           Binary Operators
   1596 //===----------------------------------------------------------------------===//
   1597 
   1598 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   1599   TestAndClearIgnoreResultAssign();
   1600   BinOpInfo Result;
   1601   Result.LHS = Visit(E->getLHS());
   1602   Result.RHS = Visit(E->getRHS());
   1603   Result.Ty  = E->getType();
   1604   Result.Opcode = E->getOpcode();
   1605   Result.E = E;
   1606   return Result;
   1607 }
   1608 
   1609 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   1610                                               const CompoundAssignOperator *E,
   1611                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   1612                                                    Value *&Result) {
   1613   QualType LHSTy = E->getLHS()->getType();
   1614   BinOpInfo OpInfo;
   1615 
   1616   if (E->getComputationResultType()->isAnyComplexType()) {
   1617     // This needs to go through the complex expression emitter, but it's a tad
   1618     // complicated to do that... I'm leaving it out for now.  (Note that we do
   1619     // actually need the imaginary part of the RHS for multiplication and
   1620     // division.)
   1621     CGF.ErrorUnsupported(E, "complex compound assignment");
   1622     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   1623     return LValue();
   1624   }
   1625 
   1626   // Emit the RHS first.  __block variables need to have the rhs evaluated
   1627   // first, plus this should improve codegen a little.
   1628   OpInfo.RHS = Visit(E->getRHS());
   1629   OpInfo.Ty = E->getComputationResultType();
   1630   OpInfo.Opcode = E->getOpcode();
   1631   OpInfo.E = E;
   1632   // Load/convert the LHS.
   1633   LValue LHSLV = EmitCheckedLValue(E->getLHS());
   1634   OpInfo.LHS = EmitLoadOfLValue(LHSLV);
   1635   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
   1636                                     E->getComputationLHSType());
   1637 
   1638   // Expand the binary operator.
   1639   Result = (this->*Func)(OpInfo);
   1640 
   1641   // Convert the result back to the LHS type.
   1642   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
   1643 
   1644   // Store the result value into the LHS lvalue. Bit-fields are handled
   1645   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   1646   // 'An assignment expression has the value of the left operand after the
   1647   // assignment...'.
   1648   if (LHSLV.isBitField())
   1649     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   1650   else
   1651     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   1652 
   1653   return LHSLV;
   1654 }
   1655 
   1656 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   1657                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   1658   bool Ignore = TestAndClearIgnoreResultAssign();
   1659   Value *RHS;
   1660   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   1661 
   1662   // If the result is clearly ignored, return now.
   1663   if (Ignore)
   1664     return 0;
   1665 
   1666   // The result of an assignment in C is the assigned r-value.
   1667   if (!CGF.getContext().getLangOptions().CPlusPlus)
   1668     return RHS;
   1669 
   1670   // Objective-C property assignment never reloads the value following a store.
   1671   if (LHS.isPropertyRef())
   1672     return RHS;
   1673 
   1674   // If the lvalue is non-volatile, return the computed value of the assignment.
   1675   if (!LHS.isVolatileQualified())
   1676     return RHS;
   1677 
   1678   // Otherwise, reload the value.
   1679   return EmitLoadOfLValue(LHS);
   1680 }
   1681 
   1682 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   1683      					    const BinOpInfo &Ops,
   1684 				     	    llvm::Value *Zero, bool isDiv) {
   1685   llvm::Function::iterator insertPt = Builder.GetInsertBlock();
   1686   llvm::BasicBlock *contBB =
   1687     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
   1688                          llvm::next(insertPt));
   1689   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   1690 
   1691   llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   1692 
   1693   if (Ops.Ty->hasSignedIntegerRepresentation()) {
   1694     llvm::Value *IntMin =
   1695       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   1696     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   1697 
   1698     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
   1699     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
   1700     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
   1701     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
   1702     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
   1703                          overflowBB, contBB);
   1704   } else {
   1705     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
   1706                              overflowBB, contBB);
   1707   }
   1708   EmitOverflowBB(overflowBB);
   1709   Builder.SetInsertPoint(contBB);
   1710 }
   1711 
   1712 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   1713   if (isTrapvOverflowBehavior()) {
   1714     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   1715 
   1716     if (Ops.Ty->isIntegerType())
   1717       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   1718     else if (Ops.Ty->isRealFloatingType()) {
   1719       llvm::Function::iterator insertPt = Builder.GetInsertBlock();
   1720       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
   1721                                                        llvm::next(insertPt));
   1722       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
   1723                                                           CGF.CurFn);
   1724       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
   1725                                overflowBB, DivCont);
   1726       EmitOverflowBB(overflowBB);
   1727       Builder.SetInsertPoint(DivCont);
   1728     }
   1729   }
   1730   if (Ops.LHS->getType()->isFPOrFPVectorTy())
   1731     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   1732   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   1733     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   1734   else
   1735     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   1736 }
   1737 
   1738 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   1739   // Rem in C can't be a floating point type: C99 6.5.5p2.
