1 //===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the JumpScopeChecker class, which is used to diagnose 11 // jumps that enter a VLA scope in an invalid way. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Sema/SemaInternal.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/StmtObjC.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "llvm/ADT/BitVector.h" 22 using namespace clang; 23 24 namespace { 25 26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps 27 /// into VLA and other protected scopes. For example, this rejects: 28 /// goto L; 29 /// int a[n]; 30 /// L: 31 /// 32 class JumpScopeChecker { 33 Sema &S; 34 35 /// GotoScope - This is a record that we use to keep track of all of the 36 /// scopes that are introduced by VLAs and other things that scope jumps like 37 /// gotos. This scope tree has nothing to do with the source scope tree, 38 /// because you can have multiple VLA scopes per compound statement, and most 39 /// compound statements don't introduce any scopes. 40 struct GotoScope { 41 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for 42 /// the parent scope is the function body. 43 unsigned ParentScope; 44 45 /// InDiag - The diagnostic to emit if there is a jump into this scope. 46 unsigned InDiag; 47 48 /// OutDiag - The diagnostic to emit if there is an indirect jump out 49 /// of this scope. Direct jumps always clean up their current scope 50 /// in an orderly way. 51 unsigned OutDiag; 52 53 /// Loc - Location to emit the diagnostic. 54 SourceLocation Loc; 55 56 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, 57 SourceLocation L) 58 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} 59 }; 60 61 llvm::SmallVector<GotoScope, 48> Scopes; 62 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; 63 llvm::SmallVector<Stmt*, 16> Jumps; 64 65 llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps; 66 llvm::SmallVector<LabelDecl*, 4> IndirectJumpTargets; 67 public: 68 JumpScopeChecker(Stmt *Body, Sema &S); 69 private: 70 void BuildScopeInformation(Decl *D, unsigned &ParentScope); 71 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 72 unsigned &ParentScope); 73 void BuildScopeInformation(Stmt *S, unsigned &origParentScope); 74 75 void VerifyJumps(); 76 void VerifyIndirectJumps(); 77 void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope, 78 LabelDecl *Target, unsigned TargetScope); 79 void CheckJump(Stmt *From, Stmt *To, 80 SourceLocation DiagLoc, unsigned JumpDiag); 81 82 unsigned GetDeepestCommonScope(unsigned A, unsigned B); 83 }; 84 } // end anonymous namespace 85 86 87 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) { 88 // Add a scope entry for function scope. 89 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); 90 91 // Build information for the top level compound statement, so that we have a 92 // defined scope record for every "goto" and label. 93 unsigned BodyParentScope = 0; 94 BuildScopeInformation(Body, BodyParentScope); 95 96 // Check that all jumps we saw are kosher. 97 VerifyJumps(); 98 VerifyIndirectJumps(); 99 } 100 101 /// GetDeepestCommonScope - Finds the innermost scope enclosing the 102 /// two scopes. 103 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { 104 while (A != B) { 105 // Inner scopes are created after outer scopes and therefore have 106 // higher indices. 107 if (A < B) { 108 assert(Scopes[B].ParentScope < B); 109 B = Scopes[B].ParentScope; 110 } else { 111 assert(Scopes[A].ParentScope < A); 112 A = Scopes[A].ParentScope; 113 } 114 } 115 return A; 116 } 117 118 typedef std::pair<unsigned,unsigned> ScopePair; 119 120 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a 121 /// diagnostic that should be emitted if control goes over it. If not, return 0. 