Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Support/PatternMatch.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 using namespace llvm;
     18 using namespace PatternMatch;
     19 
     20 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     21 /// returning the kind and providing the out parameter results if we
     22 /// successfully match.
     23 static SelectPatternFlavor
     24 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     25   SelectInst *SI = dyn_cast<SelectInst>(V);
     26   if (SI == 0) return SPF_UNKNOWN;
     27 
     28   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     29   if (ICI == 0) return SPF_UNKNOWN;
     30 
     31   LHS = ICI->getOperand(0);
     32   RHS = ICI->getOperand(1);
     33 
     34   // (icmp X, Y) ? X : Y
     35   if (SI->getTrueValue() == ICI->getOperand(0) &&
     36       SI->getFalseValue() == ICI->getOperand(1)) {
     37     switch (ICI->getPredicate()) {
     38     default: return SPF_UNKNOWN; // Equality.
     39     case ICmpInst::ICMP_UGT:
     40     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     41     case ICmpInst::ICMP_SGT:
     42     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     43     case ICmpInst::ICMP_ULT:
     44     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     45     case ICmpInst::ICMP_SLT:
     46     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     47     }
     48   }
     49 
     50   // (icmp X, Y) ? Y : X
     51   if (SI->getTrueValue() == ICI->getOperand(1) &&
     52       SI->getFalseValue() == ICI->getOperand(0)) {
     53     switch (ICI->getPredicate()) {
     54       default: return SPF_UNKNOWN; // Equality.
     55       case ICmpInst::ICMP_UGT:
     56       case ICmpInst::ICMP_UGE: return SPF_UMIN;
     57       case ICmpInst::ICMP_SGT:
     58       case ICmpInst::ICMP_SGE: return SPF_SMIN;
     59       case ICmpInst::ICMP_ULT:
     60       case ICmpInst::ICMP_ULE: return SPF_UMAX;
     61       case ICmpInst::ICMP_SLT:
     62       case ICmpInst::ICMP_SLE: return SPF_SMAX;
     63     }
     64   }
     65 
     66   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     67 
     68   return SPF_UNKNOWN;
     69 }
     70 
     71 
     72 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     73 ///   %C = or %A, %B
     74 ///   %D = select %cond, %C, %A
     75 /// into:
     76 ///   %C = select %cond, %B, 0
     77 ///   %D = or %A, %C
     78 ///
     79 /// Assuming that the specified instruction is an operand to the select, return
     80 /// a bitmask indicating which operands of this instruction are foldable if they
     81 /// equal the other incoming value of the select.
     82 ///
     83 static unsigned GetSelectFoldableOperands(Instruction *I) {
     84   switch (I->getOpcode()) {
     85   case Instruction::Add:
     86   case Instruction::Mul:
     87   case Instruction::And:
     88   case Instruction::Or:
     89   case Instruction::Xor:
     90     return 3;              // Can fold through either operand.
     91   case Instruction::Sub:   // Can only fold on the amount subtracted.
     92   case Instruction::Shl:   // Can only fold on the shift amount.
     93   case Instruction::LShr:
     94   case Instruction::AShr:
     95     return 1;
     96   default:
     97     return 0;              // Cannot fold
     98   }
     99 }
    100 
    101 /// GetSelectFoldableConstant - For the same transformation as the previous
    102 /// function, return the identity constant that goes into the select.
    103 static Constant *GetSelectFoldableConstant(Instruction *I) {
    104   switch (I->getOpcode()) {
    105   default: llvm_unreachable("This cannot happen!");
    106   case Instruction::Add:
    107   case Instruction::Sub:
    108   case Instruction::Or:
    109   case Instruction::Xor:
    110   case Instruction::Shl:
    111   case Instruction::LShr:
    112   case Instruction::AShr:
    113     return Constant::getNullValue(I->getType());
    114   case Instruction::And:
    115     return Constant::getAllOnesValue(I->getType());
    116   case Instruction::Mul:
    117     return ConstantInt::get(I->getType(), 1);
    118   }
    119 }
    120 
    121 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    122 /// have the same opcode and only one use each.  Try to simplify this.
