1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <dirent.h> 6 #include <errno.h> 7 #include <fcntl.h> 8 #include <signal.h> 9 #include <stdlib.h> 10 #include <sys/resource.h> 11 #include <sys/time.h> 12 #include <sys/types.h> 13 #include <sys/wait.h> 14 #include <unistd.h> 15 16 #include <limits> 17 #include <set> 18 19 #include "base/command_line.h" 20 #include "base/compiler_specific.h" 21 #include "base/debug/stack_trace.h" 22 #include "base/dir_reader_posix.h" 23 #include "base/eintr_wrapper.h" 24 #include "base/file_util.h" 25 #include "base/logging.h" 26 #include "base/memory/scoped_ptr.h" 27 #include "base/process_util.h" 28 #include "base/stringprintf.h" 29 #include "base/synchronization/waitable_event.h" 30 #include "base/threading/platform_thread.h" 31 #include "base/threading/thread_restrictions.h" 32 #include "base/time.h" 33 34 #if defined(OS_MACOSX) 35 #include <crt_externs.h> 36 #include <sys/event.h> 37 #define environ (*_NSGetEnviron()) 38 #else 39 extern char** environ; 40 #endif 41 42 #ifdef ANDROID 43 // No ucontext.h on Android 44 typedef void ucontext_t; 45 #endif 46 47 namespace base { 48 49 namespace { 50 51 int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds, 52 bool* success) { 53 // This POSIX version of this function only guarantees that we wait no less 54 // than |wait_milliseconds| for the process to exit. The child process may 55 // exit sometime before the timeout has ended but we may still block for up 56 // to 256 milliseconds after the fact. 57 // 58 // waitpid() has no direct support on POSIX for specifying a timeout, you can 59 // either ask it to block indefinitely or return immediately (WNOHANG). 60 // When a child process terminates a SIGCHLD signal is sent to the parent. 61 // Catching this signal would involve installing a signal handler which may 62 // affect other parts of the application and would be difficult to debug. 63 // 64 // Our strategy is to call waitpid() once up front to check if the process 65 // has already exited, otherwise to loop for wait_milliseconds, sleeping for 66 // at most 256 milliseconds each time using usleep() and then calling 67 // waitpid(). The amount of time we sleep starts out at 1 milliseconds, and 68 // we double it every 4 sleep cycles. 69 // 70 // usleep() is speced to exit if a signal is received for which a handler 71 // has been installed. This means that when a SIGCHLD is sent, it will exit 72 // depending on behavior external to this function. 73 // 74 // This function is used primarily for unit tests, if we want to use it in 75 // the application itself it would probably be best to examine other routes. 76 int status = -1; 77 pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); 78 static const int64 kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds. 79 int64 max_sleep_time_usecs = 1 << 10; // ~1 milliseconds. 80 int64 double_sleep_time = 0; 81 82 // If the process hasn't exited yet, then sleep and try again. 83 Time wakeup_time = Time::Now() + 84 TimeDelta::FromMilliseconds(wait_milliseconds); 85 while (ret_pid == 0) { 86 Time now = Time::Now(); 87 if (now > wakeup_time) 88 break; 89 // Guaranteed to be non-negative! 90 int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds(); 91 // Sleep for a bit while we wait for the process to finish. 92 if (sleep_time_usecs > max_sleep_time_usecs) 93 sleep_time_usecs = max_sleep_time_usecs; 94 95 // usleep() will return 0 and set errno to EINTR on receipt of a signal 96 // such as SIGCHLD. 97 usleep(sleep_time_usecs); 98 ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); 99 100 if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) && 101 (double_sleep_time++ % 4 == 0)) { 102 max_sleep_time_usecs *= 2; 103 } 104 } 105 106 if (success) 107 *success = (ret_pid != -1); 108 109 return status; 110 } 111 112 void StackDumpSignalHandler(int signal, siginfo_t* info, ucontext_t* context) { 113 LOG(ERROR) << "Received signal " << signal; 114 debug::StackTrace().PrintBacktrace(); 115 116 // TODO(shess): Port to Linux. 