Home | History | Annotate | Download | only in IPA
      1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This simple pass provides alias and mod/ref information for global values
     11 // that do not have their address taken, and keeps track of whether functions
     12 // read or write memory (are "pure").  For this simple (but very common) case,
     13 // we can provide pretty accurate and useful information.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "globalsmodref-aa"
     18 #include "llvm/Analysis/Passes.h"
     19 #include "llvm/Module.h"
     20 #include "llvm/Pass.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/Analysis/AliasAnalysis.h"
     25 #include "llvm/Analysis/CallGraph.h"
     26 #include "llvm/Analysis/MemoryBuiltins.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/InstIterator.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/ADT/SCCIterator.h"
     32 #include <set>
     33 using namespace llvm;
     34 
     35 STATISTIC(NumNonAddrTakenGlobalVars,
     36           "Number of global vars without address taken");
     37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
     38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
     39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
     40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
     41 
     42 namespace {
     43   /// FunctionRecord - One instance of this structure is stored for every
     44   /// function in the program.  Later, the entries for these functions are
     45   /// removed if the function is found to call an external function (in which
     46   /// case we know nothing about it.
     47   struct FunctionRecord {
     48     /// GlobalInfo - Maintain mod/ref info for all of the globals without
     49     /// addresses taken that are read or written (transitively) by this
     50     /// function.
     51     std::map<const GlobalValue*, unsigned> GlobalInfo;
     52 
     53     /// MayReadAnyGlobal - May read global variables, but it is not known which.
     54     bool MayReadAnyGlobal;
     55 
     56     unsigned getInfoForGlobal(const GlobalValue *GV) const {
     57       unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
     58       std::map<const GlobalValue*, unsigned>::const_iterator I =
     59         GlobalInfo.find(GV);
     60       if (I != GlobalInfo.end())
     61         Effect |= I->second;
     62       return Effect;
     63     }
     64 
     65     /// FunctionEffect - Capture whether or not this function reads or writes to
     66     /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
     67     unsigned FunctionEffect;
     68 
     69     FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
     70   };
     71 
     72   /// GlobalsModRef - The actual analysis pass.
     73   class GlobalsModRef : public ModulePass, public AliasAnalysis {
     74     /// NonAddressTakenGlobals - The globals that do not have their addresses
     75     /// taken.
     76     std::set<const GlobalValue*> NonAddressTakenGlobals;
     77 
     78     /// IndirectGlobals - The memory pointed to by this global is known to be
     79     /// 'owned' by the global.
     80     std::set<const GlobalValue*> IndirectGlobals;
     81 
     82     /// AllocsForIndirectGlobals - If an instruction allocates memory for an
     83     /// indirect global, this map indicates which one.
     84     std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
     85 
     86     /// FunctionInfo - For each function, keep track of what globals are
     87     /// modified or read.
     88     std::map<const Function*, FunctionRecord> FunctionInfo;
     89 
     90   public:
     91     static char ID;
     92     GlobalsModRef() : ModulePass(ID) {
     93       initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
     94     }
     95 
     96     bool runOnModule(Module &M) {
     97       InitializeAliasAnalysis(this);                 // set up super class
     98       AnalyzeGlobals(M);                          // find non-addr taken globals
     99       AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
    100       return false;
    101     }
    102 
    103     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    104       AliasAnalysis::getAnalysisUsage(AU);
    105       AU.addRequired<CallGraph>();
    106       AU.setPreservesAll();                         // Does not transform code
    107     }
    108 
    109     //------------------------------------------------
    110     // Implement the AliasAnalysis API
    111     //
    112     AliasResult alias(const Location &LocA, const Location &LocB);
    113     ModRefResult getModRefInfo(ImmutableCallSite CS,
    114                                const Location &Loc);
    115     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    116                                ImmutableCallSite CS2) {
    117       return AliasAnalysis::getModRefInfo(CS1, CS2);
    118     }
    119 
    120     /// getModRefBehavior - Return the behavior of the specified function if
    121     /// called from the specified call site.  The call site may be null in which
    122     /// case the most generic behavior of this function should be returned.
    123     ModRefBehavior getModRefBehavior(const Function *F) {
    124       ModRefBehavior Min = UnknownModRefBehavior;
    125 
    126       if (FunctionRecord *FR = getFunctionInfo(F)) {
    127         if (FR->FunctionEffect == 0)
    128           Min = DoesNotAccessMemory;
    129         else if ((FR->FunctionEffect & Mod) == 0)
    130           Min = OnlyReadsMemory;
    131       }
    132 
    133       return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
    134     }
    135 
    136     /// getModRefBehavior - Return the behavior of the specified function if
    137     /// called from the specified call site.  The call site may be null in which
    138     /// case the most generic behavior of this function should be returned.
