Home | History | Annotate | Download | only in Scalar
      1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation implements the well known scalar replacement of
     11 // aggregates transformation.  This xform breaks up alloca instructions of
     12 // aggregate type (structure or array) into individual alloca instructions for
     13 // each member (if possible).  Then, if possible, it transforms the individual
     14 // alloca instructions into nice clean scalar SSA form.
     15 //
     16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
     17 // often interact, especially for C++ programs.  As such, iterating between
     18 // SRoA, then Mem2Reg until we run out of things to promote works well.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #define DEBUG_TYPE "scalarrepl"
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/Constants.h"
     25 #include "llvm/DerivedTypes.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/GlobalVariable.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/IntrinsicInst.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/Module.h"
     32 #include "llvm/Pass.h"
     33 #include "llvm/Analysis/DebugInfo.h"
     34 #include "llvm/Analysis/DIBuilder.h"
     35 #include "llvm/Analysis/Dominators.h"
     36 #include "llvm/Analysis/Loads.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/Target/TargetData.h"
     39 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include "llvm/Transforms/Utils/SSAUpdater.h"
     42 #include "llvm/Support/CallSite.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/GetElementPtrTypeIterator.h"
     46 #include "llvm/Support/IRBuilder.h"
     47 #include "llvm/Support/MathExtras.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include "llvm/ADT/SetVector.h"
     50 #include "llvm/ADT/SmallVector.h"
     51 #include "llvm/ADT/Statistic.h"
     52 using namespace llvm;
     53 
     54 STATISTIC(NumReplaced,  "Number of allocas broken up");
     55 STATISTIC(NumPromoted,  "Number of allocas promoted");
     56 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
     57 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
     58 STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
     59 
     60 namespace {
     61   struct SROA : public FunctionPass {
     62     SROA(int T, bool hasDT, char &ID)
     63       : FunctionPass(ID), HasDomTree(hasDT) {
     64       if (T == -1)
     65         SRThreshold = 128;
     66       else
     67         SRThreshold = T;
     68     }
     69 
     70     bool runOnFunction(Function &F);
     71 
     72     bool performScalarRepl(Function &F);
     73     bool performPromotion(Function &F);
     74 
     75   private:
     76     bool HasDomTree;
     77     TargetData *TD;
     78 
     79     /// DeadInsts - Keep track of instructions we have made dead, so that
     80     /// we can remove them after we are done working.
     81     SmallVector<Value*, 32> DeadInsts;
     82 
     83     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
     84     /// information about the uses.  All these fields are initialized to false
     85     /// and set to true when something is learned.
     86     struct AllocaInfo {
     87       /// The alloca to promote.
     88       AllocaInst *AI;
     89 
     90       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
     91       /// looping and avoid redundant work.
     92       SmallPtrSet<PHINode*, 8> CheckedPHIs;
     93 
     94       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
     95       bool isUnsafe : 1;
     96 
     97       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
     98       bool isMemCpySrc : 1;
     99 
    100       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
    101       bool isMemCpyDst : 1;
    102 
    103       /// hasSubelementAccess - This is true if a subelement of the alloca is
    104       /// ever accessed, or false if the alloca is only accessed with mem
    105       /// intrinsics or load/store that only access the entire alloca at once.
    106       bool hasSubelementAccess : 1;
    107 
    108       /// hasALoadOrStore - This is true if there are any loads or stores to it.
    109       /// The alloca may just be accessed with memcpy, for example, which would
    110       /// not set this.
    111       bool hasALoadOrStore : 1;
    112 
    113       explicit AllocaInfo(AllocaInst *ai)
    114         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
    115           hasSubelementAccess(false), hasALoadOrStore(false) {}
    116     };
    117 
    118     unsigned SRThreshold;
    119 
    120     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
    121       I.isUnsafe = true;
    122       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
    123     }
    124 
    125     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
    126 
    127     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
    128     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
    129                                          AllocaInfo &Info);
    130     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
    131     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
    132                          Type *MemOpType, bool isStore, AllocaInfo &Info,
    133                          Instruction *TheAccess, bool AllowWholeAccess);
    134     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
    135     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
    136                                   Type *&IdxTy);
    137 
    138     void DoScalarReplacement(AllocaInst *AI,
    139                              std::vector<AllocaInst*> &WorkList);
    140     void DeleteDeadInstructions();
    141 
    142     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
    143                               SmallVector<AllocaInst*, 32> &NewElts);
    144     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
    145                         SmallVector<AllocaInst*, 32> &NewElts);
    146     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
    147                     SmallVector<AllocaInst*, 32> &NewElts);
    148     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
    149                                       AllocaInst *AI,
    150                                       SmallVector<AllocaInst*, 32> &NewElts);
    151     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
    152                                        SmallVector<AllocaInst*, 32> &NewElts);
    153     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
    154                                       SmallVector<AllocaInst*, 32> &NewElts);
    155 
    156     static MemTransferInst *isOnlyCopiedFromConstantGlobal(
    157         AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
    158   };
    159 
    160   // SROA_DT - SROA that uses DominatorTree.
    161   struct SROA_DT : public SROA {
    162     static char ID;
    163   public:
    164     SROA_DT(int T = -1) : SROA(T, true, ID) {
    165       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
    166     }
    167 
    168     // getAnalysisUsage - This pass does not require any passes, but we know it
    169     // will not alter the CFG, so say so.
    170     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    171       AU.addRequired<DominatorTree>();
    172       AU.setPreservesCFG();
    173     }
    174   };
    175 
    176   // SROA_SSAUp - SROA that uses SSAUpdater.
    177   struct SROA_SSAUp : public SROA {
    178     static char ID;
    179   public:
    180     SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
    181       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
    182     }
    183 
    184     // getAnalysisUsage - This pass does not require any passes, but we know it
    185     // will not alter the CFG, so say so.
    186     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    187       AU.setPreservesCFG();
    188     }
    189   };
    190 
    191 }
    192 
    193 char SROA_DT::ID = 0;
    194 char SROA_SSAUp::ID = 0;
    195 
    196 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
    197                 "Scalar Replacement of Aggregates (DT)", false, false)
    198 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    199 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
    200                 "Scalar Replacement of Aggregates (DT)", false, false)
    201 
    202 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
    203                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
    204 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
    205                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
    206 
    207 // Public interface to the ScalarReplAggregates pass
    208 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
    209                                                    bool UseDomTree) {
    210   if (UseDomTree)
    211     return new SROA_DT(Threshold);
    212   return new SROA_SSAUp(Threshold);
    213 }
    214 
    215 
    216 //===----------------------------------------------------------------------===//
    217 // Convert To Scalar Optimization.
    218 //===----------------------------------------------------------------------===//
    219 
    220 namespace {
    221 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
    222 /// optimization, which scans the uses of an alloca and determines if it can
    223 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
    224 class ConvertToScalarInfo {
    225   /// AllocaSize - The size of the alloca being considered in bytes.
    226   unsigned AllocaSize;
    227   const TargetData &TD;
    228 
    229   /// IsNotTrivial - This is set to true if there is some access to the object
    230   /// which means that mem2reg can't promote it.
    231   bool IsNotTrivial;
    232 
    233   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
    234   /// computed based on the uses of the alloca rather than the LLVM type system.
    235   enum {
    236     Unknown,
    237 
    238     // Accesses via GEPs that are consistent with element access of a vector
    239     // type. This will not be converted into a vector unless there is a later
    240     // access using an actual vector type.
    241     ImplicitVector,
    242 
    243     // Accesses via vector operations and GEPs that are consistent with the
    244     // layout of a vector type.
    245     Vector,
    246 
    247     // An integer bag-of-bits with bitwise operations for insertion and
    248     // extraction. Any combination of types can be converted into this kind
    249     // of scalar.
    250     Integer
    251   } ScalarKind;
    252 
    253   /// VectorTy - This tracks the type that we should promote the vector to if
    254   /// it is possible to turn it into a vector.  This starts out null, and if it
    255   /// isn't possible to turn into a vector type, it gets set to VoidTy.
    256   VectorType *VectorTy;
    257 
    258   /// HadNonMemTransferAccess - True if there is at least one access to the
    259   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
    260   /// large integers unless there is some potential for optimization.
    261   bool HadNonMemTransferAccess;
    262 
    263 public:
    264   explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
    265     : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
    266       VectorTy(0), HadNonMemTransferAccess(false) { }
    267 
    268   AllocaInst *TryConvert(AllocaInst *AI);
    269 
    270 private:
    271   bool CanConvertToScalar(Value *V, uint64_t Offset);
    272   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
    273   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
    274   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
    275 
    276   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
    277                                     uint64_t Offset, IRBuilder<> &Builder);
    278   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
    279                                    uint64_t Offset, IRBuilder<> &Builder);
    280 };
    281 } // end anonymous namespace.
    282 
    283 
    284 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
    285 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
    286 /// alloca if possible or null if not.
    287 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
    288   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
    289   // out.
    290   if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
    291     return 0;
    292 
    293   // If an alloca has only memset / memcpy uses, it may still have an Unknown
    294   // ScalarKind. Treat it as an Integer below.
    295   if (ScalarKind == Unknown)
    296     ScalarKind = Integer;
    297 
    298   // FIXME: It should be possible to promote the vector type up to the alloca's
    299   // size.
    300   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
    301     ScalarKind = Integer;
    302 
    303   // If we were able to find a vector type that can handle this with
    304   // insert/extract elements, and if there was at least one use that had
    305   // a vector type, promote this to a vector.  We don't want to promote
    306   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
    307   // we just get a lot of insert/extracts.  If at least one vector is
    308   // involved, then we probably really do have a union of vector/array.
    309   Type *NewTy;
    310   if (ScalarKind == Vector) {
    311     assert(VectorTy && "Missing type for vector scalar.");
    312     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
    313           << *VectorTy << '\n');
    314     NewTy = VectorTy;  // Use the vector type.
    315   } else {
    316     unsigned BitWidth = AllocaSize * 8;
    317     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
    318         !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
    319       return 0;
    320 
    321     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
    322     // Create and insert the integer alloca.
    323     NewTy = IntegerType::get(AI->getContext(), BitWidth);
    324   }
    325   AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
    326   ConvertUsesToScalar(AI, NewAI, 0);
    327   return NewAI;
    328 }
    329 
    330 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
    331 /// (VectorTy) so far at the offset specified by Offset (which is specified in
    332 /// bytes).
    333 ///
    334 /// There are three cases we handle here:
    335 ///   1) A union of vector types of the same size and potentially its elements.
    336 ///      Here we turn element accesses into insert/extract element operations.
    337 ///      This promotes a <4 x float> with a store of float to the third element
    338 ///      into a <4 x float> that uses insert element.
    339 ///   2) A union of vector types with power-of-2 size differences, e.g. a float,
    340 ///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
    341 ///      and extract element operations, and <2 x float> accesses into a cast to
    342 ///      <2 x double>, an extract, and a cast back to <2 x float>.
    343 ///   3) A fully general blob of memory, which we turn into some (potentially
    344 ///      large) integer type with extract and insert operations where the loads
    345 ///      and stores would mutate the memory.  We mark this by setting VectorTy
    346 ///      to VoidTy.
    347 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
    348                                                     uint64_t Offset) {
    349   // If we already decided to turn this into a blob of integer memory, there is
    350   // nothing to be done.
    351   if (ScalarKind == Integer)
    352     return;
    353 
    354   // If this could be contributing to a vector, analyze it.
    355 
    356   // If the In type is a vector that is the same size as the alloca, see if it
    357   // matches the existing VecTy.
