Home | History | Annotate | Download | only in Utils
      1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the interface to tear out a code region, such as an
     11 // individual loop or a parallel section, into a new function, replacing it with
     12 // a call to the new function.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/FunctionUtils.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Intrinsics.h"
     21 #include "llvm/LLVMContext.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/Analysis/Dominators.h"
     25 #include "llvm/Analysis/LoopInfo.h"
     26 #include "llvm/Analysis/Verifier.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/ADT/SetVector.h"
     33 #include "llvm/ADT/StringExtras.h"
     34 #include <algorithm>
     35 #include <set>
     36 using namespace llvm;
     37 
     38 // Provide a command-line option to aggregate function arguments into a struct
     39 // for functions produced by the code extractor. This is useful when converting
     40 // extracted functions to pthread-based code, as only one argument (void*) can
     41 // be passed in to pthread_create().
     42 static cl::opt<bool>
     43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
     44                  cl::desc("Aggregate arguments to code-extracted functions"));
     45 
     46 namespace {
     47   class CodeExtractor {
     48     typedef SetVector<Value*> Values;
     49     SetVector<BasicBlock*> BlocksToExtract;
     50     DominatorTree* DT;
     51     bool AggregateArgs;
     52     unsigned NumExitBlocks;
     53     Type *RetTy;
     54   public:
     55     CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
     56       : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
     57 
     58     Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
     59 
     60     bool isEligible(const std::vector<BasicBlock*> &code);
     61 
     62   private:
     63     /// definedInRegion - Return true if the specified value is defined in the
     64     /// extracted region.
     65     bool definedInRegion(Value *V) const {
     66       if (Instruction *I = dyn_cast<Instruction>(V))
     67         if (BlocksToExtract.count(I->getParent()))
     68           return true;
     69       return false;
     70     }
     71 
     72     /// definedInCaller - Return true if the specified value is defined in the
     73     /// function being code extracted, but not in the region being extracted.
     74     /// These values must be passed in as live-ins to the function.
     75     bool definedInCaller(Value *V) const {
     76       if (isa<Argument>(V)) return true;
     77       if (Instruction *I = dyn_cast<Instruction>(V))
     78         if (!BlocksToExtract.count(I->getParent()))
     79           return true;
     80       return false;
     81     }
     82 
     83     void severSplitPHINodes(BasicBlock *&Header);
     84     void splitReturnBlocks();
     85     void findInputsOutputs(Values &inputs, Values &outputs);
     86 
     87     Function *constructFunction(const Values &inputs,
     88                                 const Values &outputs,
     89                                 BasicBlock *header,
     90                                 BasicBlock *newRootNode, BasicBlock *newHeader,
     91                                 Function *oldFunction, Module *M);
     92 
     93     void moveCodeToFunction(Function *newFunction);
     94 
     95     void emitCallAndSwitchStatement(Function *newFunction,
     96                                     BasicBlock *newHeader,
     97                                     Values &inputs,
     98                                     Values &outputs);
     99 
    100   };
    101 }
    102 
    103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
    104 /// region, we need to split the entry block of the region so that the PHI node
    105 /// is easier to deal with.
    106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
    107   unsigned NumPredsFromRegion = 0;
    108   unsigned NumPredsOutsideRegion = 0;
    109 
    110   if (Header != &Header->getParent()->getEntryBlock()) {
    111     PHINode *PN = dyn_cast<PHINode>(Header->begin());
    112     if (!PN) return;  // No PHI nodes.
    113 
    114     // If the header node contains any PHI nodes, check to see if there is more
    115     // than one entry from outside the region.  If so, we need to sever the
    116     // header block into two.
    117     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    118       if (BlocksToExtract.count(PN->getIncomingBlock(i)))
    119         ++NumPredsFromRegion;
    120       else
    121         ++NumPredsOutsideRegion;
    122 
    123     // If there is one (or fewer) predecessor from outside the region, we don't
    124     // need to do anything special.
