Home | History | Annotate | Download | only in Scalar
      1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a trivial dead store elimination that only considers
     11 // basic-block local redundant stores.
     12 //
     13 // FIXME: This should eventually be extended to be a post-dominator tree
     14 // traversal.  Doing so would be pretty trivial.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "dse"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/Dominators.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/Target/TargetData.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/Statistic.h"
     36 using namespace llvm;
     37 
     38 STATISTIC(NumFastStores, "Number of stores deleted");
     39 STATISTIC(NumFastOther , "Number of other instrs removed");
     40 
     41 namespace {
     42   struct DSE : public FunctionPass {
     43     AliasAnalysis *AA;
     44     MemoryDependenceAnalysis *MD;
     45 
     46     static char ID; // Pass identification, replacement for typeid
     47     DSE() : FunctionPass(ID), AA(0), MD(0) {
     48       initializeDSEPass(*PassRegistry::getPassRegistry());
     49     }
     50 
     51     virtual bool runOnFunction(Function &F) {
     52       AA = &getAnalysis<AliasAnalysis>();
     53       MD = &getAnalysis<MemoryDependenceAnalysis>();
     54       DominatorTree &DT = getAnalysis<DominatorTree>();
     55 
     56       bool Changed = false;
     57       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
     58         // Only check non-dead blocks.  Dead blocks may have strange pointer
     59         // cycles that will confuse alias analysis.
     60         if (DT.isReachableFromEntry(I))
     61           Changed |= runOnBasicBlock(*I);
     62 
     63       AA = 0; MD = 0;
     64       return Changed;
     65     }
     66 
     67     bool runOnBasicBlock(BasicBlock &BB);
     68     bool HandleFree(CallInst *F);
     69     bool handleEndBlock(BasicBlock &BB);
     70     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
     71                                SmallPtrSet<Value*, 16> &DeadStackObjects);
     72 
     73     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     74       AU.setPreservesCFG();
     75       AU.addRequired<DominatorTree>();
     76       AU.addRequired<AliasAnalysis>();
     77       AU.addRequired<MemoryDependenceAnalysis>();
     78       AU.addPreserved<AliasAnalysis>();
     79       AU.addPreserved<DominatorTree>();
     80       AU.addPreserved<MemoryDependenceAnalysis>();
     81     }
     82   };
     83 }
     84 
     85 char DSE::ID = 0;
     86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
     87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
     89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
     91 
     92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
     93 
     94 //===----------------------------------------------------------------------===//
     95 // Helper functions
     96 //===----------------------------------------------------------------------===//
     97 
     98 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
     99 /// and zero out all the operands of this instruction.  If any of them become
    100 /// dead, delete them and the computation tree that feeds them.
    101 ///
    102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
    103 ///
    104 static void DeleteDeadInstruction(Instruction *I,
    105                                   MemoryDependenceAnalysis &MD,
    106                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
    107   SmallVector<Instruction*, 32> NowDeadInsts;
    108 
    109   NowDeadInsts.push_back(I);
    110   --NumFastOther;
    111 
    112   // Before we touch this instruction, remove it from memdep!
    113   do {
    114     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    115     ++NumFastOther;
    116 
    117     // This instruction is dead, zap it, in stages.  Start by removing it from
    118     // MemDep, which needs to know the operands and needs it to be in the
    119     // function.
    120     MD.removeInstruction(DeadInst);
    121 
    122     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    123       Value *Op = DeadInst->getOperand(op);
    124       DeadInst->setOperand(op, 0);
    125 
    126       // If this operand just became dead, add it to the NowDeadInsts list.
    127       if (!Op->use_empty()) continue;
    128 
    129       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    130         if (isInstructionTriviallyDead(OpI))
    131           NowDeadInsts.push_back(OpI);
    132     }
    133 
    134     DeadInst->eraseFromParent();
    135 
    136     if (ValueSet) ValueSet->erase(DeadInst);
    137   } while (!NowDeadInsts.empty());
    138 }
    139 
    140 
    141 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
    142 /// true for things that we can analyze with other helpers below.
