Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "phielim"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/CodeGen/LiveVariables.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineInstr.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 static cl::opt<bool>
     38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     39                      cl::Hidden, cl::desc("Disable critical edge splitting "
     40                                           "during PHI elimination"));
     41 
     42 namespace {
     43   class PHIElimination : public MachineFunctionPass {
     44     MachineRegisterInfo *MRI; // Machine register information
     45 
     46   public:
     47     static char ID; // Pass identification, replacement for typeid
     48     PHIElimination() : MachineFunctionPass(ID) {
     49       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &Fn);
     53     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     54 
     55   private:
     56     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     57     /// in predecessor basic blocks.
     58     ///
     59     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     60     void LowerAtomicPHINode(MachineBasicBlock &MBB,
     61                             MachineBasicBlock::iterator AfterPHIsIt);
     62 
     63     /// analyzePHINodes - Gather information about the PHI nodes in
     64     /// here. In particular, we want to map the number of uses of a virtual
     65     /// register which is used in a PHI node. We map that to the BB the
     66     /// vreg is coming from. This is used later to determine when the vreg
     67     /// is killed in the BB.
     68     ///
     69     void analyzePHINodes(const MachineFunction& Fn);
     70 
     71     /// Split critical edges where necessary for good coalescer performance.
     72     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     73                        LiveVariables &LV, MachineLoopInfo *MLI);
     74 
     75     typedef std::pair<unsigned, unsigned> BBVRegPair;
     76     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     77 
     78     VRegPHIUse VRegPHIUseCount;
     79 
     80     // Defs of PHI sources which are implicit_def.
     81     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     82 
     83     // Map reusable lowered PHI node -> incoming join register.
     84     typedef DenseMap<MachineInstr*, unsigned,
     85                      MachineInstrExpressionTrait> LoweredPHIMap;
     86     LoweredPHIMap LoweredPHIs;
     87   };
     88 }
     89 
     90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
     91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
     92 STATISTIC(NumReused, "Number of reused lowered phis");
     93 
     94 char PHIElimination::ID = 0;
     95 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
     96                 "Eliminate PHI nodes for register allocation", false, false)
     97 
     98 char& llvm::PHIEliminationID = PHIElimination::ID;
     99 
    100 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    101   AU.addPreserved<LiveVariables>();
    102   AU.addPreserved<MachineDominatorTree>();
    103   AU.addPreserved<MachineLoopInfo>();
    104   MachineFunctionPass::getAnalysisUsage(AU);
    105 }
    106 
    107 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    108   MRI = &MF.getRegInfo();
    109 
    110   bool Changed = false;
    111 
    112   // Split critical edges to help the coalescer
    113   if (!DisableEdgeSplitting) {
    114     if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
    115       MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    116       for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    117         Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
    118     }
    119   }
    120 
    121   // Populate VRegPHIUseCount
    122   analyzePHINodes(MF);
    123 
    124   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    125   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    126     Changed |= EliminatePHINodes(MF, *I);
    127 
    128   // Remove dead IMPLICIT_DEF instructions.
    129   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    130          E = ImpDefs.end(); I != E; ++I) {
    131     MachineInstr *DefMI = *I;
    132     unsigned DefReg = DefMI->getOperand(0).getReg();
    133     if (MRI->use_nodbg_empty(DefReg))
    134       DefMI->eraseFromParent();
    135   }
    136 
    137   // Clean up the lowered PHI instructions.
    138   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    139        I != E; ++I)
    140     MF.DeleteMachineInstr(I->first);
    141 
    142   LoweredPHIs.clear();
    143   ImpDefs.clear();
    144   VRegPHIUseCount.clear();
    145 
    146   return Changed;
    147 }
    148 
    149 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    150 /// predecessor basic blocks.
    151 ///
    152 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    153                                              MachineBasicBlock &MBB) {
    154   if (MBB.empty() || !MBB.front().isPHI())
    155     return false;   // Quick exit for basic blocks without PHIs.
    156 
    157   // Get an iterator to the first instruction after the last PHI node (this may
    158   // also be the end of the basic block).
    159   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
    160 
    161   while (MBB.front().isPHI())
    162     LowerAtomicPHINode(MBB, AfterPHIsIt);
    163 
    164   return true;
    165 }
    166 
    167 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    168 /// are implicit_def's.