    125     if (NumPredsOutsideRegion <= 1) return;
    126   }
    127 
    128   // Otherwise, we need to split the header block into two pieces: one
    129   // containing PHI nodes merging values from outside of the region, and a
    130   // second that contains all of the code for the block and merges back any
    131   // incoming values from inside of the region.
    132   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
    133   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
    134                                               Header->getName()+".ce");
    135 
    136   // We only want to code extract the second block now, and it becomes the new
    137   // header of the region.
    138   BasicBlock *OldPred = Header;
    139   BlocksToExtract.remove(OldPred);
    140   BlocksToExtract.insert(NewBB);
    141   Header = NewBB;
    142 
    143   // Okay, update dominator sets. The blocks that dominate the new one are the
    144   // blocks that dominate TIBB plus the new block itself.
    145   if (DT)
    146     DT->splitBlock(NewBB);
    147 
    148   // Okay, now we need to adjust the PHI nodes and any branches from within the
    149   // region to go to the new header block instead of the old header block.
    150   if (NumPredsFromRegion) {
    151     PHINode *PN = cast<PHINode>(OldPred->begin());
    152     // Loop over all of the predecessors of OldPred that are in the region,
    153     // changing them to branch to NewBB instead.
    154     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    155       if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
    156         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
    157         TI->replaceUsesOfWith(OldPred, NewBB);
    158       }
    159 
    160     // Okay, everything within the region is now branching to the right block, we
    161     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    162     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
    163       PHINode *PN = cast<PHINode>(AfterPHIs);
    164       // Create a new PHI node in the new region, which has an incoming value
    165       // from OldPred of PN.
    166       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
    167                                        PN->getName()+".ce", NewBB->begin());
    168       NewPN->addIncoming(PN, OldPred);
    169 
    170       // Loop over all of the incoming value in PN, moving them to NewPN if they
    171       // are from the extracted region.
    172       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
    173         if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
    174           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
    175           PN->removeIncomingValue(i);
    176           --i;
    177         }
    178       }
    179     }
    180   }
    181 }
    182 
    183 void CodeExtractor::splitReturnBlocks() {
    184   for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
    185          E = BlocksToExtract.end(); I != E; ++I)
    186     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
    187       BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
    188       if (DT) {
    189         // Old dominates New. New node dominates all other nodes dominated
    190         // by Old.
    191         DomTreeNode *OldNode = DT->getNode(*I);
    192         SmallVector<DomTreeNode*, 8> Children;
    193         for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
    194              DI != DE; ++DI)
    195           Children.push_back(*DI);
    196 
    197         DomTreeNode *NewNode = DT->addNewBlock(New, *I);
    198 
    199         for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
    200                E = Children.end(); I != E; ++I)
    201           DT->changeImmediateDominator(*I, NewNode);
    202       }
    203     }
    204 }
    205 
    206 // findInputsOutputs - Find inputs to, outputs from the code region.
    207 //
    208 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
    209   std::set<BasicBlock*> ExitBlocks;
    210   for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
    211        ce = BlocksToExtract.end(); ci != ce; ++ci) {
    212     BasicBlock *BB = *ci;
    213 
    214     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    215       // If a used value is defined outside the region, it's an input.  If an
    216       // instruction is used outside the region, it's an output.
    217       for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
    218         if (definedInCaller(*O))
    219           inputs.insert(*O);
    220 
    221       // Consider uses of this instruction (outputs).
    222       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
    223            UI != E; ++UI)
    224         if (!definedInRegion(*UI)) {
    225           outputs.insert(I);
    226           break;
    227         }
    228     } // for: insts
    229 
    230     // Keep track of the exit blocks from the region.
