1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a trivial dead store elimination that only considers 11 // basic-block local redundant stores. 12 // 13 // FIXME: This should eventually be extended to be a post-dominator tree 14 // traversal. Doing so would be pretty trivial. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "dse" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Instructions.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/Dominators.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/Statistic.h" 36 using namespace llvm; 37 38 STATISTIC(NumFastStores, "Number of stores deleted"); 39 STATISTIC(NumFastOther , "Number of other instrs removed"); 40 41 namespace { 42 struct DSE : public FunctionPass { 43 AliasAnalysis *AA; 44 MemoryDependenceAnalysis *MD; 45 46 static char ID; // Pass identification, replacement for typeid 47 DSE() : FunctionPass(ID), AA(0), MD(0) { 48 initializeDSEPass(*PassRegistry::getPassRegistry()); 49 } 50 51 virtual bool runOnFunction(Function &F) { 52 AA = &getAnalysis<AliasAnalysis>(); 53 MD = &getAnalysis<MemoryDependenceAnalysis>(); 54 DominatorTree &DT = getAnalysis<DominatorTree>(); 55 56 bool Changed = false; 57 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 58 // Only check non-dead blocks. Dead blocks may have strange pointer 59 // cycles that will confuse alias analysis. 60 if (DT.isReachableFromEntry(I)) 61 Changed |= runOnBasicBlock(*I); 62 63 AA = 0; MD = 0; 64 return Changed; 65 } 66 67 bool runOnBasicBlock(BasicBlock &BB); 68 bool HandleFree(CallInst *F); 69 bool handleEndBlock(BasicBlock &BB); 70 void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc, 71 SmallPtrSet<Value*, 16> &DeadStackObjects); 72 73 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 74 AU.setPreservesCFG(); 75 AU.addRequired<DominatorTree>(); 76 AU.addRequired<AliasAnalysis>(); 77 AU.addRequired<MemoryDependenceAnalysis>(); 78 AU.addPreserved<AliasAnalysis>(); 79 AU.addPreserved<DominatorTree>(); 80 AU.addPreserved<MemoryDependenceAnalysis>(); 81 } 82 }; 83 } 84 85 char DSE::ID = 0; 86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false) 87 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false) 91 92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); } 93 94 //===----------------------------------------------------------------------===// 95 // Helper functions 96 //===----------------------------------------------------------------------===// 97 98 /// DeleteDeadInstruction - Delete this instruction. Before we do, go through 99 /// and zero out all the operands of this instruction. If any of them become 100 /// dead, delete them and the computation tree that feeds them. 101 /// 102 /// If ValueSet is non-null, remove any deleted instructions from it as well. 103 /// 104 static void DeleteDeadInstruction(Instruction *I, 105 MemoryDependenceAnalysis &MD, 106 SmallPtrSet<Value*, 16> *ValueSet = 0) { 107 SmallVector<Instruction*, 32> NowDeadInsts; 108 109 NowDeadInsts.push_back(I); 110 --NumFastOther; 111 112 // Before we touch this instruction, remove it from memdep! 113 do { 114 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 115 ++NumFastOther; 116 117 // This instruction is dead, zap it, in stages. Start by removing it from 118 // MemDep, which needs to know the operands and needs it to be in the 119 // function. 120 MD.removeInstruction(DeadInst); 121 122 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { 123 Value *Op = DeadInst->getOperand(op); 124 DeadInst->setOperand(op, 0); 125 126 // If this operand just became dead, add it to the NowDeadInsts list. 127 if (!Op->use_empty()) continue; 128 129 if (Instruction *OpI = dyn_cast<Instruction>(Op)) 130 if (isInstructionTriviallyDead(OpI)) 131 NowDeadInsts.push_back(OpI); 132 } 133 134 DeadInst->eraseFromParent(); 135 136 if (ValueSet) ValueSet->erase(DeadInst); 137 } while (!NowDeadInsts.empty()); 138 } 139 140 141 /// hasMemoryWrite - Does this instruction write some memory? This only returns 142 /// true for things that we can analyze with other helpers below. 