Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCalls.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitCall and visitInvoke functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/IntrinsicInst.h"
     16 #include "llvm/Support/CallSite.h"
     17 #include "llvm/Target/TargetData.h"
     18 #include "llvm/Analysis/MemoryBuiltins.h"
     19 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     20 #include "llvm/Transforms/Utils/Local.h"
     21 using namespace llvm;
     22 
     23 /// getPromotedType - Return the specified type promoted as it would be to pass
     24 /// though a va_arg area.
     25 static Type *getPromotedType(Type *Ty) {
     26   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
     27     if (ITy->getBitWidth() < 32)
     28       return Type::getInt32Ty(Ty->getContext());
     29   }
     30   return Ty;
     31 }
     32 
     33 
     34 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
     35   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
     36   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
     37   unsigned MinAlign = std::min(DstAlign, SrcAlign);
     38   unsigned CopyAlign = MI->getAlignment();
     39 
     40   if (CopyAlign < MinAlign) {
     41     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
     42                                              MinAlign, false));
     43     return MI;
     44   }
     45 
     46   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
     47   // load/store.
     48   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
     49   if (MemOpLength == 0) return 0;
     50 
     51   // Source and destination pointer types are always "i8*" for intrinsic.  See
     52   // if the size is something we can handle with a single primitive load/store.
     53   // A single load+store correctly handles overlapping memory in the memmove
     54   // case.
     55   unsigned Size = MemOpLength->getZExtValue();
     56   if (Size == 0) return MI;  // Delete this mem transfer.
     57 
     58   if (Size > 8 || (Size&(Size-1)))
     59     return 0;  // If not 1/2/4/8 bytes, exit.
     60 
     61   // Use an integer load+store unless we can find something better.
     62   unsigned SrcAddrSp =
     63     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
     64   unsigned DstAddrSp =
     65     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
     66 
     67   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
     68   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
     69   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
     70 
     71   // Memcpy forces the use of i8* for the source and destination.  That means
     72   // that if you're using memcpy to move one double around, you'll get a cast
     73   // from double* to i8*.  We'd much rather use a double load+store rather than
     74   // an i64 load+store, here because this improves the odds that the source or
     75   // dest address will be promotable.  See if we can find a better type than the
     76   // integer datatype.
     77   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
     78   if (StrippedDest != MI->getArgOperand(0)) {
     79     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
     80                                     ->getElementType();
     81     if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
     82       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
     83       // down through these levels if so.
     84       while (!SrcETy->isSingleValueType()) {
     85         if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
     86           if (STy->getNumElements() == 1)
     87             SrcETy = STy->getElementType(0);
     88           else
     89             break;
     90         } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
     91           if (ATy->getNumElements() == 1)
     92             SrcETy = ATy->getElementType();
     93           else
     94             break;
     95         } else
     96           break;
     97       }
     98 
     99       if (SrcETy->isSingleValueType()) {
    100         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
    101         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
    102       }
    103     }
    104   }
    105 
    106 
    107   // If the memcpy/memmove provides better alignment info than we can
    108   // infer, use it.
    109   SrcAlign = std::max(SrcAlign, CopyAlign);
    110   DstAlign = std::max(DstAlign, CopyAlign);
    111 
    112   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
    113   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
    114   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
    115   L->setAlignment(SrcAlign);
    116   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
    117   S->setAlignment(DstAlign);
    118 
    119   // Set the size of the copy to 0, it will be deleted on the next iteration.
    120   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
    121   return MI;
    122 }
    123 
    124 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
    125   unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
    126   if (MI->getAlignment() < Alignment) {
    127     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
    128                                              Alignment, false));
    129     return MI;
    130   }
    131 
    132   // Extract the length and alignment and fill if they are constant.
    133   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
    134   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
    135   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
    136     return 0;
    137   uint64_t Len = LenC->getZExtValue();
    138   Alignment = MI->getAlignment();
    139 
    140   // If the length is zero, this is a no-op
    141   if (Len == 0) return MI; // memset(d,c,0,a) -> noop
    142 
    143   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
    144   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
    145     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
    146 
    147     Value *Dest = MI->getDest();
    148     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
    149     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
    150     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
    151 
    152     // Alignment 0 is identity for alignment 1 for memset, but not store.
    153     if (Alignment == 0) Alignment = 1;
    154 
    155     // Extract the fill value and store.
    156     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
    157     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
    158                                         MI->isVolatile());
    159     S->setAlignment(Alignment);
    160 
    161     // Set the size of the copy to 0, it will be deleted on the next iteration.
    162     MI->setLength(Constant::getNullValue(LenC->getType()));
    163     return MI;
    164   }
    165 
    166   return 0;
    167 }
    168 
    169 /// visitCallInst - CallInst simplification.  This mostly only handles folding
    170 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
    171 /// the heavy lifting.
    172 ///
    173 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
    174   if (isFreeCall(&CI))
    175     return visitFree(CI);
    176   if (isMalloc(&CI))
    177     return visitMalloc(CI);
    178 
    179   // If the caller function is nounwind, mark the call as nounwind, even if the
    180   // callee isn't.
    181   if (CI.getParent()->getParent()->doesNotThrow() &&
    182       !CI.doesNotThrow()) {
    183     CI.setDoesNotThrow();
    184     return &CI;
    185   }
    186 
    187   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
    188   if (!II) return visitCallSite(&CI);
    189 
    190   // Intrinsics cannot occur in an invoke, so handle them here instead of in
    191   // visitCallSite.
    192   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
    193     bool Changed = false;
    194 
    195     // memmove/cpy/set of zero bytes is a noop.
    196     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
    197       if (NumBytes->isNullValue())
    198         return EraseInstFromFunction(CI);
    199 
    200       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
    201         if (CI->getZExtValue() == 1) {
    202           // Replace the instruction with just byte operations.  We would
    203           // transform other cases to loads/stores, but we don't know if
    204           // alignment is sufficient.
