1 //===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ exception related code generation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/StmtCXX.h" 15 16 #include "llvm/Intrinsics.h" 17 #include "llvm/IntrinsicInst.h" 18 #include "llvm/Support/CallSite.h" 19 20 #include "CGObjCRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CGException.h" 23 #include "CGCleanup.h" 24 #include "TargetInfo.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 29 static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { 30 // void *__cxa_allocate_exception(size_t thrown_size); 31 32 llvm::Type *ArgTys[] = { CGF.SizeTy }; 33 llvm::FunctionType *FTy = 34 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false); 35 36 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); 37 } 38 39 static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { 40 // void __cxa_free_exception(void *thrown_exception); 41 42 llvm::Type *ArgTys[] = { CGF.Int8PtrTy }; 43 llvm::FunctionType *FTy = 44 llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false); 45 46 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); 47 } 48 49 static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { 50 // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, 51 // void (*dest) (void *)); 52 53 llvm::Type *Args[3] = { CGF.Int8PtrTy, CGF.Int8PtrTy, CGF.Int8PtrTy }; 54 llvm::FunctionType *FTy = 55 llvm::FunctionType::get(CGF.VoidTy, Args, /*IsVarArgs=*/false); 56 57 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); 58 } 59 60 static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { 61 // void __cxa_rethrow(); 62 63 llvm::FunctionType *FTy = 64 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 65 66 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); 67 } 68 69 static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { 70 // void *__cxa_get_exception_ptr(void*); 71 72 llvm::Type *ArgTys[] = { CGF.Int8PtrTy }; 73 llvm::FunctionType *FTy = 74 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false); 75 76 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); 77 } 78 79 static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { 80 // void *__cxa_begin_catch(void*); 81 82 llvm::Type *ArgTys[] = { CGF.Int8PtrTy }; 83 llvm::FunctionType *FTy = 84 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTys, /*IsVarArgs=*/false); 85 86 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); 87 } 88 89 static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { 90 // void __cxa_end_catch(); 91 92 llvm::FunctionType *FTy = 93 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 94 95 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); 96 } 97 98 static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { 99 // void __cxa_call_unexepcted(void *thrown_exception); 100 101 llvm::Type *ArgTys[] = { CGF.Int8PtrTy }; 102 llvm::FunctionType *FTy = 103 llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false); 104 105 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); 106 } 107 108 llvm::Constant *CodeGenFunction::getUnwindResumeFn() { 109 llvm::Type *ArgTys[] = { Int8PtrTy }; 110 llvm::FunctionType *FTy = 111 llvm::FunctionType::get(VoidTy, ArgTys, /*IsVarArgs=*/false); 112 113 if (CGM.getLangOptions().SjLjExceptions) 114 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume"); 115 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume"); 116 } 117 118 llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { 119 llvm::Type *ArgTys[] = { Int8PtrTy }; 120 llvm::FunctionType *FTy = 121 llvm::FunctionType::get(VoidTy, ArgTys, /*IsVarArgs=*/false); 122 123 if (CGM.getLangOptions().SjLjExceptions) 124 return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); 125 return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); 126 } 127 128 static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { 129 // void __terminate(); 130 131 llvm::FunctionType *FTy = 132 llvm::FunctionType::get(CGF.VoidTy, /*IsVarArgs=*/false); 133 134 llvm::StringRef name; 135 136 // In C++, use std::terminate(). 137 if (CGF.getLangOptions().CPlusPlus) 138 name = "_ZSt9terminatev"; // FIXME: mangling! 139 else if (CGF.getLangOptions().ObjC1 && 140 CGF.CGM.getCodeGenOpts().ObjCRuntimeHasTerminate) 141 name = "objc_terminate"; 142 else 143 name = "abort"; 144 return CGF.CGM.CreateRuntimeFunction(FTy, name); 145 } 146 147 static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, 148 llvm::StringRef Name) { 149 llvm::Type *ArgTys[] = { CGF.Int8PtrTy }; 150 llvm::FunctionType *FTy = 151 llvm::FunctionType::get(CGF.VoidTy, ArgTys, /*IsVarArgs=*/false); 152 153 return CGF.CGM.CreateRuntimeFunction(FTy, Name); 154 } 155 156 const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0"); 157 const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0"); 158 const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0"); 159 const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0"); 160 const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0"); 161 const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0", 162 "objc_exception_throw"); 163 const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0"); 164 165 static const EHPersonality &getCPersonality(const LangOptions &L) { 166 if (L.SjLjExceptions) 167 return EHPersonality::GNU_C_SJLJ; 168 return EHPersonality::GNU_C; 169 } 170 171 static const EHPersonality &getObjCPersonality(const LangOptions &L) { 172 if (L.NeXTRuntime) { 173 if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; 174 else return getCPersonality(L); 175 } else { 176 return EHPersonality::GNU_ObjC; 177 } 178 } 179 180 static const EHPersonality &getCXXPersonality(const LangOptions &L) { 181 if (L.SjLjExceptions) 182 return EHPersonality::GNU_CPlusPlus_SJLJ; 183 else 184 return EHPersonality::GNU_CPlusPlus; 185 } 186 187 /// Determines the personality function to use when both C++ 188 /// and Objective-C exceptions are being caught. 189 static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { 190 // The ObjC personality defers to the C++ personality for non-ObjC 191 // handlers. Unlike the C++ case, we use the same personality 192 // function on targets using (backend-driven) SJLJ EH. 193 if (L.NeXTRuntime) { 194 if (L.ObjCNonFragileABI) 195 return EHPersonality::NeXT_ObjC; 196 197 // In the fragile ABI, just use C++ exception handling and hope 198 // they're not doing crazy exception mixing. 