1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "globalsmodref-aa" 18 #include "llvm/Analysis/Passes.h" 19 #include "llvm/Module.h" 20 #include "llvm/Pass.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Constants.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/CallGraph.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/InstIterator.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/SCCIterator.h" 32 #include <set> 33 using namespace llvm; 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 namespace { 43 /// FunctionRecord - One instance of this structure is stored for every 44 /// function in the program. Later, the entries for these functions are 45 /// removed if the function is found to call an external function (in which 46 /// case we know nothing about it. 47 struct FunctionRecord { 48 /// GlobalInfo - Maintain mod/ref info for all of the globals without 49 /// addresses taken that are read or written (transitively) by this 50 /// function. 51 std::map<const GlobalValue*, unsigned> GlobalInfo; 52 53 /// MayReadAnyGlobal - May read global variables, but it is not known which. 54 bool MayReadAnyGlobal; 55 56 unsigned getInfoForGlobal(const GlobalValue *GV) const { 57 unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0; 58 std::map<const GlobalValue*, unsigned>::const_iterator I = 59 GlobalInfo.find(GV); 60 if (I != GlobalInfo.end()) 61 Effect |= I->second; 62 return Effect; 63 } 64 65 /// FunctionEffect - Capture whether or not this function reads or writes to 66 /// ANY memory. If not, we can do a lot of aggressive analysis on it. 67 unsigned FunctionEffect; 68 69 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {} 70 }; 71 72 /// GlobalsModRef - The actual analysis pass. 73 class GlobalsModRef : public ModulePass, public AliasAnalysis { 74 /// NonAddressTakenGlobals - The globals that do not have their addresses 75 /// taken. 76 std::set<const GlobalValue*> NonAddressTakenGlobals; 77 78 /// IndirectGlobals - The memory pointed to by this global is known to be 79 /// 'owned' by the global. 80 std::set<const GlobalValue*> IndirectGlobals; 81 82 /// AllocsForIndirectGlobals - If an instruction allocates memory for an 83 /// indirect global, this map indicates which one. 84 std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals; 85 86 /// FunctionInfo - For each function, keep track of what globals are 87 /// modified or read. 88 std::map<const Function*, FunctionRecord> FunctionInfo; 89 90 public: 91 static char ID; 92 GlobalsModRef() : ModulePass(ID) { 93 initializeGlobalsModRefPass(*PassRegistry::getPassRegistry()); 94 } 95 96 bool runOnModule(Module &M) { 97 InitializeAliasAnalysis(this); // set up super class 98 AnalyzeGlobals(M); // find non-addr taken globals 99 AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG 100 return false; 101 } 102 103 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 104 AliasAnalysis::getAnalysisUsage(AU); 105 AU.addRequired<CallGraph>(); 106 AU.setPreservesAll(); // Does not transform code 107 } 108 109 //------------------------------------------------ 110 // Implement the AliasAnalysis API 111 // 112 AliasResult alias(const Location &LocA, const Location &LocB); 113 ModRefResult getModRefInfo(ImmutableCallSite CS, 114 const Location &Loc); 115 ModRefResult getModRefInfo(ImmutableCallSite CS1, 116 ImmutableCallSite CS2) { 117 return AliasAnalysis::getModRefInfo(CS1, CS2); 118 } 119 120 /// getModRefBehavior - Return the behavior of the specified function if 121 /// called from the specified call site. The call site may be null in which 122 /// case the most generic behavior of this function should be returned. 123 ModRefBehavior getModRefBehavior(const Function *F) { 124 ModRefBehavior Min = UnknownModRefBehavior; 125 126 if (FunctionRecord *FR = getFunctionInfo(F)) { 127 if (FR->FunctionEffect == 0) 128 Min = DoesNotAccessMemory; 129 else if ((FR->FunctionEffect & Mod) == 0) 130 Min = OnlyReadsMemory; 131 } 132 133 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 134 } 135 136 /// getModRefBehavior - Return the behavior of the specified function if 137 /// called from the specified call site. The call site may be null in which 138 /// case the most generic behavior of this function should be returned. 