143 static bool hasMemoryWrite(Instruction *I) { 144 if (isa<StoreInst>(I)) 145 return true; 146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 147 switch (II->getIntrinsicID()) { 148 default: 149 return false; 150 case Intrinsic::memset: 151 case Intrinsic::memmove: 152 case Intrinsic::memcpy: 153 case Intrinsic::init_trampoline: 154 case Intrinsic::lifetime_end: 155 return true; 156 } 157 } 158 return false; 159 } 160 161 /// getLocForWrite - Return a Location stored to by the specified instruction. 162 static AliasAnalysis::Location 163 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) { 164 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 165 return AA.getLocation(SI); 166 167 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) { 168 // memcpy/memmove/memset. 169 AliasAnalysis::Location Loc = AA.getLocationForDest(MI); 170 // If we don't have target data around, an unknown size in Location means 171 // that we should use the size of the pointee type. This isn't valid for 172 // memset/memcpy, which writes more than an i8. 173 if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0) 174 return AliasAnalysis::Location(); 175 return Loc; 176 } 177 178 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); 179 if (II == 0) return AliasAnalysis::Location(); 180 181 switch (II->getIntrinsicID()) { 182 default: return AliasAnalysis::Location(); // Unhandled intrinsic. 183 case Intrinsic::init_trampoline: 184 // If we don't have target data around, an unknown size in Location means 185 // that we should use the size of the pointee type. This isn't valid for 186 // init.trampoline, which writes more than an i8. 187 if (AA.getTargetData() == 0) return AliasAnalysis::Location(); 188 189 // FIXME: We don't know the size of the trampoline, so we can't really 190 // handle it here. 191 return AliasAnalysis::Location(II->getArgOperand(0)); 192 case Intrinsic::lifetime_end: { 193 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 194 return AliasAnalysis::Location(II->getArgOperand(1), Len); 195 } 196 } 197 } 198 199 /// getLocForRead - Return the location read by the specified "hasMemoryWrite" 200 /// instruction if any. 201 static AliasAnalysis::Location 202 getLocForRead(Instruction *Inst, AliasAnalysis &AA) { 203 assert(hasMemoryWrite(Inst) && "Unknown instruction case"); 204 205 // The only instructions that both read and write are the mem transfer 206 // instructions (memcpy/memmove). 207 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst)) 208 return AA.getLocationForSource(MTI); 209 return AliasAnalysis::Location(); 210 } 211 212 213 /// isRemovable - If the value of this instruction and the memory it writes to 214 /// is unused, may we delete this instruction? 215 static bool isRemovable(Instruction *I) { 216 // Don't remove volatile stores. 217 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 218 return !SI->isVolatile(); 219 220 IntrinsicInst *II = cast<IntrinsicInst>(I); 221 switch (II->getIntrinsicID()) { 222 default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate"); 223 case Intrinsic::lifetime_end: 224 // Never remove dead lifetime_end's, e.g. because it is followed by a 225 // free. 226 return false; 227 case Intrinsic::init_trampoline: 228 // Always safe to remove init_trampoline. 229 return true; 230 231 case Intrinsic::memset: 232 case Intrinsic::memmove: 233 case Intrinsic::memcpy: 234 // Don't remove volatile memory intrinsics. 235 return !cast<MemIntrinsic>(II)->isVolatile(); 236 } 237 } 238 239 /// getStoredPointerOperand - Return the pointer that is being written to. 240 static Value *getStoredPointerOperand(Instruction *I) { 241 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 242 return SI->getPointerOperand(); 243 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 244 return MI->getDest(); 245 246 IntrinsicInst *II = cast<IntrinsicInst>(I); 247 switch (II->getIntrinsicID()) { 248 default: assert(false && "Unexpected intrinsic!"); 249 case Intrinsic::init_trampoline: 250 return II->getArgOperand(0); 251 } 252 } 253 254 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) { 255 const TargetData *TD = AA.getTargetData(); 256 if (TD == 0) 257 return AliasAnalysis::UnknownSize; 258 259 if (AllocaInst *A = dyn_cast<AllocaInst>(V)) { 260 // Get size information for the alloca 261 if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize())) 262 return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType()); 263 return AliasAnalysis::UnknownSize; 264 } 265 266 assert(isa<Argument>(V) && "Expected AllocaInst or Argument!"); 267 PointerType *PT = cast<PointerType>(V->getType()); 268 return TD->getTypeAllocSize(PT->getElementType()); 269 } 270 271 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is 272 /// pointing to an object with a pointer size we can trust. 