199 else 200 return getCXXPersonality(L); 201 } 202 203 // The GNU runtime's personality function inherently doesn't support 204 // mixed EH. Use the C++ personality just to avoid returning null. 205 return EHPersonality::GNU_ObjCXX; 206 } 207 208 const EHPersonality &EHPersonality::get(const LangOptions &L) { 209 if (L.CPlusPlus && L.ObjC1) 210 return getObjCXXPersonality(L); 211 else if (L.CPlusPlus) 212 return getCXXPersonality(L); 213 else if (L.ObjC1) 214 return getObjCPersonality(L); 215 else 216 return getCPersonality(L); 217 } 218 219 static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, 220 const EHPersonality &Personality) { 221 llvm::Constant *Fn = 222 CGM.CreateRuntimeFunction(llvm::FunctionType::get( 223 llvm::Type::getInt32Ty(CGM.getLLVMContext()), 224 true), 225 Personality.getPersonalityFnName()); 226 return Fn; 227 } 228 229 static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, 230 const EHPersonality &Personality) { 231 llvm::Constant *Fn = getPersonalityFn(CGM, Personality); 232 return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); 233 } 234 235 /// Check whether a personality function could reasonably be swapped 236 /// for a C++ personality function. 237 static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { 238 for (llvm::Constant::use_iterator 239 I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { 240 llvm::User *User = *I; 241 242 // Conditionally white-list bitcasts. 243 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) { 244 if (CE->getOpcode() != llvm::Instruction::BitCast) return false; 245 if (!PersonalityHasOnlyCXXUses(CE)) 246 return false; 247 continue; 248 } 249 250 // Otherwise, it has to be a selector call. 251 if (!isa<llvm::EHSelectorInst>(User)) return false; 252 253 llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User); 254 for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) { 255 // Look for something that would've been returned by the ObjC 256 // runtime's GetEHType() method. 257 llvm::GlobalVariable *GV 258 = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I)); 259 if (!GV) continue; 260 261 // ObjC EH selector entries are always global variables with 262 // names starting like this. 263 if (GV->getName().startswith("OBJC_EHTYPE")) 264 return false; 265 } 266 } 267 268 return true; 269 } 270 271 /// Try to use the C++ personality function in ObjC++. Not doing this 272 /// can cause some incompatibilities with gcc, which is more 273 /// aggressive about only using the ObjC++ personality in a function 274 /// when it really needs it. 275 void CodeGenModule::SimplifyPersonality() { 276 // For now, this is really a Darwin-specific operation. 277 if (!Context.Target.getTriple().isOSDarwin()) 278 return; 279 280 // If we're not in ObjC++ -fexceptions, there's nothing to do. 281 if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions) 282 return; 283 284 const EHPersonality &ObjCXX = EHPersonality::get(Features); 285 const EHPersonality &CXX = getCXXPersonality(Features); 286 if (&ObjCXX == &CXX || 287 ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName()) 288 return; 289 290 llvm::Function *Fn = 291 getModule().getFunction(ObjCXX.getPersonalityFnName()); 292 293 // Nothing to do if it's unused. 294 if (!Fn || Fn->use_empty()) return; 295 296 // Can't do the optimization if it has non-C++ uses. 297 if (!PersonalityHasOnlyCXXUses(Fn)) return; 298 299 // Create the C++ personality function and kill off the old 300 // function. 301 llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); 302 303 // This can happen if the user is screwing with us. 304 if (Fn->getType() != CXXFn->getType()) return; 305 306 Fn->replaceAllUsesWith(CXXFn); 307 Fn->eraseFromParent(); 308 } 309 310 /// Returns the value to inject into a selector to indicate the 311 /// presence of a catch-all. 312 static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { 313 // Possibly we should use @llvm.eh.catch.all.value here. 314 return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); 315 } 316 317 /// Returns the value to inject into a selector to indicate the 318 /// presence of a cleanup. 319 static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) { 320 return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 321 } 322 323 namespace { 324 /// A cleanup to free the exception object if its initialization 325 /// throws. 326 struct FreeException : EHScopeStack::Cleanup { 327 llvm::Value *exn; 328 FreeException(llvm::Value *exn) : exn(exn) {} 329 void Emit(CodeGenFunction &CGF, Flags flags) { 330 CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) 331 ->setDoesNotThrow(); 332 } 333 }; 334 } 335 336 // Emits an exception expression into the given location. This 337 // differs from EmitAnyExprToMem only in that, if a final copy-ctor 338 // call is required, an exception within that copy ctor causes 339 // std::terminate to be invoked. 340 static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, 341 llvm::Value *addr) { 342 // Make sure the exception object is cleaned up if there's an 343 // exception during initialization. 344 CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr); 345 EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); 346 347 // __cxa_allocate_exception returns a void*; we need to cast this 348 // to the appropriate type for the object. 349 llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); 350 llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); 351 352 // FIXME: this isn't quite right! If there's a final unelided call 353 // to a copy constructor, then according to [except.terminate]p1 we 354 // must call std::terminate() if that constructor throws, because 355 // technically that copy occurs after the exception expression is 356 // evaluated but before the exception is caught. But the best way 357 // to handle that is to teach EmitAggExpr to do the final copy 358 // differently if it can't be elided. 359 CGF.EmitAnyExprToMem(e, typedAddr, e->getType().getQualifiers(), 360 /*IsInit*/ true); 361 362 // Deactivate the cleanup block. 363 CGF.DeactivateCleanupBlock(cleanup); 364 } 365 366 llvm::Value *CodeGenFunction::getExceptionSlot() { 367 if (!ExceptionSlot) 368 ExceptionSlot = CreateTempAlloca(Int8PtrTy, "exn.slot"); 369 return ExceptionSlot; 370 } 371 372 llvm::Value *CodeGenFunction::getEHSelectorSlot() { 373 if (!EHSelectorSlot) 374 EHSelectorSlot = CreateTempAlloca(Int32Ty, "ehselector.slot"); 375 return EHSelectorSlot; 376 } 377 378 void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { 379 if (!E->getSubExpr()) { 380 if (getInvokeDest()) { 381 Builder.CreateInvoke(getReThrowFn(*this), 382 getUnreachableBlock(), 383 getInvokeDest()) 384 ->setDoesNotReturn(); 385 } else { 386 Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); 387 Builder.CreateUnreachable(); 388 } 389 390 // throw is an expression, and the expression emitters expect us 391 // to leave ourselves at a valid insertion point. 392 EmitBlock(createBasicBlock("throw.cont")); 393 394 return; 395 } 396 397 QualType ThrowType = E->getSubExpr()->getType(); 398 399 // Now allocate the exception object. 