   1740   if (isTrapvOverflowBehavior()) {
   1741     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   1742 
   1743     if (Ops.Ty->isIntegerType())
   1744       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   1745   }
   1746 
   1747   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   1748     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   1749   else
   1750     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   1751 }
   1752 
   1753 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   1754   unsigned IID;
   1755   unsigned OpID = 0;
   1756 
   1757   switch (Ops.Opcode) {
   1758   case BO_Add:
   1759   case BO_AddAssign:
   1760     OpID = 1;
   1761     IID = llvm::Intrinsic::sadd_with_overflow;
   1762     break;
   1763   case BO_Sub:
   1764   case BO_SubAssign:
   1765     OpID = 2;
   1766     IID = llvm::Intrinsic::ssub_with_overflow;
   1767     break;
   1768   case BO_Mul:
   1769   case BO_MulAssign:
   1770     OpID = 3;
   1771     IID = llvm::Intrinsic::smul_with_overflow;
   1772     break;
   1773   default:
   1774     assert(false && "Unsupported operation for overflow detection");
   1775     IID = 0;
   1776   }
   1777   OpID <<= 1;
   1778   OpID |= 1;
   1779 
   1780   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   1781 
   1782   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   1783 
   1784   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
   1785   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   1786   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   1787 
   1788   // Branch in case of overflow.
   1789   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   1790   llvm::Function::iterator insertPt = initialBB;
   1791   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   1792                                                       llvm::next(insertPt));
   1793   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   1794 
   1795   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   1796 
   1797   // Handle overflow with llvm.trap.
   1798   const std::string *handlerName =
   1799     &CGF.getContext().getLangOptions().OverflowHandler;
   1800   if (handlerName->empty()) {
   1801     EmitOverflowBB(overflowBB);
   1802     Builder.SetInsertPoint(continueBB);
   1803     return result;
   1804   }
   1805 
   1806   // If an overflow handler is set, then we want to call it and then use its
   1807   // result, if it returns.
   1808   Builder.SetInsertPoint(overflowBB);
   1809 
   1810   // Get the overflow handler.
   1811   llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
   1812   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   1813   llvm::FunctionType *handlerTy =
   1814       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   1815   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   1816 
   1817   // Sign extend the args to 64-bit, so that we can use the same handler for
   1818   // all types of overflow.
   1819   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   1820   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   1821 
   1822   // Call the handler with the two arguments, the operation, and the size of
   1823   // the result.
   1824   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
   1825       Builder.getInt8(OpID),
   1826       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
   1827 
   1828   // Truncate the result back to the desired size.
   1829   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   1830   Builder.CreateBr(continueBB);
   1831 
   1832   Builder.SetInsertPoint(continueBB);
   1833   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   1834   phi->addIncoming(result, initialBB);
   1835   phi->addIncoming(handlerResult, overflowBB);
   1836 
   1837   return phi;
   1838 }
   1839 
   1840 /// Emit pointer + index arithmetic.
   1841 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   1842                                     const BinOpInfo &op,
   1843                                     bool isSubtraction) {
   1844   // Must have binary (not unary) expr here.  Unary pointer
   1845   // increment/decrement doesn't use this path.
   1846   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   1847 
   1848   Value *pointer = op.LHS;
   1849   Expr *pointerOperand = expr->getLHS();
   1850   Value *index = op.RHS;
   1851   Expr *indexOperand = expr->getRHS();
   1852 
   1853   // In a subtraction, the LHS is always the pointer.
   1854   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   1855     std::swap(pointer, index);
   1856     std::swap(pointerOperand, indexOperand);
   1857   }
   1858 
   1859   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   1860   if (width != CGF.PointerWidthInBits) {
   1861     // Zero-extend or sign-extend the pointer value according to
   1862     // whether the index is signed or not.
   1863     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   1864     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   1865                                       "idx.ext");
   1866   }
   1867 
   1868   // If this is subtraction, negate the index.
   1869   if (isSubtraction)
   1870     index = CGF.Builder.CreateNeg(index, "idx.neg");
   1871 
   1872   const PointerType *pointerType
   1873     = pointerOperand->getType()->getAs<PointerType>();
   1874   if (!pointerType) {
   1875     QualType objectType = pointerOperand->getType()
   1876                                         ->castAs<ObjCObjectPointerType>()
   1877                                         ->getPointeeType();
   1878     llvm::Value *objectSize
   1879       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   1880 
   1881     index = CGF.Builder.CreateMul(index, objectSize);
   1882 
   1883     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   1884     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   1885     return CGF.Builder.CreateBitCast(result, pointer->getType());
   1886   }
   1887 
   1888   QualType elementType = pointerType->getPointeeType();
   1889   if (const VariableArrayType *vla
   1890         = CGF.getContext().getAsVariableArrayType(elementType)) {
   1891     // The element count here is the total number of non-VLA elements.
