1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This library converts LLVM code to C code, compilable by GCC and other C 11 // compilers. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CTargetMachine.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Module.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Pass.h" 22 #include "llvm/PassManager.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/InlineAsm.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/Analysis/ConstantsScanner.h" 30 #include "llvm/Analysis/FindUsedTypes.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/IntrinsicLowering.h" 35 #include "llvm/Target/Mangler.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCInstrInfo.h" 40 #include "llvm/MC/MCObjectFileInfo.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Target/TargetData.h" 45 #include "llvm/Target/TargetRegistry.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/CFG.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/GetElementPtrTypeIterator.h" 51 #include "llvm/Support/InstVisitor.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/Host.h" 54 #include "llvm/Config/config.h" 55 #include <algorithm> 56 // Some ms header decided to define setjmp as _setjmp, undo this for this file. 57 #ifdef _MSC_VER 58 #undef setjmp 59 #endif 60 using namespace llvm; 61 62 extern "C" void LLVMInitializeCBackendTarget() { 63 // Register the target. 64 RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget); 65 } 66 67 extern "C" void LLVMInitializeCBackendMCAsmInfo() {} 68 69 extern "C" void LLVMInitializeCBackendMCRegisterInfo() {} 70 71 extern "C" void LLVMInitializeCBackendMCInstrInfo() {} 72 73 extern "C" void LLVMInitializeCBackendMCSubtargetInfo() {} 74 75 extern "C" void LLVMInitializeCBackendMCCodeGenInfo() {} 76 77 namespace { 78 class CBEMCAsmInfo : public MCAsmInfo { 79 public: 80 CBEMCAsmInfo() { 81 GlobalPrefix = ""; 82 PrivateGlobalPrefix = ""; 83 } 84 }; 85 86 /// CWriter - This class is the main chunk of code that converts an LLVM 87 /// module to a C translation unit. 88 class CWriter : public FunctionPass, public InstVisitor<CWriter> { 89 formatted_raw_ostream &Out; 90 IntrinsicLowering *IL; 91 Mangler *Mang; 92 LoopInfo *LI; 93 const Module *TheModule; 94 const MCAsmInfo* TAsm; 95 const MCRegisterInfo *MRI; 96 const MCObjectFileInfo *MOFI; 97 MCContext *TCtx; 98 const TargetData* TD; 99 100 std::map<const ConstantFP *, unsigned> FPConstantMap; 101 std::set<Function*> intrinsicPrototypesAlreadyGenerated; 102 std::set<const Argument*> ByValParams; 103 unsigned FPCounter; 104 unsigned OpaqueCounter; 105 DenseMap<const Value*, unsigned> AnonValueNumbers; 106 unsigned NextAnonValueNumber; 107 108 /// UnnamedStructIDs - This contains a unique ID for each struct that is 109 /// either anonymous or has no name. 110 DenseMap<StructType*, unsigned> UnnamedStructIDs; 111 112 public: 113 static char ID; 114 explicit CWriter(formatted_raw_ostream &o) 115 : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0), 116 TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0), 117 OpaqueCounter(0), NextAnonValueNumber(0) { 118 initializeLoopInfoPass(*PassRegistry::getPassRegistry()); 119 FPCounter = 0; 120 } 121 122 virtual const char *getPassName() const { return "C backend"; } 123 124 void getAnalysisUsage(AnalysisUsage &AU) const { 125 AU.addRequired<LoopInfo>(); 126 AU.setPreservesAll(); 127 } 128 129 virtual bool doInitialization(Module &M); 130 131 bool runOnFunction(Function &F) { 132 // Do not codegen any 'available_externally' functions at all, they have 133 // definitions outside the translation unit. 134 if (F.hasAvailableExternallyLinkage()) 135 return false; 136 137 LI = &getAnalysis<LoopInfo>(); 138 139 // Get rid of intrinsics we can't handle. 140 lowerIntrinsics(F); 141 142 // Output all floating point constants that cannot be printed accurately. 143 printFloatingPointConstants(F); 144 145 printFunction(F); 146 return false; 147 } 148 149 virtual bool doFinalization(Module &M) { 150 // Free memory... 151 delete IL; 152 delete TD; 153 delete Mang; 154 delete TCtx; 155 delete TAsm; 156 delete MRI; 157 delete MOFI; 158 FPConstantMap.clear(); 159 ByValParams.clear(); 160 intrinsicPrototypesAlreadyGenerated.clear(); 161 UnnamedStructIDs.clear(); 162 return false; 163 } 164 165 raw_ostream &printType(raw_ostream &Out, Type *Ty, 166 bool isSigned = false, 167 const std::string &VariableName = "", 168 bool IgnoreName = false, 169 const AttrListPtr &PAL = AttrListPtr()); 170 raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty, 171 bool isSigned, 172 const std::string &NameSoFar = ""); 173 174 void printStructReturnPointerFunctionType(raw_ostream &Out, 175 const AttrListPtr &PAL, 176 PointerType *Ty); 177 178 std::string getStructName(StructType *ST); 179 180 /// writeOperandDeref - Print the result of dereferencing the specified 181 /// operand with '*'. This is equivalent to printing '*' then using 182 /// writeOperand, but avoids excess syntax in some cases. 183 void writeOperandDeref(Value *Operand) { 184 if (isAddressExposed(Operand)) { 185 // Already something with an address exposed. 186 writeOperandInternal(Operand); 187 } else { 188 Out << "*("; 189 writeOperand(Operand); 190 Out << ")"; 191 } 192 } 193 194 void writeOperand(Value *Operand, bool Static = false); 195 void writeInstComputationInline(Instruction &I); 196 void writeOperandInternal(Value *Operand, bool Static = false); 197 void writeOperandWithCast(Value* Operand, unsigned Opcode); 198 void writeOperandWithCast(Value* Operand, const ICmpInst &I); 199 bool writeInstructionCast(const Instruction &I); 200 201 void writeMemoryAccess(Value *Operand, Type *OperandType, 202 bool IsVolatile, unsigned Alignment); 203 204 private : 205 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); 206 207 void lowerIntrinsics(Function &F); 208 /// Prints the definition of the intrinsic function F. Supports the 209 /// intrinsics which need to be explicitly defined in the CBackend. 210 void printIntrinsicDefinition(const Function &F, raw_ostream &Out); 211 212 void printModuleTypes(); 213 void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &); 214 void printFloatingPointConstants(Function &F); 215 void printFloatingPointConstants(const Constant *C); 216 void printFunctionSignature(const Function *F, bool Prototype); 217 218 void printFunction(Function &); 219 void printBasicBlock(BasicBlock *BB); 220 void printLoop(Loop *L); 221 222 void printCast(unsigned opcode, Type *SrcTy, Type *DstTy); 223 void printConstant(Constant *CPV, bool Static); 224 void printConstantWithCast(Constant *CPV, unsigned Opcode); 225 bool printConstExprCast(const ConstantExpr *CE, bool Static); 226 void printConstantArray(ConstantArray *CPA, bool Static); 227 void printConstantVector(ConstantVector *CV, bool Static); 228 229 /// isAddressExposed - Return true if the specified value's name needs to 230 /// have its address taken in order to get a C value of the correct type. 231 /// This happens for global variables, byval parameters, and direct allocas. 232 bool isAddressExposed(const Value *V) const { 233 if (const Argument *A = dyn_cast<Argument>(V)) 234 return ByValParams.count(A); 235 return isa<GlobalVariable>(V) || isDirectAlloca(V); 236 } 237 238 // isInlinableInst - Attempt to inline instructions into their uses to build 239 // trees as much as possible. To do this, we have to consistently decide 240 // what is acceptable to inline, so that variable declarations don't get 241 // printed and an extra copy of the expr is not emitted. 242 // 243 static bool isInlinableInst(const Instruction &I) { 244 // Always inline cmp instructions, even if they are shared by multiple 245 // expressions. GCC generates horrible code if we don't. 246 if (isa<CmpInst>(I)) 247 return true; 248 249 // Must be an expression, must be used exactly once. If it is dead, we 250 // emit it inline where it would go. 251 if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() || 252 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || 253 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) || 254 isa<InsertValueInst>(I)) 255 // Don't inline a load across a store or other bad things! 256 return false; 257 258 // Must not be used in inline asm, extractelement, or shufflevector. 259 if (I.hasOneUse()) { 260 const Instruction &User = cast<Instruction>(*I.use_back()); 261 if (isInlineAsm(User) || isa<ExtractElementInst>(User) || 262 isa<ShuffleVectorInst>(User)) 263 return false; 264 } 265 266 // Only inline instruction it if it's use is in the same BB as the inst. 267 return I.getParent() == cast<Instruction>(I.use_back())->getParent(); 268 } 269 270 // isDirectAlloca - Define fixed sized allocas in the entry block as direct 271 // variables which are accessed with the & operator. This causes GCC to 272 // generate significantly better code than to emit alloca calls directly. 273 // 274 static const AllocaInst *isDirectAlloca(const Value *V) { 275 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 276 if (!AI) return 0; 277 if (AI->isArrayAllocation()) 278 return 0; // FIXME: we can also inline fixed size array allocas! 279 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) 280 return 0; 281 return AI; 282 } 283 284 // isInlineAsm - Check if the instruction is a call to an inline asm chunk. 285 static bool isInlineAsm(const Instruction& I) { 286 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 287 return isa<InlineAsm>(CI->getCalledValue()); 288 return false; 289 } 290 291 // Instruction visitation functions 292 friend class InstVisitor<CWriter>; 293 294 void visitReturnInst(ReturnInst &I); 295 void visitBranchInst(BranchInst &I); 296 void visitSwitchInst(SwitchInst &I); 297 void visitIndirectBrInst(IndirectBrInst &I); 298 void visitInvokeInst(InvokeInst &I) { 299 llvm_unreachable("Lowerinvoke pass didn't work!"); 300 } 301 302 void visitUnwindInst(UnwindInst &I) { 303 llvm_unreachable("Lowerinvoke pass didn't work!"); 304 } 305 void visitUnreachableInst(UnreachableInst &I); 306 307 void visitPHINode(PHINode &I); 308 void visitBinaryOperator(Instruction &I); 309 void visitICmpInst(ICmpInst &I); 310 void visitFCmpInst(FCmpInst &I); 311 312 void visitCastInst (CastInst &I); 313 void visitSelectInst(SelectInst &I); 314 void visitCallInst (CallInst &I); 315 void visitInlineAsm(CallInst &I); 316 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee); 317 318 void visitAllocaInst(AllocaInst &I); 319 void visitLoadInst (LoadInst &I); 320 void visitStoreInst (StoreInst &I); 321 void visitGetElementPtrInst(GetElementPtrInst &I); 322 void visitVAArgInst (VAArgInst &I); 323 324 void visitInsertElementInst(InsertElementInst &I); 325 void visitExtractElementInst(ExtractElementInst &I); 326 void visitShuffleVectorInst(ShuffleVectorInst &SVI); 327 328 void visitInsertValueInst(InsertValueInst &I); 329 void visitExtractValueInst(ExtractValueInst &I); 330 331 void visitInstruction(Instruction &I) { 332 #ifndef NDEBUG 333 errs() << "C Writer does not know about " << I; 334 #endif 335 llvm_unreachable(0); 336 } 337 338 void outputLValue(Instruction *I) { 339 Out << " " << GetValueName(I) << " = "; 340 } 341 342 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); 343 void printPHICopiesForSuccessor(BasicBlock *CurBlock, 344 BasicBlock *Successor, unsigned Indent); 345 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, 346 unsigned Indent); 347 void printGEPExpression(Value *Ptr, gep_type_iterator I, 348 gep_type_iterator E, bool Static); 349 350 std::string GetValueName(const Value *Operand); 351 }; 352 } 353 354 char CWriter::ID = 0; 355 356 357 358 static std::string CBEMangle(const std::string &S) { 359 std::string Result; 360 361 for (unsigned i = 0, e = S.size(); i != e; ++i) 362 if (isalnum(S[i]) || S[i] == '_') { 363 Result += S[i]; 364 } else { 365 Result += '_'; 366 Result += 'A'+(S[i]&15); 367 Result += 'A'+((S[i]>>4)&15); 368 Result += '_'; 369 } 370 return Result; 371 } 372 373 std::string CWriter::getStructName(StructType *ST) { 374 if (!ST->isAnonymous() && !ST->getName().empty()) 375 return CBEMangle("l_"+ST->getName().str()); 376 377 return "l_unnamed_" + utostr(UnnamedStructIDs[ST]); 378 } 379 380 381 /// printStructReturnPointerFunctionType - This is like printType for a struct 382 /// return type, except, instead of printing the type as void (*)(Struct*, ...) 383 /// print it as "Struct (*)(...)", for struct return functions. 384 void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out, 385 const AttrListPtr &PAL, 386 PointerType *TheTy) { 387 FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); 388 std::string tstr; 389 raw_string_ostream FunctionInnards(tstr); 390 FunctionInnards << " (*) ("; 391 bool PrintedType = false; 392 393 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); 394 Type *RetTy = cast<PointerType>(*I)->getElementType(); 395 unsigned Idx = 1; 396 for (++I, ++Idx; I != E; ++I, ++Idx) { 397 if (PrintedType) 398 FunctionInnards << ", "; 399 Type *ArgTy = *I; 400 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 401 assert(ArgTy->isPointerTy()); 402 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 403 } 404 printType(FunctionInnards, ArgTy, 405 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); 406 PrintedType = true; 407 } 408 if (FTy->isVarArg()) { 409 if (!PrintedType) 410 FunctionInnards << " int"; //dummy argument for empty vararg functs 411 FunctionInnards << ", ..."; 412 } else if (!PrintedType) { 413 FunctionInnards << "void"; 414 } 415 FunctionInnards << ')'; 416 printType(Out, RetTy, 417 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); 418 } 419 420 raw_ostream & 421 CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, 422 const std::string &NameSoFar) { 423 assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) && 424 "Invalid type for printSimpleType"); 425 switch (Ty->getTypeID()) { 426 case Type::VoidTyID: return Out << "void " << NameSoFar; 427 case Type::IntegerTyID: { 428 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); 429 if (NumBits == 1) 430 return Out << "bool " << NameSoFar; 431 else if (NumBits <= 8) 432 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; 433 else if (NumBits <= 16) 434 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; 435 else if (NumBits <= 32) 436 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; 437 else if (NumBits <= 64) 438 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar; 439 else { 440 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet"); 441 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar; 442 } 443 } 444 case Type::FloatTyID: return Out << "float " << NameSoFar; 445 case Type::DoubleTyID: return Out << "double " << NameSoFar; 446 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is 447 // present matches host 'long double'. 