Home | History | Annotate | Download | only in ARM
      1 //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the ARM addressing mode implementation stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
     15 #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
     16 
     17 #include "llvm/CodeGen/SelectionDAGNodes.h"
     18 #include "llvm/Support/MathExtras.h"
     19 #include <cassert>
     20 
     21 namespace llvm {
     22 
     23 /// ARM_AM - ARM Addressing Mode Stuff
     24 namespace ARM_AM {
     25   enum ShiftOpc {
     26     no_shift = 0,
     27     asr,
     28     lsl,
     29     lsr,
     30     ror,
     31     rrx
     32   };
     33 
     34   enum AddrOpc {
     35     add = '+', sub = '-'
     36   };
     37 
     38   static inline const char *getAddrOpcStr(AddrOpc Op) {
     39     return Op == sub ? "-" : "";
     40   }
     41 
     42   static inline const char *getShiftOpcStr(ShiftOpc Op) {
     43     switch (Op) {
     44     default: assert(0 && "Unknown shift opc!");
     45     case ARM_AM::asr: return "asr";
     46     case ARM_AM::lsl: return "lsl";
     47     case ARM_AM::lsr: return "lsr";
     48     case ARM_AM::ror: return "ror";
     49     case ARM_AM::rrx: return "rrx";
     50     }
     51   }
     52 
     53   static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
     54     switch (Op) {
     55     default: assert(0 && "Unknown shift opc!");
     56     case ARM_AM::asr: return 2;
     57     case ARM_AM::lsl: return 0;
     58     case ARM_AM::lsr: return 1;
     59     case ARM_AM::ror: return 3;
     60     }
     61   }
     62 
     63   static inline ShiftOpc getShiftOpcForNode(SDValue N) {
     64     switch (N.getOpcode()) {
     65     default:          return ARM_AM::no_shift;
     66     case ISD::SHL:    return ARM_AM::lsl;
     67     case ISD::SRL:    return ARM_AM::lsr;
     68     case ISD::SRA:    return ARM_AM::asr;
     69     case ISD::ROTR:   return ARM_AM::ror;
     70     //case ISD::ROTL:  // Only if imm -> turn into ROTR.
     71     // Can't handle RRX here, because it would require folding a flag into
     72     // the addressing mode.  :(  This causes us to miss certain things.
     73     //case ARMISD::RRX: return ARM_AM::rrx;
     74     }
     75   }
     76 
     77   enum AMSubMode {
     78     bad_am_submode = 0,
     79     ia,
     80     ib,
     81     da,
     82     db
     83   };
     84 
     85   static inline const char *getAMSubModeStr(AMSubMode Mode) {
     86     switch (Mode) {
     87     default: assert(0 && "Unknown addressing sub-mode!");
     88     case ARM_AM::ia: return "ia";
     89     case ARM_AM::ib: return "ib";
     90     case ARM_AM::da: return "da";
     91     case ARM_AM::db: return "db";
     92     }
     93   }
     94 
     95   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
     96   ///
     97   static inline unsigned rotr32(unsigned Val, unsigned Amt) {
     98     assert(Amt < 32 && "Invalid rotate amount");
     99     return (Val >> Amt) | (Val << ((32-Amt)&31));
    100   }
    101 
    102   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
    103   ///
    104   static inline unsigned rotl32(unsigned Val, unsigned Amt) {
    105     assert(Amt < 32 && "Invalid rotate amount");
    106     return (Val << Amt) | (Val >> ((32-Amt)&31));
    107   }
    108 
    109   //===--------------------------------------------------------------------===//
    110   // Addressing Mode #1: shift_operand with registers
    111   //===--------------------------------------------------------------------===//
    112   //
    113   // This 'addressing mode' is used for arithmetic instructions.  It can
    114   // represent things like:
    115   //   reg
    116   //   reg [asr|lsl|lsr|ror|rrx] reg
    117   //   reg [asr|lsl|lsr|ror|rrx] imm
    118   //
    119   // This is stored three operands [rega, regb, opc].  The first is the base
    120   // reg, the second is the shift amount (or reg0 if not present or imm).  The
    121   // third operand encodes the shift opcode and the imm if a reg isn't present.