   1892     llvm::Value *numElements = CGF.getVLASize(vla).first;
   1893 
   1894     // Effectively, the multiply by the VLA size is part of the GEP.
   1895     // GEP indexes are signed, and scaling an index isn't permitted to
   1896     // signed-overflow, so we use the same semantics for our explicit
   1897     // multiply.  We suppress this if overflow is not undefined behavior.
   1898     if (CGF.getLangOptions().isSignedOverflowDefined()) {
   1899       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   1900       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   1901     } else {
   1902       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   1903       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   1904     }
   1905     return pointer;
   1906   }
   1907 
   1908   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   1909   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   1910   // future proof.
   1911   if (elementType->isVoidType() || elementType->isFunctionType()) {
   1912     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   1913     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   1914     return CGF.Builder.CreateBitCast(result, pointer->getType());
   1915   }
   1916 
   1917   if (CGF.getLangOptions().isSignedOverflowDefined())
   1918     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   1919 
   1920   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   1921 }
   1922 
   1923 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   1924   if (op.LHS->getType()->isPointerTy() ||
   1925       op.RHS->getType()->isPointerTy())
   1926     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   1927 
   1928   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   1929     switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
   1930     case LangOptions::SOB_Undefined:
   1931       return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   1932     case LangOptions::SOB_Defined:
   1933       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   1934     case LangOptions::SOB_Trapping:
   1935       return EmitOverflowCheckedBinOp(op);
   1936     }
   1937   }
   1938 
   1939   if (op.LHS->getType()->isFPOrFPVectorTy())
   1940     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   1941 
   1942   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   1943 }
   1944 
   1945 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   1946   // The LHS is always a pointer if either side is.
   1947   if (!op.LHS->getType()->isPointerTy()) {
   1948     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   1949       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
   1950       case LangOptions::SOB_Undefined:
   1951         return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   1952       case LangOptions::SOB_Defined:
   1953         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   1954       case LangOptions::SOB_Trapping:
   1955         return EmitOverflowCheckedBinOp(op);
   1956       }
   1957     }
   1958 
   1959     if (op.LHS->getType()->isFPOrFPVectorTy())
   1960       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   1961 
   1962     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   1963   }
   1964 
   1965   // If the RHS is not a pointer, then we have normal pointer
   1966   // arithmetic.
   1967   if (!op.RHS->getType()->isPointerTy())
   1968     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   1969 
   1970   // Otherwise, this is a pointer subtraction.
   1971 
   1972   // Do the raw subtraction part.
   1973   llvm::Value *LHS
   1974     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   1975   llvm::Value *RHS
   1976     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   1977   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   1978 
   1979   // Okay, figure out the element size.
   1980   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   1981   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   1982 
   1983   llvm::Value *divisor = 0;
   1984 
   1985   // For a variable-length array, this is going to be non-constant.
   1986   if (const VariableArrayType *vla
   1987         = CGF.getContext().getAsVariableArrayType(elementType)) {
   1988     llvm::Value *numElements;
   1989     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
   1990 
   1991     divisor = numElements;
   1992 
   1993     // Scale the number of non-VLA elements by the non-VLA element size.
   1994     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   1995     if (!eltSize.isOne())
   1996       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   1997 
   1998   // For everything elese, we can just compute it, safe in the
   1999   // assumption that Sema won't let anything through that we can't
   2000   // safely compute the size of.
   2001   } else {
   2002     CharUnits elementSize;
   2003     // Handle GCC extension for pointer arithmetic on void* and
   2004     // function pointer types.
   2005     if (elementType->isVoidType() || elementType->isFunctionType())
   2006       elementSize = CharUnits::One();
   2007     else
   2008       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2009 
   2010     // Don't even emit the divide for element size of 1.
   2011     if (elementSize.isOne())
   2012       return diffInChars;
   2013 
   2014     divisor = CGF.CGM.getSize(elementSize);
   2015   }
   2016 
   2017   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2018   // pointer difference in C is only defined in the case where both operands
   2019   // are pointing to elements of an array.
   2020   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2021 }
   2022 
   2023 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2024   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2025   // RHS to the same size as the LHS.