448 case Type::X86_FP80TyID: 449 case Type::PPC_FP128TyID: 450 case Type::FP128TyID: return Out << "long double " << NameSoFar; 451 452 case Type::X86_MMXTyID: 453 return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned, 454 " __attribute__((vector_size(64))) " + NameSoFar); 455 456 case Type::VectorTyID: { 457 VectorType *VTy = cast<VectorType>(Ty); 458 return printSimpleType(Out, VTy->getElementType(), isSigned, 459 " __attribute__((vector_size(" + 460 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar); 461 } 462 463 default: 464 #ifndef NDEBUG 465 errs() << "Unknown primitive type: " << *Ty << "\n"; 466 #endif 467 llvm_unreachable(0); 468 } 469 } 470 471 // Pass the Type* and the variable name and this prints out the variable 472 // declaration. 473 // 474 raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty, 475 bool isSigned, const std::string &NameSoFar, 476 bool IgnoreName, const AttrListPtr &PAL) { 477 if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) { 478 printSimpleType(Out, Ty, isSigned, NameSoFar); 479 return Out; 480 } 481 482 switch (Ty->getTypeID()) { 483 case Type::FunctionTyID: { 484 FunctionType *FTy = cast<FunctionType>(Ty); 485 std::string tstr; 486 raw_string_ostream FunctionInnards(tstr); 487 FunctionInnards << " (" << NameSoFar << ") ("; 488 unsigned Idx = 1; 489 for (FunctionType::param_iterator I = FTy->param_begin(), 490 E = FTy->param_end(); I != E; ++I) { 491 Type *ArgTy = *I; 492 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 493 assert(ArgTy->isPointerTy()); 494 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 495 } 496 if (I != FTy->param_begin()) 497 FunctionInnards << ", "; 498 printType(FunctionInnards, ArgTy, 499 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); 500 ++Idx; 501 } 502 if (FTy->isVarArg()) { 503 if (!FTy->getNumParams()) 504 FunctionInnards << " int"; //dummy argument for empty vaarg functs 505 FunctionInnards << ", ..."; 506 } else if (!FTy->getNumParams()) { 507 FunctionInnards << "void"; 508 } 509 FunctionInnards << ')'; 510 printType(Out, FTy->getReturnType(), 511 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); 512 return Out; 513 } 514 case Type::StructTyID: { 515 StructType *STy = cast<StructType>(Ty); 516 517 // Check to see if the type is named. 518 if (!IgnoreName) 519 return Out << getStructName(STy) << ' ' << NameSoFar; 520 521 Out << NameSoFar + " {\n"; 522 unsigned Idx = 0; 523 for (StructType::element_iterator I = STy->element_begin(), 524 E = STy->element_end(); I != E; ++I) { 525 Out << " "; 526 printType(Out, *I, false, "field" + utostr(Idx++)); 527 Out << ";\n"; 528 } 529 Out << '}'; 530 if (STy->isPacked()) 531 Out << " __attribute__ ((packed))"; 532 return Out; 533 } 534 535 case Type::PointerTyID: { 536 PointerType *PTy = cast<PointerType>(Ty); 537 std::string ptrName = "*" + NameSoFar; 538 539 if (PTy->getElementType()->isArrayTy() || 540 PTy->getElementType()->isVectorTy()) 541 ptrName = "(" + ptrName + ")"; 542 543 if (!PAL.isEmpty()) 544 // Must be a function ptr cast! 545 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL); 546 return printType(Out, PTy->getElementType(), false, ptrName); 547 } 548 549 case Type::ArrayTyID: { 550 ArrayType *ATy = cast<ArrayType>(Ty); 551 unsigned NumElements = ATy->getNumElements(); 552 if (NumElements == 0) NumElements = 1; 553 // Arrays are wrapped in structs to allow them to have normal 554 // value semantics (avoiding the array "decay"). 555 Out << NameSoFar << " { "; 556 printType(Out, ATy->getElementType(), false, 557 "array[" + utostr(NumElements) + "]"); 558 return Out << "; }"; 559 } 560 561 default: 562 llvm_unreachable("Unhandled case in getTypeProps!"); 563 } 564 565 return Out; 566 } 567 568 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) { 569 570 // As a special case, print the array as a string if it is an array of 571 // ubytes or an array of sbytes with positive values. 572 // 573 Type *ETy = CPA->getType()->getElementType(); 574 bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) || 575 ETy == Type::getInt8Ty(CPA->getContext())); 576 577 // Make sure the last character is a null char, as automatically added by C 578 if (isString && (CPA->getNumOperands() == 0 || 579 !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) 580 isString = false; 581 582 if (isString) { 583 Out << '\"'; 584 // Keep track of whether the last number was a hexadecimal escape. 585 bool LastWasHex = false; 586 587 // Do not include the last character, which we know is null 588 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { 589 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue(); 590 591 // Print it out literally if it is a printable character. The only thing 592 // to be careful about is when the last letter output was a hex escape 593 // code, in which case we have to be careful not to print out hex digits 594 // explicitly (the C compiler thinks it is a continuation of the previous 595 // character, sheesh...) 596 // 597 if (isprint(C) && (!LastWasHex || !isxdigit(C))) { 598 LastWasHex = false; 599 if (C == '"' || C == '\\') 600 Out << "\\" << (char)C; 601 else 602 Out << (char)C; 603 } else { 604 LastWasHex = false; 605 switch (C) { 606 case '\n': Out << "\\n"; break; 607 case '\t': Out << "\\t"; break; 608 case '\r': Out << "\\r"; break; 609 case '\v': Out << "\\v"; break; 610 case '\a': Out << "\\a"; break; 611 case '\"': Out << "\\\""; break; 612 case '\'': Out << "\\\'"; break; 613 default: 614 Out << "\\x"; 615 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); 616 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); 617 LastWasHex = true; 618 break; 619 } 620 } 621 } 622 Out << '\"'; 623 } else { 624 Out << '{'; 625 if (CPA->getNumOperands()) { 626 Out << ' '; 627 printConstant(cast<Constant>(CPA->getOperand(0)), Static); 628 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { 629 Out << ", "; 630 printConstant(cast<Constant>(CPA->getOperand(i)), Static); 631 } 632 } 633 Out << " }"; 634 } 635 } 636 637 void CWriter::printConstantVector(ConstantVector *CP, bool Static) { 638 Out << '{'; 639 if (CP->getNumOperands()) { 640 Out << ' '; 641 printConstant(cast<Constant>(CP->getOperand(0)), Static); 642 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { 643 Out << ", "; 644 printConstant(cast<Constant>(CP->getOperand(i)), Static); 645 } 646 } 647 Out << " }"; 648 } 649 650 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out 651 // textually as a double (rather than as a reference to a stack-allocated 652 // variable). We decide this by converting CFP to a string and back into a 653 // double, and then checking whether the conversion results in a bit-equal 654 // double to the original value of CFP. This depends on us and the target C 655 // compiler agreeing on the conversion process (which is pretty likely since we 656 // only deal in IEEE FP). 657 // 658 static bool isFPCSafeToPrint(const ConstantFP *CFP) { 659 bool ignored; 660 // Do long doubles in hex for now. 661 if (CFP->getType() != Type::getFloatTy(CFP->getContext()) && 662 CFP->getType() != Type::getDoubleTy(CFP->getContext())) 663 return false; 664 APFloat APF = APFloat(CFP->getValueAPF()); // copy 665 if (CFP->getType() == Type::getFloatTy(CFP->getContext())) 666 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); 667 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A 668 char Buffer[100]; 669 sprintf(Buffer, "%a", APF.convertToDouble()); 670 if (!strncmp(Buffer, "0x", 2) || 671 !strncmp(Buffer, "-0x", 3) || 672 !strncmp(Buffer, "+0x", 3)) 673 return APF.bitwiseIsEqual(APFloat(atof(Buffer))); 674 return false; 675 #else 676 std::string StrVal = ftostr(APF); 677 678 while (StrVal[0] == ' ') 679 StrVal.erase(StrVal.begin()); 680 681 // Check to make sure that the stringized number is not some string like "Inf" 682 // or NaN. Check that the string matches the "[-+]?[0-9]" regex. 683 if ((StrVal[0] >= '0' && StrVal[0] <= '9') || 684 ((StrVal[0] == '-' || StrVal[0] == '+') && 685 (StrVal[1] >= '0' && StrVal[1] <= '9'))) 686 // Reparse stringized version! 687 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str()))); 688 return false; 689 #endif 690 } 691 692 /// Print out the casting for a cast operation. This does the double casting 693 /// necessary for conversion to the destination type, if necessary. 694 /// @brief Print a cast 695 void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) { 696 // Print the destination type cast 697 switch (opc) { 698 case Instruction::UIToFP: 699 case Instruction::SIToFP: 700 case Instruction::IntToPtr: 701 case Instruction::Trunc: 702 case Instruction::BitCast: 703 case Instruction::FPExt: 704 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter 705 Out << '('; 706 printType(Out, DstTy); 707 Out << ')'; 708 break; 709 case Instruction::ZExt: 710 case Instruction::PtrToInt: 711 case Instruction::FPToUI: // For these, make sure we get an unsigned dest 712 Out << '('; 713 printSimpleType(Out, DstTy, false); 714 Out << ')'; 715 break; 716 case Instruction::SExt: 717 case Instruction::FPToSI: // For these, make sure we get a signed dest 718 Out << '('; 719 printSimpleType(Out, DstTy, true); 720 Out << ')'; 721 break; 722 default: 723 llvm_unreachable("Invalid cast opcode"); 724 } 725 726 // Print the source type cast 727 switch (opc) { 728 case Instruction::UIToFP: 729 case Instruction::ZExt: 730 Out << '('; 731 printSimpleType(Out, SrcTy, false); 732 Out << ')'; 733 break; 734 case Instruction::SIToFP: 735 case Instruction::SExt: 736 Out << '('; 737 printSimpleType(Out, SrcTy, true); 738 Out << ')'; 739 break; 740 case Instruction::IntToPtr: 741 case Instruction::PtrToInt: 742 // Avoid "cast to pointer from integer of different size" warnings 743 Out << "(unsigned long)"; 744 break; 745 case Instruction::Trunc: 746 case Instruction::BitCast: 747 case Instruction::FPExt: 748 case Instruction::FPTrunc: 749 case Instruction::FPToSI: 750 case Instruction::FPToUI: 751 break; // These don't need a source cast. 752 default: 753 llvm_unreachable("Invalid cast opcode"); 754 break; 755 } 756 } 757 758 // printConstant - The LLVM Constant to C Constant converter. 759 void CWriter::printConstant(Constant *CPV, bool Static) { 760 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { 761 switch (CE->getOpcode()) { 762 case Instruction::Trunc: 763 case Instruction::ZExt: 764 case Instruction::SExt: 765 case Instruction::FPTrunc: 766 case Instruction::FPExt: 767 case Instruction::UIToFP: 768 case Instruction::SIToFP: 769 case Instruction::FPToUI: 770 case Instruction::FPToSI: 771 case Instruction::PtrToInt: 772 case Instruction::IntToPtr: 773 case Instruction::BitCast: 774 Out << "("; 775 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); 776 if (CE->getOpcode() == Instruction::SExt && 777 CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) { 778 // Make sure we really sext from bool here by subtracting from 0 779 Out << "0-"; 780 } 781 printConstant(CE->getOperand(0), Static); 782 if (CE->getType() == Type::getInt1Ty(CPV->getContext()) && 783 (CE->getOpcode() == Instruction::Trunc || 784 CE->getOpcode() == Instruction::FPToUI || 785 CE->getOpcode() == Instruction::FPToSI || 786 CE->getOpcode() == Instruction::PtrToInt)) { 787 // Make sure we really truncate to bool here by anding with 1 788 Out << "&1u"; 789 } 790 Out << ')'; 791 return; 792 793 case Instruction::GetElementPtr: 794 Out << "("; 795 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV), 796 gep_type_end(CPV), Static); 797 Out << ")"; 798 return; 799 case Instruction::Select: 800 Out << '('; 801 printConstant(CE->getOperand(0), Static); 802 Out << '?'; 803 printConstant(CE->getOperand(1), Static); 804 Out << ':'; 805 printConstant(CE->getOperand(2), Static); 806 Out << ')'; 807 return; 808 case Instruction::Add: 809 case Instruction::FAdd: 810 case Instruction::Sub: 811 case Instruction::FSub: 812 case Instruction::Mul: 813 case Instruction::FMul: 814 case Instruction::SDiv: 815 case Instruction::UDiv: 816 case Instruction::FDiv: 817 case Instruction::URem: 818 case Instruction::SRem: 819 case Instruction::FRem: 820 case Instruction::And: 821 case Instruction::Or: 822 case Instruction::Xor: 823 case Instruction::ICmp: 824 case Instruction::Shl: 825 case Instruction::LShr: 826 case Instruction::AShr: 827 { 828 Out << '('; 829 bool NeedsClosingParens = printConstExprCast(CE, Static); 830 printConstantWithCast(CE->getOperand(0), CE->getOpcode()); 831 switch (CE->getOpcode()) { 832 case Instruction::Add: 833 case Instruction::FAdd: Out << " + "; break; 834 case Instruction::Sub: 835 case Instruction::FSub: Out << " - "; break; 836 case Instruction::Mul: 837 case Instruction::FMul: Out << " * "; break; 838 case Instruction::URem: 839 case Instruction::SRem: 840 case Instruction::FRem: Out << " % "; break; 841 case Instruction::UDiv: 842 case Instruction::SDiv: 843 case Instruction::FDiv: Out << " / "; break; 844 case Instruction::And: Out << " & "; break; 845 case Instruction::Or: Out << " | "; break; 846 case Instruction::Xor: Out << " ^ "; break; 847 case Instruction::Shl: Out << " << "; break; 848 case Instruction::LShr: 849 case Instruction::AShr: Out << " >> "; break; 850 case Instruction::ICmp: 851 switch (CE->getPredicate()) { 852 case ICmpInst::ICMP_EQ: Out << " == "; break; 853 case ICmpInst::ICMP_NE: Out << " != "; break; 854 case ICmpInst::ICMP_SLT: 855 case ICmpInst::ICMP_ULT: Out << " < "; break; 856 case ICmpInst::ICMP_SLE: 857 case ICmpInst::ICMP_ULE: Out << " <= "; break; 858 case ICmpInst::ICMP_SGT: 859 case ICmpInst::ICMP_UGT: Out << " > "; break; 860 case ICmpInst::ICMP_SGE: 861 case ICmpInst::ICMP_UGE: Out << " >= "; break; 862 default: llvm_unreachable("Illegal ICmp predicate"); 863 } 864 break; 865 default: llvm_unreachable("Illegal opcode here!"); 866 } 867 printConstantWithCast(CE->getOperand(1), CE->getOpcode()); 868 if (NeedsClosingParens) 869 Out << "))"; 870 Out << ')'; 871 return; 872 } 873 case Instruction::FCmp: { 874 Out << '('; 875 bool NeedsClosingParens = printConstExprCast(CE, Static); 876 if (CE->getPredicate() == FCmpInst::FCMP_FALSE) 877 Out << "0"; 878 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) 879 Out << "1"; 880 else { 881 const char* op = 0; 882 switch (CE->getPredicate()) { 883 default: llvm_unreachable("Illegal FCmp predicate"); 884 case FCmpInst::FCMP_ORD: op = "ord"; break; 885 case FCmpInst::FCMP_UNO: op = "uno"; break; 886 case FCmpInst::FCMP_UEQ: op = "ueq"; break; 887 case FCmpInst::FCMP_UNE: op = "une"; break; 888 case FCmpInst::FCMP_ULT: op = "ult"; break; 889 case FCmpInst::FCMP_ULE: op = "ule"; break; 890 case FCmpInst::FCMP_UGT: op = "ugt"; break; 891 case FCmpInst::FCMP_UGE: op = "uge"; break; 892 case FCmpInst::FCMP_OEQ: op = "oeq"; break; 893 case FCmpInst::FCMP_ONE: op = "one"; break; 894 case FCmpInst::FCMP_OLT: op = "olt"; break; 895 case FCmpInst::FCMP_OLE: op = "ole"; break; 896 case FCmpInst::FCMP_OGT: op = "ogt"; break; 897 case FCmpInst::FCMP_OGE: op = "oge"; break; 898 } 899 Out << "llvm_fcmp_" << op << "("; 900 printConstantWithCast(CE->getOperand(0), CE->getOpcode()); 901 Out << ", "; 902 printConstantWithCast(CE->getOperand(1), CE->getOpcode()); 903 Out << ")"; 904 } 905 if (NeedsClosingParens) 906 Out << "))"; 907 Out << ')'; 908 return; 909 } 910 default: 911 #ifndef NDEBUG 912 errs() << "CWriter Error: Unhandled constant expression: " 913 << *CE << "\n"; 914 #endif 915 llvm_unreachable(0); 916 } 917 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) { 918 Out << "(("; 919 printType(Out, CPV->getType()); // sign doesn't matter 920 Out << ")/*UNDEF*/"; 921 if (!CPV->getType()->isVectorTy()) { 922 Out << "0)"; 923 } else { 924 Out << "{})"; 925 } 926 return; 927 } 928 929 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { 930 Type* Ty = CI->getType(); 931 if (Ty == Type::getInt1Ty(CPV->getContext())) 932 Out << (CI->getZExtValue() ? '1' : '0'); 933 else if (Ty == Type::getInt32Ty(CPV->getContext())) 934 Out << CI->getZExtValue() << 'u'; 935 else if (Ty->getPrimitiveSizeInBits() > 32) 936 Out << CI->getZExtValue() << "ull"; 937 else { 938 Out << "(("; 939 printSimpleType(Out, Ty, false) << ')'; 940 if (CI->isMinValue(true)) 941 Out << CI->getZExtValue() << 'u'; 942 else 943 Out << CI->getSExtValue(); 944 Out << ')'; 945 } 946 return; 947 } 948 949 switch (CPV->getType()->getTypeID()) { 950 case Type::FloatTyID: 951 case Type::DoubleTyID: 952 case Type::X86_FP80TyID: 953 case Type::PPC_FP128TyID: 954 case Type::FP128TyID: { 955 ConstantFP *FPC = cast<ConstantFP>(CPV); 956 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); 957 if (I != FPConstantMap.end()) { 958 // Because of FP precision problems we must load from a stack allocated 959 // value that holds the value in hex. 960 Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ? 