1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Module.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MutexGuard.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/Host.h" 31 #include "llvm/Target/TargetData.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include <cmath> 34 #include <cstring> 35 using namespace llvm; 36 37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 38 STATISTIC(NumGlobals , "Number of global vars initialized"); 39 40 ExecutionEngine *(*ExecutionEngine::JITCtor)( 41 Module *M, 42 std::string *ErrorStr, 43 JITMemoryManager *JMM, 44 CodeGenOpt::Level OptLevel, 45 bool GVsWithCode, 46 TargetMachine *TM) = 0; 47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 48 Module *M, 49 std::string *ErrorStr, 50 JITMemoryManager *JMM, 51 CodeGenOpt::Level OptLevel, 52 bool GVsWithCode, 53 TargetMachine *TM) = 0; 54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 55 std::string *ErrorStr) = 0; 56 57 ExecutionEngine::ExecutionEngine(Module *M) 58 : EEState(*this), 59 LazyFunctionCreator(0), 60 ExceptionTableRegister(0), 61 ExceptionTableDeregister(0) { 62 CompilingLazily = false; 63 GVCompilationDisabled = false; 64 SymbolSearchingDisabled = false; 65 Modules.push_back(M); 66 assert(M && "Module is null?"); 67 } 68 69 ExecutionEngine::~ExecutionEngine() { 70 clearAllGlobalMappings(); 71 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 72 delete Modules[i]; 73 } 74 75 void ExecutionEngine::DeregisterAllTables() { 76 if (ExceptionTableDeregister) { 77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 79 for (; it != ite; ++it) 80 ExceptionTableDeregister(it->second); 81 AllExceptionTables.clear(); 82 } 83 } 84 85 namespace { 86 /// \brief Helper class which uses a value handler to automatically deletes the 87 /// memory block when the GlobalVariable is destroyed. 88 class GVMemoryBlock : public CallbackVH { 89 GVMemoryBlock(const GlobalVariable *GV) 90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 91 92 public: 93 /// \brief Returns the address the GlobalVariable should be written into. The 94 /// GVMemoryBlock object prefixes that. 95 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 96 Type *ElTy = GV->getType()->getElementType(); 97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 98 void *RawMemory = ::operator new( 99 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 100 TD.getPreferredAlignment(GV)) 101 + GVSize); 102 new(RawMemory) GVMemoryBlock(GV); 103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 104 } 105 106 virtual void deleted() { 107 // We allocated with operator new and with some extra memory hanging off the 108 // end, so don't just delete this. I'm not sure if this is actually 109 // required. 110 this->~GVMemoryBlock(); 111 ::operator delete(this); 112 } 113 }; 114 } // anonymous namespace 115 116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 117 return GVMemoryBlock::Create(GV, *getTargetData()); 118 } 119 120 bool ExecutionEngine::removeModule(Module *M) { 121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 122 E = Modules.end(); I != E; ++I) { 123 Module *Found = *I; 124 if (Found == M) { 125 Modules.erase(I); 126 clearGlobalMappingsFromModule(M); 127 return true; 128 } 129 } 130 return false; 131 } 132 133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 135 if (Function *F = Modules[i]->getFunction(FnName)) 136 return F; 137 } 138 return 0; 139 } 140 141 142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 143 const GlobalValue *ToUnmap) { 144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 145 void *OldVal; 146 147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 148 // GlobalAddressMap. 149 if (I == GlobalAddressMap.end()) 150 OldVal = 0; 151 else { 152 OldVal = I->second; 153 GlobalAddressMap.erase(I); 154 } 155 156 GlobalAddressReverseMap.erase(OldVal); 157 return OldVal; 158 } 159 160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 161 MutexGuard locked(lock); 162 163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 164 << "\' to [" << Addr << "]\n";); 165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 167 CurVal = Addr; 168 169 // If we are using the reverse mapping, add it too. 170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 171 AssertingVH<const GlobalValue> &V = 172 EEState.getGlobalAddressReverseMap(locked)[Addr]; 173 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 174 V = GV; 175 } 176 } 177 178 void ExecutionEngine::clearAllGlobalMappings() { 179 MutexGuard locked(lock); 180 181 EEState.getGlobalAddressMap(locked).clear(); 182 EEState.getGlobalAddressReverseMap(locked).clear(); 183 } 184 185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 186 MutexGuard locked(lock); 187 188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 189 EEState.RemoveMapping(locked, FI); 190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 191 GI != GE; ++GI) 192 EEState.RemoveMapping(locked, GI); 193 } 194 195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 196 MutexGuard locked(lock); 197 198 ExecutionEngineState::GlobalAddressMapTy &Map = 199 EEState.getGlobalAddressMap(locked); 200 201 // Deleting from the mapping? 