    143 static bool hasMemoryWrite(Instruction *I) {
    144   if (isa<StoreInst>(I))
    145     return true;
    146   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    147     switch (II->getIntrinsicID()) {
    148     default:
    149       return false;
    150     case Intrinsic::memset:
    151     case Intrinsic::memmove:
    152     case Intrinsic::memcpy:
    153     case Intrinsic::init_trampoline:
    154     case Intrinsic::lifetime_end:
    155       return true;
    156     }
    157   }
    158   return false;
    159 }
    160 
    161 /// getLocForWrite - Return a Location stored to by the specified instruction.
    162 static AliasAnalysis::Location
    163 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
    164   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    165     return AA.getLocation(SI);
    166 
    167   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    168     // memcpy/memmove/memset.
    169     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
    170     // If we don't have target data around, an unknown size in Location means
    171     // that we should use the size of the pointee type.  This isn't valid for
    172     // memset/memcpy, which writes more than an i8.
    173     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
    174       return AliasAnalysis::Location();
    175     return Loc;
    176   }
    177 
    178   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    179   if (II == 0) return AliasAnalysis::Location();
    180 
    181   switch (II->getIntrinsicID()) {
    182   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
    183   case Intrinsic::init_trampoline:
    184     // If we don't have target data around, an unknown size in Location means
    185     // that we should use the size of the pointee type.  This isn't valid for
    186     // init.trampoline, which writes more than an i8.
    187     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
    188 
    189     // FIXME: We don't know the size of the trampoline, so we can't really
    190     // handle it here.
    191     return AliasAnalysis::Location(II->getArgOperand(0));
    192   case Intrinsic::lifetime_end: {
    193     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    194     return AliasAnalysis::Location(II->getArgOperand(1), Len);
    195   }
    196   }
    197 }
    198 
    199 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
    200 /// instruction if any.
    201 static AliasAnalysis::Location
    202 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
    203   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
    204 
    205   // The only instructions that both read and write are the mem transfer
    206   // instructions (memcpy/memmove).
    207   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
    208     return AA.getLocationForSource(MTI);
    209   return AliasAnalysis::Location();
    210 }
    211 
    212 
    213 /// isRemovable - If the value of this instruction and the memory it writes to
    214 /// is unused, may we delete this instruction?
    215 static bool isRemovable(Instruction *I) {
    216   // Don't remove volatile stores.
    217   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    218     return !SI->isVolatile();
    219 
    220   IntrinsicInst *II = cast<IntrinsicInst>(I);
    221   switch (II->getIntrinsicID()) {
    222   default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
    223   case Intrinsic::lifetime_end:
    224     // Never remove dead lifetime_end's, e.g. because it is followed by a
    225     // free.
    226     return false;
    227   case Intrinsic::init_trampoline:
    228     // Always safe to remove init_trampoline.
    229     return true;
    230 
    231   case Intrinsic::memset:
    232   case Intrinsic::memmove:
    233   case Intrinsic::memcpy:
    234     // Don't remove volatile memory intrinsics.
    235     return !cast<MemIntrinsic>(II)->isVolatile();
    236   }
    237 }
    238 
    239 /// getStoredPointerOperand - Return the pointer that is being written to.
    240 static Value *getStoredPointerOperand(Instruction *I) {
    241   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    242     return SI->getPointerOperand();
    243   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    244     return MI->getDest();
    245 
    246   IntrinsicInst *II = cast<IntrinsicInst>(I);
    247   switch (II->getIntrinsicID()) {
    248   default: assert(false && "Unexpected intrinsic!");
    249   case Intrinsic::init_trampoline:
    250     return II->getArgOperand(0);
    251   }
    252 }
    253 
    254 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
    255   const TargetData *TD = AA.getTargetData();
    256   if (TD == 0)
    257     return AliasAnalysis::UnknownSize;
    258 
    259   if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
    260     // Get size information for the alloca
    261     if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
    262       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
    263     return AliasAnalysis::UnknownSize;
    264   }
    265 
    266   assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
    267   PointerType *PT = cast<PointerType>(V->getType());
    268   return TD->getTypeAllocSize(PT->getElementType());
    269 }
    270 
    271 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
    272 /// pointing to an object with a pointer size we can trust.
