Home | History | Annotate | Download | only in X86
      1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "subtarget"
     15 #include "X86Subtarget.h"
     16 #include "X86InstrInfo.h"
     17 #include "llvm/GlobalValue.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 #include "llvm/Support/Host.h"
     21 #include "llvm/Target/TargetMachine.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 
     24 #define GET_SUBTARGETINFO_TARGET_DESC
     25 #define GET_SUBTARGETINFO_CTOR
     26 #include "X86GenSubtargetInfo.inc"
     27 
     28 using namespace llvm;
     29 
     30 #if defined(_MSC_VER)
     31 #include <intrin.h>
     32 #endif
     33 
     34 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
     35 /// current subtarget according to how we should reference it in a non-pcrel
     36 /// context.
     37 unsigned char X86Subtarget::
     38 ClassifyBlockAddressReference() const {
     39   if (isPICStyleGOT())    // 32-bit ELF targets.
     40     return X86II::MO_GOTOFF;
     41 
     42   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
     43     return X86II::MO_PIC_BASE_OFFSET;
     44 
     45   // Direct static reference to label.
     46   return X86II::MO_NO_FLAG;
     47 }
     48 
     49 /// ClassifyGlobalReference - Classify a global variable reference for the
     50 /// current subtarget according to how we should reference it in a non-pcrel
     51 /// context.
     52 unsigned char X86Subtarget::
     53 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
     54   // DLLImport only exists on windows, it is implemented as a load from a
     55   // DLLIMPORT stub.
     56   if (GV->hasDLLImportLinkage())
     57     return X86II::MO_DLLIMPORT;
     58 
     59   // Determine whether this is a reference to a definition or a declaration.
     60   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
     61   // load from stub.
     62   bool isDecl = GV->hasAvailableExternallyLinkage();
     63   if (GV->isDeclaration() && !GV->isMaterializable())
     64     isDecl = true;
     65 
     66   // X86-64 in PIC mode.
     67   if (isPICStyleRIPRel()) {
     68     // Large model never uses stubs.
     69     if (TM.getCodeModel() == CodeModel::Large)
     70       return X86II::MO_NO_FLAG;
     71 
     72     if (isTargetDarwin()) {
     73       // If symbol visibility is hidden, the extra load is not needed if
     74       // target is x86-64 or the symbol is definitely defined in the current
     75       // translation unit.
     76       if (GV->hasDefaultVisibility() &&
     77           (isDecl || GV->isWeakForLinker()))
     78         return X86II::MO_GOTPCREL;
     79     } else if (!isTargetWin64()) {
     80       assert(isTargetELF() && "Unknown rip-relative target");
     81 
     82       // Extra load is needed for all externally visible.
     83       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
     84         return X86II::MO_GOTPCREL;
     85     }
     86 
     87     return X86II::MO_NO_FLAG;
     88   }
     89 
     90   if (isPICStyleGOT()) {   // 32-bit ELF targets.
     91     // Extra load is needed for all externally visible.
     92     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
     93       return X86II::MO_GOTOFF;
     94     return X86II::MO_GOT;
     95   }
     96 
     97   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
     98     // Determine whether we have a stub reference and/or whether the reference
     99     // is relative to the PIC base or not.
    100 
    101     // If this is a strong reference to a definition, it is definitely not
    102     // through a stub.
    103     if (!isDecl && !GV->isWeakForLinker())
    104       return X86II::MO_PIC_BASE_OFFSET;
    105 
    106     // Unless we have a symbol with hidden visibility, we have to go through a
    107     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    108     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    109       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
    110 
    111     // If symbol visibility is hidden, we have a stub for common symbol
    112     // references and external declarations.
    113     if (isDecl || GV->hasCommonLinkage()) {
    114       // Hidden $non_lazy_ptr reference.
    115       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
    116     }
    117 
    118     // Otherwise, no stub.
    119     return X86II::MO_PIC_BASE_OFFSET;
    120   }
    121 
    122   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
    123     // Determine whether we have a stub reference.