400 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 401 uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); 402 403 llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); 404 llvm::CallInst *ExceptionPtr = 405 Builder.CreateCall(AllocExceptionFn, 406 llvm::ConstantInt::get(SizeTy, TypeSize), 407 "exception"); 408 ExceptionPtr->setDoesNotThrow(); 409 410 EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); 411 412 // Now throw the exception. 413 llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, 414 /*ForEH=*/true); 415 416 // The address of the destructor. If the exception type has a 417 // trivial destructor (or isn't a record), we just pass null. 418 llvm::Constant *Dtor = 0; 419 if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { 420 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 421 if (!Record->hasTrivialDestructor()) { 422 CXXDestructorDecl *DtorD = Record->getDestructor(); 423 Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); 424 Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); 425 } 426 } 427 if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); 428 429 if (getInvokeDest()) { 430 llvm::InvokeInst *ThrowCall = 431 Builder.CreateInvoke3(getThrowFn(*this), 432 getUnreachableBlock(), getInvokeDest(), 433 ExceptionPtr, TypeInfo, Dtor); 434 ThrowCall->setDoesNotReturn(); 435 } else { 436 llvm::CallInst *ThrowCall = 437 Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); 438 ThrowCall->setDoesNotReturn(); 439 Builder.CreateUnreachable(); 440 } 441 442 // throw is an expression, and the expression emitters expect us 443 // to leave ourselves at a valid insertion point. 444 EmitBlock(createBasicBlock("throw.cont")); 445 } 446 447 void CodeGenFunction::EmitStartEHSpec(const Decl *D) { 448 if (!CGM.getLangOptions().CXXExceptions) 449 return; 450 451 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 452 if (FD == 0) 453 return; 454 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 455 if (Proto == 0) 456 return; 457 458 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 459 if (isNoexceptExceptionSpec(EST)) { 460 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 461 // noexcept functions are simple terminate scopes. 462 EHStack.pushTerminate(); 463 } 464 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 465 unsigned NumExceptions = Proto->getNumExceptions(); 466 EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); 467 468 for (unsigned I = 0; I != NumExceptions; ++I) { 469 QualType Ty = Proto->getExceptionType(I); 470 QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); 471 llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, 472 /*ForEH=*/true); 473 Filter->setFilter(I, EHType); 474 } 475 } 476 } 477 478 void CodeGenFunction::EmitEndEHSpec(const Decl *D) { 479 if (!CGM.getLangOptions().CXXExceptions) 480 return; 481 482 const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D); 483 if (FD == 0) 484 return; 485 const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>(); 486 if (Proto == 0) 487 return; 488 489 ExceptionSpecificationType EST = Proto->getExceptionSpecType(); 490 if (isNoexceptExceptionSpec(EST)) { 491 if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { 492 EHStack.popTerminate(); 493 } 494 } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { 495 EHStack.popFilter(); 496 } 497 } 498 499 void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { 500 EnterCXXTryStmt(S); 501 EmitStmt(S.getTryBlock()); 502 ExitCXXTryStmt(S); 503 } 504 505 void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 506 unsigned NumHandlers = S.getNumHandlers(); 507 EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); 508 509 for (unsigned I = 0; I != NumHandlers; ++I) { 510 const CXXCatchStmt *C = S.getHandler(I); 511 512 llvm::BasicBlock *Handler = createBasicBlock("catch"); 513 if (C->getExceptionDecl()) { 514 // FIXME: Dropping the reference type on the type into makes it 515 // impossible to correctly implement catch-by-reference 516 // semantics for pointers. Unfortunately, this is what all 517 // existing compilers do, and it's not clear that the standard 518 // personality routine is capable of doing this right. See C++ DR 388: 519 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 520 QualType CaughtType = C->getCaughtType(); 521 CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); 522 523 llvm::Value *TypeInfo = 0; 524 if (CaughtType->isObjCObjectPointerType()) 525 TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); 526 else 527 TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); 528 CatchScope->setHandler(I, TypeInfo, Handler); 529 } else { 530 // No exception decl indicates '...', a catch-all. 531 CatchScope->setCatchAllHandler(I, Handler); 532 } 533 } 534 } 535 536 /// Check whether this is a non-EH scope, i.e. a scope which doesn't 537 /// affect exception handling. Currently, the only non-EH scopes are 538 /// normal-only cleanup scopes. 539 static bool isNonEHScope(const EHScope &S) { 540 switch (S.getKind()) { 541 case EHScope::Cleanup: 542 return !cast<EHCleanupScope>(S).isEHCleanup(); 543 case EHScope::Filter: 544 case EHScope::Catch: 545 case EHScope::Terminate: 546 return false; 547 } 548 549 // Suppress warning. 550 return false; 551 } 552 553 llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { 554 assert(EHStack.requiresLandingPad()); 555 assert(!EHStack.empty()); 556 557 if (!CGM.getLangOptions().Exceptions) 558 return 0; 559 560 // Check the innermost scope for a cached landing pad. If this is 561 // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. 562 llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); 563 if (LP) return LP; 564 565 // Build the landing pad for this scope. 566 LP = EmitLandingPad(); 567 assert(LP); 568 569 // Cache the landing pad on the innermost scope. If this is a 570 // non-EH scope, cache the landing pad on the enclosing scope, too. 571 for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { 572 ir->setCachedLandingPad(LP); 573 if (!isNonEHScope(*ir)) break; 574 } 575 576 return LP; 577 } 578 579 // This code contains a hack to work around a design flaw in 580 // LLVM's EH IR which breaks semantics after inlining. This same 581 // hack is implemented in llvm-gcc. 582 // 583 // The LLVM EH abstraction is basically a thin veneer over the 584 // traditional GCC zero-cost design: for each range of instructions 585 // in the function, there is (at most) one "landing pad" with an 586 // associated chain of EH actions. A language-specific personality 587 // function interprets this chain of actions and (1) decides whether 588 // or not to resume execution at the landing pad and (2) if so, 589 // provides an integer indicating why it's stopping. In LLVM IR, 590 // the association of a landing pad with a range of instructions is 591 // achieved via an invoke instruction, the chain of actions becomes 592 // the arguments to the @llvm.eh.selector call, and the selector 593 // call returns the integer indicator. Other than the required 594 // presence of two intrinsic function calls