122 static ScopePair GetDiagForGotoScopeDecl(ASTContext &Context, const Decl *D) { 123 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 124 unsigned InDiag = 0, OutDiag = 0; 125 if (VD->getType()->isVariablyModifiedType()) 126 InDiag = diag::note_protected_by_vla; 127 128 if (VD->hasAttr<BlocksAttr>()) 129 return ScopePair(diag::note_protected_by___block, 130 diag::note_exits___block); 131 132 if (VD->hasAttr<CleanupAttr>()) 133 return ScopePair(diag::note_protected_by_cleanup, 134 diag::note_exits_cleanup); 135 136 if (Context.getLangOptions().ObjCAutoRefCount && VD->hasLocalStorage()) { 137 switch (VD->getType().getObjCLifetime()) { 138 case Qualifiers::OCL_None: 139 case Qualifiers::OCL_ExplicitNone: 140 case Qualifiers::OCL_Autoreleasing: 141 break; 142 143 case Qualifiers::OCL_Strong: 144 case Qualifiers::OCL_Weak: 145 return ScopePair(diag::note_protected_by_objc_ownership, 146 diag::note_exits_objc_ownership); 147 } 148 } 149 150 if (Context.getLangOptions().CPlusPlus && VD->hasLocalStorage()) { 151 // C++0x [stmt.dcl]p3: 152 // A program that jumps from a point where a variable with automatic 153 // storage duration is not in scope to a point where it is in scope 154 // is ill-formed unless the variable has scalar type, class type with 155 // a trivial default constructor and a trivial destructor, a 156 // cv-qualified version of one of these types, or an array of one of 157 // the preceding types and is declared without an initializer. 158 159 // C++03 [stmt.dcl.p3: 160 // A program that jumps from a point where a local variable 161 // with automatic storage duration is not in scope to a point 162 // where it is in scope is ill-formed unless the variable has 163 // POD type and is declared without an initializer. 164 165 if (const Expr *init = VD->getInit()) { 166 // We actually give variables of record type (or array thereof) 167 // an initializer even if that initializer only calls a trivial 168 // ctor. Detect that case. 169 // FIXME: With generalized initializer lists, this may 170 // classify "X x{};" as having no initializer. 171 unsigned inDiagToUse = diag::note_protected_by_variable_init; 172 173 const CXXRecordDecl *record = 0; 174 175 if (const CXXConstructExpr *cce = dyn_cast<CXXConstructExpr>(init)) { 176 const CXXConstructorDecl *ctor = cce->getConstructor(); 177 record = ctor->getParent(); 178 179 if (ctor->isTrivial() && ctor->isDefaultConstructor()) { 180 if (Context.getLangOptions().CPlusPlus0x) { 181 inDiagToUse = (record->hasTrivialDestructor() ? 0 : 182 diag::note_protected_by_variable_nontriv_destructor); 183 } else { 184 if (record->isPOD()) 185 inDiagToUse = 0; 186 } 187 } 188 } else if (VD->getType()->isArrayType()) { 189 record = VD->getType()->getBaseElementTypeUnsafe() 190 ->getAsCXXRecordDecl(); 191 } 192 193 if (inDiagToUse) 194 InDiag = inDiagToUse; 195 196 // Also object to indirect jumps which leave scopes with dtors. 197 if (record && !record->hasTrivialDestructor()) 198 OutDiag = diag::note_exits_dtor; 199 } 200 } 201 202 return ScopePair(InDiag, OutDiag); 203 } 204 205 if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) { 206 if (TD->getUnderlyingType()->isVariablyModifiedType()) 207 return ScopePair(diag::note_protected_by_vla_typedef, 0); 208 } 209 210 if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) { 211 if (TD->getUnderlyingType()->isVariablyModifiedType()) 212 return ScopePair(diag::note_protected_by_vla_type_alias, 0); 213 } 214 215 return ScopePair(0U, 0U); 216 } 217 218 /// \brief Build scope information for a declaration that is part of a DeclStmt. 219 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { 220 // If this decl causes a new scope, push and switch to it. 221 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S.Context, D); 222 if (Diags.first || Diags.second) { 223 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, 224 D->getLocation())); 225 ParentScope = Scopes.size()-1; 226 } 227 228 // If the decl has an initializer, walk it with the potentially new 229 // scope we just installed. 230 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 231 if (Expr *Init = VD->getInit()) 232 BuildScopeInformation(Init, ParentScope); 233 } 234 235 /// \brief Build scope information for a captured block literal variables. 