    231     TerminatorInst *TI = BB->getTerminator();
    232     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    233       if (!BlocksToExtract.count(TI->getSuccessor(i)))
    234         ExitBlocks.insert(TI->getSuccessor(i));
    235   } // for: basic blocks
    236 
    237   NumExitBlocks = ExitBlocks.size();
    238 }
    239 
    240 /// constructFunction - make a function based on inputs and outputs, as follows:
    241 /// f(in0, ..., inN, out0, ..., outN)
    242 ///
    243 Function *CodeExtractor::constructFunction(const Values &inputs,
    244                                            const Values &outputs,
    245                                            BasicBlock *header,
    246                                            BasicBlock *newRootNode,
    247                                            BasicBlock *newHeader,
    248                                            Function *oldFunction,
    249                                            Module *M) {
    250   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
    251   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
    252 
    253   // This function returns unsigned, outputs will go back by reference.
    254   switch (NumExitBlocks) {
    255   case 0:
    256   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
    257   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
    258   default: RetTy = Type::getInt16Ty(header->getContext()); break;
    259   }
    260 
    261   std::vector<Type*> paramTy;
    262 
    263   // Add the types of the input values to the function's argument list
    264   for (Values::const_iterator i = inputs.begin(),
    265          e = inputs.end(); i != e; ++i) {
    266     const Value *value = *i;
    267     DEBUG(dbgs() << "value used in func: " << *value << "\n");
    268     paramTy.push_back(value->getType());
    269   }
    270 
    271   // Add the types of the output values to the function's argument list.
    272   for (Values::const_iterator I = outputs.begin(), E = outputs.end();
    273        I != E; ++I) {
    274     DEBUG(dbgs() << "instr used in func: " << **I << "\n");
    275     if (AggregateArgs)
    276       paramTy.push_back((*I)->getType());
    277     else
    278       paramTy.push_back(PointerType::getUnqual((*I)->getType()));
    279   }
    280 
    281   DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
    282   for (std::vector<Type*>::iterator i = paramTy.begin(),
    283          e = paramTy.end(); i != e; ++i)
    284     DEBUG(dbgs() << **i << ", ");
    285   DEBUG(dbgs() << ")\n");
    286 
    287   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    288     PointerType *StructPtr =
    289            PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
    290     paramTy.clear();
    291     paramTy.push_back(StructPtr);
    292   }
    293   FunctionType *funcType =
    294                   FunctionType::get(RetTy, paramTy, false);
    295 
    296   // Create the new function
    297   Function *newFunction = Function::Create(funcType,
    298                                            GlobalValue::InternalLinkage,
    299                                            oldFunction->getName() + "_" +
    300                                            header->getName(), M);
    301   // If the old function is no-throw, so is the new one.
    302   if (oldFunction->doesNotThrow())
    303     newFunction->setDoesNotThrow(true);
    304 
    305   newFunction->getBasicBlockList().push_back(newRootNode);
    306 
    307   // Create an iterator to name all of the arguments we inserted.
    308   Function::arg_iterator AI = newFunction->arg_begin();
    309 
    310   // Rewrite all users of the inputs in the extracted region to use the
    311   // arguments (or appropriate addressing into struct) instead.
    312   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    313     Value *RewriteVal;
    314     if (AggregateArgs) {
    315       Value *Idx[2];
    316       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
    317       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
    318       TerminatorInst *TI = newFunction->begin()->getTerminator();
    319       GetElementPtrInst *GEP =
    320         GetElementPtrInst::Create(AI, Idx, Idx+2,
    321                                   "gep_" + inputs[i]->getName(), TI);
    322       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
    323     } else
    324       RewriteVal = AI++;
    325 
    326     std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
    327     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
    328          use != useE; ++use)
    329       if (Instruction* inst = dyn_cast<Instruction>(*use))
    330         if (BlocksToExtract.count(inst->getParent()))
    331           inst->replaceUsesOfWith(inputs[i], RewriteVal);
    332   }
    333 
    334   // Set names for input and output arguments.