in the landing pad, 595 // the IR exactly describes the layout of the output code. 596 // 597 // A principal advantage of this design is that it is completely 598 // language-agnostic; in theory, the LLVM optimizers can treat 599 // landing pads neutrally, and targets need only know how to lower 600 // the intrinsics to have a functioning exceptions system (assuming 601 // that platform exceptions follow something approximately like the 602 // GCC design). Unfortunately, landing pads cannot be combined in a 603 // language-agnostic way: given selectors A and B, there is no way 604 // to make a single landing pad which faithfully represents the 605 // semantics of propagating an exception first through A, then 606 // through B, without knowing how the personality will interpret the 607 // (lowered form of the) selectors. This means that inlining has no 608 // choice but to crudely chain invokes (i.e., to ignore invokes in 609 // the inlined function, but to turn all unwindable calls into 610 // invokes), which is only semantically valid if every unwind stops 611 // at every landing pad. 612 // 613 // Therefore, the invoke-inline hack is to guarantee that every 614 // landing pad has a catch-all. 615 enum CleanupHackLevel_t { 616 /// A level of hack that requires that all landing pads have 617 /// catch-alls. 618 CHL_MandatoryCatchall, 619 620 /// A level of hack that requires that all landing pads handle 621 /// cleanups. 622 CHL_MandatoryCleanup, 623 624 /// No hacks at all; ideal IR generation. 625 CHL_Ideal 626 }; 627 const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup; 628 629 llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { 630 assert(EHStack.requiresLandingPad()); 631 632 for (EHScopeStack::iterator ir = EHStack.begin(); ; ) { 633 assert(ir != EHStack.end() && 634 "stack requiring landing pad is nothing but non-EH scopes?"); 635 636 // If this is a terminate scope, just use the singleton terminate 637 // landing pad. 638 if (isa<EHTerminateScope>(*ir)) 639 return getTerminateLandingPad(); 640 641 // If this isn't an EH scope, iterate; otherwise break out. 642 if (!isNonEHScope(*ir)) break; 643 ++ir; 644 645 // We haven't checked this scope for a cached landing pad yet. 646 if (llvm::BasicBlock *LP = ir->getCachedLandingPad()) 647 return LP; 648 } 649 650 // Save the current IR generation state. 651 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 652 653 const EHPersonality &Personality = EHPersonality::get(getLangOptions()); 654 655 // Create and configure the landing pad. 656 llvm::BasicBlock *LP = createBasicBlock("lpad"); 657 EmitBlock(LP); 658 659 // Save the exception pointer. It's safe to use a single exception 660 // pointer per function because EH cleanups can never have nested 661 // try/catches. 662 llvm::CallInst *Exn = 663 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 664 Exn->setDoesNotThrow(); 665 Builder.CreateStore(Exn, getExceptionSlot()); 666 667 // Build the selector arguments. 668 llvm::SmallVector<llvm::Value*, 8> EHSelector; 669 EHSelector.push_back(Exn); 670 EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality)); 671 672 // Accumulate all the handlers in scope. 673 llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers; 674 UnwindDest CatchAll; 675 bool HasEHCleanup = false; 676 bool HasEHFilter = false; 677 llvm::SmallVector<llvm::Value*, 8> EHFilters; 678 for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); 679 I != E; ++I) { 680 681 switch (I->getKind()) { 682 case EHScope::Cleanup: 683 if (!HasEHCleanup) 684 HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup(); 685 // We otherwise don't care about cleanups. 686 continue; 687 688 case EHScope::Filter: { 689 assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); 690 assert(!CatchAll.isValid() && "EH filter reached after catch-all"); 691 692 // Filter scopes get added to the selector in weird ways. 693 EHFilterScope &Filter = cast<EHFilterScope>(*I); 694 HasEHFilter = true; 695 696 // Add all the filter values which we aren't already explicitly 697 // catching. 698 for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) { 699 llvm::Value *FV = Filter.getFilter(I); 700 if (!EHHandlers.count(FV)) 701 EHFilters.push_back(FV); 702 } 703 goto done; 704 } 705 706 case EHScope::Terminate: 707 // Terminate scopes are basically catch-alls. 708 assert(!CatchAll.isValid()); 709 CatchAll = UnwindDest(getTerminateHandler(), 710 EHStack.getEnclosingEHCleanup(I), 711 cast<EHTerminateScope>(*I).getDestIndex()); 712 goto done; 713 714 case EHScope::Catch: 715 break; 716 } 717 718 EHCatchScope &Catch = cast<EHCatchScope>(*I); 719 for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) { 720 EHCatchScope::Handler Handler = Catch.getHandler(HI); 721 722 // Catch-all. We should only have one of these per catch. 723 if (!Handler.Type) { 724 assert(!CatchAll.isValid()); 725 CatchAll = UnwindDest(Handler.Block, 726 EHStack.getEnclosingEHCleanup(I), 727 Handler.Index); 728 continue; 729 } 730 731 // Check whether we already have a handler for this type. 732 UnwindDest &Dest = EHHandlers[Handler.Type]; 733 if (Dest.isValid()) continue; 734 735 EHSelector.push_back(Handler.Type); 736 Dest = UnwindDest(Handler.Block, 737 EHStack.getEnclosingEHCleanup(I), 738 Handler.Index); 739 } 740 741 // Stop if we found a catch-all. 742 if (CatchAll.isValid()) break; 743 } 744 745 done: 746 unsigned LastToEmitInLoop = EHSelector.size(); 747 748 // If we have a catch-all, add null to the selector. 749 if (CatchAll.isValid()) { 750 EHSelector.push_back(getCatchAllValue(*this)); 751 752 // If we have an EH filter, we need to add those handlers in the 753 // right place in the selector, which is to say, at the end. 754 } else if (HasEHFilter) { 755 // Create a filter expression: an integer constant saying how many 756 // filters there are (+1 to avoid ambiguity with 0 for cleanup), 757 // followed by the filter types. The personality routine only 758 // lands here if the filter doesn't match. 759 EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(), 760 EHFilters.size() + 1)); 761 EHSelector.append(EHFilters.begin(), EHFilters.end()); 762 763 // Also check whether we need a cleanup. 764 if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) 765 EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall 766 ? getCatchAllValue(*this) 767 : getCleanupValue(*this)); 768 769 // Otherwise, signal that we at least have cleanups. 770 } else if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) { 771 EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall 772 ? getCatchAllValue(*this) 773 : getCleanupValue(*this)); 774 775 // At the MandatoryCleanup hack level, we don't need to actually 776 // spuriously tell the unwinder that we have cleanups, but we do 777 // need to always be prepared to handle cleanups. 