Home | History | Annotate | Download | only in Sema
      1 //===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the JumpScopeChecker class, which is used to diagnose
     11 // jumps that enter a VLA scope in an invalid way.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/StmtObjC.h"
     20 #include "clang/AST/StmtCXX.h"
     21 #include "llvm/ADT/BitVector.h"
     22 using namespace clang;
     23 
     24 namespace {
     25 
     26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
     27 /// into VLA and other protected scopes.  For example, this rejects:
     28 ///    goto L;
     29 ///    int a[n];
     30 ///  L:
     31 ///
     32 class JumpScopeChecker {
     33   Sema &S;
     34 
     35   /// GotoScope - This is a record that we use to keep track of all of the
     36   /// scopes that are introduced by VLAs and other things that scope jumps like
     37   /// gotos.  This scope tree has nothing to do with the source scope tree,
     38   /// because you can have multiple VLA scopes per compound statement, and most
     39   /// compound statements don't introduce any scopes.
     40   struct GotoScope {
     41     /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
     42     /// the parent scope is the function body.
     43     unsigned ParentScope;
     44 
     45     /// InDiag - The diagnostic to emit if there is a jump into this scope.
     46     unsigned InDiag;
     47 
     48     /// OutDiag - The diagnostic to emit if there is an indirect jump out
     49     /// of this scope.  Direct jumps always clean up their current scope
     50     /// in an orderly way.
     51     unsigned OutDiag;
     52 
     53     /// Loc - Location to emit the diagnostic.
     54     SourceLocation Loc;
     55 
     56     GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
     57               SourceLocation L)
     58       : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
     59   };
     60 
     61   llvm::SmallVector<GotoScope, 48> Scopes;
     62   llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
     63   llvm::SmallVector<Stmt*, 16> Jumps;
     64 
     65   llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
     66   llvm::SmallVector<LabelDecl*, 4> IndirectJumpTargets;
     67 public:
     68   JumpScopeChecker(Stmt *Body, Sema &S);
     69 private:
     70   void BuildScopeInformation(Decl *D, unsigned &ParentScope);
     71   void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
     72                              unsigned &ParentScope);
     73   void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
     74 
     75   void VerifyJumps();
     76   void VerifyIndirectJumps();
     77   void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
     78                             LabelDecl *Target, unsigned TargetScope);
     79   void CheckJump(Stmt *From, Stmt *To,
     80                  SourceLocation DiagLoc, unsigned JumpDiag);
     81 
     82   unsigned GetDeepestCommonScope(unsigned A, unsigned B);
     83 };
     84 } // end anonymous namespace
     85 
     86 
     87 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
     88   // Add a scope entry for function scope.
     89   Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
     90 
     91   // Build information for the top level compound statement, so that we have a
     92   // defined scope record for every "goto" and label.
     93   unsigned BodyParentScope = 0;
     94   BuildScopeInformation(Body, BodyParentScope);
     95 
     96   // Check that all jumps we saw are kosher.
     97   VerifyJumps();
     98   VerifyIndirectJumps();
     99 }
    100 
    101 /// GetDeepestCommonScope - Finds the innermost scope enclosing the
    102 /// two scopes.
    103 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
    104   while (A != B) {
    105     // Inner scopes are created after outer scopes and therefore have
    106     // higher indices.
    107     if (A < B) {
    108       assert(Scopes[B].ParentScope < B);
    109       B = Scopes[B].ParentScope;
    110     } else {
    111       assert(Scopes[A].ParentScope < A);
    112       A = Scopes[A].ParentScope;
    113     }
    114   }
    115   return A;
    116 }
    117 
    118 typedef std::pair<unsigned,unsigned> ScopePair;
    119 
    120 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
    121 /// diagnostic that should be emitted if control goes over it. If not, return 0.