    124 
    125     // If this is a strong reference to a definition, it is definitely not
    126     // through a stub.
    127     if (!isDecl && !GV->isWeakForLinker())
    128       return X86II::MO_NO_FLAG;
    129 
    130     // Unless we have a symbol with hidden visibility, we have to go through a
    131     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    132     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    133       return X86II::MO_DARWIN_NONLAZY;
    134 
    135     // Otherwise, no stub.
    136     return X86II::MO_NO_FLAG;
    137   }
    138 
    139   // Direct static reference to global.
    140   return X86II::MO_NO_FLAG;
    141 }
    142 
    143 
    144 /// getBZeroEntry - This function returns the name of a function which has an
    145 /// interface like the non-standard bzero function, if such a function exists on
    146 /// the current subtarget and it is considered prefereable over memset with zero
    147 /// passed as the second argument. Otherwise it returns null.
    148 const char *X86Subtarget::getBZeroEntry() const {
    149   // Darwin 10 has a __bzero entry point for this purpose.
    150   if (getTargetTriple().isMacOSX() &&
    151       !getTargetTriple().isMacOSXVersionLT(10, 6))
    152     return "__bzero";
    153 
    154   return 0;
    155 }
    156 
    157 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
    158 /// to immediate address.
    159 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
    160   if (In64BitMode)
    161     return false;
    162   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
    163 }
    164 
    165 /// getSpecialAddressLatency - For targets where it is beneficial to
    166 /// backschedule instructions that compute addresses, return a value
    167 /// indicating the number of scheduling cycles of backscheduling that
    168 /// should be attempted.
    169 unsigned X86Subtarget::getSpecialAddressLatency() const {
    170   // For x86 out-of-order targets, back-schedule address computations so
    171   // that loads and stores aren't blocked.
    172   // This value was chosen arbitrarily.
    173   return 200;
    174 }
    175 
    176 void X86Subtarget::AutoDetectSubtargetFeatures() {
    177   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
    178   union {
    179     unsigned u[3];
    180     char     c[12];
    181   } text;
    182 
    183   if (X86_MC::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
    184     return;
    185 
    186   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
    187 
    188   if ((EDX >> 15) & 1) HasCMov = true;      ToggleFeature(X86::FeatureCMOV);
    189   if ((EDX >> 23) & 1) X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);
    190   if ((EDX >> 25) & 1) X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1);
    191   if ((EDX >> 26) & 1) X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2);
    192   if (ECX & 0x1)       X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3);
    193   if ((ECX >> 9)  & 1) X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);
    194   if ((ECX >> 19) & 1) X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);
    195   if ((ECX >> 20) & 1) X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);
    196   // FIXME: AVX codegen support is not ready.
    197   //if ((ECX >> 28) & 1) { HasAVX = true; } ToggleFeature(X86::FeatureAVX);
    198 
    199   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
    200   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
    201 
    202   HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);   ToggleFeature(X86::FeatureCLMUL);
    203   HasFMA3  = IsIntel && ((ECX >> 12) & 0x1);  ToggleFeature(X86::FeatureFMA3);
    204   HasPOPCNT = IsIntel && ((ECX >> 23) & 0x1); ToggleFeature(X86::FeaturePOPCNT);
    205   HasAES   = IsIntel && ((ECX >> 25) & 0x1);  ToggleFeature(X86::FeatureAES);
    206 
    207   if (IsIntel || IsAMD) {
    208     // Determine if bit test memory instructions are slow.
    209     unsigned Family = 0;
    210     unsigned Model  = 0;
    211     X86_MC::DetectFamilyModel(EAX, Family, Model);
    212     if (IsAMD || (Family == 6 && Model >= 13)) {
    213       IsBTMemSlow = true;
    214       ToggleFeature(X86::FeatureSlowBTMem);
    215     }
    216     // If it's Nehalem, unaligned memory access is fast.