273 static bool isObjectPointerWithTrustworthySize(const Value *V) { 274 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 275 return !AI->isArrayAllocation(); 276 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 277 return !GV->mayBeOverridden(); 278 if (const Argument *A = dyn_cast<Argument>(V)) 279 return A->hasByValAttr(); 280 return false; 281 } 282 283 /// isCompleteOverwrite - Return true if a store to the 'Later' location 284 /// completely overwrites a store to the 'Earlier' location. 285 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later, 286 const AliasAnalysis::Location &Earlier, 287 AliasAnalysis &AA) { 288 const Value *P1 = Earlier.Ptr->stripPointerCasts(); 289 const Value *P2 = Later.Ptr->stripPointerCasts(); 290 291 // If the start pointers are the same, we just have to compare sizes to see if 292 // the later store was larger than the earlier store. 293 if (P1 == P2) { 294 // If we don't know the sizes of either access, then we can't do a 295 // comparison. 296 if (Later.Size == AliasAnalysis::UnknownSize || 297 Earlier.Size == AliasAnalysis::UnknownSize) { 298 // If we have no TargetData information around, then the size of the store 299 // is inferrable from the pointee type. If they are the same type, then 300 // we know that the store is safe. 301 if (AA.getTargetData() == 0) 302 return Later.Ptr->getType() == Earlier.Ptr->getType(); 303 return false; 304 } 305 306 // Make sure that the Later size is >= the Earlier size. 307 if (Later.Size < Earlier.Size) 308 return false; 309 return true; 310 } 311 312 // Otherwise, we have to have size information, and the later store has to be 313 // larger than the earlier one. 314 if (Later.Size == AliasAnalysis::UnknownSize || 315 Earlier.Size == AliasAnalysis::UnknownSize || 316 Later.Size <= Earlier.Size || AA.getTargetData() == 0) 317 return false; 318 319 // Check to see if the later store is to the entire object (either a global, 320 // an alloca, or a byval argument). If so, then it clearly overwrites any 321 // other store to the same object. 322 const TargetData &TD = *AA.getTargetData(); 323 324 const Value *UO1 = GetUnderlyingObject(P1, &TD), 325 *UO2 = GetUnderlyingObject(P2, &TD); 326 327 // If we can't resolve the same pointers to the same object, then we can't 328 // analyze them at all. 329 if (UO1 != UO2) 330 return false; 331 332 // If the "Later" store is to a recognizable object, get its size. 333 if (isObjectPointerWithTrustworthySize(UO2)) { 334 uint64_t ObjectSize = 335 TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType()); 336 if (ObjectSize == Later.Size) 337 return true; 338 } 339 340 // Okay, we have stores to two completely different pointers. Try to 341 // decompose the pointer into a "base + constant_offset" form. If the base 342 // pointers are equal, then we can reason about the two stores. 343 int64_t EarlierOff = 0, LaterOff = 0; 344 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD); 345 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD); 346 347 // If the base pointers still differ, we have two completely different stores. 348 if (BP1 != BP2) 349 return false; 350 351 // The later store completely overlaps the earlier store if: 352 // 353 // 1. Both start at the same offset and the later one's size is greater than 354 // or equal to the earlier one's, or 355 // 356 // |--earlier--| 357 // |-- later --| 358 // 359 // 2. The earlier store has an offset greater than the later offset, but which 360 // still lies completely within the later store. 361 // 362 // |--earlier--| 363 // |----- later ------| 364 // 365 // We have to be careful here as *Off is signed while *.Size is unsigned. 366 if (EarlierOff >= LaterOff && 367 uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size) 368 return true; 369 370 // Otherwise, they don't completely overlap. 