Home | History | Annotate | Download | only in CBackend
      1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library converts LLVM code to C code, compilable by GCC and other C
     11 // compilers.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CTargetMachine.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Module.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/Pass.h"
     22 #include "llvm/PassManager.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/InlineAsm.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/ADT/SmallString.h"
     28 #include "llvm/ADT/STLExtras.h"
     29 #include "llvm/Analysis/ConstantsScanner.h"
     30 #include "llvm/Analysis/FindUsedTypes.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/CodeGen/Passes.h"
     34 #include "llvm/CodeGen/IntrinsicLowering.h"
     35 #include "llvm/Target/Mangler.h"
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "llvm/MC/MCAsmInfo.h"
     38 #include "llvm/MC/MCContext.h"
     39 #include "llvm/MC/MCInstrInfo.h"
     40 #include "llvm/MC/MCObjectFileInfo.h"
     41 #include "llvm/MC/MCRegisterInfo.h"
     42 #include "llvm/MC/MCSubtargetInfo.h"
     43 #include "llvm/MC/MCSymbol.h"
     44 #include "llvm/Target/TargetData.h"
     45 #include "llvm/Target/TargetRegistry.h"
     46 #include "llvm/Support/CallSite.h"
     47 #include "llvm/Support/CFG.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Support/FormattedStream.h"
     50 #include "llvm/Support/GetElementPtrTypeIterator.h"
     51 #include "llvm/Support/InstVisitor.h"
     52 #include "llvm/Support/MathExtras.h"
     53 #include "llvm/Support/Host.h"
     54 #include "llvm/Config/config.h"
     55 #include <algorithm>
     56 // Some ms header decided to define setjmp as _setjmp, undo this for this file.
     57 #ifdef _MSC_VER
     58 #undef setjmp
     59 #endif
     60 using namespace llvm;
     61 
     62 extern "C" void LLVMInitializeCBackendTarget() {
     63   // Register the target.
     64   RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
     65 }
     66 
     67 extern "C" void LLVMInitializeCBackendMCAsmInfo() {}
     68 
     69 extern "C" void LLVMInitializeCBackendMCRegisterInfo() {}
     70 
     71 extern "C" void LLVMInitializeCBackendMCInstrInfo() {}
     72 
     73 extern "C" void LLVMInitializeCBackendMCSubtargetInfo() {}
     74 
     75 extern "C" void LLVMInitializeCBackendMCCodeGenInfo() {}
     76 
     77 namespace {
     78   class CBEMCAsmInfo : public MCAsmInfo {
     79   public:
     80     CBEMCAsmInfo() {
     81       GlobalPrefix = "";
     82       PrivateGlobalPrefix = "";
     83     }
     84   };
     85 
     86   /// CWriter - This class is the main chunk of code that converts an LLVM
     87   /// module to a C translation unit.
     88   class CWriter : public FunctionPass, public InstVisitor<CWriter> {
     89     formatted_raw_ostream &Out;
     90     IntrinsicLowering *IL;
     91     Mangler *Mang;
     92     LoopInfo *LI;
     93     const Module *TheModule;
     94     const MCAsmInfo* TAsm;
     95     const MCRegisterInfo *MRI;
     96     const MCObjectFileInfo *MOFI;
     97     MCContext *TCtx;
     98     const TargetData* TD;
     99 
    100     std::map<const ConstantFP *, unsigned> FPConstantMap;
    101     std::set<Function*> intrinsicPrototypesAlreadyGenerated;
    102     std::set<const Argument*> ByValParams;
    103     unsigned FPCounter;
    104     unsigned OpaqueCounter;
    105     DenseMap<const Value*, unsigned> AnonValueNumbers;
    106     unsigned NextAnonValueNumber;
    107 
    108     /// UnnamedStructIDs - This contains a unique ID for each struct that is
    109     /// either anonymous or has no name.
