1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "phielim" 17 #include "PHIEliminationUtils.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineInstr.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Target/TargetInstrInfo.h" 26 #include "llvm/Function.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 static cl::opt<bool> 38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 39 cl::Hidden, cl::desc("Disable critical edge splitting " 40 "during PHI elimination")); 41 42 namespace { 43 class PHIElimination : public MachineFunctionPass { 44 MachineRegisterInfo *MRI; // Machine register information 45 46 public: 47 static char ID; // Pass identification, replacement for typeid 48 PHIElimination() : MachineFunctionPass(ID) { 49 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 50 } 51 52 virtual bool runOnMachineFunction(MachineFunction &Fn); 53 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 54 55 private: 56 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 57 /// in predecessor basic blocks. 58 /// 59 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 60 void LowerAtomicPHINode(MachineBasicBlock &MBB, 61 MachineBasicBlock::iterator AfterPHIsIt); 62 63 /// analyzePHINodes - Gather information about the PHI nodes in 64 /// here. In particular, we want to map the number of uses of a virtual 65 /// register which is used in a PHI node. We map that to the BB the 66 /// vreg is coming from. This is used later to determine when the vreg 67 /// is killed in the BB. 68 /// 69 void analyzePHINodes(const MachineFunction& Fn); 70 71 /// Split critical edges where necessary for good coalescer performance. 72 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 73 LiveVariables &LV, MachineLoopInfo *MLI); 74 75 typedef std::pair<unsigned, unsigned> BBVRegPair; 76 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 77 78 VRegPHIUse VRegPHIUseCount; 79 80 // Defs of PHI sources which are implicit_def. 81 SmallPtrSet<MachineInstr*, 4> ImpDefs; 82 83 // Map reusable lowered PHI node -> incoming join register. 84 typedef DenseMap<MachineInstr*, unsigned, 85 MachineInstrExpressionTrait> LoweredPHIMap; 86 LoweredPHIMap LoweredPHIs; 87 }; 88 } 89 90 STATISTIC(NumAtomic, "Number of atomic phis lowered"); 91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 92 STATISTIC(NumReused, "Number of reused lowered phis"); 93 94 char PHIElimination::ID = 0; 95 INITIALIZE_PASS(PHIElimination, "phi-node-elimination", 96 "Eliminate PHI nodes for register allocation", false, false) 97 98 char& llvm::PHIEliminationID = PHIElimination::ID; 99 100 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 101 AU.addPreserved<LiveVariables>(); 102 AU.addPreserved<MachineDominatorTree>(); 103 AU.addPreserved<MachineLoopInfo>(); 104 MachineFunctionPass::getAnalysisUsage(AU); 105 } 106 107 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 108 MRI = &MF.getRegInfo(); 109 110 bool Changed = false; 111 112 // Split critical edges to help the coalescer 113 if (!DisableEdgeSplitting) { 114 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) { 115 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 116 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 117 Changed |= SplitPHIEdges(MF, *I, *LV, MLI); 118 } 119 } 120 121 // Populate VRegPHIUseCount 122 analyzePHINodes(MF); 123 124 // Eliminate PHI instructions by inserting copies into predecessor blocks. 125 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 126 Changed |= EliminatePHINodes(MF, *I); 127 128 // Remove dead IMPLICIT_DEF instructions. 129 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), 130 E = ImpDefs.end(); I != E; ++I) { 131 MachineInstr *DefMI = *I; 132 unsigned DefReg = DefMI->getOperand(0).getReg(); 133 if (MRI->use_nodbg_empty(DefReg)) 134 DefMI->eraseFromParent(); 135 } 136 137 // Clean up the lowered PHI instructions. 138 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 139 I != E; ++I) 140 MF.DeleteMachineInstr(I->first); 141 142 LoweredPHIs.clear(); 143 ImpDefs.clear(); 144 VRegPHIUseCount.clear(); 145 146 return Changed; 147 } 148 149 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 150 /// predecessor basic blocks. 151 /// 152 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 153 MachineBasicBlock &MBB) { 154 if (MBB.empty() || !MBB.front().isPHI()) 155 return false; // Quick exit for basic blocks without PHIs. 156 157 // Get an iterator to the first instruction after the last PHI node (this may 158 // also be the end of the basic block). 