1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/FunctionUtils.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Intrinsics.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Module.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Analysis/Dominators.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/Verifier.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include <algorithm> 35 #include <set> 36 using namespace llvm; 37 38 // Provide a command-line option to aggregate function arguments into a struct 39 // for functions produced by the code extractor. This is useful when converting 40 // extracted functions to pthread-based code, as only one argument (void*) can 41 // be passed in to pthread_create(). 42 static cl::opt<bool> 43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 44 cl::desc("Aggregate arguments to code-extracted functions")); 45 46 namespace { 47 class CodeExtractor { 48 typedef SetVector<Value*> Values; 49 SetVector<BasicBlock*> BlocksToExtract; 50 DominatorTree* DT; 51 bool AggregateArgs; 52 unsigned NumExitBlocks; 53 Type *RetTy; 54 public: 55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 57 58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 59 60 bool isEligible(const std::vector<BasicBlock*> &code); 61 62 private: 63 /// definedInRegion - Return true if the specified value is defined in the 64 /// extracted region. 65 bool definedInRegion(Value *V) const { 66 if (Instruction *I = dyn_cast<Instruction>(V)) 67 if (BlocksToExtract.count(I->getParent())) 68 return true; 69 return false; 70 } 71 72 /// definedInCaller - Return true if the specified value is defined in the 73 /// function being code extracted, but not in the region being extracted. 74 /// These values must be passed in as live-ins to the function. 75 bool definedInCaller(Value *V) const { 76 if (isa<Argument>(V)) return true; 77 if (Instruction *I = dyn_cast<Instruction>(V)) 78 if (!BlocksToExtract.count(I->getParent())) 79 return true; 80 return false; 81 } 82 83 void severSplitPHINodes(BasicBlock *&Header); 84 void splitReturnBlocks(); 85 void findInputsOutputs(Values &inputs, Values &outputs); 86 87 Function *constructFunction(const Values &inputs, 88 const Values &outputs, 89 BasicBlock *header, 90 BasicBlock *newRootNode, BasicBlock *newHeader, 91 Function *oldFunction, Module *M); 92 93 void moveCodeToFunction(Function *newFunction); 94 95 void emitCallAndSwitchStatement(Function *newFunction, 96 BasicBlock *newHeader, 97 Values &inputs, 98 Values &outputs); 99 100 }; 101 } 102 103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 104 /// region, we need to split the entry block of the region so that the PHI node 105 /// is easier to deal with. 106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 107 unsigned NumPredsFromRegion = 0; 108 unsigned NumPredsOutsideRegion = 0; 109 110 if (Header != &Header->getParent()->getEntryBlock()) { 111 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 112 if (!PN) return; // No PHI nodes. 113 114 // If the header node contains any PHI nodes, check to see if there is more 115 // than one entry from outside the region. If so, we need to sever the 116 // header block into two. 117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 118 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 119 ++NumPredsFromRegion; 120 else 121 ++NumPredsOutsideRegion; 122 123 // If there is one (or fewer) predecessor from outside the region, we don't 124 // need to do anything special. 125 if (NumPredsOutsideRegion <= 1) return; 126 } 127 128 // Otherwise, we need to split the header block into two pieces: one 129 // containing PHI nodes merging values from outside of the region, and a 130 // second that contains all of the code for the block and merges back any 131 // incoming values from inside of the region. 132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); 133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 134 Header->getName()+".ce"); 135 136 // We only want to code extract the second block now, and it becomes the new 137 // header of the region. 138 BasicBlock *OldPred = Header; 139 BlocksToExtract.remove(OldPred); 140 BlocksToExtract.insert(NewBB); 141 Header = NewBB; 142 143 // Okay, update dominator sets. The blocks that dominate the new one are the 144 // blocks that dominate TIBB plus the new block itself. 145 if (DT) 146 DT->splitBlock(NewBB); 147 148 // Okay, now we need to adjust the PHI nodes and any branches from within the 149 // region to go to the new header block instead of the old header block. 