236 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 237 const BlockDecl *BDecl, 238 unsigned &ParentScope) { 239 // exclude captured __block variables; there's no destructor 240 // associated with the block literal for them. 241 if (D->hasAttr<BlocksAttr>()) 242 return; 243 QualType T = D->getType(); 244 QualType::DestructionKind destructKind = T.isDestructedType(); 245 if (destructKind != QualType::DK_none) { 246 std::pair<unsigned,unsigned> Diags; 247 switch (destructKind) { 248 case QualType::DK_cxx_destructor: 249 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj, 250 diag::note_exits_block_captures_cxx_obj); 251 break; 252 case QualType::DK_objc_strong_lifetime: 253 Diags = ScopePair(diag::note_enters_block_captures_strong, 254 diag::note_exits_block_captures_strong); 255 break; 256 case QualType::DK_objc_weak_lifetime: 257 Diags = ScopePair(diag::note_enters_block_captures_weak, 258 diag::note_exits_block_captures_weak); 259 break; 260 case QualType::DK_none: 261 llvm_unreachable("no-liftime captured variable"); 262 } 263 SourceLocation Loc = D->getLocation(); 264 if (Loc.isInvalid()) 265 Loc = BDecl->getLocation(); 266 Scopes.push_back(GotoScope(ParentScope, 267 Diags.first, Diags.second, Loc)); 268 ParentScope = Scopes.size()-1; 269 } 270 } 271 272 /// BuildScopeInformation - The statements from CI to CE are known to form a 273 /// coherent VLA scope with a specified parent node. Walk through the 274 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively 275 /// walking the AST as needed. 276 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) { 277 // If this is a statement, rather than an expression, scopes within it don't 278 // propagate out into the enclosing scope. Otherwise we have to worry 279 // about block literals, which have the lifetime of their enclosing statement. 280 unsigned independentParentScope = origParentScope; 281 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 282 ? origParentScope : independentParentScope); 283 284 bool SkipFirstSubStmt = false; 285 286 // If we found a label, remember that it is in ParentScope scope. 287 switch (S->getStmtClass()) { 288 case Stmt::AddrLabelExprClass: 289 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); 290 break; 291 292 case Stmt::IndirectGotoStmtClass: 293 // "goto *&&lbl;" is a special case which we treat as equivalent 294 // to a normal goto. In addition, we don't calculate scope in the 295 // operand (to avoid recording the address-of-label use), which 296 // works only because of the restricted set of expressions which 297 // we detect as constant targets. 298 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) { 299 LabelAndGotoScopes[S] = ParentScope; 300 Jumps.push_back(S); 301 return; 302 } 303 304 LabelAndGotoScopes[S] = ParentScope; 305 IndirectJumps.push_back(cast<IndirectGotoStmt>(S)); 306 break; 307 308 case Stmt::SwitchStmtClass: 309 // Evaluate the condition variable before entering the scope of the switch 310 // statement. 311 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) { 312 BuildScopeInformation(Var, ParentScope); 313 SkipFirstSubStmt = true; 314 } 315 // Fall through 316 317 case Stmt::GotoStmtClass: 318 // Remember both what scope a goto is in as well as the fact that we have 319 // it. This makes the second scan not have to walk the AST again. 320 LabelAndGotoScopes[S] = ParentScope; 321 Jumps.push_back(S); 322 break; 323 324 default: 325 break; 326 } 327 328 for (Stmt::child_range CI = S->children(); CI; ++CI) { 329 if (SkipFirstSubStmt) { 330 SkipFirstSubStmt = false; 331 continue; 332 } 333 334 Stmt *SubStmt = *CI; 335 if (SubStmt == 0) continue; 336 337 // Cases, labels, and defaults aren't "scope parents". It's also 338 // important to handle these iteratively instead of recursively in 339 // order to avoid blowing out the stack. 340 while (true) { 341 Stmt *Next; 342 if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt)) 343 Next = CS->getSubStmt(); 344 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt)) 345 Next = DS->getSubStmt(); 346 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt)) 347 Next = LS->getSubStmt(); 348 else 349 break; 350 351 LabelAndGotoScopes[SubStmt] = ParentScope; 352 SubStmt = Next; 353 } 354 355 // If this is a declstmt with a VLA definition, it defines a scope from here 356 // to the end of the containing context. 357 if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) { 358 // The decl statement creates a scope if any of the decls in it are VLAs 359 // or have the cleanup attribute. 360 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 361 I != E; ++I) 362 BuildScopeInformation(*I, ParentScope); 363 continue; 364 } 365 // Disallow jumps into any part of an @try statement by pushing a scope and 366 // walking all sub-stmts in that scope. 