    123 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    124                                           Instruction *FI) {
    125   if (TI->getNumOperands() == 1) {
    126     // If this is a non-volatile load or a cast from the same type,
    127     // merge.
    128     if (TI->isCast()) {
    129       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
    130         return 0;
    131     } else {
    132       return 0;  // unknown unary op.
    133     }
    134 
    135     // Fold this by inserting a select from the input values.
    136     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    137                                          FI->getOperand(0), SI.getName()+".v");
    138     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    139                             TI->getType());
    140   }
    141 
    142   // Only handle binary operators here.
    143   if (!isa<BinaryOperator>(TI))
    144     return 0;
    145 
    146   // Figure out if the operations have any operands in common.
    147   Value *MatchOp, *OtherOpT, *OtherOpF;
    148   bool MatchIsOpZero;
    149   if (TI->getOperand(0) == FI->getOperand(0)) {
    150     MatchOp  = TI->getOperand(0);
    151     OtherOpT = TI->getOperand(1);
    152     OtherOpF = FI->getOperand(1);
    153     MatchIsOpZero = true;
    154   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    155     MatchOp  = TI->getOperand(1);
    156     OtherOpT = TI->getOperand(0);
    157     OtherOpF = FI->getOperand(0);
    158     MatchIsOpZero = false;
    159   } else if (!TI->isCommutative()) {
    160     return 0;
    161   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    162     MatchOp  = TI->getOperand(0);
    163     OtherOpT = TI->getOperand(1);
    164     OtherOpF = FI->getOperand(0);
    165     MatchIsOpZero = true;
    166   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    167     MatchOp  = TI->getOperand(1);
    168     OtherOpT = TI->getOperand(0);
    169     OtherOpF = FI->getOperand(1);
    170     MatchIsOpZero = true;
    171   } else {
    172     return 0;
    173   }
    174 
    175   // If we reach here, they do have operations in common.
    176   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    177                                        OtherOpF, SI.getName()+".v");
    178 
    179   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    180     if (MatchIsOpZero)
    181       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    182     else
    183       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    184   }
    185   llvm_unreachable("Shouldn't get here");
    186   return 0;
    187 }
    188 
    189 static bool isSelect01(Constant *C1, Constant *C2) {
    190   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    191   if (!C1I)
    192     return false;
    193   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    194   if (!C2I)
    195     return false;
    196   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    197     return false;
    198   return C1I->isOne() || C1I->isAllOnesValue() ||
    199          C2I->isOne() || C2I->isAllOnesValue();
    200 }
    201 
    202 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    203 /// facilitate further optimization.
    204 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    205                                             Value *FalseVal) {
    206   // See the comment above GetSelectFoldableOperands for a description of the
    207   // transformation we are doing here.
    208   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    209     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    210         !isa<Constant>(FalseVal)) {
    211       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    212         unsigned OpToFold = 0;
    213         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    214           OpToFold = 1;
    215         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    216           OpToFold = 2;
    217         }
    218 
    219         if (OpToFold) {
    220           Constant *C = GetSelectFoldableConstant(TVI);
    221           Value *OOp = TVI->getOperand(2-OpToFold);
    222           // Avoid creating select between 2 constants unless it's selecting
    223           // between 0, 1 and -1.
    224           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    225             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    226             NewSel->takeName(TVI);
    227             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    228             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    229                                                         FalseVal, NewSel);
    230             if (isa<PossiblyExactOperator>(BO))
    231               BO->setIsExact(TVI_BO->isExact());
    232             if (isa<OverflowingBinaryOperator>(BO)) {
    233               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    234               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    235             }
    236             return BO;
    237           }
    238         }
    239       }
    240     }
    241   }
    242 
    243   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    244     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    245         !isa<Constant>(TrueVal)) {
    246       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    247         unsigned OpToFold = 0;
    248         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    249           OpToFold = 1;
    250         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    251           OpToFold = 2;
    252         }
    253 
    254         if (OpToFold) {
    255           Constant *C = GetSelectFoldableConstant(FVI);
    256           Value *OOp = FVI->getOperand(2-OpToFold);
    257           // Avoid creating select between 2 constants unless it's selecting
    258           // between 0, 1 and -1.