159 MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin()); 160 161 while (MBB.front().isPHI()) 162 LowerAtomicPHINode(MBB, AfterPHIsIt); 163 164 return true; 165 } 166 167 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 168 /// are implicit_def's. 169 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 170 const MachineRegisterInfo *MRI) { 171 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 172 unsigned SrcReg = MPhi->getOperand(i).getReg(); 173 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 174 if (!DefMI || !DefMI->isImplicitDef()) 175 return false; 176 } 177 return true; 178 } 179 180 181 182 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, 183 /// under the assuption that it needs to be lowered in a way that supports 184 /// atomic execution of PHIs. This lowering method is always correct all of the 185 /// time. 186 /// 187 void PHIElimination::LowerAtomicPHINode( 188 MachineBasicBlock &MBB, 189 MachineBasicBlock::iterator AfterPHIsIt) { 190 ++NumAtomic; 191 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 192 MachineInstr *MPhi = MBB.remove(MBB.begin()); 193 194 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 195 unsigned DestReg = MPhi->getOperand(0).getReg(); 196 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 197 bool isDead = MPhi->getOperand(0).isDead(); 198 199 // Create a new register for the incoming PHI arguments. 200 MachineFunction &MF = *MBB.getParent(); 201 unsigned IncomingReg = 0; 202 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 203 204 // Insert a register to register copy at the top of the current block (but 205 // after any remaining phi nodes) which copies the new incoming register 206 // into the phi node destination. 207 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); 208 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 209 // If all sources of a PHI node are implicit_def, just emit an 210 // implicit_def instead of a copy. 211 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 212 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 213 else { 214 // Can we reuse an earlier PHI node? This only happens for critical edges, 215 // typically those created by tail duplication. 216 unsigned &entry = LoweredPHIs[MPhi]; 217 if (entry) { 218 // An identical PHI node was already lowered. Reuse the incoming register. 219 IncomingReg = entry; 220 reusedIncoming = true; 221 ++NumReused; 222 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 223 } else { 224 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 225 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 226 } 227 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 228 TII->get(TargetOpcode::COPY), DestReg) 229 .addReg(IncomingReg); 230 } 231 232 // Update live variable information if there is any. 233 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); 234 if (LV) { 235 MachineInstr *PHICopy = prior(AfterPHIsIt); 236 237 if (IncomingReg) { 238 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 239 240 // Increment use count of the newly created virtual register. 241 VI.NumUses++; 242 LV->setPHIJoin(IncomingReg); 243 244 // When we are reusing the incoming register, it may already have been 245 // killed in this block. The old kill will also have been inserted at 246 // AfterPHIsIt, so it appears before the current PHICopy. 247 if (reusedIncoming) 248 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 249 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 250 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 251 DEBUG(MBB.dump()); 252 } 253 254 // Add information to LiveVariables to know that the incoming value is 255 // killed. Note that because the value is defined in several places (once 256 // each for each incoming block), the "def" block and instruction fields 257 // for the VarInfo is not filled in. 258 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 259 } 260 261 // Since we are going to be deleting the PHI node, if it is the last use of 262 // any registers, or if the value itself is dead, we need to move this 263 // information over to the new copy we just inserted. 264 LV->removeVirtualRegistersKilled(MPhi); 265 266 // If the result is dead, update LV. 267 if (isDead) { 268 LV->addVirtualRegisterDead(DestReg, PHICopy); 269 LV->removeVirtualRegisterDead(DestReg, MPhi); 270 } 271 } 272 273 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 274 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 275 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 276 MPhi->getOperand(i).getReg())]; 277 278 // Now loop over all of the incoming arguments, changing them to copy into the 279 // IncomingReg register in the corresponding predecessor basic block. 280 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 281 for (int i = NumSrcs - 1; i >= 0; --i) { 282 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 283 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 284 285 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 286 "Machine PHI Operands must all be virtual registers!"); 287 288 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 289 // path the PHI. 290 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 291 292 // If source is defined by an implicit def, there is no need to insert a 293 // copy. 294 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 295 if (DefMI->isImplicitDef()) { 296 ImpDefs.insert(DefMI); 297 continue; 298 } 299 300 // Check to make sure we haven't already emitted the copy for this block. 301 // This can happen because PHI nodes may have multiple entries for the same 302 // basic block. 303 if (!MBBsInsertedInto.insert(&opBlock)) 304 continue; // If the copy has already been emitted, we're done. 305 306 // Find a safe location to insert the copy, this may be the first terminator 307 // in the block (or end()). 