202 if (Addr == 0) 203 return EEState.RemoveMapping(locked, GV); 204 205 void *&CurVal = Map[GV]; 206 void *OldVal = CurVal; 207 208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 210 CurVal = Addr; 211 212 // If we are using the reverse mapping, add it too. 213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 214 AssertingVH<const GlobalValue> &V = 215 EEState.getGlobalAddressReverseMap(locked)[Addr]; 216 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 217 V = GV; 218 } 219 return OldVal; 220 } 221 222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 223 MutexGuard locked(lock); 224 225 ExecutionEngineState::GlobalAddressMapTy::iterator I = 226 EEState.getGlobalAddressMap(locked).find(GV); 227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 228 } 229 230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 231 MutexGuard locked(lock); 232 233 // If we haven't computed the reverse mapping yet, do so first. 234 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 235 for (ExecutionEngineState::GlobalAddressMapTy::iterator 236 I = EEState.getGlobalAddressMap(locked).begin(), 237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 239 I->second, I->first)); 240 } 241 242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 243 EEState.getGlobalAddressReverseMap(locked).find(Addr); 244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 245 } 246 247 namespace { 248 class ArgvArray { 249 char *Array; 250 std::vector<char*> Values; 251 public: 252 ArgvArray() : Array(NULL) {} 253 ~ArgvArray() { clear(); } 254 void clear() { 255 delete[] Array; 256 Array = NULL; 257 for (size_t I = 0, E = Values.size(); I != E; ++I) { 258 delete[] Values[I]; 259 } 260 Values.clear(); 261 } 262 /// Turn a vector of strings into a nice argv style array of pointers to null 263 /// terminated strings. 264 void *reset(LLVMContext &C, ExecutionEngine *EE, 265 const std::vector<std::string> &InputArgv); 266 }; 267 } // anonymous namespace 268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 269 const std::vector<std::string> &InputArgv) { 270 clear(); // Free the old contents. 271 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 272 Array = new char[(InputArgv.size()+1)*PtrSize]; 273 274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 275 Type *SBytePtr = Type::getInt8PtrTy(C); 276 277 for (unsigned i = 0; i != InputArgv.size(); ++i) { 278 unsigned Size = InputArgv[i].size()+1; 279 char *Dest = new char[Size]; 280 Values.push_back(Dest); 281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 282 283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 284 Dest[Size-1] = 0; 285 286 // Endian safe: Array[i] = (PointerTy)Dest; 287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 288 SBytePtr); 289 } 290 291 // Null terminate it 292 EE->StoreValueToMemory(PTOGV(0), 293 (GenericValue*)(Array+InputArgv.size()*PtrSize), 294 SBytePtr); 295 return Array; 296 } 297 298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 299 bool isDtors) { 300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 301 GlobalVariable *GV = module->getNamedGlobal(Name); 302 303 // If this global has internal linkage, or if it has a use, then it must be 304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 305 // this is the case, don't execute any of the global ctors, __main will do 306 // it. 307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 308 309 // Should be an array of '{ i32, void ()* }' structs. The first value is 310 // the init priority, which we ignore. 311 if (isa<ConstantAggregateZero>(GV->getInitializer())) 312 return; 313 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 315 if (isa<ConstantAggregateZero>(InitList->getOperand(i))) 316 continue; 317 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i)); 318 319 Constant *FP = CS->getOperand(1); 320 if (FP->isNullValue()) 321 continue; // Found a sentinal value, ignore. 322 323 // Strip off constant expression casts. 