    273 static bool isObjectPointerWithTrustworthySize(const Value *V) {
    274   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
    275     return !AI->isArrayAllocation();
    276   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    277     return !GV->mayBeOverridden();
    278   if (const Argument *A = dyn_cast<Argument>(V))
    279     return A->hasByValAttr();
    280   return false;
    281 }
    282 
    283 /// isCompleteOverwrite - Return true if a store to the 'Later' location
    284 /// completely overwrites a store to the 'Earlier' location.
    285 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
    286                                 const AliasAnalysis::Location &Earlier,
    287                                 AliasAnalysis &AA) {
    288   const Value *P1 = Earlier.Ptr->stripPointerCasts();
    289   const Value *P2 = Later.Ptr->stripPointerCasts();
    290 
    291   // If the start pointers are the same, we just have to compare sizes to see if
    292   // the later store was larger than the earlier store.
    293   if (P1 == P2) {
    294     // If we don't know the sizes of either access, then we can't do a
    295     // comparison.
    296     if (Later.Size == AliasAnalysis::UnknownSize ||
    297         Earlier.Size == AliasAnalysis::UnknownSize) {
    298       // If we have no TargetData information around, then the size of the store
    299       // is inferrable from the pointee type.  If they are the same type, then
    300       // we know that the store is safe.
    301       if (AA.getTargetData() == 0)
    302         return Later.Ptr->getType() == Earlier.Ptr->getType();
    303       return false;
    304     }
    305 
    306     // Make sure that the Later size is >= the Earlier size.
    307     if (Later.Size < Earlier.Size)
    308       return false;
    309     return true;
    310   }
    311 
    312   // Otherwise, we have to have size information, and the later store has to be
    313   // larger than the earlier one.
    314   if (Later.Size == AliasAnalysis::UnknownSize ||
    315       Earlier.Size == AliasAnalysis::UnknownSize ||
    316       Later.Size <= Earlier.Size || AA.getTargetData() == 0)
    317     return false;
    318 
    319   // Check to see if the later store is to the entire object (either a global,
    320   // an alloca, or a byval argument).  If so, then it clearly overwrites any
    321   // other store to the same object.
    322   const TargetData &TD = *AA.getTargetData();
    323 
    324   const Value *UO1 = GetUnderlyingObject(P1, &TD),
    325               *UO2 = GetUnderlyingObject(P2, &TD);
    326 
    327   // If we can't resolve the same pointers to the same object, then we can't
    328   // analyze them at all.
    329   if (UO1 != UO2)
    330     return false;
    331 
    332   // If the "Later" store is to a recognizable object, get its size.
    333   if (isObjectPointerWithTrustworthySize(UO2)) {
    334     uint64_t ObjectSize =
    335       TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
    336     if (ObjectSize == Later.Size)
    337       return true;
    338   }
    339 
    340   // Okay, we have stores to two completely different pointers.  Try to
    341   // decompose the pointer into a "base + constant_offset" form.  If the base
    342   // pointers are equal, then we can reason about the two stores.
    343   int64_t EarlierOff = 0, LaterOff = 0;
    344   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
    345   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
    346 
    347   // If the base pointers still differ, we have two completely different stores.
    348   if (BP1 != BP2)
    349     return false;
    350 
    351   // The later store completely overlaps the earlier store if:
    352   //
    353   // 1. Both start at the same offset and the later one's size is greater than
    354   //    or equal to the earlier one's, or
    355   //
    356   //      |--earlier--|
    357   //      |--   later   --|
    358   //
    359   // 2. The earlier store has an offset greater than the later offset, but which
    360   //    still lies completely within the later store.
    361   //
    362   //        |--earlier--|
    363   //    |-----  later  ------|
    364   //
    365   // We have to be careful here as *Off is signed while *.Size is unsigned.