371 return false; 372 } 373 374 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a 375 /// memory region into an identical pointer) then it doesn't actually make its 376 /// input dead in the traditional sense. Consider this case: 377 /// 378 /// memcpy(A <- B) 379 /// memcpy(A <- A) 380 /// 381 /// In this case, the second store to A does not make the first store to A dead. 382 /// The usual situation isn't an explicit A<-A store like this (which can be 383 /// trivially removed) but a case where two pointers may alias. 384 /// 385 /// This function detects when it is unsafe to remove a dependent instruction 386 /// because the DSE inducing instruction may be a self-read. 387 static bool isPossibleSelfRead(Instruction *Inst, 388 const AliasAnalysis::Location &InstStoreLoc, 389 Instruction *DepWrite, AliasAnalysis &AA) { 390 // Self reads can only happen for instructions that read memory. Get the 391 // location read. 392 AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA); 393 if (InstReadLoc.Ptr == 0) return false; // Not a reading instruction. 394 395 // If the read and written loc obviously don't alias, it isn't a read. 396 if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false; 397 398 // Okay, 'Inst' may copy over itself. However, we can still remove a the 399 // DepWrite instruction if we can prove that it reads from the same location 400 // as Inst. This handles useful cases like: 401 // memcpy(A <- B) 402 // memcpy(A <- B) 403 // Here we don't know if A/B may alias, but we do know that B/B are must 404 // aliases, so removing the first memcpy is safe (assuming it writes <= # 405 // bytes as the second one. 406 AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA); 407 408 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) 409 return false; 410 411 // If DepWrite doesn't read memory or if we can't prove it is a must alias, 412 // then it can't be considered dead. 413 return true; 414 } 415 416 417 //===----------------------------------------------------------------------===// 418 // DSE Pass 419 //===----------------------------------------------------------------------===// 420 421 bool DSE::runOnBasicBlock(BasicBlock &BB) { 422 bool MadeChange = false; 423 424 // Do a top-down walk on the BB. 425 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { 426 Instruction *Inst = BBI++; 427 428 // Handle 'free' calls specially. 429 if (CallInst *F = isFreeCall(Inst)) { 430 MadeChange |= HandleFree(F); 431 continue; 432 } 433 434 // If we find something that writes memory, get its memory dependence. 435 if (!hasMemoryWrite(Inst)) 436 continue; 437 438 MemDepResult InstDep = MD->getDependency(Inst); 439 440 // Ignore any store where we can't find a local dependence. 441 // FIXME: cross-block DSE would be fun. :) 442 if (InstDep.isNonLocal() || InstDep.isUnknown()) 443 continue; 444 445 // If we're storing the same value back to a pointer that we just 446 // loaded from, then the store can be removed. 447 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 448 if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) { 449 if (SI->getPointerOperand() == DepLoad->getPointerOperand() && 450 SI->getOperand(0) == DepLoad && !SI->isVolatile()) { 451 DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n " 452 << "LOAD: " << *DepLoad << "\n STORE: " << *SI << '\n'); 453 454 // DeleteDeadInstruction can delete the current instruction. Save BBI 455 // in case we need it. 456 WeakVH NextInst(BBI); 457 458 DeleteDeadInstruction(SI, *MD); 459 460 if (NextInst == 0) // Next instruction deleted. 461 BBI = BB.begin(); 462 else if (BBI != BB.begin()) // Revisit this instruction if possible. 463 --BBI; 464 ++NumFastStores; 465 MadeChange = true; 466 continue; 467 } 468 } 469 } 470 471 // Figure out what location is being stored to. 472 AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA); 473 474 // If we didn't get a useful location, fail. 475 if (Loc.Ptr == 0) 476 continue; 477 478 while (!InstDep.isNonLocal() && !InstDep.isUnknown()) { 479 // Get the memory clobbered by the instruction we depend on. MemDep will 480 // skip any instructions that 'Loc' clearly doesn't interact with. If we 481 // end up depending on a may- or must-aliased load, then we can't optimize 482 // away the store and we bail out. However, if we depend on on something 483 // that overwrites the memory location we *can* potentially optimize it. 484 // 485 // Find out what memory location the dependent instruction stores. 