    259           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    260             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    261             NewSel->takeName(FVI);
    262             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    263             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    264                                                         TrueVal, NewSel);
    265             if (isa<PossiblyExactOperator>(BO))
    266               BO->setIsExact(FVI_BO->isExact());
    267             if (isa<OverflowingBinaryOperator>(BO)) {
    268               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    269               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    270             }
    271             return BO;
    272           }
    273         }
    274       }
    275     }
    276   }
    277 
    278   return 0;
    279 }
    280 
    281 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    282 /// replaced with RepOp.
    283 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    284                                      const TargetData *TD) {
    285   // Trivial replacement.
    286   if (V == Op)
    287     return RepOp;
    288 
    289   Instruction *I = dyn_cast<Instruction>(V);
    290   if (!I)
    291     return 0;
    292 
    293   // If this is a binary operator, try to simplify it with the replaced op.
    294   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    295     if (B->getOperand(0) == Op)
    296       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD);
    297     if (B->getOperand(1) == Op)
    298       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD);
    299   }
    300 
    301   // Same for CmpInsts.
    302   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    303     if (C->getOperand(0) == Op)
    304       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD);
    305     if (C->getOperand(1) == Op)
    306       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD);
    307   }
    308 
    309   // TODO: We could hand off more cases to instsimplify here.
    310 
    311   // If all operands are constant after substituting Op for RepOp then we can
    312   // constant fold the instruction.
    313   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    314     // Build a list of all constant operands.
    315     SmallVector<Constant*, 8> ConstOps;
    316     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    317       if (I->getOperand(i) == Op)
    318         ConstOps.push_back(CRepOp);
    319       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    320         ConstOps.push_back(COp);
    321       else
    322         break;
    323     }
    324 
    325     // All operands were constants, fold it.
    326     if (ConstOps.size() == I->getNumOperands())
    327       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    328                                       ConstOps, TD);
    329   }
    330 
    331   return 0;
    332 }
    333 
    334 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    335 /// ICmpInst as its first operand.
    336 ///
    337 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    338                                                    ICmpInst *ICI) {
    339   bool Changed = false;
    340   ICmpInst::Predicate Pred = ICI->getPredicate();
    341   Value *CmpLHS = ICI->getOperand(0);
    342   Value *CmpRHS = ICI->getOperand(1);
    343   Value *TrueVal = SI.getTrueValue();
    344   Value *FalseVal = SI.getFalseValue();
    345 
    346   // Check cases where the comparison is with a constant that
    347   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    348   // here, so make sure the select is the only user.
    349   if (ICI->hasOneUse())
    350     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    351       // X < MIN ? T : F  -->  F
    352       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    353           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    354         return ReplaceInstUsesWith(SI, FalseVal);
    355       // X > MAX ? T : F  -->  F
    356       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    357                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    358         return ReplaceInstUsesWith(SI, FalseVal);
    359       switch (Pred) {
    360       default: break;
    361       case ICmpInst::ICMP_ULT:
    362       case ICmpInst::ICMP_SLT:
    363       case ICmpInst::ICMP_UGT:
    364       case ICmpInst::ICMP_SGT: {
    365         // These transformations only work for selects over integers.
    366         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    367         if (!SelectTy)
    368           break;
    369 
    370         Constant *AdjustedRHS;
    371         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    372           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    373         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    374           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    375 
    376         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    377         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    378         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    379             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    380           ; // Nothing to do here. Values match without any sign/zero extension.
    381 
    382         // Types do not match. Instead of calculating this with mixed types
    383         // promote all to the larger type. This enables scalar evolution to
    384         // analyze this expression.