    335   if (!AggregateArgs) {
    336     AI = newFunction->arg_begin();
    337     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
    338       AI->setName(inputs[i]->getName());
    339     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
    340       AI->setName(outputs[i]->getName()+".out");
    341   }
    342 
    343   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
    344   // within the new function. This must be done before we lose track of which
    345   // blocks were originally in the code region.
    346   std::vector<User*> Users(header->use_begin(), header->use_end());
    347   for (unsigned i = 0, e = Users.size(); i != e; ++i)
    348     // The BasicBlock which contains the branch is not in the region
    349     // modify the branch target to a new block
    350     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
    351       if (!BlocksToExtract.count(TI->getParent()) &&
    352           TI->getParent()->getParent() == oldFunction)
    353         TI->replaceUsesOfWith(header, newHeader);
    354 
    355   return newFunction;
    356 }
    357 
    358 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
    359 /// that uses the value within the basic block, and return the predecessor
    360 /// block associated with that use, or return 0 if none is found.
    361 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
    362   for (Value::use_iterator UI = Used->use_begin(),
    363        UE = Used->use_end(); UI != UE; ++UI) {
    364      PHINode *P = dyn_cast<PHINode>(*UI);
    365      if (P && P->getParent() == BB)
    366        return P->getIncomingBlock(UI);
    367   }
    368 
    369   return 0;
    370 }
    371 
    372 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
    373 /// the call instruction, splitting any PHI nodes in the header block as
    374 /// necessary.
    375 void CodeExtractor::
    376 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
    377                            Values &inputs, Values &outputs) {
    378   // Emit a call to the new function, passing in: *pointer to struct (if
    379   // aggregating parameters), or plan inputs and allocated memory for outputs
    380   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
    381 
    382   LLVMContext &Context = newFunction->getContext();
    383 
    384   // Add inputs as params, or to be filled into the struct
    385   for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
    386     if (AggregateArgs)
    387       StructValues.push_back(*i);
    388     else
    389       params.push_back(*i);
    390 
    391   // Create allocas for the outputs
    392   for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
    393     if (AggregateArgs) {
    394       StructValues.push_back(*i);
    395     } else {
    396       AllocaInst *alloca =
    397         new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
    398                        codeReplacer->getParent()->begin()->begin());
    399       ReloadOutputs.push_back(alloca);
    400       params.push_back(alloca);
    401     }
    402   }
    403 
    404   AllocaInst *Struct = 0;
    405   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    406     std::vector<Type*> ArgTypes;
    407     for (Values::iterator v = StructValues.begin(),
    408            ve = StructValues.end(); v != ve; ++v)
    409       ArgTypes.push_back((*v)->getType());
    410 
    411     // Allocate a struct at the beginning of this function
    412     Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    413     Struct =
    414       new AllocaInst(StructArgTy, 0, "structArg",
    415                      codeReplacer->getParent()->begin()->begin());
    416     params.push_back(Struct);
    417 
    418     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    419       Value *Idx[2];
    420       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    421       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
    422       GetElementPtrInst *GEP =
    423         GetElementPtrInst::Create(Struct, Idx, Idx + 2,
    424                                   "gep_" + StructValues[i]->getName());
    425       codeReplacer->getInstList().push_back(GEP);
    426       StoreInst *SI = new StoreInst(StructValues[i], GEP);
    427       codeReplacer->getInstList().push_back(SI);
    428     }
    429   }
    430 
    431   // Emit the call to the function
    432   CallInst *call = CallInst::Create(newFunction, params,
    433                                     NumExitBlocks > 1 ? "targetBlock" : "");
    434   codeReplacer->getInstList().push_back(call);
    435 
    436   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
    437   unsigned FirstOut = inputs.size();
    438   if (!AggregateArgs)
    439     std::advance(OutputArgBegin, inputs.size());
    440 
    441   // Reload the outputs passed in by reference
    442   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    443     Value *Output = 0;
    444     if (AggregateArgs) {
    445       Value *Idx[2];
    446       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    447       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
    448       GetElementPtrInst *GEP
    449         = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
    450                                     "gep_reload_" + outputs[i]->getName());
    451       codeReplacer->getInstList().push_back(GEP);
    452       Output = GEP;
    453     } else {
    454       Output = ReloadOutputs[i];
    455     }
    456     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
    457     Reloads.push_back(load);
    458     codeReplacer->getInstList().push_back(load);
    459     std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
    460     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
    461       Instruction *inst = cast<Instruction>(Users[u]);
    462       if (!BlocksToExtract.count(inst->getParent()))
    463         inst->replaceUsesOfWith(outputs[i], load);
    464     }
    465   }
    466 
    467   // Now we can emit a switch statement using the call as a value.