    358   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
    359     if (MergeInVectorType(VInTy, Offset))
    360       return;
    361   } else if (In->isFloatTy() || In->isDoubleTy() ||
    362              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
    363               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
    364     // Full width accesses can be ignored, because they can always be turned
    365     // into bitcasts.
    366     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
    367     if (EltSize == AllocaSize)
    368       return;
    369 
    370     // If we're accessing something that could be an element of a vector, see
    371     // if the implied vector agrees with what we already have and if Offset is
    372     // compatible with it.
    373     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
    374         (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
    375       if (!VectorTy) {
    376         ScalarKind = ImplicitVector;
    377         VectorTy = VectorType::get(In, AllocaSize/EltSize);
    378         return;
    379       }
    380 
    381       unsigned CurrentEltSize = VectorTy->getElementType()
    382                                 ->getPrimitiveSizeInBits()/8;
    383       if (EltSize == CurrentEltSize)
    384         return;
    385 
    386       if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
    387         return;
    388     }
    389   }
    390 
    391   // Otherwise, we have a case that we can't handle with an optimized vector
    392   // form.  We can still turn this into a large integer.
    393   ScalarKind = Integer;
    394 }
    395 
    396 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
    397 /// returning true if the type was successfully merged and false otherwise.
    398 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
    399                                             uint64_t Offset) {
    400   // TODO: Support nonzero offsets?
    401   if (Offset != 0)
    402     return false;
    403 
    404   // Only allow vectors that are a power-of-2 away from the size of the alloca.
    405   if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
    406     return false;
    407 
    408   // If this the first vector we see, remember the type so that we know the
    409   // element size.
    410   if (!VectorTy) {
    411     ScalarKind = Vector;
    412     VectorTy = VInTy;
    413     return true;
    414   }
    415 
    416   unsigned BitWidth = VectorTy->getBitWidth();
    417   unsigned InBitWidth = VInTy->getBitWidth();
    418 
    419   // Vectors of the same size can be converted using a simple bitcast.
    420   if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
    421     ScalarKind = Vector;
    422     return true;
    423   }
    424 
    425   Type *ElementTy = VectorTy->getElementType();
    426   Type *InElementTy = VInTy->getElementType();
    427 
    428   // Do not allow mixed integer and floating-point accesses from vectors of
    429   // different sizes.
    430   if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
    431     return false;
    432 
    433   if (ElementTy->isFloatingPointTy()) {
    434     // Only allow floating-point vectors of different sizes if they have the
    435     // same element type.
    436     // TODO: This could be loosened a bit, but would anything benefit?
    437     if (ElementTy != InElementTy)
    438       return false;
    439 
    440     // There are no arbitrary-precision floating-point types, which limits the
    441     // number of legal vector types with larger element types that we can form
    442     // to bitcast and extract a subvector.
    443     // TODO: We could support some more cases with mixed fp128 and double here.
    444     if (!(BitWidth == 64 || BitWidth == 128) ||
    445         !(InBitWidth == 64 || InBitWidth == 128))
    446       return false;
    447   } else {
    448     assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
    449                                        "or floating-point.");
    450     unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
    451     unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
    452 
    453     // Do not allow integer types smaller than a byte or types whose widths are
    454     // not a multiple of a byte.
    455     if (BitWidth < 8 || InBitWidth < 8 ||
    456         BitWidth % 8 != 0 || InBitWidth % 8 != 0)
    457       return false;
    458   }
    459 
    460   // Pick the largest of the two vector types.
    461   ScalarKind = Vector;
    462   if (InBitWidth > BitWidth)
    463     VectorTy = VInTy;
    464 
    465   return true;
    466 }
    467 
    468 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
    469 /// its accesses to a single vector type, return true and set VecTy to
    470 /// the new type.  If we could convert the alloca into a single promotable
    471 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
    472 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
    473 /// is the current offset from the base of the alloca being analyzed.
    474 ///
    475 /// If we see at least one access to the value that is as a vector type, set the
    476 /// SawVec flag.
    477 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
    478   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    479     Instruction *User = cast<Instruction>(*UI);
    480 
    481     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    482       // Don't break volatile loads.
    483       if (LI->isVolatile())
    484         return false;
    485       // Don't touch MMX operations.
    486       if (LI->getType()->isX86_MMXTy())
    487         return false;
    488       HadNonMemTransferAccess = true;
    489       MergeInTypeForLoadOrStore(LI->getType(), Offset);
    490       continue;
    491     }
    492 
    493     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    494       // Storing the pointer, not into the value?
    495       if (SI->getOperand(0) == V || SI->isVolatile()) return false;
    496       // Don't touch MMX operations.
    497       if (SI->getOperand(0)->getType()->isX86_MMXTy())
    498         return false;
    499       HadNonMemTransferAccess = true;
    500       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
    501       continue;
    502     }
    503 
    504     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    505       IsNotTrivial = true;  // Can't be mem2reg'd.
    506       if (!CanConvertToScalar(BCI, Offset))
    507         return false;
    508       continue;
    509     }
    510 
    511     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    512       // If this is a GEP with a variable indices, we can't handle it.
    513       if (!GEP->hasAllConstantIndices())
    514         return false;
    515 
    516       // Compute the offset that this GEP adds to the pointer.
    517       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    518       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
    519                                                Indices);
    520       // See if all uses can be converted.
    521       if (!CanConvertToScalar(GEP, Offset+GEPOffset))
    522         return false;
    523       IsNotTrivial = true;  // Can't be mem2reg'd.
    524       HadNonMemTransferAccess = true;
    525       continue;
    526     }
    527 
    528     // If this is a constant sized memset of a constant value (e.g. 0) we can
    529     // handle it.
    530     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    531       // Store of constant value.
    532       if (!isa<ConstantInt>(MSI->getValue()))
    533         return false;
    534 
    535       // Store of constant size.
    536       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
    537       if (!Len)
    538         return false;
    539 
    540       // If the size differs from the alloca, we can only convert the alloca to
    541       // an integer bag-of-bits.
    542       // FIXME: This should handle all of the cases that are currently accepted
    543       // as vector element insertions.
    544       if (Len->getZExtValue() != AllocaSize || Offset != 0)
    545         ScalarKind = Integer;
    546 
    547       IsNotTrivial = true;  // Can't be mem2reg'd.
    548       HadNonMemTransferAccess = true;
    549       continue;
    550     }
    551 
    552     // If this is a memcpy or memmove into or out of the whole allocation, we
    553     // can handle it like a load or store of the scalar type.
    554     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    555       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
    556       if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
    557         return false;
    558 
    559       IsNotTrivial = true;  // Can't be mem2reg'd.
    560       continue;
    561     }
    562 
    563     // Otherwise, we cannot handle this!
    564     return false;
    565   }
    566 
    567   return true;
    568 }
    569 
    570 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
    571 /// directly.  This happens when we are converting an "integer union" to a
    572 /// single integer scalar, or when we are converting a "vector union" to a
    573 /// vector with insert/extractelement instructions.
    574 ///
    575 /// Offset is an offset from the original alloca, in bits that need to be
    576 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
    577 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
    578                                               uint64_t Offset) {
    579   while (!Ptr->use_empty()) {
    580     Instruction *User = cast<Instruction>(Ptr->use_back());
    581 
    582     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
    583       ConvertUsesToScalar(CI, NewAI, Offset);
    584       CI->eraseFromParent();
    585       continue;
    586     }
    587 
    588     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
    589       // Compute the offset that this GEP adds to the pointer.
    590       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
    591       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
    592                                                Indices);
    593       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
    594       GEP->eraseFromParent();
    595       continue;
    596     }
    597 
    598     IRBuilder<> Builder(User);
    599 
    600     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
    601       // The load is a bit extract from NewAI shifted right by Offset bits.
    602       Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
    603       Value *NewLoadVal
    604         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
    605       LI->replaceAllUsesWith(NewLoadVal);
    606       LI->eraseFromParent();
    607       continue;
    608     }
    609 
    610     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
    611       assert(SI->getOperand(0) != Ptr && "Consistency error!");
    612       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    613       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
    614                                              Builder);
    615       Builder.CreateStore(New, NewAI);
    616       SI->eraseFromParent();
    617 
    618       // If the load we just inserted is now dead, then the inserted store
    619       // overwrote the entire thing.
    620       if (Old->use_empty())
    621         Old->eraseFromParent();
    622       continue;
    623     }
    624 
    625     // If this is a constant sized memset of a constant value (e.g. 0) we can
    626     // transform it into a store of the expanded constant value.
    627     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
    628       assert(MSI->getRawDest() == Ptr && "Consistency error!");
    629       unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    630       if (NumBytes != 0) {
    631         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
    632 
    633         // Compute the value replicated the right number of times.
    634         APInt APVal(NumBytes*8, Val);
    635 
    636         // Splat the value if non-zero.
    637         if (Val)
    638           for (unsigned i = 1; i != NumBytes; ++i)
    639             APVal |= APVal << 8;
    640 
    641         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
    642         Value *New = ConvertScalar_InsertValue(
    643                                     ConstantInt::get(User->getContext(), APVal),
    644                                                Old, Offset, Builder);
    645         Builder.CreateStore(New, NewAI);
    646 
    647         // If the load we just inserted is now dead, then the memset overwrote
    648         // the entire thing.
    649         if (Old->use_empty())
    650           Old->eraseFromParent();
    651       }
    652       MSI->eraseFromParent();
    653       continue;
    654     }
    655 
    656     // If this is a memcpy or memmove into or out of the whole allocation, we
    657     // can handle it like a load or store of the scalar type.
    658     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
    659       assert(Offset == 0 && "must be store to start of alloca");
    660 
    661       // If the source and destination are both to the same alloca, then this is
    662       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
    663       // as appropriate.
    664       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
    665 
    666       if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
    667         // Dest must be OrigAI, change this to be a load from the original
    668         // pointer (bitcasted), then a store to our new alloca.
    669         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
    670         Value *SrcPtr = MTI->getSource();
    671         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
    672         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    673         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    674           AIPTy = PointerType::get(AIPTy->getElementType(),
    675                                    SPTy->getAddressSpace());
    676         }
    677         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
    678 
    679         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
    680         SrcVal->setAlignment(MTI->getAlignment());
    681         Builder.CreateStore(SrcVal, NewAI);
    682       } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
    683         // Src must be OrigAI, change this to be a load from NewAI then a store
    684         // through the original dest pointer (bitcasted).
    685         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
    686         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
    687 
    688         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
    689         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
    690         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
    691           AIPTy = PointerType::get(AIPTy->getElementType(),
    692                                    DPTy->getAddressSpace());
    693         }
    694         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
    695 
    696         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
    697         NewStore->setAlignment(MTI->getAlignment());
    698       } else {
    699         // Noop transfer. Src == Dst
    700       }
    701 
    702       MTI->eraseFromParent();
    703       continue;
    704     }
    705 
    706     llvm_unreachable("Unsupported operation!");
    707   }
    708 }
    709 
    710 /// getScaledElementType - Gets a scaled element type for a partial vector
    711 /// access of an alloca. The input types must be integer or floating-point
    712 /// scalar or vector types, and the resulting type is an integer, float or
    713 /// double.
    714 static Type *getScaledElementType(Type *Ty1, Type *Ty2,
    715                                         unsigned NewBitWidth) {
    716   bool IsFP1 = Ty1->isFloatingPointTy() ||
    717                (Ty1->isVectorTy() &&
    718                 cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
    719   bool IsFP2 = Ty2->isFloatingPointTy() ||
    720                (Ty2->isVectorTy() &&
    721                 cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
    722 
    723   LLVMContext &Context = Ty1->getContext();
    724 
    725   // Prefer floating-point types over integer types, as integer types may have
    726   // been created by earlier scalar replacement.