961 "float" : 962 FPC->getType() == Type::getDoubleTy(CPV->getContext()) ? 963 "double" : 964 "long double") 965 << "*)&FPConstant" << I->second << ')'; 966 } else { 967 double V; 968 if (FPC->getType() == Type::getFloatTy(CPV->getContext())) 969 V = FPC->getValueAPF().convertToFloat(); 970 else if (FPC->getType() == Type::getDoubleTy(CPV->getContext())) 971 V = FPC->getValueAPF().convertToDouble(); 972 else { 973 // Long double. Convert the number to double, discarding precision. 974 // This is not awesome, but it at least makes the CBE output somewhat 975 // useful. 976 APFloat Tmp = FPC->getValueAPF(); 977 bool LosesInfo; 978 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo); 979 V = Tmp.convertToDouble(); 980 } 981 982 if (IsNAN(V)) { 983 // The value is NaN 984 985 // FIXME the actual NaN bits should be emitted. 986 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, 987 // it's 0x7ff4. 988 const unsigned long QuietNaN = 0x7ff8UL; 989 //const unsigned long SignalNaN = 0x7ff4UL; 990 991 // We need to grab the first part of the FP # 992 char Buffer[100]; 993 994 uint64_t ll = DoubleToBits(V); 995 sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); 996 997 std::string Num(&Buffer[0], &Buffer[6]); 998 unsigned long Val = strtoul(Num.c_str(), 0, 16); 999 1000 if (FPC->getType() == Type::getFloatTy(FPC->getContext())) 1001 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" 1002 << Buffer << "\") /*nan*/ "; 1003 else 1004 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" 1005 << Buffer << "\") /*nan*/ "; 1006 } else if (IsInf(V)) { 1007 // The value is Inf 1008 if (V < 0) Out << '-'; 1009 Out << "LLVM_INF" << 1010 (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "") 1011 << " /*inf*/ "; 1012 } else { 1013 std::string Num; 1014 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A 1015 // Print out the constant as a floating point number. 1016 char Buffer[100]; 1017 sprintf(Buffer, "%a", V); 1018 Num = Buffer; 1019 #else 1020 Num = ftostr(FPC->getValueAPF()); 1021 #endif 1022 Out << Num; 1023 } 1024 } 1025 break; 1026 } 1027 1028 case Type::ArrayTyID: 1029 // Use C99 compound expression literal initializer syntax. 1030 if (!Static) { 1031 Out << "("; 1032 printType(Out, CPV->getType()); 1033 Out << ")"; 1034 } 1035 Out << "{ "; // Arrays are wrapped in struct types. 1036 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) { 1037 printConstantArray(CA, Static); 1038 } else { 1039 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); 1040 ArrayType *AT = cast<ArrayType>(CPV->getType()); 1041 Out << '{'; 1042 if (AT->getNumElements()) { 1043 Out << ' '; 1044 Constant *CZ = Constant::getNullValue(AT->getElementType()); 1045 printConstant(CZ, Static); 1046 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { 1047 Out << ", "; 1048 printConstant(CZ, Static); 1049 } 1050 } 1051 Out << " }"; 1052 } 1053 Out << " }"; // Arrays are wrapped in struct types. 1054 break; 1055 1056 case Type::VectorTyID: 1057 // Use C99 compound expression literal initializer syntax. 1058 if (!Static) { 1059 Out << "("; 1060 printType(Out, CPV->getType()); 1061 Out << ")"; 1062 } 1063 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) { 1064 printConstantVector(CV, Static); 1065 } else { 1066 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); 1067 VectorType *VT = cast<VectorType>(CPV->getType()); 1068 Out << "{ "; 1069 Constant *CZ = Constant::getNullValue(VT->getElementType()); 1070 printConstant(CZ, Static); 1071 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) { 1072 Out << ", "; 1073 printConstant(CZ, Static); 1074 } 1075 Out << " }"; 1076 } 1077 break; 1078 1079 case Type::StructTyID: 1080 // Use C99 compound expression literal initializer syntax. 1081 if (!Static) { 1082 Out << "("; 1083 printType(Out, CPV->getType()); 1084 Out << ")"; 1085 } 1086 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { 1087 StructType *ST = cast<StructType>(CPV->getType()); 1088 Out << '{'; 1089 if (ST->getNumElements()) { 1090 Out << ' '; 1091 printConstant(Constant::getNullValue(ST->getElementType(0)), Static); 1092 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { 1093 Out << ", "; 1094 printConstant(Constant::getNullValue(ST->getElementType(i)), Static); 1095 } 1096 } 1097 Out << " }"; 1098 } else { 1099 Out << '{'; 1100 if (CPV->getNumOperands()) { 1101 Out << ' '; 1102 printConstant(cast<Constant>(CPV->getOperand(0)), Static); 1103 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { 1104 Out << ", "; 1105 printConstant(cast<Constant>(CPV->getOperand(i)), Static); 1106 } 1107 } 1108 Out << " }"; 1109 } 1110 break; 1111 1112 case Type::PointerTyID: 1113 if (isa<ConstantPointerNull>(CPV)) { 1114 Out << "(("; 1115 printType(Out, CPV->getType()); // sign doesn't matter 1116 Out << ")/*NULL*/0)"; 1117 break; 1118 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { 1119 writeOperand(GV, Static); 1120 break; 1121 } 1122 // FALL THROUGH 1123 default: 1124 #ifndef NDEBUG 1125 errs() << "Unknown constant type: " << *CPV << "\n"; 1126 #endif 1127 llvm_unreachable(0); 1128 } 1129 } 1130 1131 // Some constant expressions need to be casted back to the original types 1132 // because their operands were casted to the expected type. This function takes 1133 // care of detecting that case and printing the cast for the ConstantExpr. 1134 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) { 1135 bool NeedsExplicitCast = false; 1136 Type *Ty = CE->getOperand(0)->getType(); 1137 bool TypeIsSigned = false; 1138 switch (CE->getOpcode()) { 1139 case Instruction::Add: 1140 case Instruction::Sub: 1141 case Instruction::Mul: 1142 // We need to cast integer arithmetic so that it is always performed 1143 // as unsigned, to avoid undefined behavior on overflow. 1144 case Instruction::LShr: 1145 case Instruction::URem: 1146 case Instruction::UDiv: NeedsExplicitCast = true; break; 1147 case Instruction::AShr: 1148 case Instruction::SRem: 1149 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; 1150 case Instruction::SExt: 1151 Ty = CE->getType(); 1152 NeedsExplicitCast = true; 1153 TypeIsSigned = true; 1154 break; 1155 case Instruction::ZExt: 1156 case Instruction::Trunc: 1157 case Instruction::FPTrunc: 1158 case Instruction::FPExt: 1159 case Instruction::UIToFP: 1160 case Instruction::SIToFP: 1161 case Instruction::FPToUI: 1162 case Instruction::FPToSI: 1163 case Instruction::PtrToInt: 1164 case Instruction::IntToPtr: 1165 case Instruction::BitCast: 1166 Ty = CE->getType(); 1167 NeedsExplicitCast = true; 1168 break; 1169 default: break; 1170 } 1171 if (NeedsExplicitCast) { 1172 Out << "(("; 1173 if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext())) 1174 printSimpleType(Out, Ty, TypeIsSigned); 1175 else 1176 printType(Out, Ty); // not integer, sign doesn't matter 1177 Out << ")("; 1178 } 1179 return NeedsExplicitCast; 1180 } 1181 1182 // Print a constant assuming that it is the operand for a given Opcode. The 1183 // opcodes that care about sign need to cast their operands to the expected 1184 // type before the operation proceeds. This function does the casting. 1185 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { 1186 1187 // Extract the operand's type, we'll need it. 1188 Type* OpTy = CPV->getType(); 1189 1190 // Indicate whether to do the cast or not. 1191 bool shouldCast = false; 1192 bool typeIsSigned = false; 1193 1194 // Based on the Opcode for which this Constant is being written, determine 1195 // the new type to which the operand should be casted by setting the value 1196 // of OpTy. If we change OpTy, also set shouldCast to true so it gets 1197 // casted below. 1198 switch (Opcode) { 1199 default: 1200 // for most instructions, it doesn't matter 1201 break; 1202 case Instruction::Add: 1203 case Instruction::Sub: 1204 case Instruction::Mul: 1205 // We need to cast integer arithmetic so that it is always performed 1206 // as unsigned, to avoid undefined behavior on overflow. 1207 case Instruction::LShr: 1208 case Instruction::UDiv: 1209 case Instruction::URem: 1210 shouldCast = true; 1211 break; 1212 case Instruction::AShr: 1213 case Instruction::SDiv: 1214 case Instruction::SRem: 1215 shouldCast = true; 1216 typeIsSigned = true; 1217 break; 1218 } 1219 1220 // Write out the casted constant if we should, otherwise just write the 1221 // operand. 1222 if (shouldCast) { 1223 Out << "(("; 1224 printSimpleType(Out, OpTy, typeIsSigned); 1225 Out << ")"; 1226 printConstant(CPV, false); 1227 Out << ")"; 1228 } else 1229 printConstant(CPV, false); 1230 } 1231 1232 std::string CWriter::GetValueName(const Value *Operand) { 1233 1234 // Resolve potential alias. 1235 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) { 1236 if (const Value *V = GA->resolveAliasedGlobal(false)) 1237 Operand = V; 1238 } 1239 1240 // Mangle globals with the standard mangler interface for LLC compatibility. 1241 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) { 1242 SmallString<128> Str; 1243 Mang->getNameWithPrefix(Str, GV, false); 1244 return CBEMangle(Str.str().str()); 1245 } 1246 1247 std::string Name = Operand->getName(); 1248 1249 if (Name.empty()) { // Assign unique names to local temporaries. 1250 unsigned &No = AnonValueNumbers[Operand]; 1251 if (No == 0) 1252 No = ++NextAnonValueNumber; 1253 Name = "tmp__" + utostr(No); 1254 } 1255 1256 std::string VarName; 1257 VarName.reserve(Name.capacity()); 1258 1259 for (std::string::iterator I = Name.begin(), E = Name.end(); 1260 I != E; ++I) { 1261 char ch = *I; 1262 1263 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || 1264 (ch >= '0' && ch <= '9') || ch == '_')) { 1265 char buffer[5]; 1266 sprintf(buffer, "_%x_", ch); 1267 VarName += buffer; 1268 } else 1269 VarName += ch; 1270 } 1271 1272 return "llvm_cbe_" + VarName; 1273 } 1274 1275 /// writeInstComputationInline - Emit the computation for the specified 1276 /// instruction inline, with no destination provided. 1277 void CWriter::writeInstComputationInline(Instruction &I) { 1278 // We can't currently support integer types other than 1, 8, 16, 32, 64. 1279 // Validate this. 1280 Type *Ty = I.getType(); 1281 if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) && 1282 Ty!=Type::getInt8Ty(I.getContext()) && 1283 Ty!=Type::getInt16Ty(I.getContext()) && 1284 Ty!=Type::getInt32Ty(I.getContext()) && 1285 Ty!=Type::getInt64Ty(I.getContext()))) { 1286 report_fatal_error("The C backend does not currently support integer " 1287 "types of widths other than 1, 8, 16, 32, 64.\n" 1288 "This is being tracked as PR 4158."); 1289 } 1290 1291 // If this is a non-trivial bool computation, make sure to truncate down to 1292 // a 1 bit value. This is important because we want "add i1 x, y" to return 1293 // "0" when x and y are true, not "2" for example. 1294 bool NeedBoolTrunc = false; 1295 if (I.getType() == Type::getInt1Ty(I.getContext()) && 1296 !isa<ICmpInst>(I) && !isa<FCmpInst>(I)) 1297 NeedBoolTrunc = true; 1298 1299 if (NeedBoolTrunc) 1300 Out << "(("; 1301 1302 visit(I); 1303 1304 if (NeedBoolTrunc) 1305 Out << ")&1)"; 1306 } 1307 1308 1309 void CWriter::writeOperandInternal(Value *Operand, bool Static) { 1310 if (Instruction *I = dyn_cast<Instruction>(Operand)) 1311 // Should we inline this instruction to build a tree? 1312 if (isInlinableInst(*I) && !isDirectAlloca(I)) { 1313 Out << '('; 1314 writeInstComputationInline(*I); 1315 Out << ')'; 1316 return; 1317 } 1318 1319 Constant* CPV = dyn_cast<Constant>(Operand); 1320 1321 if (CPV && !isa<GlobalValue>(CPV)) 1322 printConstant(CPV, Static); 1323 else 1324 Out << GetValueName(Operand); 1325 } 1326 1327 void CWriter::writeOperand(Value *Operand, bool Static) { 1328 bool isAddressImplicit = isAddressExposed(Operand); 1329 if (isAddressImplicit) 1330 Out << "(&"; // Global variables are referenced as their addresses by llvm 1331 1332 writeOperandInternal(Operand, Static); 1333 1334 if (isAddressImplicit) 1335 Out << ')'; 1336 } 1337 1338 // Some instructions need to have their result value casted back to the 1339 // original types because their operands were casted to the expected type. 1340 // This function takes care of detecting that case and printing the cast 1341 // for the Instruction. 1342 bool CWriter::writeInstructionCast(const Instruction &I) { 1343 Type *Ty = I.getOperand(0)->getType(); 1344 switch (I.getOpcode()) { 1345 case Instruction::Add: 1346 case Instruction::Sub: 1347 case Instruction::Mul: 1348 // We need to cast integer arithmetic so that it is always performed 1349 // as unsigned, to avoid undefined behavior on overflow. 1350 case Instruction::LShr: 1351 case Instruction::URem: 1352 case Instruction::UDiv: 1353 Out << "(("; 1354 printSimpleType(Out, Ty, false); 1355 Out << ")("; 1356 return true; 1357 case Instruction::AShr: 1358 case Instruction::SRem: 1359 case Instruction::SDiv: 1360 Out << "(("; 1361 printSimpleType(Out, Ty, true); 1362 Out << ")("; 1363 return true; 1364 default: break; 1365 } 1366 return false; 1367 } 1368 1369 // Write the operand with a cast to another type based on the Opcode being used. 1370 // This will be used in cases where an instruction has specific type 1371 // requirements (usually signedness) for its operands. 