    468   SwitchInst *TheSwitch =
    469       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
    470                          codeReplacer, 0, codeReplacer);
    471 
    472   // Since there may be multiple exits from the original region, make the new
    473   // function return an unsigned, switch on that number.  This loop iterates
    474   // over all of the blocks in the extracted region, updating any terminator
    475   // instructions in the to-be-extracted region that branch to blocks that are
    476   // not in the region to be extracted.
    477   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
    478 
    479   unsigned switchVal = 0;
    480   for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
    481          e = BlocksToExtract.end(); i != e; ++i) {
    482     TerminatorInst *TI = (*i)->getTerminator();
    483     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    484       if (!BlocksToExtract.count(TI->getSuccessor(i))) {
    485         BasicBlock *OldTarget = TI->getSuccessor(i);
    486         // add a new basic block which returns the appropriate value
    487         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
    488         if (!NewTarget) {
    489           // If we don't already have an exit stub for this non-extracted
    490           // destination, create one now!
    491           NewTarget = BasicBlock::Create(Context,
    492                                          OldTarget->getName() + ".exitStub",
    493                                          newFunction);
    494           unsigned SuccNum = switchVal++;
    495 
    496           Value *brVal = 0;
    497           switch (NumExitBlocks) {
    498           case 0:
    499           case 1: break;  // No value needed.
    500           case 2:         // Conditional branch, return a bool
    501             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
    502             break;
    503           default:
    504             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
    505             break;
    506           }
    507 
    508           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
    509 
    510           // Update the switch instruction.
    511           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
    512                                               SuccNum),
    513                              OldTarget);
    514 
    515           // Restore values just before we exit
    516           Function::arg_iterator OAI = OutputArgBegin;
    517           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
    518             // For an invoke, the normal destination is the only one that is
    519             // dominated by the result of the invocation
    520             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
    521 
    522             bool DominatesDef = true;
    523 
    524             if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
    525               DefBlock = Invoke->getNormalDest();
    526 
    527               // Make sure we are looking at the original successor block, not
    528               // at a newly inserted exit block, which won't be in the dominator
    529               // info.
    530               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
    531                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
    532                 if (DefBlock == I->second) {
    533                   DefBlock = I->first;
    534                   break;
    535                 }
    536 
    537               // In the extract block case, if the block we are extracting ends
    538               // with an invoke instruction, make sure that we don't emit a
    539               // store of the invoke value for the unwind block.
    540               if (!DT && DefBlock != OldTarget)
    541                 DominatesDef = false;
    542             }
    543 
    544             if (DT) {
    545               DominatesDef = DT->dominates(DefBlock, OldTarget);
    546 
    547               // If the output value is used by a phi in the target block,
    548               // then we need to test for dominance of the phi's predecessor
    549               // instead.  Unfortunately, this a little complicated since we
    550               // have already rewritten uses of the value to uses of the reload.