    205         }
    206     }
    207 
    208     // No other transformations apply to volatile transfers.
    209     if (MI->isVolatile())
    210       return 0;
    211 
    212     // If we have a memmove and the source operation is a constant global,
    213     // then the source and dest pointers can't alias, so we can change this
    214     // into a call to memcpy.
    215     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
    216       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
    217         if (GVSrc->isConstant()) {
    218           Module *M = CI.getParent()->getParent()->getParent();
    219           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
    220           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
    221                            CI.getArgOperand(1)->getType(),
    222                            CI.getArgOperand(2)->getType() };
    223           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
    224           Changed = true;
    225         }
    226     }
    227 
    228     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
    229       // memmove(x,x,size) -> noop.
    230       if (MTI->getSource() == MTI->getDest())
    231         return EraseInstFromFunction(CI);
    232     }
    233 
    234     // If we can determine a pointer alignment that is bigger than currently
    235     // set, update the alignment.
    236     if (isa<MemTransferInst>(MI)) {
    237       if (Instruction *I = SimplifyMemTransfer(MI))
    238         return I;
    239     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
    240       if (Instruction *I = SimplifyMemSet(MSI))
    241         return I;
    242     }
    243 
    244     if (Changed) return II;
    245   }
    246 
    247   switch (II->getIntrinsicID()) {
    248   default: break;
    249   case Intrinsic::objectsize: {
    250     // We need target data for just about everything so depend on it.
    251     if (!TD) break;
    252 
    253     Type *ReturnTy = CI.getType();
    254     uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
    255 
    256     // Get to the real allocated thing and offset as fast as possible.
    257     Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
    258 
    259     uint64_t Offset = 0;
    260     uint64_t Size = -1ULL;
    261 
    262     // Try to look through constant GEPs.
    263     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
    264       if (!GEP->hasAllConstantIndices()) break;
    265 
    266       // Get the current byte offset into the thing. Use the original
    267       // operand in case we're looking through a bitcast.
    268       SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
    269       Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
    270 
    271       Op1 = GEP->getPointerOperand()->stripPointerCasts();
    272 
    273       // Make sure we're not a constant offset from an external
    274       // global.
    275       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
    276         if (!GV->hasDefinitiveInitializer()) break;
    277     }
    278 
    279     // If we've stripped down to a single global variable that we
    280     // can know the size of then just return that.
    281     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
    282       if (GV->hasDefinitiveInitializer()) {
    283         Constant *C = GV->getInitializer();
    284         Size = TD->getTypeAllocSize(C->getType());
    285       } else {
    286         // Can't determine size of the GV.
    287         Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
    288         return ReplaceInstUsesWith(CI, RetVal);
    289       }
    290     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
    291       // Get alloca size.
    292       if (AI->getAllocatedType()->isSized()) {
    293         Size = TD->getTypeAllocSize(AI->getAllocatedType());
    294         if (AI->isArrayAllocation()) {
    295           const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
    296           if (!C) break;
    297           Size *= C->getZExtValue();
    298         }
    299       }
    300     } else if (CallInst *MI = extractMallocCall(Op1)) {
    301       // Get allocation size.
    302       Type* MallocType = getMallocAllocatedType(MI);
    303       if (MallocType && MallocType->isSized())
    304         if (Value *NElems = getMallocArraySize(MI, TD, true))
    305           if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
    306             Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
    307     }
    308 
    309     // Do not return "I don't know" here. Later optimization passes could
    310     // make it possible to evaluate objectsize to a constant.
    311     if (Size == -1ULL)
    312       break;
    313 
    314     if (Size < Offset) {
    315       // Out of bound reference? Negative index normalized to large
    316       // index? Just return "I don't know".
    317       return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
    318     }
    319     return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
    320   }
    321   case Intrinsic::bswap:
    322     // bswap(bswap(x)) -> x
    323     if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
    324       if (Operand->getIntrinsicID() == Intrinsic::bswap)
    325         return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
    326 
    327     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
    328     if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
    329       if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
    330         if (Operand->getIntrinsicID() == Intrinsic::bswap) {
    331           unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
    332                        TI->getType()->getPrimitiveSizeInBits();
    333           Value *CV = ConstantInt::get(Operand->getType(), C);
    334           Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
    335           return new TruncInst(V, TI->getType());
    336         }
    337     }
    338 
    339     break;
    340   case Intrinsic::powi:
    341     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    342       // powi(x, 0) -> 1.0
    343       if (Power->isZero())
    344         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
    345       // powi(x, 1) -> x
    346       if (Power->isOne())
    347         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
    348       // powi(x, -1) -> 1/x
    349       if (Power->isAllOnesValue())
    350         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
    351                                           II->getArgOperand(0));
    352     }
    353     break;
    354   case Intrinsic::cttz: {
    355     // If all bits below the first known one are known zero,
    356     // this value is constant.
    357     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    358     // FIXME: Try to simplify vectors of integers.
    359     if (!IT) break;
    360     uint32_t BitWidth = IT->getBitWidth();
    361     APInt KnownZero(BitWidth, 0);
    362     APInt KnownOne(BitWidth, 0);
    363     ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
    364                       KnownZero, KnownOne);
    365     unsigned TrailingZeros = KnownOne.countTrailingZeros();
    366     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
    367     if ((Mask & KnownZero) == Mask)
    368       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    369                                  APInt(BitWidth, TrailingZeros)));
    370 
    371     }
    372     break;
    373   case Intrinsic::ctlz: {
    374     // If all bits above the first known one are known zero,
    375     // this value is constant.
    376     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    377     // FIXME: Try to simplify vectors of integers.