    122   //
    123   static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
    124     return ShOp | (Imm << 3);
    125   }
    126   static inline unsigned getSORegOffset(unsigned Op) {
    127     return Op >> 3;
    128   }
    129   static inline ShiftOpc getSORegShOp(unsigned Op) {
    130     return (ShiftOpc)(Op & 7);
    131   }
    132 
    133   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
    134   /// the 8-bit imm value.
    135   static inline unsigned getSOImmValImm(unsigned Imm) {
    136     return Imm & 0xFF;
    137   }
    138   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
    139   /// the rotate amount.
    140   static inline unsigned getSOImmValRot(unsigned Imm) {
    141     return (Imm >> 8) * 2;
    142   }
    143 
    144   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
    145   /// computing the rotate amount to use.  If this immediate value cannot be
    146   /// handled with a single shifter-op, determine a good rotate amount that will
    147   /// take a maximal chunk of bits out of the immediate.
    148   static inline unsigned getSOImmValRotate(unsigned Imm) {
    149     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    150     // of zero.
    151     if ((Imm & ~255U) == 0) return 0;
    152 
    153     // Use CTZ to compute the rotate amount.
    154     unsigned TZ = CountTrailingZeros_32(Imm);
    155 
    156     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
    157     // not 9.
    158     unsigned RotAmt = TZ & ~1;
    159 
    160     // If we can handle this spread, return it.
    161     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
    162       return (32-RotAmt)&31;  // HW rotates right, not left.
    163 
    164     // For values like 0xF000000F, we should ignore the low 6 bits, then
    165     // retry the hunt.
    166     if (Imm & 63U) {
    167       unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
    168       unsigned RotAmt2 = TZ2 & ~1;
    169       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
    170         return (32-RotAmt2)&31;  // HW rotates right, not left.
    171     }
    172 
    173     // Otherwise, we have no way to cover this span of bits with a single
    174     // shifter_op immediate.  Return a chunk of bits that will be useful to
    175     // handle.
    176     return (32-RotAmt)&31;  // HW rotates right, not left.
    177   }
    178 
    179   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
    180   /// into an shifter_operand immediate operand, return the 12-bit encoding for
    181   /// it.  If not, return -1.
    182   static inline int getSOImmVal(unsigned Arg) {
    183     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    184     // of zero.
    185     if ((Arg & ~255U) == 0) return Arg;
    186 
    187     unsigned RotAmt = getSOImmValRotate(Arg);
    188 
    189     // If this cannot be handled with a single shifter_op, bail out.
    190     if (rotr32(~255U, RotAmt) & Arg)
    191       return -1;
    192 
    193     // Encode this correctly.
    194     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
    195   }
    196 
    197   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
    198   /// or'ing together two SOImmVal's.
    199   static inline bool isSOImmTwoPartVal(unsigned V) {
    200     // If this can be handled with a single shifter_op, bail out.
    201     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    202     if (V == 0)
    203       return false;
    204 
    205     // If this can be handled with two shifter_op's, accept.
    206     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    207     return V == 0;
    208   }
    209 
    210   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
    211   /// return the first chunk of it.
    212   static inline unsigned getSOImmTwoPartFirst(unsigned V) {
    213     return rotr32(255U, getSOImmValRotate(V)) & V;
    214   }
    215 
    216   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
    217   /// return the second chunk of it.
    218   static inline unsigned getSOImmTwoPartSecond(unsigned V) {
    219     // Mask out the first hunk.
    220     V = rotr32(~255U, getSOImmValRotate(V)) & V;
    221 
    222     // Take what's left.
    223     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
    224     return V;
    225   }
    226 
    227   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
    228   /// by a left shift. Returns the shift amount to use.
    229   static inline unsigned getThumbImmValShift(unsigned Imm) {
    230     // 8-bit (or less) immediates are trivially immediate operand with a shift
    231     // of zero.
    232     if ((Imm & ~255U) == 0) return 0;
    233 
    234     // Use CTZ to compute the shift amount.
    235     return CountTrailingZeros_32(Imm);
    236   }
    237 
    238   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
    239   /// by left shifting a 8-bit immediate.
    240   static inline bool isThumbImmShiftedVal(unsigned V) {
    241     // If this can be handled with
    242     V = (~255U << getThumbImmValShift(V)) & V;
    243     return V == 0;
    244   }
    245 
    246   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
    247   /// by a left shift. Returns the shift amount to use.