    122 static ScopePair GetDiagForGotoScopeDecl(ASTContext &Context, const Decl *D) {
    123   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    124     unsigned InDiag = 0, OutDiag = 0;
    125     if (VD->getType()->isVariablyModifiedType())
    126       InDiag = diag::note_protected_by_vla;
    127 
    128     if (VD->hasAttr<BlocksAttr>())
    129       return ScopePair(diag::note_protected_by___block,
    130                        diag::note_exits___block);
    131 
    132     if (VD->hasAttr<CleanupAttr>())
    133       return ScopePair(diag::note_protected_by_cleanup,
    134                        diag::note_exits_cleanup);
    135 
    136     if (Context.getLangOptions().ObjCAutoRefCount && VD->hasLocalStorage()) {
    137       switch (VD->getType().getObjCLifetime()) {
    138       case Qualifiers::OCL_None:
    139       case Qualifiers::OCL_ExplicitNone:
    140       case Qualifiers::OCL_Autoreleasing:
    141         break;
    142 
    143       case Qualifiers::OCL_Strong:
    144       case Qualifiers::OCL_Weak:
    145         return ScopePair(diag::note_protected_by_objc_ownership,
    146                          diag::note_exits_objc_ownership);
    147       }
    148     }
    149 
    150     if (Context.getLangOptions().CPlusPlus && VD->hasLocalStorage()) {
    151       // C++0x [stmt.dcl]p3:
    152       //   A program that jumps from a point where a variable with automatic
    153       //   storage duration is not in scope to a point where it is in scope
    154       //   is ill-formed unless the variable has scalar type, class type with
    155       //   a trivial default constructor and a trivial destructor, a
    156       //   cv-qualified version of one of these types, or an array of one of
    157       //   the preceding types and is declared without an initializer.
    158 
    159       // C++03 [stmt.dcl.p3:
    160       //   A program that jumps from a point where a local variable
    161       //   with automatic storage duration is not in scope to a point
    162       //   where it is in scope is ill-formed unless the variable has
    163       //   POD type and is declared without an initializer.
    164 
    165       if (const Expr *init = VD->getInit()) {
    166         // We actually give variables of record type (or array thereof)
    167         // an initializer even if that initializer only calls a trivial
    168         // ctor.  Detect that case.
    169         // FIXME: With generalized initializer lists, this may
    170         // classify "X x{};" as having no initializer.
    171         unsigned inDiagToUse = diag::note_protected_by_variable_init;
    172 
    173         const CXXRecordDecl *record = 0;
    174 
    175         if (const CXXConstructExpr *cce = dyn_cast<CXXConstructExpr>(init)) {
    176           const CXXConstructorDecl *ctor = cce->getConstructor();
    177           record = ctor->getParent();
    178 
    179           if (ctor->isTrivial() && ctor->isDefaultConstructor()) {
    180             if (Context.getLangOptions().CPlusPlus0x) {
    181               inDiagToUse = (record->hasTrivialDestructor() ? 0 :
    182                         diag::note_protected_by_variable_nontriv_destructor);
    183             } else {
    184               if (record->isPOD())
    185                 inDiagToUse = 0;
    186             }
    187           }
    188         } else if (VD->getType()->isArrayType()) {
    189           record = VD->getType()->getBaseElementTypeUnsafe()
    190                                 ->getAsCXXRecordDecl();
    191         }
    192 
    193         if (inDiagToUse)
    194           InDiag = inDiagToUse;
    195 
    196         // Also object to indirect jumps which leave scopes with dtors.
    197         if (record && !record->hasTrivialDestructor())
    198           OutDiag = diag::note_exits_dtor;
    199       }
    200     }
    201 
    202     return ScopePair(InDiag, OutDiag);
    203   }
    204 
    205   if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
    206     if (TD->getUnderlyingType()->isVariablyModifiedType())
    207       return ScopePair(diag::note_protected_by_vla_typedef, 0);
    208   }
    209 
    210   if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) {
    211     if (TD->getUnderlyingType()->isVariablyModifiedType())
    212       return ScopePair(diag::note_protected_by_vla_type_alias, 0);
    213   }
    214 
    215   return ScopePair(0U, 0U);
    216 }
    217 
    218 /// \brief Build scope information for a declaration that is part of a DeclStmt.
    219 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
    220   // If this decl causes a new scope, push and switch to it.
    221   std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S.Context, D);
    222   if (Diags.first || Diags.second) {
    223     Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
    224                                D->getLocation()));
    225     ParentScope = Scopes.size()-1;
    226   }
    227 
    228   // If the decl has an initializer, walk it with the potentially new
    229   // scope we just installed.
    230   if (VarDecl *VD = dyn_cast<VarDecl>(D))
    231     if (Expr *Init = VD->getInit())
    232       BuildScopeInformation(Init, ParentScope);
    233 }
    234 
    235 /// \brief Build scope information for a captured block literal variables.
    236 void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
    237                                              const BlockDecl *BDecl,
    238                                              unsigned &ParentScope) {
    239   // exclude captured __block variables; there's no destructor
    240   // associated with the block literal for them.