   2026   Value *RHS = Ops.RHS;
   2027   if (Ops.LHS->getType() != RHS->getType())
   2028     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2029 
   2030   if (CGF.CatchUndefined
   2031       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2032     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
   2033     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2034     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
   2035                                  llvm::ConstantInt::get(RHS->getType(), Width)),
   2036                              Cont, CGF.getTrapBB());
   2037     CGF.EmitBlock(Cont);
   2038   }
   2039 
   2040   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2041 }
   2042 
   2043 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2044   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2045   // RHS to the same size as the LHS.
   2046   Value *RHS = Ops.RHS;
   2047   if (Ops.LHS->getType() != RHS->getType())
   2048     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2049 
   2050   if (CGF.CatchUndefined
   2051       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2052     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
   2053     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2054     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
   2055                                  llvm::ConstantInt::get(RHS->getType(), Width)),
   2056                              Cont, CGF.getTrapBB());
   2057     CGF.EmitBlock(Cont);
   2058   }
   2059 
   2060   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2061     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2062   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2063 }
   2064 
   2065 enum IntrinsicType { VCMPEQ, VCMPGT };
   2066 // return corresponding comparison intrinsic for given vector type
   2067 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2068                                         BuiltinType::Kind ElemKind) {
   2069   switch (ElemKind) {
   2070   default: assert(0 && "unexpected element type");
   2071   case BuiltinType::Char_U:
   2072   case BuiltinType::UChar:
   2073     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2074                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2075     break;
   2076   case BuiltinType::Char_S:
   2077   case BuiltinType::SChar:
   2078     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2079                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2080     break;
   2081   case BuiltinType::UShort:
   2082     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2083                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2084     break;
   2085   case BuiltinType::Short:
   2086     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2087                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2088     break;
   2089   case BuiltinType::UInt:
   2090   case BuiltinType::ULong:
   2091     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2092                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2093     break;
   2094   case BuiltinType::Int:
   2095   case BuiltinType::Long:
   2096     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2097                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2098     break;
   2099   case BuiltinType::Float:
   2100     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2101                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2102     break;
   2103   }
   2104   return llvm::Intrinsic::not_intrinsic;
   2105 }
   2106 
   2107 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
   2108                                       unsigned SICmpOpc, unsigned FCmpOpc) {
   2109   TestAndClearIgnoreResultAssign();
   2110   Value *Result;
   2111   QualType LHSTy = E->getLHS()->getType();
   2112   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2113     assert(E->getOpcode() == BO_EQ ||
   2114            E->getOpcode() == BO_NE);
   2115     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2116     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2117     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2118                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2119   } else if (!LHSTy->isAnyComplexType()) {
   2120     Value *LHS = Visit(E->getLHS());
   2121     Value *RHS = Visit(E->getRHS());
   2122 
   2123     // If AltiVec, the comparison results in a numeric type, so we use
   2124     // intrinsics comparing vectors and giving 0 or 1 as a result
   2125     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2126       // constants for mapping CR6 register bits to predicate result
   2127       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2128 
   2129       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2130 
   2131       // in several cases vector arguments order will be reversed
   2132       Value *FirstVecArg = LHS,
   2133             *SecondVecArg = RHS;
   2134 
   2135       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2136       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2137       BuiltinType::Kind ElementKind = BTy->getKind();
   2138 
   2139       switch(E->getOpcode()) {
   2140       default: assert(0 && "is not a comparison operation");
   2141       case BO_EQ:
   2142         CR6 = CR6_LT;
   2143         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2144         break;
   2145       case BO_NE:
   2146         CR6 = CR6_EQ;
   2147         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2148         break;
   2149       case BO_LT:
   2150         CR6 = CR6_LT;
   2151         ID = GetIntrinsic(VCMPGT, ElementKind);
   2152         std::swap(FirstVecArg, SecondVecArg);
   2153         break;
   2154       case BO_GT:
   2155         CR6 = CR6_LT;
   2156         ID = GetIntrinsic(VCMPGT, ElementKind);
   2157         break;
   2158       case BO_LE:
   2159         if (ElementKind == BuiltinType::Float) {
   2160           CR6 = CR6_LT;
   2161           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2162           std::swap(FirstVecArg, SecondVecArg);
   2163         }
   2164         else {
   2165           CR6 = CR6_EQ;
   2166           ID = GetIntrinsic(VCMPGT, ElementKind);
   2167         }
   2168         break;
   2169       case BO_GE:
   2170         if (ElementKind == BuiltinType::Float) {
   2171           CR6 = CR6_LT;
   2172           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2173         }
   2174         else {
   2175           CR6 = CR6_EQ;
   2176           ID = GetIntrinsic(VCMPGT, ElementKind);
   2177           std::swap(FirstVecArg, SecondVecArg);
   2178         }
   2179         break;
   2180       }
   2181 
   2182       Value *CR6Param = Builder.getInt32(CR6);
   2183       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2184       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
   2185       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2186     }
   2187 
   2188     if (LHS->getType()->isFPOrFPVectorTy()) {
   2189       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
   2190                                   LHS, RHS, "cmp");
   2191     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2192       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
   2193                                   LHS, RHS, "cmp");
   2194     } else {
   2195       // Unsigned integers and pointers.