    378     if (!IT) break;
    379     uint32_t BitWidth = IT->getBitWidth();
    380     APInt KnownZero(BitWidth, 0);
    381     APInt KnownOne(BitWidth, 0);
    382     ComputeMaskedBits(II->getArgOperand(0), APInt::getAllOnesValue(BitWidth),
    383                       KnownZero, KnownOne);
    384     unsigned LeadingZeros = KnownOne.countLeadingZeros();
    385     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
    386     if ((Mask & KnownZero) == Mask)
    387       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    388                                  APInt(BitWidth, LeadingZeros)));
    389 
    390     }
    391     break;
    392   case Intrinsic::uadd_with_overflow: {
    393     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    394     IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
    395     uint32_t BitWidth = IT->getBitWidth();
    396     APInt Mask = APInt::getSignBit(BitWidth);
    397     APInt LHSKnownZero(BitWidth, 0);
    398     APInt LHSKnownOne(BitWidth, 0);
    399     ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
    400     bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
    401     bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
    402 
    403     if (LHSKnownNegative || LHSKnownPositive) {
    404       APInt RHSKnownZero(BitWidth, 0);
    405       APInt RHSKnownOne(BitWidth, 0);
    406       ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
    407       bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
    408       bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
    409       if (LHSKnownNegative && RHSKnownNegative) {
    410         // The sign bit is set in both cases: this MUST overflow.
    411         // Create a simple add instruction, and insert it into the struct.
    412         Value *Add = Builder->CreateAdd(LHS, RHS);
    413         Add->takeName(&CI);
    414         Constant *V[] = {
    415           UndefValue::get(LHS->getType()),
    416           ConstantInt::getTrue(II->getContext())
    417         };
    418         StructType *ST = cast<StructType>(II->getType());
    419         Constant *Struct = ConstantStruct::get(ST, V);
    420         return InsertValueInst::Create(Struct, Add, 0);
    421       }
    422 
    423       if (LHSKnownPositive && RHSKnownPositive) {
    424         // The sign bit is clear in both cases: this CANNOT overflow.
    425         // Create a simple add instruction, and insert it into the struct.
    426         Value *Add = Builder->CreateNUWAdd(LHS, RHS);
    427         Add->takeName(&CI);
    428         Constant *V[] = {
    429           UndefValue::get(LHS->getType()),
    430           ConstantInt::getFalse(II->getContext())
    431         };
    432         StructType *ST = cast<StructType>(II->getType());
    433         Constant *Struct = ConstantStruct::get(ST, V);
    434         return InsertValueInst::Create(Struct, Add, 0);
    435       }
    436     }
    437   }
    438   // FALL THROUGH uadd into sadd
    439   case Intrinsic::sadd_with_overflow:
    440     // Canonicalize constants into the RHS.
    441     if (isa<Constant>(II->getArgOperand(0)) &&
    442         !isa<Constant>(II->getArgOperand(1))) {
    443       Value *LHS = II->getArgOperand(0);
    444       II->setArgOperand(0, II->getArgOperand(1));
    445       II->setArgOperand(1, LHS);
    446       return II;
    447     }
    448 
    449     // X + undef -> undef
    450     if (isa<UndefValue>(II->getArgOperand(1)))
    451       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    452 
    453     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    454       // X + 0 -> {X, false}
    455       if (RHS->isZero()) {
    456         Constant *V[] = {
    457           UndefValue::get(II->getArgOperand(0)->getType()),
    458           ConstantInt::getFalse(II->getContext())
    459         };
    460         Constant *Struct =
    461           ConstantStruct::get(cast<StructType>(II->getType()), V);
    462         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    463       }
    464     }
    465     break;
    466   case Intrinsic::usub_with_overflow:
    467   case Intrinsic::ssub_with_overflow:
    468     // undef - X -> undef
    469     // X - undef -> undef
    470     if (isa<UndefValue>(II->getArgOperand(0)) ||
    471         isa<UndefValue>(II->getArgOperand(1)))
    472       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    473 
    474     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    475       // X - 0 -> {X, false}
    476       if (RHS->isZero()) {
    477         Constant *V[] = {
    478           UndefValue::get(II->getArgOperand(0)->getType()),
    479           ConstantInt::getFalse(II->getContext())
    480         };
    481         Constant *Struct =
    482           ConstantStruct::get(cast<StructType>(II->getType()), V);
    483         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    484       }
    485     }
    486     break;
    487   case Intrinsic::umul_with_overflow: {
    488     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    489     unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
    490     APInt Mask = APInt::getAllOnesValue(BitWidth);
    491 
    492     APInt LHSKnownZero(BitWidth, 0);
    493     APInt LHSKnownOne(BitWidth, 0);
    494     ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
    495     APInt RHSKnownZero(BitWidth, 0);
    496     APInt RHSKnownOne(BitWidth, 0);
    497     ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
    498 
    499     // Get the largest possible values for each operand.
    500     APInt LHSMax = ~LHSKnownZero;
    501     APInt RHSMax = ~RHSKnownZero;
    502 
    503     // If multiplying the maximum values does not overflow then we can turn
    504     // this into a plain NUW mul.
    505     bool Overflow;
    506     LHSMax.umul_ov(RHSMax, Overflow);
    507     if (!Overflow) {
    508       Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
    509       Constant *V[] = {
    510         UndefValue::get(LHS->getType()),
    511         Builder->getFalse()
    512       };
    513       Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
    514       return InsertValueInst::Create(Struct, Mul, 0);
    515     }
    516   } // FALL THROUGH
    517   case Intrinsic::smul_with_overflow:
    518     // Canonicalize constants into the RHS.