    139     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
    140       ModRefBehavior Min = UnknownModRefBehavior;
    141 
    142       if (const Function* F = CS.getCalledFunction())
    143         if (FunctionRecord *FR = getFunctionInfo(F)) {
    144           if (FR->FunctionEffect == 0)
    145             Min = DoesNotAccessMemory;
    146           else if ((FR->FunctionEffect & Mod) == 0)
    147             Min = OnlyReadsMemory;
    148         }
    149 
    150       return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    151     }
    152 
    153     virtual void deleteValue(Value *V);
    154     virtual void copyValue(Value *From, Value *To);
    155     virtual void addEscapingUse(Use &U);
    156 
    157     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    158     /// an analysis interface through multiple inheritance.  If needed, it
    159     /// should override this to adjust the this pointer as needed for the
    160     /// specified pass info.
    161     virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
    162       if (PI == &AliasAnalysis::ID)
    163         return (AliasAnalysis*)this;
    164       return this;
    165     }
    166 
    167   private:
    168     /// getFunctionInfo - Return the function info for the function, or null if
    169     /// we don't have anything useful to say about it.
    170     FunctionRecord *getFunctionInfo(const Function *F) {
    171       std::map<const Function*, FunctionRecord>::iterator I =
    172         FunctionInfo.find(F);
    173       if (I != FunctionInfo.end())
    174         return &I->second;
    175       return 0;
    176     }
    177 
    178     void AnalyzeGlobals(Module &M);
    179     void AnalyzeCallGraph(CallGraph &CG, Module &M);
    180     bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
    181                               std::vector<Function*> &Writers,
    182                               GlobalValue *OkayStoreDest = 0);
    183     bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
    184   };
    185 }
    186 
    187 char GlobalsModRef::ID = 0;
    188 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
    189                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
    190                 false, true, false)
    191 INITIALIZE_AG_DEPENDENCY(CallGraph)
    192 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
    193                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
    194                 false, true, false)
    195 
    196 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
    197 
    198 /// AnalyzeGlobals - Scan through the users of all of the internal
    199 /// GlobalValue's in the program.  If none of them have their "address taken"
    200 /// (really, their address passed to something nontrivial), record this fact,
    201 /// and record the functions that they are used directly in.
    202 void GlobalsModRef::AnalyzeGlobals(Module &M) {
    203   std::vector<Function*> Readers, Writers;
    204   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    205     if (I->hasLocalLinkage()) {
    206       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
    207         // Remember that we are tracking this global.
    208         NonAddressTakenGlobals.insert(I);
    209         ++NumNonAddrTakenFunctions;
    210       }
    211       Readers.clear(); Writers.clear();
    212     }
    213 
    214   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    215        I != E; ++I)
    216     if (I->hasLocalLinkage()) {
    217       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
    218         // Remember that we are tracking this global, and the mod/ref fns
    219         NonAddressTakenGlobals.insert(I);
    220 
    221         for (unsigned i = 0, e = Readers.size(); i != e; ++i)
    222           FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
    223 
    224         if (!I->isConstant())  // No need to keep track of writers to constants
    225           for (unsigned i = 0, e = Writers.size(); i != e; ++i)
    226             FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
    227         ++NumNonAddrTakenGlobalVars;
    228 
    229         // If this global holds a pointer type, see if it is an indirect global.
    230         if (I->getType()->getElementType()->isPointerTy() &&
    231             AnalyzeIndirectGlobalMemory(I))
    232           ++NumIndirectGlobalVars;
    233       }
    234       Readers.clear(); Writers.clear();
    235     }
    236 }
    237 
    238 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
    239 /// If this is used by anything complex (i.e., the address escapes), return
    240 /// true.  Also, while we are at it, keep track of those functions that read and
    241 /// write to the value.
    242 ///
    243 /// If OkayStoreDest is non-null, stores into this global are allowed.