    248   static inline unsigned getThumbImm16ValShift(unsigned Imm) {
    249     // 16-bit (or less) immediates are trivially immediate operand with a shift
    250     // of zero.
    251     if ((Imm & ~65535U) == 0) return 0;
    252 
    253     // Use CTZ to compute the shift amount.
    254     return CountTrailingZeros_32(Imm);
    255   }
    256 
    257   /// isThumbImm16ShiftedVal - Return true if the specified value can be
    258   /// obtained by left shifting a 16-bit immediate.
    259   static inline bool isThumbImm16ShiftedVal(unsigned V) {
    260     // If this can be handled with
    261     V = (~65535U << getThumbImm16ValShift(V)) & V;
    262     return V == 0;
    263   }
    264 
    265   /// getThumbImmNonShiftedVal - If V is a value that satisfies
    266   /// isThumbImmShiftedVal, return the non-shiftd value.
    267   static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
    268     return V >> getThumbImmValShift(V);
    269   }
    270 
    271 
    272   /// getT2SOImmValSplat - Return the 12-bit encoded representation
    273   /// if the specified value can be obtained by splatting the low 8 bits
    274   /// into every other byte or every byte of a 32-bit value. i.e.,
    275   ///     00000000 00000000 00000000 abcdefgh    control = 0
    276   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
    277   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
    278   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
    279   /// Return -1 if none of the above apply.
    280   /// See ARM Reference Manual A6.3.2.
    281   static inline int getT2SOImmValSplatVal(unsigned V) {
    282     unsigned u, Vs, Imm;
    283     // control = 0
    284     if ((V & 0xffffff00) == 0)
    285       return V;
    286 
    287     // If the value is zeroes in the first byte, just shift those off
    288     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
    289     // Any passing value only has 8 bits of payload, splatted across the word
    290     Imm = Vs & 0xff;
    291     // Likewise, any passing values have the payload splatted into the 3rd byte
    292     u = Imm | (Imm << 16);
    293 
    294     // control = 1 or 2
    295     if (Vs == u)
    296       return (((Vs == V) ? 1 : 2) << 8) | Imm;
    297 
    298     // control = 3
    299     if (Vs == (u | (u << 8)))
    300       return (3 << 8) | Imm;
    301 
    302     return -1;
    303   }
    304 
    305   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
    306   /// specified value is a rotated 8-bit value. Return -1 if no rotation
    307   /// encoding is possible.
    308   /// See ARM Reference Manual A6.3.2.
    309   static inline int getT2SOImmValRotateVal(unsigned V) {
    310     unsigned RotAmt = CountLeadingZeros_32(V);
    311     if (RotAmt >= 24)
    312       return -1;
    313 
    314     // If 'Arg' can be handled with a single shifter_op return the value.
    315     if ((rotr32(0xff000000U, RotAmt) & V) == V)
    316       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
    317 
    318     return -1;
    319   }
    320 
    321   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
    322   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
    323   /// encoding for it.  If not, return -1.
    324   /// See ARM Reference Manual A6.3.2.
    325   static inline int getT2SOImmVal(unsigned Arg) {
    326     // If 'Arg' is an 8-bit splat, then get the encoded value.
    327     int Splat = getT2SOImmValSplatVal(Arg);
    328     if (Splat != -1)
    329       return Splat;
    330 
    331     // If 'Arg' can be handled with a single shifter_op return the value.
    332     int Rot = getT2SOImmValRotateVal(Arg);
    333     if (Rot != -1)
    334       return Rot;
    335 
    336     return -1;
    337   }
    338 
    339   static inline unsigned getT2SOImmValRotate(unsigned V) {
    340     if ((V & ~255U) == 0) return 0;
    341     // Use CTZ to compute the rotate amount.
    342     unsigned RotAmt = CountTrailingZeros_32(V);
    343     return (32 - RotAmt) & 31;
    344   }
    345 
    346   static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
    347     unsigned V = Imm;
    348     // Passing values can be any combination of splat values and shifter
    349     // values. If this can be handled with a single shifter or splat, bail
    350     // out. Those should be handled directly, not with a two-part val.
    351     if (getT2SOImmValSplatVal(V) != -1)
    352       return false;
    353     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
    354     if (V == 0)
    355       return false;
    356 
    357     // If this can be handled as an immediate, accept.
    358     if (getT2SOImmVal(V) != -1) return true;
    359 
    360     // Likewise, try masking out a splat value first.