139 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) { 140 ModRefBehavior Min = UnknownModRefBehavior; 141 142 if (const Function* F = CS.getCalledFunction()) 143 if (FunctionRecord *FR = getFunctionInfo(F)) { 144 if (FR->FunctionEffect == 0) 145 Min = DoesNotAccessMemory; 146 else if ((FR->FunctionEffect & Mod) == 0) 147 Min = OnlyReadsMemory; 148 } 149 150 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 151 } 152 153 virtual void deleteValue(Value *V); 154 virtual void copyValue(Value *From, Value *To); 155 virtual void addEscapingUse(Use &U); 156 157 /// getAdjustedAnalysisPointer - This method is used when a pass implements 158 /// an analysis interface through multiple inheritance. If needed, it 159 /// should override this to adjust the this pointer as needed for the 160 /// specified pass info. 161 virtual void *getAdjustedAnalysisPointer(AnalysisID PI) { 162 if (PI == &AliasAnalysis::ID) 163 return (AliasAnalysis*)this; 164 return this; 165 } 166 167 private: 168 /// getFunctionInfo - Return the function info for the function, or null if 169 /// we don't have anything useful to say about it. 170 FunctionRecord *getFunctionInfo(const Function *F) { 171 std::map<const Function*, FunctionRecord>::iterator I = 172 FunctionInfo.find(F); 173 if (I != FunctionInfo.end()) 174 return &I->second; 175 return 0; 176 } 177 178 void AnalyzeGlobals(Module &M); 179 void AnalyzeCallGraph(CallGraph &CG, Module &M); 180 bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers, 181 std::vector<Function*> &Writers, 182 GlobalValue *OkayStoreDest = 0); 183 bool AnalyzeIndirectGlobalMemory(GlobalValue *GV); 184 }; 185 } 186 187 char GlobalsModRef::ID = 0; 188 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis, 189 "globalsmodref-aa", "Simple mod/ref analysis for globals", 190 false, true, false) 191 INITIALIZE_AG_DEPENDENCY(CallGraph) 192 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis, 193 "globalsmodref-aa", "Simple mod/ref analysis for globals", 194 false, true, false) 195 196 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); } 197 198 /// AnalyzeGlobals - Scan through the users of all of the internal 199 /// GlobalValue's in the program. If none of them have their "address taken" 200 /// (really, their address passed to something nontrivial), record this fact, 201 /// and record the functions that they are used directly in. 202 void GlobalsModRef::AnalyzeGlobals(Module &M) { 203 std::vector<Function*> Readers, Writers; 204 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) 205 if (I->hasLocalLinkage()) { 206 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { 207 // Remember that we are tracking this global. 208 NonAddressTakenGlobals.insert(I); 209 ++NumNonAddrTakenFunctions; 210 } 211 Readers.clear(); Writers.clear(); 212 } 213 214 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 215 I != E; ++I) 216 if (I->hasLocalLinkage()) { 217 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { 218 // Remember that we are tracking this global, and the mod/ref fns 219 NonAddressTakenGlobals.insert(I); 220 221 for (unsigned i = 0, e = Readers.size(); i != e; ++i) 222 FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref; 223 224 if (!I->isConstant()) // No need to keep track of writers to constants 225 for (unsigned i = 0, e = Writers.size(); i != e; ++i) 226 FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod; 227 ++NumNonAddrTakenGlobalVars; 228 229 // If this global holds a pointer type, see if it is an indirect global. 230 if (I->getType()->getElementType()->isPointerTy() && 231 AnalyzeIndirectGlobalMemory(I)) 232 ++NumIndirectGlobalVars; 233 } 234 Readers.clear(); Writers.clear(); 235 } 236 } 237 238 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 239 /// If this is used by anything complex (i.e., the address escapes), return 240 /// true. Also, while we are at it, keep track of those functions that read and 241 /// write to the value. 242 /// 243 /// If OkayStoreDest is non-null, stores into this global are allowed. 244 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V, 245 std::vector<Function*> &Readers, 246 std::vector<Function*> &Writers, 247 GlobalValue *OkayStoreDest) { 248 if (!V->getType()->isPointerTy()) return true; 249 250 for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) { 251 User *U = *UI; 252 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 253 Readers.push_back(LI->getParent()->getParent()); 254 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 255 if (V == SI->getOperand(1)) { 256 Writers.push_back(SI->getParent()->getParent()); 257 } else if (SI->getOperand(1) != OkayStoreDest) { 258 return true; // Storing the pointer 259 } 260 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 261 if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true; 262 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 263 if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest)) 264 return true; 265 } else if (isFreeCall(U)) { 266 Writers.push_back(cast<Instruction>(U)->getParent()->getParent()); 267 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 268 // Make sure that this is just the function being called, not that it is 269 // passing into the function. 