367 if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) { 368 unsigned newParentScope; 369 // Recursively walk the AST for the @try part. 370 Scopes.push_back(GotoScope(ParentScope, 371 diag::note_protected_by_objc_try, 372 diag::note_exits_objc_try, 373 AT->getAtTryLoc())); 374 if (Stmt *TryPart = AT->getTryBody()) 375 BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1)); 376 377 // Jump from the catch to the finally or try is not valid. 378 for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { 379 ObjCAtCatchStmt *AC = AT->getCatchStmt(I); 380 Scopes.push_back(GotoScope(ParentScope, 381 diag::note_protected_by_objc_catch, 382 diag::note_exits_objc_catch, 383 AC->getAtCatchLoc())); 384 // @catches are nested and it isn't 385 BuildScopeInformation(AC->getCatchBody(), 386 (newParentScope = Scopes.size()-1)); 387 } 388 389 // Jump from the finally to the try or catch is not valid. 390 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { 391 Scopes.push_back(GotoScope(ParentScope, 392 diag::note_protected_by_objc_finally, 393 diag::note_exits_objc_finally, 394 AF->getAtFinallyLoc())); 395 BuildScopeInformation(AF, (newParentScope = Scopes.size()-1)); 396 } 397 398 continue; 399 } 400 401 unsigned newParentScope; 402 // Disallow jumps into the protected statement of an @synchronized, but 403 // allow jumps into the object expression it protects. 404 if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){ 405 // Recursively walk the AST for the @synchronized object expr, it is 406 // evaluated in the normal scope. 407 BuildScopeInformation(AS->getSynchExpr(), ParentScope); 408 409 // Recursively walk the AST for the @synchronized part, protected by a new 410 // scope. 411 Scopes.push_back(GotoScope(ParentScope, 412 diag::note_protected_by_objc_synchronized, 413 diag::note_exits_objc_synchronized, 414 AS->getAtSynchronizedLoc())); 415 BuildScopeInformation(AS->getSynchBody(), 416 (newParentScope = Scopes.size()-1)); 417 continue; 418 } 419 420 // Disallow jumps into any part of a C++ try statement. This is pretty 421 // much the same as for Obj-C. 422 if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) { 423 Scopes.push_back(GotoScope(ParentScope, 424 diag::note_protected_by_cxx_try, 425 diag::note_exits_cxx_try, 426 TS->getSourceRange().getBegin())); 427 if (Stmt *TryBlock = TS->getTryBlock()) 428 BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1)); 429 430 // Jump from the catch into the try is not allowed either. 431 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { 432 CXXCatchStmt *CS = TS->getHandler(I); 433 Scopes.push_back(GotoScope(ParentScope, 434 diag::note_protected_by_cxx_catch, 435 diag::note_exits_cxx_catch, 436 CS->getSourceRange().getBegin())); 437 BuildScopeInformation(CS->getHandlerBlock(), 438 (newParentScope = Scopes.size()-1)); 439 } 440 441 continue; 442 } 443 444 // Disallow jumps into the protected statement of an @autoreleasepool. 445 if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){ 446 // Recursively walk the AST for the @autoreleasepool part, protected by a new 447 // scope. 448 Scopes.push_back(GotoScope(ParentScope, 449 diag::note_protected_by_objc_autoreleasepool, 450 diag::note_exits_objc_autoreleasepool, 451 AS->getAtLoc())); 452 BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1)); 453 continue; 454 } 455 456 if (const BlockExpr *BE = dyn_cast<BlockExpr>(SubStmt)) { 457 const BlockDecl *BDecl = BE->getBlockDecl(); 458 for (BlockDecl::capture_const_iterator ci = BDecl->capture_begin(), 459 ce = BDecl->capture_end(); ci != ce; ++ci) { 460 VarDecl *variable = ci->getVariable(); 461 BuildScopeInformation(variable, BDecl, ParentScope); 462 } 463 } 464 465 // Recursively walk the AST. 466 BuildScopeInformation(SubStmt, ParentScope); 467 } 468 } 469 470 /// VerifyJumps - Verify each element of the Jumps array to see if they are 471 /// valid, emitting diagnostics if not. 472 void JumpScopeChecker::VerifyJumps() { 473 while (!Jumps.empty()) { 474 Stmt *Jump = Jumps.pop_back_val(); 475 476 // With a goto, 477 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { 478 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(), 479 diag::err_goto_into_protected_scope); 480 continue; 481 } 482 483 // We only get indirect gotos here when they have a constant target. 