    519     if (isa<Constant>(II->getArgOperand(0)) &&
    520         !isa<Constant>(II->getArgOperand(1))) {
    521       Value *LHS = II->getArgOperand(0);
    522       II->setArgOperand(0, II->getArgOperand(1));
    523       II->setArgOperand(1, LHS);
    524       return II;
    525     }
    526 
    527     // X * undef -> undef
    528     if (isa<UndefValue>(II->getArgOperand(1)))
    529       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    530 
    531     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    532       // X*0 -> {0, false}
    533       if (RHSI->isZero())
    534         return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
    535 
    536       // X * 1 -> {X, false}
    537       if (RHSI->equalsInt(1)) {
    538         Constant *V[] = {
    539           UndefValue::get(II->getArgOperand(0)->getType()),
    540           ConstantInt::getFalse(II->getContext())
    541         };
    542         Constant *Struct =
    543           ConstantStruct::get(cast<StructType>(II->getType()), V);
    544         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    545       }
    546     }
    547     break;
    548   case Intrinsic::ppc_altivec_lvx:
    549   case Intrinsic::ppc_altivec_lvxl:
    550     // Turn PPC lvx -> load if the pointer is known aligned.
    551     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
    552       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
    553                                          PointerType::getUnqual(II->getType()));
    554       return new LoadInst(Ptr);
    555     }
    556     break;
    557   case Intrinsic::ppc_altivec_stvx:
    558   case Intrinsic::ppc_altivec_stvxl:
    559     // Turn stvx -> store if the pointer is known aligned.
    560     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
    561       Type *OpPtrTy =
    562         PointerType::getUnqual(II->getArgOperand(0)->getType());
    563       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
    564       return new StoreInst(II->getArgOperand(0), Ptr);
    565     }
    566     break;
    567   case Intrinsic::x86_sse_storeu_ps:
    568   case Intrinsic::x86_sse2_storeu_pd:
    569   case Intrinsic::x86_sse2_storeu_dq:
    570     // Turn X86 storeu -> store if the pointer is known aligned.
    571     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
    572       Type *OpPtrTy =
    573         PointerType::getUnqual(II->getArgOperand(1)->getType());
    574       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
    575       return new StoreInst(II->getArgOperand(1), Ptr);
    576     }
    577     break;
    578 
    579   case Intrinsic::x86_sse_cvtss2si:
    580   case Intrinsic::x86_sse_cvtss2si64:
    581   case Intrinsic::x86_sse_cvttss2si:
    582   case Intrinsic::x86_sse_cvttss2si64:
    583   case Intrinsic::x86_sse2_cvtsd2si:
    584   case Intrinsic::x86_sse2_cvtsd2si64:
    585   case Intrinsic::x86_sse2_cvttsd2si:
    586   case Intrinsic::x86_sse2_cvttsd2si64: {
    587     // These intrinsics only demand the 0th element of their input vectors. If
    588     // we can simplify the input based on that, do so now.
    589     unsigned VWidth =
    590       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    591     APInt DemandedElts(VWidth, 1);
    592     APInt UndefElts(VWidth, 0);
    593     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
    594                                               DemandedElts, UndefElts)) {
    595       II->setArgOperand(0, V);
    596       return II;
    597     }
    598     break;
    599   }
    600 
    601 
    602   case Intrinsic::x86_sse41_pmovsxbw:
    603   case Intrinsic::x86_sse41_pmovsxwd:
    604   case Intrinsic::x86_sse41_pmovsxdq:
    605   case Intrinsic::x86_sse41_pmovzxbw:
    606   case Intrinsic::x86_sse41_pmovzxwd:
    607   case Intrinsic::x86_sse41_pmovzxdq: {
    608     // pmov{s|z}x ignores the upper half of their input vectors.
    609     unsigned VWidth =
    610       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    611     unsigned LowHalfElts = VWidth / 2;
    612     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
    613     APInt UndefElts(VWidth, 0);
    614     if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
    615                                                  InputDemandedElts,
    616                                                  UndefElts)) {
    617       II->setArgOperand(0, TmpV);
    618       return II;
    619     }
    620     break;
    621   }
    622 
    623   case Intrinsic::ppc_altivec_vperm:
    624     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
    625     if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
    626       assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
    627 
    628       // Check that all of the elements are integer constants or undefs.
    629       bool AllEltsOk = true;
    630       for (unsigned i = 0; i != 16; ++i) {
    631         if (!isa<ConstantInt>(Mask->getOperand(i)) &&
    632             !isa<UndefValue>(Mask->getOperand(i))) {
    633           AllEltsOk = false;
    634           break;
    635         }
    636       }
    637 
    638       if (AllEltsOk) {
    639         // Cast the input vectors to byte vectors.
    640         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
    641                                             Mask->getType());
    642         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
    643                                             Mask->getType());
    644         Value *Result = UndefValue::get(Op0->getType());
    645 
    646         // Only extract each element once.
    647         Value *ExtractedElts[32];
    648         memset(ExtractedElts, 0, sizeof(ExtractedElts));
    649 
    650         for (unsigned i = 0; i != 16; ++i) {
    651           if (isa<UndefValue>(Mask->getOperand(i)))
    652             continue;
    653           unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
    654           Idx &= 31;  // Match the hardware behavior.
    655 
    656           if (ExtractedElts[Idx] == 0) {
    657             ExtractedElts[Idx] =
    658               Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
    659                   ConstantInt::get(Type::getInt32Ty(II->getContext()),
    660                                    Idx&15, false), "tmp");
    661           }
    662 
    663           // Insert this value into the result vector.