    385         else if (CmpRHS->getType()->getScalarSizeInBits()
    386                  < SelectTy->getBitWidth()) {
    387           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    388 
    389           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    390           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    391           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    392           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    393           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    394                 sextRHS == FalseVal) {
    395             CmpLHS = TrueVal;
    396             AdjustedRHS = sextRHS;
    397           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    398                      sextRHS == TrueVal) {
    399             CmpLHS = FalseVal;
    400             AdjustedRHS = sextRHS;
    401           } else if (ICI->isUnsigned()) {
    402             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    403             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    404             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    405             // zext + signed compare cannot be changed:
    406             //    0xff <s 0x00, but 0x00ff >s 0x0000
    407             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    408                 zextRHS == FalseVal) {
    409               CmpLHS = TrueVal;
    410               AdjustedRHS = zextRHS;
    411             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    412                        zextRHS == TrueVal) {
    413               CmpLHS = FalseVal;
    414               AdjustedRHS = zextRHS;
    415             } else
    416               break;
    417           } else
    418             break;
    419         } else
    420           break;
    421 
    422         Pred = ICmpInst::getSwappedPredicate(Pred);
    423         CmpRHS = AdjustedRHS;
    424         std::swap(FalseVal, TrueVal);
    425         ICI->setPredicate(Pred);
    426         ICI->setOperand(0, CmpLHS);
    427         ICI->setOperand(1, CmpRHS);
    428         SI.setOperand(1, TrueVal);
    429         SI.setOperand(2, FalseVal);
    430 
    431         // Move ICI instruction right before the select instruction. Otherwise
    432         // the sext/zext value may be defined after the ICI instruction uses it.
    433         ICI->moveBefore(&SI);
    434 
    435         Changed = true;
    436         break;
    437       }
    438       }
    439     }
    440 
    441   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    442   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    443   // FIXME: Type and constness constraints could be lifted, but we have to
    444   //        watch code size carefully. We should consider xor instead of
    445   //        sub/add when we decide to do that.
    446   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    447     if (TrueVal->getType() == Ty) {
    448       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    449         ConstantInt *C1 = NULL, *C2 = NULL;
    450         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    451           C1 = dyn_cast<ConstantInt>(TrueVal);
    452           C2 = dyn_cast<ConstantInt>(FalseVal);
    453         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    454           C1 = dyn_cast<ConstantInt>(FalseVal);
    455           C2 = dyn_cast<ConstantInt>(TrueVal);
    456         }
    457         if (C1 && C2) {
    458           // This shift results in either -1 or 0.
    459           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    460 
    461           // Check if we can express the operation with a single or.
    462           if (C2->isAllOnesValue())
    463             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    464 
    465           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    466           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    467         }
    468       }
    469     }
    470   }
    471 
    472   // If we have an equality comparison then we know the value in one of the
    473   // arms of the select. See if substituting this value into the arm and
    474   // simplifying the result yields the same value as the other arm.
    475   if (Pred == ICmpInst::ICMP_EQ) {
    476     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD) == TrueVal ||
    477         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD) == TrueVal)
    478       return ReplaceInstUsesWith(SI, FalseVal);
    479   } else if (Pred == ICmpInst::ICMP_NE) {
    480     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD) == FalseVal ||
    481         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD) == FalseVal)
    482       return ReplaceInstUsesWith(SI, TrueVal);
    483   }
    484 
    485   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    486 
    487   if (isa<Constant>(CmpRHS)) {
    488     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    489       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    490       SI.setOperand(1, CmpRHS);
    491       Changed = true;
    492     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    493       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    494       SI.setOperand(2, CmpRHS);
    495       Changed = true;
    496     }
    497   }
    498 
    499   return Changed ? &SI : 0;
    500 }
    501 
    502 
    503 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    504 /// PHI node (but the two may be in different blocks).  See if the true/false
    505 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    506 /// example, cases like this cannot be mapped:
    507 ///
    508 ///   X = phi [ C1, BB1], [C2, BB2]
    509 ///   Y = add
    510 ///   Z = select X, Y, 0
    511 ///
    512 /// because Y is not live in BB1/BB2.
    513 ///
    514 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    515                                                    const SelectInst &SI) {
    516   // If the value is a non-instruction value like a constant or argument, it
    517   // can always be mapped.
    518   const Instruction *I = dyn_cast<Instruction>(V);
    519   if (I == 0) return true;
    520 
    521   // If V is a PHI node defined in the same block as the condition PHI, we can
    522   // map the arguments.