    244 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
    245                                          std::vector<Function*> &Readers,
    246                                          std::vector<Function*> &Writers,
    247                                          GlobalValue *OkayStoreDest) {
    248   if (!V->getType()->isPointerTy()) return true;
    249 
    250   for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
    251     User *U = *UI;
    252     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    253       Readers.push_back(LI->getParent()->getParent());
    254     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    255       if (V == SI->getOperand(1)) {
    256         Writers.push_back(SI->getParent()->getParent());
    257       } else if (SI->getOperand(1) != OkayStoreDest) {
    258         return true;  // Storing the pointer
    259       }
    260     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    261       if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
    262     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
    263       if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
    264         return true;
    265     } else if (isFreeCall(U)) {
    266       Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
    267     } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
    268       // Make sure that this is just the function being called, not that it is
    269       // passing into the function.
    270       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    271         if (CI->getArgOperand(i) == V) return true;
    272     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    273       // Make sure that this is just the function being called, not that it is
    274       // passing into the function.
    275       for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
    276         if (II->getArgOperand(i) == V) return true;
    277     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    278       if (CE->getOpcode() == Instruction::GetElementPtr ||
    279           CE->getOpcode() == Instruction::BitCast) {
    280         if (AnalyzeUsesOfPointer(CE, Readers, Writers))
    281           return true;
    282       } else {
    283         return true;
    284       }
    285     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
    286       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
    287         return true;  // Allow comparison against null.
    288     } else {
    289       return true;
    290     }
    291   }
    292 
    293   return false;
    294 }
    295 
    296 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
    297 /// which holds a pointer type.  See if the global always points to non-aliased
    298 /// heap memory: that is, all initializers of the globals are allocations, and
    299 /// those allocations have no use other than initialization of the global.
    300 /// Further, all loads out of GV must directly use the memory, not store the
    301 /// pointer somewhere.  If this is true, we consider the memory pointed to by
    302 /// GV to be owned by GV and can disambiguate other pointers from it.
    303 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
    304   // Keep track of values related to the allocation of the memory, f.e. the
    305   // value produced by the malloc call and any casts.
    306   std::vector<Value*> AllocRelatedValues;
    307 
    308   // Walk the user list of the global.  If we find anything other than a direct
    309   // load or store, bail out.
    310   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
    311     User *U = *I;
    312     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    313       // The pointer loaded from the global can only be used in simple ways:
    314       // we allow addressing of it and loading storing to it.  We do *not* allow
    315       // storing the loaded pointer somewhere else or passing to a function.
    316       std::vector<Function*> ReadersWriters;
    317       if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
    318         return false;  // Loaded pointer escapes.
    319       // TODO: Could try some IP mod/ref of the loaded pointer.
    320     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    321       // Storing the global itself.
    322       if (SI->getOperand(0) == GV) return false;
    323 
    324       // If storing the null pointer, ignore it.
    325       if (isa<ConstantPointerNull>(SI->getOperand(0)))
    326         continue;
    327 
    328       // Check the value being stored.
    329       Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
    330 
    331       if (isMalloc(Ptr)) {
    332         // Okay, easy case.
    333       } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
    334         Function *F = CI->getCalledFunction();
    335         if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
    336         if (F->getName() != "calloc") return false;   // Not calloc.
    337       } else {
    338         return false;  // Too hard to analyze.
    339       }
    340 
    341       // Analyze all uses of the allocation.  If any of them are used in a
    342       // non-simple way (e.g. stored to another global) bail out.
    343       std::vector<Function*> ReadersWriters;
    344       if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
    345         return false;  // Loaded pointer escapes.
    346 
    347       // Remember that this allocation is related to the indirect global.
    348       AllocRelatedValues.push_back(Ptr);
    349     } else {
    350       // Something complex, bail out.
    351       return false;
    352     }
    353   }
    354 
    355   // Okay, this is an indirect global.  Remember all of the allocations for
    356   // this global in AllocsForIndirectGlobals.
    357   while (!AllocRelatedValues.empty()) {
    358     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
    359     AllocRelatedValues.pop_back();
    360   }
    361   IndirectGlobals.insert(GV);
    362   return true;
    363 }
    364 
    365 /// AnalyzeCallGraph - At this point, we know the functions where globals are
    366 /// immediately stored to and read from.  Propagate this information up the call
    367 /// graph to all callers and compute the mod/ref info for all memory for each
    368 /// function.
    369 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
    370   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    371   // visit all callees before callers (leaf-first).
    372   for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
    373        ++I) {
    374     std::vector<CallGraphNode *> &SCC = *I;
    375     assert(!SCC.empty() && "SCC with no functions?");
    376 
    377     if (!SCC[0]->getFunction()) {
    378       // Calls externally - can't say anything useful.  Remove any existing
    379       // function records (may have been created when scanning globals).