484 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) { 485 LabelDecl *Target = IGS->getConstantTarget(); 486 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(), 487 diag::err_goto_into_protected_scope); 488 continue; 489 } 490 491 SwitchStmt *SS = cast<SwitchStmt>(Jump); 492 for (SwitchCase *SC = SS->getSwitchCaseList(); SC; 493 SC = SC->getNextSwitchCase()) { 494 assert(LabelAndGotoScopes.count(SC) && "Case not visited?"); 495 CheckJump(SS, SC, SC->getLocStart(), 496 diag::err_switch_into_protected_scope); 497 } 498 } 499 } 500 501 /// VerifyIndirectJumps - Verify whether any possible indirect jump 502 /// might cross a protection boundary. Unlike direct jumps, indirect 503 /// jumps count cleanups as protection boundaries: since there's no 504 /// way to know where the jump is going, we can't implicitly run the 505 /// right cleanups the way we can with direct jumps. 506 /// 507 /// Thus, an indirect jump is "trivial" if it bypasses no 508 /// initializations and no teardowns. More formally, an indirect jump 509 /// from A to B is trivial if the path out from A to DCA(A,B) is 510 /// trivial and the path in from DCA(A,B) to B is trivial, where 511 /// DCA(A,B) is the deepest common ancestor of A and B. 512 /// Jump-triviality is transitive but asymmetric. 513 /// 514 /// A path in is trivial if none of the entered scopes have an InDiag. 515 /// A path out is trivial is none of the exited scopes have an OutDiag. 516 /// 517 /// Under these definitions, this function checks that the indirect 518 /// jump between A and B is trivial for every indirect goto statement A 519 /// and every label B whose address was taken in the function. 520 void JumpScopeChecker::VerifyIndirectJumps() { 521 if (IndirectJumps.empty()) return; 522 523 // If there aren't any address-of-label expressions in this function, 524 // complain about the first indirect goto. 525 if (IndirectJumpTargets.empty()) { 526 S.Diag(IndirectJumps[0]->getGotoLoc(), 527 diag::err_indirect_goto_without_addrlabel); 528 return; 529 } 530 531 // Collect a single representative of every scope containing an 532 // indirect goto. For most code bases, this substantially cuts 533 // down on the number of jump sites we'll have to consider later. 534 typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope; 535 llvm::SmallVector<JumpScope, 32> JumpScopes; 536 { 537 llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap; 538 for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator 539 I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) { 540 IndirectGotoStmt *IG = *I; 541 assert(LabelAndGotoScopes.count(IG) && 542 "indirect jump didn't get added to scopes?"); 543 unsigned IGScope = LabelAndGotoScopes[IG]; 544 IndirectGotoStmt *&Entry = JumpScopesMap[IGScope]; 545 if (!Entry) Entry = IG; 546 } 547 JumpScopes.reserve(JumpScopesMap.size()); 548 for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator 549 I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I) 550 JumpScopes.push_back(*I); 551 } 552 553 // Collect a single representative of every scope containing a 554 // label whose address was taken somewhere in the function. 555 // For most code bases, there will be only one such scope. 556 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes; 557 for (llvm::SmallVectorImpl<LabelDecl*>::iterator 558 I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end(); 559 I != E; ++I) { 560 LabelDecl *TheLabel = *I; 561 assert(LabelAndGotoScopes.count(TheLabel->getStmt()) && 562 "Referenced label didn't get added to scopes?"); 563 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()]; 564 LabelDecl *&Target = TargetScopes[LabelScope]; 565 if (!Target) Target = TheLabel; 566 } 567 568 // For each target scope, make sure it's trivially reachable from 569 // every scope containing a jump site. 570 // 571 // A path between scopes always consists of exitting zero or more 572 // scopes, then entering zero or more scopes. We build a set of 573 // of scopes S from which the target scope can be trivially 574 // entered, then verify that every jump scope can be trivially 575 // exitted to reach a scope in S. 576 llvm::BitVector Reachable(Scopes.size(), false); 577 for (llvm::DenseMap<unsigned,LabelDecl*>::iterator 578 TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { 579 unsigned TargetScope = TI->first; 580 LabelDecl *TargetLabel = TI->second; 581 582 Reachable.reset(); 583 584 // Mark all the enclosing scopes from which you can safely jump 585 // into the target scope. 