    366   if (EarlierOff >= LaterOff &&
    367       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    368     return true;
    369 
    370   // Otherwise, they don't completely overlap.
    371   return false;
    372 }
    373 
    374 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
    375 /// memory region into an identical pointer) then it doesn't actually make its
    376 /// input dead in the traditional sense.  Consider this case:
    377 ///
    378 ///   memcpy(A <- B)
    379 ///   memcpy(A <- A)
    380 ///
    381 /// In this case, the second store to A does not make the first store to A dead.
    382 /// The usual situation isn't an explicit A<-A store like this (which can be
    383 /// trivially removed) but a case where two pointers may alias.
    384 ///
    385 /// This function detects when it is unsafe to remove a dependent instruction
    386 /// because the DSE inducing instruction may be a self-read.
    387 static bool isPossibleSelfRead(Instruction *Inst,
    388                                const AliasAnalysis::Location &InstStoreLoc,
    389                                Instruction *DepWrite, AliasAnalysis &AA) {
    390   // Self reads can only happen for instructions that read memory.  Get the
    391   // location read.
    392   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
    393   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
    394 
    395   // If the read and written loc obviously don't alias, it isn't a read.
    396   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
    397 
    398   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
    399   // DepWrite instruction if we can prove that it reads from the same location
    400   // as Inst.  This handles useful cases like:
    401   //   memcpy(A <- B)
    402   //   memcpy(A <- B)
    403   // Here we don't know if A/B may alias, but we do know that B/B are must
    404   // aliases, so removing the first memcpy is safe (assuming it writes <= #
    405   // bytes as the second one.
    406   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
    407 
    408   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
    409     return false;
    410 
    411   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
    412   // then it can't be considered dead.
    413   return true;
    414 }
    415 
    416 
    417 //===----------------------------------------------------------------------===//
    418 // DSE Pass
    419 //===----------------------------------------------------------------------===//
    420 
    421 bool DSE::runOnBasicBlock(BasicBlock &BB) {
    422   bool MadeChange = false;
    423 
    424   // Do a top-down walk on the BB.
    425   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    426     Instruction *Inst = BBI++;
    427 
    428     // Handle 'free' calls specially.
    429     if (CallInst *F = isFreeCall(Inst)) {
    430       MadeChange |= HandleFree(F);
    431       continue;
    432     }
    433 
    434     // If we find something that writes memory, get its memory dependence.
    435     if (!hasMemoryWrite(Inst))
    436       continue;
    437 
    438     MemDepResult InstDep = MD->getDependency(Inst);
    439 
    440     // Ignore any store where we can't find a local dependence.
    441     // FIXME: cross-block DSE would be fun. :)
    442     if (InstDep.isNonLocal() || InstDep.isUnknown())
    443       continue;
    444 
    445     // If we're storing the same value back to a pointer that we just
    446     // loaded from, then the store can be removed.
    447     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    448       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
    449         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
    450             SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
    451           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
    452                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
    453 
    454           // DeleteDeadInstruction can delete the current instruction.  Save BBI
    455           // in case we need it.
    456           WeakVH NextInst(BBI);
    457 
    458           DeleteDeadInstruction(SI, *MD);
    459 
    460           if (NextInst == 0)  // Next instruction deleted.
    461             BBI = BB.begin();
    462           else if (BBI != BB.begin())  // Revisit this instruction if possible.
    463             --BBI;
    464           ++NumFastStores;
    465           MadeChange = true;
    466           continue;
    467         }
    468       }
    469     }
    470 
    471     // Figure out what location is being stored to.
    472     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
    473 
    474     // If we didn't get a useful location, fail.
    475     if (Loc.Ptr == 0)
    476       continue;
    477 
    478     while (!InstDep.isNonLocal() && !InstDep.isUnknown()) {
    479       // Get the memory clobbered by the instruction we depend on.  MemDep will
    480       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
    481       // end up depending on a may- or must-aliased load, then we can't optimize
    482       // away the store and we bail out.  However, if we depend on on something
    483       // that overwrites the memory location we *can* potentially optimize it.