    727   if (IsFP1 || IsFP2) {
    728     if (NewBitWidth == 32)
    729       return Type::getFloatTy(Context);
    730     if (NewBitWidth == 64)
    731       return Type::getDoubleTy(Context);
    732   }
    733 
    734   return Type::getIntNTy(Context, NewBitWidth);
    735 }
    736 
    737 /// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
    738 /// to another vector of the same element type which has the same allocation
    739 /// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
    740 static Value *CreateShuffleVectorCast(Value *FromVal, Type *ToType,
    741                                       IRBuilder<> &Builder) {
    742   Type *FromType = FromVal->getType();
    743   VectorType *FromVTy = cast<VectorType>(FromType);
    744   VectorType *ToVTy = cast<VectorType>(ToType);
    745   assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
    746          "Vectors must have the same element type");
    747    Value *UnV = UndefValue::get(FromType);
    748    unsigned numEltsFrom = FromVTy->getNumElements();
    749    unsigned numEltsTo = ToVTy->getNumElements();
    750 
    751    SmallVector<Constant*, 3> Args;
    752    Type* Int32Ty = Builder.getInt32Ty();
    753    unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
    754    unsigned i;
    755    for (i=0; i != minNumElts; ++i)
    756      Args.push_back(ConstantInt::get(Int32Ty, i));
    757 
    758    if (i < numEltsTo) {
    759      Constant* UnC = UndefValue::get(Int32Ty);
    760      for (; i != numEltsTo; ++i)
    761        Args.push_back(UnC);
    762    }
    763    Constant *Mask = ConstantVector::get(Args);
    764    return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
    765 }
    766 
    767 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
    768 /// or vector value FromVal, extracting the bits from the offset specified by
    769 /// Offset.  This returns the value, which is of type ToType.
    770 ///
    771 /// This happens when we are converting an "integer union" to a single
    772 /// integer scalar, or when we are converting a "vector union" to a vector with
    773 /// insert/extractelement instructions.
    774 ///
    775 /// Offset is an offset from the original alloca, in bits that need to be
    776 /// shifted to the right.
    777 Value *ConvertToScalarInfo::
    778 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
    779                            uint64_t Offset, IRBuilder<> &Builder) {
    780   // If the load is of the whole new alloca, no conversion is needed.
    781   Type *FromType = FromVal->getType();
    782   if (FromType == ToType && Offset == 0)
    783     return FromVal;
    784 
    785   // If the result alloca is a vector type, this is either an element
    786   // access or a bitcast to another vector type of the same size.
    787   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
    788     unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
    789     unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
    790     if (FromTypeSize == ToTypeSize) {
    791       // If the two types have the same primitive size, use a bit cast.
    792       // Otherwise, it is two vectors with the same element type that has
    793       // the same allocation size but different number of elements so use
    794       // a shuffle vector.
    795       if (FromType->getPrimitiveSizeInBits() ==
    796           ToType->getPrimitiveSizeInBits())
    797         return Builder.CreateBitCast(FromVal, ToType, "tmp");
    798       else
    799         return CreateShuffleVectorCast(FromVal, ToType, Builder);
    800     }
    801 
    802     if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
    803       assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
    804              "of a smaller vector type at a nonzero offset.");
    805 
    806       Type *CastElementTy = getScaledElementType(FromType, ToType,
    807                                                        ToTypeSize * 8);
    808       unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
    809 
    810       LLVMContext &Context = FromVal->getContext();
    811       Type *CastTy = VectorType::get(CastElementTy,
    812                                            NumCastVectorElements);
    813       Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
    814 
    815       unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
    816       unsigned Elt = Offset/EltSize;
    817       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    818       Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
    819                                         Type::getInt32Ty(Context), Elt), "tmp");
    820       return Builder.CreateBitCast(Extract, ToType, "tmp");
    821     }
    822 
    823     // Otherwise it must be an element access.
    824     unsigned Elt = 0;
    825     if (Offset) {
    826       unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
    827       Elt = Offset/EltSize;
    828       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    829     }
    830     // Return the element extracted out of it.
    831     Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
    832                     Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
    833     if (V->getType() != ToType)
    834       V = Builder.CreateBitCast(V, ToType, "tmp");
    835     return V;
    836   }
    837 
    838   // If ToType is a first class aggregate, extract out each of the pieces and
    839   // use insertvalue's to form the FCA.
    840   if (StructType *ST = dyn_cast<StructType>(ToType)) {
    841     const StructLayout &Layout = *TD.getStructLayout(ST);
    842     Value *Res = UndefValue::get(ST);
    843     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    844       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
    845                                         Offset+Layout.getElementOffsetInBits(i),
    846                                               Builder);
    847       Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
    848     }
    849     return Res;
    850   }
    851 
    852   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
    853     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    854     Value *Res = UndefValue::get(AT);
    855     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    856       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
    857                                               Offset+i*EltSize, Builder);
    858       Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
    859     }
    860     return Res;
    861   }
    862 
    863   // Otherwise, this must be a union that was converted to an integer value.
    864   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
    865 
    866   // If this is a big-endian system and the load is narrower than the
    867   // full alloca type, we need to do a shift to get the right bits.
    868   int ShAmt = 0;
    869   if (TD.isBigEndian()) {
    870     // On big-endian machines, the lowest bit is stored at the bit offset
    871     // from the pointer given by getTypeStoreSizeInBits.  This matters for
    872     // integers with a bitwidth that is not a multiple of 8.
    873     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
    874             TD.getTypeStoreSizeInBits(ToType) - Offset;
    875   } else {
    876     ShAmt = Offset;
    877   }
    878 
    879   // Note: we support negative bitwidths (with shl) which are not defined.
    880   // We do this to support (f.e.) loads off the end of a structure where
    881   // only some bits are used.
    882   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
    883     FromVal = Builder.CreateLShr(FromVal,
    884                                  ConstantInt::get(FromVal->getType(),
    885                                                            ShAmt), "tmp");
    886   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
    887     FromVal = Builder.CreateShl(FromVal,
    888                                 ConstantInt::get(FromVal->getType(),
    889                                                           -ShAmt), "tmp");
    890 
    891   // Finally, unconditionally truncate the integer to the right width.
    892   unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
    893   if (LIBitWidth < NTy->getBitWidth())
    894     FromVal =
    895       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
    896                                                     LIBitWidth), "tmp");
    897   else if (LIBitWidth > NTy->getBitWidth())
    898     FromVal =
    899        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
    900                                                     LIBitWidth), "tmp");
    901 
    902   // If the result is an integer, this is a trunc or bitcast.
    903   if (ToType->isIntegerTy()) {
    904     // Should be done.
    905   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
    906     // Just do a bitcast, we know the sizes match up.
    907     FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
    908   } else {
    909     // Otherwise must be a pointer.
    910     FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
    911   }
    912   assert(FromVal->getType() == ToType && "Didn't convert right?");
    913   return FromVal;
    914 }
    915 
    916 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
    917 /// or vector value "Old" at the offset specified by Offset.
    918 ///
    919 /// This happens when we are converting an "integer union" to a
    920 /// single integer scalar, or when we are converting a "vector union" to a
    921 /// vector with insert/extractelement instructions.
    922 ///
    923 /// Offset is an offset from the original alloca, in bits that need to be
    924 /// shifted to the right.
    925 Value *ConvertToScalarInfo::
    926 ConvertScalar_InsertValue(Value *SV, Value *Old,
    927                           uint64_t Offset, IRBuilder<> &Builder) {
    928   // Convert the stored type to the actual type, shift it left to insert
    929   // then 'or' into place.
    930   Type *AllocaType = Old->getType();
    931   LLVMContext &Context = Old->getContext();
    932 
    933   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
    934     uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
    935     uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
    936 
    937     // Changing the whole vector with memset or with an access of a different
    938     // vector type?
    939     if (ValSize == VecSize) {
    940       // If the two types have the same primitive size, use a bit cast.
    941       // Otherwise, it is two vectors with the same element type that has
    942       // the same allocation size but different number of elements so use
    943       // a shuffle vector.
    944       if (VTy->getPrimitiveSizeInBits() ==
    945           SV->getType()->getPrimitiveSizeInBits())
    946         return Builder.CreateBitCast(SV, AllocaType, "tmp");
    947       else
    948         return CreateShuffleVectorCast(SV, VTy, Builder);
    949     }
    950 
    951     if (isPowerOf2_64(VecSize / ValSize)) {
    952       assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
    953              "value of a smaller vector type at a nonzero offset.");
    954 
    955       Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
    956                                                        ValSize);
    957       unsigned NumCastVectorElements = VecSize / ValSize;
    958 
    959       LLVMContext &Context = SV->getContext();
    960       Type *OldCastTy = VectorType::get(CastElementTy,
    961                                               NumCastVectorElements);
    962       Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
    963 
    964       Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
    965 
    966       unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
    967       unsigned Elt = Offset/EltSize;
    968       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
    969       Value *Insert =
    970         Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
    971                                         Type::getInt32Ty(Context), Elt), "tmp");
    972       return Builder.CreateBitCast(Insert, AllocaType, "tmp");
    973     }
    974 
    975     // Must be an element insertion.
    976     assert(SV->getType() == VTy->getElementType());
    977     uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
    978     unsigned Elt = Offset/EltSize;
    979     return Builder.CreateInsertElement(Old, SV,
    980                      ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
    981                                      "tmp");
    982   }
    983 
    984   // If SV is a first-class aggregate value, insert each value recursively.
    985   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
    986     const StructLayout &Layout = *TD.getStructLayout(ST);
    987     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
    988       Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
    989       Old = ConvertScalar_InsertValue(Elt, Old,
    990                                       Offset+Layout.getElementOffsetInBits(i),
    991                                       Builder);
    992     }
    993     return Old;
    994   }
    995 
    996   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
    997     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
    998     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
    999       Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
   1000       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
   1001     }
   1002     return Old;
   1003   }
   1004 
   1005   // If SV is a float, convert it to the appropriate integer type.
   1006   // If it is a pointer, do the same.
   1007   unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
   1008   unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
   1009   unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
   1010   unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
   1011   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
   1012     SV = Builder.CreateBitCast(SV,
   1013                             IntegerType::get(SV->getContext(),SrcWidth), "tmp");
   1014   else if (SV->getType()->isPointerTy())
   1015     SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
   1016 
   1017   // Zero extend or truncate the value if needed.
   1018   if (SV->getType() != AllocaType) {
   1019     if (SV->getType()->getPrimitiveSizeInBits() <
   1020              AllocaType->getPrimitiveSizeInBits())
   1021       SV = Builder.CreateZExt(SV, AllocaType, "tmp");
   1022     else {
   1023       // Truncation may be needed if storing more than the alloca can hold
   1024       // (undefined behavior).
   1025       SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
   1026       SrcWidth = DestWidth;
   1027       SrcStoreWidth = DestStoreWidth;
   1028     }
   1029   }
   1030 
   1031   // If this is a big-endian system and the store is narrower than the
   1032   // full alloca type, we need to do a shift to get the right bits.
   1033   int ShAmt = 0;
   1034   if (TD.isBigEndian()) {
   1035     // On big-endian machines, the lowest bit is stored at the bit offset
   1036     // from the pointer given by getTypeStoreSizeInBits.  This matters for
   1037     // integers with a bitwidth that is not a multiple of 8.
   1038     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
   1039   } else {
   1040     ShAmt = Offset;
   1041   }
   1042 
   1043   // Note: we support negative bitwidths (with shr) which are not defined.
   1044   // We do this to support (f.e.) stores off the end of a structure where
   1045   // only some bits in the structure are set.