324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 325 if (CE->isCast()) 326 FP = CE->getOperand(0); 327 328 // Execute the ctor/dtor function! 329 if (Function *F = dyn_cast<Function>(FP)) 330 runFunction(F, std::vector<GenericValue>()); 331 332 // FIXME: It is marginally lame that we just do nothing here if we see an 333 // entry we don't recognize. It might not be unreasonable for the verifier 334 // to not even allow this and just assert here. 335 } 336 } 337 338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 339 // Execute global ctors/dtors for each module in the program. 340 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 341 runStaticConstructorsDestructors(Modules[i], isDtors); 342 } 343 344 #ifndef NDEBUG 345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 347 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 348 for (unsigned i = 0; i < PtrSize; ++i) 349 if (*(i + (uint8_t*)Loc)) 350 return false; 351 return true; 352 } 353 #endif 354 355 int ExecutionEngine::runFunctionAsMain(Function *Fn, 356 const std::vector<std::string> &argv, 357 const char * const * envp) { 358 std::vector<GenericValue> GVArgs; 359 GenericValue GVArgc; 360 GVArgc.IntVal = APInt(32, argv.size()); 361 362 // Check main() type 363 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 364 FunctionType *FTy = Fn->getFunctionType(); 365 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 366 367 // Check the argument types. 368 if (NumArgs > 3) 369 report_fatal_error("Invalid number of arguments of main() supplied"); 370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 371 report_fatal_error("Invalid type for third argument of main() supplied"); 372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 373 report_fatal_error("Invalid type for second argument of main() supplied"); 374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 375 report_fatal_error("Invalid type for first argument of main() supplied"); 376 if (!FTy->getReturnType()->isIntegerTy() && 377 !FTy->getReturnType()->isVoidTy()) 378 report_fatal_error("Invalid return type of main() supplied"); 379 380 ArgvArray CArgv; 381 ArgvArray CEnv; 382 if (NumArgs) { 383 GVArgs.push_back(GVArgc); // Arg #0 = argc. 384 if (NumArgs > 1) { 385 // Arg #1 = argv. 386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 388 "argv[0] was null after CreateArgv"); 389 if (NumArgs > 2) { 390 std::vector<std::string> EnvVars; 391 for (unsigned i = 0; envp[i]; ++i) 392 EnvVars.push_back(envp[i]); 393 // Arg #2 = envp. 394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 395 } 396 } 397 } 398 399 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 400 } 401 402 ExecutionEngine *ExecutionEngine::create(Module *M, 403 bool ForceInterpreter, 404 std::string *ErrorStr, 405 CodeGenOpt::Level OptLevel, 406 bool GVsWithCode) { 407 return EngineBuilder(M) 408 .setEngineKind(ForceInterpreter 409 ? EngineKind::Interpreter 410 : EngineKind::JIT) 411 .setErrorStr(ErrorStr) 412 .setOptLevel(OptLevel) 413 .setAllocateGVsWithCode(GVsWithCode) 414 .create(); 415 } 416 417 /// createJIT - This is the factory method for creating a JIT for the current 418 /// machine, it does not fall back to the interpreter. This takes ownership 419 /// of the module. 420 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 421 std::string *ErrorStr, 422 JITMemoryManager *JMM, 423 CodeGenOpt::Level OptLevel, 424 bool GVsWithCode, 425 Reloc::Model RM, 426 CodeModel::Model CMM) { 427 if (ExecutionEngine::JITCtor == 0) { 428 if (ErrorStr) 429 *ErrorStr = "JIT has not been linked in."; 430 return 0; 431 } 432 433 // Use the defaults for extra parameters. Users can use EngineBuilder to 434 // set them. 435 StringRef MArch = ""; 436 StringRef MCPU = ""; 437 SmallVector<std::string, 1> MAttrs; 438 439 TargetMachine *TM = 440 EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, RM, ErrorStr); 441 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0; 442 TM->setCodeModel(CMM); 443 444 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, GVsWithCode, TM); 445 } 446 447 ExecutionEngine *EngineBuilder::create() { 448 // Make sure we can resolve symbols in the program as well. The zero arg 449 // to the function tells DynamicLibrary to load the program, not a library. 450 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 451 return 0; 452 453 // If the user specified a memory manager but didn't specify which engine to 454 // create, we assume they only want the JIT, and we fail if they only want 455 // the interpreter. 