    110     DenseMap<StructType*, unsigned> UnnamedStructIDs;
    111 
    112   public:
    113     static char ID;
    114     explicit CWriter(formatted_raw_ostream &o)
    115       : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
    116         TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
    117         OpaqueCounter(0), NextAnonValueNumber(0) {
    118       initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    119       FPCounter = 0;
    120     }
    121 
    122     virtual const char *getPassName() const { return "C backend"; }
    123 
    124     void getAnalysisUsage(AnalysisUsage &AU) const {
    125       AU.addRequired<LoopInfo>();
    126       AU.setPreservesAll();
    127     }
    128 
    129     virtual bool doInitialization(Module &M);
    130 
    131     bool runOnFunction(Function &F) {
    132      // Do not codegen any 'available_externally' functions at all, they have
    133      // definitions outside the translation unit.
    134      if (F.hasAvailableExternallyLinkage())
    135        return false;
    136 
    137       LI = &getAnalysis<LoopInfo>();
    138 
    139       // Get rid of intrinsics we can't handle.
    140       lowerIntrinsics(F);
    141 
    142       // Output all floating point constants that cannot be printed accurately.
    143       printFloatingPointConstants(F);
    144 
    145       printFunction(F);
    146       return false;
    147     }
    148 
    149     virtual bool doFinalization(Module &M) {
    150       // Free memory...
    151       delete IL;
    152       delete TD;
    153       delete Mang;
    154       delete TCtx;
    155       delete TAsm;
    156       delete MRI;
    157       delete MOFI;
    158       FPConstantMap.clear();
    159       ByValParams.clear();
    160       intrinsicPrototypesAlreadyGenerated.clear();
    161       UnnamedStructIDs.clear();
    162       return false;
    163     }
    164 
    165     raw_ostream &printType(raw_ostream &Out, Type *Ty,
    166                            bool isSigned = false,
    167                            const std::string &VariableName = "",
    168                            bool IgnoreName = false,
    169                            const AttrListPtr &PAL = AttrListPtr());
    170     raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
    171                                  bool isSigned,
    172                                  const std::string &NameSoFar = "");
    173 
    174     void printStructReturnPointerFunctionType(raw_ostream &Out,
    175                                               const AttrListPtr &PAL,
    176                                               PointerType *Ty);
    177 
    178     std::string getStructName(StructType *ST);
    179 
    180     /// writeOperandDeref - Print the result of dereferencing the specified
    181     /// operand with '*'.  This is equivalent to printing '*' then using
    182     /// writeOperand, but avoids excess syntax in some cases.
    183     void writeOperandDeref(Value *Operand) {
    184       if (isAddressExposed(Operand)) {
    185         // Already something with an address exposed.
    186         writeOperandInternal(Operand);
    187       } else {
    188         Out << "*(";
    189         writeOperand(Operand);
    190         Out << ")";
    191       }
    192     }
    193 
    194     void writeOperand(Value *Operand, bool Static = false);
    195     void writeInstComputationInline(Instruction &I);
    196     void writeOperandInternal(Value *Operand, bool Static = false);
    197     void writeOperandWithCast(Value* Operand, unsigned Opcode);
    198     void writeOperandWithCast(Value* Operand, const ICmpInst &I);
    199     bool writeInstructionCast(const Instruction &I);
    200 
    201     void writeMemoryAccess(Value *Operand, Type *OperandType,
    202                            bool IsVolatile, unsigned Alignment);
    203 
    204   private :
    205     std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
    206 
    207     void lowerIntrinsics(Function &F);
    208     /// Prints the definition of the intrinsic function F. Supports the
    209     /// intrinsics which need to be explicitly defined in the CBackend.