1372 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { 1373 1374 // Extract the operand's type, we'll need it. 1375 Type* OpTy = Operand->getType(); 1376 1377 // Indicate whether to do the cast or not. 1378 bool shouldCast = false; 1379 1380 // Indicate whether the cast should be to a signed type or not. 1381 bool castIsSigned = false; 1382 1383 // Based on the Opcode for which this Operand is being written, determine 1384 // the new type to which the operand should be casted by setting the value 1385 // of OpTy. If we change OpTy, also set shouldCast to true. 1386 switch (Opcode) { 1387 default: 1388 // for most instructions, it doesn't matter 1389 break; 1390 case Instruction::Add: 1391 case Instruction::Sub: 1392 case Instruction::Mul: 1393 // We need to cast integer arithmetic so that it is always performed 1394 // as unsigned, to avoid undefined behavior on overflow. 1395 case Instruction::LShr: 1396 case Instruction::UDiv: 1397 case Instruction::URem: // Cast to unsigned first 1398 shouldCast = true; 1399 castIsSigned = false; 1400 break; 1401 case Instruction::GetElementPtr: 1402 case Instruction::AShr: 1403 case Instruction::SDiv: 1404 case Instruction::SRem: // Cast to signed first 1405 shouldCast = true; 1406 castIsSigned = true; 1407 break; 1408 } 1409 1410 // Write out the casted operand if we should, otherwise just write the 1411 // operand. 1412 if (shouldCast) { 1413 Out << "(("; 1414 printSimpleType(Out, OpTy, castIsSigned); 1415 Out << ")"; 1416 writeOperand(Operand); 1417 Out << ")"; 1418 } else 1419 writeOperand(Operand); 1420 } 1421 1422 // Write the operand with a cast to another type based on the icmp predicate 1423 // being used. 1424 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) { 1425 // This has to do a cast to ensure the operand has the right signedness. 1426 // Also, if the operand is a pointer, we make sure to cast to an integer when 1427 // doing the comparison both for signedness and so that the C compiler doesn't 1428 // optimize things like "p < NULL" to false (p may contain an integer value 1429 // f.e.). 1430 bool shouldCast = Cmp.isRelational(); 1431 1432 // Write out the casted operand if we should, otherwise just write the 1433 // operand. 1434 if (!shouldCast) { 1435 writeOperand(Operand); 1436 return; 1437 } 1438 1439 // Should this be a signed comparison? If so, convert to signed. 1440 bool castIsSigned = Cmp.isSigned(); 1441 1442 // If the operand was a pointer, convert to a large integer type. 1443 Type* OpTy = Operand->getType(); 1444 if (OpTy->isPointerTy()) 1445 OpTy = TD->getIntPtrType(Operand->getContext()); 1446 1447 Out << "(("; 1448 printSimpleType(Out, OpTy, castIsSigned); 1449 Out << ")"; 1450 writeOperand(Operand); 1451 Out << ")"; 1452 } 1453 1454 // generateCompilerSpecificCode - This is where we add conditional compilation 1455 // directives to cater to specific compilers as need be. 1456 // 1457 static void generateCompilerSpecificCode(formatted_raw_ostream& Out, 1458 const TargetData *TD) { 1459 // Alloca is hard to get, and we don't want to include stdlib.h here. 1460 Out << "/* get a declaration for alloca */\n" 1461 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" 1462 << "#define alloca(x) __builtin_alloca((x))\n" 1463 << "#define _alloca(x) __builtin_alloca((x))\n" 1464 << "#elif defined(__APPLE__)\n" 1465 << "extern void *__builtin_alloca(unsigned long);\n" 1466 << "#define alloca(x) __builtin_alloca(x)\n" 1467 << "#define longjmp _longjmp\n" 1468 << "#define setjmp _setjmp\n" 1469 << "#elif defined(__sun__)\n" 1470 << "#if defined(__sparcv9)\n" 1471 << "extern void *__builtin_alloca(unsigned long);\n" 1472 << "#else\n" 1473 << "extern void *__builtin_alloca(unsigned int);\n" 1474 << "#endif\n" 1475 << "#define alloca(x) __builtin_alloca(x)\n" 1476 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n" 1477 << "#define alloca(x) __builtin_alloca(x)\n" 1478 << "#elif defined(_MSC_VER)\n" 1479 << "#define inline _inline\n" 1480 << "#define alloca(x) _alloca(x)\n" 1481 << "#else\n" 1482 << "#include <alloca.h>\n" 1483 << "#endif\n\n"; 1484 1485 // We output GCC specific attributes to preserve 'linkonce'ness on globals. 1486 // If we aren't being compiled with GCC, just drop these attributes. 1487 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" 1488 << "#define __attribute__(X)\n" 1489 << "#endif\n\n"; 1490 1491 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". 1492 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" 1493 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" 1494 << "#elif defined(__GNUC__)\n" 1495 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" 1496 << "#else\n" 1497 << "#define __EXTERNAL_WEAK__\n" 1498 << "#endif\n\n"; 1499 1500 // For now, turn off the weak linkage attribute on Mac OS X. (See above.) 1501 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" 1502 << "#define __ATTRIBUTE_WEAK__\n" 1503 << "#elif defined(__GNUC__)\n" 1504 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" 1505 << "#else\n" 1506 << "#define __ATTRIBUTE_WEAK__\n" 1507 << "#endif\n\n"; 1508 1509 // Add hidden visibility support. FIXME: APPLE_CC? 1510 Out << "#if defined(__GNUC__)\n" 1511 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n" 1512 << "#endif\n\n"; 1513 1514 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise 1515 // From the GCC documentation: 1516 // 1517 // double __builtin_nan (const char *str) 1518 // 1519 // This is an implementation of the ISO C99 function nan. 1520 // 1521 // Since ISO C99 defines this function in terms of strtod, which we do 1522 // not implement, a description of the parsing is in order. The string is 1523 // parsed as by strtol; that is, the base is recognized by leading 0 or 1524 // 0x prefixes. The number parsed is placed in the significand such that 1525 // the least significant bit of the number is at the least significant 1526 // bit of the significand. The number is truncated to fit the significand 1527 // field provided. The significand is forced to be a quiet NaN. 1528 // 1529 // This function, if given a string literal, is evaluated early enough 1530 // that it is considered a compile-time constant. 1531 // 1532 // float __builtin_nanf (const char *str) 1533 // 1534 // Similar to __builtin_nan, except the return type is float. 1535 // 1536 // double __builtin_inf (void) 1537 // 1538 // Similar to __builtin_huge_val, except a warning is generated if the 1539 // target floating-point format does not support infinities. This 1540 // function is suitable for implementing the ISO C99 macro INFINITY. 1541 // 1542 // float __builtin_inff (void) 1543 // 1544 // Similar to __builtin_inf, except the return type is float. 1545 Out << "#ifdef __GNUC__\n" 1546 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" 1547 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" 1548 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" 1549 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" 1550 << "#define LLVM_INF __builtin_inf() /* Double */\n" 1551 << "#define LLVM_INFF __builtin_inff() /* Float */\n" 1552 << "#define LLVM_PREFETCH(addr,rw,locality) " 1553 "__builtin_prefetch(addr,rw,locality)\n" 1554 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" 1555 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" 1556 << "#define LLVM_ASM __asm__\n" 1557 << "#else\n" 1558 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" 1559 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" 1560 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" 1561 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" 1562 << "#define LLVM_INF ((double)0.0) /* Double */\n" 1563 << "#define LLVM_INFF 0.0F /* Float */\n" 1564 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" 1565 << "#define __ATTRIBUTE_CTOR__\n" 1566 << "#define __ATTRIBUTE_DTOR__\n" 1567 << "#define LLVM_ASM(X)\n" 1568 << "#endif\n\n"; 1569 1570 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n" 1571 << "#define __builtin_stack_save() 0 /* not implemented */\n" 1572 << "#define __builtin_stack_restore(X) /* noop */\n" 1573 << "#endif\n\n"; 1574 1575 // Output typedefs for 128-bit integers. If these are needed with a 1576 // 32-bit target or with a C compiler that doesn't support mode(TI), 1577 // more drastic measures will be needed. 1578 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n" 1579 << "typedef int __attribute__((mode(TI))) llvmInt128;\n" 1580 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n" 1581 << "#endif\n\n"; 1582 1583 // Output target-specific code that should be inserted into main. 1584 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; 1585 } 1586 1587 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into 1588 /// the StaticTors set. 1589 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){ 1590 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 1591 if (!InitList) return; 1592 1593 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 1594 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ 1595 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 1596 1597 if (CS->getOperand(1)->isNullValue()) 1598 return; // Found a null terminator, exit printing. 1599 Constant *FP = CS->getOperand(1); 1600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 1601 if (CE->isCast()) 1602 FP = CE->getOperand(0); 1603 if (Function *F = dyn_cast<Function>(FP)) 1604 StaticTors.insert(F); 1605 } 1606 } 1607 1608 enum SpecialGlobalClass { 1609 NotSpecial = 0, 1610 GlobalCtors, GlobalDtors, 1611 NotPrinted 1612 }; 1613 1614 /// getGlobalVariableClass - If this is a global that is specially recognized 1615 /// by LLVM, return a code that indicates how we should handle it. 1616 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { 1617 // If this is a global ctors/dtors list, handle it now. 1618 if (GV->hasAppendingLinkage() && GV->use_empty()) { 1619 if (GV->getName() == "llvm.global_ctors") 1620 return GlobalCtors; 1621 else if (GV->getName() == "llvm.global_dtors") 1622 return GlobalDtors; 1623 } 1624 1625 // Otherwise, if it is other metadata, don't print it. This catches things 1626 // like debug information. 1627 if (GV->getSection() == "llvm.metadata") 1628 return NotPrinted; 1629 1630 return NotSpecial; 1631 } 1632 1633 // PrintEscapedString - Print each character of the specified string, escaping 1634 // it if it is not printable or if it is an escape char. 1635 static void PrintEscapedString(const char *Str, unsigned Length, 1636 raw_ostream &Out) { 1637 for (unsigned i = 0; i != Length; ++i) { 1638 unsigned char C = Str[i]; 1639 if (isprint(C) && C != '\\' && C != '"') 1640 Out << C; 1641 else if (C == '\\') 1642 Out << "\\\\"; 1643 else if (C == '\"') 1644 Out << "\\\""; 1645 else if (C == '\t') 1646 Out << "\\t"; 1647 else 1648 Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F); 1649 } 1650 } 1651 1652 // PrintEscapedString - Print each character of the specified string, escaping 1653 // it if it is not printable or if it is an escape char. 1654 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { 1655 PrintEscapedString(Str.c_str(), Str.size(), Out); 1656 } 1657 1658 bool CWriter::doInitialization(Module &M) { 1659 FunctionPass::doInitialization(M); 1660 1661 // Initialize 1662 TheModule = &M; 1663 1664 TD = new TargetData(&M); 1665 IL = new IntrinsicLowering(*TD); 1666 IL->AddPrototypes(M); 1667 1668 #if 0 1669 std::string Triple = TheModule->getTargetTriple(); 1670 if (Triple.empty()) 1671 Triple = llvm::sys::getHostTriple(); 1672 1673 std::string E; 1674 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) 1675 TAsm = Match->createMCAsmInfo(Triple); 1676 #endif 1677 TAsm = new CBEMCAsmInfo(); 1678 MRI = new MCRegisterInfo(); 1679 TCtx = new MCContext(*TAsm, *MRI, NULL, NULL); 1680 Mang = new Mangler(*TCtx, *TD); 1681 1682 // Keep track of which functions are static ctors/dtors so they can have 1683 // an attribute added to their prototypes. 1684 std::set<Function*> StaticCtors, StaticDtors; 1685 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1686 I != E; ++I) { 1687 switch (getGlobalVariableClass(I)) { 1688 default: break; 1689 case GlobalCtors: 1690 FindStaticTors(I, StaticCtors); 1691 break; 1692 case GlobalDtors: 1693 FindStaticTors(I, StaticDtors); 1694 break; 1695 } 1696 } 1697 1698 // get declaration for alloca 1699 Out << "/* Provide Declarations */\n"; 1700 Out << "#include <stdarg.h>\n"; // Varargs support 1701 Out << "#include <setjmp.h>\n"; // Unwind support 1702 Out << "#include <limits.h>\n"; // With overflow intrinsics support. 1703 generateCompilerSpecificCode(Out, TD); 1704 1705 // Provide a definition for `bool' if not compiling with a C++ compiler. 1706 Out << "\n" 1707 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" 1708 1709 << "\n\n/* Support for floating point constants */\n" 1710 << "typedef unsigned long long ConstantDoubleTy;\n" 1711 << "typedef unsigned int ConstantFloatTy;\n" 1712 << "typedef struct { unsigned long long f1; unsigned short f2; " 1713 "unsigned short pad[3]; } ConstantFP80Ty;\n" 1714 // This is used for both kinds of 128-bit long double; meaning differs. 1715 << "typedef struct { unsigned long long f1; unsigned long long f2; }" 1716 " ConstantFP128Ty;\n" 1717 << "\n\n/* Global Declarations */\n"; 1718 1719 // First output all the declarations for the program, because C requires 1720 // Functions & globals to be declared before they are used. 1721 // 1722 if (!M.getModuleInlineAsm().empty()) { 1723 Out << "/* Module asm statements */\n" 1724 << "asm("; 1725 1726 // Split the string into lines, to make it easier to read the .ll file. 1727 std::string Asm = M.getModuleInlineAsm(); 1728 size_t CurPos = 0; 1729 size_t NewLine = Asm.find_first_of('\n', CurPos); 1730 while (NewLine != std::string::npos) { 1731 // We found a newline, print the portion of the asm string from the 1732 // last newline up to this newline. 1733 Out << "\""; 1734 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), 1735 Out); 1736 Out << "\\n\"\n"; 1737 CurPos = NewLine+1; 1738 NewLine = Asm.find_first_of('\n', CurPos); 1739 } 1740 Out << "\""; 1741 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); 1742 Out << "\");\n" 1743 << "/* End Module asm statements */\n"; 1744 } 1745 1746 // Loop over the symbol table, emitting all named constants. 1747 printModuleTypes(); 1748 1749 // Global variable declarations... 1750 if (!M.global_empty()) { 1751 Out << "\n/* External Global Variable Declarations */\n"; 1752 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1753 I != E; ++I) { 1754 1755 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || 1756 I->hasCommonLinkage()) 1757 Out << "extern "; 1758 else if (I->hasDLLImportLinkage()) 1759 Out << "__declspec(dllimport) "; 1760 else 1761 continue; // Internal Global 1762 1763 // Thread Local Storage 1764 if (I->isThreadLocal()) 1765 Out << "__thread "; 1766 1767 printType(Out, I->getType()->getElementType(), false, GetValueName(I)); 1768 1769 if (I->hasExternalWeakLinkage()) 1770 Out << " __EXTERNAL_WEAK__"; 1771 Out << ";\n"; 1772 } 1773 } 1774 1775 // Function declarations 1776 Out << "\n/* Function Declarations */\n"; 1777 Out << "double fmod(double, double);\n"; // Support for FP rem 1778 Out << "float fmodf(float, float);\n"; 1779 Out << "long double fmodl(long double, long double);\n"; 1780 1781 // Store the intrinsics which will be declared/defined below. 1782 SmallVector<const Function*, 8> intrinsicsToDefine; 1783 1784 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { 1785 // Don't print declarations for intrinsic functions. 