    523   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    524 
    525   if (const PHINode *VP = dyn_cast<PHINode>(I))
    526     if (VP->getParent() == CondPHI->getParent())
    527       return true;
    528 
    529   // Otherwise, if the PHI and select are defined in the same block and if V is
    530   // defined in a different block, then we can transform it.
    531   if (SI.getParent() == CondPHI->getParent() &&
    532       I->getParent() != CondPHI->getParent())
    533     return true;
    534 
    535   // Otherwise we have a 'hard' case and we can't tell without doing more
    536   // detailed dominator based analysis, punt.
    537   return false;
    538 }
    539 
    540 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    541 ///   SPF2(SPF1(A, B), C)
    542 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    543                                         SelectPatternFlavor SPF1,
    544                                         Value *A, Value *B,
    545                                         Instruction &Outer,
    546                                         SelectPatternFlavor SPF2, Value *C) {
    547   if (C == A || C == B) {
    548     // MAX(MAX(A, B), B) -> MAX(A, B)
    549     // MIN(MIN(a, b), a) -> MIN(a, b)
    550     if (SPF1 == SPF2)
    551       return ReplaceInstUsesWith(Outer, Inner);
    552 
    553     // MAX(MIN(a, b), a) -> a
    554     // MIN(MAX(a, b), a) -> a
    555     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    556         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    557         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    558         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    559       return ReplaceInstUsesWith(Outer, C);
    560   }
    561 
    562   // TODO: MIN(MIN(A, 23), 97)
    563   return 0;
    564 }
    565 
    566 
    567 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    568 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    569 /// with the non-constant value and a power of two we can turn the select
    570 /// into a shift on the result of the 'and'.
    571 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    572                                 ConstantInt *FalseVal,
    573                                 InstCombiner::BuilderTy *Builder) {
    574   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    575   if (!IC || !IC->isEquality())
    576     return 0;
    577 
    578   if (!match(IC->getOperand(1), m_Zero()))
    579     return 0;
    580 
    581   ConstantInt *AndRHS;
    582   Value *LHS = IC->getOperand(0);
    583   if (LHS->getType() != SI.getType() ||
    584       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    585     return 0;
    586 
    587   // If both select arms are non-zero see if we have a select of the form
    588   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    589   // for 'x ? 2^n : 0' and fix the thing up at the end.
    590   ConstantInt *Offset = 0;
    591   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    592     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    593       Offset = FalseVal;
    594     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    595       Offset = TrueVal;
    596     else
    597       return 0;
    598 
    599     // Adjust TrueVal and FalseVal to the offset.
    600     TrueVal = ConstantInt::get(Builder->getContext(),
    601                                TrueVal->getValue() - Offset->getValue());
    602     FalseVal = ConstantInt::get(Builder->getContext(),
    603                                 FalseVal->getValue() - Offset->getValue());
    604   }
    605 
    606   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    607   if (!AndRHS->getValue().isPowerOf2() ||
    608       (!TrueVal->getValue().isPowerOf2() &&
    609        !FalseVal->getValue().isPowerOf2()))
    610     return 0;
    611 
    612   // Determine which shift is needed to transform result of the 'and' into the
    613   // desired result.
    614   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    615   unsigned ValZeros = ValC->getValue().logBase2();
    616   unsigned AndZeros = AndRHS->getValue().logBase2();
    617 
    618   Value *V = LHS;
    619   if (ValZeros > AndZeros)
    620     V = Builder->CreateShl(V, ValZeros - AndZeros);
    621   else if (ValZeros < AndZeros)
    622     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    623 
    624   // Okay, now we know that everything is set up, we just don't know whether we
    625   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    626   bool ShouldNotVal = !TrueVal->isZero();
    627   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    628   if (ShouldNotVal)
    629     V = Builder->CreateXor(V, ValC);
    630 
    631   // Apply an offset if needed.