    241   if (D->hasAttr<BlocksAttr>())
    242     return;
    243   QualType T = D->getType();
    244   QualType::DestructionKind destructKind = T.isDestructedType();
    245   if (destructKind != QualType::DK_none) {
    246     std::pair<unsigned,unsigned> Diags;
    247     switch (destructKind) {
    248       case QualType::DK_cxx_destructor:
    249         Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
    250                           diag::note_exits_block_captures_cxx_obj);
    251         break;
    252       case QualType::DK_objc_strong_lifetime:
    253         Diags = ScopePair(diag::note_enters_block_captures_strong,
    254                           diag::note_exits_block_captures_strong);
    255         break;
    256       case QualType::DK_objc_weak_lifetime:
    257         Diags = ScopePair(diag::note_enters_block_captures_weak,
    258                           diag::note_exits_block_captures_weak);
    259         break;
    260       case QualType::DK_none:
    261         llvm_unreachable("no-liftime captured variable");
    262     }
    263     SourceLocation Loc = D->getLocation();
    264     if (Loc.isInvalid())
    265       Loc = BDecl->getLocation();
    266     Scopes.push_back(GotoScope(ParentScope,
    267                                Diags.first, Diags.second, Loc));
    268     ParentScope = Scopes.size()-1;
    269   }
    270 }
    271 
    272 /// BuildScopeInformation - The statements from CI to CE are known to form a
    273 /// coherent VLA scope with a specified parent node.  Walk through the
    274 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
    275 /// walking the AST as needed.
    276 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) {
    277   // If this is a statement, rather than an expression, scopes within it don't
    278   // propagate out into the enclosing scope.  Otherwise we have to worry
    279   // about block literals, which have the lifetime of their enclosing statement.
    280   unsigned independentParentScope = origParentScope;
    281   unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
    282                             ? origParentScope : independentParentScope);
    283 
    284   bool SkipFirstSubStmt = false;
    285 
    286   // If we found a label, remember that it is in ParentScope scope.
    287   switch (S->getStmtClass()) {
    288   case Stmt::AddrLabelExprClass:
    289     IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
    290     break;
    291 
    292   case Stmt::IndirectGotoStmtClass:
    293     // "goto *&&lbl;" is a special case which we treat as equivalent
    294     // to a normal goto.  In addition, we don't calculate scope in the
    295     // operand (to avoid recording the address-of-label use), which
    296     // works only because of the restricted set of expressions which
    297     // we detect as constant targets.
    298     if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
    299       LabelAndGotoScopes[S] = ParentScope;
    300       Jumps.push_back(S);
    301       return;
    302     }
    303 
    304     LabelAndGotoScopes[S] = ParentScope;
    305     IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
    306     break;
    307 
    308   case Stmt::SwitchStmtClass:
    309     // Evaluate the condition variable before entering the scope of the switch
    310     // statement.
    311     if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
    312       BuildScopeInformation(Var, ParentScope);
    313       SkipFirstSubStmt = true;
    314     }
    315     // Fall through
    316 
    317   case Stmt::GotoStmtClass:
    318     // Remember both what scope a goto is in as well as the fact that we have
    319     // it.  This makes the second scan not have to walk the AST again.
    320     LabelAndGotoScopes[S] = ParentScope;
    321     Jumps.push_back(S);
    322     break;
    323 
    324   default:
    325     break;
    326   }
    327 
    328   for (Stmt::child_range CI = S->children(); CI; ++CI) {
    329     if (SkipFirstSubStmt) {
    330       SkipFirstSubStmt = false;
    331       continue;
    332     }
    333 
    334     Stmt *SubStmt = *CI;
    335     if (SubStmt == 0) continue;
    336 
    337     // Cases, labels, and defaults aren't "scope parents".  It's also
    338     // important to handle these iteratively instead of recursively in
    339     // order to avoid blowing out the stack.
    340     while (true) {
    341       Stmt *Next;
    342       if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
    343         Next = CS->getSubStmt();
    344       else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
    345         Next = DS->getSubStmt();
    346       else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
    347         Next = LS->getSubStmt();
    348       else
    349         break;
    350 
    351       LabelAndGotoScopes[SubStmt] = ParentScope;
    352       SubStmt = Next;
    353     }
    354 
    355     // If this is a declstmt with a VLA definition, it defines a scope from here
    356     // to the end of the containing context.
    357     if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
    358       // The decl statement creates a scope if any of the decls in it are VLAs
    359       // or have the cleanup attribute.