270 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 271 if (CI->getArgOperand(i) == V) return true; 272 } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { 273 // Make sure that this is just the function being called, not that it is 274 // passing into the function. 275 for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i) 276 if (II->getArgOperand(i) == V) return true; 277 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 278 if (CE->getOpcode() == Instruction::GetElementPtr || 279 CE->getOpcode() == Instruction::BitCast) { 280 if (AnalyzeUsesOfPointer(CE, Readers, Writers)) 281 return true; 282 } else { 283 return true; 284 } 285 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { 286 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 287 return true; // Allow comparison against null. 288 } else { 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 297 /// which holds a pointer type. See if the global always points to non-aliased 298 /// heap memory: that is, all initializers of the globals are allocations, and 299 /// those allocations have no use other than initialization of the global. 300 /// Further, all loads out of GV must directly use the memory, not store the 301 /// pointer somewhere. If this is true, we consider the memory pointed to by 302 /// GV to be owned by GV and can disambiguate other pointers from it. 303 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) { 304 // Keep track of values related to the allocation of the memory, f.e. the 305 // value produced by the malloc call and any casts. 306 std::vector<Value*> AllocRelatedValues; 307 308 // Walk the user list of the global. If we find anything other than a direct 309 // load or store, bail out. 310 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 311 User *U = *I; 312 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 313 // The pointer loaded from the global can only be used in simple ways: 314 // we allow addressing of it and loading storing to it. We do *not* allow 315 // storing the loaded pointer somewhere else or passing to a function. 316 std::vector<Function*> ReadersWriters; 317 if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters)) 318 return false; // Loaded pointer escapes. 319 // TODO: Could try some IP mod/ref of the loaded pointer. 320 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 321 // Storing the global itself. 322 if (SI->getOperand(0) == GV) return false; 323 324 // If storing the null pointer, ignore it. 325 if (isa<ConstantPointerNull>(SI->getOperand(0))) 326 continue; 327 328 // Check the value being stored. 329 Value *Ptr = GetUnderlyingObject(SI->getOperand(0)); 330 331 if (isMalloc(Ptr)) { 332 // Okay, easy case. 333 } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) { 334 Function *F = CI->getCalledFunction(); 335 if (!F || !F->isDeclaration()) return false; // Too hard to analyze. 336 if (F->getName() != "calloc") return false; // Not calloc. 337 } else { 338 return false; // Too hard to analyze. 339 } 340 341 // Analyze all uses of the allocation. If any of them are used in a 342 // non-simple way (e.g. stored to another global) bail out. 343 std::vector<Function*> ReadersWriters; 344 if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV)) 345 return false; // Loaded pointer escapes. 346 347 // Remember that this allocation is related to the indirect global. 348 AllocRelatedValues.push_back(Ptr); 349 } else { 350 // Something complex, bail out. 351 return false; 352 } 353 } 354 355 // Okay, this is an indirect global. Remember all of the allocations for 356 // this global in AllocsForIndirectGlobals. 357 while (!AllocRelatedValues.empty()) { 358 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 359 AllocRelatedValues.pop_back(); 360 } 361 IndirectGlobals.insert(GV); 362 return true; 363 } 364 365 /// AnalyzeCallGraph - At this point, we know the functions where globals are 366 /// immediately stored to and read from. Propagate this information up the call 367 /// graph to all callers and compute the mod/ref info for all memory for each 368 /// function. 