    664           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
    665                          ConstantInt::get(Type::getInt32Ty(II->getContext()),
    666                                           i, false), "tmp");
    667         }
    668         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
    669       }
    670     }
    671     break;
    672 
    673   case Intrinsic::arm_neon_vld1:
    674   case Intrinsic::arm_neon_vld2:
    675   case Intrinsic::arm_neon_vld3:
    676   case Intrinsic::arm_neon_vld4:
    677   case Intrinsic::arm_neon_vld2lane:
    678   case Intrinsic::arm_neon_vld3lane:
    679   case Intrinsic::arm_neon_vld4lane:
    680   case Intrinsic::arm_neon_vst1:
    681   case Intrinsic::arm_neon_vst2:
    682   case Intrinsic::arm_neon_vst3:
    683   case Intrinsic::arm_neon_vst4:
    684   case Intrinsic::arm_neon_vst2lane:
    685   case Intrinsic::arm_neon_vst3lane:
    686   case Intrinsic::arm_neon_vst4lane: {
    687     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
    688     unsigned AlignArg = II->getNumArgOperands() - 1;
    689     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
    690     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
    691       II->setArgOperand(AlignArg,
    692                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
    693                                          MemAlign, false));
    694       return II;
    695     }
    696     break;
    697   }
    698 
    699   case Intrinsic::stackrestore: {
    700     // If the save is right next to the restore, remove the restore.  This can
    701     // happen when variable allocas are DCE'd.
    702     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
    703       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
    704         BasicBlock::iterator BI = SS;
    705         if (&*++BI == II)
    706           return EraseInstFromFunction(CI);
    707       }
    708     }
    709 
    710     // Scan down this block to see if there is another stack restore in the
    711     // same block without an intervening call/alloca.
    712     BasicBlock::iterator BI = II;
    713     TerminatorInst *TI = II->getParent()->getTerminator();
    714     bool CannotRemove = false;
    715     for (++BI; &*BI != TI; ++BI) {
    716       if (isa<AllocaInst>(BI) || isMalloc(BI)) {
    717         CannotRemove = true;
    718         break;
    719       }
    720       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
    721         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
    722           // If there is a stackrestore below this one, remove this one.
    723           if (II->getIntrinsicID() == Intrinsic::stackrestore)
    724             return EraseInstFromFunction(CI);
    725           // Otherwise, ignore the intrinsic.
    726         } else {
    727           // If we found a non-intrinsic call, we can't remove the stack
    728           // restore.
    729           CannotRemove = true;
    730           break;
    731         }
    732       }
    733     }
    734 
    735     // If the stack restore is in a return/unwind block and if there are no
    736     // allocas or calls between the restore and the return, nuke the restore.
    737     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
    738       return EraseInstFromFunction(CI);
    739     break;
    740   }
    741   }
    742 
    743   return visitCallSite(II);
    744 }
    745 
    746 // InvokeInst simplification
    747 //
    748 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
    749   return visitCallSite(&II);
    750 }
    751 
    752 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
    753 /// passed through the varargs area, we can eliminate the use of the cast.
    754 static bool isSafeToEliminateVarargsCast(const CallSite CS,
    755                                          const CastInst * const CI,
    756                                          const TargetData * const TD,
    757                                          const int ix) {
    758   if (!CI->isLosslessCast())
    759     return false;
    760 
    761   // The size of ByVal arguments is derived from the type, so we
    762   // can't change to a type with a different size.  If the size were
    763   // passed explicitly we could avoid this check.
    764   if (!CS.paramHasAttr(ix, Attribute::ByVal))
    765     return true;
    766 
    767   Type* SrcTy =
    768             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
    769   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
    770   if (!SrcTy->isSized() || !DstTy->isSized())
    771     return false;
    772   if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
    773     return false;
    774   return true;
    775 }
    776 
    777 namespace {
    778 class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
    779   InstCombiner *IC;
    780 protected:
    781   void replaceCall(Value *With) {
    782     NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
    783   }
    784   bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
    785     if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
    786       return true;
    787     if (ConstantInt *SizeCI =
    788                            dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
    789       if (SizeCI->isAllOnesValue())
    790         return true;
    791       if (isString) {
    792         uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
    793         // If the length is 0 we don't know how long it is and so we can't
    794         // remove the check.
    795         if (Len == 0) return false;
    796         return SizeCI->getZExtValue() >= Len;
    797       }
    798       if (ConstantInt *Arg = dyn_cast<ConstantInt>(
    799                                                   CI->getArgOperand(SizeArgOp)))
    800         return SizeCI->getZExtValue() >= Arg->getZExtValue();
    801     }
    802     return false;
    803   }
    804 public:
    805   InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
    806   Instruction *NewInstruction;
    807 };
    808 } // end anonymous namespace
    809 
    810 // Try to fold some different type of calls here.
    811 // Currently we're only working with the checking functions, memcpy_chk,
    812 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
    813 // strcat_chk and strncat_chk.
    814 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
    815   if (CI->getCalledFunction() == 0) return 0;
    816 
    817   InstCombineFortifiedLibCalls Simplifier(this);
    818   Simplifier.fold(CI, TD);
    819   return Simplifier.NewInstruction;
    820 }
    821 
    822 // visitCallSite - Improvements for call and invoke instructions.
    823 //
    824 Instruction *InstCombiner::visitCallSite(CallSite CS) {
    825   bool Changed = false;
    826 
    827   // If the callee is a pointer to a function, attempt to move any casts to the
    828   // arguments of the call/invoke.
    829   Value *Callee = CS.getCalledValue();
    830   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
    831     return 0;
    832 
    833   if (Function *CalleeF = dyn_cast<Function>(Callee))
    834     // If the call and callee calling conventions don't match, this call must
    835     // be unreachable, as the call is undefined.
    836     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
    837         // Only do this for calls to a function with a body.  A prototype may
    838         // not actually end up matching the implementation's calling conv for a
    839         // variety of reasons (e.g. it may be written in assembly).
    840         !CalleeF->isDeclaration()) {
    841       Instruction *OldCall = CS.getInstruction();
    842       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
    843                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
    844                                   OldCall);
    845       // If OldCall dues not return void then replaceAllUsesWith undef.