    360       for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
    361            I != E; ++I)
    362         BuildScopeInformation(*I, ParentScope);
    363       continue;
    364     }
    365     // Disallow jumps into any part of an @try statement by pushing a scope and
    366     // walking all sub-stmts in that scope.
    367     if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
    368       unsigned newParentScope;
    369       // Recursively walk the AST for the @try part.
    370       Scopes.push_back(GotoScope(ParentScope,
    371                                  diag::note_protected_by_objc_try,
    372                                  diag::note_exits_objc_try,
    373                                  AT->getAtTryLoc()));
    374       if (Stmt *TryPart = AT->getTryBody())
    375         BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1));
    376 
    377       // Jump from the catch to the finally or try is not valid.
    378       for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
    379         ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
    380         Scopes.push_back(GotoScope(ParentScope,
    381                                    diag::note_protected_by_objc_catch,
    382                                    diag::note_exits_objc_catch,
    383                                    AC->getAtCatchLoc()));
    384         // @catches are nested and it isn't
    385         BuildScopeInformation(AC->getCatchBody(),
    386                               (newParentScope = Scopes.size()-1));
    387       }
    388 
    389       // Jump from the finally to the try or catch is not valid.
    390       if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
    391         Scopes.push_back(GotoScope(ParentScope,
    392                                    diag::note_protected_by_objc_finally,
    393                                    diag::note_exits_objc_finally,
    394                                    AF->getAtFinallyLoc()));
    395         BuildScopeInformation(AF, (newParentScope = Scopes.size()-1));
    396       }
    397 
    398       continue;
    399     }
    400 
    401     unsigned newParentScope;
    402     // Disallow jumps into the protected statement of an @synchronized, but
    403     // allow jumps into the object expression it protects.
    404     if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
    405       // Recursively walk the AST for the @synchronized object expr, it is
    406       // evaluated in the normal scope.
    407       BuildScopeInformation(AS->getSynchExpr(), ParentScope);
    408 
    409       // Recursively walk the AST for the @synchronized part, protected by a new
    410       // scope.
    411       Scopes.push_back(GotoScope(ParentScope,
    412                                  diag::note_protected_by_objc_synchronized,
    413                                  diag::note_exits_objc_synchronized,
    414                                  AS->getAtSynchronizedLoc()));
    415       BuildScopeInformation(AS->getSynchBody(),
    416                             (newParentScope = Scopes.size()-1));
    417       continue;
    418     }
    419 
    420     // Disallow jumps into any part of a C++ try statement. This is pretty
    421     // much the same as for Obj-C.
    422     if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
    423       Scopes.push_back(GotoScope(ParentScope,
    424                                  diag::note_protected_by_cxx_try,
    425                                  diag::note_exits_cxx_try,
    426                                  TS->getSourceRange().getBegin()));
    427       if (Stmt *TryBlock = TS->getTryBlock())
    428         BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
    429 
    430       // Jump from the catch into the try is not allowed either.
    431       for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
    432         CXXCatchStmt *CS = TS->getHandler(I);
    433         Scopes.push_back(GotoScope(ParentScope,
    434                                    diag::note_protected_by_cxx_catch,
    435                                    diag::note_exits_cxx_catch,
    436                                    CS->getSourceRange().getBegin()));
    437         BuildScopeInformation(CS->getHandlerBlock(),
    438                               (newParentScope = Scopes.size()-1));
    439       }
    440 
    441       continue;
    442     }
    443 
    444     // Disallow jumps into the protected statement of an @autoreleasepool.
    445     if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){
    446       // Recursively walk the AST for the @autoreleasepool part, protected by a new
    447       // scope.
    448       Scopes.push_back(GotoScope(ParentScope,
    449                                  diag::note_protected_by_objc_autoreleasepool,
    450                                  diag::note_exits_objc_autoreleasepool,
    451                                  AS->getAtLoc()));
    452       BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1));
    453       continue;
    454     }
    455 
    456     if (const BlockExpr *BE = dyn_cast<BlockExpr>(SubStmt)) {
    457         const BlockDecl *BDecl = BE->getBlockDecl();
    458         for (BlockDecl::capture_const_iterator ci = BDecl->capture_begin(),
    459              ce = BDecl->capture_end(); ci != ce; ++ci) {
    460           VarDecl *variable = ci->getVariable();
    461           BuildScopeInformation(variable, BDecl, ParentScope);
    462         }
    463     }
    464 
    465     // Recursively walk the AST.