    210     void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
    211 
    212     void printModuleTypes();
    213     void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
    214     void printFloatingPointConstants(Function &F);
    215     void printFloatingPointConstants(const Constant *C);
    216     void printFunctionSignature(const Function *F, bool Prototype);
    217 
    218     void printFunction(Function &);
    219     void printBasicBlock(BasicBlock *BB);
    220     void printLoop(Loop *L);
    221 
    222     void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
    223     void printConstant(Constant *CPV, bool Static);
    224     void printConstantWithCast(Constant *CPV, unsigned Opcode);
    225     bool printConstExprCast(const ConstantExpr *CE, bool Static);
    226     void printConstantArray(ConstantArray *CPA, bool Static);
    227     void printConstantVector(ConstantVector *CV, bool Static);
    228 
    229     /// isAddressExposed - Return true if the specified value's name needs to
    230     /// have its address taken in order to get a C value of the correct type.
    231     /// This happens for global variables, byval parameters, and direct allocas.
    232     bool isAddressExposed(const Value *V) const {
    233       if (const Argument *A = dyn_cast<Argument>(V))
    234         return ByValParams.count(A);
    235       return isa<GlobalVariable>(V) || isDirectAlloca(V);
    236     }
    237 
    238     // isInlinableInst - Attempt to inline instructions into their uses to build
    239     // trees as much as possible.  To do this, we have to consistently decide
    240     // what is acceptable to inline, so that variable declarations don't get
    241     // printed and an extra copy of the expr is not emitted.
    242     //
    243     static bool isInlinableInst(const Instruction &I) {
    244       // Always inline cmp instructions, even if they are shared by multiple
    245       // expressions.  GCC generates horrible code if we don't.
    246       if (isa<CmpInst>(I))
    247         return true;
    248 
    249       // Must be an expression, must be used exactly once.  If it is dead, we
    250       // emit it inline where it would go.
    251       if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
    252           isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
    253           isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
    254           isa<InsertValueInst>(I))
    255         // Don't inline a load across a store or other bad things!
    256         return false;
    257 
    258       // Must not be used in inline asm, extractelement, or shufflevector.
    259       if (I.hasOneUse()) {
    260         const Instruction &User = cast<Instruction>(*I.use_back());
    261         if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
    262             isa<ShuffleVectorInst>(User))
    263           return false;
    264       }
    265 
    266       // Only inline instruction it if it's use is in the same BB as the inst.
    267       return I.getParent() == cast<Instruction>(I.use_back())->getParent();
    268     }
    269 
    270     // isDirectAlloca - Define fixed sized allocas in the entry block as direct
    271     // variables which are accessed with the & operator.  This causes GCC to
    272     // generate significantly better code than to emit alloca calls directly.
    273     //
    274     static const AllocaInst *isDirectAlloca(const Value *V) {
    275       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
    276       if (!AI) return 0;
    277       if (AI->isArrayAllocation())
    278         return 0;   // FIXME: we can also inline fixed size array allocas!
    279       if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
    280         return 0;
    281       return AI;
    282     }
    283 
    284     // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
    285     static bool isInlineAsm(const Instruction& I) {
    286       if (const CallInst *CI = dyn_cast<CallInst>(&I))
    287         return isa<InlineAsm>(CI->getCalledValue());
    288       return false;
    289     }
    290 
    291     // Instruction visitation functions
    292     friend class InstVisitor<CWriter>;
    293 
    294     void visitReturnInst(ReturnInst &I);
    295     void visitBranchInst(BranchInst &I);
    296     void visitSwitchInst(SwitchInst &I);
    297     void visitIndirectBrInst(IndirectBrInst &I);
    298     void visitInvokeInst(InvokeInst &I) {
    299       llvm_unreachable("Lowerinvoke pass didn't work!");
    300     }
    301 
    302     void visitUnwindInst(UnwindInst &I) {
    303       llvm_unreachable("Lowerinvoke pass didn't work!");
    304     }
    305     void visitUnreachableInst(UnreachableInst &I);
    306 
    307     void visitPHINode(PHINode &I);
    308     void visitBinaryOperator(Instruction &I);
    309     void visitICmpInst(ICmpInst &I);
    310     void visitFCmpInst(FCmpInst &I);
    311 
    312     void visitCastInst (CastInst &I);
    313     void visitSelectInst(SelectInst &I);
    314     void visitCallInst (CallInst &I);
    315     void visitInlineAsm(CallInst &I);
    316     bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
    317 
    318     void visitAllocaInst(AllocaInst &I);
    319     void visitLoadInst  (LoadInst   &I);