150 if (NumPredsFromRegion) { 151 PHINode *PN = cast<PHINode>(OldPred->begin()); 152 // Loop over all of the predecessors of OldPred that are in the region, 153 // changing them to branch to NewBB instead. 154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 157 TI->replaceUsesOfWith(OldPred, NewBB); 158 } 159 160 // Okay, everything within the region is now branching to the right block, we 161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 163 PHINode *PN = cast<PHINode>(AfterPHIs); 164 // Create a new PHI node in the new region, which has an incoming value 165 // from OldPred of PN. 166 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 167 PN->getName()+".ce", NewBB->begin()); 168 NewPN->addIncoming(PN, OldPred); 169 170 // Loop over all of the incoming value in PN, moving them to NewPN if they 171 // are from the extracted region. 172 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 173 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 174 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 175 PN->removeIncomingValue(i); 176 --i; 177 } 178 } 179 } 180 } 181 } 182 183 void CodeExtractor::splitReturnBlocks() { 184 for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(), 185 E = BlocksToExtract.end(); I != E; ++I) 186 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { 187 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 188 if (DT) { 189 // Old dominates New. New node dominates all other nodes dominated 190 // by Old. 191 DomTreeNode *OldNode = DT->getNode(*I); 192 SmallVector<DomTreeNode*, 8> Children; 193 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); 194 DI != DE; ++DI) 195 Children.push_back(*DI); 196 197 DomTreeNode *NewNode = DT->addNewBlock(New, *I); 198 199 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(), 200 E = Children.end(); I != E; ++I) 201 DT->changeImmediateDominator(*I, NewNode); 202 } 203 } 204 } 205 206 // findInputsOutputs - Find inputs to, outputs from the code region. 207 // 208 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 209 std::set<BasicBlock*> ExitBlocks; 210 for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 211 ce = BlocksToExtract.end(); ci != ce; ++ci) { 212 BasicBlock *BB = *ci; 213 214 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 215 // If a used value is defined outside the region, it's an input. If an 216 // instruction is used outside the region, it's an output. 217 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 218 if (definedInCaller(*O)) 219 inputs.insert(*O); 220 221 // Consider uses of this instruction (outputs). 222 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 223 UI != E; ++UI) 224 if (!definedInRegion(*UI)) { 225 outputs.insert(I); 226 break; 227 } 228 } // for: insts 229 230 // Keep track of the exit blocks from the region. 231 TerminatorInst *TI = BB->getTerminator(); 232 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 233 if (!BlocksToExtract.count(TI->getSuccessor(i))) 234 ExitBlocks.insert(TI->getSuccessor(i)); 235 } // for: basic blocks 236 237 NumExitBlocks = ExitBlocks.size(); 238 } 239 240 /// constructFunction - make a function based on inputs and outputs, as follows: 241 /// f(in0, ..., inN, out0, ..., outN) 242 /// 243 Function *CodeExtractor::constructFunction(const Values &inputs, 244 const Values &outputs, 245 BasicBlock *header, 246 BasicBlock *newRootNode, 247 BasicBlock *newHeader, 248 Function *oldFunction, 249 Module *M) { 250 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 251 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 252 253 // This function returns unsigned, outputs will go back by reference. 254 switch (NumExitBlocks) { 255 case 0: 256 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 257 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 258 default: RetTy = Type::getInt16Ty(header->getContext()); break; 259 } 260 261 std::vector<Type*> paramTy; 262 263 // Add the types of the input values to the function's argument list 264 for (Values::const_iterator i = inputs.begin(), 265 e = inputs.end(); i != e; ++i) { 266 const Value *value = *i; 267 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 268 paramTy.push_back(value->getType()); 269 } 270 271 // Add the types of the output values to the function's argument list. 272 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 273 I != E; ++I) { 274 DEBUG(dbgs() << "instr used in func: " << **I << "\n"); 275 if (AggregateArgs) 276 paramTy.push_back((*I)->getType()); 277 else 278 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 279 } 280 281 DEBUG(dbgs() << "Function type: " << *RetTy << " f("); 282 for (std::vector<Type*>::iterator i = paramTy.begin(), 283 e = paramTy.end(); i != e; ++i) 284 DEBUG(dbgs() << **i << ", "); 285 DEBUG(dbgs() << ")\n"); 286 287 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 288 PointerType *StructPtr = 289 PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); 290 paramTy.clear(); 291 paramTy.push_back(StructPtr); 292 } 293 FunctionType *funcType = 294 FunctionType::get(RetTy, paramTy, false); 295 296 // Create the new function 297 Function *newFunction = Function::Create(funcType, 298 GlobalValue::InternalLinkage, 299 oldFunction->getName() + "_" + 300 header->getName(), M); 301 // If the old function is no-throw, so is the new one. 302 if (oldFunction->doesNotThrow()) 303 newFunction->setDoesNotThrow(true); 304 305 newFunction->getBasicBlockList().push_back(newRootNode); 306 307 // Create an iterator to name all of the arguments we inserted. 308 Function::arg_iterator AI = newFunction->arg_begin(); 309 310 // Rewrite all users of the inputs in the extracted region to use the 311 // arguments (or appropriate addressing into struct) instead. 312 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 313 Value *RewriteVal; 314 if (AggregateArgs) { 315 Value *Idx[2]; 316 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 317 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 318 TerminatorInst *TI = newFunction->begin()->getTerminator(); 319 GetElementPtrInst *GEP = 320 GetElementPtrInst::Create(AI, Idx, Idx+2, 321 "gep_" + inputs[i]->getName(), TI); 322 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 323 } else 324 RewriteVal = AI++; 325 326 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 327 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 328 use != useE; ++use) 329 if (Instruction* inst = dyn_cast<Instruction>(*use)) 330 if (BlocksToExtract.count(inst->getParent())) 331 inst->replaceUsesOfWith(inputs[i], RewriteVal); 332 } 333 334 // Set names for input and output arguments. 335 if (!AggregateArgs) { 336 AI = newFunction->arg_begin(); 337 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 338 AI->setName(inputs[i]->getName()); 339 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 340 AI->setName(outputs[i]->getName()+".out"); 341 } 342 343 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 344 // within the new function. This must be done before we lose track of which 345 // blocks were originally in the code region. 346 std::vector<User*> Users(header->use_begin(), header->use_end()); 347 for (unsigned i = 0, e = Users.size(); i != e; ++i) 348 // The BasicBlock which contains the branch is not in the region 349 // modify the branch target to a new block 350 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 351 if (!BlocksToExtract.count(TI->getParent()) && 352 TI->getParent()->getParent() == oldFunction) 353 TI->replaceUsesOfWith(header, newHeader); 354 355 return newFunction; 356 } 357 358 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 359 /// that uses the value within the basic block, and return the predecessor 360 /// block associated with that use, or return 0 if none is found. 361 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 362 for (Value::use_iterator UI = Used->use_begin(), 363 UE = Used->use_end(); UI != UE; ++UI) { 364 PHINode *P = dyn_cast<PHINode>(*UI); 365 if (P && P->getParent() == BB) 366 return P->getIncomingBlock(UI); 367 } 368 369 return 0; 370 } 371 372 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 373 /// the call instruction, splitting any PHI nodes in the header block as 374 /// necessary. 375 void CodeExtractor:: 376 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 377 Values &inputs, Values &outputs) { 378 // Emit a call to the new function, passing in: *pointer to struct (if 379 // aggregating parameters), or plan inputs and allocated memory for outputs 380 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 381 382 LLVMContext &Context = newFunction->getContext(); 383 384 // Add inputs as params, or to be filled into the struct 385 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 386 if (AggregateArgs) 387 StructValues.push_back(*i); 388 else 389 params.push_back(*i); 390 391 // Create allocas for the outputs 392 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 393 if (AggregateArgs) { 394 StructValues.push_back(*i); 395 } else { 396 AllocaInst *alloca = 397 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 398 codeReplacer->getParent()->begin()->begin()); 399 ReloadOutputs.push_back(alloca); 400 params.push_back(alloca); 401 } 402 } 403 404 AllocaInst *Struct = 0; 405 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 406 std::vector<Type*> ArgTypes; 407 for (Values::iterator v = StructValues.begin(), 408 ve = StructValues.end(); v != ve; ++v) 409 ArgTypes.push_back((*v)->getType()); 410 411 // Allocate a struct at the beginning of this function 412 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 413 Struct = 414 new AllocaInst(StructArgTy, 0, "structArg", 415 codeReplacer->getParent()->begin()->begin()); 416 params.push_back(Struct); 417 418 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 419 Value *Idx[2]; 420 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 421 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 422 GetElementPtrInst *GEP = 423 GetElementPtrInst::Create(Struct, Idx, Idx + 2, 424 "gep_" + StructValues[i]->getName()); 425 codeReplacer->getInstList().push_back(GEP); 426 StoreInst *SI = new StoreInst(StructValues[i], GEP); 427 codeReplacer->getInstList().push_back(SI); 428 } 429 } 430 431 // Emit the call to the function 432 CallInst *call = CallInst::Create(newFunction, params, 433 NumExitBlocks > 1 ? "targetBlock" : ""); 434 codeReplacer->getInstList().push_back(call); 435 436 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 437 unsigned FirstOut = inputs.size(); 438 if (!AggregateArgs) 439 std::advance(OutputArgBegin, inputs.size()); 440 441 // Reload the outputs passed in by reference 442 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 443 Value *Output = 0; 444 if (AggregateArgs) { 445 Value *Idx[2]; 446 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 447 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 448 GetElementPtrInst *GEP 449 = GetElementPtrInst::Create(Struct, Idx, Idx + 2, 450 "gep_reload_" + outputs[i]->getName()); 451 codeReplacer->getInstList().push_back(GEP); 452 Output = GEP; 453 } else { 454 Output = ReloadOutputs[i]; 455 } 456 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 457 Reloads.push_back(load); 458 codeReplacer->getInstList().push_back(load); 459 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 460 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 461 Instruction *inst = cast<Instruction>(Users[u]); 462 if (!BlocksToExtract.count(inst->getParent())) 463 inst->replaceUsesOfWith(outputs[i], load); 464 } 465 } 466 467 // Now we can emit a switch statement using the call as a value. 468 SwitchInst *TheSwitch = 469 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 470 codeReplacer, 0, codeReplacer); 471 472 // Since there may be multiple exits from the original region, make the new 473 // function return an unsigned, switch on that number. This loop iterates 474 // over all of the blocks in the extracted region, updating any terminator 475 // instructions in the to-be-extracted region that branch to blocks that are 476 // not in the region to be extracted. 477 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 478 479 unsigned switchVal = 0; 480 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 481 e = BlocksToExtract.end(); i != e; ++i) { 482 TerminatorInst *TI = (*i)->getTerminator(); 483 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 484 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 485 BasicBlock *OldTarget = TI->getSuccessor(i); 486 // add a new basic block which returns the appropriate value 487 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 488 if (!NewTarget) { 489 // If we don't already have an exit stub for this non-extracted 490 // destination, create one now! 491 NewTarget = BasicBlock::Create(Context, 492 OldTarget->getName() + ".exitStub", 493 newFunction); 494 unsigned SuccNum = switchVal++; 495 496 Value *brVal = 0; 497 switch (NumExitBlocks) { 498 case 0: 499 case 1: break; // No value needed. 500 case 2: // Conditional branch, return a bool 501 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 502 break; 503 default: 504 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 505 break; 506 } 507 508 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 509 510 // Update the switch instruction. 511 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 512 SuccNum), 513 OldTarget); 514 515 // Restore values just before we exit 516 Function::arg_iterator OAI = OutputArgBegin; 517 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 518 // For an invoke, the normal destination is the only one that is 519 // dominated by the result of the invocation 520 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 521 522 bool DominatesDef = true; 523 524 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 525 DefBlock = Invoke->getNormalDest(); 526 527 // Make sure we are looking at the original successor block, not 528 // at a newly inserted exit block, which won't be in the dominator 529 // info. 530 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 531 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 532 if (DefBlock == I->second) { 533 DefBlock = I->first; 534 break; 535 } 536 537 // In the extract block case, if the block we are extracting ends 538 // with an invoke instruction, make sure that we don't emit a 539 // store of the invoke value for the unwind block. 