    380       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    381         FunctionInfo.erase(SCC[i]->getFunction());
    382       continue;
    383     }
    384 
    385     FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
    386 
    387     bool KnowNothing = false;
    388     unsigned FunctionEffect = 0;
    389 
    390     // Collect the mod/ref properties due to called functions.  We only compute
    391     // one mod-ref set.
    392     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
    393       Function *F = SCC[i]->getFunction();
    394       if (!F) {
    395         KnowNothing = true;
    396         break;
    397       }
    398 
    399       if (F->isDeclaration()) {
    400         // Try to get mod/ref behaviour from function attributes.
    401         if (F->doesNotAccessMemory()) {
    402           // Can't do better than that!
    403         } else if (F->onlyReadsMemory()) {
    404           FunctionEffect |= Ref;
    405           if (!F->isIntrinsic())
    406             // This function might call back into the module and read a global -
    407             // consider every global as possibly being read by this function.
    408             FR.MayReadAnyGlobal = true;
    409         } else {
    410           FunctionEffect |= ModRef;
    411           // Can't say anything useful unless it's an intrinsic - they don't
    412           // read or write global variables of the kind considered here.
    413           KnowNothing = !F->isIntrinsic();
    414         }
    415         continue;
    416       }
    417 
    418       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
    419            CI != E && !KnowNothing; ++CI)
    420         if (Function *Callee = CI->second->getFunction()) {
    421           if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
    422             // Propagate function effect up.
    423             FunctionEffect |= CalleeFR->FunctionEffect;
    424 
    425             // Incorporate callee's effects on globals into our info.
    426             for (std::map<const GlobalValue*, unsigned>::iterator GI =
    427                    CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
    428                  GI != E; ++GI)
    429               FR.GlobalInfo[GI->first] |= GI->second;
    430             FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
    431           } else {
    432             // Can't say anything about it.  However, if it is inside our SCC,
    433             // then nothing needs to be done.
    434             CallGraphNode *CalleeNode = CG[Callee];
    435             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
    436               KnowNothing = true;
    437           }
    438         } else {
    439           KnowNothing = true;
    440         }
    441     }
    442 
    443     // If we can't say anything useful about this SCC, remove all SCC functions
    444     // from the FunctionInfo map.
    445     if (KnowNothing) {
    446       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    447         FunctionInfo.erase(SCC[i]->getFunction());
    448       continue;
    449     }
    450 
    451     // Scan the function bodies for explicit loads or stores.
    452     for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
    453       for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
    454              E = inst_end(SCC[i]->getFunction());
    455            II != E && FunctionEffect != ModRef; ++II)
    456         if (isa<LoadInst>(*II)) {
    457           FunctionEffect |= Ref;
    458           if (cast<LoadInst>(*II).isVolatile())
    459             // Volatile loads may have side-effects, so mark them as writing
    460             // memory (for example, a flag inside the processor).
    461             FunctionEffect |= Mod;
    462         } else if (isa<StoreInst>(*II)) {
    463           FunctionEffect |= Mod;
    464           if (cast<StoreInst>(*II).isVolatile())
    465             // Treat volatile stores as reading memory somewhere.
    466             FunctionEffect |= Ref;
    467         } else if (isMalloc(&cast<Instruction>(*II)) ||
    468                    isFreeCall(&cast<Instruction>(*II))) {
    469           FunctionEffect |= ModRef;
    470         }
    471 
    472     if ((FunctionEffect & Mod) == 0)
    473       ++NumReadMemFunctions;
    474     if (FunctionEffect == 0)
    475       ++NumNoMemFunctions;
    476     FR.FunctionEffect = FunctionEffect;
    477 
    478     // Finally, now that we know the full effect on this SCC, clone the
    479     // information to each function in the SCC.
    480     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
    481       FunctionInfo[SCC[i]->getFunction()] = FR;
    482   }
    483 }
    484 
    485 
    486 
    487 /// alias - If one of the pointers is to a global that we are tracking, and the
    488 /// other is some random pointer, we know there cannot be an alias, because the
    489 /// address of the global isn't taken.
    490 AliasAnalysis::AliasResult
    491 GlobalsModRef::alias(const Location &LocA,
    492                      const Location &LocB) {
    493   // Get the base object these pointers point to.