117 #if defined(OS_MACOSX) 118 // TODO(shess): Port to 64-bit. 119 #if ARCH_CPU_32_BITS 120 char buf[1024]; 121 size_t len; 122 123 // NOTE: Even |snprintf()| is not on the approved list for signal 124 // handlers, but buffered I/O is definitely not on the list due to 125 // potential for |malloc()|. 126 len = static_cast<size_t>( 127 snprintf(buf, sizeof(buf), 128 "ax: %x, bx: %x, cx: %x, dx: %x\n", 129 context->uc_mcontext->__ss.__eax, 130 context->uc_mcontext->__ss.__ebx, 131 context->uc_mcontext->__ss.__ecx, 132 context->uc_mcontext->__ss.__edx)); 133 write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); 134 135 len = static_cast<size_t>( 136 snprintf(buf, sizeof(buf), 137 "di: %x, si: %x, bp: %x, sp: %x, ss: %x, flags: %x\n", 138 context->uc_mcontext->__ss.__edi, 139 context->uc_mcontext->__ss.__esi, 140 context->uc_mcontext->__ss.__ebp, 141 context->uc_mcontext->__ss.__esp, 142 context->uc_mcontext->__ss.__ss, 143 context->uc_mcontext->__ss.__eflags)); 144 write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); 145 146 len = static_cast<size_t>( 147 snprintf(buf, sizeof(buf), 148 "ip: %x, cs: %x, ds: %x, es: %x, fs: %x, gs: %x\n", 149 context->uc_mcontext->__ss.__eip, 150 context->uc_mcontext->__ss.__cs, 151 context->uc_mcontext->__ss.__ds, 152 context->uc_mcontext->__ss.__es, 153 context->uc_mcontext->__ss.__fs, 154 context->uc_mcontext->__ss.__gs)); 155 write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); 156 #endif // ARCH_CPU_32_BITS 157 #endif // defined(OS_MACOSX) 158 _exit(1); 159 } 160 161 void ResetChildSignalHandlersToDefaults() { 162 // The previous signal handlers are likely to be meaningless in the child's 163 // context so we reset them to the defaults for now. http://crbug.com/44953 164 // These signal handlers are set up at least in browser_main.cc:BrowserMain 165 // and process_util_posix.cc:EnableInProcessStackDumping. 166 signal(SIGHUP, SIG_DFL); 167 signal(SIGINT, SIG_DFL); 168 signal(SIGILL, SIG_DFL); 169 signal(SIGABRT, SIG_DFL); 170 signal(SIGFPE, SIG_DFL); 171 signal(SIGBUS, SIG_DFL); 172 signal(SIGSEGV, SIG_DFL); 173 signal(SIGSYS, SIG_DFL); 174 signal(SIGTERM, SIG_DFL); 175 } 176 177 } // anonymous namespace 178 179 ProcessId GetCurrentProcId() { 180 return getpid(); 181 } 182 183 ProcessHandle GetCurrentProcessHandle() { 184 return GetCurrentProcId(); 185 } 186 187 bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) { 188 // On Posix platforms, process handles are the same as PIDs, so we 189 // don't need to do anything. 190 *handle = pid; 191 return true; 192 } 193 194 bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) { 195 // On POSIX permissions are checked for each operation on process, 196 // not when opening a "handle". 197 return OpenProcessHandle(pid, handle); 198 } 199 200 bool OpenProcessHandleWithAccess(ProcessId pid, 201 uint32 access_flags, 202 ProcessHandle* handle) { 203 // On POSIX permissions are checked for each operation on process, 204 // not when opening a "handle". 205 return OpenProcessHandle(pid, handle); 206 } 207 208 void CloseProcessHandle(ProcessHandle process) { 209 // See OpenProcessHandle, nothing to do. 210 return; 211 } 212 213 ProcessId GetProcId(ProcessHandle process) { 214 return process; 215 } 216 217 // Attempts to kill the process identified by the given process 218 // entry structure. Ignores specified exit_code; posix can't force that. 219 // Returns true if this is successful, false otherwise. 