    169 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    170                                          const MachineRegisterInfo *MRI) {
    171   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
    172     unsigned SrcReg = MPhi->getOperand(i).getReg();
    173     const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    174     if (!DefMI || !DefMI->isImplicitDef())
    175       return false;
    176   }
    177   return true;
    178 }
    179 
    180 
    181 
    182 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
    183 /// under the assuption that it needs to be lowered in a way that supports
    184 /// atomic execution of PHIs.  This lowering method is always correct all of the
    185 /// time.
    186 ///
    187 void PHIElimination::LowerAtomicPHINode(
    188                                       MachineBasicBlock &MBB,
    189                                       MachineBasicBlock::iterator AfterPHIsIt) {
    190   ++NumAtomic;
    191   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    192   MachineInstr *MPhi = MBB.remove(MBB.begin());
    193 
    194   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    195   unsigned DestReg = MPhi->getOperand(0).getReg();
    196   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    197   bool isDead = MPhi->getOperand(0).isDead();
    198 
    199   // Create a new register for the incoming PHI arguments.
    200   MachineFunction &MF = *MBB.getParent();
    201   unsigned IncomingReg = 0;
    202   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    203 
    204   // Insert a register to register copy at the top of the current block (but
    205   // after any remaining phi nodes) which copies the new incoming register
    206   // into the phi node destination.
    207   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    208   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    209     // If all sources of a PHI node are implicit_def, just emit an
    210     // implicit_def instead of a copy.
    211     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    212             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    213   else {
    214     // Can we reuse an earlier PHI node? This only happens for critical edges,
    215     // typically those created by tail duplication.
    216     unsigned &entry = LoweredPHIs[MPhi];
    217     if (entry) {
    218       // An identical PHI node was already lowered. Reuse the incoming register.
    219       IncomingReg = entry;
    220       reusedIncoming = true;
    221       ++NumReused;
    222       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    223     } else {
    224       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    225       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    226     }
    227     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    228             TII->get(TargetOpcode::COPY), DestReg)
    229       .addReg(IncomingReg);
    230   }
    231 
    232   // Update live variable information if there is any.
    233   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
    234   if (LV) {
    235     MachineInstr *PHICopy = prior(AfterPHIsIt);
    236 
    237     if (IncomingReg) {
    238       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    239 
    240       // Increment use count of the newly created virtual register.
    241       VI.NumUses++;
    242       LV->setPHIJoin(IncomingReg);
    243 
    244       // When we are reusing the incoming register, it may already have been
    245       // killed in this block. The old kill will also have been inserted at
    246       // AfterPHIsIt, so it appears before the current PHICopy.
    247       if (reusedIncoming)
    248         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    249           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    250           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    251           DEBUG(MBB.dump());
    252         }
    253 
    254       // Add information to LiveVariables to know that the incoming value is
    255       // killed.  Note that because the value is defined in several places (once
    256       // each for each incoming block), the "def" block and instruction fields
    257       // for the VarInfo is not filled in.
    258       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    259     }
    260 
    261     // Since we are going to be deleting the PHI node, if it is the last use of
    262     // any registers, or if the value itself is dead, we need to move this
    263     // information over to the new copy we just inserted.
    264     LV->removeVirtualRegistersKilled(MPhi);
    265 
    266     // If the result is dead, update LV.
    267     if (isDead) {
    268       LV->addVirtualRegisterDead(DestReg, PHICopy);
    269       LV->removeVirtualRegisterDead(DestReg, MPhi);
    270     }
    271   }
    272 
    273   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    274   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    275     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    276                                  MPhi->getOperand(i).getReg())];
    277 
    278   // Now loop over all of the incoming arguments, changing them to copy into the
    279   // IncomingReg register in the corresponding predecessor basic block.
    280   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    281   for (int i = NumSrcs - 1; i >= 0; --i) {
    282     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    283     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    284 
    285     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    286            "Machine PHI Operands must all be virtual registers!");
    287 
    288     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    289     // path the PHI.
    290     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    291 
    292     // If source is defined by an implicit def, there is no need to insert a
    293     // copy.
    294     MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    295     if (DefMI->isImplicitDef()) {
    296       ImpDefs.insert(DefMI);
    297       continue;
    298     }
    299 
    300     // Check to make sure we haven't already emitted the copy for this block.
    301     // This can happen because PHI nodes may have multiple entries for the same
    302     // basic block.
    303     if (!MBBsInsertedInto.insert(&opBlock))
    304       continue;  // If the copy has already been emitted, we're done.