778 } else if (CleanupHackLevel == CHL_MandatoryCleanup) { 779 // Just don't decrement LastToEmitInLoop. 780 781 } else { 782 assert(LastToEmitInLoop > 2); 783 LastToEmitInLoop--; 784 } 785 786 assert(EHSelector.size() >= 3 && "selector call has only two arguments!"); 787 788 // Tell the backend how to generate the landing pad. 789 llvm::CallInst *Selection = 790 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 791 EHSelector, "eh.selector"); 792 Selection->setDoesNotThrow(); 793 794 // Save the selector value in mandatory-cleanup mode. 795 if (CleanupHackLevel == CHL_MandatoryCleanup) 796 Builder.CreateStore(Selection, getEHSelectorSlot()); 797 798 // Select the right handler. 799 llvm::Value *llvm_eh_typeid_for = 800 CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); 801 802 // The results of llvm_eh_typeid_for aren't reliable --- at least 803 // not locally --- so we basically have to do this as an 'if' chain. 804 // We walk through the first N-1 catch clauses, testing and chaining, 805 // and then fall into the final clause (which is either a cleanup, a 806 // filter (possibly with a cleanup), a catch-all, or another catch). 807 for (unsigned I = 2; I != LastToEmitInLoop; ++I) { 808 llvm::Value *Type = EHSelector[I]; 809 UnwindDest Dest = EHHandlers[Type]; 810 assert(Dest.isValid() && "no handler entry for value in selector?"); 811 812 // Figure out where to branch on a match. As a debug code-size 813 // optimization, if the scope depth matches the innermost cleanup, 814 // we branch directly to the catch handler. 815 llvm::BasicBlock *Match = Dest.getBlock(); 816 bool MatchNeedsCleanup = 817 Dest.getScopeDepth() != EHStack.getInnermostEHCleanup(); 818 if (MatchNeedsCleanup) 819 Match = createBasicBlock("eh.match"); 820 821 llvm::BasicBlock *Next = createBasicBlock("eh.next"); 822 823 // Check whether the exception matches. 824 llvm::CallInst *Id 825 = Builder.CreateCall(llvm_eh_typeid_for, 826 Builder.CreateBitCast(Type, Int8PtrTy)); 827 Id->setDoesNotThrow(); 828 Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id), 829 Match, Next); 830 831 // Emit match code if necessary. 832 if (MatchNeedsCleanup) { 833 EmitBlock(Match); 834 EmitBranchThroughEHCleanup(Dest); 835 } 836 837 // Continue to the next match. 838 EmitBlock(Next); 839 } 840 841 // Emit the final case in the selector. 842 // This might be a catch-all.... 843 if (CatchAll.isValid()) { 844 assert(isa<llvm::ConstantPointerNull>(EHSelector.back())); 845 EmitBranchThroughEHCleanup(CatchAll); 846 847 // ...or an EH filter... 848 } else if (HasEHFilter) { 849 llvm::Value *SavedSelection = Selection; 850 851 // First, unwind out to the outermost scope if necessary. 852 if (EHStack.hasEHCleanups()) { 853 // The end here might not dominate the beginning, so we might need to 854 // save the selector if we need it. 855 llvm::AllocaInst *SelectorVar = 0; 856 if (HasEHCleanup) { 857 SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var"); 858 Builder.CreateStore(Selection, SelectorVar); 859 } 860 861 llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont"); 862 EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(), 863 EHStack.getNextEHDestIndex())); 864 EmitBlock(CleanupContBB); 865 866 if (HasEHCleanup) 867 SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector"); 868 } 869 870 // If there was a cleanup, we'll need to actually check whether we 871 // landed here because the filter triggered. 872 if (CleanupHackLevel != CHL_Ideal || HasEHCleanup) { 873 llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected"); 874 875 llvm::Constant *Zero = llvm::ConstantInt::get(Int32Ty, 0); 876 llvm::Value *FailsFilter = 877 Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails"); 878 Builder.CreateCondBr(FailsFilter, UnexpectedBB, getRethrowDest().getBlock()); 879 880 EmitBlock(UnexpectedBB); 881 } 882 883 // Call __cxa_call_unexpected. This doesn't need to be an invoke 884 // because __cxa_call_unexpected magically filters exceptions 885 // according to the last landing pad the exception was thrown 886 // into. Seriously. 887 Builder.CreateCall(getUnexpectedFn(*this), 888 Builder.CreateLoad(getExceptionSlot())) 889 ->setDoesNotReturn(); 890 Builder.CreateUnreachable(); 891 892 // ...or a normal catch handler... 893 } else if (CleanupHackLevel == CHL_Ideal && !HasEHCleanup) { 894 llvm::Value *Type = EHSelector.back(); 895 EmitBranchThroughEHCleanup(EHHandlers[Type]); 896 897 // ...or a cleanup. 898 } else { 899 EmitBranchThroughEHCleanup(getRethrowDest()); 900 } 901 902 // Restore the old IR generation state. 903 Builder.restoreIP(SavedIP); 904 905 return LP; 906 } 907 908 namespace { 909 /// A cleanup to call __cxa_end_catch. In many cases, the caught 910 /// exception type lets us state definitively that the thrown exception 911 /// type does not have a destructor. In particular: 912 /// - Catch-alls tell us nothing, so we have to conservatively 913 /// assume that the thrown exception might have a destructor. 914 /// - Catches by reference behave according to their base types. 915 /// - Catches of non-record types will only trigger for exceptions 916 /// of non-record types, which never have destructors. 917 /// - Catches of record types can trigger for arbitrary subclasses 918 /// of the caught type, so we have to assume the actual thrown 919 /// exception type might have a throwing destructor, even if the 920 /// caught type's destructor is trivial or nothrow. 921 struct CallEndCatch : EHScopeStack::Cleanup { 922 CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} 923 bool MightThrow; 924 925 void Emit(CodeGenFunction &CGF, Flags flags) { 926 if (!MightThrow) { 927 CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); 928 return; 929 } 930 931 CGF.EmitCallOrInvoke(getEndCatchFn(CGF)); 932 } 933 }; 934 } 935 936 /// Emits a call to __cxa_begin_catch and enters a cleanup to call 937 /// __cxa_end_catch. 938 /// 939 /// \param EndMightThrow - true if __cxa_end_catch might throw 940 static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, 941 llvm::Value *Exn, 942 bool EndMightThrow) { 943 llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); 944 Call->setDoesNotThrow(); 945 946 CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow); 947 948 return Call; 949 } 950 951 /// A "special initializer" callback for initializing a catch 952 /// parameter during catch initialization. 953 static void InitCatchParam(CodeGenFunction &CGF, 954 const VarDecl &CatchParam, 955 llvm::Value *ParamAddr) { 956 // Load the exception from where the landing pad saved it. 957 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 958 959 CanQualType CatchType = 960 CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); 961 llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); 962 963 // If we're catching by reference, we can just cast the object 964 // pointer to the appropriate pointer. 