486 Instruction *DepWrite = InstDep.getInst(); 487 AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA); 488 // If we didn't get a useful location, or if it isn't a size, bail out. 489 if (DepLoc.Ptr == 0) 490 break; 491 492 // If we find a write that is a) removable (i.e., non-volatile), b) is 493 // completely obliterated by the store to 'Loc', and c) which we know that 494 // 'Inst' doesn't load from, then we can remove it. 495 if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) && 496 !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) { 497 DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " 498 << *DepWrite << "\n KILLER: " << *Inst << '\n'); 499 500 // Delete the store and now-dead instructions that feed it. 501 DeleteDeadInstruction(DepWrite, *MD); 502 ++NumFastStores; 503 MadeChange = true; 504 505 // DeleteDeadInstruction can delete the current instruction in loop 506 // cases, reset BBI. 507 BBI = Inst; 508 if (BBI != BB.begin()) 509 --BBI; 510 break; 511 } 512 513 // If this is a may-aliased store that is clobbering the store value, we 514 // can keep searching past it for another must-aliased pointer that stores 515 // to the same location. For example, in: 516 // store -> P 517 // store -> Q 518 // store -> P 519 // we can remove the first store to P even though we don't know if P and Q 520 // alias. 521 if (DepWrite == &BB.front()) break; 522 523 // Can't look past this instruction if it might read 'Loc'. 524 if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref) 525 break; 526 527 InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB); 528 } 529 } 530 531 // If this block ends in a return, unwind, or unreachable, all allocas are 532 // dead at its end, which means stores to them are also dead. 533 if (BB.getTerminator()->getNumSuccessors() == 0) 534 MadeChange |= handleEndBlock(BB); 535 536 return MadeChange; 537 } 538 539 /// HandleFree - Handle frees of entire structures whose dependency is a store 540 /// to a field of that structure. 541 bool DSE::HandleFree(CallInst *F) { 542 bool MadeChange = false; 543 544 MemDepResult Dep = MD->getDependency(F); 545 546 while (!Dep.isNonLocal() && !Dep.isUnknown()) { 547 Instruction *Dependency = Dep.getInst(); 548 if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency)) 549 return MadeChange; 550 551 Value *DepPointer = 552 GetUnderlyingObject(getStoredPointerOperand(Dependency)); 553 554 // Check for aliasing. 555 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) 556 return MadeChange; 557 558 // DCE instructions only used to calculate that store 559 DeleteDeadInstruction(Dependency, *MD); 560 ++NumFastStores; 561 MadeChange = true; 562 563 // Inst's old Dependency is now deleted. Compute the next dependency, 564 // which may also be dead, as in 565 // s[0] = 0; 566 // s[1] = 0; // This has just been deleted. 567 // free(s); 568 Dep = MD->getDependency(F); 569 }; 570 571 return MadeChange; 572 } 573 574 /// handleEndBlock - Remove dead stores to stack-allocated locations in the 575 /// function end block. Ex: 576 /// %A = alloca i32 577 /// ... 578 /// store i32 1, i32* %A 579 /// ret void 580 bool DSE::handleEndBlock(BasicBlock &BB) { 581 bool MadeChange = false; 582 583 // Keep track of all of the stack objects that are dead at the end of the 584 // function. 585 SmallPtrSet<Value*, 16> DeadStackObjects; 586 587 // Find all of the alloca'd pointers in the entry block. 588 BasicBlock *Entry = BB.getParent()->begin(); 589 for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) 590 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 591 DeadStackObjects.insert(AI); 592 593 // Treat byval arguments the same, stores to them are dead at the end of the 594 // function. 595 for (Function::arg_iterator AI = BB.getParent()->arg_begin(), 596 AE = BB.getParent()->arg_end(); AI != AE; ++AI) 597 if (AI->hasByValAttr()) 598 DeadStackObjects.insert(AI); 599 600 // Scan the basic block backwards 601 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ 602 --BBI; 603 604 // If we find a store, check to see if it points into a dead stack value. 