   2196       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2197                                   LHS, RHS, "cmp");
   2198     }
   2199 
   2200     // If this is a vector comparison, sign extend the result to the appropriate
   2201     // vector integer type and return it (don't convert to bool).
   2202     if (LHSTy->isVectorType())
   2203       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2204 
   2205   } else {
   2206     // Complex Comparison: can only be an equality comparison.
   2207     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
   2208     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
   2209 
   2210     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
   2211 
   2212     Value *ResultR, *ResultI;
   2213     if (CETy->isRealFloatingType()) {
   2214       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2215                                    LHS.first, RHS.first, "cmp.r");
   2216       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
   2217                                    LHS.second, RHS.second, "cmp.i");
   2218     } else {
   2219       // Complex comparisons can only be equality comparisons.  As such, signed
   2220       // and unsigned opcodes are the same.
   2221       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2222                                    LHS.first, RHS.first, "cmp.r");
   2223       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
   2224                                    LHS.second, RHS.second, "cmp.i");
   2225     }
   2226 
   2227     if (E->getOpcode() == BO_EQ) {
   2228       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2229     } else {
   2230       assert(E->getOpcode() == BO_NE &&
   2231              "Complex comparison other than == or != ?");
   2232       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2233     }
   2234   }
   2235 
   2236   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
   2237 }
   2238 
   2239 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2240   bool Ignore = TestAndClearIgnoreResultAssign();
   2241 
   2242   Value *RHS;
   2243   LValue LHS;
   2244 
   2245   switch (E->getLHS()->getType().getObjCLifetime()) {
   2246   case Qualifiers::OCL_Strong:
   2247     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2248     break;
   2249 
   2250   case Qualifiers::OCL_Autoreleasing:
   2251     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2252     break;
   2253 
   2254   case Qualifiers::OCL_Weak:
   2255     RHS = Visit(E->getRHS());
   2256     LHS = EmitCheckedLValue(E->getLHS());
   2257     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   2258     break;
   2259 
   2260   // No reason to do any of these differently.
   2261   case Qualifiers::OCL_None:
   2262   case Qualifiers::OCL_ExplicitNone:
   2263     // __block variables need to have the rhs evaluated first, plus
   2264     // this should improve codegen just a little.
   2265     RHS = Visit(E->getRHS());
   2266     LHS = EmitCheckedLValue(E->getLHS());
   2267 
   2268     // Store the value into the LHS.  Bit-fields are handled specially
   2269     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   2270     // 'An assignment expression has the value of the left operand after
   2271     // the assignment...'.
   2272     if (LHS.isBitField())
   2273       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   2274     else
   2275       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   2276   }
   2277 
   2278   // If the result is clearly ignored, return now.
   2279   if (Ignore)
   2280     return 0;
   2281 
   2282   // The result of an assignment in C is the assigned r-value.
   2283   if (!CGF.getContext().getLangOptions().CPlusPlus)
   2284     return RHS;
   2285 
   2286   // Objective-C property assignment never reloads the value following a store.
   2287   if (LHS.isPropertyRef())
   2288     return RHS;
   2289 
   2290   // If the lvalue is non-volatile, return the computed value of the assignment.
   2291   if (!LHS.isVolatileQualified())
   2292     return RHS;
   2293 
   2294   // Otherwise, reload the value.
   2295   return EmitLoadOfLValue(LHS);
   2296 }
   2297 
   2298 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   2299   llvm::Type *ResTy = ConvertType(E->getType());
   2300 
   2301   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   2302   // If we have 1 && X, just emit X without inserting the control flow.
   2303   bool LHSCondVal;
   2304   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2305     if (LHSCondVal) { // If we have 1 && X, just emit X.
   2306       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2307       // ZExt result to int or bool.
   2308       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   2309     }
   2310 
   2311     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   2312     if (!CGF.ContainsLabel(E->getRHS()))
   2313       return llvm::Constant::getNullValue(ResTy);
   2314   }
   2315 
   2316   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   2317   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   2318 
   2319   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2320 
   2321   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   2322   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
   2323 
   2324   // Any edges into the ContBlock are now from an (indeterminate number of)
   2325   // edges from this first condition.  All of these values will be false.  Start
   2326   // setting up the PHI node in the Cont Block for this.
   2327   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   2328                                             "", ContBlock);
   2329   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   2330        PI != PE; ++PI)
   2331     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   2332 
   2333   eval.begin(CGF);
   2334   CGF.EmitBlock(RHSBlock);
   2335   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2336   eval.end(CGF);
   2337 
   2338   // Reaquire the RHS block, as there may be subblocks inserted.