   1046   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
   1047   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
   1048     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
   1049                            ShAmt), "tmp");
   1050     Mask <<= ShAmt;
   1051   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
   1052     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
   1053                             -ShAmt), "tmp");
   1054     Mask = Mask.lshr(-ShAmt);
   1055   }
   1056 
   1057   // Mask out the bits we are about to insert from the old value, and or
   1058   // in the new bits.
   1059   if (SrcWidth != DestWidth) {
   1060     assert(DestWidth > SrcWidth);
   1061     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
   1062     SV = Builder.CreateOr(Old, SV, "ins");
   1063   }
   1064   return SV;
   1065 }
   1066 
   1067 
   1068 //===----------------------------------------------------------------------===//
   1069 // SRoA Driver
   1070 //===----------------------------------------------------------------------===//
   1071 
   1072 
   1073 bool SROA::runOnFunction(Function &F) {
   1074   TD = getAnalysisIfAvailable<TargetData>();
   1075 
   1076   bool Changed = performPromotion(F);
   1077 
   1078   // FIXME: ScalarRepl currently depends on TargetData more than it
   1079   // theoretically needs to. It should be refactored in order to support
   1080   // target-independent IR. Until this is done, just skip the actual
   1081   // scalar-replacement portion of this pass.
   1082   if (!TD) return Changed;
   1083 
   1084   while (1) {
   1085     bool LocalChange = performScalarRepl(F);
   1086     if (!LocalChange) break;   // No need to repromote if no scalarrepl
   1087     Changed = true;
   1088     LocalChange = performPromotion(F);
   1089     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
   1090   }
   1091 
   1092   return Changed;
   1093 }
   1094 
   1095 namespace {
   1096 class AllocaPromoter : public LoadAndStorePromoter {
   1097   AllocaInst *AI;
   1098   DIBuilder *DIB;
   1099   SmallVector<DbgDeclareInst *, 4> DDIs;
   1100   SmallVector<DbgValueInst *, 4> DVIs;
   1101 public:
   1102   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
   1103                  DIBuilder *DB)
   1104     : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
   1105 
   1106   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
   1107     // Remember which alloca we're promoting (for isInstInList).
   1108     this->AI = AI;
   1109     if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
   1110       for (Value::use_iterator UI = DebugNode->use_begin(),
   1111              E = DebugNode->use_end(); UI != E; ++UI)
   1112         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
   1113           DDIs.push_back(DDI);
   1114         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
   1115           DVIs.push_back(DVI);
   1116 
   1117     LoadAndStorePromoter::run(Insts);
   1118     AI->eraseFromParent();
   1119     for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
   1120            E = DDIs.end(); I != E; ++I) {
   1121       DbgDeclareInst *DDI = *I;
   1122       DDI->eraseFromParent();
   1123     }
   1124     for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
   1125            E = DVIs.end(); I != E; ++I) {
   1126       DbgValueInst *DVI = *I;
   1127       DVI->eraseFromParent();
   1128     }
   1129   }
   1130 
   1131   virtual bool isInstInList(Instruction *I,
   1132                             const SmallVectorImpl<Instruction*> &Insts) const {
   1133     if (LoadInst *LI = dyn_cast<LoadInst>(I))
   1134       return LI->getOperand(0) == AI;
   1135     return cast<StoreInst>(I)->getPointerOperand() == AI;
   1136   }
   1137 
   1138   virtual void updateDebugInfo(Instruction *Inst) const {
   1139     for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
   1140            E = DDIs.end(); I != E; ++I) {
   1141       DbgDeclareInst *DDI = *I;
   1142       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
   1143         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
   1144       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
   1145         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
   1146     }
   1147     for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
   1148            E = DVIs.end(); I != E; ++I) {
   1149       DbgValueInst *DVI = *I;
   1150       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   1151         Instruction *DbgVal = NULL;
   1152         // If an argument is zero extended then use argument directly. The ZExt
   1153         // may be zapped by an optimization pass in future.
   1154         Argument *ExtendedArg = NULL;
   1155         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
   1156           ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
   1157         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
   1158           ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
   1159         if (ExtendedArg)
   1160           DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
   1161                                                 DIVariable(DVI->getVariable()),
   1162                                                 SI);
   1163         else
   1164           DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
   1165                                                 DIVariable(DVI->getVariable()),
   1166                                                 SI);
   1167         DbgVal->setDebugLoc(DVI->getDebugLoc());
   1168       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
   1169         Instruction *DbgVal =
   1170           DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
   1171                                        DIVariable(DVI->getVariable()), LI);
   1172         DbgVal->setDebugLoc(DVI->getDebugLoc());
   1173       }
   1174     }
   1175   }
   1176 };
   1177 } // end anon namespace
   1178 
   1179 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
   1180 /// subsequently loaded can be rewritten to load both input pointers and then
   1181 /// select between the result, allowing the load of the alloca to be promoted.
   1182 /// From this:
   1183 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
   1184 ///   %V = load i32* %P2
   1185 /// to:
   1186 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1187 ///   %V2 = load i32* %Other
   1188 ///   %V = select i1 %cond, i32 %V1, i32 %V2
   1189 ///
   1190 /// We can do this to a select if its only uses are loads and if the operand to
   1191 /// the select can be loaded unconditionally.
   1192 static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
   1193   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
   1194   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
   1195 
   1196   for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
   1197        UI != UE; ++UI) {
   1198     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1199     if (LI == 0 || LI->isVolatile()) return false;
   1200 
   1201     // Both operands to the select need to be dereferencable, either absolutely
   1202     // (e.g. allocas) or at this point because we can see other accesses to it.
   1203     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
   1204                                                     LI->getAlignment(), TD))
   1205       return false;
   1206     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
   1207                                                     LI->getAlignment(), TD))
   1208       return false;
   1209   }
   1210 
   1211   return true;
   1212 }
   1213 
   1214 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
   1215 /// subsequently loaded can be rewritten to load both input pointers in the pred
   1216 /// blocks and then PHI the results, allowing the load of the alloca to be
   1217 /// promoted.
   1218 /// From this:
   1219 ///   %P2 = phi [i32* %Alloca, i32* %Other]
   1220 ///   %V = load i32* %P2
   1221 /// to:
   1222 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
   1223 ///   ...
   1224 ///   %V2 = load i32* %Other
   1225 ///   ...
   1226 ///   %V = phi [i32 %V1, i32 %V2]
   1227 ///
   1228 /// We can do this to a select if its only uses are loads and if the operand to
   1229 /// the select can be loaded unconditionally.
   1230 static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
   1231   // For now, we can only do this promotion if the load is in the same block as
   1232   // the PHI, and if there are no stores between the phi and load.
   1233   // TODO: Allow recursive phi users.
   1234   // TODO: Allow stores.
   1235   BasicBlock *BB = PN->getParent();
   1236   unsigned MaxAlign = 0;
   1237   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
   1238        UI != UE; ++UI) {
   1239     LoadInst *LI = dyn_cast<LoadInst>(*UI);
   1240     if (LI == 0 || LI->isVolatile()) return false;
   1241 
   1242     // For now we only allow loads in the same block as the PHI.  This is a
   1243     // common case that happens when instcombine merges two loads through a PHI.
   1244     if (LI->getParent() != BB) return false;
   1245 
   1246     // Ensure that there are no instructions between the PHI and the load that
   1247     // could store.
   1248     for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
   1249       if (BBI->mayWriteToMemory())
   1250         return false;
   1251 
   1252     MaxAlign = std::max(MaxAlign, LI->getAlignment());
   1253   }
   1254 
   1255   // Okay, we know that we have one or more loads in the same block as the PHI.
   1256   // We can transform this if it is safe to push the loads into the predecessor
   1257   // blocks.  The only thing to watch out for is that we can't put a possibly
   1258   // trapping load in the predecessor if it is a critical edge.
   1259   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1260     BasicBlock *Pred = PN->getIncomingBlock(i);
   1261 
   1262     // If the predecessor has a single successor, then the edge isn't critical.
   1263     if (Pred->getTerminator()->getNumSuccessors() == 1)
   1264       continue;
   1265 
   1266     Value *InVal = PN->getIncomingValue(i);
   1267 
   1268     // If the InVal is an invoke in the pred, we can't put a load on the edge.
   1269     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
   1270       if (II->getParent() == Pred)
   1271         return false;
   1272 
   1273     // If this pointer is always safe to load, or if we can prove that there is
   1274     // already a load in the block, then we can move the load to the pred block.
   1275     if (InVal->isDereferenceablePointer() ||
   1276         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
   1277       continue;
   1278 
   1279     return false;
   1280   }
   1281 
   1282   return true;
   1283 }
   1284 
   1285 
   1286 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
   1287 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
   1288 /// not quite there, this will transform the code to allow promotion.  As such,
   1289 /// it is a non-pure predicate.
   1290 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
   1291   SetVector<Instruction*, SmallVector<Instruction*, 4>,
   1292             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
   1293 
   1294   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
   1295        UI != UE; ++UI) {
   1296     User *U = *UI;
   1297     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1298       if (LI->isVolatile())
   1299         return false;
   1300       continue;
   1301     }
   1302 
   1303     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1304       if (SI->getOperand(0) == AI || SI->isVolatile())
   1305         return false;   // Don't allow a store OF the AI, only INTO the AI.
   1306       continue;
   1307     }
   1308 
   1309     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
   1310       // If the condition being selected on is a constant, fold the select, yes
   1311       // this does (rarely) happen early on.
   1312       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
   1313         Value *Result = SI->getOperand(1+CI->isZero());
   1314         SI->replaceAllUsesWith(Result);
   1315         SI->eraseFromParent();
   1316 
   1317         // This is very rare and we just scrambled the use list of AI, start
   1318         // over completely.
   1319         return tryToMakeAllocaBePromotable(AI, TD);
   1320       }
   1321 
   1322       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
   1323       // loads, then we can transform this by rewriting the select.
   1324       if (!isSafeSelectToSpeculate(SI, TD))
   1325         return false;
   1326 
   1327       InstsToRewrite.insert(SI);
   1328       continue;
   1329     }
   1330 
   1331     if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1332       if (PN->use_empty()) {  // Dead PHIs can be stripped.
   1333         InstsToRewrite.insert(PN);
   1334         continue;
   1335       }
   1336 
   1337       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
   1338       // in the pred blocks, then we can transform this by rewriting the PHI.
   1339       if (!isSafePHIToSpeculate(PN, TD))
   1340         return false;
   1341 
   1342       InstsToRewrite.insert(PN);
   1343       continue;
   1344     }
   1345 
   1346     return false;
   1347   }
   1348 
   1349   // If there are no instructions to rewrite, then all uses are load/stores and
   1350   // we're done!
   1351   if (InstsToRewrite.empty())
   1352     return true;
   1353 
   1354   // If we have instructions that need to be rewritten for this to be promotable
   1355   // take care of it now.
   1356   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
   1357     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
   1358       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
   1359       // loads with a new select.
   1360       while (!SI->use_empty()) {
   1361         LoadInst *LI = cast<LoadInst>(SI->use_back());
   1362 
   1363         IRBuilder<> Builder(LI);
   1364         LoadInst *TrueLoad =
   1365           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
   1366         LoadInst *FalseLoad =
   1367           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
   1368 
   1369         // Transfer alignment and TBAA info if present.
   1370         TrueLoad->setAlignment(LI->getAlignment());
   1371         FalseLoad->setAlignment(LI->getAlignment());
   1372         if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
   1373           TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1374           FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1375         }
   1376 
   1377         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
   1378         V->takeName(LI);
   1379         LI->replaceAllUsesWith(V);
   1380         LI->eraseFromParent();
   1381       }
   1382 
   1383       // Now that all the loads are gone, the select is gone too.