456 if (JMM) { 457 if (WhichEngine & EngineKind::JIT) 458 WhichEngine = EngineKind::JIT; 459 else { 460 if (ErrorStr) 461 *ErrorStr = "Cannot create an interpreter with a memory manager."; 462 return 0; 463 } 464 } 465 466 // Unless the interpreter was explicitly selected or the JIT is not linked, 467 // try making a JIT. 468 if (WhichEngine & EngineKind::JIT) { 469 if (TargetMachine *TM = EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, 470 RelocModel, ErrorStr)) { 471 TM->setCodeModel(CMModel); 472 473 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 474 ExecutionEngine *EE = 475 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, 476 AllocateGVsWithCode, TM); 477 if (EE) return EE; 478 } else if (ExecutionEngine::JITCtor) { 479 ExecutionEngine *EE = 480 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 481 AllocateGVsWithCode, TM); 482 if (EE) return EE; 483 } 484 } 485 } 486 487 // If we can't make a JIT and we didn't request one specifically, try making 488 // an interpreter instead. 489 if (WhichEngine & EngineKind::Interpreter) { 490 if (ExecutionEngine::InterpCtor) 491 return ExecutionEngine::InterpCtor(M, ErrorStr); 492 if (ErrorStr) 493 *ErrorStr = "Interpreter has not been linked in."; 494 return 0; 495 } 496 497 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 498 if (ErrorStr) 499 *ErrorStr = "JIT has not been linked in."; 500 } 501 502 return 0; 503 } 504 505 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 506 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 507 return getPointerToFunction(F); 508 509 MutexGuard locked(lock); 510 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 511 return P; 512 513 // Global variable might have been added since interpreter started. 514 if (GlobalVariable *GVar = 515 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 516 EmitGlobalVariable(GVar); 517 else 518 llvm_unreachable("Global hasn't had an address allocated yet!"); 519 520 return EEState.getGlobalAddressMap(locked)[GV]; 521 } 522 523 /// \brief Converts a Constant* into a GenericValue, including handling of 524 /// ConstantExpr values. 525 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 526 // If its undefined, return the garbage. 527 if (isa<UndefValue>(C)) { 528 GenericValue Result; 529 switch (C->getType()->getTypeID()) { 530 case Type::IntegerTyID: 531 case Type::X86_FP80TyID: 532 case Type::FP128TyID: 533 case Type::PPC_FP128TyID: 534 // Although the value is undefined, we still have to construct an APInt 535 // with the correct bit width. 536 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 537 break; 538 default: 539 break; 540 } 541 return Result; 542 } 543 544 // Otherwise, if the value is a ConstantExpr... 545 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 546 Constant *Op0 = CE->getOperand(0); 547 switch (CE->getOpcode()) { 548 case Instruction::GetElementPtr: { 549 // Compute the index 550 GenericValue Result = getConstantValue(Op0); 551 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 552 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices); 553 554 char* tmp = (char*) Result.PointerVal; 555 Result = PTOGV(tmp + Offset); 556 return Result; 557 } 558 case Instruction::Trunc: { 559 GenericValue GV = getConstantValue(Op0); 560 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 561 GV.IntVal = GV.IntVal.trunc(BitWidth); 562 return GV; 563 } 564 case Instruction::ZExt: { 565 GenericValue GV = getConstantValue(Op0); 566 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 567 GV.IntVal = GV.IntVal.zext(BitWidth); 568 return GV; 569 } 570 case Instruction::SExt: { 571 GenericValue GV = getConstantValue(Op0); 572 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 573 GV.IntVal = GV.IntVal.sext(BitWidth); 574 return GV; 575 } 576 case Instruction::FPTrunc: { 577 // FIXME long double 578 GenericValue GV = getConstantValue(Op0); 579 GV.FloatVal = float(GV.DoubleVal); 580 return GV; 581 } 582 case Instruction::FPExt:{ 583 // FIXME long double 584 GenericValue GV = getConstantValue(Op0); 585 GV.DoubleVal = double(GV.FloatVal); 586 return GV; 587 } 588 case Instruction::UIToFP: { 589 GenericValue GV = getConstantValue(Op0); 590 if (CE->getType()->isFloatTy()) 591 GV.FloatVal = float(GV.IntVal.roundToDouble()); 592 else if (CE->getType()->isDoubleTy()) 593 GV.DoubleVal = GV.IntVal.roundToDouble(); 594 else if (CE->getType()->isX86_FP80Ty()) { 595 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 596 (void)apf.convertFromAPInt(GV.IntVal, 597 false, 598 APFloat::rmNearestTiesToEven); 599 GV.IntVal = apf.bitcastToAPInt(); 600 } 601 return GV; 602 } 603 case Instruction::SIToFP: { 604 GenericValue GV = getConstantValue(Op0); 605 if (CE->getType()->isFloatTy()) 606 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 607 else if (CE->getType()->isDoubleTy()) 608 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 609 else if (CE->getType()->isX86_FP80Ty()) { 610 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 611 (void)apf.convertFromAPInt(GV.IntVal, 612 true, 613 APFloat::rmNearestTiesToEven); 614 GV.IntVal = apf.bitcastToAPInt(); 615 } 616 return GV; 617 } 618 case Instruction::FPToUI: // double->APInt conversion handles sign 619 case Instruction::FPToSI: { 620 GenericValue GV = getConstantValue(Op0); 621 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 622 if (Op0->getType()->isFloatTy()) 623 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 624 else if (Op0->getType()->isDoubleTy()) 625 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 626 else if (Op0->getType()->isX86_FP80Ty()) { 627 APFloat apf = APFloat(GV.IntVal); 628 uint64_t v; 629 bool ignored; 630 (void)apf.convertToInteger(&v, BitWidth, 631 CE->getOpcode()==Instruction::FPToSI, 632 APFloat::rmTowardZero, &ignored); 633 GV.IntVal = v; // endian? 634 } 635 return GV; 636 } 637 case Instruction::PtrToInt: { 638 GenericValue GV = getConstantValue(Op0); 639 uint32_t PtrWidth = TD->getPointerSizeInBits(); 640 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 641 return GV; 642 } 643 case Instruction::IntToPtr: { 644 GenericValue GV = getConstantValue(Op0); 645 uint32_t PtrWidth = TD->getPointerSizeInBits(); 646 if (PtrWidth != GV.IntVal.getBitWidth()) 647 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 648 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 649 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 650 return GV; 651 } 652 case Instruction::BitCast: { 653 GenericValue GV = getConstantValue(Op0); 654 Type* DestTy = CE->getType(); 655 switch (Op0->getType()->getTypeID()) { 656 default: llvm_unreachable("Invalid bitcast operand"); 657 case Type::IntegerTyID: 658 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 659 if (DestTy->isFloatTy()) 660 GV.FloatVal = GV.IntVal.bitsToFloat(); 661 else if (DestTy->isDoubleTy()) 662 GV.DoubleVal = GV.IntVal.bitsToDouble(); 663 break; 664 case Type::FloatTyID: 665 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 666 GV.IntVal = APInt::floatToBits(GV.FloatVal); 667 break; 668 case Type::DoubleTyID: 669 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 670 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 671 break; 672 case Type::PointerTyID: 673 assert(DestTy->isPointerTy() && "Invalid bitcast"); 674 break; // getConstantValue(Op0) above already converted it 675 } 676 return GV; 677 } 678 case Instruction::Add: 679 case Instruction::FAdd: 680 case Instruction::Sub: 681 case Instruction::FSub: 682 case Instruction::Mul: 683 case Instruction::FMul: 684 case Instruction::UDiv: 685 case Instruction::SDiv: 686 case Instruction::URem: 687 case Instruction::SRem: 688 case Instruction::And: 689 case Instruction::Or: 690 case Instruction::Xor: { 691 GenericValue LHS = getConstantValue(Op0); 692 GenericValue RHS = getConstantValue(CE->getOperand(1)); 693 GenericValue GV; 694 switch (CE->getOperand(0)->getType()->getTypeID()) { 695 default: llvm_unreachable("Bad add type!"); 696 case Type::IntegerTyID: 697 switch (CE->getOpcode()) { 698 default: llvm_unreachable("Invalid integer opcode"); 699 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 700 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 701 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 702 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 703 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 704 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 705 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 706 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 707 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 708 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 709 } 710 break; 711 case Type::FloatTyID: 712 switch (CE->getOpcode()) { 713 default: llvm_unreachable("Invalid float opcode"); 714 case Instruction::FAdd: 715 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 716 case Instruction::FSub: 717 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 718 case Instruction::FMul: 719 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 720 case Instruction::FDiv: 721 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 722 case Instruction::FRem: 723 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 724 } 725 break; 726 case Type::DoubleTyID: 727 switch (CE->getOpcode()) { 728 default: llvm_unreachable("Invalid double opcode"); 729 case Instruction::FAdd: 730 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 731 case Instruction::FSub: 732 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 733 case Instruction::FMul: 734 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 735 case Instruction::FDiv: 736 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 737 case Instruction::FRem: 738 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 739 } 740 break; 741 case Type::X86_FP80TyID: 742 case Type::PPC_FP128TyID: 743 case Type::FP128TyID: { 744 APFloat apfLHS = APFloat(LHS.IntVal); 745 switch (CE->getOpcode()) { 746 default: llvm_unreachable("Invalid long double opcode"); 747 case Instruction::FAdd: 748 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 749 GV.IntVal = apfLHS.bitcastToAPInt(); 750 break; 751 case Instruction::FSub: 752 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 753 GV.IntVal = apfLHS.bitcastToAPInt(); 754 break; 755 case Instruction::FMul: 756 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 757 GV.IntVal = apfLHS.bitcastToAPInt(); 758 break; 759 case Instruction::FDiv: 760 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 761 GV.IntVal = apfLHS.bitcastToAPInt(); 762 break; 763 case Instruction::FRem: 764 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 765 GV.IntVal = apfLHS.bitcastToAPInt(); 766 break; 767 } 768 } 769 break; 770 } 771 return GV; 772 } 773 default: 774 break; 775 } 776 777 SmallString<256> Msg; 778 raw_svector_ostream OS(Msg); 779 OS << "ConstantExpr not handled: " << *CE; 780 report_fatal_error(OS.str()); 781 } 782 783 // Otherwise, we have a simple constant. 784 GenericValue Result; 785 switch (C->getType()->getTypeID()) { 786 case Type::FloatTyID: 787 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 788 break; 789 case Type::DoubleTyID: 790 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 791 break; 792 case Type::X86_FP80TyID: 793 case Type::FP128TyID: 794 case Type::PPC_FP128TyID: 795 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 796 break; 797 case Type::IntegerTyID: 798 Result.IntVal = cast<ConstantInt>(C)->getValue(); 799 break; 800 case Type::PointerTyID: 801 if (isa<ConstantPointerNull>(C)) 802 Result.PointerVal = 0; 803 else if (const Function *F = dyn_cast<Function>(C)) 804 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 805 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 806 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 807 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 808 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 809 BA->getBasicBlock()))); 810 else 811 llvm_unreachable("Unknown constant pointer type!"); 812 break; 813 default: 814 SmallString<256> Msg; 815 raw_svector_ostream OS(Msg); 816 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 817 report_fatal_error(OS.str()); 818 } 819 820 return Result; 821 } 822 823 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 824 /// with the integer held in IntVal. 825 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 826 unsigned StoreBytes) { 827 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 828 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 829 830 if (sys::isLittleEndianHost()) { 831 // Little-endian host - the source is ordered from LSB to MSB. Order the 832 // destination from LSB to MSB: Do a straight copy. 833 memcpy(Dst, Src, StoreBytes); 834 } else { 835 // Big-endian host - the source is an array of 64 bit words ordered from 836 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 837 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 838 while (StoreBytes > sizeof(uint64_t)) { 839 StoreBytes -= sizeof(uint64_t); 840 // May not be aligned so use memcpy. 841 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 842 Src += sizeof(uint64_t); 843 } 844 845 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 846 } 847 } 848 849 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 850 GenericValue *Ptr, Type *Ty) { 851 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 852 853 switch (Ty->getTypeID()) { 854 case Type::IntegerTyID: 855 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 856 break; 857 case Type::FloatTyID: 858 *((float*)Ptr) = Val.FloatVal; 859 break; 860 case Type::DoubleTyID: 861 *((double*)Ptr) = Val.DoubleVal; 862 break; 863 case Type::X86_FP80TyID: 864 memcpy(Ptr, Val.IntVal.getRawData(), 10); 865 break; 866 case Type::PointerTyID: 867 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 868 if (StoreBytes != sizeof(PointerTy)) 869 memset(&(Ptr->PointerVal), 0, StoreBytes); 870 871 *((PointerTy*)Ptr) = Val.PointerVal; 872 break; 873 default: 874 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 875 } 876 877 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 878 // Host and target are different endian - reverse the stored bytes. 