    361     V = Imm;
    362     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
    363       V &= ~0xff00ff00U;
    364     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
    365       V &= ~0x00ff00ffU;
    366     // If what's left can be handled as an immediate, accept.
    367     if (getT2SOImmVal(V) != -1) return true;
    368 
    369     // Otherwise, do not accept.
    370     return false;
    371   }
    372 
    373   static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
    374     assert (isT2SOImmTwoPartVal(Imm) &&
    375             "Immedate cannot be encoded as two part immediate!");
    376     // Try a shifter operand as one part
    377     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
    378     // If the rest is encodable as an immediate, then return it.
    379     if (getT2SOImmVal(V) != -1) return V;
    380 
    381     // Try masking out a splat value first.
    382     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
    383       return Imm & 0xff00ff00U;
    384 
    385     // The other splat is all that's left as an option.
    386     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
    387     return Imm & 0x00ff00ffU;
    388   }
    389 
    390   static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
    391     // Mask out the first hunk
    392     Imm ^= getT2SOImmTwoPartFirst(Imm);
    393     // Return what's left
    394     assert (getT2SOImmVal(Imm) != -1 &&
    395             "Unable to encode second part of T2 two part SO immediate");
    396     return Imm;
    397   }
    398 
    399 
    400   //===--------------------------------------------------------------------===//
    401   // Addressing Mode #2
    402   //===--------------------------------------------------------------------===//
    403   //
    404   // This is used for most simple load/store instructions.
    405   //
    406   // addrmode2 := reg +/- reg shop imm
    407   // addrmode2 := reg +/- imm12
    408   //
    409   // The first operand is always a Reg.  The second operand is a reg if in
    410   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
    411   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
    412   // fourth operand 16-17 encodes the index mode.
    413   //
    414   // If this addressing mode is a frame index (before prolog/epilog insertion
    415   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
    416   // with no shift amount for the frame offset.
    417   //
    418   static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
    419                                    unsigned IdxMode = 0) {
    420     assert(Imm12 < (1 << 12) && "Imm too large!");
    421     bool isSub = Opc == sub;
    422     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
    423   }
    424   static inline unsigned getAM2Offset(unsigned AM2Opc) {
    425     return AM2Opc & ((1 << 12)-1);
    426   }
    427   static inline AddrOpc getAM2Op(unsigned AM2Opc) {
    428     return ((AM2Opc >> 12) & 1) ? sub : add;
    429   }
    430   static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
    431     return (ShiftOpc)((AM2Opc >> 13) & 7);
    432   }
    433   static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
    434     return (AM2Opc >> 16);
    435   }
    436 
    437 
    438   //===--------------------------------------------------------------------===//
    439   // Addressing Mode #3
    440   //===--------------------------------------------------------------------===//
    441   //
    442   // This is used for sign-extending loads, and load/store-pair instructions.
    443   //
    444   // addrmode3 := reg +/- reg
    445   // addrmode3 := reg +/- imm8
    446   //
    447   // The first operand is always a Reg.  The second operand is a reg if in
    448   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
    449   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
    450   // index mode.
    451 
    452   /// getAM3Opc - This function encodes the addrmode3 opc field.
    453   static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
    454                                    unsigned IdxMode = 0) {
    455     bool isSub = Opc == sub;
    456     return ((int)isSub << 8) | Offset | (IdxMode << 9);
    457   }
    458   static inline unsigned char getAM3Offset(unsigned AM3Opc) {
    459     return AM3Opc & 0xFF;
    460   }
    461   static inline AddrOpc getAM3Op(unsigned AM3Opc) {
    462     return ((AM3Opc >> 8) & 1) ? sub : add;
    463   }
    464   static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
    465     return (AM3Opc >> 9);
    466   }
    467 
    468   //===--------------------------------------------------------------------===//
    469   // Addressing Mode #4
    470   //===--------------------------------------------------------------------===//
    471   //
    472   // This is used for load / store multiple instructions.
    473   //
    474   // addrmode4 := reg, <mode>
    475   //
    476   // The four modes are:
    477   //    IA - Increment after
    478   //    IB - Increment before
    479   //    DA - Decrement after
    480   //    DB - Decrement before
    481   // For VFP instructions, only the IA and DB modes are valid.