    632   if (Offset)
    633     V = Builder->CreateAdd(V, Offset);
    634   return V;
    635 }
    636 
    637 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    638   Value *CondVal = SI.getCondition();
    639   Value *TrueVal = SI.getTrueValue();
    640   Value *FalseVal = SI.getFalseValue();
    641 
    642   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    643     return ReplaceInstUsesWith(SI, V);
    644 
    645   if (SI.getType()->isIntegerTy(1)) {
    646     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    647       if (C->getZExtValue()) {
    648         // Change: A = select B, true, C --> A = or B, C
    649         return BinaryOperator::CreateOr(CondVal, FalseVal);
    650       }
    651       // Change: A = select B, false, C --> A = and !B, C
    652       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    653       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    654     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    655       if (C->getZExtValue() == false) {
    656         // Change: A = select B, C, false --> A = and B, C
    657         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    658       }
    659       // Change: A = select B, C, true --> A = or !B, C
    660       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    661       return BinaryOperator::CreateOr(NotCond, TrueVal);
    662     }
    663 
    664     // select a, b, a  -> a&b
    665     // select a, a, b  -> a|b
    666     if (CondVal == TrueVal)
    667       return BinaryOperator::CreateOr(CondVal, FalseVal);
    668     else if (CondVal == FalseVal)
    669       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    670   }
    671 
    672   // Selecting between two integer constants?
    673   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    674     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    675       // select C, 1, 0 -> zext C to int
    676       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    677         return new ZExtInst(CondVal, SI.getType());
    678 
    679       // select C, -1, 0 -> sext C to int
    680       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    681         return new SExtInst(CondVal, SI.getType());
    682 
    683       // select C, 0, 1 -> zext !C to int
    684       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    685         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    686         return new ZExtInst(NotCond, SI.getType());
    687       }
    688 
    689       // select C, 0, -1 -> sext !C to int
    690       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    691         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    692         return new SExtInst(NotCond, SI.getType());
    693       }
    694 
    695       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    696         return ReplaceInstUsesWith(SI, V);
    697     }
    698 
    699   // See if we are selecting two values based on a comparison of the two values.
    700   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    701     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    702       // Transform (X == Y) ? X : Y  -> Y
    703       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    704         // This is not safe in general for floating point:
    705         // consider X== -0, Y== +0.
    706         // It becomes safe if either operand is a nonzero constant.
    707         ConstantFP *CFPt, *CFPf;
    708         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    709               !CFPt->getValueAPF().isZero()) ||
    710             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    711              !CFPf->getValueAPF().isZero()))
    712         return ReplaceInstUsesWith(SI, FalseVal);
    713       }
    714       // Transform (X une Y) ? X : Y  -> X
    715       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    716         // This is not safe in general for floating point:
    717         // consider X== -0, Y== +0.
    718         // It becomes safe if either operand is a nonzero constant.
    719         ConstantFP *CFPt, *CFPf;
    720         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    721               !CFPt->getValueAPF().isZero()) ||
    722             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    723              !CFPf->getValueAPF().isZero()))
    724         return ReplaceInstUsesWith(SI, TrueVal);
    725       }
    726       // NOTE: if we wanted to, this is where to detect MIN/MAX
    727 
    728     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    729       // Transform (X == Y) ? Y : X  -> X
    730       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    731         // This is not safe in general for floating point:
    732         // consider X== -0, Y== +0.
    733         // It becomes safe if either operand is a nonzero constant.
    734         ConstantFP *CFPt, *CFPf;
    735         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    736               !CFPt->getValueAPF().isZero()) ||
    737             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    738              !CFPf->getValueAPF().isZero()))
    739           return ReplaceInstUsesWith(SI, FalseVal);
    740       }
    741       // Transform (X une Y) ? Y : X  -> Y
    742       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    743         // This is not safe in general for floating point:
    744         // consider X== -0, Y== +0.
    745         // It becomes safe if either operand is a nonzero constant.
    746         ConstantFP *CFPt, *CFPf;
    747         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    748               !CFPt->getValueAPF().isZero()) ||
    749             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    750              !CFPf->getValueAPF().isZero()))
    751           return ReplaceInstUsesWith(SI, TrueVal);
    752       }
    753       // NOTE: if we wanted to, this is where to detect MIN/MAX
    754     }
    755     // NOTE: if we wanted to, this is where to detect ABS
    756   }
    757 
    758   // See if we are selecting two values based on a comparison of the two values.