879 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 880 } 881 882 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 883 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 884 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 885 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 886 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 887 888 if (sys::isLittleEndianHost()) 889 // Little-endian host - the destination must be ordered from LSB to MSB. 890 // The source is ordered from LSB to MSB: Do a straight copy. 891 memcpy(Dst, Src, LoadBytes); 892 else { 893 // Big-endian - the destination is an array of 64 bit words ordered from 894 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 895 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 896 // a word. 897 while (LoadBytes > sizeof(uint64_t)) { 898 LoadBytes -= sizeof(uint64_t); 899 // May not be aligned so use memcpy. 900 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 901 Dst += sizeof(uint64_t); 902 } 903 904 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 905 } 906 } 907 908 /// FIXME: document 909 /// 910 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 911 GenericValue *Ptr, 912 Type *Ty) { 913 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 914 915 switch (Ty->getTypeID()) { 916 case Type::IntegerTyID: 917 // An APInt with all words initially zero. 918 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 919 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 920 break; 921 case Type::FloatTyID: 922 Result.FloatVal = *((float*)Ptr); 923 break; 924 case Type::DoubleTyID: 925 Result.DoubleVal = *((double*)Ptr); 926 break; 927 case Type::PointerTyID: 928 Result.PointerVal = *((PointerTy*)Ptr); 929 break; 930 case Type::X86_FP80TyID: { 931 // This is endian dependent, but it will only work on x86 anyway. 932 // FIXME: Will not trap if loading a signaling NaN. 933 uint64_t y[2]; 934 memcpy(y, Ptr, 10); 935 Result.IntVal = APInt(80, y); 936 break; 937 } 938 default: 939 SmallString<256> Msg; 940 raw_svector_ostream OS(Msg); 941 OS << "Cannot load value of type " << *Ty << "!"; 942 report_fatal_error(OS.str()); 943 } 944 } 945 946 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 947 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 948 DEBUG(Init->dump()); 949 if (isa<UndefValue>(Init)) { 950 return; 951 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 952 unsigned ElementSize = 953 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 954 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 955 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 956 return; 957 } else if (isa<ConstantAggregateZero>(Init)) { 958 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 959 return; 960 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 961 unsigned ElementSize = 962 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 963 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 964 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 965 return; 966 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 967 const StructLayout *SL = 968 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 969 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 970 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 971 return; 972 } else if (Init->getType()->isFirstClassType()) { 973 GenericValue Val = getConstantValue(Init); 974 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 975 return; 976 } 977 978 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 979 llvm_unreachable("Unknown constant type to initialize memory with!"); 980 } 981 982 /// EmitGlobals - Emit all of the global variables to memory, storing their 983 /// addresses into GlobalAddress. This must make sure to copy the contents of 984 /// their initializers into the memory. 985 void ExecutionEngine::emitGlobals() { 986 // Loop over all of the global variables in the program, allocating the memory 987 // to hold them. If there is more than one module, do a prepass over globals 988 // to figure out how the different modules should link together. 