    551               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
    552                                                           OldTarget);
    553               if (pred && DT && DT->dominates(DefBlock, pred))
    554                 DominatesDef = true;
    555             }
    556 
    557             if (DominatesDef) {
    558               if (AggregateArgs) {
    559                 Value *Idx[2];
    560                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    561                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
    562                                           FirstOut+out);
    563                 GetElementPtrInst *GEP =
    564                   GetElementPtrInst::Create(OAI, Idx, Idx + 2,
    565                                             "gep_" + outputs[out]->getName(),
    566                                             NTRet);
    567                 new StoreInst(outputs[out], GEP, NTRet);
    568               } else {
    569                 new StoreInst(outputs[out], OAI, NTRet);
    570               }
    571             }
    572             // Advance output iterator even if we don't emit a store
    573             if (!AggregateArgs) ++OAI;
    574           }
    575         }
    576 
    577         // rewrite the original branch instruction with this new target
    578         TI->setSuccessor(i, NewTarget);
    579       }
    580   }
    581 
    582   // Now that we've done the deed, simplify the switch instruction.
    583   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
    584   switch (NumExitBlocks) {
    585   case 0:
    586     // There are no successors (the block containing the switch itself), which
    587     // means that previously this was the last part of the function, and hence
    588     // this should be rewritten as a `ret'
    589 
    590     // Check if the function should return a value
    591     if (OldFnRetTy->isVoidTy()) {
    592       ReturnInst::Create(Context, 0, TheSwitch);  // Return void
    593     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
    594       // return what we have
    595       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    596     } else {
    597       // Otherwise we must have code extracted an unwind or something, just
    598       // return whatever we want.
    599       ReturnInst::Create(Context,
    600                          Constant::getNullValue(OldFnRetTy), TheSwitch);
    601     }
    602 
    603     TheSwitch->eraseFromParent();
    604     break;
    605   case 1:
    606     // Only a single destination, change the switch into an unconditional
    607     // branch.
    608     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    609     TheSwitch->eraseFromParent();
    610     break;
    611   case 2:
    612     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
    613                        call, TheSwitch);
    614     TheSwitch->eraseFromParent();
    615     break;
    616   default:
    617     // Otherwise, make the default destination of the switch instruction be one
    618     // of the other successors.
    619     TheSwitch->setOperand(0, call);
    620     TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
    621     TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
    622     break;
    623   }
    624 }
    625 
    626 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
    627   Function *oldFunc = (*BlocksToExtract.begin())->getParent();
    628   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
    629   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
    630 
    631   for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
    632          e = BlocksToExtract.end(); i != e; ++i) {
    633     // Delete the basic block from the old function, and the list of blocks
    634     oldBlocks.remove(*i);
    635 
    636     // Insert this basic block into the new function
    637     newBlocks.push_back(*i);
    638   }
    639 }
    640 
    641 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
    642 /// new function. Returns pointer to the new function.
    643 ///
    644 /// algorithm:
    645 ///
    646 /// find inputs and outputs for the region
    647 ///
    648 /// for inputs: add to function as args, map input instr* to arg#
    649 /// for outputs: add allocas for scalars,
    650 ///             add to func as args, map output instr* to arg#
    651 ///
    652 /// rewrite func to use argument #s instead of instr*
    653 ///
    654 /// for each scalar output in the function: at every exit, store intermediate
    655 /// computed result back into memory.
    656 ///
    657 Function *CodeExtractor::
    658 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
    659   if (!isEligible(code))
    660     return 0;
    661 
    662   // 1) Find inputs, outputs
    663   // 2) Construct new function
    664   //  * Add allocas for defs, pass as args by reference
    665   //  * Pass in uses as args
    666   // 3) Move code region, add call instr to func
    667   //
    668   BlocksToExtract.insert(code.begin(), code.end());
    669 
    670   Values inputs, outputs;
    671 
    672   // Assumption: this is a single-entry code region, and the header is the first
    673   // block in the region.