    320     void visitStoreInst (StoreInst  &I);
    321     void visitGetElementPtrInst(GetElementPtrInst &I);
    322     void visitVAArgInst (VAArgInst &I);
    323 
    324     void visitInsertElementInst(InsertElementInst &I);
    325     void visitExtractElementInst(ExtractElementInst &I);
    326     void visitShuffleVectorInst(ShuffleVectorInst &SVI);
    327 
    328     void visitInsertValueInst(InsertValueInst &I);
    329     void visitExtractValueInst(ExtractValueInst &I);
    330 
    331     void visitInstruction(Instruction &I) {
    332 #ifndef NDEBUG
    333       errs() << "C Writer does not know about " << I;
    334 #endif
    335       llvm_unreachable(0);
    336     }
    337 
    338     void outputLValue(Instruction *I) {
    339       Out << "  " << GetValueName(I) << " = ";
    340     }
    341 
    342     bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
    343     void printPHICopiesForSuccessor(BasicBlock *CurBlock,
    344                                     BasicBlock *Successor, unsigned Indent);
    345     void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
    346                             unsigned Indent);
    347     void printGEPExpression(Value *Ptr, gep_type_iterator I,
    348                             gep_type_iterator E, bool Static);
    349 
    350     std::string GetValueName(const Value *Operand);
    351   };
    352 }
    353 
    354 char CWriter::ID = 0;
    355 
    356 
    357 
    358 static std::string CBEMangle(const std::string &S) {
    359   std::string Result;
    360 
    361   for (unsigned i = 0, e = S.size(); i != e; ++i)
    362     if (isalnum(S[i]) || S[i] == '_') {
    363       Result += S[i];
    364     } else {
    365       Result += '_';
    366       Result += 'A'+(S[i]&15);
    367       Result += 'A'+((S[i]>>4)&15);
    368       Result += '_';
    369     }
    370   return Result;
    371 }
    372 
    373 std::string CWriter::getStructName(StructType *ST) {
    374   if (!ST->isAnonymous() && !ST->getName().empty())
    375     return CBEMangle("l_"+ST->getName().str());
    376 
    377   return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
    378 }
    379 
    380 
    381 /// printStructReturnPointerFunctionType - This is like printType for a struct
    382 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
    383 /// print it as "Struct (*)(...)", for struct return functions.
    384 void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
    385                                                    const AttrListPtr &PAL,
    386                                                    PointerType *TheTy) {
    387   FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
    388   std::string tstr;
    389   raw_string_ostream FunctionInnards(tstr);
    390   FunctionInnards << " (*) (";
    391   bool PrintedType = false;
    392 
    393   FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
    394   Type *RetTy = cast<PointerType>(*I)->getElementType();
    395   unsigned Idx = 1;
    396   for (++I, ++Idx; I != E; ++I, ++Idx) {
    397     if (PrintedType)
    398       FunctionInnards << ", ";
    399     Type *ArgTy = *I;
    400     if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
    401       assert(ArgTy->isPointerTy());
    402       ArgTy = cast<PointerType>(ArgTy)->getElementType();
    403     }
    404     printType(FunctionInnards, ArgTy,
    405         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
    406     PrintedType = true;
    407   }
    408   if (FTy->isVarArg()) {
    409     if (!PrintedType)
    410       FunctionInnards << " int"; //dummy argument for empty vararg functs
    411     FunctionInnards << ", ...";
    412   } else if (!PrintedType) {
    413     FunctionInnards << "void";
    414   }
    415   FunctionInnards << ')';
    416   printType(Out, RetTy,
    417       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
    418 }
    419 
    420 raw_ostream &
    421 CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
    422                          const std::string &NameSoFar) {
    423   assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
    424          "Invalid type for printSimpleType");
    425   switch (Ty->getTypeID()) {
    426   case Type::VoidTyID:   return Out << "void " << NameSoFar;
    427   case Type::IntegerTyID: {
    428     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
    429     if (NumBits == 1)
    430       return Out << "bool " << NameSoFar;
    431     else if (NumBits <= 8)
    432       return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
    433     else if (NumBits <= 16)
    434       return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
    435     else if (NumBits <= 32)
    436       return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
    437     else if (NumBits <= 64)
    438       return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
    439     else {
    440       assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
    441       return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
    442     }
    443   }
    444   case Type::FloatTyID:  return Out << "float "   << NameSoFar;
    445   case Type::DoubleTyID: return Out << "double "  << NameSoFar;
    446   // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
    447   // present matches host 'long double'.