    466     BuildScopeInformation(SubStmt, ParentScope);
    467   }
    468 }
    469 
    470 /// VerifyJumps - Verify each element of the Jumps array to see if they are
    471 /// valid, emitting diagnostics if not.
    472 void JumpScopeChecker::VerifyJumps() {
    473   while (!Jumps.empty()) {
    474     Stmt *Jump = Jumps.pop_back_val();
    475 
    476     // With a goto,
    477     if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
    478       CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
    479                 diag::err_goto_into_protected_scope);
    480       continue;
    481     }
    482 
    483     // We only get indirect gotos here when they have a constant target.
    484     if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
    485       LabelDecl *Target = IGS->getConstantTarget();
    486       CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
    487                 diag::err_goto_into_protected_scope);
    488       continue;
    489     }
    490 
    491     SwitchStmt *SS = cast<SwitchStmt>(Jump);
    492     for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
    493          SC = SC->getNextSwitchCase()) {
    494       assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
    495       CheckJump(SS, SC, SC->getLocStart(),
    496                 diag::err_switch_into_protected_scope);
    497     }
    498   }
    499 }
    500 
    501 /// VerifyIndirectJumps - Verify whether any possible indirect jump
    502 /// might cross a protection boundary.  Unlike direct jumps, indirect
    503 /// jumps count cleanups as protection boundaries:  since there's no
    504 /// way to know where the jump is going, we can't implicitly run the
    505 /// right cleanups the way we can with direct jumps.
    506 ///
    507 /// Thus, an indirect jump is "trivial" if it bypasses no
    508 /// initializations and no teardowns.  More formally, an indirect jump
    509 /// from A to B is trivial if the path out from A to DCA(A,B) is
    510 /// trivial and the path in from DCA(A,B) to B is trivial, where
    511 /// DCA(A,B) is the deepest common ancestor of A and B.
    512 /// Jump-triviality is transitive but asymmetric.
    513 ///
    514 /// A path in is trivial if none of the entered scopes have an InDiag.
    515 /// A path out is trivial is none of the exited scopes have an OutDiag.
    516 ///
    517 /// Under these definitions, this function checks that the indirect
    518 /// jump between A and B is trivial for every indirect goto statement A
    519 /// and every label B whose address was taken in the function.
    520 void JumpScopeChecker::VerifyIndirectJumps() {
    521   if (IndirectJumps.empty()) return;
    522 
    523   // If there aren't any address-of-label expressions in this function,
    524   // complain about the first indirect goto.
    525   if (IndirectJumpTargets.empty()) {
    526     S.Diag(IndirectJumps[0]->getGotoLoc(),
    527            diag::err_indirect_goto_without_addrlabel);
    528     return;
    529   }
    530 
    531   // Collect a single representative of every scope containing an
    532   // indirect goto.  For most code bases, this substantially cuts
    533   // down on the number of jump sites we'll have to consider later.
    534   typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
    535   llvm::SmallVector<JumpScope, 32> JumpScopes;
    536   {
    537     llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
    538     for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator
    539            I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
    540       IndirectGotoStmt *IG = *I;
    541       assert(LabelAndGotoScopes.count(IG) &&
    542              "indirect jump didn't get added to scopes?");
    543       unsigned IGScope = LabelAndGotoScopes[IG];
    544       IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
    545       if (!Entry) Entry = IG;
    546     }
    547     JumpScopes.reserve(JumpScopesMap.size());
    548     for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
    549            I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
    550       JumpScopes.push_back(*I);
    551   }
    552 
    553   // Collect a single representative of every scope containing a
    554   // label whose address was taken somewhere in the function.
    555   // For most code bases, there will be only one such scope.
    556   llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
    557   for (llvm::SmallVectorImpl<LabelDecl*>::iterator
    558          I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
    559        I != E; ++I) {
    560     LabelDecl *TheLabel = *I;
    561     assert(LabelAndGotoScopes.count(TheLabel->getStmt()) &&
    562            "Referenced label didn't get added to scopes?");
    563     unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
    564     LabelDecl *&Target = TargetScopes[LabelScope];
    565     if (!Target) Target = TheLabel;
    566   }
    567 
    568   // For each target scope, make sure it's trivially reachable from
    569   // every scope containing a jump site.
    570   //
    571   // A path between scopes always consists of exitting zero or more
    572   // scopes, then entering zero or more scopes.  We build a set of
    573   // of scopes S from which the target scope can be trivially
    574   // entered, then verify that every jump scope can be trivially
    575   // exitted to reach a scope in S.