   2339   RHSBlock = Builder.GetInsertBlock();
   2340 
   2341   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   2342   // into the phi node for the edge with the value of RHSCond.
   2343   if (CGF.getDebugInfo())
   2344     // There is no need to emit line number for unconditional branch.
   2345     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
   2346   CGF.EmitBlock(ContBlock);
   2347   PN->addIncoming(RHSCond, RHSBlock);
   2348 
   2349   // ZExt result to int.
   2350   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   2351 }
   2352 
   2353 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   2354   llvm::Type *ResTy = ConvertType(E->getType());
   2355 
   2356   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   2357   // If we have 0 || X, just emit X without inserting the control flow.
   2358   bool LHSCondVal;
   2359   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   2360     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   2361       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2362       // ZExt result to int or bool.
   2363       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   2364     }
   2365 
   2366     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   2367     if (!CGF.ContainsLabel(E->getRHS()))
   2368       return llvm::ConstantInt::get(ResTy, 1);
   2369   }
   2370 
   2371   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   2372   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   2373 
   2374   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2375 
   2376   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   2377   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
   2378 
   2379   // Any edges into the ContBlock are now from an (indeterminate number of)
   2380   // edges from this first condition.  All of these values will be true.  Start
   2381   // setting up the PHI node in the Cont Block for this.
   2382   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   2383                                             "", ContBlock);
   2384   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   2385        PI != PE; ++PI)
   2386     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   2387 
   2388   eval.begin(CGF);
   2389 
   2390   // Emit the RHS condition as a bool value.
   2391   CGF.EmitBlock(RHSBlock);
   2392   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   2393 
   2394   eval.end(CGF);
   2395 
   2396   // Reaquire the RHS block, as there may be subblocks inserted.
   2397   RHSBlock = Builder.GetInsertBlock();
   2398 
   2399   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   2400   // into the phi node for the edge with the value of RHSCond.
   2401   CGF.EmitBlock(ContBlock);
   2402   PN->addIncoming(RHSCond, RHSBlock);
   2403 
   2404   // ZExt result to int.
   2405   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   2406 }
   2407 
   2408 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   2409   CGF.EmitIgnoredExpr(E->getLHS());
   2410   CGF.EnsureInsertPoint();
   2411   return Visit(E->getRHS());
   2412 }
   2413 
   2414 //===----------------------------------------------------------------------===//
   2415 //                             Other Operators
   2416 //===----------------------------------------------------------------------===//
   2417 
   2418 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   2419 /// expression is cheap enough and side-effect-free enough to evaluate
   2420 /// unconditionally instead of conditionally.  This is used to convert control
   2421 /// flow into selects in some cases.
   2422 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   2423                                                    CodeGenFunction &CGF) {
   2424   E = E->IgnoreParens();
   2425 
   2426   // Anything that is an integer or floating point constant is fine.
   2427   if (E->isConstantInitializer(CGF.getContext(), false))
   2428     return true;
   2429 
   2430   // Non-volatile automatic variables too, to get "cond ? X : Y" where
   2431   // X and Y are local variables.
   2432   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   2433     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
   2434       if (VD->hasLocalStorage() && !(CGF.getContext()
   2435                                      .getCanonicalType(VD->getType())
   2436                                      .isVolatileQualified()))
   2437         return true;
   2438 
   2439   return false;
   2440 }
   2441 
   2442 
   2443 Value *ScalarExprEmitter::
   2444 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   2445   TestAndClearIgnoreResultAssign();
   2446 
   2447   // Bind the common expression if necessary.
   2448   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   2449 
   2450   Expr *condExpr = E->getCond();
   2451   Expr *lhsExpr = E->getTrueExpr();
   2452   Expr *rhsExpr = E->getFalseExpr();
   2453 
   2454   // If the condition constant folds and can be elided, try to avoid emitting
   2455   // the condition and the dead arm.
   2456   bool CondExprBool;
   2457   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   2458     Expr *live = lhsExpr, *dead = rhsExpr;
   2459     if (!CondExprBool) std::swap(live, dead);
   2460 
   2461     // If the dead side doesn't have labels we need, and if the Live side isn't
   2462     // the gnu missing ?: extension (which we could handle, but don't bother
   2463     // to), just emit the Live part.
   2464     if (!CGF.ContainsLabel(dead))
   2465       return Visit(live);
   2466   }
   2467 
   2468   // OpenCL: If the condition is a vector, we can treat this condition like
   2469   // the select function.