    448   case Type::X86_FP80TyID:
    449   case Type::PPC_FP128TyID:
    450   case Type::FP128TyID:  return Out << "long double " << NameSoFar;
    451 
    452   case Type::X86_MMXTyID:
    453     return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
    454                      " __attribute__((vector_size(64))) " + NameSoFar);
    455 
    456   case Type::VectorTyID: {
    457     VectorType *VTy = cast<VectorType>(Ty);
    458     return printSimpleType(Out, VTy->getElementType(), isSigned,
    459                      " __attribute__((vector_size(" +
    460                      utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
    461   }
    462 
    463   default:
    464 #ifndef NDEBUG
    465     errs() << "Unknown primitive type: " << *Ty << "\n";
    466 #endif
    467     llvm_unreachable(0);
    468   }
    469 }
    470 
    471 // Pass the Type* and the variable name and this prints out the variable
    472 // declaration.
    473 //
    474 raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty,
    475                                 bool isSigned, const std::string &NameSoFar,
    476                                 bool IgnoreName, const AttrListPtr &PAL) {
    477   if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
    478     printSimpleType(Out, Ty, isSigned, NameSoFar);
    479     return Out;
    480   }
    481 
    482   switch (Ty->getTypeID()) {
    483   case Type::FunctionTyID: {
    484     FunctionType *FTy = cast<FunctionType>(Ty);
    485     std::string tstr;
    486     raw_string_ostream FunctionInnards(tstr);
    487     FunctionInnards << " (" << NameSoFar << ") (";
    488     unsigned Idx = 1;
    489     for (FunctionType::param_iterator I = FTy->param_begin(),
    490            E = FTy->param_end(); I != E; ++I) {
    491       Type *ArgTy = *I;
    492       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
    493         assert(ArgTy->isPointerTy());
    494         ArgTy = cast<PointerType>(ArgTy)->getElementType();
    495       }
    496       if (I != FTy->param_begin())
    497         FunctionInnards << ", ";
    498       printType(FunctionInnards, ArgTy,
    499         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
    500       ++Idx;
    501     }
    502     if (FTy->isVarArg()) {
    503       if (!FTy->getNumParams())
    504         FunctionInnards << " int"; //dummy argument for empty vaarg functs
    505       FunctionInnards << ", ...";
    506     } else if (!FTy->getNumParams()) {
    507       FunctionInnards << "void";
    508     }
    509     FunctionInnards << ')';
    510     printType(Out, FTy->getReturnType(),
    511       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
    512     return Out;
    513   }
    514   case Type::StructTyID: {
    515     StructType *STy = cast<StructType>(Ty);
    516 
    517     // Check to see if the type is named.