220 bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) { 221 DCHECK_GT(process_id, 1) << " tried to kill invalid process_id"; 222 if (process_id <= 1) 223 return false; 224 static unsigned kMaxSleepMs = 1000; 225 unsigned sleep_ms = 4; 226 227 bool result = kill(process_id, SIGTERM) == 0; 228 229 if (result && wait) { 230 int tries = 60; 231 // The process may not end immediately due to pending I/O 232 bool exited = false; 233 while (tries-- > 0) { 234 pid_t pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG)); 235 if (pid == process_id) { 236 exited = true; 237 break; 238 } 239 if (pid == -1) { 240 if (errno == ECHILD) { 241 // The wait may fail with ECHILD if another process also waited for 242 // the same pid, causing the process state to get cleaned up. 243 exited = true; 244 break; 245 } 246 DPLOG(ERROR) << "Error waiting for process " << process_id; 247 } 248 249 usleep(sleep_ms * 1000); 250 if (sleep_ms < kMaxSleepMs) 251 sleep_ms *= 2; 252 } 253 254 // If we're waiting and the child hasn't died by now, force it 255 // with a SIGKILL. 256 if (!exited) 257 result = kill(process_id, SIGKILL) == 0; 258 } 259 260 if (!result) 261 DPLOG(ERROR) << "Unable to terminate process " << process_id; 262 263 return result; 264 } 265 266 bool KillProcessGroup(ProcessHandle process_group_id) { 267 bool result = kill(-1 * process_group_id, SIGKILL) == 0; 268 if (!result) 269 PLOG(ERROR) << "Unable to terminate process group " << process_group_id; 270 return result; 271 } 272 273 // A class to handle auto-closing of DIR*'s. 274 class ScopedDIRClose { 275 public: 276 inline void operator()(DIR* x) const { 277 if (x) { 278 closedir(x); 279 } 280 } 281 }; 282 typedef scoped_ptr_malloc<DIR, ScopedDIRClose> ScopedDIR; 283 284 #if defined(OS_LINUX) 285 static const rlim_t kSystemDefaultMaxFds = 8192; 286 static const char kFDDir[] = "/proc/self/fd"; 287 #elif defined(OS_MACOSX) 288 static const rlim_t kSystemDefaultMaxFds = 256; 289 static const char kFDDir[] = "/dev/fd"; 290 #elif defined(OS_SOLARIS) 291 static const rlim_t kSystemDefaultMaxFds = 8192; 292 static const char kFDDir[] = "/dev/fd"; 293 #elif defined(OS_FREEBSD) 294 static const rlim_t kSystemDefaultMaxFds = 8192; 295 static const char kFDDir[] = "/dev/fd"; 296 #elif defined(OS_OPENBSD) 297 static const rlim_t kSystemDefaultMaxFds = 256; 298 static const char kFDDir[] = "/dev/fd"; 299 #endif 300 301 void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) { 302 // DANGER: no calls to malloc are allowed from now on: 303 // http://crbug.com/36678 304 305 // Get the maximum number of FDs possible. 306 struct rlimit nofile; 307 rlim_t max_fds; 308 if (getrlimit(RLIMIT_NOFILE, &nofile)) { 309 // getrlimit failed. Take a best guess. 310 max_fds = kSystemDefaultMaxFds; 311 RAW_LOG(ERROR, "getrlimit(RLIMIT_NOFILE) failed"); 312 } else { 313 max_fds = nofile.rlim_cur; 314 } 315 316 if (max_fds > INT_MAX) 317 max_fds = INT_MAX; 318 319 DirReaderPosix fd_dir(kFDDir); 320 321 if (!fd_dir.IsValid()) { 322 // Fallback case: Try every possible fd. 323 for (rlim_t i = 0; i < max_fds; ++i) { 324 const int fd = static_cast<int>(i); 325 if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) 326 continue; 327 InjectiveMultimap::const_iterator j; 328 for (j = saved_mapping.begin(); j != saved_mapping.end(); j++) { 329 if (fd == j->dest) 330 break; 331 } 332 if (j != saved_mapping.end()) 333 continue; 334 335 // Since we're just trying to close anything we can find, 336 // ignore any error return values of close(). 337 ignore_result(HANDLE_EINTR(close(fd))); 338 } 339 return; 340 } 341 342 const int dir_fd = fd_dir.fd(); 343 344 for ( ; fd_dir.Next(); ) { 345 // Skip . and .. entries. 346 if (fd_dir.name()[0] == '.') 347 continue; 348 349 char *endptr; 350 errno = 0; 351 const long int fd = strtol(fd_dir.name(), &endptr, 10); 352 if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno) 353 continue; 354 if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) 355 continue; 356 InjectiveMultimap::const_iterator i; 357 for (i = saved_mapping.begin(); i != saved_mapping.end(); i++) { 358 if (fd == i->dest) 359 break; 360 } 361 if (i != saved_mapping.end()) 362 continue; 363 if (fd == dir_fd) 364 continue; 365 366 // When running under Valgrind, Valgrind opens several FDs for its 367 // own use and will complain if we try to close them. All of 368 // these FDs are >= |max_fds|, so we can check against that here 369 // before closing. See https://bugs.kde.org/show_bug.cgi?id=191758 370 if (fd < static_cast<int>(max_fds)) { 371 int ret = HANDLE_EINTR(close(fd)); 372 DPCHECK(ret == 0); 373 } 374 } 375 } 376 377 char** AlterEnvironment(const environment_vector& changes, 378 const char* const* const env) { 379 unsigned count = 0; 380 unsigned size = 0; 381 382 // First assume that all of the current environment will be included. 