   2470   if (CGF.getContext().getLangOptions().OpenCL
   2471       && condExpr->getType()->isVectorType()) {
   2472     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   2473     llvm::Value *LHS = Visit(lhsExpr);
   2474     llvm::Value *RHS = Visit(rhsExpr);
   2475 
   2476     llvm::Type *condType = ConvertType(condExpr->getType());
   2477     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   2478 
   2479     unsigned numElem = vecTy->getNumElements();
   2480     llvm::Type *elemType = vecTy->getElementType();
   2481 
   2482     std::vector<llvm::Constant*> Zvals;
   2483     for (unsigned i = 0; i < numElem; ++i)
   2484       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
   2485 
   2486     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
   2487     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   2488     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   2489                                           llvm::VectorType::get(elemType,
   2490                                                                 numElem),
   2491                                           "sext");
   2492     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   2493 
   2494     // Cast float to int to perform ANDs if necessary.
   2495     llvm::Value *RHSTmp = RHS;
   2496     llvm::Value *LHSTmp = LHS;
   2497     bool wasCast = false;
   2498     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   2499     if (rhsVTy->getElementType()->isFloatTy()) {
   2500       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   2501       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   2502       wasCast = true;
   2503     }
   2504 
   2505     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   2506     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   2507     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   2508     if (wasCast)
   2509       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   2510 
   2511     return tmp5;
   2512   }
   2513 
   2514   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   2515   // select instead of as control flow.  We can only do this if it is cheap and
   2516   // safe to evaluate the LHS and RHS unconditionally.
   2517   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   2518       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   2519     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   2520     llvm::Value *LHS = Visit(lhsExpr);
   2521     llvm::Value *RHS = Visit(rhsExpr);
   2522     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   2523   }
   2524 
   2525   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   2526   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   2527   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   2528 
   2529   CodeGenFunction::ConditionalEvaluation eval(CGF);
   2530   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
   2531 
   2532   CGF.EmitBlock(LHSBlock);
   2533   eval.begin(CGF);
   2534   Value *LHS = Visit(lhsExpr);
   2535   eval.end(CGF);
   2536 
   2537   LHSBlock = Builder.GetInsertBlock();
   2538   Builder.CreateBr(ContBlock);
   2539 
   2540   CGF.EmitBlock(RHSBlock);
   2541   eval.begin(CGF);
   2542   Value *RHS = Visit(rhsExpr);
   2543   eval.end(CGF);
   2544 
   2545   RHSBlock = Builder.GetInsertBlock();
   2546   CGF.EmitBlock(ContBlock);
   2547 
   2548   // If the LHS or RHS is a throw expression, it will be legitimately null.
   2549   if (!LHS)
   2550     return RHS;
   2551   if (!RHS)
   2552     return LHS;
   2553 
   2554   // Create a PHI node for the real part.
   2555   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   2556   PN->addIncoming(LHS, LHSBlock);
   2557   PN->addIncoming(RHS, RHSBlock);
   2558   return PN;
   2559 }
   2560 
   2561 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   2562   return Visit(E->getChosenSubExpr(CGF.getContext()));
   2563 }
   2564 
   2565 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   2566   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
   2567   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
   2568 
   2569   // If EmitVAArg fails, we fall back to the LLVM instruction.
   2570   if (!ArgPtr)
   2571     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
   2572 
   2573   // FIXME Volatility.
   2574   return Builder.CreateLoad(ArgPtr);
   2575 }
   2576 
   2577 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   2578   return CGF.EmitBlockLiteral(block);
   2579 }
   2580 
   2581 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   2582   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   2583   llvm::Type *DstTy = ConvertType(E->getType());
   2584 
   2585   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
   2586   // a shuffle vector instead of a bitcast.
   2587   llvm::Type *SrcTy = Src->getType();
   2588   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
   2589     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
   2590     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
   2591     if ((numElementsDst == 3 && numElementsSrc == 4)
   2592         || (numElementsDst == 4 && numElementsSrc == 3)) {
   2593 
   2594 
   2595       // In the case of going from int4->float3, a bitcast is needed before
   2596       // doing a shuffle.
   2597       llvm::Type *srcElemTy =
   2598       cast<llvm::VectorType>(SrcTy)->getElementType();
   2599       llvm::Type *dstElemTy =
   2600       cast<llvm::VectorType>(DstTy)->getElementType();
   2601 
   2602       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
   2603           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
   2604         // Create a float type of the same size as the source or destination.