369 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) { 370 // We do a bottom-up SCC traversal of the call graph. In other words, we 371 // visit all callees before callers (leaf-first). 372 for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E; 373 ++I) { 374 std::vector<CallGraphNode *> &SCC = *I; 375 assert(!SCC.empty() && "SCC with no functions?"); 376 377 if (!SCC[0]->getFunction()) { 378 // Calls externally - can't say anything useful. Remove any existing 379 // function records (may have been created when scanning globals). 380 for (unsigned i = 0, e = SCC.size(); i != e; ++i) 381 FunctionInfo.erase(SCC[i]->getFunction()); 382 continue; 383 } 384 385 FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()]; 386 387 bool KnowNothing = false; 388 unsigned FunctionEffect = 0; 389 390 // Collect the mod/ref properties due to called functions. We only compute 391 // one mod-ref set. 392 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 393 Function *F = SCC[i]->getFunction(); 394 if (!F) { 395 KnowNothing = true; 396 break; 397 } 398 399 if (F->isDeclaration()) { 400 // Try to get mod/ref behaviour from function attributes. 401 if (F->doesNotAccessMemory()) { 402 // Can't do better than that! 403 } else if (F->onlyReadsMemory()) { 404 FunctionEffect |= Ref; 405 if (!F->isIntrinsic()) 406 // This function might call back into the module and read a global - 407 // consider every global as possibly being read by this function. 408 FR.MayReadAnyGlobal = true; 409 } else { 410 FunctionEffect |= ModRef; 411 // Can't say anything useful unless it's an intrinsic - they don't 412 // read or write global variables of the kind considered here. 413 KnowNothing = !F->isIntrinsic(); 414 } 415 continue; 416 } 417 418 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 419 CI != E && !KnowNothing; ++CI) 420 if (Function *Callee = CI->second->getFunction()) { 421 if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) { 422 // Propagate function effect up. 423 FunctionEffect |= CalleeFR->FunctionEffect; 424 425 // Incorporate callee's effects on globals into our info. 426 for (std::map<const GlobalValue*, unsigned>::iterator GI = 427 CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end(); 428 GI != E; ++GI) 429 FR.GlobalInfo[GI->first] |= GI->second; 430 FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal; 431 } else { 432 // Can't say anything about it. However, if it is inside our SCC, 433 // then nothing needs to be done. 434 CallGraphNode *CalleeNode = CG[Callee]; 435 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) 436 KnowNothing = true; 437 } 438 } else { 439 KnowNothing = true; 440 } 441 } 442 443 // If we can't say anything useful about this SCC, remove all SCC functions 444 // from the FunctionInfo map. 445 if (KnowNothing) { 446 for (unsigned i = 0, e = SCC.size(); i != e; ++i) 447 FunctionInfo.erase(SCC[i]->getFunction()); 448 continue; 449 } 450 451 // Scan the function bodies for explicit loads or stores. 452 for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i) 453 for (inst_iterator II = inst_begin(SCC[i]->getFunction()), 454 E = inst_end(SCC[i]->getFunction()); 455 II != E && FunctionEffect != ModRef; ++II) 456 if (isa<LoadInst>(*II)) { 457 FunctionEffect |= Ref; 458 if (cast<LoadInst>(*II).isVolatile()) 459 // Volatile loads may have side-effects, so mark them as writing 460 // memory (for example, a flag inside the processor). 461 FunctionEffect |= Mod; 462 } else if (isa<StoreInst>(*II)) { 463 FunctionEffect |= Mod; 464 if (cast<StoreInst>(*II).isVolatile()) 465 // Treat volatile stores as reading memory somewhere. 466 FunctionEffect |= Ref; 467 } else if (isMalloc(&cast<Instruction>(*II)) || 468 isFreeCall(&cast<Instruction>(*II))) { 469 FunctionEffect |= ModRef; 470 } 471 472 if ((FunctionEffect & Mod) == 0) 473 ++NumReadMemFunctions; 474 if (FunctionEffect == 0) 475 ++NumNoMemFunctions; 476 FR.FunctionEffect = FunctionEffect; 477 478 // Finally, now that we know the full effect on this SCC, clone the 479 // information to each function in the SCC. 480 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 481 FunctionInfo[SCC[i]->getFunction()] = FR; 482 } 483 } 484 485 486 487 /// alias - If one of the pointers is to a global that we are tracking, and the 488 /// other is some random pointer, we know there cannot be an alias, because the 489 /// address of the global isn't taken. 