383 for (unsigned i = 0; env[i]; i++) { 384 const char *const pair = env[i]; 385 count++; 386 size += strlen(pair) + 1 /* terminating NUL */; 387 } 388 389 for (environment_vector::const_iterator 390 j = changes.begin(); j != changes.end(); j++) { 391 bool found = false; 392 const char *pair; 393 394 for (unsigned i = 0; env[i]; i++) { 395 pair = env[i]; 396 const char *const equals = strchr(pair, '='); 397 if (!equals) 398 continue; 399 const unsigned keylen = equals - pair; 400 if (keylen == j->first.size() && 401 memcmp(pair, j->first.data(), keylen) == 0) { 402 found = true; 403 break; 404 } 405 } 406 407 // if found, we'll either be deleting or replacing this element. 408 if (found) { 409 count--; 410 size -= strlen(pair) + 1; 411 if (j->second.size()) 412 found = false; 413 } 414 415 // if !found, then we have a new element to add. 416 if (!found && !j->second.empty()) { 417 count++; 418 size += j->first.size() + 1 /* '=' */ + j->second.size() + 1 /* NUL */; 419 } 420 } 421 422 count++; // for the final NULL 423 uint8_t *buffer = new uint8_t[sizeof(char*) * count + size]; 424 char **const ret = reinterpret_cast<char**>(buffer); 425 unsigned k = 0; 426 char *scratch = reinterpret_cast<char*>(buffer + sizeof(char*) * count); 427 428 for (unsigned i = 0; env[i]; i++) { 429 const char *const pair = env[i]; 430 const char *const equals = strchr(pair, '='); 431 if (!equals) { 432 const unsigned len = strlen(pair); 433 ret[k++] = scratch; 434 memcpy(scratch, pair, len + 1); 435 scratch += len + 1; 436 continue; 437 } 438 const unsigned keylen = equals - pair; 439 bool handled = false; 440 for (environment_vector::const_iterator 441 j = changes.begin(); j != changes.end(); j++) { 442 if (j->first.size() == keylen && 443 memcmp(j->first.data(), pair, keylen) == 0) { 444 if (!j->second.empty()) { 445 ret[k++] = scratch; 446 memcpy(scratch, pair, keylen + 1); 447 scratch += keylen + 1; 448 memcpy(scratch, j->second.c_str(), j->second.size() + 1); 449 scratch += j->second.size() + 1; 450 } 451 handled = true; 452 break; 453 } 454 } 455 456 if (!handled) { 457 const unsigned len = strlen(pair); 458 ret[k++] = scratch; 459 memcpy(scratch, pair, len + 1); 460 scratch += len + 1; 461 } 462 } 463 464 // Now handle new elements 465 for (environment_vector::const_iterator 466 j = changes.begin(); j != changes.end(); j++) { 467 if (j->second.empty()) 468 continue; 469 470 bool found = false; 471 for (unsigned i = 0; env[i]; i++) { 472 const char *const pair = env[i]; 473 const char *const equals = strchr(pair, '='); 474 if (!equals) 475 continue; 476 const unsigned keylen = equals - pair; 477 if (keylen == j->first.size() && 478 memcmp(pair, j->first.data(), keylen) == 0) { 479 found = true; 480 break; 481 } 482 } 483 484 if (!found) { 485 ret[k++] = scratch; 486 memcpy(scratch, j->first.data(), j->first.size()); 487 scratch += j->first.size(); 488 *scratch++ = '='; 489 memcpy(scratch, j->second.c_str(), j->second.size() + 1); 490 scratch += j->second.size() + 1; 491 } 492 } 493 494 ret[k] = NULL; 495 return ret; 496 } 497 498 bool LaunchAppImpl( 499 const std::vector<std::string>& argv, 500 const environment_vector& env_changes, 501 const file_handle_mapping_vector& fds_to_remap, 502 bool wait, 503 ProcessHandle* process_handle, 504 bool start_new_process_group) { 505 pid_t pid; 506 InjectiveMultimap fd_shuffle1, fd_shuffle2; 507 fd_shuffle1.reserve(fds_to_remap.size()); 508 fd_shuffle2.reserve(fds_to_remap.size()); 509 scoped_array<char*> argv_cstr(new char*[argv.size() + 1]); 510 scoped_array<char*> new_environ(AlterEnvironment(env_changes, environ)); 511 512 pid = fork(); 513 if (pid < 0) { 514 PLOG(ERROR) << "fork"; 515 return false; 516 } 517 if (pid == 0) { 518 // Child process 519 520 // DANGER: fork() rule: in the child, if you don't end up doing exec*(), 521 // you call _exit() instead of exit(). This is because _exit() does not 522 // call any previously-registered (in the parent) exit handlers, which 523 // might do things like block waiting for threads that don't even exist 524 // in the child. 