   1384       SI->eraseFromParent();
   1385       continue;
   1386     }
   1387 
   1388     // Otherwise, we have a PHI node which allows us to push the loads into the
   1389     // predecessors.
   1390     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
   1391     if (PN->use_empty()) {
   1392       PN->eraseFromParent();
   1393       continue;
   1394     }
   1395 
   1396     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
   1397     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
   1398                                      PN->getName()+".ld", PN);
   1399 
   1400     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
   1401     // matter which one we get and if any differ, it doesn't matter.
   1402     LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
   1403     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
   1404     unsigned Align = SomeLoad->getAlignment();
   1405 
   1406     // Rewrite all loads of the PN to use the new PHI.
   1407     while (!PN->use_empty()) {
   1408       LoadInst *LI = cast<LoadInst>(PN->use_back());
   1409       LI->replaceAllUsesWith(NewPN);
   1410       LI->eraseFromParent();
   1411     }
   1412 
   1413     // Inject loads into all of the pred blocks.  Keep track of which blocks we
   1414     // insert them into in case we have multiple edges from the same block.
   1415     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
   1416 
   1417     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1418       BasicBlock *Pred = PN->getIncomingBlock(i);
   1419       LoadInst *&Load = InsertedLoads[Pred];
   1420       if (Load == 0) {
   1421         Load = new LoadInst(PN->getIncomingValue(i),
   1422                             PN->getName() + "." + Pred->getName(),
   1423                             Pred->getTerminator());
   1424         Load->setAlignment(Align);
   1425         if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
   1426       }
   1427 
   1428       NewPN->addIncoming(Load, Pred);
   1429     }
   1430 
   1431     PN->eraseFromParent();
   1432   }
   1433 
   1434   ++NumAdjusted;
   1435   return true;
   1436 }
   1437 
   1438 bool SROA::performPromotion(Function &F) {
   1439   std::vector<AllocaInst*> Allocas;
   1440   DominatorTree *DT = 0;
   1441   if (HasDomTree)
   1442     DT = &getAnalysis<DominatorTree>();
   1443 
   1444   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
   1445   DIBuilder DIB(*F.getParent());
   1446   bool Changed = false;
   1447   SmallVector<Instruction*, 64> Insts;
   1448   while (1) {
   1449     Allocas.clear();
   1450 
   1451     // Find allocas that are safe to promote, by looking at all instructions in
   1452     // the entry node
   1453     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
   1454       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
   1455         if (tryToMakeAllocaBePromotable(AI, TD))
   1456           Allocas.push_back(AI);
   1457 
   1458     if (Allocas.empty()) break;
   1459 
   1460     if (HasDomTree)
   1461       PromoteMemToReg(Allocas, *DT);
   1462     else {
   1463       SSAUpdater SSA;
   1464       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
   1465         AllocaInst *AI = Allocas[i];
   1466 
   1467         // Build list of instructions to promote.
   1468         for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
   1469              UI != E; ++UI)
   1470           Insts.push_back(cast<Instruction>(*UI));
   1471         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
   1472         Insts.clear();
   1473       }
   1474     }
   1475     NumPromoted += Allocas.size();
   1476     Changed = true;
   1477   }
   1478 
   1479   return Changed;
   1480 }
   1481 
   1482 
   1483 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
   1484 /// SROA.  It must be a struct or array type with a small number of elements.
   1485 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
   1486   Type *T = AI->getAllocatedType();
   1487   // Do not promote any struct into more than 32 separate vars.
   1488   if (StructType *ST = dyn_cast<StructType>(T))
   1489     return ST->getNumElements() <= 32;
   1490   // Arrays are much less likely to be safe for SROA; only consider
   1491   // them if they are very small.
   1492   if (ArrayType *AT = dyn_cast<ArrayType>(T))
   1493     return AT->getNumElements() <= 8;
   1494   return false;
   1495 }
   1496 
   1497 
   1498 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
   1499 // which runs on all of the alloca instructions in the function, removing them
   1500 // if they are only used by getelementptr instructions.
   1501 //
   1502 bool SROA::performScalarRepl(Function &F) {
   1503   std::vector<AllocaInst*> WorkList;
   1504 
   1505   // Scan the entry basic block, adding allocas to the worklist.
   1506   BasicBlock &BB = F.getEntryBlock();
   1507   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
   1508     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
   1509       WorkList.push_back(A);
   1510 
   1511   // Process the worklist
   1512   bool Changed = false;
   1513   while (!WorkList.empty()) {
   1514     AllocaInst *AI = WorkList.back();
   1515     WorkList.pop_back();
   1516 
   1517     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
   1518     // with unused elements.
   1519     if (AI->use_empty()) {
   1520       AI->eraseFromParent();
   1521       Changed = true;
   1522       continue;
   1523     }
   1524 
   1525     // If this alloca is impossible for us to promote, reject it early.
   1526     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
   1527       continue;
   1528 
   1529     // Check to see if this allocation is only modified by a memcpy/memmove from
   1530     // a constant global.  If this is the case, we can change all users to use
   1531     // the constant global instead.  This is commonly produced by the CFE by
   1532     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
   1533     // is only subsequently read.
   1534     SmallVector<Instruction *, 4> ToDelete;
   1535     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
   1536       DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
   1537       DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
   1538       for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
   1539         ToDelete[i]->eraseFromParent();
   1540       Constant *TheSrc = cast<Constant>(Copy->getSource());
   1541       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
   1542       Copy->eraseFromParent();  // Don't mutate the global.
   1543       AI->eraseFromParent();
   1544       ++NumGlobals;
   1545       Changed = true;
   1546       continue;
   1547     }
   1548 
   1549     // Check to see if we can perform the core SROA transformation.  We cannot
   1550     // transform the allocation instruction if it is an array allocation
   1551     // (allocations OF arrays are ok though), and an allocation of a scalar
   1552     // value cannot be decomposed at all.
   1553     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
   1554 
   1555     // Do not promote [0 x %struct].
   1556     if (AllocaSize == 0) continue;
   1557 
   1558     // Do not promote any struct whose size is too big.
   1559     if (AllocaSize > SRThreshold) continue;
   1560 
   1561     // If the alloca looks like a good candidate for scalar replacement, and if
   1562     // all its users can be transformed, then split up the aggregate into its
   1563     // separate elements.
   1564     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
   1565       DoScalarReplacement(AI, WorkList);
   1566       Changed = true;
   1567       continue;
   1568     }
   1569 
   1570     // If we can turn this aggregate value (potentially with casts) into a
   1571     // simple scalar value that can be mem2reg'd into a register value.
   1572     // IsNotTrivial tracks whether this is something that mem2reg could have
   1573     // promoted itself.  If so, we don't want to transform it needlessly.  Note
   1574     // that we can't just check based on the type: the alloca may be of an i32
   1575     // but that has pointer arithmetic to set byte 3 of it or something.
   1576     if (AllocaInst *NewAI =
   1577           ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
   1578       NewAI->takeName(AI);
   1579       AI->eraseFromParent();
   1580       ++NumConverted;
   1581       Changed = true;
   1582       continue;
   1583     }
   1584 
   1585     // Otherwise, couldn't process this alloca.
   1586   }
   1587 
   1588   return Changed;
   1589 }
   1590 
   1591 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
   1592 /// predicate, do SROA now.
   1593 void SROA::DoScalarReplacement(AllocaInst *AI,
   1594                                std::vector<AllocaInst*> &WorkList) {
   1595   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
   1596   SmallVector<AllocaInst*, 32> ElementAllocas;
   1597   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   1598     ElementAllocas.reserve(ST->getNumContainedTypes());
   1599     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
   1600       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
   1601                                       AI->getAlignment(),
   1602                                       AI->getName() + "." + Twine(i), AI);
   1603       ElementAllocas.push_back(NA);
   1604       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1605     }
   1606   } else {
   1607     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
   1608     ElementAllocas.reserve(AT->getNumElements());
   1609     Type *ElTy = AT->getElementType();
   1610     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
   1611       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
   1612                                       AI->getName() + "." + Twine(i), AI);
   1613       ElementAllocas.push_back(NA);
   1614       WorkList.push_back(NA);  // Add to worklist for recursive processing
   1615     }
   1616   }
   1617 
   1618   // Now that we have created the new alloca instructions, rewrite all the
   1619   // uses of the old alloca.
   1620   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
   1621 
   1622   // Now erase any instructions that were made dead while rewriting the alloca.
   1623   DeleteDeadInstructions();
   1624   AI->eraseFromParent();
   1625 
   1626   ++NumReplaced;
   1627 }
   1628 
   1629 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
   1630 /// recursively including all their operands that become trivially dead.
   1631 void SROA::DeleteDeadInstructions() {
   1632   while (!DeadInsts.empty()) {
   1633     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
   1634 
   1635     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
   1636       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
   1637         // Zero out the operand and see if it becomes trivially dead.
   1638         // (But, don't add allocas to the dead instruction list -- they are
   1639         // already on the worklist and will be deleted separately.)
   1640         *OI = 0;
   1641         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
   1642           DeadInsts.push_back(U);
   1643       }
   1644 
   1645     I->eraseFromParent();
   1646   }
   1647 }
   1648 
   1649 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
   1650 /// performing scalar replacement of alloca AI.  The results are flagged in
   1651 /// the Info parameter.  Offset indicates the position within AI that is
   1652 /// referenced by this instruction.
   1653 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
   1654                                AllocaInfo &Info) {
   1655   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1656     Instruction *User = cast<Instruction>(*UI);
   1657 
   1658     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1659       isSafeForScalarRepl(BC, Offset, Info);
   1660     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1661       uint64_t GEPOffset = Offset;
   1662       isSafeGEP(GEPI, GEPOffset, Info);
   1663       if (!Info.isUnsafe)
   1664         isSafeForScalarRepl(GEPI, GEPOffset, Info);
   1665     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1666       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1667       if (Length == 0)
   1668         return MarkUnsafe(Info, User);
   1669       isSafeMemAccess(Offset, Length->getZExtValue(), 0,
   1670                       UI.getOperandNo() == 0, Info, MI,
   1671                       true /*AllowWholeAccess*/);
   1672     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1673       if (LI->isVolatile())
   1674         return MarkUnsafe(Info, User);
   1675       Type *LIType = LI->getType();
   1676       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1677                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
   1678       Info.hasALoadOrStore = true;
   1679 
   1680     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1681       // Store is ok if storing INTO the pointer, not storing the pointer
   1682       if (SI->isVolatile() || SI->getOperand(0) == I)
   1683         return MarkUnsafe(Info, User);
   1684 
   1685       Type *SIType = SI->getOperand(0)->getType();
   1686       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1687                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
   1688       Info.hasALoadOrStore = true;
   1689     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1690       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1691     } else {
   1692       return MarkUnsafe(Info, User);
   1693     }
   1694     if (Info.isUnsafe) return;
   1695   }
   1696 }
   1697 
   1698 
   1699 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
   1700 /// derived from the alloca, we can often still split the alloca into elements.
   1701 /// This is useful if we have a large alloca where one element is phi'd
   1702 /// together somewhere: we can SRoA and promote all the other elements even if
   1703 /// we end up not being able to promote this one.
   1704 ///
   1705 /// All we require is that the uses of the PHI do not index into other parts of
   1706 /// the alloca.  The most important use case for this is single load and stores
   1707 /// that are PHI'd together, which can happen due to code sinking.
   1708 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
   1709                                            AllocaInfo &Info) {
   1710   // If we've already checked this PHI, don't do it again.