965 if (isa<ReferenceType>(CatchType)) { 966 QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); 967 bool EndCatchMightThrow = CaughtType->isRecordType(); 968 969 // __cxa_begin_catch returns the adjusted object pointer. 970 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); 971 972 // We have no way to tell the personality function that we're 973 // catching by reference, so if we're catching a pointer, 974 // __cxa_begin_catch will actually return that pointer by value. 975 if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { 976 QualType PointeeType = PT->getPointeeType(); 977 978 // When catching by reference, generally we should just ignore 979 // this by-value pointer and use the exception object instead. 980 if (!PointeeType->isRecordType()) { 981 982 // Exn points to the struct _Unwind_Exception header, which 983 // we have to skip past in order to reach the exception data. 984 unsigned HeaderSize = 985 CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); 986 AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); 987 988 // However, if we're catching a pointer-to-record type that won't 989 // work, because the personality function might have adjusted 990 // the pointer. There's actually no way for us to fully satisfy 991 // the language/ABI contract here: we can't use Exn because it 992 // might have the wrong adjustment, but we can't use the by-value 993 // pointer because it's off by a level of abstraction. 994 // 995 // The current solution is to dump the adjusted pointer into an 996 // alloca, which breaks language semantics (because changing the 997 // pointer doesn't change the exception) but at least works. 998 // The better solution would be to filter out non-exact matches 999 // and rethrow them, but this is tricky because the rethrow 1000 // really needs to be catchable by other sites at this landing 1001 // pad. The best solution is to fix the personality function. 1002 } else { 1003 // Pull the pointer for the reference type off. 1004 llvm::Type *PtrTy = 1005 cast<llvm::PointerType>(LLVMCatchTy)->getElementType(); 1006 1007 // Create the temporary and write the adjusted pointer into it. 1008 llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); 1009 llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1010 CGF.Builder.CreateStore(Casted, ExnPtrTmp); 1011 1012 // Bind the reference to the temporary. 1013 AdjustedExn = ExnPtrTmp; 1014 } 1015 } 1016 1017 llvm::Value *ExnCast = 1018 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); 1019 CGF.Builder.CreateStore(ExnCast, ParamAddr); 1020 return; 1021 } 1022 1023 // Non-aggregates (plus complexes). 1024 bool IsComplex = false; 1025 if (!CGF.hasAggregateLLVMType(CatchType) || 1026 (IsComplex = CatchType->isAnyComplexType())) { 1027 llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); 1028 1029 // If the catch type is a pointer type, __cxa_begin_catch returns 1030 // the pointer by value. 1031 if (CatchType->hasPointerRepresentation()) { 1032 llvm::Value *CastExn = 1033 CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); 1034 CGF.Builder.CreateStore(CastExn, ParamAddr); 1035 return; 1036 } 1037 1038 // Otherwise, it returns a pointer into the exception object. 1039 1040 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1041 llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); 1042 1043 if (IsComplex) { 1044 CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), 1045 ParamAddr, /*volatile*/ false); 1046 } else { 1047 unsigned Alignment = 1048 CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); 1049 llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); 1050 CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, 1051 CatchType); 1052 } 1053 return; 1054 } 1055 1056 assert(isa<RecordType>(CatchType) && "unexpected catch type!"); 1057 1058 llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok 1059 1060 // Check for a copy expression. If we don't have a copy expression, 1061 // that means a trivial copy is okay. 1062 const Expr *copyExpr = CatchParam.getInit(); 1063 if (!copyExpr) { 1064 llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); 1065 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1066 CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); 1067 return; 1068 } 1069 1070 // We have to call __cxa_get_exception_ptr to get the adjusted 1071 // pointer before copying. 1072 llvm::CallInst *rawAdjustedExn = 1073 CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); 1074 rawAdjustedExn->setDoesNotThrow(); 1075 1076 // Cast that to the appropriate type. 1077 llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); 1078 1079 // The copy expression is defined in terms of an OpaqueValueExpr. 1080 // Find it and map it to the adjusted expression. 1081 CodeGenFunction::OpaqueValueMapping 1082 opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), 1083 CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); 1084 1085 // Call the copy ctor in a terminate scope. 1086 CGF.EHStack.pushTerminate(); 1087 1088 // Perform the copy construction. 1089 CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, Qualifiers(), 1090 false)); 1091 1092 // Leave the terminate scope. 1093 CGF.EHStack.popTerminate(); 1094 1095 // Undo the opaque value mapping. 1096 opaque.pop(); 1097 1098 // Finally we can call __cxa_begin_catch. 1099 CallBeginCatch(CGF, Exn, true); 1100 } 1101 1102 /// Begins a catch statement by initializing the catch variable and 1103 /// calling __cxa_begin_catch. 1104 static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { 1105 // We have to be very careful with the ordering of cleanups here: 1106 // C++ [except.throw]p4: 1107 // The destruction [of the exception temporary] occurs 1108 // immediately after the destruction of the object declared in 1109 // the exception-declaration in the handler. 1110 // 1111 // So the precise ordering is: 1112 // 1. Construct catch variable. 1113 // 2. __cxa_begin_catch 1114 // 3. Enter __cxa_end_catch cleanup 1115 // 4. Enter dtor cleanup 1116 // 1117 // We do this by using a slightly abnormal initialization process. 1118 // Delegation sequence: 1119 // - ExitCXXTryStmt opens a RunCleanupsScope 1120 // - EmitAutoVarAlloca creates the variable and debug info 1121 // - InitCatchParam initializes the variable from the exception 1122 // - CallBeginCatch calls __cxa_begin_catch 1123 // - CallBeginCatch enters the __cxa_end_catch cleanup 1124 // - EmitAutoVarCleanups enters the variable destructor cleanup 1125 // - EmitCXXTryStmt emits the code for the catch body 1126 // - EmitCXXTryStmt close the RunCleanupsScope 1127 1128 VarDecl *CatchParam = S->getExceptionDecl(); 1129 if (!CatchParam) { 1130 llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); 1131 CallBeginCatch(CGF, Exn, true); 1132 return; 1133 } 1134 1135 // Emit the local. 