    484       //
    485       // Find out what memory location the dependent instruction stores.
    486       Instruction *DepWrite = InstDep.getInst();
    487       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
    488       // If we didn't get a useful location, or if it isn't a size, bail out.
    489       if (DepLoc.Ptr == 0)
    490         break;
    491 
    492       // If we find a write that is a) removable (i.e., non-volatile), b) is
    493       // completely obliterated by the store to 'Loc', and c) which we know that
    494       // 'Inst' doesn't load from, then we can remove it.
    495       if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
    496           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
    497         DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
    498               << *DepWrite << "\n  KILLER: " << *Inst << '\n');
    499 
    500         // Delete the store and now-dead instructions that feed it.
    501         DeleteDeadInstruction(DepWrite, *MD);
    502         ++NumFastStores;
    503         MadeChange = true;
    504 
    505         // DeleteDeadInstruction can delete the current instruction in loop
    506         // cases, reset BBI.
    507         BBI = Inst;
    508         if (BBI != BB.begin())
    509           --BBI;
    510         break;
    511       }
    512 
    513       // If this is a may-aliased store that is clobbering the store value, we
    514       // can keep searching past it for another must-aliased pointer that stores
    515       // to the same location.  For example, in:
    516       //   store -> P
    517       //   store -> Q
    518       //   store -> P
    519       // we can remove the first store to P even though we don't know if P and Q
    520       // alias.
    521       if (DepWrite == &BB.front()) break;
    522 
    523       // Can't look past this instruction if it might read 'Loc'.
    524       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
    525         break;
    526 
    527       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
    528     }
    529   }
    530 
    531   // If this block ends in a return, unwind, or unreachable, all allocas are
    532   // dead at its end, which means stores to them are also dead.
    533   if (BB.getTerminator()->getNumSuccessors() == 0)
    534     MadeChange |= handleEndBlock(BB);
    535 
    536   return MadeChange;
    537 }
    538 
    539 /// HandleFree - Handle frees of entire structures whose dependency is a store
    540 /// to a field of that structure.
    541 bool DSE::HandleFree(CallInst *F) {
    542   bool MadeChange = false;
    543 
    544   MemDepResult Dep = MD->getDependency(F);
    545 
    546   while (!Dep.isNonLocal() && !Dep.isUnknown()) {
    547     Instruction *Dependency = Dep.getInst();
    548     if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
    549       return MadeChange;
    550 
    551     Value *DepPointer =
    552       GetUnderlyingObject(getStoredPointerOperand(Dependency));
    553 
    554     // Check for aliasing.
    555     if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
    556       return MadeChange;
    557 
    558     // DCE instructions only used to calculate that store
    559     DeleteDeadInstruction(Dependency, *MD);
    560     ++NumFastStores;
    561     MadeChange = true;
    562 
    563     // Inst's old Dependency is now deleted. Compute the next dependency,
    564     // which may also be dead, as in
    565     //    s[0] = 0;
    566     //    s[1] = 0; // This has just been deleted.
    567     //    free(s);
    568     Dep = MD->getDependency(F);
    569   };
    570 
    571   return MadeChange;
    572 }
    573 
    574 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
    575 /// function end block.  Ex:
    576 /// %A = alloca i32
    577 /// ...
    578 /// store i32 1, i32* %A
    579 /// ret void
    580 bool DSE::handleEndBlock(BasicBlock &BB) {
    581   bool MadeChange = false;
    582 
    583   // Keep track of all of the stack objects that are dead at the end of the
    584   // function.
    585   SmallPtrSet<Value*, 16> DeadStackObjects;
    586 
    587   // Find all of the alloca'd pointers in the entry block.
    588   BasicBlock *Entry = BB.getParent()->begin();
    589   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
    590     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
    591       DeadStackObjects.insert(AI);
    592 
    593   // Treat byval arguments the same, stores to them are dead at the end of the
    594   // function.