    217     if (Family == 15 && Model == 26) {
    218       IsUAMemFast = true;
    219       ToggleFeature(X86::FeatureFastUAMem);
    220     }
    221 
    222     X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    223     if ((EDX >> 29) & 0x1) {
    224       HasX86_64 = true;
    225       ToggleFeature(X86::Feature64Bit);
    226     }
    227     if (IsAMD && ((ECX >> 6) & 0x1)) {
    228       HasSSE4A = true;
    229       ToggleFeature(X86::FeatureSSE4A);
    230     }
    231     if (IsAMD && ((ECX >> 16) & 0x1)) {
    232       HasFMA4 = true;
    233       ToggleFeature(X86::FeatureFMA4);
    234     }
    235   }
    236 }
    237 
    238 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
    239                            const std::string &FS,
    240                            unsigned StackAlignOverride, bool is64Bit)
    241   : X86GenSubtargetInfo(TT, CPU, FS)
    242   , PICStyle(PICStyles::None)
    243   , X86SSELevel(NoMMXSSE)
    244   , X863DNowLevel(NoThreeDNow)
    245   , HasCMov(false)
    246   , HasX86_64(false)
    247   , HasPOPCNT(false)
    248   , HasSSE4A(false)
    249   , HasAVX(false)
    250   , HasAES(false)
    251   , HasCLMUL(false)
    252   , HasFMA3(false)
    253   , HasFMA4(false)
    254   , IsBTMemSlow(false)
    255   , IsUAMemFast(false)
    256   , HasVectorUAMem(false)
    257   , stackAlignment(8)
    258   // FIXME: this is a known good value for Yonah. How about others?
    259   , MaxInlineSizeThreshold(128)
    260   , TargetTriple(TT)
    261   , In64BitMode(is64Bit) {
    262   // Determine default and user specified characteristics
    263   if (!FS.empty() || !CPU.empty()) {
    264     std::string CPUName = CPU;
    265     if (CPUName.empty()) {
    266 #if defined (__x86_64__) || defined(__i386__)
    267       CPUName = sys::getHostCPUName();
    268 #else
    269       CPUName = "generic";
    270 #endif
    271     }
    272 
    273     // Make sure 64-bit features are available in 64-bit mode. (But make sure
    274     // SSE2 can be turned off explicitly.)
    275     std::string FullFS = FS;
    276     if (In64BitMode) {
    277       if (!FullFS.empty())
    278         FullFS = "+64bit,+sse2," + FullFS;
    279       else
    280         FullFS = "+64bit,+sse2";
    281     }
    282 
    283     // If feature string is not empty, parse features string.
    284     ParseSubtargetFeatures(CPUName, FullFS);
    285   } else {
    286     // Otherwise, use CPUID to auto-detect feature set.
    287     AutoDetectSubtargetFeatures();
    288 
    289     // Make sure 64-bit features are available in 64-bit mode.
    290     if (In64BitMode) {
    291       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
    292       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
    293 
    294       if (!HasAVX && X86SSELevel < SSE2) {
    295         X86SSELevel = SSE2;
    296         ToggleFeature(X86::FeatureSSE1);
    297         ToggleFeature(X86::FeatureSSE2);
    298       }
    299     }
    300   }
    301 
    302   // It's important to keep the MCSubtargetInfo feature bits in sync with
    303   // target data structure which is shared with MC code emitter, etc.
    304   if (In64BitMode)
    305     ToggleFeature(X86::Mode64Bit);
    306 
    307   if (HasAVX)
    308     X86SSELevel = NoMMXSSE;
    309 
    310   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
    311                << ", 3DNowLevel " << X863DNowLevel
    312                << ", 64bit " << HasX86_64 << "\n");
    313   assert((!In64BitMode || HasX86_64) &&
    314          "64-bit code requested on a subtarget that doesn't support it!");
    315 
    316   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
    317   // 32 and 64 bit) and for all 64-bit targets.
    318   if (StackAlignOverride)
    319     stackAlignment = StackAlignOverride;
    320   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
    321            isTargetSolaris() || In64BitMode)
    322     stackAlignment = 16;
    323 }
    324