1136 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 1137 InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); 1138 CGF.EmitAutoVarCleanups(var); 1139 } 1140 1141 namespace { 1142 struct CallRethrow : EHScopeStack::Cleanup { 1143 void Emit(CodeGenFunction &CGF, Flags flags) { 1144 CGF.EmitCallOrInvoke(getReThrowFn(CGF)); 1145 } 1146 }; 1147 } 1148 1149 void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { 1150 unsigned NumHandlers = S.getNumHandlers(); 1151 EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin()); 1152 assert(CatchScope.getNumHandlers() == NumHandlers); 1153 1154 // Copy the handler blocks off before we pop the EH stack. Emitting 1155 // the handlers might scribble on this memory. 1156 llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers); 1157 memcpy(Handlers.data(), CatchScope.begin(), 1158 NumHandlers * sizeof(EHCatchScope::Handler)); 1159 EHStack.popCatch(); 1160 1161 // The fall-through block. 1162 llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); 1163 1164 // We just emitted the body of the try; jump to the continue block. 1165 if (HaveInsertPoint()) 1166 Builder.CreateBr(ContBB); 1167 1168 // Determine if we need an implicit rethrow for all these catch handlers. 1169 bool ImplicitRethrow = false; 1170 if (IsFnTryBlock) 1171 ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) || 1172 isa<CXXConstructorDecl>(CurCodeDecl); 1173 1174 for (unsigned I = 0; I != NumHandlers; ++I) { 1175 llvm::BasicBlock *CatchBlock = Handlers[I].Block; 1176 EmitBlock(CatchBlock); 1177 1178 // Catch the exception if this isn't a catch-all. 1179 const CXXCatchStmt *C = S.getHandler(I); 1180 1181 // Enter a cleanup scope, including the catch variable and the 1182 // end-catch. 1183 RunCleanupsScope CatchScope(*this); 1184 1185 // Initialize the catch variable and set up the cleanups. 1186 BeginCatch(*this, C); 1187 1188 // If there's an implicit rethrow, push a normal "cleanup" to call 1189 // _cxa_rethrow. This needs to happen before __cxa_end_catch is 1190 // called, and so it is pushed after BeginCatch. 1191 if (ImplicitRethrow) 1192 EHStack.pushCleanup<CallRethrow>(NormalCleanup); 1193 1194 // Perform the body of the catch. 1195 EmitStmt(C->getHandlerBlock()); 1196 1197 // Fall out through the catch cleanups. 1198 CatchScope.ForceCleanup(); 1199 1200 // Branch out of the try. 1201 if (HaveInsertPoint()) 1202 Builder.CreateBr(ContBB); 1203 } 1204 1205 EmitBlock(ContBB); 1206 } 1207 1208 namespace { 1209 struct CallEndCatchForFinally : EHScopeStack::Cleanup { 1210 llvm::Value *ForEHVar; 1211 llvm::Value *EndCatchFn; 1212 CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) 1213 : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} 1214 1215 void Emit(CodeGenFunction &CGF, Flags flags) { 1216 llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); 1217 llvm::BasicBlock *CleanupContBB = 1218 CGF.createBasicBlock("finally.cleanup.cont"); 1219 1220 llvm::Value *ShouldEndCatch = 1221 CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); 1222 CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); 1223 CGF.EmitBlock(EndCatchBB); 1224 CGF.EmitCallOrInvoke(EndCatchFn); // catch-all, so might throw 1225 CGF.EmitBlock(CleanupContBB); 1226 } 1227 }; 1228 1229 struct PerformFinally : EHScopeStack::Cleanup { 1230 const Stmt *Body; 1231 llvm::Value *ForEHVar; 1232 llvm::Value *EndCatchFn; 1233 llvm::Value *RethrowFn; 1234 llvm::Value *SavedExnVar; 1235 1236 PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, 1237 llvm::Value *EndCatchFn, 1238 llvm::Value *RethrowFn, llvm::Value *SavedExnVar) 1239 : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), 1240 RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} 1241 1242 void Emit(CodeGenFunction &CGF, Flags flags) { 1243 // Enter a cleanup to call the end-catch function if one was provided. 1244 if (EndCatchFn) 1245 CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup, 1246 ForEHVar, EndCatchFn); 1247 1248 // Save the current cleanup destination in case there are 1249 // cleanups in the finally block. 1250 llvm::Value *SavedCleanupDest = 1251 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), 1252 "cleanup.dest.saved"); 1253 1254 // Emit the finally block. 1255 CGF.EmitStmt(Body); 1256 1257 // If the end of the finally is reachable, check whether this was 1258 // for EH. If so, rethrow. 1259 if (CGF.HaveInsertPoint()) { 1260 llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); 1261 llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); 1262 1263 llvm::Value *ShouldRethrow = 1264 CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); 1265 CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); 1266 1267 CGF.EmitBlock(RethrowBB); 1268 if (SavedExnVar) { 1269 CGF.EmitCallOrInvoke(RethrowFn, CGF.Builder.CreateLoad(SavedExnVar)); 1270 } else { 1271 CGF.EmitCallOrInvoke(RethrowFn); 1272 } 1273 CGF.Builder.CreateUnreachable(); 1274 1275 CGF.EmitBlock(ContBB); 1276 1277 // Restore the cleanup destination. 1278 CGF.Builder.CreateStore(SavedCleanupDest, 1279 CGF.getNormalCleanupDestSlot()); 1280 } 1281 1282 // Leave the end-catch cleanup. As an optimization, pretend that 1283 // the fallthrough path was inaccessible; we've dynamically proven 1284 // that we're not in the EH case along that path. 1285 if (EndCatchFn) { 1286 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 1287 CGF.PopCleanupBlock(); 1288 CGF.Builder.restoreIP(SavedIP); 1289 } 1290 1291 // Now make sure we actually have an insertion point or the 1292 // cleanup gods will hate us. 1293 CGF.EnsureInsertPoint(); 1294 } 1295 }; 1296 } 1297 1298 /// Enters a finally block for an implementation using zero-cost 1299 /// exceptions. This is mostly general, but hard-codes some 1300 /// language/ABI-specific behavior in the catch-all sections. 1301 void CodeGenFunction::FinallyInfo::enter(CodeGenFunction &CGF, 1302 const Stmt *body, 1303 llvm::Constant *beginCatchFn, 1304 llvm::Constant *endCatchFn, 1305 llvm::Constant *rethrowFn) { 1306 assert((beginCatchFn != 0) == (endCatchFn != 0) && 1307 "begin/end catch functions not paired"); 1308 assert(rethrowFn && "rethrow function is required"); 1309 1310 BeginCatchFn = beginCatchFn; 1311 1312 // The rethrow function has one of the following two types: 1313 // void (*)() 1314 // void (*)(void*) 1315 // In the latter case we need to pass it the exception object. 1316 // But we can't use the exception slot because the @finally might 1317 // have a landing pad (which would overwrite the exception slot). 