    494   const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
    495   const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
    496 
    497   // If either of the underlying values is a global, they may be non-addr-taken
    498   // globals, which we can answer queries about.
    499   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
    500   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
    501   if (GV1 || GV2) {
    502     // If the global's address is taken, pretend we don't know it's a pointer to
    503     // the global.
    504     if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
    505     if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
    506 
    507     // If the two pointers are derived from two different non-addr-taken
    508     // globals, or if one is and the other isn't, we know these can't alias.
    509     if ((GV1 || GV2) && GV1 != GV2)
    510       return NoAlias;
    511 
    512     // Otherwise if they are both derived from the same addr-taken global, we
    513     // can't know the two accesses don't overlap.
    514   }
    515 
    516   // These pointers may be based on the memory owned by an indirect global.  If
    517   // so, we may be able to handle this.  First check to see if the base pointer
    518   // is a direct load from an indirect global.
    519   GV1 = GV2 = 0;
    520   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
    521     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    522       if (IndirectGlobals.count(GV))
    523         GV1 = GV;
    524   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
    525     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    526       if (IndirectGlobals.count(GV))
    527         GV2 = GV;
    528 
    529   // These pointers may also be from an allocation for the indirect global.  If
    530   // so, also handle them.
    531   if (AllocsForIndirectGlobals.count(UV1))
    532     GV1 = AllocsForIndirectGlobals[UV1];
    533   if (AllocsForIndirectGlobals.count(UV2))
    534     GV2 = AllocsForIndirectGlobals[UV2];
    535 
    536   // Now that we know whether the two pointers are related to indirect globals,
    537   // use this to disambiguate the pointers.  If either pointer is based on an
    538   // indirect global and if they are not both based on the same indirect global,
    539   // they cannot alias.
    540   if ((GV1 || GV2) && GV1 != GV2)
    541     return NoAlias;
    542 
    543   return AliasAnalysis::alias(LocA, LocB);
    544 }
    545 
    546 AliasAnalysis::ModRefResult
    547 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
    548                              const Location &Loc) {
    549   unsigned Known = ModRef;
    550 
    551   // If we are asking for mod/ref info of a direct call with a pointer to a
    552   // global we are tracking, return information if we have it.
    553   if (const GlobalValue *GV =
    554         dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
    555     if (GV->hasLocalLinkage())
    556       if (const Function *F = CS.getCalledFunction())
    557         if (NonAddressTakenGlobals.count(GV))
    558           if (const FunctionRecord *FR = getFunctionInfo(F))
    559             Known = FR->getInfoForGlobal(GV);
    560 
    561   if (Known == NoModRef)
    562     return NoModRef; // No need to query other mod/ref analyses
    563   return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
    564 }
    565 
    566 
    567 //===----------------------------------------------------------------------===//
    568 // Methods to update the analysis as a result of the client transformation.
    569 //
    570 void GlobalsModRef::deleteValue(Value *V) {
    571   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    572     if (NonAddressTakenGlobals.erase(GV)) {
    573       // This global might be an indirect global.  If so, remove it and remove
    574       // any AllocRelatedValues for it.
    575       if (IndirectGlobals.erase(GV)) {
    576         // Remove any entries in AllocsForIndirectGlobals for this global.
    577         for (std::map<const Value*, const GlobalValue*>::iterator
    578              I = AllocsForIndirectGlobals.begin(),
    579              E = AllocsForIndirectGlobals.end(); I != E; ) {
    580           if (I->second == GV) {
    581             AllocsForIndirectGlobals.erase(I++);
    582           } else {
    583             ++I;
    584           }
    585         }
    586       }
    587     }
    588   }
    589 
    590   // Otherwise, if this is an allocation related to an indirect global, remove
    591   // it.
    592   AllocsForIndirectGlobals.erase(V);
    593 
    594   AliasAnalysis::deleteValue(V);
    595 }
    596 
    597 void GlobalsModRef::copyValue(Value *From, Value *To) {
    598   AliasAnalysis::copyValue(From, To);
    599 }
    600 
    601 void GlobalsModRef::addEscapingUse(Use &U) {
    602   // For the purposes of this analysis, it is conservatively correct to treat
    603   // a newly escaping value equivalently to a deleted one.  We could perhaps
    604   // be more precise by processing the new use and attempting to update our
    605   // saved analysis results to accommodate it.
    606   deleteValue(U);
    607 
    608   AliasAnalysis::addEscapingUse(U);
    609 }
    610