    759   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    760     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    761       return Result;
    762 
    763   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    764     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    765       if (TI->hasOneUse() && FI->hasOneUse()) {
    766         Instruction *AddOp = 0, *SubOp = 0;
    767 
    768         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    769         if (TI->getOpcode() == FI->getOpcode())
    770           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    771             return IV;
    772 
    773         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    774         // even legal for FP.
    775         if ((TI->getOpcode() == Instruction::Sub &&
    776              FI->getOpcode() == Instruction::Add) ||
    777             (TI->getOpcode() == Instruction::FSub &&
    778              FI->getOpcode() == Instruction::FAdd)) {
    779           AddOp = FI; SubOp = TI;
    780         } else if ((FI->getOpcode() == Instruction::Sub &&
    781                     TI->getOpcode() == Instruction::Add) ||
    782                    (FI->getOpcode() == Instruction::FSub &&
    783                     TI->getOpcode() == Instruction::FAdd)) {
    784           AddOp = TI; SubOp = FI;
    785         }
    786 
    787         if (AddOp) {
    788           Value *OtherAddOp = 0;
    789           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    790             OtherAddOp = AddOp->getOperand(1);
    791           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    792             OtherAddOp = AddOp->getOperand(0);
    793           }
    794 
    795           if (OtherAddOp) {
    796             // So at this point we know we have (Y -> OtherAddOp):
    797             //        select C, (add X, Y), (sub X, Z)
    798             Value *NegVal;  // Compute -Z
    799             if (SI.getType()->isFPOrFPVectorTy()) {
    800               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    801             } else {
    802               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
    803             }
    804 
    805             Value *NewTrueOp = OtherAddOp;
    806             Value *NewFalseOp = NegVal;
    807             if (AddOp != TI)
    808               std::swap(NewTrueOp, NewFalseOp);
    809             Value *NewSel =
    810               Builder->CreateSelect(CondVal, NewTrueOp,
    811                                     NewFalseOp, SI.getName() + ".p");
    812 
    813             if (SI.getType()->isFPOrFPVectorTy())
    814               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    815             else
    816               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    817           }
    818         }
    819       }
    820 
    821   // See if we can fold the select into one of our operands.
    822   if (SI.getType()->isIntegerTy()) {
    823     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
    824       return FoldI;
    825 
    826     // MAX(MAX(a, b), a) -> MAX(a, b)
    827     // MIN(MIN(a, b), a) -> MIN(a, b)
    828     // MAX(MIN(a, b), a) -> a
    829     // MIN(MAX(a, b), a) -> a
    830     Value *LHS, *RHS, *LHS2, *RHS2;
    831     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
    832       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
    833         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
    834                                           SI, SPF, RHS))
    835           return R;
    836       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
    837         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
    838                                           SI, SPF, LHS))
    839           return R;
    840     }
    841 
    842     // TODO.
    843     // ABS(-X) -> ABS(X)
    844     // ABS(ABS(X)) -> ABS(X)
    845   }
    846 
    847   // See if we can fold the select into a phi node if the condition is a select.
    848   if (isa<PHINode>(SI.getCondition()))
    849     // The true/false values have to be live in the PHI predecessor's blocks.
    850     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
    851         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
    852       if (Instruction *NV = FoldOpIntoPhi(SI))
    853         return NV;
    854 
    855   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    856     if (TrueSI->getCondition() == CondVal) {
    857       SI.setOperand(1, TrueSI->getTrueValue());
    858       return &SI;
    859     }
    860   }
    861   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    862     if (FalseSI->getCondition() == CondVal) {
    863       SI.setOperand(2, FalseSI->getFalseValue());
    864       return &SI;
    865     }
    866   }
    867 
    868   if (BinaryOperator::isNot(CondVal)) {
    869     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    870     SI.setOperand(1, FalseVal);
    871     SI.setOperand(2, TrueVal);
    872     return &SI;
    873   }
    874 
    875   return 0;
    876 }
    877