1786 // Store the used intrinsics, which need to be explicitly defined. 1787 if (I->isIntrinsic()) { 1788 switch (I->getIntrinsicID()) { 1789 default: 1790 break; 1791 case Intrinsic::uadd_with_overflow: 1792 case Intrinsic::sadd_with_overflow: 1793 intrinsicsToDefine.push_back(I); 1794 break; 1795 } 1796 continue; 1797 } 1798 1799 if (I->getName() == "setjmp" || 1800 I->getName() == "longjmp" || I->getName() == "_setjmp") 1801 continue; 1802 1803 if (I->hasExternalWeakLinkage()) 1804 Out << "extern "; 1805 printFunctionSignature(I, true); 1806 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 1807 Out << " __ATTRIBUTE_WEAK__"; 1808 if (I->hasExternalWeakLinkage()) 1809 Out << " __EXTERNAL_WEAK__"; 1810 if (StaticCtors.count(I)) 1811 Out << " __ATTRIBUTE_CTOR__"; 1812 if (StaticDtors.count(I)) 1813 Out << " __ATTRIBUTE_DTOR__"; 1814 if (I->hasHiddenVisibility()) 1815 Out << " __HIDDEN__"; 1816 1817 if (I->hasName() && I->getName()[0] == 1) 1818 Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")"; 1819 1820 Out << ";\n"; 1821 } 1822 1823 // Output the global variable declarations 1824 if (!M.global_empty()) { 1825 Out << "\n\n/* Global Variable Declarations */\n"; 1826 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1827 I != E; ++I) 1828 if (!I->isDeclaration()) { 1829 // Ignore special globals, such as debug info. 1830 if (getGlobalVariableClass(I)) 1831 continue; 1832 1833 if (I->hasLocalLinkage()) 1834 Out << "static "; 1835 else 1836 Out << "extern "; 1837 1838 // Thread Local Storage 1839 if (I->isThreadLocal()) 1840 Out << "__thread "; 1841 1842 printType(Out, I->getType()->getElementType(), false, 1843 GetValueName(I)); 1844 1845 if (I->hasLinkOnceLinkage()) 1846 Out << " __attribute__((common))"; 1847 else if (I->hasCommonLinkage()) // FIXME is this right? 1848 Out << " __ATTRIBUTE_WEAK__"; 1849 else if (I->hasWeakLinkage()) 1850 Out << " __ATTRIBUTE_WEAK__"; 1851 else if (I->hasExternalWeakLinkage()) 1852 Out << " __EXTERNAL_WEAK__"; 1853 if (I->hasHiddenVisibility()) 1854 Out << " __HIDDEN__"; 1855 Out << ";\n"; 1856 } 1857 } 1858 1859 // Output the global variable definitions and contents... 1860 if (!M.global_empty()) { 1861 Out << "\n\n/* Global Variable Definitions and Initialization */\n"; 1862 for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 1863 I != E; ++I) 1864 if (!I->isDeclaration()) { 1865 // Ignore special globals, such as debug info. 1866 if (getGlobalVariableClass(I)) 1867 continue; 1868 1869 if (I->hasLocalLinkage()) 1870 Out << "static "; 1871 else if (I->hasDLLImportLinkage()) 1872 Out << "__declspec(dllimport) "; 1873 else if (I->hasDLLExportLinkage()) 1874 Out << "__declspec(dllexport) "; 1875 1876 // Thread Local Storage 1877 if (I->isThreadLocal()) 1878 Out << "__thread "; 1879 1880 printType(Out, I->getType()->getElementType(), false, 1881 GetValueName(I)); 1882 if (I->hasLinkOnceLinkage()) 1883 Out << " __attribute__((common))"; 1884 else if (I->hasWeakLinkage()) 1885 Out << " __ATTRIBUTE_WEAK__"; 1886 else if (I->hasCommonLinkage()) 1887 Out << " __ATTRIBUTE_WEAK__"; 1888 1889 if (I->hasHiddenVisibility()) 1890 Out << " __HIDDEN__"; 1891 1892 // If the initializer is not null, emit the initializer. If it is null, 1893 // we try to avoid emitting large amounts of zeros. The problem with 1894 // this, however, occurs when the variable has weak linkage. In this 1895 // case, the assembler will complain about the variable being both weak 1896 // and common, so we disable this optimization. 1897 // FIXME common linkage should avoid this problem. 1898 if (!I->getInitializer()->isNullValue()) { 1899 Out << " = " ; 1900 writeOperand(I->getInitializer(), true); 1901 } else if (I->hasWeakLinkage()) { 1902 // We have to specify an initializer, but it doesn't have to be 1903 // complete. If the value is an aggregate, print out { 0 }, and let 1904 // the compiler figure out the rest of the zeros. 1905 Out << " = " ; 1906 if (I->getInitializer()->getType()->isStructTy() || 1907 I->getInitializer()->getType()->isVectorTy()) { 1908 Out << "{ 0 }"; 1909 } else if (I->getInitializer()->getType()->isArrayTy()) { 1910 // As with structs and vectors, but with an extra set of braces 1911 // because arrays are wrapped in structs. 1912 Out << "{ { 0 } }"; 1913 } else { 1914 // Just print it out normally. 1915 writeOperand(I->getInitializer(), true); 1916 } 1917 } 1918 Out << ";\n"; 1919 } 1920 } 1921 1922 if (!M.empty()) 1923 Out << "\n\n/* Function Bodies */\n"; 1924 1925 // Emit some helper functions for dealing with FCMP instruction's 1926 // predicates 1927 Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; 1928 Out << "return X == X && Y == Y; }\n"; 1929 Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; 1930 Out << "return X != X || Y != Y; }\n"; 1931 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; 1932 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; 1933 Out << "static inline int llvm_fcmp_une(double X, double Y) { "; 1934 Out << "return X != Y; }\n"; 1935 Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; 1936 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; 1937 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; 1938 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; 1939 Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; 1940 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; 1941 Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; 1942 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; 1943 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; 1944 Out << "return X == Y ; }\n"; 1945 Out << "static inline int llvm_fcmp_one(double X, double Y) { "; 1946 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; 1947 Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; 1948 Out << "return X < Y ; }\n"; 1949 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; 1950 Out << "return X > Y ; }\n"; 1951 Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; 1952 Out << "return X <= Y ; }\n"; 1953 Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; 1954 Out << "return X >= Y ; }\n"; 1955 1956 // Emit definitions of the intrinsics. 1957 for (SmallVector<const Function*, 8>::const_iterator 1958 I = intrinsicsToDefine.begin(), 1959 E = intrinsicsToDefine.end(); I != E; ++I) { 1960 printIntrinsicDefinition(**I, Out); 1961 } 1962 1963 return false; 1964 } 1965 1966 1967 /// Output all floating point constants that cannot be printed accurately... 1968 void CWriter::printFloatingPointConstants(Function &F) { 1969 // Scan the module for floating point constants. If any FP constant is used 1970 // in the function, we want to redirect it here so that we do not depend on 1971 // the precision of the printed form, unless the printed form preserves 1972 // precision. 1973 // 1974 for (constant_iterator I = constant_begin(&F), E = constant_end(&F); 1975 I != E; ++I) 1976 printFloatingPointConstants(*I); 1977 1978 Out << '\n'; 1979 } 1980 1981 void CWriter::printFloatingPointConstants(const Constant *C) { 1982 // If this is a constant expression, recursively check for constant fp values. 1983 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1984 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) 1985 printFloatingPointConstants(CE->getOperand(i)); 1986 return; 1987 } 1988 1989 // Otherwise, check for a FP constant that we need to print. 1990 const ConstantFP *FPC = dyn_cast<ConstantFP>(C); 1991 if (FPC == 0 || 1992 // Do not put in FPConstantMap if safe. 1993 isFPCSafeToPrint(FPC) || 1994 // Already printed this constant? 1995 FPConstantMap.count(FPC)) 1996 return; 1997 1998 FPConstantMap[FPC] = FPCounter; // Number the FP constants 1999 2000 if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) { 2001 double Val = FPC->getValueAPF().convertToDouble(); 2002 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); 2003 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ 2004 << " = 0x" << utohexstr(i) 2005 << "ULL; /* " << Val << " */\n"; 2006 } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) { 2007 float Val = FPC->getValueAPF().convertToFloat(); 2008 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt(). 2009 getZExtValue(); 2010 Out << "static const ConstantFloatTy FPConstant" << FPCounter++ 2011 << " = 0x" << utohexstr(i) 2012 << "U; /* " << Val << " */\n"; 2013 } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) { 2014 // api needed to prevent premature destruction 2015 APInt api = FPC->getValueAPF().bitcastToAPInt(); 2016 const uint64_t *p = api.getRawData(); 2017 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++ 2018 << " = { 0x" << utohexstr(p[0]) 2019 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}" 2020 << "}; /* Long double constant */\n"; 2021 } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) || 2022 FPC->getType() == Type::getFP128Ty(FPC->getContext())) { 2023 APInt api = FPC->getValueAPF().bitcastToAPInt(); 2024 const uint64_t *p = api.getRawData(); 2025 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++ 2026 << " = { 0x" 2027 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1]) 2028 << "}; /* Long double constant */\n"; 2029 2030 } else { 2031 llvm_unreachable("Unknown float type!"); 2032 } 2033 } 2034 2035 2036 /// printSymbolTable - Run through symbol table looking for type names. If a 2037 /// type name is found, emit its declaration... 2038 /// 2039 void CWriter::printModuleTypes() { 2040 Out << "/* Helper union for bitcasts */\n"; 2041 Out << "typedef union {\n"; 2042 Out << " unsigned int Int32;\n"; 2043 Out << " unsigned long long Int64;\n"; 2044 Out << " float Float;\n"; 2045 Out << " double Double;\n"; 2046 Out << "} llvmBitCastUnion;\n"; 2047 2048 // Get all of the struct types used in the module. 2049 std::vector<StructType*> StructTypes; 2050 TheModule->findUsedStructTypes(StructTypes); 2051 2052 if (StructTypes.empty()) return; 2053 2054 Out << "/* Structure forward decls */\n"; 2055 2056 unsigned NextTypeID = 0; 2057 2058 // If any of them are missing names, add a unique ID to UnnamedStructIDs. 2059 // Print out forward declarations for structure types. 2060 for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) { 2061 StructType *ST = StructTypes[i]; 2062 2063 if (ST->isAnonymous() || ST->getName().empty()) 2064 UnnamedStructIDs[ST] = NextTypeID++; 2065 2066 std::string Name = getStructName(ST); 2067 2068 Out << "typedef struct " << Name << ' ' << Name << ";\n"; 2069 } 2070 2071 Out << '\n'; 2072 2073 // Keep track of which structures have been printed so far. 2074 SmallPtrSet<Type *, 16> StructPrinted; 2075 2076 // Loop over all structures then push them into the stack so they are 2077 // printed in the correct order. 2078 // 2079 Out << "/* Structure contents */\n"; 2080 for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) 2081 if (StructTypes[i]->isStructTy()) 2082 // Only print out used types! 2083 printContainedStructs(StructTypes[i], StructPrinted); 2084 } 2085 2086 // Push the struct onto the stack and recursively push all structs 2087 // this one depends on. 2088 // 2089 // TODO: Make this work properly with vector types 2090 // 2091 void CWriter::printContainedStructs(Type *Ty, 2092 SmallPtrSet<Type *, 16> &StructPrinted) { 2093 // Don't walk through pointers. 2094 if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy()) 2095 return; 2096 2097 // Print all contained types first. 2098 for (Type::subtype_iterator I = Ty->subtype_begin(), 2099 E = Ty->subtype_end(); I != E; ++I) 2100 printContainedStructs(*I, StructPrinted); 2101 2102 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2103 // Check to see if we have already printed this struct. 2104 if (!StructPrinted.insert(Ty)) return; 2105 2106 // Print structure type out. 2107 printType(Out, ST, false, getStructName(ST), true); 2108 Out << ";\n\n"; 2109 } 2110 } 2111 2112 void CWriter::printFunctionSignature(const Function *F, bool Prototype) { 2113 /// isStructReturn - Should this function actually return a struct by-value? 2114 bool isStructReturn = F->hasStructRetAttr(); 2115 2116 if (F->hasLocalLinkage()) Out << "static "; 2117 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; 2118 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; 2119 switch (F->getCallingConv()) { 2120 case CallingConv::X86_StdCall: 2121 Out << "__attribute__((stdcall)) "; 2122 break; 2123 case CallingConv::X86_FastCall: 2124 Out << "__attribute__((fastcall)) "; 2125 break; 2126 case CallingConv::X86_ThisCall: 2127 Out << "__attribute__((thiscall)) "; 2128 break; 2129 default: 2130 break; 2131 } 2132 2133 // Loop over the arguments, printing them... 2134 FunctionType *FT = cast<FunctionType>(F->getFunctionType()); 2135 const AttrListPtr &PAL = F->getAttributes(); 2136 2137 std::string tstr; 2138 raw_string_ostream FunctionInnards(tstr); 2139 2140 // Print out the name... 2141 FunctionInnards << GetValueName(F) << '('; 2142 2143 bool PrintedArg = false; 2144 if (!F->isDeclaration()) { 2145 if (!F->arg_empty()) { 2146 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 2147 unsigned Idx = 1; 2148 2149 // If this is a struct-return function, don't print the hidden 2150 // struct-return argument. 2151 if (isStructReturn) { 2152 assert(I != E && "Invalid struct return function!"); 2153 ++I; 2154 ++Idx; 2155 } 2156 2157 std::string ArgName; 2158 for (; I != E; ++I) { 2159 if (PrintedArg) FunctionInnards << ", "; 2160 if (I->hasName() || !Prototype) 2161 ArgName = GetValueName(I); 2162 else 2163 ArgName = ""; 2164 Type *ArgTy = I->getType(); 2165 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 2166 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 2167 ByValParams.insert(I); 2168 } 2169 printType(FunctionInnards, ArgTy, 2170 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), 2171 ArgName); 2172 PrintedArg = true; 2173 ++Idx; 2174 } 2175 } 2176 } else { 2177 // Loop over the arguments, printing them. 2178 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); 2179 unsigned Idx = 1; 2180 2181 // If this is a struct-return function, don't print the hidden 2182 // struct-return argument. 2183 if (isStructReturn) { 2184 assert(I != E && "Invalid struct return function!"); 2185 ++I; 2186 ++Idx; 2187 } 2188 2189 for (; I != E; ++I) { 2190 if (PrintedArg) FunctionInnards << ", "; 2191 Type *ArgTy = *I; 2192 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { 2193 assert(ArgTy->isPointerTy()); 2194 ArgTy = cast<PointerType>(ArgTy)->getElementType(); 2195 } 2196 printType(FunctionInnards, ArgTy, 2197 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt)); 2198 PrintedArg = true; 2199 ++Idx; 2200 } 2201 } 2202 2203 if (!PrintedArg && FT->isVarArg()) { 2204 FunctionInnards << "int vararg_dummy_arg"; 2205 PrintedArg = true; 2206 } 2207 2208 // Finish printing arguments... if this is a vararg function, print the ..., 2209 // unless there are no known types, in which case, we just emit (). 2210 // 2211 if (FT->isVarArg() && PrintedArg) { 2212 FunctionInnards << ",..."; // Output varargs portion of signature! 