308 MachineBasicBlock::iterator InsertPos = 309 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 310 311 // Insert the copy. 312 if (!reusedIncoming && IncomingReg) 313 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 314 TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg); 315 316 // Now update live variable information if we have it. Otherwise we're done 317 if (!LV) continue; 318 319 // We want to be able to insert a kill of the register if this PHI (aka, the 320 // copy we just inserted) is the last use of the source value. Live 321 // variable analysis conservatively handles this by saying that the value is 322 // live until the end of the block the PHI entry lives in. If the value 323 // really is dead at the PHI copy, there will be no successor blocks which 324 // have the value live-in. 325 326 // Also check to see if this register is in use by another PHI node which 327 // has not yet been eliminated. If so, it will be killed at an appropriate 328 // point later. 329 330 // Is it used by any PHI instructions in this block? 331 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; 332 333 // Okay, if we now know that the value is not live out of the block, we can 334 // add a kill marker in this block saying that it kills the incoming value! 335 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { 336 // In our final twist, we have to decide which instruction kills the 337 // register. In most cases this is the copy, however, the first 338 // terminator instruction at the end of the block may also use the value. 339 // In this case, we should mark *it* as being the killing block, not the 340 // copy. 341 MachineBasicBlock::iterator KillInst; 342 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); 343 if (Term != opBlock.end() && Term->readsRegister(SrcReg)) { 344 KillInst = Term; 345 346 // Check that no other terminators use values. 347 #ifndef NDEBUG 348 for (MachineBasicBlock::iterator TI = llvm::next(Term); 349 TI != opBlock.end(); ++TI) { 350 if (TI->isDebugValue()) 351 continue; 352 assert(!TI->readsRegister(SrcReg) && 353 "Terminator instructions cannot use virtual registers unless" 354 "they are the first terminator in a block!"); 355 } 356 #endif 357 } else if (reusedIncoming || !IncomingReg) { 358 // We may have to rewind a bit if we didn't insert a copy this time. 359 KillInst = Term; 360 while (KillInst != opBlock.begin()) { 361 --KillInst; 362 if (KillInst->isDebugValue()) 363 continue; 364 if (KillInst->readsRegister(SrcReg)) 365 break; 366 } 367 } else { 368 // We just inserted this copy. 369 KillInst = prior(InsertPos); 370 } 371 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 372 373 // Finally, mark it killed. 374 LV->addVirtualRegisterKilled(SrcReg, KillInst); 375 376 // This vreg no longer lives all of the way through opBlock. 377 unsigned opBlockNum = opBlock.getNumber(); 378 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 379 } 380 } 381 382 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 383 if (reusedIncoming || !IncomingReg) 384 MF.DeleteMachineInstr(MPhi); 385 } 386 387 /// analyzePHINodes - Gather information about the PHI nodes in here. In 388 /// particular, we want to map the number of uses of a virtual register which is 389 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 390 /// used later to determine when the vreg is killed in the BB. 391 /// 392 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 393 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); 394 I != E; ++I) 395 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 396 BBI != BBE && BBI->isPHI(); ++BBI) 397 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 398 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), 399 BBI->getOperand(i).getReg())]; 400 } 401 402 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 403 MachineBasicBlock &MBB, 404 LiveVariables &LV, 405 MachineLoopInfo *MLI) { 406 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) 407 return false; // Quick exit for basic blocks without PHIs. 408 409 bool Changed = false; 410 for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); 411 BBI != BBE && BBI->isPHI(); ++BBI) { 412 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 413 unsigned Reg = BBI->getOperand(i).getReg(); 414 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 415 // We break edges when registers are live out from the predecessor block 416 // (not considering PHI nodes). If the register is live in to this block 417 // anyway, we would gain nothing from splitting. 418 // Avoid splitting backedges of loops. It would introduce small 419 // out-of-line blocks into the loop which is very bad for code placement. 420 if (PreMBB != &MBB && 421 !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) { 422 if (!MLI || 423 !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) && 424 MLI->isLoopHeader(&MBB))) { 425 if (PreMBB->SplitCriticalEdge(&MBB, this)) { 426 Changed = true; 427 ++NumCriticalEdgesSplit; 428 } 429 } 430 } 431 } 432 } 433 return Changed; 434 } 435