    482 
    483   static inline AMSubMode getAM4SubMode(unsigned Mode) {
    484     return (AMSubMode)(Mode & 0x7);
    485   }
    486 
    487   static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
    488     return (int)SubMode;
    489   }
    490 
    491   //===--------------------------------------------------------------------===//
    492   // Addressing Mode #5
    493   //===--------------------------------------------------------------------===//
    494   //
    495   // This is used for coprocessor instructions, such as FP load/stores.
    496   //
    497   // addrmode5 := reg +/- imm8*4
    498   //
    499   // The first operand is always a Reg.  The second operand encodes the
    500   // operation in bit 8 and the immediate in bits 0-7.
    501 
    502   /// getAM5Opc - This function encodes the addrmode5 opc field.
    503   static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
    504     bool isSub = Opc == sub;
    505     return ((int)isSub << 8) | Offset;
    506   }
    507   static inline unsigned char getAM5Offset(unsigned AM5Opc) {
    508     return AM5Opc & 0xFF;
    509   }
    510   static inline AddrOpc getAM5Op(unsigned AM5Opc) {
    511     return ((AM5Opc >> 8) & 1) ? sub : add;
    512   }
    513 
    514   //===--------------------------------------------------------------------===//
    515   // Addressing Mode #6
    516   //===--------------------------------------------------------------------===//
    517   //
    518   // This is used for NEON load / store instructions.
    519   //
    520   // addrmode6 := reg with optional alignment
    521   //
    522   // This is stored in two operands [regaddr, align].  The first is the
    523   // address register.  The second operand is the value of the alignment
    524   // specifier in bytes or zero if no explicit alignment.
    525   // Valid alignments depend on the specific instruction.
    526 
    527   //===--------------------------------------------------------------------===//
    528   // NEON Modified Immediates
    529   //===--------------------------------------------------------------------===//
    530   //
    531   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
    532   // vector operand, where a small immediate encoded in the instruction
    533   // specifies a full NEON vector value.  These modified immediates are
    534   // represented here as encoded integers.  The low 8 bits hold the immediate
    535   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
    536   // the "Cmode" field of the instruction.  The interfaces below treat the
    537   // Op and Cmode values as a single 5-bit value.
    538 
    539   static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
    540     return (OpCmode << 8) | Val;
    541   }
    542   static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
    543     return (ModImm >> 8) & 0x1f;
    544   }
    545   static inline unsigned getNEONModImmVal(unsigned ModImm) {
    546     return ModImm & 0xff;
    547   }
    548 
    549   /// decodeNEONModImm - Decode a NEON modified immediate value into the
    550   /// element value and the element size in bits.  (If the element size is
    551   /// smaller than the vector, it is splatted into all the elements.)
    552   static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
    553     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
    554     unsigned Imm8 = getNEONModImmVal(ModImm);
    555     uint64_t Val = 0;
    556 
    557     if (OpCmode == 0xe) {
    558       // 8-bit vector elements
    559       Val = Imm8;
    560       EltBits = 8;
    561     } else if ((OpCmode & 0xc) == 0x8) {
    562       // 16-bit vector elements
    563       unsigned ByteNum = (OpCmode & 0x6) >> 1;
    564       Val = Imm8 << (8 * ByteNum);
    565       EltBits = 16;
    566     } else if ((OpCmode & 0x8) == 0) {
    567       // 32-bit vector elements, zero with one byte set
    568       unsigned ByteNum = (OpCmode & 0x6) >> 1;
    569       Val = Imm8 << (8 * ByteNum);
    570       EltBits = 32;
    571     } else if ((OpCmode & 0xe) == 0xc) {
    572       // 32-bit vector elements, one byte with low bits set
    573       unsigned ByteNum = 1 + (OpCmode & 0x1);
    574       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
    575       EltBits = 32;
    576     } else if (OpCmode == 0x1e) {
    577       // 64-bit vector elements
    578       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
    579         if ((ModImm >> ByteNum) & 1)
    580           Val |= (uint64_t)0xff << (8 * ByteNum);
    581       }
    582       EltBits = 64;
    583     } else {
    584       assert(false && "Unsupported NEON immediate");
    585     }
    586     return Val;
    587   }
    588 
    589   AMSubMode getLoadStoreMultipleSubMode(int Opcode);
    590 
    591 } // end namespace ARM_AM
    592 } // end namespace llvm
    593 
    594 #endif
    595 
    596