2213 } else if (!FT->isVarArg() && !PrintedArg) { 2214 FunctionInnards << "void"; // ret() -> ret(void) in C. 2215 } 2216 FunctionInnards << ')'; 2217 2218 // Get the return tpe for the function. 2219 Type *RetTy; 2220 if (!isStructReturn) 2221 RetTy = F->getReturnType(); 2222 else { 2223 // If this is a struct-return function, print the struct-return type. 2224 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType(); 2225 } 2226 2227 // Print out the return type and the signature built above. 2228 printType(Out, RetTy, 2229 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), 2230 FunctionInnards.str()); 2231 } 2232 2233 static inline bool isFPIntBitCast(const Instruction &I) { 2234 if (!isa<BitCastInst>(I)) 2235 return false; 2236 Type *SrcTy = I.getOperand(0)->getType(); 2237 Type *DstTy = I.getType(); 2238 return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) || 2239 (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy()); 2240 } 2241 2242 void CWriter::printFunction(Function &F) { 2243 /// isStructReturn - Should this function actually return a struct by-value? 2244 bool isStructReturn = F.hasStructRetAttr(); 2245 2246 printFunctionSignature(&F, false); 2247 Out << " {\n"; 2248 2249 // If this is a struct return function, handle the result with magic. 2250 if (isStructReturn) { 2251 Type *StructTy = 2252 cast<PointerType>(F.arg_begin()->getType())->getElementType(); 2253 Out << " "; 2254 printType(Out, StructTy, false, "StructReturn"); 2255 Out << "; /* Struct return temporary */\n"; 2256 2257 Out << " "; 2258 printType(Out, F.arg_begin()->getType(), false, 2259 GetValueName(F.arg_begin())); 2260 Out << " = &StructReturn;\n"; 2261 } 2262 2263 bool PrintedVar = false; 2264 2265 // print local variable information for the function 2266 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { 2267 if (const AllocaInst *AI = isDirectAlloca(&*I)) { 2268 Out << " "; 2269 printType(Out, AI->getAllocatedType(), false, GetValueName(AI)); 2270 Out << "; /* Address-exposed local */\n"; 2271 PrintedVar = true; 2272 } else if (I->getType() != Type::getVoidTy(F.getContext()) && 2273 !isInlinableInst(*I)) { 2274 Out << " "; 2275 printType(Out, I->getType(), false, GetValueName(&*I)); 2276 Out << ";\n"; 2277 2278 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... 2279 Out << " "; 2280 printType(Out, I->getType(), false, 2281 GetValueName(&*I)+"__PHI_TEMPORARY"); 2282 Out << ";\n"; 2283 } 2284 PrintedVar = true; 2285 } 2286 // We need a temporary for the BitCast to use so it can pluck a value out 2287 // of a union to do the BitCast. This is separate from the need for a 2288 // variable to hold the result of the BitCast. 2289 if (isFPIntBitCast(*I)) { 2290 Out << " llvmBitCastUnion " << GetValueName(&*I) 2291 << "__BITCAST_TEMPORARY;\n"; 2292 PrintedVar = true; 2293 } 2294 } 2295 2296 if (PrintedVar) 2297 Out << '\n'; 2298 2299 if (F.hasExternalLinkage() && F.getName() == "main") 2300 Out << " CODE_FOR_MAIN();\n"; 2301 2302 // print the basic blocks 2303 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2304 if (Loop *L = LI->getLoopFor(BB)) { 2305 if (L->getHeader() == BB && L->getParentLoop() == 0) 2306 printLoop(L); 2307 } else { 2308 printBasicBlock(BB); 2309 } 2310 } 2311 2312 Out << "}\n\n"; 2313 } 2314 2315 void CWriter::printLoop(Loop *L) { 2316 Out << " do { /* Syntactic loop '" << L->getHeader()->getName() 2317 << "' to make GCC happy */\n"; 2318 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { 2319 BasicBlock *BB = L->getBlocks()[i]; 2320 Loop *BBLoop = LI->getLoopFor(BB); 2321 if (BBLoop == L) 2322 printBasicBlock(BB); 2323 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) 2324 printLoop(BBLoop); 2325 } 2326 Out << " } while (1); /* end of syntactic loop '" 2327 << L->getHeader()->getName() << "' */\n"; 2328 } 2329 2330 void CWriter::printBasicBlock(BasicBlock *BB) { 2331 2332 // Don't print the label for the basic block if there are no uses, or if 2333 // the only terminator use is the predecessor basic block's terminator. 2334 // We have to scan the use list because PHI nodes use basic blocks too but 2335 // do not require a label to be generated. 2336 // 2337 bool NeedsLabel = false; 2338 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 2339 if (isGotoCodeNecessary(*PI, BB)) { 2340 NeedsLabel = true; 2341 break; 2342 } 2343 2344 if (NeedsLabel) Out << GetValueName(BB) << ":\n"; 2345 2346 // Output all of the instructions in the basic block... 2347 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; 2348 ++II) { 2349 if (!isInlinableInst(*II) && !isDirectAlloca(II)) { 2350 if (II->getType() != Type::getVoidTy(BB->getContext()) && 2351 !isInlineAsm(*II)) 2352 outputLValue(II); 2353 else 2354 Out << " "; 2355 writeInstComputationInline(*II); 2356 Out << ";\n"; 2357 } 2358 } 2359 2360 // Don't emit prefix or suffix for the terminator. 2361 visit(*BB->getTerminator()); 2362 } 2363 2364 2365 // Specific Instruction type classes... note that all of the casts are 2366 // necessary because we use the instruction classes as opaque types... 2367 // 2368 void CWriter::visitReturnInst(ReturnInst &I) { 2369 // If this is a struct return function, return the temporary struct. 2370 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr(); 2371 2372 if (isStructReturn) { 2373 Out << " return StructReturn;\n"; 2374 return; 2375 } 2376 2377 // Don't output a void return if this is the last basic block in the function 2378 if (I.getNumOperands() == 0 && 2379 &*--I.getParent()->getParent()->end() == I.getParent() && 2380 !I.getParent()->size() == 1) { 2381 return; 2382 } 2383 2384 Out << " return"; 2385 if (I.getNumOperands()) { 2386 Out << ' '; 2387 writeOperand(I.getOperand(0)); 2388 } 2389 Out << ";\n"; 2390 } 2391 2392 void CWriter::visitSwitchInst(SwitchInst &SI) { 2393 2394 Out << " switch ("; 2395 writeOperand(SI.getOperand(0)); 2396 Out << ") {\n default:\n"; 2397 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); 2398 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); 2399 Out << ";\n"; 2400 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { 2401 Out << " case "; 2402 writeOperand(SI.getOperand(i)); 2403 Out << ":\n"; 2404 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); 2405 printPHICopiesForSuccessor (SI.getParent(), Succ, 2); 2406 printBranchToBlock(SI.getParent(), Succ, 2); 2407 if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent()))) 2408 Out << " break;\n"; 2409 } 2410 Out << " }\n"; 2411 } 2412 2413 void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) { 2414 Out << " goto *(void*)("; 2415 writeOperand(IBI.getOperand(0)); 2416 Out << ");\n"; 2417 } 2418 2419 void CWriter::visitUnreachableInst(UnreachableInst &I) { 2420 Out << " /*UNREACHABLE*/;\n"; 2421 } 2422 2423 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { 2424 /// FIXME: This should be reenabled, but loop reordering safe!! 2425 return true; 2426 2427 if (llvm::next(Function::iterator(From)) != Function::iterator(To)) 2428 return true; // Not the direct successor, we need a goto. 2429 2430 //isa<SwitchInst>(From->getTerminator()) 2431 2432 if (LI->getLoopFor(From) != LI->getLoopFor(To)) 2433 return true; 2434 return false; 2435 } 2436 2437 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, 2438 BasicBlock *Successor, 2439 unsigned Indent) { 2440 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { 2441 PHINode *PN = cast<PHINode>(I); 2442 // Now we have to do the printing. 2443 Value *IV = PN->getIncomingValueForBlock(CurBlock); 2444 if (!isa<UndefValue>(IV)) { 2445 Out << std::string(Indent, ' '); 2446 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = "; 2447 writeOperand(IV); 2448 Out << "; /* for PHI node */\n"; 2449 } 2450 } 2451 } 2452 2453 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, 2454 unsigned Indent) { 2455 if (isGotoCodeNecessary(CurBB, Succ)) { 2456 Out << std::string(Indent, ' ') << " goto "; 2457 writeOperand(Succ); 2458 Out << ";\n"; 2459 } 2460 } 2461 2462 // Branch instruction printing - Avoid printing out a branch to a basic block 2463 // that immediately succeeds the current one. 2464 // 2465 void CWriter::visitBranchInst(BranchInst &I) { 2466 2467 if (I.isConditional()) { 2468 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { 2469 Out << " if ("; 2470 writeOperand(I.getCondition()); 2471 Out << ") {\n"; 2472 2473 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); 2474 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); 2475 2476 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { 2477 Out << " } else {\n"; 2478 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); 2479 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); 2480 } 2481 } else { 2482 // First goto not necessary, assume second one is... 2483 Out << " if (!"; 2484 writeOperand(I.getCondition()); 2485 Out << ") {\n"; 2486 2487 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); 2488 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); 2489 } 2490 2491 Out << " }\n"; 2492 } else { 2493 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); 2494 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); 2495 } 2496 Out << "\n"; 2497 } 2498 2499 // PHI nodes get copied into temporary values at the end of predecessor basic 2500 // blocks. We now need to copy these temporary values into the REAL value for 2501 // the PHI. 2502 void CWriter::visitPHINode(PHINode &I) { 2503 writeOperand(&I); 2504 Out << "__PHI_TEMPORARY"; 2505 } 2506 2507 2508 void CWriter::visitBinaryOperator(Instruction &I) { 2509 // binary instructions, shift instructions, setCond instructions. 2510 assert(!I.getType()->isPointerTy()); 2511 2512 // We must cast the results of binary operations which might be promoted. 2513 bool needsCast = false; 2514 if ((I.getType() == Type::getInt8Ty(I.getContext())) || 2515 (I.getType() == Type::getInt16Ty(I.getContext())) 2516 || (I.getType() == Type::getFloatTy(I.getContext()))) { 2517 needsCast = true; 2518 Out << "(("; 2519 printType(Out, I.getType(), false); 2520 Out << ")("; 2521 } 2522 2523 // If this is a negation operation, print it out as such. For FP, we don't 2524 // want to print "-0.0 - X". 2525 if (BinaryOperator::isNeg(&I)) { 2526 Out << "-("; 2527 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); 2528 Out << ")"; 2529 } else if (BinaryOperator::isFNeg(&I)) { 2530 Out << "-("; 2531 writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I))); 2532 Out << ")"; 2533 } else if (I.getOpcode() == Instruction::FRem) { 2534 // Output a call to fmod/fmodf instead of emitting a%b 2535 if (I.getType() == Type::getFloatTy(I.getContext())) 2536 Out << "fmodf("; 2537 else if (I.getType() == Type::getDoubleTy(I.getContext())) 2538 Out << "fmod("; 2539 else // all 3 flavors of long double 2540 Out << "fmodl("; 2541 writeOperand(I.getOperand(0)); 2542 Out << ", "; 2543 writeOperand(I.getOperand(1)); 2544 Out << ")"; 2545 } else { 2546 2547 // Write out the cast of the instruction's value back to the proper type 2548 // if necessary. 2549 bool NeedsClosingParens = writeInstructionCast(I); 2550 2551 // Certain instructions require the operand to be forced to a specific type 2552 // so we use writeOperandWithCast here instead of writeOperand. Similarly 2553 // below for operand 1 2554 writeOperandWithCast(I.getOperand(0), I.getOpcode()); 2555 2556 switch (I.getOpcode()) { 2557 case Instruction::Add: 2558 case Instruction::FAdd: Out << " + "; break; 2559 case Instruction::Sub: 2560 case Instruction::FSub: Out << " - "; break; 2561 case Instruction::Mul: 2562 case Instruction::FMul: Out << " * "; break; 2563 case Instruction::URem: 2564 case Instruction::SRem: 2565 case Instruction::FRem: Out << " % "; break; 2566 case Instruction::UDiv: 2567 case Instruction::SDiv: 2568 case Instruction::FDiv: Out << " / "; break; 2569 case Instruction::And: Out << " & "; break; 2570 case Instruction::Or: Out << " | "; break; 2571 case Instruction::Xor: Out << " ^ "; break; 2572 case Instruction::Shl : Out << " << "; break; 2573 case Instruction::LShr: 2574 case Instruction::AShr: Out << " >> "; break; 2575 default: 2576 #ifndef NDEBUG 2577 errs() << "Invalid operator type!" << I; 2578 #endif 2579 llvm_unreachable(0); 2580 } 2581 2582 writeOperandWithCast(I.getOperand(1), I.getOpcode()); 2583 if (NeedsClosingParens) 2584 Out << "))"; 2585 } 2586 2587 if (needsCast) { 2588 Out << "))"; 2589 } 2590 } 2591 2592 void CWriter::visitICmpInst(ICmpInst &I) { 2593 // We must cast the results of icmp which might be promoted. 2594 bool needsCast = false; 2595 2596 // Write out the cast of the instruction's value back to the proper type 2597 // if necessary. 2598 bool NeedsClosingParens = writeInstructionCast(I); 2599 2600 // Certain icmp predicate require the operand to be forced to a specific type 2601 // so we use writeOperandWithCast here instead of writeOperand. Similarly 2602 // below for operand 1 2603 writeOperandWithCast(I.getOperand(0), I); 2604 2605 switch (I.getPredicate()) { 2606 case ICmpInst::ICMP_EQ: Out << " == "; break; 2607 case ICmpInst::ICMP_NE: Out << " != "; break; 2608 case ICmpInst::ICMP_ULE: 2609 case ICmpInst::ICMP_SLE: Out << " <= "; break; 2610 case ICmpInst::ICMP_UGE: 2611 case ICmpInst::ICMP_SGE: Out << " >= "; break; 2612 case ICmpInst::ICMP_ULT: 2613 case ICmpInst::ICMP_SLT: Out << " < "; break; 2614 case ICmpInst::ICMP_UGT: 2615 case ICmpInst::ICMP_SGT: Out << " > "; break; 2616 default: 2617 #ifndef NDEBUG 2618 errs() << "Invalid icmp predicate!" << I; 2619 #endif 2620 llvm_unreachable(0); 2621 } 2622 2623 writeOperandWithCast(I.getOperand(1), I); 2624 if (NeedsClosingParens) 2625 Out << "))"; 2626 2627 if (needsCast) { 2628 Out << "))"; 2629 } 2630 } 2631 2632 void CWriter::visitFCmpInst(FCmpInst &I) { 2633 if (I.getPredicate() == FCmpInst::FCMP_FALSE) { 2634 Out << "0"; 2635 return; 2636 } 2637 if (I.getPredicate() == FCmpInst::FCMP_TRUE) { 2638 Out << "1"; 2639 return; 2640 } 2641 2642 const char* op = 0; 2643 switch (I.getPredicate()) { 2644 default: llvm_unreachable("Illegal FCmp predicate"); 2645 case FCmpInst::FCMP_ORD: op = "ord"; break; 2646 case FCmpInst::FCMP_UNO: op = "uno"; break; 2647 case FCmpInst::FCMP_UEQ: op = "ueq"; break; 2648 case FCmpInst::FCMP_UNE: op = "une"; break; 2649 case FCmpInst::FCMP_ULT: op = "ult"; break; 2650 case FCmpInst::FCMP_ULE: op = "ule"; break; 2651 case FCmpInst::FCMP_UGT: op = "ugt"; break; 2652 case FCmpInst::FCMP_UGE: op = "uge"; break; 2653 case FCmpInst::FCMP_OEQ: op = "oeq"; break; 2654 case FCmpInst::FCMP_ONE: op = "one"; break; 2655 case FCmpInst::FCMP_OLT: op = "olt"; break; 2656 case FCmpInst::FCMP_OLE: op = "ole"; break; 2657 case FCmpInst::FCMP_OGT: op = "ogt"; break; 2658 case FCmpInst::FCMP_OGE: op = "oge"; break; 2659 } 2660 2661 Out << "llvm_fcmp_" << op << "("; 2662 // Write the first operand 2663 writeOperand(I.getOperand(0)); 2664 Out << ", "; 2665 // Write the second operand 2666 writeOperand(I.getOperand(1)); 2667 Out << ")"; 2668 } 2669 2670 static const char * getFloatBitCastField(Type *Ty) { 2671 switch (Ty->getTypeID()) { 2672 default: llvm_unreachable("Invalid Type"); 2673 case Type::FloatTyID: return "Float"; 2674 case Type::DoubleTyID: return "Double"; 2675 case Type::IntegerTyID: { 2676 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); 2677 if (NumBits <= 32) 2678 return "Int32"; 2679 else 2680 return "Int64"; 2681 } 2682 } 2683 } 2684 2685 void CWriter::visitCastInst(CastInst &I) { 2686 Type *DstTy = I.getType(); 2687 Type *SrcTy = I.getOperand(0)->getType(); 2688 if (isFPIntBitCast(I)) { 2689 Out << '('; 2690 // These int<->float and long<->double casts need to be handled specially 2691 Out << GetValueName(&I) << "__BITCAST_TEMPORARY." 