    846       // This allows ValueHandlers and custom metadata to adjust itself.
    847       if (!OldCall->getType()->isVoidTy())
    848         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
    849       if (isa<CallInst>(OldCall))
    850         return EraseInstFromFunction(*OldCall);
    851 
    852       // We cannot remove an invoke, because it would change the CFG, just
    853       // change the callee to a null pointer.
    854       cast<InvokeInst>(OldCall)->setCalledFunction(
    855                                     Constant::getNullValue(CalleeF->getType()));
    856       return 0;
    857     }
    858 
    859   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
    860     // This instruction is not reachable, just remove it.  We insert a store to
    861     // undef so that we know that this code is not reachable, despite the fact
    862     // that we can't modify the CFG here.
    863     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
    864                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
    865                   CS.getInstruction());
    866 
    867     // If CS does not return void then replaceAllUsesWith undef.
    868     // This allows ValueHandlers and custom metadata to adjust itself.
    869     if (!CS.getInstruction()->getType()->isVoidTy())
    870       ReplaceInstUsesWith(*CS.getInstruction(),
    871                           UndefValue::get(CS.getInstruction()->getType()));
    872 
    873     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
    874       // Don't break the CFG, insert a dummy cond branch.
    875       BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
    876                          ConstantInt::getTrue(Callee->getContext()), II);
    877     }
    878     return EraseInstFromFunction(*CS.getInstruction());
    879   }
    880 
    881   if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
    882     if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
    883       if (In->getIntrinsicID() == Intrinsic::init_trampoline)
    884         return transformCallThroughTrampoline(CS);
    885 
    886   PointerType *PTy = cast<PointerType>(Callee->getType());
    887   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
    888   if (FTy->isVarArg()) {
    889     int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
    890     // See if we can optimize any arguments passed through the varargs area of
    891     // the call.
    892     for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
    893            E = CS.arg_end(); I != E; ++I, ++ix) {
    894       CastInst *CI = dyn_cast<CastInst>(*I);
    895       if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
    896         *I = CI->getOperand(0);
    897         Changed = true;
    898       }
    899     }
    900   }
    901 
    902   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
    903     // Inline asm calls cannot throw - mark them 'nounwind'.
    904     CS.setDoesNotThrow();
    905     Changed = true;
    906   }
    907 
    908   // Try to optimize the call if possible, we require TargetData for most of
    909   // this.  None of these calls are seen as possibly dead so go ahead and
    910   // delete the instruction now.
    911   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
    912     Instruction *I = tryOptimizeCall(CI, TD);
    913     // If we changed something return the result, etc. Otherwise let
    914     // the fallthrough check.
    915     if (I) return EraseInstFromFunction(*I);
    916   }
    917 
    918   return Changed ? CS.getInstruction() : 0;
    919 }
    920 
    921 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
    922 // attempt to move the cast to the arguments of the call/invoke.
    923 //
    924 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
    925   Function *Callee =
    926     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
    927   if (Callee == 0)
    928     return false;
    929   Instruction *Caller = CS.getInstruction();
    930   const AttrListPtr &CallerPAL = CS.getAttributes();
    931 
    932   // Okay, this is a cast from a function to a different type.  Unless doing so
    933   // would cause a type conversion of one of our arguments, change this call to
    934   // be a direct call with arguments casted to the appropriate types.
    935   //
    936   FunctionType *FT = Callee->getFunctionType();
    937   Type *OldRetTy = Caller->getType();
    938   Type *NewRetTy = FT->getReturnType();
    939 
    940   if (NewRetTy->isStructTy())
    941     return false; // TODO: Handle multiple return values.
    942 
    943   // Check to see if we are changing the return type...
    944   if (OldRetTy != NewRetTy) {
    945     if (Callee->isDeclaration() &&
    946         // Conversion is ok if changing from one pointer type to another or from
    947         // a pointer to an integer of the same size.
    948         !((OldRetTy->isPointerTy() || !TD ||
    949            OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
    950           (NewRetTy->isPointerTy() || !TD ||
    951            NewRetTy == TD->getIntPtrType(Caller->getContext()))))
    952       return false;   // Cannot transform this return value.
    953 
    954     if (!Caller->use_empty() &&
    955         // void -> non-void is handled specially
    956         !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
    957       return false;   // Cannot transform this return value.
    958 
    959     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
    960       Attributes RAttrs = CallerPAL.getRetAttributes();
    961       if (RAttrs & Attribute::typeIncompatible(NewRetTy))
    962         return false;   // Attribute not compatible with transformed value.
    963     }
    964 
    965     // If the callsite is an invoke instruction, and the return value is used by
    966     // a PHI node in a successor, we cannot change the return type of the call
    967     // because there is no place to put the cast instruction (without breaking
    968     // the critical edge).  Bail out in this case.
    969     if (!Caller->use_empty())
    970       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
    971         for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
    972              UI != E; ++UI)
    973           if (PHINode *PN = dyn_cast<PHINode>(*UI))
    974             if (PN->getParent() == II->getNormalDest() ||
    975                 PN->getParent() == II->getUnwindDest())
    976               return false;
    977   }
    978 
    979   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
    980   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
    981 
    982   CallSite::arg_iterator AI = CS.arg_begin();
    983   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
    984     Type *ParamTy = FT->getParamType(i);
    985     Type *ActTy = (*AI)->getType();
    986 
    987     if (!CastInst::isCastable(ActTy, ParamTy))
    988       return false;   // Cannot transform this parameter value.
    989 
    990     unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
    991     if (Attrs & Attribute::typeIncompatible(ParamTy))
    992       return false;   // Attribute not compatible with transformed value.