    518     if (!IgnoreName)
    519       return Out << getStructName(STy) << ' ' << NameSoFar;
    520 
    521     Out << NameSoFar + " {\n";
    522     unsigned Idx = 0;
    523     for (StructType::element_iterator I = STy->element_begin(),
    524            E = STy->element_end(); I != E; ++I) {
    525       Out << "  ";
    526       printType(Out, *I, false, "field" + utostr(Idx++));
    527       Out << ";\n";
    528     }
    529     Out << '}';
    530     if (STy->isPacked())
    531       Out << " __attribute__ ((packed))";
    532     return Out;
    533   }
    534 
    535   case Type::PointerTyID: {
    536     PointerType *PTy = cast<PointerType>(Ty);
    537     std::string ptrName = "*" + NameSoFar;
    538 
    539     if (PTy->getElementType()->isArrayTy() ||
    540         PTy->getElementType()->isVectorTy())
    541       ptrName = "(" + ptrName + ")";
    542 
    543     if (!PAL.isEmpty())
    544       // Must be a function ptr cast!
    545       return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
    546     return printType(Out, PTy->getElementType(), false, ptrName);
    547   }
    548 
    549   case Type::ArrayTyID: {
    550     ArrayType *ATy = cast<ArrayType>(Ty);
    551     unsigned NumElements = ATy->getNumElements();
    552     if (NumElements == 0) NumElements = 1;
    553     // Arrays are wrapped in structs to allow them to have normal
    554     // value semantics (avoiding the array "decay").
    555     Out << NameSoFar << " { ";
    556     printType(Out, ATy->getElementType(), false,
    557               "array[" + utostr(NumElements) + "]");
    558     return Out << "; }";
    559   }
    560 
    561   default:
    562     llvm_unreachable("Unhandled case in getTypeProps!");
    563   }
    564 
    565   return Out;
    566 }
    567 
    568 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
    569 
    570   // As a special case, print the array as a string if it is an array of
    571   // ubytes or an array of sbytes with positive values.
    572   //
    573   Type *ETy = CPA->getType()->getElementType();
    574   bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
    575                    ETy == Type::getInt8Ty(CPA->getContext()));
    576 
    577   // Make sure the last character is a null char, as automatically added by C
    578   if (isString && (CPA->getNumOperands() == 0 ||
    579                    !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
    580     isString = false;
    581 
    582   if (isString) {
    583     Out << '\"';
    584     // Keep track of whether the last number was a hexadecimal escape.
    585     bool LastWasHex = false;
    586 
    587     // Do not include the last character, which we know is null
    588     for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
    589       unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
    590 
    591       // Print it out literally if it is a printable character.  The only thing
    592       // to be careful about is when the last letter output was a hex escape
    593       // code, in which case we have to be careful not to print out hex digits
    594       // explicitly (the C compiler thinks it is a continuation of the previous
    595       // character, sheesh...)
    596       //
    597       if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
    598         LastWasHex = false;
    599         if (C == '"' || C == '\\')
    600           Out << "\\" << (char)C;
    601         else
    602           Out << (char)C;
    603       } else {
    604         LastWasHex = false;
    605         switch (C) {
    606         case '\n': Out << "\\n"; break;
    607         case '\t': Out << "\\t"; break;
    608         case '\r': Out << "\\r"; break;
    609         case '\v': Out << "\\v"; break;
    610         case '\a': Out << "\\a"; break;
    611         case '\"': Out << "\\\""; break;
    612         case '\'': Out << "\\\'"; break;
    613         default:
    614           Out << "\\x";
    615           Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
    616           Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    617           LastWasHex = true;
    618           break;
    619         }
    620       }
    621     }
    622     Out << '\"';
    623   } else {
    624     Out << '{';
    625     if (CPA->getNumOperands()) {
    626       Out << ' ';
    627       printConstant(cast<Constant>(CPA->getOperand(0)), Static);
    628       for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
    629         Out << ", ";
    630         printConstant(cast<Constant>(CPA->getOperand(i)), Static);
    631       }
    632     }
    633     Out << " }";
    634   }
    635 }
    636 
    637 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
    638   Out << '{';
    639   if (CP->getNumOperands()) {
    640     Out << ' ';
    641     printConstant(cast<Constant>(CP->getOperand(0)), Static);
    642     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
    643       Out << ", ";
    644       printConstant(cast<Constant>(CP->getOperand(i)), Static);
    645     }
    646   }
    647   Out << " }";
    648 }
    649 
    650 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
    651 // textually as a double (rather than as a reference to a stack-allocated
    652 // variable). We decide this by converting CFP to a string and back into a
    653 // double, and then checking whether the conversion results in a bit-equal
    654 // double to the original value of CFP. This depends on us and the target C
    655 // compiler agreeing on the conversion process (which is pretty likely since we
    656 // only deal in IEEE FP).