   1711   if (PHINode *PN = dyn_cast<PHINode>(I))
   1712     if (!Info.CheckedPHIs.insert(PN))
   1713       return;
   1714 
   1715   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
   1716     Instruction *User = cast<Instruction>(*UI);
   1717 
   1718     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1719       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
   1720     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1721       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
   1722       // but would have to prove that we're staying inside of an element being
   1723       // promoted.
   1724       if (!GEPI->hasAllZeroIndices())
   1725         return MarkUnsafe(Info, User);
   1726       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
   1727     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1728       if (LI->isVolatile())
   1729         return MarkUnsafe(Info, User);
   1730       Type *LIType = LI->getType();
   1731       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
   1732                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
   1733       Info.hasALoadOrStore = true;
   1734 
   1735     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1736       // Store is ok if storing INTO the pointer, not storing the pointer
   1737       if (SI->isVolatile() || SI->getOperand(0) == I)
   1738         return MarkUnsafe(Info, User);
   1739 
   1740       Type *SIType = SI->getOperand(0)->getType();
   1741       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
   1742                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
   1743       Info.hasALoadOrStore = true;
   1744     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
   1745       isSafePHISelectUseForScalarRepl(User, Offset, Info);
   1746     } else {
   1747       return MarkUnsafe(Info, User);
   1748     }
   1749     if (Info.isUnsafe) return;
   1750   }
   1751 }
   1752 
   1753 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
   1754 /// replacement.  It is safe when all the indices are constant, in-bounds
   1755 /// references, and when the resulting offset corresponds to an element within
   1756 /// the alloca type.  The results are flagged in the Info parameter.  Upon
   1757 /// return, Offset is adjusted as specified by the GEP indices.
   1758 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
   1759                      uint64_t &Offset, AllocaInfo &Info) {
   1760   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
   1761   if (GEPIt == E)
   1762     return;
   1763 
   1764   // Walk through the GEP type indices, checking the types that this indexes
   1765   // into.
   1766   for (; GEPIt != E; ++GEPIt) {
   1767     // Ignore struct elements, no extra checking needed for these.
   1768     if ((*GEPIt)->isStructTy())
   1769       continue;
   1770 
   1771     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
   1772     if (!IdxVal)
   1773       return MarkUnsafe(Info, GEPI);
   1774   }
   1775 
   1776   // Compute the offset due to this GEP and check if the alloca has a
   1777   // component element at that offset.
   1778   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   1779   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   1780   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
   1781     MarkUnsafe(Info, GEPI);
   1782 }
   1783 
   1784 /// isHomogeneousAggregate - Check if type T is a struct or array containing
   1785 /// elements of the same type (which is always true for arrays).  If so,
   1786 /// return true with NumElts and EltTy set to the number of elements and the
   1787 /// element type, respectively.
   1788 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
   1789                                    Type *&EltTy) {
   1790   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1791     NumElts = AT->getNumElements();
   1792     EltTy = (NumElts == 0 ? 0 : AT->getElementType());
   1793     return true;
   1794   }
   1795   if (StructType *ST = dyn_cast<StructType>(T)) {
   1796     NumElts = ST->getNumContainedTypes();
   1797     EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
   1798     for (unsigned n = 1; n < NumElts; ++n) {
   1799       if (ST->getContainedType(n) != EltTy)
   1800         return false;
   1801     }
   1802     return true;
   1803   }
   1804   return false;
   1805 }
   1806 
   1807 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
   1808 /// "homogeneous" aggregates with the same element type and number of elements.
   1809 static bool isCompatibleAggregate(Type *T1, Type *T2) {
   1810   if (T1 == T2)
   1811     return true;
   1812 
   1813   unsigned NumElts1, NumElts2;
   1814   Type *EltTy1, *EltTy2;
   1815   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
   1816       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
   1817       NumElts1 == NumElts2 &&
   1818       EltTy1 == EltTy2)
   1819     return true;
   1820 
   1821   return false;
   1822 }
   1823 
   1824 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
   1825 /// alloca or has an offset and size that corresponds to a component element
   1826 /// within it.  The offset checked here may have been formed from a GEP with a
   1827 /// pointer bitcasted to a different type.
   1828 ///
   1829 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
   1830 /// unit.  If false, it only allows accesses known to be in a single element.
   1831 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
   1832                            Type *MemOpType, bool isStore,
   1833                            AllocaInfo &Info, Instruction *TheAccess,
   1834                            bool AllowWholeAccess) {
   1835   // Check if this is a load/store of the entire alloca.
   1836   if (Offset == 0 && AllowWholeAccess &&
   1837       MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
   1838     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
   1839     // loads/stores (which are essentially the same as the MemIntrinsics with
   1840     // regard to copying padding between elements).  But, if an alloca is
   1841     // flagged as both a source and destination of such operations, we'll need
   1842     // to check later for padding between elements.
   1843     if (!MemOpType || MemOpType->isIntegerTy()) {
   1844       if (isStore)
   1845         Info.isMemCpyDst = true;
   1846       else
   1847         Info.isMemCpySrc = true;
   1848       return;
   1849     }
   1850     // This is also safe for references using a type that is compatible with
   1851     // the type of the alloca, so that loads/stores can be rewritten using
   1852     // insertvalue/extractvalue.
   1853     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
   1854       Info.hasSubelementAccess = true;
   1855       return;
   1856     }
   1857   }
   1858   // Check if the offset/size correspond to a component within the alloca type.
   1859   Type *T = Info.AI->getAllocatedType();
   1860   if (TypeHasComponent(T, Offset, MemSize)) {
   1861     Info.hasSubelementAccess = true;
   1862     return;
   1863   }
   1864 
   1865   return MarkUnsafe(Info, TheAccess);
   1866 }
   1867 
   1868 /// TypeHasComponent - Return true if T has a component type with the
   1869 /// specified offset and size.  If Size is zero, do not check the size.
   1870 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
   1871   Type *EltTy;
   1872   uint64_t EltSize;
   1873   if (StructType *ST = dyn_cast<StructType>(T)) {
   1874     const StructLayout *Layout = TD->getStructLayout(ST);
   1875     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
   1876     EltTy = ST->getContainedType(EltIdx);
   1877     EltSize = TD->getTypeAllocSize(EltTy);
   1878     Offset -= Layout->getElementOffset(EltIdx);
   1879   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
   1880     EltTy = AT->getElementType();
   1881     EltSize = TD->getTypeAllocSize(EltTy);
   1882     if (Offset >= AT->getNumElements() * EltSize)
   1883       return false;
   1884     Offset %= EltSize;
   1885   } else {
   1886     return false;
   1887   }
   1888   if (Offset == 0 && (Size == 0 || EltSize == Size))
   1889     return true;
   1890   // Check if the component spans multiple elements.
   1891   if (Offset + Size > EltSize)
   1892     return false;
   1893   return TypeHasComponent(EltTy, Offset, Size);
   1894 }
   1895 
   1896 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
   1897 /// the instruction I, which references it, to use the separate elements.
   1898 /// Offset indicates the position within AI that is referenced by this
   1899 /// instruction.
   1900 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
   1901                                 SmallVector<AllocaInst*, 32> &NewElts) {
   1902   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
   1903     Use &TheUse = UI.getUse();
   1904     Instruction *User = cast<Instruction>(*UI++);
   1905 
   1906     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
   1907       RewriteBitCast(BC, AI, Offset, NewElts);
   1908       continue;
   1909     }
   1910 
   1911     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
   1912       RewriteGEP(GEPI, AI, Offset, NewElts);
   1913       continue;
   1914     }
   1915 
   1916     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
   1917       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
   1918       uint64_t MemSize = Length->getZExtValue();
   1919       if (Offset == 0 &&
   1920           MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
   1921         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
   1922       // Otherwise the intrinsic can only touch a single element and the
   1923       // address operand will be updated, so nothing else needs to be done.
   1924       continue;
   1925     }
   1926 
   1927     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1928       Type *LIType = LI->getType();
   1929 
   1930       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
   1931         // Replace:
   1932         //   %res = load { i32, i32 }* %alloc
   1933         // with:
   1934         //   %load.0 = load i32* %alloc.0
   1935         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
   1936         //   %load.1 = load i32* %alloc.1
   1937         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
   1938         // (Also works for arrays instead of structs)
   1939         Value *Insert = UndefValue::get(LIType);
   1940         IRBuilder<> Builder(LI);
   1941         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1942           Value *Load = Builder.CreateLoad(NewElts[i], "load");
   1943           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
   1944         }
   1945         LI->replaceAllUsesWith(Insert);
   1946         DeadInsts.push_back(LI);
   1947       } else if (LIType->isIntegerTy() &&
   1948                  TD->getTypeAllocSize(LIType) ==
   1949                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1950         // If this is a load of the entire alloca to an integer, rewrite it.
   1951         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
   1952       }
   1953       continue;
   1954     }
   1955 
   1956     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
   1957       Value *Val = SI->getOperand(0);
   1958       Type *SIType = Val->getType();
   1959       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
   1960         // Replace:
   1961         //   store { i32, i32 } %val, { i32, i32 }* %alloc
   1962         // with:
   1963         //   %val.0 = extractvalue { i32, i32 } %val, 0
   1964         //   store i32 %val.0, i32* %alloc.0
   1965         //   %val.1 = extractvalue { i32, i32 } %val, 1
   1966         //   store i32 %val.1, i32* %alloc.1
   1967         // (Also works for arrays instead of structs)
   1968         IRBuilder<> Builder(SI);
   1969         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   1970           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
   1971           Builder.CreateStore(Extract, NewElts[i]);
   1972         }
   1973         DeadInsts.push_back(SI);
   1974       } else if (SIType->isIntegerTy() &&
   1975                  TD->getTypeAllocSize(SIType) ==
   1976                  TD->getTypeAllocSize(AI->getAllocatedType())) {
   1977         // If this is a store of the entire alloca from an integer, rewrite it.
   1978         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
   1979       }
   1980       continue;
   1981     }
   1982 
   1983     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
   1984       // If we have a PHI user of the alloca itself (as opposed to a GEP or
   1985       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
   1986       // the new pointer.
   1987       if (!isa<AllocaInst>(I)) continue;
   1988 
   1989       assert(Offset == 0 && NewElts[0] &&
   1990              "Direct alloca use should have a zero offset");
   1991 
   1992       // If we have a use of the alloca, we know the derived uses will be
   1993       // utilizing just the first element of the scalarized result.  Insert a
   1994       // bitcast of the first alloca before the user as required.
   1995       AllocaInst *NewAI = NewElts[0];
   1996       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
   1997       NewAI->moveBefore(BCI);
   1998       TheUse = BCI;
   1999       continue;
   2000     }
   2001   }
   2002 }
   2003 
   2004 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
   2005 /// and recursively continue updating all of its uses.
   2006 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
   2007                           SmallVector<AllocaInst*, 32> &NewElts) {
   2008   RewriteForScalarRepl(BC, AI, Offset, NewElts);
   2009   if (BC->getOperand(0) != AI)
   2010     return;
   2011 
   2012   // The bitcast references the original alloca.  Replace its uses with
   2013   // references to the first new element alloca.
   2014   Instruction *Val = NewElts[0];
   2015   if (Val->getType() != BC->getDestTy()) {
   2016     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
   2017     Val->takeName(BC);
   2018   }
   2019   BC->replaceAllUsesWith(Val);
   2020   DeadInsts.push_back(BC);
   2021 }
   2022 
   2023 /// FindElementAndOffset - Return the index of the element containing Offset
   2024 /// within the specified type, which must be either a struct or an array.