    993 
    994     // If the parameter is passed as a byval argument, then we have to have a
    995     // sized type and the sized type has to have the same size as the old type.
    996     if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
    997       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
    998       if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
    999         return false;
   1000 
   1001       Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
   1002       if (TD->getTypeAllocSize(CurElTy) !=
   1003           TD->getTypeAllocSize(ParamPTy->getElementType()))
   1004         return false;
   1005     }
   1006 
   1007     // Converting from one pointer type to another or between a pointer and an
   1008     // integer of the same size is safe even if we do not have a body.
   1009     bool isConvertible = ActTy == ParamTy ||
   1010       (TD && ((ParamTy->isPointerTy() ||
   1011       ParamTy == TD->getIntPtrType(Caller->getContext())) &&
   1012               (ActTy->isPointerTy() ||
   1013               ActTy == TD->getIntPtrType(Caller->getContext()))));
   1014     if (Callee->isDeclaration() && !isConvertible) return false;
   1015   }
   1016 
   1017   if (Callee->isDeclaration()) {
   1018     // Do not delete arguments unless we have a function body.
   1019     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
   1020       return false;
   1021 
   1022     // If the callee is just a declaration, don't change the varargsness of the
   1023     // call.  We don't want to introduce a varargs call where one doesn't
   1024     // already exist.
   1025     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
   1026     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
   1027       return false;
   1028   }
   1029 
   1030   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
   1031       !CallerPAL.isEmpty())
   1032     // In this case we have more arguments than the new function type, but we
   1033     // won't be dropping them.  Check that these extra arguments have attributes
   1034     // that are compatible with being a vararg call argument.
   1035     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
   1036       if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
   1037         break;
   1038       Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
   1039       if (PAttrs & Attribute::VarArgsIncompatible)
   1040         return false;
   1041     }
   1042 
   1043 
   1044   // Okay, we decided that this is a safe thing to do: go ahead and start
   1045   // inserting cast instructions as necessary.
   1046   std::vector<Value*> Args;
   1047   Args.reserve(NumActualArgs);
   1048   SmallVector<AttributeWithIndex, 8> attrVec;
   1049   attrVec.reserve(NumCommonArgs);
   1050 
   1051   // Get any return attributes.
   1052   Attributes RAttrs = CallerPAL.getRetAttributes();
   1053 
   1054   // If the return value is not being used, the type may not be compatible
   1055   // with the existing attributes.  Wipe out any problematic attributes.
   1056   RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
   1057 
   1058   // Add the new return attributes.
   1059   if (RAttrs)
   1060     attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
   1061 
   1062   AI = CS.arg_begin();
   1063   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
   1064     Type *ParamTy = FT->getParamType(i);
   1065     if ((*AI)->getType() == ParamTy) {
   1066       Args.push_back(*AI);
   1067     } else {
   1068       Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
   1069           false, ParamTy, false);
   1070       Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
   1071     }
   1072 
   1073     // Add any parameter attributes.
   1074     if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
   1075       attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
   1076   }
   1077 
   1078   // If the function takes more arguments than the call was taking, add them
   1079   // now.
   1080   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
   1081     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
   1082 
   1083   // If we are removing arguments to the function, emit an obnoxious warning.
   1084   if (FT->getNumParams() < NumActualArgs) {
   1085     if (!FT->isVarArg()) {
   1086       errs() << "WARNING: While resolving call to function '"
   1087              << Callee->getName() << "' arguments were dropped!\n";
   1088     } else {
   1089       // Add all of the arguments in their promoted form to the arg list.
   1090       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
   1091         Type *PTy = getPromotedType((*AI)->getType());
   1092         if (PTy != (*AI)->getType()) {
   1093           // Must promote to pass through va_arg area!
   1094           Instruction::CastOps opcode =
   1095             CastInst::getCastOpcode(*AI, false, PTy, false);
   1096           Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
   1097         } else {
   1098           Args.push_back(*AI);
   1099         }
   1100 
   1101         // Add any parameter attributes.
   1102         if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
   1103           attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
   1104       }
   1105     }
   1106   }
   1107 
   1108   if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
   1109     attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
   1110 
   1111   if (NewRetTy->isVoidTy())
   1112     Caller->setName("");   // Void type should not have a name.
   1113 
   1114   const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
   1115                                                      attrVec.end());
   1116 
   1117   Instruction *NC;
   1118   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1119     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
   1120                                II->getUnwindDest(), Args);
   1121     NC->takeName(II);
   1122     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
   1123     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
   1124   } else {
   1125     CallInst *CI = cast<CallInst>(Caller);
   1126     NC = Builder->CreateCall(Callee, Args);
   1127     NC->takeName(CI);
   1128     if (CI->isTailCall())
   1129       cast<CallInst>(NC)->setTailCall();
   1130     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
   1131     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
   1132   }
   1133 
   1134   // Insert a cast of the return type as necessary.
   1135   Value *NV = NC;
   1136   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
   1137     if (!NV->getType()->isVoidTy()) {
   1138       Instruction::CastOps opcode =
   1139         CastInst::getCastOpcode(NC, false, OldRetTy, false);
   1140       NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
   1141       NC->setDebugLoc(Caller->getDebugLoc());
   1142 
   1143       // If this is an invoke instruction, we should insert it after the first
   1144       // non-phi, instruction in the normal successor block.
   1145       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1146         BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
   1147         InsertNewInstBefore(NC, *I);
   1148       } else {
   1149         // Otherwise, it's a call, just insert cast right after the call.
   1150         InsertNewInstBefore(NC, *Caller);
   1151       }
   1152       Worklist.AddUsersToWorkList(*Caller);
   1153     } else {
   1154       NV = UndefValue::get(Caller->getType());
   1155     }
   1156   }
   1157 
   1158   if (!Caller->use_empty())
   1159     ReplaceInstUsesWith(*Caller, NV);
   1160 
   1161   EraseInstFromFunction(*Caller);
   1162   return true;
   1163 }
   1164 
   1165 // transformCallThroughTrampoline - Turn a call to a function created by the
   1166 // init_trampoline intrinsic into a direct call to the underlying function.