   2605         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
   2606                                                                  numElementsSrc);
   2607 
   2608         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
   2609       }
   2610 
   2611       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   2612 
   2613       llvm::SmallVector<llvm::Constant*, 3> Args;
   2614       Args.push_back(Builder.getInt32(0));
   2615       Args.push_back(Builder.getInt32(1));
   2616       Args.push_back(Builder.getInt32(2));
   2617 
   2618       if (numElementsDst == 4)
   2619         Args.push_back(llvm::UndefValue::get(
   2620                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
   2621 
   2622       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   2623 
   2624       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
   2625     }
   2626   }
   2627 
   2628   return Builder.CreateBitCast(Src, DstTy, "astype");
   2629 }
   2630 
   2631 //===----------------------------------------------------------------------===//
   2632 //                         Entry Point into this File
   2633 //===----------------------------------------------------------------------===//
   2634 
   2635 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
   2636 /// type, ignoring the result.
   2637 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   2638   assert(E && !hasAggregateLLVMType(E->getType()) &&
   2639          "Invalid scalar expression to emit");
   2640 
   2641   if (isa<CXXDefaultArgExpr>(E))
   2642     disableDebugInfo();
   2643   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
   2644     .Visit(const_cast<Expr*>(E));
   2645   if (isa<CXXDefaultArgExpr>(E))
   2646     enableDebugInfo();
   2647   return V;
   2648 }
   2649 
   2650 /// EmitScalarConversion - Emit a conversion from the specified type to the
   2651 /// specified destination type, both of which are LLVM scalar types.
   2652 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   2653                                              QualType DstTy) {
   2654   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
   2655          "Invalid scalar expression to emit");
   2656   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
   2657 }
   2658 
   2659 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
   2660 /// type to the specified destination type, where the destination type is an
   2661 /// LLVM scalar type.
   2662 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   2663                                                       QualType SrcTy,
   2664                                                       QualType DstTy) {
   2665   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
   2666          "Invalid complex -> scalar conversion");
   2667   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
   2668                                                                 DstTy);
   2669 }
   2670 
   2671 
   2672 llvm::Value *CodeGenFunction::
   2673 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   2674                         bool isInc, bool isPre) {
   2675   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   2676 }
   2677 
   2678 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   2679   llvm::Value *V;
   2680   // object->isa or (*object).isa
   2681   // Generate code as for: *(Class*)object
   2682   // build Class* type
   2683   llvm::Type *ClassPtrTy = ConvertType(E->getType());
   2684 
   2685   Expr *BaseExpr = E->getBase();
   2686   if (BaseExpr->isRValue()) {
   2687     V = CreateTempAlloca(ClassPtrTy, "resval");
   2688     llvm::Value *Src = EmitScalarExpr(BaseExpr);
   2689     Builder.CreateStore(Src, V);
   2690     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
   2691       MakeAddrLValue(V, E->getType()));
   2692   } else {
   2693     if (E->isArrow())
   2694       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
   2695     else
   2696       V = EmitLValue(BaseExpr).getAddress();
   2697   }
   2698 
   2699   // build Class* type
   2700   ClassPtrTy = ClassPtrTy->getPointerTo();
   2701   V = Builder.CreateBitCast(V, ClassPtrTy);
   2702   return MakeAddrLValue(V, E->getType());
   2703 }
   2704 
   2705 
   2706 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   2707                                             const CompoundAssignOperator *E) {
   2708   ScalarExprEmitter Scalar(*this);
   2709   Value *Result = 0;
   2710   switch (E->getOpcode()) {
   2711 #define COMPOUND_OP(Op)                                                       \
   2712     case BO_##Op##Assign:                                                     \
   2713       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   2714                                              Result)
   2715   COMPOUND_OP(Mul);
   2716   COMPOUND_OP(Div);
   2717   COMPOUND_OP(Rem);
   2718   COMPOUND_OP(Add);
   2719   COMPOUND_OP(Sub);
   2720   COMPOUND_OP(Shl);
   2721   COMPOUND_OP(Shr);
   2722   COMPOUND_OP(And);
   2723   COMPOUND_OP(Xor);
   2724   COMPOUND_OP(Or);
   2725 #undef COMPOUND_OP
   2726 
   2727   case BO_PtrMemD:
   2728   case BO_PtrMemI:
   2729   case BO_Mul:
   2730   case BO_Div:
   2731   case BO_Rem:
   2732   case BO_Add:
   2733   case BO_Sub:
   2734   case BO_Shl:
   2735   case BO_Shr:
   2736   case BO_LT:
   2737   case BO_GT:
   2738   case BO_LE:
   2739   case BO_GE:
   2740   case BO_EQ:
   2741   case BO_NE:
   2742   case BO_And:
   2743   case BO_Xor:
   2744   case BO_Or:
   2745   case BO_LAnd:
   2746   case BO_LOr:
   2747   case BO_Assign:
   2748   case BO_Comma:
   2749     assert(false && "Not valid compound assignment operators");
   2750     break;
   2751   }
   2752 
   2753   llvm_unreachable("Unhandled compound assignment operator");
   2754 }
   2755