    674   BasicBlock *header = code[0];
    675 
    676   for (unsigned i = 1, e = code.size(); i != e; ++i)
    677     for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
    678          PI != E; ++PI)
    679       assert(BlocksToExtract.count(*PI) &&
    680              "No blocks in this region may have entries from outside the region"
    681              " except for the first block!");
    682 
    683   // If we have to split PHI nodes or the entry block, do so now.
    684   severSplitPHINodes(header);
    685 
    686   // If we have any return instructions in the region, split those blocks so
    687   // that the return is not in the region.
    688   splitReturnBlocks();
    689 
    690   Function *oldFunction = header->getParent();
    691 
    692   // This takes place of the original loop
    693   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
    694                                                 "codeRepl", oldFunction,
    695                                                 header);
    696 
    697   // The new function needs a root node because other nodes can branch to the
    698   // head of the region, but the entry node of a function cannot have preds.
    699   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
    700                                                "newFuncRoot");
    701   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
    702 
    703   // Find inputs to, outputs from the code region.
    704   findInputsOutputs(inputs, outputs);
    705 
    706   // Construct new function based on inputs/outputs & add allocas for all defs.
    707   Function *newFunction = constructFunction(inputs, outputs, header,
    708                                             newFuncRoot,
    709                                             codeReplacer, oldFunction,
    710                                             oldFunction->getParent());
    711 
    712   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
    713 
    714   moveCodeToFunction(newFunction);
    715 
    716   // Loop over all of the PHI nodes in the header block, and change any
    717   // references to the old incoming edge to be the new incoming edge.
    718   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    719     PHINode *PN = cast<PHINode>(I);
    720     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    721       if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
    722         PN->setIncomingBlock(i, newFuncRoot);
    723   }
    724 
    725   // Look at all successors of the codeReplacer block.  If any of these blocks
    726   // had PHI nodes in them, we need to update the "from" block to be the code
    727   // replacer, not the original block in the extracted region.
    728   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
    729                                  succ_end(codeReplacer));
    730   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    731     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
    732       PHINode *PN = cast<PHINode>(I);
    733       std::set<BasicBlock*> ProcessedPreds;
    734       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    735         if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
    736           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
    737             PN->setIncomingBlock(i, codeReplacer);
    738           else {
    739             // There were multiple entries in the PHI for this block, now there
    740             // is only one, so remove the duplicated entries.
    741             PN->removeIncomingValue(i, false);
    742             --i; --e;
    743           }
    744         }
    745     }
    746 
    747   //cerr << "NEW FUNCTION: " << *newFunction;
    748   //  verifyFunction(*newFunction);
    749 
    750   //  cerr << "OLD FUNCTION: " << *oldFunction;
    751   //  verifyFunction(*oldFunction);
    752 
    753   DEBUG(if (verifyFunction(*newFunction))
    754         report_fatal_error("verifyFunction failed!"));
    755   return newFunction;
    756 }
    757 
    758 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
    759   // Deny code region if it contains allocas or vastarts.
    760   for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
    761        BB != e; ++BB)
    762     for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
    763          I != Ie; ++I)
    764       if (isa<AllocaInst>(*I))
    765         return false;
    766       else if (const CallInst *CI = dyn_cast<CallInst>(I))
    767         if (const Function *F = CI->getCalledFunction())
    768           if (F->getIntrinsicID() == Intrinsic::vastart)
    769             return false;
    770   return true;
    771 }
    772 
    773 
    774 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
    775 /// function
    776 ///
    777 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
    778                                   const std::vector<BasicBlock*> &code,
    779                                   bool AggregateArgs) {
    780   return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
    781 }
    782 
    783 /// ExtractBasicBlock - slurp a natural loop into a brand new function
    784 ///
    785 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
    786   return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
    787 }
    788 
    789 /// ExtractBasicBlock - slurp a basic block into a brand new function
    790 ///
    791 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
    792   std::vector<BasicBlock*> Blocks;
    793   Blocks.push_back(BB);
    794   return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
    795 }
    796