540 if (!DT && DefBlock != OldTarget) 541 DominatesDef = false; 542 } 543 544 if (DT) { 545 DominatesDef = DT->dominates(DefBlock, OldTarget); 546 547 // If the output value is used by a phi in the target block, 548 // then we need to test for dominance of the phi's predecessor 549 // instead. Unfortunately, this a little complicated since we 550 // have already rewritten uses of the value to uses of the reload. 551 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 552 OldTarget); 553 if (pred && DT && DT->dominates(DefBlock, pred)) 554 DominatesDef = true; 555 } 556 557 if (DominatesDef) { 558 if (AggregateArgs) { 559 Value *Idx[2]; 560 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 561 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 562 FirstOut+out); 563 GetElementPtrInst *GEP = 564 GetElementPtrInst::Create(OAI, Idx, Idx + 2, 565 "gep_" + outputs[out]->getName(), 566 NTRet); 567 new StoreInst(outputs[out], GEP, NTRet); 568 } else { 569 new StoreInst(outputs[out], OAI, NTRet); 570 } 571 } 572 // Advance output iterator even if we don't emit a store 573 if (!AggregateArgs) ++OAI; 574 } 575 } 576 577 // rewrite the original branch instruction with this new target 578 TI->setSuccessor(i, NewTarget); 579 } 580 } 581 582 // Now that we've done the deed, simplify the switch instruction. 583 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 584 switch (NumExitBlocks) { 585 case 0: 586 // There are no successors (the block containing the switch itself), which 587 // means that previously this was the last part of the function, and hence 588 // this should be rewritten as a `ret' 589 590 // Check if the function should return a value 591 if (OldFnRetTy->isVoidTy()) { 592 ReturnInst::Create(Context, 0, TheSwitch); // Return void 593 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 594 // return what we have 595 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 596 } else { 597 // Otherwise we must have code extracted an unwind or something, just 598 // return whatever we want. 599 ReturnInst::Create(Context, 600 Constant::getNullValue(OldFnRetTy), TheSwitch); 601 } 602 603 TheSwitch->eraseFromParent(); 604 break; 605 case 1: 606 // Only a single destination, change the switch into an unconditional 607 // branch. 608 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 609 TheSwitch->eraseFromParent(); 610 break; 611 case 2: 612 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 613 call, TheSwitch); 614 TheSwitch->eraseFromParent(); 615 break; 616 default: 617 // Otherwise, make the default destination of the switch instruction be one 618 // of the other successors. 619 TheSwitch->setOperand(0, call); 620 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 621 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 622 break; 623 } 624 } 625 626 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 627 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 628 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 629 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 630 631 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 632 e = BlocksToExtract.end(); i != e; ++i) { 633 // Delete the basic block from the old function, and the list of blocks 634 oldBlocks.remove(*i); 635 636 // Insert this basic block into the new function 637 newBlocks.push_back(*i); 638 } 639 } 640 641 /// ExtractRegion - Removes a loop from a function, replaces it with a call to 642 /// new function. Returns pointer to the new function. 643 /// 644 /// algorithm: 645 /// 646 /// find inputs and outputs for the region 647 /// 648 /// for inputs: add to function as args, map input instr* to arg# 649 /// for outputs: add allocas for scalars, 650 /// add to func as args, map output instr* to arg# 651 /// 652 /// rewrite func to use argument #s instead of instr* 653 /// 654 /// for each scalar output in the function: at every exit, store intermediate 655 /// computed result back into memory. 656 /// 657 Function *CodeExtractor:: 658 ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 659 if (!isEligible(code)) 660 return 0; 661 662 // 1) Find inputs, outputs 663 // 2) Construct new function 664 // * Add allocas for defs, pass as args by reference 665 // * Pass in uses as args 666 // 3) Move code region, add call instr to func 667 // 668 BlocksToExtract.insert(code.begin(), code.end()); 669 670 Values inputs, outputs; 671 672 // Assumption: this is a single-entry code region, and the header is the first 673 // block in the region. 