2692 << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; 2693 writeOperand(I.getOperand(0)); 2694 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY." 2695 << getFloatBitCastField(I.getType()); 2696 Out << ')'; 2697 return; 2698 } 2699 2700 Out << '('; 2701 printCast(I.getOpcode(), SrcTy, DstTy); 2702 2703 // Make a sext from i1 work by subtracting the i1 from 0 (an int). 2704 if (SrcTy == Type::getInt1Ty(I.getContext()) && 2705 I.getOpcode() == Instruction::SExt) 2706 Out << "0-"; 2707 2708 writeOperand(I.getOperand(0)); 2709 2710 if (DstTy == Type::getInt1Ty(I.getContext()) && 2711 (I.getOpcode() == Instruction::Trunc || 2712 I.getOpcode() == Instruction::FPToUI || 2713 I.getOpcode() == Instruction::FPToSI || 2714 I.getOpcode() == Instruction::PtrToInt)) { 2715 // Make sure we really get a trunc to bool by anding the operand with 1 2716 Out << "&1u"; 2717 } 2718 Out << ')'; 2719 } 2720 2721 void CWriter::visitSelectInst(SelectInst &I) { 2722 Out << "(("; 2723 writeOperand(I.getCondition()); 2724 Out << ") ? ("; 2725 writeOperand(I.getTrueValue()); 2726 Out << ") : ("; 2727 writeOperand(I.getFalseValue()); 2728 Out << "))"; 2729 } 2730 2731 // Returns the macro name or value of the max or min of an integer type 2732 // (as defined in limits.h). 2733 static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax, 2734 raw_ostream &Out) { 2735 const char* type; 2736 const char* sprefix = ""; 2737 2738 unsigned NumBits = Ty.getBitWidth(); 2739 if (NumBits <= 8) { 2740 type = "CHAR"; 2741 sprefix = "S"; 2742 } else if (NumBits <= 16) { 2743 type = "SHRT"; 2744 } else if (NumBits <= 32) { 2745 type = "INT"; 2746 } else if (NumBits <= 64) { 2747 type = "LLONG"; 2748 } else { 2749 llvm_unreachable("Bit widths > 64 not implemented yet"); 2750 } 2751 2752 if (isSigned) 2753 Out << sprefix << type << (isMax ? "_MAX" : "_MIN"); 2754 else 2755 Out << "U" << type << (isMax ? "_MAX" : "0"); 2756 } 2757 2758 #ifndef NDEBUG 2759 static bool isSupportedIntegerSize(IntegerType &T) { 2760 return T.getBitWidth() == 8 || T.getBitWidth() == 16 || 2761 T.getBitWidth() == 32 || T.getBitWidth() == 64; 2762 } 2763 #endif 2764 2765 void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) { 2766 FunctionType *funT = F.getFunctionType(); 2767 Type *retT = F.getReturnType(); 2768 IntegerType *elemT = cast<IntegerType>(funT->getParamType(1)); 2769 2770 assert(isSupportedIntegerSize(*elemT) && 2771 "CBackend does not support arbitrary size integers."); 2772 assert(cast<StructType>(retT)->getElementType(0) == elemT && 2773 elemT == funT->getParamType(0) && funT->getNumParams() == 2); 2774 2775 switch (F.getIntrinsicID()) { 2776 default: 2777 llvm_unreachable("Unsupported Intrinsic."); 2778 case Intrinsic::uadd_with_overflow: 2779 // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) { 2780 // Rty r; 2781 // r.field0 = a + b; 2782 // r.field1 = (r.field0 < a); 2783 // return r; 2784 // } 2785 Out << "static inline "; 2786 printType(Out, retT); 2787 Out << GetValueName(&F); 2788 Out << "("; 2789 printSimpleType(Out, elemT, false); 2790 Out << "a,"; 2791 printSimpleType(Out, elemT, false); 2792 Out << "b) {\n "; 2793 printType(Out, retT); 2794 Out << "r;\n"; 2795 Out << " r.field0 = a + b;\n"; 2796 Out << " r.field1 = (r.field0 < a);\n"; 2797 Out << " return r;\n}\n"; 2798 break; 2799 2800 case Intrinsic::sadd_with_overflow: 2801 // static inline Rty sadd_ixx(ixx a, ixx b) { 2802 // Rty r; 2803 // r.field1 = (b > 0 && a > XX_MAX - b) || 2804 // (b < 0 && a < XX_MIN - b); 2805 // r.field0 = r.field1 ? 0 : a + b; 2806 // return r; 2807 // } 2808 Out << "static "; 2809 printType(Out, retT); 2810 Out << GetValueName(&F); 2811 Out << "("; 2812 printSimpleType(Out, elemT, true); 2813 Out << "a,"; 2814 printSimpleType(Out, elemT, true); 2815 Out << "b) {\n "; 2816 printType(Out, retT); 2817 Out << "r;\n"; 2818 Out << " r.field1 = (b > 0 && a > "; 2819 printLimitValue(*elemT, true, true, Out); 2820 Out << " - b) || (b < 0 && a < "; 2821 printLimitValue(*elemT, true, false, Out); 2822 Out << " - b);\n"; 2823 Out << " r.field0 = r.field1 ? 0 : a + b;\n"; 2824 Out << " return r;\n}\n"; 2825 break; 2826 } 2827 } 2828 2829 void CWriter::lowerIntrinsics(Function &F) { 2830 // This is used to keep track of intrinsics that get generated to a lowered 2831 // function. We must generate the prototypes before the function body which 2832 // will only be expanded on first use (by the loop below). 2833 std::vector<Function*> prototypesToGen; 2834 2835 // Examine all the instructions in this function to find the intrinsics that 2836 // need to be lowered. 2837 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) 2838 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) 2839 if (CallInst *CI = dyn_cast<CallInst>(I++)) 2840 if (Function *F = CI->getCalledFunction()) 2841 switch (F->getIntrinsicID()) { 2842 case Intrinsic::not_intrinsic: 2843 case Intrinsic::memory_barrier: 2844 case Intrinsic::vastart: 2845 case Intrinsic::vacopy: 2846 case Intrinsic::vaend: 2847 case Intrinsic::returnaddress: 2848 case Intrinsic::frameaddress: 2849 case Intrinsic::setjmp: 2850 case Intrinsic::longjmp: 2851 case Intrinsic::prefetch: 2852 case Intrinsic::powi: 2853 case Intrinsic::x86_sse_cmp_ss: 2854 case Intrinsic::x86_sse_cmp_ps: 2855 case Intrinsic::x86_sse2_cmp_sd: 2856 case Intrinsic::x86_sse2_cmp_pd: 2857 case Intrinsic::ppc_altivec_lvsl: 2858 case Intrinsic::uadd_with_overflow: 2859 case Intrinsic::sadd_with_overflow: 2860 // We directly implement these intrinsics 2861 break; 2862 default: 2863 // If this is an intrinsic that directly corresponds to a GCC 2864 // builtin, we handle it. 2865 const char *BuiltinName = ""; 2866 #define GET_GCC_BUILTIN_NAME 2867 #include "llvm/Intrinsics.gen" 2868 #undef GET_GCC_BUILTIN_NAME 2869 // If we handle it, don't lower it. 2870 if (BuiltinName[0]) break; 2871 2872 // All other intrinsic calls we must lower. 2873 Instruction *Before = 0; 2874 if (CI != &BB->front()) 2875 Before = prior(BasicBlock::iterator(CI)); 2876 2877 IL->LowerIntrinsicCall(CI); 2878 if (Before) { // Move iterator to instruction after call 2879 I = Before; ++I; 2880 } else { 2881 I = BB->begin(); 2882 } 2883 // If the intrinsic got lowered to another call, and that call has 2884 // a definition then we need to make sure its prototype is emitted 2885 // before any calls to it. 2886 if (CallInst *Call = dyn_cast<CallInst>(I)) 2887 if (Function *NewF = Call->getCalledFunction()) 2888 if (!NewF->isDeclaration()) 2889 prototypesToGen.push_back(NewF); 2890 2891 break; 2892 } 2893 2894 // We may have collected some prototypes to emit in the loop above. 2895 // Emit them now, before the function that uses them is emitted. But, 2896 // be careful not to emit them twice. 2897 std::vector<Function*>::iterator I = prototypesToGen.begin(); 2898 std::vector<Function*>::iterator E = prototypesToGen.end(); 2899 for ( ; I != E; ++I) { 2900 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) { 2901 Out << '\n'; 2902 printFunctionSignature(*I, true); 2903 Out << ";\n"; 2904 } 2905 } 2906 } 2907 2908 void CWriter::visitCallInst(CallInst &I) { 2909 if (isa<InlineAsm>(I.getCalledValue())) 2910 return visitInlineAsm(I); 2911 2912 bool WroteCallee = false; 2913 2914 // Handle intrinsic function calls first... 2915 if (Function *F = I.getCalledFunction()) 2916 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2917 if (visitBuiltinCall(I, ID, WroteCallee)) 2918 return; 2919 2920 Value *Callee = I.getCalledValue(); 2921 2922 PointerType *PTy = cast<PointerType>(Callee->getType()); 2923 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 2924 2925 // If this is a call to a struct-return function, assign to the first 2926 // parameter instead of passing it to the call. 2927 const AttrListPtr &PAL = I.getAttributes(); 2928 bool hasByVal = I.hasByValArgument(); 2929 bool isStructRet = I.hasStructRetAttr(); 2930 if (isStructRet) { 2931 writeOperandDeref(I.getArgOperand(0)); 2932 Out << " = "; 2933 } 2934 2935 if (I.isTailCall()) Out << " /*tail*/ "; 2936 2937 if (!WroteCallee) { 2938 // If this is an indirect call to a struct return function, we need to cast 2939 // the pointer. Ditto for indirect calls with byval arguments. 2940 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee); 2941 2942 // GCC is a real PITA. It does not permit codegening casts of functions to 2943 // function pointers if they are in a call (it generates a trap instruction 2944 // instead!). We work around this by inserting a cast to void* in between 2945 // the function and the function pointer cast. Unfortunately, we can't just 2946 // form the constant expression here, because the folder will immediately 2947 // nuke it. 2948 // 2949 // Note finally, that this is completely unsafe. ANSI C does not guarantee 2950 // that void* and function pointers have the same size. :( To deal with this 2951 // in the common case, we handle casts where the number of arguments passed 2952 // match exactly. 2953 // 2954 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) 2955 if (CE->isCast()) 2956 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { 2957 NeedsCast = true; 2958 Callee = RF; 2959 } 2960 2961 if (NeedsCast) { 2962 // Ok, just cast the pointer type. 2963 Out << "(("; 2964 if (isStructRet) 2965 printStructReturnPointerFunctionType(Out, PAL, 2966 cast<PointerType>(I.getCalledValue()->getType())); 2967 else if (hasByVal) 2968 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL); 2969 else 2970 printType(Out, I.getCalledValue()->getType()); 2971 Out << ")(void*)"; 2972 } 2973 writeOperand(Callee); 2974 if (NeedsCast) Out << ')'; 2975 } 2976 2977 Out << '('; 2978 2979 bool PrintedArg = false; 2980 if(FTy->isVarArg() && !FTy->getNumParams()) { 2981 Out << "0 /*dummy arg*/"; 2982 PrintedArg = true; 2983 } 2984 2985 unsigned NumDeclaredParams = FTy->getNumParams(); 2986 CallSite CS(&I); 2987 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); 2988 unsigned ArgNo = 0; 2989 if (isStructRet) { // Skip struct return argument. 2990 ++AI; 2991 ++ArgNo; 2992 } 2993 2994 2995 for (; AI != AE; ++AI, ++ArgNo) { 2996 if (PrintedArg) Out << ", "; 2997 if (ArgNo < NumDeclaredParams && 2998 (*AI)->getType() != FTy->getParamType(ArgNo)) { 2999 Out << '('; 3000 printType(Out, FTy->getParamType(ArgNo), 3001 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt)); 3002 Out << ')'; 3003 } 3004 // Check if the argument is expected to be passed by value. 3005 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal)) 3006 writeOperandDeref(*AI); 3007 else 3008 writeOperand(*AI); 3009 PrintedArg = true; 3010 } 3011 Out << ')'; 3012 } 3013 3014 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true 3015 /// if the entire call is handled, return false if it wasn't handled, and 3016 /// optionally set 'WroteCallee' if the callee has already been printed out. 3017 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, 3018 bool &WroteCallee) { 3019 switch (ID) { 3020 default: { 3021 // If this is an intrinsic that directly corresponds to a GCC 3022 // builtin, we emit it here. 3023 const char *BuiltinName = ""; 3024 Function *F = I.getCalledFunction(); 3025 #define GET_GCC_BUILTIN_NAME 3026 #include "llvm/Intrinsics.gen" 3027 #undef GET_GCC_BUILTIN_NAME 3028 assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); 3029 3030 Out << BuiltinName; 3031 WroteCallee = true; 3032 return false; 3033 } 3034 case Intrinsic::memory_barrier: 3035 Out << "__sync_synchronize()"; 3036 return true; 3037 case Intrinsic::vastart: 3038 Out << "0; "; 3039 3040 Out << "va_start(*(va_list*)"; 3041 writeOperand(I.getArgOperand(0)); 3042 Out << ", "; 3043 // Output the last argument to the enclosing function. 3044 if (I.getParent()->getParent()->arg_empty()) 3045 Out << "vararg_dummy_arg"; 3046 else 3047 writeOperand(--I.getParent()->getParent()->arg_end()); 3048 Out << ')'; 3049 return true; 3050 case Intrinsic::vaend: 3051 if (!isa<ConstantPointerNull>(I.getArgOperand(0))) { 3052 Out << "0; va_end(*(va_list*)"; 3053 writeOperand(I.getArgOperand(0)); 3054 Out << ')'; 3055 } else { 3056 Out << "va_end(*(va_list*)0)"; 3057 } 3058 return true; 3059 case Intrinsic::vacopy: 3060 Out << "0; "; 3061 Out << "va_copy(*(va_list*)"; 3062 writeOperand(I.getArgOperand(0)); 3063 Out << ", *(va_list*)"; 3064 writeOperand(I.getArgOperand(1)); 3065 Out << ')'; 3066 return true; 3067 case Intrinsic::returnaddress: 3068 Out << "__builtin_return_address("; 3069 writeOperand(I.getArgOperand(0)); 3070 Out << ')'; 3071 return true; 3072 case Intrinsic::frameaddress: 3073 Out << "__builtin_frame_address("; 3074 writeOperand(I.getArgOperand(0)); 3075 Out << ')'; 3076 return true; 3077 case Intrinsic::powi: 3078 Out << "__builtin_powi("; 3079 writeOperand(I.getArgOperand(0)); 3080 Out << ", "; 3081 writeOperand(I.getArgOperand(1)); 3082 Out << ')'; 3083 return true; 3084 case Intrinsic::setjmp: 3085 Out << "setjmp(*(jmp_buf*)"; 3086 writeOperand(I.getArgOperand(0)); 3087 Out << ')'; 3088 return true; 3089 case Intrinsic::longjmp: 3090 Out << "longjmp(*(jmp_buf*)"; 3091 writeOperand(I.getArgOperand(0)); 3092 Out << ", "; 3093 writeOperand(I.getArgOperand(1)); 3094 Out << ')'; 3095 return true; 3096 case Intrinsic::prefetch: 3097 Out << "LLVM_PREFETCH((const void *)"; 3098 writeOperand(I.getArgOperand(0)); 3099 Out << ", "; 3100 writeOperand(I.getArgOperand(1)); 3101 Out << ", "; 3102 writeOperand(I.getArgOperand(2)); 3103 Out << ")"; 3104 return true; 3105 case Intrinsic::stacksave: 3106 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save() 3107 // to work around GCC bugs (see PR1809). 3108 Out << "0; *((void**)&" << GetValueName(&I) 3109 << ") = __builtin_stack_save()"; 3110 return true; 3111 case Intrinsic::x86_sse_cmp_ss: 3112 case Intrinsic::x86_sse_cmp_ps: 3113 case Intrinsic::x86_sse2_cmp_sd: 3114 case Intrinsic::x86_sse2_cmp_pd: 3115 Out << '('; 3116 printType(Out, I.getType()); 3117 Out << ')'; 3118 // Multiple GCC builtins multiplex onto this intrinsic. 