525 526 // If a child process uses the readline library, the process block forever. 527 // In BSD like OSes including OS X it is safe to assign /dev/null as stdin. 528 // See http://crbug.com/56596. 529 int null_fd = HANDLE_EINTR(open("/dev/null", O_RDONLY)); 530 if (null_fd < 0) { 531 RAW_LOG(ERROR, "Failed to open /dev/null"); 532 _exit(127); 533 } 534 535 file_util::ScopedFD null_fd_closer(&null_fd); 536 int new_fd = HANDLE_EINTR(dup2(null_fd, STDIN_FILENO)); 537 if (new_fd != STDIN_FILENO) { 538 RAW_LOG(ERROR, "Failed to dup /dev/null for stdin"); 539 _exit(127); 540 } 541 542 if (start_new_process_group) { 543 // Instead of inheriting the process group ID of the parent, the child 544 // starts off a new process group with pgid equal to its process ID. 545 if (setpgid(0, 0) < 0) { 546 RAW_LOG(ERROR, "setpgid failed"); 547 _exit(127); 548 } 549 } 550 #if defined(OS_MACOSX) 551 RestoreDefaultExceptionHandler(); 552 #endif 553 554 ResetChildSignalHandlersToDefaults(); 555 556 #if 0 557 // When debugging it can be helpful to check that we really aren't making 558 // any hidden calls to malloc. 559 void *malloc_thunk = 560 reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095); 561 mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC); 562 memset(reinterpret_cast<void*>(malloc), 0xff, 8); 563 #endif 564 565 // DANGER: no calls to malloc are allowed from now on: 566 // http://crbug.com/36678 567 568 for (file_handle_mapping_vector::const_iterator 569 it = fds_to_remap.begin(); it != fds_to_remap.end(); ++it) { 570 fd_shuffle1.push_back(InjectionArc(it->first, it->second, false)); 571 fd_shuffle2.push_back(InjectionArc(it->first, it->second, false)); 572 } 573 574 environ = new_environ.get(); 575 576 // fd_shuffle1 is mutated by this call because it cannot malloc. 577 if (!ShuffleFileDescriptors(&fd_shuffle1)) 578 _exit(127); 579 580 CloseSuperfluousFds(fd_shuffle2); 581 582 for (size_t i = 0; i < argv.size(); i++) 583 argv_cstr[i] = const_cast<char*>(argv[i].c_str()); 584 argv_cstr[argv.size()] = NULL; 585 execvp(argv_cstr[0], argv_cstr.get()); 586 RAW_LOG(ERROR, "LaunchApp: failed to execvp:"); 587 RAW_LOG(ERROR, argv_cstr[0]); 588 _exit(127); 589 } else { 590 // Parent process 591 if (wait) { 592 // While this isn't strictly disk IO, waiting for another process to 593 // finish is the sort of thing ThreadRestrictions is trying to prevent. 594 base::ThreadRestrictions::AssertIOAllowed(); 595 pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0)); 596 DPCHECK(ret > 0); 597 } 598 599 if (process_handle) 600 *process_handle = pid; 601 } 602 603 return true; 604 } 605 606 bool LaunchApp( 607 const std::vector<std::string>& argv, 608 const environment_vector& env_changes, 609 const file_handle_mapping_vector& fds_to_remap, 610 bool wait, 611 ProcessHandle* process_handle) { 612 return LaunchAppImpl(argv, env_changes, fds_to_remap, 613 wait, process_handle, false); 614 } 615 616 bool LaunchAppInNewProcessGroup( 617 const std::vector<std::string>& argv, 618 const environment_vector& env_changes, 619 const file_handle_mapping_vector& fds_to_remap, 620 bool wait, 621 ProcessHandle* process_handle) { 622 return LaunchAppImpl(argv, env_changes, fds_to_remap, wait, 623 process_handle, true); 624 } 625 626 bool LaunchApp(const std::vector<std::string>& argv, 627 const file_handle_mapping_vector& fds_to_remap, 628 bool wait, ProcessHandle* process_handle) { 629 base::environment_vector no_env; 630 return LaunchApp(argv, no_env, fds_to_remap, wait, process_handle); 631 } 632 633 bool LaunchApp(const CommandLine& cl, 634 bool wait, bool start_hidden, 635 ProcessHandle* process_handle) { 636 file_handle_mapping_vector no_files; 637 return LaunchApp(cl.argv(), no_files, wait, process_handle); 638 } 639 640 ProcessMetrics::~ProcessMetrics() { } 641 642 void EnableTerminationOnHeapCorruption() { 643 // On POSIX, there nothing to do AFAIK. 