   2025 /// Sets T to the type of the element and Offset to the offset within that
   2026 /// element.  IdxTy is set to the type of the index result to be used in a
   2027 /// GEP instruction.
   2028 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
   2029                                     Type *&IdxTy) {
   2030   uint64_t Idx = 0;
   2031   if (StructType *ST = dyn_cast<StructType>(T)) {
   2032     const StructLayout *Layout = TD->getStructLayout(ST);
   2033     Idx = Layout->getElementContainingOffset(Offset);
   2034     T = ST->getContainedType(Idx);
   2035     Offset -= Layout->getElementOffset(Idx);
   2036     IdxTy = Type::getInt32Ty(T->getContext());
   2037     return Idx;
   2038   }
   2039   ArrayType *AT = cast<ArrayType>(T);
   2040   T = AT->getElementType();
   2041   uint64_t EltSize = TD->getTypeAllocSize(T);
   2042   Idx = Offset / EltSize;
   2043   Offset -= Idx * EltSize;
   2044   IdxTy = Type::getInt64Ty(T->getContext());
   2045   return Idx;
   2046 }
   2047 
   2048 /// RewriteGEP - Check if this GEP instruction moves the pointer across
   2049 /// elements of the alloca that are being split apart, and if so, rewrite
   2050 /// the GEP to be relative to the new element.
   2051 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
   2052                       SmallVector<AllocaInst*, 32> &NewElts) {
   2053   uint64_t OldOffset = Offset;
   2054   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
   2055   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
   2056 
   2057   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
   2058 
   2059   Type *T = AI->getAllocatedType();
   2060   Type *IdxTy;
   2061   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
   2062   if (GEPI->getOperand(0) == AI)
   2063     OldIdx = ~0ULL; // Force the GEP to be rewritten.
   2064 
   2065   T = AI->getAllocatedType();
   2066   uint64_t EltOffset = Offset;
   2067   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
   2068 
   2069   // If this GEP does not move the pointer across elements of the alloca
   2070   // being split, then it does not needs to be rewritten.
   2071   if (Idx == OldIdx)
   2072     return;
   2073 
   2074   Type *i32Ty = Type::getInt32Ty(AI->getContext());
   2075   SmallVector<Value*, 8> NewArgs;
   2076   NewArgs.push_back(Constant::getNullValue(i32Ty));
   2077   while (EltOffset != 0) {
   2078     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
   2079     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
   2080   }
   2081   Instruction *Val = NewElts[Idx];
   2082   if (NewArgs.size() > 1) {
   2083     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
   2084                                             NewArgs.end(), "", GEPI);
   2085     Val->takeName(GEPI);
   2086   }
   2087   if (Val->getType() != GEPI->getType())
   2088     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
   2089   GEPI->replaceAllUsesWith(Val);
   2090   DeadInsts.push_back(GEPI);
   2091 }
   2092 
   2093 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
   2094 /// Rewrite it to copy or set the elements of the scalarized memory.
   2095 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
   2096                                         AllocaInst *AI,
   2097                                         SmallVector<AllocaInst*, 32> &NewElts) {
   2098   // If this is a memcpy/memmove, construct the other pointer as the
   2099   // appropriate type.  The "Other" pointer is the pointer that goes to memory
   2100   // that doesn't have anything to do with the alloca that we are promoting. For
   2101   // memset, this Value* stays null.
   2102   Value *OtherPtr = 0;
   2103   unsigned MemAlignment = MI->getAlignment();
   2104   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
   2105     if (Inst == MTI->getRawDest())
   2106       OtherPtr = MTI->getRawSource();
   2107     else {
   2108       assert(Inst == MTI->getRawSource());
   2109       OtherPtr = MTI->getRawDest();
   2110     }
   2111   }
   2112 
   2113   // If there is an other pointer, we want to convert it to the same pointer
   2114   // type as AI has, so we can GEP through it safely.
   2115   if (OtherPtr) {
   2116     unsigned AddrSpace =
   2117       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
   2118 
   2119     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
   2120     // optimization, but it's also required to detect the corner case where
   2121     // both pointer operands are referencing the same memory, and where
   2122     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
   2123     // function is only called for mem intrinsics that access the whole
   2124     // aggregate, so non-zero GEPs are not an issue here.)
   2125     OtherPtr = OtherPtr->stripPointerCasts();
   2126 
   2127     // Copying the alloca to itself is a no-op: just delete it.
   2128     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
   2129       // This code will run twice for a no-op memcpy -- once for each operand.
   2130       // Put only one reference to MI on the DeadInsts list.
   2131       for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
   2132              E = DeadInsts.end(); I != E; ++I)
   2133         if (*I == MI) return;
   2134       DeadInsts.push_back(MI);
   2135       return;
   2136     }
   2137 
   2138     // If the pointer is not the right type, insert a bitcast to the right
   2139     // type.
   2140     Type *NewTy =
   2141       PointerType::get(AI->getType()->getElementType(), AddrSpace);
   2142 
   2143     if (OtherPtr->getType() != NewTy)
   2144       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
   2145   }
   2146 
   2147   // Process each element of the aggregate.
   2148   bool SROADest = MI->getRawDest() == Inst;
   2149 
   2150   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
   2151 
   2152   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2153     // If this is a memcpy/memmove, emit a GEP of the other element address.
   2154     Value *OtherElt = 0;
   2155     unsigned OtherEltAlign = MemAlignment;
   2156 
   2157     if (OtherPtr) {
   2158       Value *Idx[2] = { Zero,
   2159                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
   2160       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
   2161                                               OtherPtr->getName()+"."+Twine(i),
   2162                                                    MI);
   2163       uint64_t EltOffset;
   2164       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
   2165       Type *OtherTy = OtherPtrTy->getElementType();
   2166       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
   2167         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
   2168       } else {
   2169         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
   2170         EltOffset = TD->getTypeAllocSize(EltTy)*i;
   2171       }
   2172 
   2173       // The alignment of the other pointer is the guaranteed alignment of the
   2174       // element, which is affected by both the known alignment of the whole
   2175       // mem intrinsic and the alignment of the element.  If the alignment of
   2176       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
   2177       // known alignment is just 4 bytes.
   2178       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
   2179     }
   2180 
   2181     Value *EltPtr = NewElts[i];
   2182     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
   2183 
   2184     // If we got down to a scalar, insert a load or store as appropriate.
   2185     if (EltTy->isSingleValueType()) {
   2186       if (isa<MemTransferInst>(MI)) {
   2187         if (SROADest) {
   2188           // From Other to Alloca.
   2189           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
   2190           new StoreInst(Elt, EltPtr, MI);
   2191         } else {
   2192           // From Alloca to Other.
   2193           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
   2194           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
   2195         }
   2196         continue;
   2197       }
   2198       assert(isa<MemSetInst>(MI));
   2199 
   2200       // If the stored element is zero (common case), just store a null
   2201       // constant.
   2202       Constant *StoreVal;
   2203       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
   2204         if (CI->isZero()) {
   2205           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
   2206         } else {
   2207           // If EltTy is a vector type, get the element type.
   2208           Type *ValTy = EltTy->getScalarType();
   2209 
   2210           // Construct an integer with the right value.
   2211           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
   2212           APInt OneVal(EltSize, CI->getZExtValue());
   2213           APInt TotalVal(OneVal);
   2214           // Set each byte.
   2215           for (unsigned i = 0; 8*i < EltSize; ++i) {
   2216             TotalVal = TotalVal.shl(8);
   2217             TotalVal |= OneVal;
   2218           }
   2219 
   2220           // Convert the integer value to the appropriate type.
   2221           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
   2222           if (ValTy->isPointerTy())
   2223             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
   2224           else if (ValTy->isFloatingPointTy())
   2225             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
   2226           assert(StoreVal->getType() == ValTy && "Type mismatch!");
   2227 
   2228           // If the requested value was a vector constant, create it.
   2229           if (EltTy != ValTy) {
   2230             unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
   2231             SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
   2232             StoreVal = ConstantVector::get(Elts);
   2233           }
   2234         }
   2235         new StoreInst(StoreVal, EltPtr, MI);
   2236         continue;
   2237       }
   2238       // Otherwise, if we're storing a byte variable, use a memset call for
   2239       // this element.
   2240     }
   2241 
   2242     unsigned EltSize = TD->getTypeAllocSize(EltTy);
   2243 
   2244     IRBuilder<> Builder(MI);
   2245 
   2246     // Finally, insert the meminst for this element.
   2247     if (isa<MemSetInst>(MI)) {
   2248       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
   2249                            MI->isVolatile());
   2250     } else {
   2251       assert(isa<MemTransferInst>(MI));
   2252       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
   2253       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
   2254 
   2255       if (isa<MemCpyInst>(MI))
   2256         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
   2257       else
   2258         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
   2259     }
   2260   }
   2261   DeadInsts.push_back(MI);
   2262 }
   2263 
   2264 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
   2265 /// overwrites the entire allocation.  Extract out the pieces of the stored
   2266 /// integer and store them individually.
   2267 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
   2268                                          SmallVector<AllocaInst*, 32> &NewElts){
   2269   // Extract each element out of the integer according to its structure offset
   2270   // and store the element value to the individual alloca.
   2271   Value *SrcVal = SI->getOperand(0);
   2272   Type *AllocaEltTy = AI->getAllocatedType();
   2273   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2274 
   2275   IRBuilder<> Builder(SI);
   2276 
   2277   // Handle tail padding by extending the operand
   2278   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
   2279     SrcVal = Builder.CreateZExt(SrcVal,
   2280                             IntegerType::get(SI->getContext(), AllocaSizeBits));
   2281 
   2282   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
   2283                << '\n');
   2284 
   2285   // There are two forms here: AI could be an array or struct.  Both cases
   2286   // have different ways to compute the element offset.
   2287   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2288     const StructLayout *Layout = TD->getStructLayout(EltSTy);
   2289 
   2290     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2291       // Get the number of bits to shift SrcVal to get the value.
   2292       Type *FieldTy = EltSTy->getElementType(i);
   2293       uint64_t Shift = Layout->getElementOffsetInBits(i);
   2294 
   2295       if (TD->isBigEndian())
   2296         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
   2297 
   2298       Value *EltVal = SrcVal;
   2299       if (Shift) {
   2300         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2301         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2302       }
   2303 
   2304       // Truncate down to an integer of the right size.
   2305       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2306 
   2307       // Ignore zero sized fields like {}, they obviously contain no data.
   2308       if (FieldSizeBits == 0) continue;
   2309 
   2310       if (FieldSizeBits != AllocaSizeBits)
   2311         EltVal = Builder.CreateTrunc(EltVal,
   2312                              IntegerType::get(SI->getContext(), FieldSizeBits));
   2313       Value *DestField = NewElts[i];
   2314       if (EltVal->getType() == FieldTy) {
   2315         // Storing to an integer field of this size, just do it.
   2316       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
   2317         // Bitcast to the right element type (for fp/vector values).
   2318         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
   2319       } else {
   2320         // Otherwise, bitcast the dest pointer (for aggregates).
   2321         DestField = Builder.CreateBitCast(DestField,
   2322                                      PointerType::getUnqual(EltVal->getType()));
   2323       }
   2324       new StoreInst(EltVal, DestField, SI);
   2325     }
   2326 
   2327   } else {
   2328     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
   2329     Type *ArrayEltTy = ATy->getElementType();
   2330     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2331     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
   2332 
   2333     uint64_t Shift;
   2334 
   2335     if (TD->isBigEndian())
   2336       Shift = AllocaSizeBits-ElementOffset;
   2337     else
   2338       Shift = 0;
   2339 
   2340     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2341       // Ignore zero sized fields like {}, they obviously contain no data.