    305 
    306     // Find a safe location to insert the copy, this may be the first terminator
    307     // in the block (or end()).
    308     MachineBasicBlock::iterator InsertPos =
    309       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    310 
    311     // Insert the copy.
    312     if (!reusedIncoming && IncomingReg)
    313       BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    314               TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
    315 
    316     // Now update live variable information if we have it.  Otherwise we're done
    317     if (!LV) continue;
    318 
    319     // We want to be able to insert a kill of the register if this PHI (aka, the
    320     // copy we just inserted) is the last use of the source value.  Live
    321     // variable analysis conservatively handles this by saying that the value is
    322     // live until the end of the block the PHI entry lives in.  If the value
    323     // really is dead at the PHI copy, there will be no successor blocks which
    324     // have the value live-in.
    325 
    326     // Also check to see if this register is in use by another PHI node which
    327     // has not yet been eliminated.  If so, it will be killed at an appropriate
    328     // point later.
    329 
    330     // Is it used by any PHI instructions in this block?
    331     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
    332 
    333     // Okay, if we now know that the value is not live out of the block, we can
    334     // add a kill marker in this block saying that it kills the incoming value!
    335     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
    336       // In our final twist, we have to decide which instruction kills the
    337       // register.  In most cases this is the copy, however, the first
    338       // terminator instruction at the end of the block may also use the value.
    339       // In this case, we should mark *it* as being the killing block, not the
    340       // copy.
    341       MachineBasicBlock::iterator KillInst;
    342       MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
    343       if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
    344         KillInst = Term;
    345 
    346         // Check that no other terminators use values.
    347 #ifndef NDEBUG
    348         for (MachineBasicBlock::iterator TI = llvm::next(Term);
    349              TI != opBlock.end(); ++TI) {
    350           if (TI->isDebugValue())
    351             continue;
    352           assert(!TI->readsRegister(SrcReg) &&
    353                  "Terminator instructions cannot use virtual registers unless"
    354                  "they are the first terminator in a block!");
    355         }
    356 #endif
    357       } else if (reusedIncoming || !IncomingReg) {
    358         // We may have to rewind a bit if we didn't insert a copy this time.
    359         KillInst = Term;
    360         while (KillInst != opBlock.begin()) {
    361           --KillInst;
    362           if (KillInst->isDebugValue())
    363             continue;
    364           if (KillInst->readsRegister(SrcReg))
    365             break;
    366         }
    367       } else {
    368         // We just inserted this copy.
    369         KillInst = prior(InsertPos);
    370       }
    371       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    372 
    373       // Finally, mark it killed.
    374       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    375 
    376       // This vreg no longer lives all of the way through opBlock.
    377       unsigned opBlockNum = opBlock.getNumber();
    378       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    379     }
    380   }
    381 
    382   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    383   if (reusedIncoming || !IncomingReg)
    384     MF.DeleteMachineInstr(MPhi);
    385 }
    386 
    387 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    388 /// particular, we want to map the number of uses of a virtual register which is
    389 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    390 /// used later to determine when the vreg is killed in the BB.
    391 ///
    392 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    393   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
    394        I != E; ++I)
    395     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    396          BBI != BBE && BBI->isPHI(); ++BBI)
    397       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    398         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
    399                                      BBI->getOperand(i).getReg())];
    400 }
    401 
    402 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    403                                    MachineBasicBlock &MBB,
    404                                    LiveVariables &LV,
    405                                    MachineLoopInfo *MLI) {
    406   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    407     return false;   // Quick exit for basic blocks without PHIs.
    408 
    409   bool Changed = false;
    410   for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
    411        BBI != BBE && BBI->isPHI(); ++BBI) {
    412     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    413       unsigned Reg = BBI->getOperand(i).getReg();
    414       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    415       // We break edges when registers are live out from the predecessor block
    416       // (not considering PHI nodes). If the register is live in to this block
    417       // anyway, we would gain nothing from splitting.
    418       // Avoid splitting backedges of loops. It would introduce small
    419       // out-of-line blocks into the loop which is very bad for code placement.
    420       if (PreMBB != &MBB &&
    421           !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
    422         if (!MLI ||
    423             !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
    424               MLI->isLoopHeader(&MBB))) {
    425           if (PreMBB->SplitCriticalEdge(&MBB, this)) {
    426             Changed = true;
    427             ++NumCriticalEdgesSplit;
    428           }
    429         }
    430       }
    431     }
    432   }
    433   return Changed;
    434 }
    435