   1167 //
   1168 Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
   1169   Value *Callee = CS.getCalledValue();
   1170   PointerType *PTy = cast<PointerType>(Callee->getType());
   1171   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1172   const AttrListPtr &Attrs = CS.getAttributes();
   1173 
   1174   // If the call already has the 'nest' attribute somewhere then give up -
   1175   // otherwise 'nest' would occur twice after splicing in the chain.
   1176   if (Attrs.hasAttrSomewhere(Attribute::Nest))
   1177     return 0;
   1178 
   1179   IntrinsicInst *Tramp =
   1180     cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
   1181 
   1182   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
   1183   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
   1184   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
   1185 
   1186   const AttrListPtr &NestAttrs = NestF->getAttributes();
   1187   if (!NestAttrs.isEmpty()) {
   1188     unsigned NestIdx = 1;
   1189     Type *NestTy = 0;
   1190     Attributes NestAttr = Attribute::None;
   1191 
   1192     // Look for a parameter marked with the 'nest' attribute.
   1193     for (FunctionType::param_iterator I = NestFTy->param_begin(),
   1194          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
   1195       if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
   1196         // Record the parameter type and any other attributes.
   1197         NestTy = *I;
   1198         NestAttr = NestAttrs.getParamAttributes(NestIdx);
   1199         break;
   1200       }
   1201 
   1202     if (NestTy) {
   1203       Instruction *Caller = CS.getInstruction();
   1204       std::vector<Value*> NewArgs;
   1205       NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
   1206 
   1207       SmallVector<AttributeWithIndex, 8> NewAttrs;
   1208       NewAttrs.reserve(Attrs.getNumSlots() + 1);
   1209 
   1210       // Insert the nest argument into the call argument list, which may
   1211       // mean appending it.  Likewise for attributes.
   1212 
   1213       // Add any result attributes.
   1214       if (Attributes Attr = Attrs.getRetAttributes())
   1215         NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
   1216 
   1217       {
   1218         unsigned Idx = 1;
   1219         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   1220         do {
   1221           if (Idx == NestIdx) {
   1222             // Add the chain argument and attributes.
   1223             Value *NestVal = Tramp->getArgOperand(2);
   1224             if (NestVal->getType() != NestTy)
   1225               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
   1226             NewArgs.push_back(NestVal);
   1227             NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
   1228           }
   1229 
   1230           if (I == E)
   1231             break;
   1232 
   1233           // Add the original argument and attributes.
   1234           NewArgs.push_back(*I);
   1235           if (Attributes Attr = Attrs.getParamAttributes(Idx))
   1236             NewAttrs.push_back
   1237               (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
   1238 
   1239           ++Idx, ++I;
   1240         } while (1);
   1241       }
   1242 
   1243       // Add any function attributes.
   1244       if (Attributes Attr = Attrs.getFnAttributes())
   1245         NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
   1246 
   1247       // The trampoline may have been bitcast to a bogus type (FTy).
   1248       // Handle this by synthesizing a new function type, equal to FTy
   1249       // with the chain parameter inserted.
   1250 
   1251       std::vector<Type*> NewTypes;
   1252       NewTypes.reserve(FTy->getNumParams()+1);
   1253 
   1254       // Insert the chain's type into the list of parameter types, which may
   1255       // mean appending it.
   1256       {
   1257         unsigned Idx = 1;
   1258         FunctionType::param_iterator I = FTy->param_begin(),
   1259           E = FTy->param_end();
   1260 
   1261         do {
   1262           if (Idx == NestIdx)
   1263             // Add the chain's type.
   1264             NewTypes.push_back(NestTy);
   1265 
   1266           if (I == E)
   1267             break;
   1268 
   1269           // Add the original type.
   1270           NewTypes.push_back(*I);
   1271 
   1272           ++Idx, ++I;
   1273         } while (1);
   1274       }
   1275 
   1276       // Replace the trampoline call with a direct call.  Let the generic
   1277       // code sort out any function type mismatches.
   1278       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
   1279                                                 FTy->isVarArg());
   1280       Constant *NewCallee =
   1281         NestF->getType() == PointerType::getUnqual(NewFTy) ?
   1282         NestF : ConstantExpr::getBitCast(NestF,
   1283                                          PointerType::getUnqual(NewFTy));
   1284       const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
   1285                                                    NewAttrs.end());
   1286 
   1287       Instruction *NewCaller;
   1288       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1289         NewCaller = InvokeInst::Create(NewCallee,
   1290                                        II->getNormalDest(), II->getUnwindDest(),
   1291                                        NewArgs);
   1292         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
   1293         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
   1294       } else {
   1295         NewCaller = CallInst::Create(NewCallee, NewArgs);
   1296         if (cast<CallInst>(Caller)->isTailCall())
   1297           cast<CallInst>(NewCaller)->setTailCall();
   1298         cast<CallInst>(NewCaller)->
   1299           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
   1300         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
   1301       }
   1302 
   1303       return NewCaller;
   1304     }
   1305   }
   1306 
   1307   // Replace the trampoline call with a direct call.  Since there is no 'nest'
   1308   // parameter, there is no need to adjust the argument list.  Let the generic
   1309   // code sort out any function type mismatches.
   1310   Constant *NewCallee =
   1311     NestF->getType() == PTy ? NestF :
   1312                               ConstantExpr::getBitCast(NestF, PTy);
   1313   CS.setCalledFunction(NewCallee);
   1314   return CS.getInstruction();
   1315 }
   1316 
   1317