   2342       if (ElementSizeBits == 0) continue;
   2343 
   2344       Value *EltVal = SrcVal;
   2345       if (Shift) {
   2346         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
   2347         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
   2348       }
   2349 
   2350       // Truncate down to an integer of the right size.
   2351       if (ElementSizeBits != AllocaSizeBits)
   2352         EltVal = Builder.CreateTrunc(EltVal,
   2353                                      IntegerType::get(SI->getContext(),
   2354                                                       ElementSizeBits));
   2355       Value *DestField = NewElts[i];
   2356       if (EltVal->getType() == ArrayEltTy) {
   2357         // Storing to an integer field of this size, just do it.
   2358       } else if (ArrayEltTy->isFloatingPointTy() ||
   2359                  ArrayEltTy->isVectorTy()) {
   2360         // Bitcast to the right element type (for fp/vector values).
   2361         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
   2362       } else {
   2363         // Otherwise, bitcast the dest pointer (for aggregates).
   2364         DestField = Builder.CreateBitCast(DestField,
   2365                                      PointerType::getUnqual(EltVal->getType()));
   2366       }
   2367       new StoreInst(EltVal, DestField, SI);
   2368 
   2369       if (TD->isBigEndian())
   2370         Shift -= ElementOffset;
   2371       else
   2372         Shift += ElementOffset;
   2373     }
   2374   }
   2375 
   2376   DeadInsts.push_back(SI);
   2377 }
   2378 
   2379 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
   2380 /// an integer.  Load the individual pieces to form the aggregate value.
   2381 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
   2382                                         SmallVector<AllocaInst*, 32> &NewElts) {
   2383   // Extract each element out of the NewElts according to its structure offset
   2384   // and form the result value.
   2385   Type *AllocaEltTy = AI->getAllocatedType();
   2386   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
   2387 
   2388   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
   2389                << '\n');
   2390 
   2391   // There are two forms here: AI could be an array or struct.  Both cases
   2392   // have different ways to compute the element offset.
   2393   const StructLayout *Layout = 0;
   2394   uint64_t ArrayEltBitOffset = 0;
   2395   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
   2396     Layout = TD->getStructLayout(EltSTy);
   2397   } else {
   2398     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
   2399     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
   2400   }
   2401 
   2402   Value *ResultVal =
   2403     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
   2404 
   2405   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
   2406     // Load the value from the alloca.  If the NewElt is an aggregate, cast
   2407     // the pointer to an integer of the same size before doing the load.
   2408     Value *SrcField = NewElts[i];
   2409     Type *FieldTy =
   2410       cast<PointerType>(SrcField->getType())->getElementType();
   2411     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
   2412 
   2413     // Ignore zero sized fields like {}, they obviously contain no data.
   2414     if (FieldSizeBits == 0) continue;
   2415 
   2416     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
   2417                                                      FieldSizeBits);
   2418     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
   2419         !FieldTy->isVectorTy())
   2420       SrcField = new BitCastInst(SrcField,
   2421                                  PointerType::getUnqual(FieldIntTy),
   2422                                  "", LI);
   2423     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
   2424 
   2425     // If SrcField is a fp or vector of the right size but that isn't an
   2426     // integer type, bitcast to an integer so we can shift it.
   2427     if (SrcField->getType() != FieldIntTy)
   2428       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
   2429 
   2430     // Zero extend the field to be the same size as the final alloca so that
   2431     // we can shift and insert it.
   2432     if (SrcField->getType() != ResultVal->getType())
   2433       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
   2434 
   2435     // Determine the number of bits to shift SrcField.
   2436     uint64_t Shift;
   2437     if (Layout) // Struct case.
   2438       Shift = Layout->getElementOffsetInBits(i);
   2439     else  // Array case.
   2440       Shift = i*ArrayEltBitOffset;
   2441 
   2442     if (TD->isBigEndian())
   2443       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
   2444 
   2445     if (Shift) {
   2446       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
   2447       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
   2448     }
   2449 
   2450     // Don't create an 'or x, 0' on the first iteration.
   2451     if (!isa<Constant>(ResultVal) ||
   2452         !cast<Constant>(ResultVal)->isNullValue())
   2453       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
   2454     else
   2455       ResultVal = SrcField;
   2456   }
   2457 
   2458   // Handle tail padding by truncating the result
   2459   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
   2460     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
   2461 
   2462   LI->replaceAllUsesWith(ResultVal);
   2463   DeadInsts.push_back(LI);
   2464 }
   2465 
   2466 /// HasPadding - Return true if the specified type has any structure or
   2467 /// alignment padding in between the elements that would be split apart
   2468 /// by SROA; return false otherwise.
   2469 static bool HasPadding(Type *Ty, const TargetData &TD) {
   2470   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   2471     Ty = ATy->getElementType();
   2472     return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
   2473   }
   2474 
   2475   // SROA currently handles only Arrays and Structs.
   2476   StructType *STy = cast<StructType>(Ty);
   2477   const StructLayout *SL = TD.getStructLayout(STy);
   2478   unsigned PrevFieldBitOffset = 0;
   2479   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2480     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
   2481 
   2482     // Check to see if there is any padding between this element and the
   2483     // previous one.
   2484     if (i) {
   2485       unsigned PrevFieldEnd =
   2486         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
   2487       if (PrevFieldEnd < FieldBitOffset)
   2488         return true;
   2489     }
   2490     PrevFieldBitOffset = FieldBitOffset;
   2491   }
   2492   // Check for tail padding.
   2493   if (unsigned EltCount = STy->getNumElements()) {
   2494     unsigned PrevFieldEnd = PrevFieldBitOffset +
   2495       TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
   2496     if (PrevFieldEnd < SL->getSizeInBits())
   2497       return true;
   2498   }
   2499   return false;
   2500 }
   2501 
   2502 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
   2503 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
   2504 /// or 1 if safe after canonicalization has been performed.
   2505 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
   2506   // Loop over the use list of the alloca.  We can only transform it if all of
   2507   // the users are safe to transform.
   2508   AllocaInfo Info(AI);
   2509 
   2510   isSafeForScalarRepl(AI, 0, Info);
   2511   if (Info.isUnsafe) {
   2512     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
   2513     return false;
   2514   }
   2515 
   2516   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
   2517   // source and destination, we have to be careful.  In particular, the memcpy
   2518   // could be moving around elements that live in structure padding of the LLVM
   2519   // types, but may actually be used.  In these cases, we refuse to promote the
   2520   // struct.
   2521   if (Info.isMemCpySrc && Info.isMemCpyDst &&
   2522       HasPadding(AI->getAllocatedType(), *TD))
   2523     return false;
   2524 
   2525   // If the alloca never has an access to just *part* of it, but is accessed
   2526   // via loads and stores, then we should use ConvertToScalarInfo to promote
   2527   // the alloca instead of promoting each piece at a time and inserting fission
   2528   // and fusion code.
   2529   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
   2530     // If the struct/array just has one element, use basic SRoA.
   2531     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
   2532       if (ST->getNumElements() > 1) return false;
   2533     } else {
   2534       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
   2535         return false;
   2536     }
   2537   }
   2538 
   2539   return true;
   2540 }
   2541 
   2542 
   2543 
   2544 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
   2545 /// some part of a constant global variable.  This intentionally only accepts
   2546 /// constant expressions because we don't can't rewrite arbitrary instructions.
   2547 static bool PointsToConstantGlobal(Value *V) {
   2548   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
   2549     return GV->isConstant();
   2550   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   2551     if (CE->getOpcode() == Instruction::BitCast ||
   2552         CE->getOpcode() == Instruction::GetElementPtr)
   2553       return PointsToConstantGlobal(CE->getOperand(0));
   2554   return false;
   2555 }
   2556 
   2557 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
   2558 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
   2559 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
   2560 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
   2561 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
   2562 /// the alloca, and if the source pointer is a pointer to a constant global, we
   2563 /// can optimize this.
   2564 static bool
   2565 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
   2566                                bool isOffset,
   2567                                SmallVector<Instruction *, 4> &LifetimeMarkers) {
   2568   // We track lifetime intrinsics as we encounter them.  If we decide to go
   2569   // ahead and replace the value with the global, this lets the caller quickly
   2570   // eliminate the markers.
   2571 
   2572   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
   2573     User *U = cast<Instruction>(*UI);
   2574 
   2575     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
   2576       // Ignore non-volatile loads, they are always ok.
   2577       if (LI->isVolatile()) return false;
   2578       continue;
   2579     }
   2580 
   2581     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
   2582       // If uses of the bitcast are ok, we are ok.
   2583       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
   2584                                           LifetimeMarkers))
   2585         return false;
   2586       continue;
   2587     }
   2588     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
   2589       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
   2590       // doesn't, it does.
   2591       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
   2592                                           isOffset || !GEP->hasAllZeroIndices(),
   2593                                           LifetimeMarkers))
   2594         return false;
   2595       continue;
   2596     }
   2597 
   2598     if (CallSite CS = U) {
   2599       // If this is the function being called then we treat it like a load and
   2600       // ignore it.
   2601       if (CS.isCallee(UI))
   2602         continue;
   2603 
   2604       // If this is a readonly/readnone call site, then we know it is just a
   2605       // load (but one that potentially returns the value itself), so we can
   2606       // ignore it if we know that the value isn't captured.
   2607       unsigned ArgNo = CS.getArgumentNo(UI);
   2608       if (CS.onlyReadsMemory() &&
   2609           (CS.getInstruction()->use_empty() ||
   2610            CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
   2611         continue;
   2612 
   2613       // If this is being passed as a byval argument, the caller is making a
   2614       // copy, so it is only a read of the alloca.
   2615       if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
   2616         continue;
   2617     }
   2618 
   2619     // Lifetime intrinsics can be handled by the caller.
   2620     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
   2621       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   2622           II->getIntrinsicID() == Intrinsic::lifetime_end) {
   2623         assert(II->use_empty() && "Lifetime markers have no result to use!");
   2624         LifetimeMarkers.push_back(II);
   2625         continue;
   2626       }
   2627     }
   2628 
   2629     // If this is isn't our memcpy/memmove, reject it as something we can't
   2630     // handle.
   2631     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
   2632     if (MI == 0)
   2633       return false;
   2634 
   2635     // If the transfer is using the alloca as a source of the transfer, then
   2636     // ignore it since it is a load (unless the transfer is volatile).
   2637     if (UI.getOperandNo() == 1) {
   2638       if (MI->isVolatile()) return false;
   2639       continue;
   2640     }
   2641 
   2642     // If we already have seen a copy, reject the second one.
   2643     if (TheCopy) return false;
   2644 
   2645     // If the pointer has been offset from the start of the alloca, we can't
   2646     // safely handle this.
   2647     if (isOffset) return false;
   2648 
   2649     // If the memintrinsic isn't using the alloca as the dest, reject it.
   2650     if (UI.getOperandNo() != 0) return false;
   2651 
   2652     // If the source of the memcpy/move is not a constant global, reject it.
   2653     if (!PointsToConstantGlobal(MI->getSource()))
   2654       return false;
   2655 
   2656     // Otherwise, the transform is safe.  Remember the copy instruction.
   2657     TheCopy = MI;
   2658   }
   2659   return true;
   2660 }
   2661 
   2662 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
   2663 /// modified by a copy from a constant global.  If we can prove this, we can
   2664 /// replace any uses of the alloca with uses of the global directly.
   2665 MemTransferInst *
   2666 SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
   2667                                      SmallVector<Instruction*, 4> &ToDelete) {
   2668   MemTransferInst *TheCopy = 0;
   2669   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
   2670     return TheCopy;
   2671   return 0;
   2672 }
   2673