    595   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
    596        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    597     if (AI->hasByValAttr())
    598       DeadStackObjects.insert(AI);
    599 
    600   // Scan the basic block backwards
    601   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    602     --BBI;
    603 
    604     // If we find a store, check to see if it points into a dead stack value.
    605     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
    606       // See through pointer-to-pointer bitcasts
    607       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
    608 
    609       // Stores to stack values are valid candidates for removal.
    610       if (DeadStackObjects.count(Pointer)) {
    611         Instruction *Dead = BBI++;
    612 
    613         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
    614                      << *Dead << "\n  Object: " << *Pointer << '\n');
    615 
    616         // DCE instructions only used to calculate that store.
    617         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
    618         ++NumFastStores;
    619         MadeChange = true;
    620         continue;
    621       }
    622     }
    623 
    624     // Remove any dead non-memory-mutating instructions.
    625     if (isInstructionTriviallyDead(BBI)) {
    626       Instruction *Inst = BBI++;
    627       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
    628       ++NumFastOther;
    629       MadeChange = true;
    630       continue;
    631     }
    632 
    633     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
    634       DeadStackObjects.erase(A);
    635       continue;
    636     }
    637 
    638     if (CallSite CS = cast<Value>(BBI)) {
    639       // If this call does not access memory, it can't be loading any of our
    640       // pointers.
    641       if (AA->doesNotAccessMemory(CS))
    642         continue;
    643 
    644       // If the call might load from any of our allocas, then any store above
    645       // the call is live.
    646       SmallVector<Value*, 8> LiveAllocas;
    647       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    648            E = DeadStackObjects.end(); I != E; ++I) {
    649         // See if the call site touches it.
    650         AliasAnalysis::ModRefResult A =
    651           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
    652 
    653         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
    654           LiveAllocas.push_back(*I);
    655       }
    656 
    657       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
    658            E = LiveAllocas.end(); I != E; ++I)
    659         DeadStackObjects.erase(*I);
    660 
    661       // If all of the allocas were clobbered by the call then we're not going
    662       // to find anything else to process.
    663       if (DeadStackObjects.empty())
    664         return MadeChange;
    665 
    666       continue;
    667     }
    668 
    669     AliasAnalysis::Location LoadedLoc;
    670 
    671     // If we encounter a use of the pointer, it is no longer considered dead
    672     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
    673       LoadedLoc = AA->getLocation(L);
    674     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    675       LoadedLoc = AA->getLocation(V);
    676     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
    677       LoadedLoc = AA->getLocationForSource(MTI);
    678     } else {
    679       // Not a loading instruction.
    680       continue;
    681     }
    682 
    683     // Remove any allocas from the DeadPointer set that are loaded, as this
    684     // makes any stores above the access live.
    685     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
    686 
    687     // If all of the allocas were clobbered by the access then we're not going
    688     // to find anything else to process.
    689     if (DeadStackObjects.empty())
    690       break;
    691   }
    692 
    693   return MadeChange;
    694 }
    695 
    696 /// RemoveAccessedObjects - Check to see if the specified location may alias any
    697 /// of the stack objects in the DeadStackObjects set.  If so, they become live
    698 /// because the location is being loaded.
    699 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
    700                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
    701   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
    702 
    703   // A constant can't be in the dead pointer set.
    704   if (isa<Constant>(UnderlyingPointer))
    705     return;
    706 
    707   // If the kill pointer can be easily reduced to an alloca, don't bother doing
    708   // extraneous AA queries.
    709   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    710     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
    711     return;
    712   }
    713 
    714   SmallVector<Value*, 16> NowLive;
    715   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    716        E = DeadStackObjects.end(); I != E; ++I) {
    717     // See if the loaded location could alias the stack location.
    718     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
    719     if (!AA->isNoAlias(StackLoc, LoadedLoc))
    720       NowLive.push_back(*I);
    721   }
    722 
    723   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
    724        I != E; ++I)
    725     DeadStackObjects.erase(*I);
    726 }
    727 
    728