644 } 645 646 bool EnableInProcessStackDumping() { 647 // When running in an application, our code typically expects SIGPIPE 648 // to be ignored. Therefore, when testing that same code, it should run 649 // with SIGPIPE ignored as well. 650 struct sigaction action; 651 action.sa_handler = SIG_IGN; 652 action.sa_flags = 0; 653 sigemptyset(&action.sa_mask); 654 bool success = (sigaction(SIGPIPE, &action, NULL) == 0); 655 656 sig_t handler = reinterpret_cast<sig_t>(&StackDumpSignalHandler); 657 success &= (signal(SIGILL, handler) != SIG_ERR); 658 success &= (signal(SIGABRT, handler) != SIG_ERR); 659 success &= (signal(SIGFPE, handler) != SIG_ERR); 660 success &= (signal(SIGBUS, handler) != SIG_ERR); 661 success &= (signal(SIGSEGV, handler) != SIG_ERR); 662 success &= (signal(SIGSYS, handler) != SIG_ERR); 663 664 return success; 665 } 666 667 void RaiseProcessToHighPriority() { 668 // On POSIX, we don't actually do anything here. We could try to nice() or 669 // setpriority() or sched_getscheduler, but these all require extra rights. 670 } 671 672 TerminationStatus GetTerminationStatus(ProcessHandle handle, int* exit_code) { 673 int status = 0; 674 const pid_t result = HANDLE_EINTR(waitpid(handle, &status, WNOHANG)); 675 if (result == -1) { 676 PLOG(ERROR) << "waitpid(" << handle << ")"; 677 if (exit_code) 678 *exit_code = 0; 679 return TERMINATION_STATUS_NORMAL_TERMINATION; 680 } else if (result == 0) { 681 // the child hasn't exited yet. 682 if (exit_code) 683 *exit_code = 0; 684 return TERMINATION_STATUS_STILL_RUNNING; 685 } 686 687 if (exit_code) 688 *exit_code = status; 689 690 if (WIFSIGNALED(status)) { 691 switch (WTERMSIG(status)) { 692 case SIGABRT: 693 case SIGBUS: 694 case SIGFPE: 695 case SIGILL: 696 case SIGSEGV: 697 return TERMINATION_STATUS_PROCESS_CRASHED; 698 case SIGINT: 699 case SIGKILL: 700 case SIGTERM: 701 return TERMINATION_STATUS_PROCESS_WAS_KILLED; 702 default: 703 break; 704 } 705 } 706 707 if (WIFEXITED(status) && WEXITSTATUS(status) != 0) 708 return TERMINATION_STATUS_ABNORMAL_TERMINATION; 709 710 return TERMINATION_STATUS_NORMAL_TERMINATION; 711 } 712 713 bool WaitForExitCode(ProcessHandle handle, int* exit_code) { 714 int status; 715 if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) { 716 NOTREACHED(); 717 return false; 718 } 719 720 if (WIFEXITED(status)) { 721 *exit_code = WEXITSTATUS(status); 722 return true; 723 } 724 725 // If it didn't exit cleanly, it must have been signaled. 726 DCHECK(WIFSIGNALED(status)); 727 return false; 728 } 729 730 bool WaitForExitCodeWithTimeout(ProcessHandle handle, int* exit_code, 731 int64 timeout_milliseconds) { 732 bool waitpid_success = false; 733 int status = WaitpidWithTimeout(handle, timeout_milliseconds, 734 &waitpid_success); 735 if (status == -1) 736 return false; 737 if (!waitpid_success) 738 return false; 739 if (WIFSIGNALED(status)) { 740 *exit_code = -1; 741 return true; 742 } 743 if (WIFEXITED(status)) { 744 *exit_code = WEXITSTATUS(status); 745 return true; 746 } 747 return false; 748 } 749 750 #if defined(OS_MACOSX) 751 // Using kqueue on Mac so that we can wait on non-child processes. 