3119 switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) { 3120 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!"); 3121 case 0: Out << "__builtin_ia32_cmpeq"; break; 3122 case 1: Out << "__builtin_ia32_cmplt"; break; 3123 case 2: Out << "__builtin_ia32_cmple"; break; 3124 case 3: Out << "__builtin_ia32_cmpunord"; break; 3125 case 4: Out << "__builtin_ia32_cmpneq"; break; 3126 case 5: Out << "__builtin_ia32_cmpnlt"; break; 3127 case 6: Out << "__builtin_ia32_cmpnle"; break; 3128 case 7: Out << "__builtin_ia32_cmpord"; break; 3129 } 3130 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd) 3131 Out << 'p'; 3132 else 3133 Out << 's'; 3134 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps) 3135 Out << 's'; 3136 else 3137 Out << 'd'; 3138 3139 Out << "("; 3140 writeOperand(I.getArgOperand(0)); 3141 Out << ", "; 3142 writeOperand(I.getArgOperand(1)); 3143 Out << ")"; 3144 return true; 3145 case Intrinsic::ppc_altivec_lvsl: 3146 Out << '('; 3147 printType(Out, I.getType()); 3148 Out << ')'; 3149 Out << "__builtin_altivec_lvsl(0, (void*)"; 3150 writeOperand(I.getArgOperand(0)); 3151 Out << ")"; 3152 return true; 3153 case Intrinsic::uadd_with_overflow: 3154 case Intrinsic::sadd_with_overflow: 3155 Out << GetValueName(I.getCalledFunction()) << "("; 3156 writeOperand(I.getArgOperand(0)); 3157 Out << ", "; 3158 writeOperand(I.getArgOperand(1)); 3159 Out << ")"; 3160 return true; 3161 } 3162 } 3163 3164 //This converts the llvm constraint string to something gcc is expecting. 3165 //TODO: work out platform independent constraints and factor those out 3166 // of the per target tables 3167 // handle multiple constraint codes 3168 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { 3169 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); 3170 3171 // Grab the translation table from MCAsmInfo if it exists. 3172 const MCAsmInfo *TargetAsm; 3173 std::string Triple = TheModule->getTargetTriple(); 3174 if (Triple.empty()) 3175 Triple = llvm::sys::getHostTriple(); 3176 3177 std::string E; 3178 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) 3179 TargetAsm = Match->createMCAsmInfo(Triple); 3180 else 3181 return c.Codes[0]; 3182 3183 const char *const *table = TargetAsm->getAsmCBE(); 3184 3185 // Search the translation table if it exists. 3186 for (int i = 0; table && table[i]; i += 2) 3187 if (c.Codes[0] == table[i]) { 3188 delete TargetAsm; 3189 return table[i+1]; 3190 } 3191 3192 // Default is identity. 3193 delete TargetAsm; 3194 return c.Codes[0]; 3195 } 3196 3197 //TODO: import logic from AsmPrinter.cpp 3198 static std::string gccifyAsm(std::string asmstr) { 3199 for (std::string::size_type i = 0; i != asmstr.size(); ++i) 3200 if (asmstr[i] == '\n') 3201 asmstr.replace(i, 1, "\\n"); 3202 else if (asmstr[i] == '\t') 3203 asmstr.replace(i, 1, "\\t"); 3204 else if (asmstr[i] == '$') { 3205 if (asmstr[i + 1] == '{') { 3206 std::string::size_type a = asmstr.find_first_of(':', i + 1); 3207 std::string::size_type b = asmstr.find_first_of('}', i + 1); 3208 std::string n = "%" + 3209 asmstr.substr(a + 1, b - a - 1) + 3210 asmstr.substr(i + 2, a - i - 2); 3211 asmstr.replace(i, b - i + 1, n); 3212 i += n.size() - 1; 3213 } else 3214 asmstr.replace(i, 1, "%"); 3215 } 3216 else if (asmstr[i] == '%')//grr 3217 { asmstr.replace(i, 1, "%%"); ++i;} 3218 3219 return asmstr; 3220 } 3221 3222 //TODO: assumptions about what consume arguments from the call are likely wrong 3223 // handle communitivity 3224 void CWriter::visitInlineAsm(CallInst &CI) { 3225 InlineAsm* as = cast<InlineAsm>(CI.getCalledValue()); 3226 InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints(); 3227 3228 std::vector<std::pair<Value*, int> > ResultVals; 3229 if (CI.getType() == Type::getVoidTy(CI.getContext())) 3230 ; 3231 else if (StructType *ST = dyn_cast<StructType>(CI.getType())) { 3232 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) 3233 ResultVals.push_back(std::make_pair(&CI, (int)i)); 3234 } else { 3235 ResultVals.push_back(std::make_pair(&CI, -1)); 3236 } 3237 3238 // Fix up the asm string for gcc and emit it. 3239 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n"; 3240 Out << " :"; 3241 3242 unsigned ValueCount = 0; 3243 bool IsFirst = true; 3244 3245 // Convert over all the output constraints. 3246 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3247 E = Constraints.end(); I != E; ++I) { 3248 3249 if (I->Type != InlineAsm::isOutput) { 3250 ++ValueCount; 3251 continue; // Ignore non-output constraints. 3252 } 3253 3254 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3255 std::string C = InterpretASMConstraint(*I); 3256 if (C.empty()) continue; 3257 3258 if (!IsFirst) { 3259 Out << ", "; 3260 IsFirst = false; 3261 } 3262 3263 // Unpack the dest. 3264 Value *DestVal; 3265 int DestValNo = -1; 3266 3267 if (ValueCount < ResultVals.size()) { 3268 DestVal = ResultVals[ValueCount].first; 3269 DestValNo = ResultVals[ValueCount].second; 3270 } else 3271 DestVal = CI.getArgOperand(ValueCount-ResultVals.size()); 3272 3273 if (I->isEarlyClobber) 3274 C = "&"+C; 3275 3276 Out << "\"=" << C << "\"(" << GetValueName(DestVal); 3277 if (DestValNo != -1) 3278 Out << ".field" << DestValNo; // Multiple retvals. 3279 Out << ")"; 3280 ++ValueCount; 3281 } 3282 3283 3284 // Convert over all the input constraints. 3285 Out << "\n :"; 3286 IsFirst = true; 3287 ValueCount = 0; 3288 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3289 E = Constraints.end(); I != E; ++I) { 3290 if (I->Type != InlineAsm::isInput) { 3291 ++ValueCount; 3292 continue; // Ignore non-input constraints. 3293 } 3294 3295 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3296 std::string C = InterpretASMConstraint(*I); 3297 if (C.empty()) continue; 3298 3299 if (!IsFirst) { 3300 Out << ", "; 3301 IsFirst = false; 3302 } 3303 3304 assert(ValueCount >= ResultVals.size() && "Input can't refer to result"); 3305 Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size()); 3306 3307 Out << "\"" << C << "\"("; 3308 if (!I->isIndirect) 3309 writeOperand(SrcVal); 3310 else 3311 writeOperandDeref(SrcVal); 3312 Out << ")"; 3313 } 3314 3315 // Convert over the clobber constraints. 3316 IsFirst = true; 3317 for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), 3318 E = Constraints.end(); I != E; ++I) { 3319 if (I->Type != InlineAsm::isClobber) 3320 continue; // Ignore non-input constraints. 3321 3322 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); 3323 std::string C = InterpretASMConstraint(*I); 3324 if (C.empty()) continue; 3325 3326 if (!IsFirst) { 3327 Out << ", "; 3328 IsFirst = false; 3329 } 3330 3331 Out << '\"' << C << '"'; 3332 } 3333 3334 Out << ")"; 3335 } 3336 3337 void CWriter::visitAllocaInst(AllocaInst &I) { 3338 Out << '('; 3339 printType(Out, I.getType()); 3340 Out << ") alloca(sizeof("; 3341 printType(Out, I.getType()->getElementType()); 3342 Out << ')'; 3343 if (I.isArrayAllocation()) { 3344 Out << " * " ; 3345 writeOperand(I.getOperand(0)); 3346 } 3347 Out << ')'; 3348 } 3349 3350 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I, 3351 gep_type_iterator E, bool Static) { 3352 3353 // If there are no indices, just print out the pointer. 3354 if (I == E) { 3355 writeOperand(Ptr); 3356 return; 3357 } 3358 3359 // Find out if the last index is into a vector. If so, we have to print this 3360 // specially. Since vectors can't have elements of indexable type, only the 3361 // last index could possibly be of a vector element. 3362 VectorType *LastIndexIsVector = 0; 3363 { 3364 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI) 3365 LastIndexIsVector = dyn_cast<VectorType>(*TmpI); 3366 } 3367 3368 Out << "("; 3369 3370 // If the last index is into a vector, we can't print it as &a[i][j] because 3371 // we can't index into a vector with j in GCC. Instead, emit this as 3372 // (((float*)&a[i])+j) 3373 if (LastIndexIsVector) { 3374 Out << "(("; 3375 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType())); 3376 Out << ")("; 3377 } 3378 3379 Out << '&'; 3380 3381 // If the first index is 0 (very typical) we can do a number of 3382 // simplifications to clean up the code. 3383 Value *FirstOp = I.getOperand(); 3384 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) { 3385 // First index isn't simple, print it the hard way. 3386 writeOperand(Ptr); 3387 } else { 3388 ++I; // Skip the zero index. 3389 3390 // Okay, emit the first operand. If Ptr is something that is already address 3391 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead. 3392 if (isAddressExposed(Ptr)) { 3393 writeOperandInternal(Ptr, Static); 3394 } else if (I != E && (*I)->isStructTy()) { 3395 // If we didn't already emit the first operand, see if we can print it as 3396 // P->f instead of "P[0].f" 3397 writeOperand(Ptr); 3398 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); 3399 ++I; // eat the struct index as well. 3400 } else { 3401 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic. 3402 Out << "(*"; 3403 writeOperand(Ptr); 3404 Out << ")"; 3405 } 3406 } 3407 3408 for (; I != E; ++I) { 3409 if ((*I)->isStructTy()) { 3410 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); 3411 } else if ((*I)->isArrayTy()) { 3412 Out << ".array["; 3413 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3414 Out << ']'; 3415 } else if (!(*I)->isVectorTy()) { 3416 Out << '['; 3417 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3418 Out << ']'; 3419 } else { 3420 // If the last index is into a vector, then print it out as "+j)". This 3421 // works with the 'LastIndexIsVector' code above. 3422 if (isa<Constant>(I.getOperand()) && 3423 cast<Constant>(I.getOperand())->isNullValue()) { 3424 Out << "))"; // avoid "+0". 3425 } else { 3426 Out << ")+("; 3427 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); 3428 Out << "))"; 3429 } 3430 } 3431 } 3432 Out << ")"; 3433 } 3434 3435 void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType, 3436 bool IsVolatile, unsigned Alignment) { 3437 3438 bool IsUnaligned = Alignment && 3439 Alignment < TD->getABITypeAlignment(OperandType); 3440 3441 if (!IsUnaligned) 3442 Out << '*'; 3443 if (IsVolatile || IsUnaligned) { 3444 Out << "(("; 3445 if (IsUnaligned) 3446 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {"; 3447 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*"); 3448 if (IsUnaligned) { 3449 Out << "; } "; 3450 if (IsVolatile) Out << "volatile "; 3451 Out << "*"; 3452 } 3453 Out << ")"; 3454 } 3455 3456 writeOperand(Operand); 3457 3458 if (IsVolatile || IsUnaligned) { 3459 Out << ')'; 3460 if (IsUnaligned) 3461 Out << "->data"; 3462 } 3463 } 3464 3465 void CWriter::visitLoadInst(LoadInst &I) { 3466 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(), 3467 I.getAlignment()); 3468 3469 } 3470 3471 void CWriter::visitStoreInst(StoreInst &I) { 3472 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(), 3473 I.isVolatile(), I.getAlignment()); 3474 Out << " = "; 3475 Value *Operand = I.getOperand(0); 3476 Constant *BitMask = 0; 3477 if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType())) 3478 if (!ITy->isPowerOf2ByteWidth()) 3479 // We have a bit width that doesn't match an even power-of-2 byte 3480 // size. Consequently we must & the value with the type's bit mask 3481 BitMask = ConstantInt::get(ITy, ITy->getBitMask()); 3482 if (BitMask) 3483 Out << "(("; 3484 writeOperand(Operand); 3485 if (BitMask) { 3486 Out << ") & "; 3487 printConstant(BitMask, false); 3488 Out << ")"; 3489 } 3490 } 3491 3492 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { 3493 printGEPExpression(I.getPointerOperand(), gep_type_begin(I), 3494 gep_type_end(I), false); 3495 } 3496 3497 void CWriter::visitVAArgInst(VAArgInst &I) { 3498 Out << "va_arg(*(va_list*)"; 3499 writeOperand(I.getOperand(0)); 3500 Out << ", "; 3501 printType(Out, I.getType()); 3502 Out << ");\n "; 3503 } 3504 3505 void CWriter::visitInsertElementInst(InsertElementInst &I) { 3506 Type *EltTy = I.getType()->getElementType(); 3507 writeOperand(I.getOperand(0)); 3508 Out << ";\n "; 3509 Out << "(("; 3510 printType(Out, PointerType::getUnqual(EltTy)); 3511 Out << ")(&" << GetValueName(&I) << "))["; 3512 writeOperand(I.getOperand(2)); 3513 Out << "] = ("; 3514 writeOperand(I.getOperand(1)); 3515 Out << ")"; 3516 } 3517 3518 void CWriter::visitExtractElementInst(ExtractElementInst &I) { 3519 // We know that our operand is not inlined. 3520 Out << "(("; 3521 Type *EltTy = 3522 cast<VectorType>(I.getOperand(0)->getType())->getElementType(); 3523 printType(Out, PointerType::getUnqual(EltTy)); 3524 Out << ")(&" << GetValueName(I.getOperand(0)) << "))["; 3525 writeOperand(I.getOperand(1)); 3526 Out << "]"; 3527 } 3528 3529 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 3530 Out << "("; 3531 printType(Out, SVI.getType()); 3532 Out << "){ "; 3533 VectorType *VT = SVI.getType(); 3534 unsigned NumElts = VT->getNumElements(); 3535 Type *EltTy = VT->getElementType(); 3536 3537 for (unsigned i = 0; i != NumElts; ++i) { 3538 if (i) Out << ", "; 3539 int SrcVal = SVI.getMaskValue(i); 3540 if ((unsigned)SrcVal >= NumElts*2) { 3541 Out << " 0/*undef*/ "; 3542 } else { 3543 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts); 3544 if (isa<Instruction>(Op)) { 3545 // Do an extractelement of this value from the appropriate input. 3546 Out << "(("; 3547 printType(Out, PointerType::getUnqual(EltTy)); 3548 Out << ")(&" << GetValueName(Op) 3549 << "))[" << (SrcVal & (NumElts-1)) << "]"; 3550 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) { 3551 Out << "0"; 3552 } else { 3553 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & 3554 (NumElts-1)), 3555 false); 3556 } 3557 } 3558 } 3559 Out << "}"; 3560 } 3561 3562 void CWriter::visitInsertValueInst(InsertValueInst &IVI) { 3563 // Start by copying the entire aggregate value into the result variable. 3564 writeOperand(IVI.getOperand(0)); 3565 Out << ";\n "; 3566 3567 // Then do the insert to update the field. 3568 Out << GetValueName(&IVI); 3569 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end(); 3570 i != e; ++i) { 3571 Type *IndexedTy = 3572 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), 3573 makeArrayRef(b, i+1)); 3574 if (IndexedTy->isArrayTy()) 3575 Out << ".array[" << *i << "]"; 3576 else 3577 Out << ".field" << *i; 3578 } 3579 Out << " = "; 3580 writeOperand(IVI.getOperand(1)); 3581 } 3582 3583 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) { 3584 Out << "("; 3585 if (isa<UndefValue>(EVI.getOperand(0))) { 3586 Out << "("; 3587 printType(Out, EVI.getType()); 3588 Out << ") 0/*UNDEF*/"; 3589 } else { 3590 Out << GetValueName(EVI.getOperand(0)); 3591 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end(); 3592 i != e; ++i) { 3593 Type *IndexedTy = 3594 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), 3595 makeArrayRef(b, i+1)); 3596 if (IndexedTy->isArrayTy()) 3597 Out << ".array[" << *i << "]"; 3598 else 3599 Out << ".field" << *i; 3600 } 3601 } 3602 Out << ")"; 3603 } 3604 3605 //===----------------------------------------------------------------------===// 3606 // External Interface declaration 3607 //===----------------------------------------------------------------------===// 3608 3609 bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM, 3610 formatted_raw_ostream &o, 3611 CodeGenFileType FileType, 3612 CodeGenOpt::Level OptLevel, 3613 bool DisableVerify) { 3614 if (FileType != TargetMachine::CGFT_AssemblyFile) return true; 3615 3616 PM.add(createGCLoweringPass()); 3617 PM.add(createLowerInvokePass()); 3618 PM.add(createCFGSimplificationPass()); // clean up after lower invoke. 3619 PM.add(new CWriter(o)); 3620 PM.add(createGCInfoDeleter()); 3621 return false; 3622 } 3623