989 std::map<std::pair<std::string, Type*>, 990 const GlobalValue*> LinkedGlobalsMap; 991 992 if (Modules.size() != 1) { 993 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 994 Module &M = *Modules[m]; 995 for (Module::const_global_iterator I = M.global_begin(), 996 E = M.global_end(); I != E; ++I) { 997 const GlobalValue *GV = I; 998 if (GV->hasLocalLinkage() || GV->isDeclaration() || 999 GV->hasAppendingLinkage() || !GV->hasName()) 1000 continue;// Ignore external globals and globals with internal linkage. 1001 1002 const GlobalValue *&GVEntry = 1003 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1004 1005 // If this is the first time we've seen this global, it is the canonical 1006 // version. 1007 if (!GVEntry) { 1008 GVEntry = GV; 1009 continue; 1010 } 1011 1012 // If the existing global is strong, never replace it. 1013 if (GVEntry->hasExternalLinkage() || 1014 GVEntry->hasDLLImportLinkage() || 1015 GVEntry->hasDLLExportLinkage()) 1016 continue; 1017 1018 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1019 // symbol. FIXME is this right for common? 1020 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1021 GVEntry = GV; 1022 } 1023 } 1024 } 1025 1026 std::vector<const GlobalValue*> NonCanonicalGlobals; 1027 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1028 Module &M = *Modules[m]; 1029 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1030 I != E; ++I) { 1031 // In the multi-module case, see what this global maps to. 1032 if (!LinkedGlobalsMap.empty()) { 1033 if (const GlobalValue *GVEntry = 1034 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1035 // If something else is the canonical global, ignore this one. 1036 if (GVEntry != &*I) { 1037 NonCanonicalGlobals.push_back(I); 1038 continue; 1039 } 1040 } 1041 } 1042 1043 if (!I->isDeclaration()) { 1044 addGlobalMapping(I, getMemoryForGV(I)); 1045 } else { 1046 // External variable reference. Try to use the dynamic loader to 1047 // get a pointer to it. 1048 if (void *SymAddr = 1049 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1050 addGlobalMapping(I, SymAddr); 1051 else { 1052 report_fatal_error("Could not resolve external global address: " 1053 +I->getName()); 1054 } 1055 } 1056 } 1057 1058 // If there are multiple modules, map the non-canonical globals to their 1059 // canonical location. 1060 if (!NonCanonicalGlobals.empty()) { 1061 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1062 const GlobalValue *GV = NonCanonicalGlobals[i]; 1063 const GlobalValue *CGV = 1064 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1065 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1066 assert(Ptr && "Canonical global wasn't codegen'd!"); 1067 addGlobalMapping(GV, Ptr); 1068 } 1069 } 1070 1071 // Now that all of the globals are set up in memory, loop through them all 1072 // and initialize their contents. 1073 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1074 I != E; ++I) { 1075 if (!I->isDeclaration()) { 1076 if (!LinkedGlobalsMap.empty()) { 1077 if (const GlobalValue *GVEntry = 1078 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1079 if (GVEntry != &*I) // Not the canonical variable. 1080 continue; 1081 } 1082 EmitGlobalVariable(I); 1083 } 1084 } 1085 } 1086 } 1087 1088 // EmitGlobalVariable - This method emits the specified global variable to the 1089 // address specified in GlobalAddresses, or allocates new memory if it's not 1090 // already in the map. 1091 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1092 void *GA = getPointerToGlobalIfAvailable(GV); 1093 1094 if (GA == 0) { 1095 // If it's not already specified, allocate memory for the global. 1096 GA = getMemoryForGV(GV); 1097 addGlobalMapping(GV, GA); 1098 } 1099 1100 // Don't initialize if it's thread local, let the client do it. 1101 if (!GV->isThreadLocal()) 1102 InitializeMemory(GV->getInitializer(), GA); 1103 1104 Type *ElTy = GV->getType()->getElementType(); 1105 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1106 NumInitBytes += (unsigned)GVSize; 1107 ++NumGlobals; 1108 } 1109 1110 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1111 : EE(EE), GlobalAddressMap(this) { 1112 } 1113 1114 sys::Mutex * 1115 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1116 return &EES->EE.lock; 1117 } 1118 1119 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1120 const GlobalValue *Old) { 1121 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1122 EES->GlobalAddressReverseMap.erase(OldVal); 1123 } 1124 1125 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1126 const GlobalValue *, 1127 const GlobalValue *) { 1128 assert(false && "The ExecutionEngine doesn't know how to handle a" 1129 " RAUW on a value it has a global mapping for."); 1130 } 1131