752 // We can't use kqueues on child processes because we need to reap 753 // our own children using wait. 754 static bool WaitForSingleNonChildProcess(ProcessHandle handle, 755 int64 wait_milliseconds) { 756 int kq = kqueue(); 757 if (kq == -1) { 758 PLOG(ERROR) << "kqueue"; 759 return false; 760 } 761 762 struct kevent change = { 0 }; 763 EV_SET(&change, handle, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL); 764 765 struct timespec spec; 766 struct timespec *spec_ptr; 767 if (wait_milliseconds != base::kNoTimeout) { 768 time_t sec = static_cast<time_t>(wait_milliseconds / 1000); 769 wait_milliseconds = wait_milliseconds - (sec * 1000); 770 spec.tv_sec = sec; 771 spec.tv_nsec = wait_milliseconds * 1000000L; 772 spec_ptr = &spec; 773 } else { 774 spec_ptr = NULL; 775 } 776 777 while(true) { 778 struct kevent event = { 0 }; 779 int event_count = HANDLE_EINTR(kevent(kq, &change, 1, &event, 1, spec_ptr)); 780 if (close(kq) != 0) { 781 PLOG(ERROR) << "close"; 782 } 783 if (event_count < 0) { 784 PLOG(ERROR) << "kevent"; 785 return false; 786 } else if (event_count == 0) { 787 if (wait_milliseconds != base::kNoTimeout) { 788 // Timed out. 789 return false; 790 } 791 } else if ((event_count == 1) && 792 (handle == static_cast<pid_t>(event.ident)) && 793 (event.filter == EVFILT_PROC)) { 794 if (event.fflags == NOTE_EXIT) { 795 return true; 796 } else if (event.flags == EV_ERROR) { 797 LOG(ERROR) << "kevent error " << event.data; 798 return false; 799 } else { 800 NOTREACHED(); 801 return false; 802 } 803 } else { 804 NOTREACHED(); 805 return false; 806 } 807 } 808 } 809 #endif // OS_MACOSX 810 811 bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) { 812 ProcessHandle parent_pid = GetParentProcessId(handle); 813 ProcessHandle our_pid = Process::Current().handle(); 814 if (parent_pid != our_pid) { 815 #if defined(OS_MACOSX) 816 // On Mac we can wait on non child processes. 817 return WaitForSingleNonChildProcess(handle, wait_milliseconds); 818 #else 819 // Currently on Linux we can't handle non child processes. 820 NOTIMPLEMENTED(); 821 #endif // OS_MACOSX 822 } 823 bool waitpid_success; 824 int status; 825 if (wait_milliseconds == base::kNoTimeout) 826 waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1); 827 else 828 status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success); 829 if (status != -1) { 830 DCHECK(waitpid_success); 831 return WIFEXITED(status); 832 } else { 833 return false; 834 } 835 } 836 837 int64 TimeValToMicroseconds(const struct timeval& tv) { 838 static const int kMicrosecondsPerSecond = 1000000; 839 int64 ret = tv.tv_sec; // Avoid (int * int) integer overflow. 840 ret *= kMicrosecondsPerSecond; 841 ret += tv.tv_usec; 842 return ret; 843 } 844 845 // Executes the application specified by |cl| and wait for it to exit. Stores 846 // the output (stdout) in |output|. If |do_search_path| is set, it searches the 847 // path for the application; in that case, |envp| must be null, and it will use 848 // the current environment. If |do_search_path| is false, |cl| should fully 849 // specify the path of the application, and |envp| will be used as the 850 // environment. Redirects stderr to /dev/null. Returns true on success 851 // (application launched and exited cleanly, with exit code indicating success). 852 static bool GetAppOutputInternal(const CommandLine& cl, char* const envp[], 853 std::string* output, size_t max_output, 854 bool do_search_path) { 855 // Doing a blocking wait for another command to finish counts as IO. 856 base::ThreadRestrictions::AssertIOAllowed(); 857 858 int pipe_fd[2]; 859 pid_t pid; 860 InjectiveMultimap fd_shuffle1, fd_shuffle2; 861 const std::vector<std::string>& argv = cl.argv(); 862 scoped_array<char*> argv_cstr(new char*[argv.size() + 1]); 863 864 fd_shuffle1.reserve(3); 865 fd_shuffle2.reserve(3); 866 867 // Either |do_search_path| should be false or |envp| should be null, but not 868 // both. 869 DCHECK(!do_search_path ^ !envp); 870 871 if (pipe(pipe_fd) < 0) 872 return false; 873 874 switch (pid = fork()) { 875 case -1: // error 876 close(pipe_fd[0]); 877 close(pipe_fd[1]); 878 return false; 879 case 0: // child 880 { 881 #if defined(OS_MACOSX) 882 RestoreDefaultExceptionHandler(); 883 #endif 884 // DANGER: no calls to malloc are allowed from now on: 885 // http://crbug.com/36678 886 887 // Obscure fork() rule: in the child, if you don't end up doing exec*(), 888 // you call _exit() instead of exit(). This is because _exit() does not 889 // call any previously-registered (in the parent) exit handlers, which 890 // might do things like block waiting for threads that don't even exist 891 // in the child. 