674 BasicBlock *header = code[0]; 675 676 for (unsigned i = 1, e = code.size(); i != e; ++i) 677 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 678 PI != E; ++PI) 679 assert(BlocksToExtract.count(*PI) && 680 "No blocks in this region may have entries from outside the region" 681 " except for the first block!"); 682 683 // If we have to split PHI nodes or the entry block, do so now. 684 severSplitPHINodes(header); 685 686 // If we have any return instructions in the region, split those blocks so 687 // that the return is not in the region. 688 splitReturnBlocks(); 689 690 Function *oldFunction = header->getParent(); 691 692 // This takes place of the original loop 693 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 694 "codeRepl", oldFunction, 695 header); 696 697 // The new function needs a root node because other nodes can branch to the 698 // head of the region, but the entry node of a function cannot have preds. 699 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 700 "newFuncRoot"); 701 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 702 703 // Find inputs to, outputs from the code region. 704 findInputsOutputs(inputs, outputs); 705 706 // Construct new function based on inputs/outputs & add allocas for all defs. 707 Function *newFunction = constructFunction(inputs, outputs, header, 708 newFuncRoot, 709 codeReplacer, oldFunction, 710 oldFunction->getParent()); 711 712 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 713 714 moveCodeToFunction(newFunction); 715 716 // Loop over all of the PHI nodes in the header block, and change any 717 // references to the old incoming edge to be the new incoming edge. 718 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 719 PHINode *PN = cast<PHINode>(I); 720 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 721 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 722 PN->setIncomingBlock(i, newFuncRoot); 723 } 724 725 // Look at all successors of the codeReplacer block. If any of these blocks 726 // had PHI nodes in them, we need to update the "from" block to be the code 727 // replacer, not the original block in the extracted region. 728 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 729 succ_end(codeReplacer)); 730 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 731 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 732 PHINode *PN = cast<PHINode>(I); 733 std::set<BasicBlock*> ProcessedPreds; 734 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 735 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 736 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 737 PN->setIncomingBlock(i, codeReplacer); 738 else { 739 // There were multiple entries in the PHI for this block, now there 740 // is only one, so remove the duplicated entries. 741 PN->removeIncomingValue(i, false); 742 --i; --e; 743 } 744 } 745 } 746 747 //cerr << "NEW FUNCTION: " << *newFunction; 748 // verifyFunction(*newFunction); 749 750 // cerr << "OLD FUNCTION: " << *oldFunction; 751 // verifyFunction(*oldFunction); 752 753 DEBUG(if (verifyFunction(*newFunction)) 754 report_fatal_error("verifyFunction failed!")); 755 return newFunction; 756 } 757 758 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 759 // Deny code region if it contains allocas or vastarts. 760 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 761 BB != e; ++BB) 762 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 763 I != Ie; ++I) 764 if (isa<AllocaInst>(*I)) 765 return false; 766 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 767 if (const Function *F = CI->getCalledFunction()) 768 if (F->getIntrinsicID() == Intrinsic::vastart) 769 return false; 770 return true; 771 } 772 773 774 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 775 /// function 776 /// 777 Function* llvm::ExtractCodeRegion(DominatorTree &DT, 778 const std::vector<BasicBlock*> &code, 779 bool AggregateArgs) { 780 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 781 } 782 783 /// ExtractBasicBlock - slurp a natural loop into a brand new function 784 /// 785 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 786 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 787 } 788 789 /// ExtractBasicBlock - slurp a basic block into a brand new function 790 /// 791 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 792 std::vector<BasicBlock*> Blocks; 793 Blocks.push_back(BB); 794 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 795 } 796