    576   llvm::BitVector Reachable(Scopes.size(), false);
    577   for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
    578          TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
    579     unsigned TargetScope = TI->first;
    580     LabelDecl *TargetLabel = TI->second;
    581 
    582     Reachable.reset();
    583 
    584     // Mark all the enclosing scopes from which you can safely jump
    585     // into the target scope.  'Min' will end up being the index of
    586     // the shallowest such scope.
    587     unsigned Min = TargetScope;
    588     while (true) {
    589       Reachable.set(Min);
    590 
    591       // Don't go beyond the outermost scope.
    592       if (Min == 0) break;
    593 
    594       // Stop if we can't trivially enter the current scope.
    595       if (Scopes[Min].InDiag) break;
    596 
    597       Min = Scopes[Min].ParentScope;
    598     }
    599 
    600     // Walk through all the jump sites, checking that they can trivially
    601     // reach this label scope.
    602     for (llvm::SmallVectorImpl<JumpScope>::iterator
    603            I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
    604       unsigned Scope = I->first;
    605 
    606       // Walk out the "scope chain" for this scope, looking for a scope
    607       // we've marked reachable.  For well-formed code this amortizes
    608       // to O(JumpScopes.size() / Scopes.size()):  we only iterate
    609       // when we see something unmarked, and in well-formed code we
    610       // mark everything we iterate past.
    611       bool IsReachable = false;
    612       while (true) {
    613         if (Reachable.test(Scope)) {
    614           // If we find something reachable, mark all the scopes we just
    615           // walked through as reachable.
    616           for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
    617             Reachable.set(S);
    618           IsReachable = true;
    619           break;
    620         }
    621 
    622         // Don't walk out if we've reached the top-level scope or we've
    623         // gotten shallower than the shallowest reachable scope.
    624         if (Scope == 0 || Scope < Min) break;
    625 
    626         // Don't walk out through an out-diagnostic.
    627         if (Scopes[Scope].OutDiag) break;
    628 
    629         Scope = Scopes[Scope].ParentScope;
    630       }
    631 
    632       // Only diagnose if we didn't find something.
    633       if (IsReachable) continue;
    634 
    635       DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
    636     }
    637   }
    638 }
    639 
    640 /// Diagnose an indirect jump which is known to cross scopes.
    641 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
    642                                             unsigned JumpScope,
    643                                             LabelDecl *Target,
    644                                             unsigned TargetScope) {
    645   assert(JumpScope != TargetScope);
    646 
    647   S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
    648   S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
    649 
    650   unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
    651 
    652   // Walk out the scope chain until we reach the common ancestor.
    653   for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
    654     if (Scopes[I].OutDiag)
    655       S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
    656 
    657   // Now walk into the scopes containing the label whose address was taken.
    658   for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
    659     if (Scopes[I].InDiag)
    660       S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
    661 }
    662 
    663 /// CheckJump - Validate that the specified jump statement is valid: that it is
    664 /// jumping within or out of its current scope, not into a deeper one.
    665 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To,
    666                                  SourceLocation DiagLoc, unsigned JumpDiag) {
    667   assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
    668   unsigned FromScope = LabelAndGotoScopes[From];
    669 
    670   assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
    671   unsigned ToScope = LabelAndGotoScopes[To];
    672 
    673   // Common case: exactly the same scope, which is fine.
    674   if (FromScope == ToScope) return;
    675 
    676   unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
    677 
    678   // It's okay to jump out from a nested scope.
    679   if (CommonScope == ToScope) return;
    680 
    681   // Pull out (and reverse) any scopes we might need to diagnose skipping.
    682   llvm::SmallVector<unsigned, 10> ToScopes;
    683   for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope)
    684     if (Scopes[I].InDiag)
    685       ToScopes.push_back(I);
    686 
    687   // If the only scopes present are cleanup scopes, we're okay.
    688   if (ToScopes.empty()) return;
    689 
    690   S.Diag(DiagLoc, JumpDiag);
    691 
    692   // Emit diagnostics for whatever is left in ToScopes.
    693   for (unsigned i = 0, e = ToScopes.size(); i != e; ++i)
    694     S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag);
    695 }
    696 
    697 void Sema::DiagnoseInvalidJumps(Stmt *Body) {
    698   (void)JumpScopeChecker(Body, *this);
    699 }
    700