1318 llvm::FunctionType *rethrowFnTy = 1319 cast<llvm::FunctionType>( 1320 cast<llvm::PointerType>(rethrowFn->getType())->getElementType()); 1321 SavedExnVar = 0; 1322 if (rethrowFnTy->getNumParams()) 1323 SavedExnVar = CGF.CreateTempAlloca(CGF.Int8PtrTy, "finally.exn"); 1324 1325 // A finally block is a statement which must be executed on any edge 1326 // out of a given scope. Unlike a cleanup, the finally block may 1327 // contain arbitrary control flow leading out of itself. In 1328 // addition, finally blocks should always be executed, even if there 1329 // are no catch handlers higher on the stack. Therefore, we 1330 // surround the protected scope with a combination of a normal 1331 // cleanup (to catch attempts to break out of the block via normal 1332 // control flow) and an EH catch-all (semantically "outside" any try 1333 // statement to which the finally block might have been attached). 1334 // The finally block itself is generated in the context of a cleanup 1335 // which conditionally leaves the catch-all. 1336 1337 // Jump destination for performing the finally block on an exception 1338 // edge. We'll never actually reach this block, so unreachable is 1339 // fine. 1340 RethrowDest = CGF.getJumpDestInCurrentScope(CGF.getUnreachableBlock()); 1341 1342 // Whether the finally block is being executed for EH purposes. 1343 ForEHVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "finally.for-eh"); 1344 CGF.Builder.CreateStore(CGF.Builder.getFalse(), ForEHVar); 1345 1346 // Enter a normal cleanup which will perform the @finally block. 1347 CGF.EHStack.pushCleanup<PerformFinally>(NormalCleanup, body, 1348 ForEHVar, endCatchFn, 1349 rethrowFn, SavedExnVar); 1350 1351 // Enter a catch-all scope. 1352 llvm::BasicBlock *catchBB = CGF.createBasicBlock("finally.catchall"); 1353 EHCatchScope *catchScope = CGF.EHStack.pushCatch(1); 1354 catchScope->setCatchAllHandler(0, catchBB); 1355 } 1356 1357 void CodeGenFunction::FinallyInfo::exit(CodeGenFunction &CGF) { 1358 // Leave the finally catch-all. 1359 EHCatchScope &catchScope = cast<EHCatchScope>(*CGF.EHStack.begin()); 1360 llvm::BasicBlock *catchBB = catchScope.getHandler(0).Block; 1361 CGF.EHStack.popCatch(); 1362 1363 // If there are any references to the catch-all block, emit it. 1364 if (catchBB->use_empty()) { 1365 delete catchBB; 1366 } else { 1367 CGBuilderTy::InsertPoint savedIP = CGF.Builder.saveAndClearIP(); 1368 CGF.EmitBlock(catchBB); 1369 1370 llvm::Value *exn = 0; 1371 1372 // If there's a begin-catch function, call it. 1373 if (BeginCatchFn) { 1374 exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot()); 1375 CGF.Builder.CreateCall(BeginCatchFn, exn)->setDoesNotThrow(); 1376 } 1377 1378 // If we need to remember the exception pointer to rethrow later, do so. 1379 if (SavedExnVar) { 1380 if (!exn) exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot()); 1381 CGF.Builder.CreateStore(exn, SavedExnVar); 1382 } 1383 1384 // Tell the cleanups in the finally block that we're do this for EH. 1385 CGF.Builder.CreateStore(CGF.Builder.getTrue(), ForEHVar); 1386 1387 // Thread a jump through the finally cleanup. 1388 CGF.EmitBranchThroughCleanup(RethrowDest); 1389 1390 CGF.Builder.restoreIP(savedIP); 1391 } 1392 1393 // Finally, leave the @finally cleanup. 1394 CGF.PopCleanupBlock(); 1395 } 1396 1397 llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { 1398 if (TerminateLandingPad) 1399 return TerminateLandingPad; 1400 1401 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1402 1403 // This will get inserted at the end of the function. 1404 TerminateLandingPad = createBasicBlock("terminate.lpad"); 1405 Builder.SetInsertPoint(TerminateLandingPad); 1406 1407 // Tell the backend that this is a landing pad. 1408 llvm::CallInst *Exn = 1409 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); 1410 Exn->setDoesNotThrow(); 1411 1412 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1413 1414 // Tell the backend what the exception table should be: 1415 // nothing but a catch-all. 1416 llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality), 1417 getCatchAllValue(*this) }; 1418 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), 1419 Args, "eh.selector") 1420 ->setDoesNotThrow(); 1421 1422 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1423 TerminateCall->setDoesNotReturn(); 1424 TerminateCall->setDoesNotThrow(); 1425 Builder.CreateUnreachable(); 1426 1427 // Restore the saved insertion state. 1428 Builder.restoreIP(SavedIP); 1429 1430 return TerminateLandingPad; 1431 } 1432 1433 llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { 1434 if (TerminateHandler) 1435 return TerminateHandler; 1436 1437 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); 1438 1439 // Set up the terminate handler. This block is inserted at the very 1440 // end of the function by FinishFunction. 1441 TerminateHandler = createBasicBlock("terminate.handler"); 1442 Builder.SetInsertPoint(TerminateHandler); 1443 llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); 1444 TerminateCall->setDoesNotReturn(); 1445 TerminateCall->setDoesNotThrow(); 1446 Builder.CreateUnreachable(); 1447 1448 // Restore the saved insertion state. 1449 Builder.restoreIP(SavedIP); 1450 1451 return TerminateHandler; 1452 } 1453 1454 CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() { 1455 if (RethrowBlock.isValid()) return RethrowBlock; 1456 1457 CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); 1458 1459 // We emit a jump to a notional label at the outermost unwind state. 1460 llvm::BasicBlock *Unwind = createBasicBlock("eh.resume"); 1461 Builder.SetInsertPoint(Unwind); 1462 1463 const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); 1464 1465 // This can always be a call because we necessarily didn't find 1466 // anything on the EH stack which needs our help. 1467 llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName(); 1468 if (!RethrowName.empty()) { 1469 Builder.CreateCall(getCatchallRethrowFn(*this, RethrowName), 1470 Builder.CreateLoad(getExceptionSlot())) 1471 ->setDoesNotReturn(); 1472 } else { 1473 llvm::Value *Exn = Builder.CreateLoad(getExceptionSlot()); 1474 1475 switch (CleanupHackLevel) { 1476 case CHL_MandatoryCatchall: 1477 // In mandatory-catchall mode, we need to use 1478 // _Unwind_Resume_or_Rethrow, or whatever the personality's 1479 // equivalent is. 1480 Builder.CreateCall(getUnwindResumeOrRethrowFn(), Exn) 1481 ->setDoesNotReturn(); 1482 break; 1483 case CHL_MandatoryCleanup: { 1484 // In mandatory-cleanup mode, we should use llvm.eh.resume. 1485 llvm::Value *Selector = Builder.CreateLoad(getEHSelectorSlot()); 1486 Builder.CreateCall2(CGM.getIntrinsic(llvm::Intrinsic::eh_resume), 1487 Exn, Selector) 1488 ->setDoesNotReturn(); 1489 break; 1490 } 1491 case CHL_Ideal: 1492 // In an idealized mode where we don't have to worry about the 1493 // optimizer combining landing pads, we should just use 1494 // _Unwind_Resume (or the personality's equivalent). 1495 Builder.CreateCall(getUnwindResumeFn(), Exn) 1496 ->setDoesNotReturn(); 1497 break; 1498 } 1499 } 1500 1501 Builder.CreateUnreachable(); 1502 1503 Builder.restoreIP(SavedIP); 1504 1505 RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0); 1506 return RethrowBlock; 1507 } 1508 1509