'Min' will end up being the index of 586 // the shallowest such scope. 587 unsigned Min = TargetScope; 588 while (true) { 589 Reachable.set(Min); 590 591 // Don't go beyond the outermost scope. 592 if (Min == 0) break; 593 594 // Stop if we can't trivially enter the current scope. 595 if (Scopes[Min].InDiag) break; 596 597 Min = Scopes[Min].ParentScope; 598 } 599 600 // Walk through all the jump sites, checking that they can trivially 601 // reach this label scope. 602 for (llvm::SmallVectorImpl<JumpScope>::iterator 603 I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { 604 unsigned Scope = I->first; 605 606 // Walk out the "scope chain" for this scope, looking for a scope 607 // we've marked reachable. For well-formed code this amortizes 608 // to O(JumpScopes.size() / Scopes.size()): we only iterate 609 // when we see something unmarked, and in well-formed code we 610 // mark everything we iterate past. 611 bool IsReachable = false; 612 while (true) { 613 if (Reachable.test(Scope)) { 614 // If we find something reachable, mark all the scopes we just 615 // walked through as reachable. 616 for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) 617 Reachable.set(S); 618 IsReachable = true; 619 break; 620 } 621 622 // Don't walk out if we've reached the top-level scope or we've 623 // gotten shallower than the shallowest reachable scope. 624 if (Scope == 0 || Scope < Min) break; 625 626 // Don't walk out through an out-diagnostic. 627 if (Scopes[Scope].OutDiag) break; 628 629 Scope = Scopes[Scope].ParentScope; 630 } 631 632 // Only diagnose if we didn't find something. 633 if (IsReachable) continue; 634 635 DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope); 636 } 637 } 638 } 639 640 /// Diagnose an indirect jump which is known to cross scopes. 641 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump, 642 unsigned JumpScope, 643 LabelDecl *Target, 644 unsigned TargetScope) { 645 assert(JumpScope != TargetScope); 646 647 S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope); 648 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target); 649 650 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); 651 652 // Walk out the scope chain until we reach the common ancestor. 653 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) 654 if (Scopes[I].OutDiag) 655 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 656 657 // Now walk into the scopes containing the label whose address was taken. 658 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) 659 if (Scopes[I].InDiag) 660 S.Diag(Scopes[I].Loc, Scopes[I].InDiag); 661 } 662 663 /// CheckJump - Validate that the specified jump statement is valid: that it is 664 /// jumping within or out of its current scope, not into a deeper one. 665 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, 666 SourceLocation DiagLoc, unsigned JumpDiag) { 667 assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?"); 668 unsigned FromScope = LabelAndGotoScopes[From]; 669 670 assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?"); 671 unsigned ToScope = LabelAndGotoScopes[To]; 672 673 // Common case: exactly the same scope, which is fine. 674 if (FromScope == ToScope) return; 675 676 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); 677 678 // It's okay to jump out from a nested scope. 679 if (CommonScope == ToScope) return; 680 681 // Pull out (and reverse) any scopes we might need to diagnose skipping. 682 llvm::SmallVector<unsigned, 10> ToScopes; 683 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) 684 if (Scopes[I].InDiag) 685 ToScopes.push_back(I); 686 687 // If the only scopes present are cleanup scopes, we're okay. 688 if (ToScopes.empty()) return; 689 690 S.Diag(DiagLoc, JumpDiag); 691 692 // Emit diagnostics for whatever is left in ToScopes. 693 for (unsigned i = 0, e = ToScopes.size(); i != e; ++i) 694 S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag); 695 } 696 697 void Sema::DiagnoseInvalidJumps(Stmt *Body) { 698 (void)JumpScopeChecker(Body, *this); 699 } 700