605 if (hasMemoryWrite(BBI) && isRemovable(BBI)) { 606 // See through pointer-to-pointer bitcasts 607 Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI)); 608 609 // Stores to stack values are valid candidates for removal. 610 if (DeadStackObjects.count(Pointer)) { 611 Instruction *Dead = BBI++; 612 613 DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: " 614 << *Dead << "\n Object: " << *Pointer << '\n'); 615 616 // DCE instructions only used to calculate that store. 617 DeleteDeadInstruction(Dead, *MD, &DeadStackObjects); 618 ++NumFastStores; 619 MadeChange = true; 620 continue; 621 } 622 } 623 624 // Remove any dead non-memory-mutating instructions. 625 if (isInstructionTriviallyDead(BBI)) { 626 Instruction *Inst = BBI++; 627 DeleteDeadInstruction(Inst, *MD, &DeadStackObjects); 628 ++NumFastOther; 629 MadeChange = true; 630 continue; 631 } 632 633 if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) { 634 DeadStackObjects.erase(A); 635 continue; 636 } 637 638 if (CallSite CS = cast<Value>(BBI)) { 639 // If this call does not access memory, it can't be loading any of our 640 // pointers. 641 if (AA->doesNotAccessMemory(CS)) 642 continue; 643 644 // If the call might load from any of our allocas, then any store above 645 // the call is live. 646 SmallVector<Value*, 8> LiveAllocas; 647 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(), 648 E = DeadStackObjects.end(); I != E; ++I) { 649 // See if the call site touches it. 650 AliasAnalysis::ModRefResult A = 651 AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA)); 652 653 if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref) 654 LiveAllocas.push_back(*I); 655 } 656 657 for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(), 658 E = LiveAllocas.end(); I != E; ++I) 659 DeadStackObjects.erase(*I); 660 661 // If all of the allocas were clobbered by the call then we're not going 662 // to find anything else to process. 663 if (DeadStackObjects.empty()) 664 return MadeChange; 665 666 continue; 667 } 668 669 AliasAnalysis::Location LoadedLoc; 670 671 // If we encounter a use of the pointer, it is no longer considered dead 672 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { 673 LoadedLoc = AA->getLocation(L); 674 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { 675 LoadedLoc = AA->getLocation(V); 676 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) { 677 LoadedLoc = AA->getLocationForSource(MTI); 678 } else { 679 // Not a loading instruction. 680 continue; 681 } 682 683 // Remove any allocas from the DeadPointer set that are loaded, as this 684 // makes any stores above the access live. 685 RemoveAccessedObjects(LoadedLoc, DeadStackObjects); 686 687 // If all of the allocas were clobbered by the access then we're not going 688 // to find anything else to process. 689 if (DeadStackObjects.empty()) 690 break; 691 } 692 693 return MadeChange; 694 } 695 696 /// RemoveAccessedObjects - Check to see if the specified location may alias any 697 /// of the stack objects in the DeadStackObjects set. If so, they become live 698 /// because the location is being loaded. 699 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc, 700 SmallPtrSet<Value*, 16> &DeadStackObjects) { 701 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr); 702 703 // A constant can't be in the dead pointer set. 704 if (isa<Constant>(UnderlyingPointer)) 705 return; 706 707 // If the kill pointer can be easily reduced to an alloca, don't bother doing 708 // extraneous AA queries. 709 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { 710 DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer)); 711 return; 712 } 713 714 SmallVector<Value*, 16> NowLive; 715 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(), 716 E = DeadStackObjects.end(); I != E; ++I) { 717 // See if the loaded location could alias the stack location. 718 AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA)); 719 if (!AA->isNoAlias(StackLoc, LoadedLoc)) 720 NowLive.push_back(*I); 721 } 722 723 for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end(); 724 I != E; ++I) 725 DeadStackObjects.erase(*I); 726 } 727 728