490 AliasAnalysis::AliasResult 491 GlobalsModRef::alias(const Location &LocA, 492 const Location &LocB) { 493 // Get the base object these pointers point to. 494 const Value *UV1 = GetUnderlyingObject(LocA.Ptr); 495 const Value *UV2 = GetUnderlyingObject(LocB.Ptr); 496 497 // If either of the underlying values is a global, they may be non-addr-taken 498 // globals, which we can answer queries about. 499 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 500 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 501 if (GV1 || GV2) { 502 // If the global's address is taken, pretend we don't know it's a pointer to 503 // the global. 504 if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0; 505 if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0; 506 507 // If the two pointers are derived from two different non-addr-taken 508 // globals, or if one is and the other isn't, we know these can't alias. 509 if ((GV1 || GV2) && GV1 != GV2) 510 return NoAlias; 511 512 // Otherwise if they are both derived from the same addr-taken global, we 513 // can't know the two accesses don't overlap. 514 } 515 516 // These pointers may be based on the memory owned by an indirect global. If 517 // so, we may be able to handle this. First check to see if the base pointer 518 // is a direct load from an indirect global. 519 GV1 = GV2 = 0; 520 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 521 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 522 if (IndirectGlobals.count(GV)) 523 GV1 = GV; 524 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 525 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 526 if (IndirectGlobals.count(GV)) 527 GV2 = GV; 528 529 // These pointers may also be from an allocation for the indirect global. If 530 // so, also handle them. 531 if (AllocsForIndirectGlobals.count(UV1)) 532 GV1 = AllocsForIndirectGlobals[UV1]; 533 if (AllocsForIndirectGlobals.count(UV2)) 534 GV2 = AllocsForIndirectGlobals[UV2]; 535 536 // Now that we know whether the two pointers are related to indirect globals, 537 // use this to disambiguate the pointers. If either pointer is based on an 538 // indirect global and if they are not both based on the same indirect global, 539 // they cannot alias. 540 if ((GV1 || GV2) && GV1 != GV2) 541 return NoAlias; 542 543 return AliasAnalysis::alias(LocA, LocB); 544 } 545 546 AliasAnalysis::ModRefResult 547 GlobalsModRef::getModRefInfo(ImmutableCallSite CS, 548 const Location &Loc) { 549 unsigned Known = ModRef; 550 551 // If we are asking for mod/ref info of a direct call with a pointer to a 552 // global we are tracking, return information if we have it. 553 if (const GlobalValue *GV = 554 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr))) 555 if (GV->hasLocalLinkage()) 556 if (const Function *F = CS.getCalledFunction()) 557 if (NonAddressTakenGlobals.count(GV)) 558 if (const FunctionRecord *FR = getFunctionInfo(F)) 559 Known = FR->getInfoForGlobal(GV); 560 561 if (Known == NoModRef) 562 return NoModRef; // No need to query other mod/ref analyses 563 return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc)); 564 } 565 566 567 //===----------------------------------------------------------------------===// 568 // Methods to update the analysis as a result of the client transformation. 569 // 570 void GlobalsModRef::deleteValue(Value *V) { 571 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 572 if (NonAddressTakenGlobals.erase(GV)) { 573 // This global might be an indirect global. If so, remove it and remove 574 // any AllocRelatedValues for it. 575 if (IndirectGlobals.erase(GV)) { 576 // Remove any entries in AllocsForIndirectGlobals for this global. 577 for (std::map<const Value*, const GlobalValue*>::iterator 578 I = AllocsForIndirectGlobals.begin(), 579 E = AllocsForIndirectGlobals.end(); I != E; ) { 580 if (I->second == GV) { 581 AllocsForIndirectGlobals.erase(I++); 582 } else { 583 ++I; 584 } 585 } 586 } 587 } 588 } 589 590 // Otherwise, if this is an allocation related to an indirect global, remove 591 // it. 592 AllocsForIndirectGlobals.erase(V); 593 594 AliasAnalysis::deleteValue(V); 595 } 596 597 void GlobalsModRef::copyValue(Value *From, Value *To) { 598 AliasAnalysis::copyValue(From, To); 599 } 600 601 void GlobalsModRef::addEscapingUse(Use &U) { 602 // For the purposes of this analysis, it is conservatively correct to treat 603 // a newly escaping value equivalently to a deleted one. We could perhaps 604 // be more precise by processing the new use and attempting to update our 605 // saved analysis results to accommodate it. 606 deleteValue(U); 607 608 AliasAnalysis::addEscapingUse(U); 609 } 610