892 int dev_null = open("/dev/null", O_WRONLY); 893 if (dev_null < 0) 894 _exit(127); 895 896 fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true)); 897 fd_shuffle1.push_back(InjectionArc(dev_null, STDERR_FILENO, true)); 898 fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true)); 899 // Adding another element here? Remeber to increase the argument to 900 // reserve(), above. 901 902 std::copy(fd_shuffle1.begin(), fd_shuffle1.end(), 903 std::back_inserter(fd_shuffle2)); 904 905 if (!ShuffleFileDescriptors(&fd_shuffle1)) 906 _exit(127); 907 908 CloseSuperfluousFds(fd_shuffle2); 909 910 for (size_t i = 0; i < argv.size(); i++) 911 argv_cstr[i] = const_cast<char*>(argv[i].c_str()); 912 argv_cstr[argv.size()] = NULL; 913 if (do_search_path) 914 execvp(argv_cstr[0], argv_cstr.get()); 915 else 916 execve(argv_cstr[0], argv_cstr.get(), envp); 917 _exit(127); 918 } 919 default: // parent 920 { 921 // Close our writing end of pipe now. Otherwise later read would not 922 // be able to detect end of child's output (in theory we could still 923 // write to the pipe). 924 close(pipe_fd[1]); 925 926 output->clear(); 927 char buffer[256]; 928 size_t output_buf_left = max_output; 929 ssize_t bytes_read = 1; // A lie to properly handle |max_output == 0| 930 // case in the logic below. 931 932 while (output_buf_left > 0) { 933 bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer, 934 std::min(output_buf_left, sizeof(buffer)))); 935 if (bytes_read <= 0) 936 break; 937 output->append(buffer, bytes_read); 938 output_buf_left -= static_cast<size_t>(bytes_read); 939 } 940 close(pipe_fd[0]); 941 942 // Always wait for exit code (even if we know we'll declare success). 943 int exit_code = EXIT_FAILURE; 944 bool success = WaitForExitCode(pid, &exit_code); 945 946 // If we stopped because we read as much as we wanted, we always declare 947 // success (because the child may exit due to |SIGPIPE|). 948 if (output_buf_left || bytes_read <= 0) { 949 if (!success || exit_code != EXIT_SUCCESS) 950 return false; 951 } 952 953 return true; 954 } 955 } 956 } 957 958 bool GetAppOutput(const CommandLine& cl, std::string* output) { 959 // Run |execve()| with the current environment and store "unlimited" data. 960 return GetAppOutputInternal(cl, NULL, output, 961 std::numeric_limits<std::size_t>::max(), true); 962 } 963 964 // TODO(viettrungluu): Conceivably, we should have a timeout as well, so we 965 // don't hang if what we're calling hangs. 966 bool GetAppOutputRestricted(const CommandLine& cl, 967 std::string* output, size_t max_output) { 968 // Run |execve()| with the empty environment. 969 char* const empty_environ = NULL; 970 return GetAppOutputInternal(cl, &empty_environ, output, max_output, false); 971 } 972 973 bool WaitForProcessesToExit(const FilePath::StringType& executable_name, 974 int64 wait_milliseconds, 975 const ProcessFilter* filter) { 976 bool result = false; 977 978 // TODO(port): This is inefficient, but works if there are multiple procs. 979 // TODO(port): use waitpid to avoid leaving zombies around 980 981 base::Time end_time = base::Time::Now() + 982 base::TimeDelta::FromMilliseconds(wait_milliseconds); 983 do { 984 NamedProcessIterator iter(executable_name, filter); 985 if (!iter.NextProcessEntry()) { 986 result = true; 987 break; 988 } 989 base::PlatformThread::Sleep(100); 990 } while ((base::Time::Now() - end_time) > base::TimeDelta()); 991 992 return result; 993 } 994 995 bool CleanupProcesses(const FilePath::StringType& executable_name, 996 int64 wait_milliseconds, 997 int exit_code, 998 const ProcessFilter* filter) { 999 bool exited_cleanly = 1000 WaitForProcessesToExit(executable_name, wait_milliseconds, 1001 filter); 1002 if (!exited_cleanly) 1003 KillProcesses(executable_name, exit_code, filter); 1004 return exited_cleanly; 1005 } 1006 1007 } // namespace base 1008