    657 //
    658 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
    659   bool ignored;
    660   // Do long doubles in hex for now.
    661   if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
    662       CFP->getType() != Type::getDoubleTy(CFP->getContext()))
    663     return false;
    664   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    665   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    666     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    667 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
    668   char Buffer[100];
    669   sprintf(Buffer, "%a", APF.convertToDouble());
    670   if (!strncmp(Buffer, "0x", 2) ||
    671       !strncmp(Buffer, "-0x", 3) ||
    672       !strncmp(Buffer, "+0x", 3))
    673     return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
    674   return false;
    675 #else
    676   std::string StrVal = ftostr(APF);
    677 
    678   while (StrVal[0] == ' ')
    679     StrVal.erase(StrVal.begin());
    680 
    681   // Check to make sure that the stringized number is not some string like "Inf"
    682   // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    683   if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    684       ((StrVal[0] == '-' || StrVal[0] == '+') &&
    685        (StrVal[1] >= '0' && StrVal[1] <= '9')))
    686     // Reparse stringized version!
    687     return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
    688   return false;
    689 #endif
    690 }
    691 
    692 /// Print out the casting for a cast operation. This does the double casting
    693 /// necessary for conversion to the destination type, if necessary.
    694 /// @brief Print a cast
    695 void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
    696   // Print the destination type cast
    697   switch (opc) {
    698     case Instruction::UIToFP:
    699     case Instruction::SIToFP:
    700     case Instruction::IntToPtr:
    701     case Instruction::Trunc:
    702     case Instruction::BitCast:
    703     case Instruction::FPExt:
    704     case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
    705       Out << '(';
    706       printType(Out, DstTy);
    707       Out << ')';
    708       break;
    709     case Instruction::ZExt:
    710     case Instruction::PtrToInt:
    711     case Instruction::FPToUI: // For these, make sure we get an unsigned dest
    712       Out << '(';
    713       printSimpleType(Out, DstTy, false);
    714       Out << ')';
    715       break;
    716     case Instruction::SExt:
    717     case Instruction::FPToSI: // For these, make sure we get a signed dest
    718       Out << '(';
    719       printSimpleType(Out, DstTy, true);
    720       Out << ')';
    721       break;
    722     default:
    723       llvm_unreachable("Invalid cast opcode");
    724   }
    725 
    726   // Print the source type cast
    727   switch (opc) {
    728     case Instruction::UIToFP:
    729     case Instruction::ZExt:
    730       Out << '(';
    731       printSimpleType(Out, SrcTy, false);
    732       Out << ')';
    733       break;
    734     case Instruction::SIToFP:
    735     case Instruction::SExt:
    736       Out << '(';
    737       printSimpleType(Out, SrcTy, true);
    738       Out << ')';
    739       break;
    740     case Instruction::IntToPtr:
    741     case Instruction::PtrToInt:
    742       // Avoid "cast to pointer from integer of different size" warnings
    743       Out << "(unsigned long)";
    744       break;
    745     case Instruction::Trunc:
    746     case Instruction::BitCast:
    747     case Instruction::FPExt:
    748     case Instruction::FPTrunc:
    749     case Instruction::FPToSI:
    750     case Instruction::FPToUI:
    751       break; // These don't need a source cast.
    752     default:
    753       llvm_unreachable("Invalid cast opcode");
    754       break;
    755   }
    756 }
    757 
    758 // printConstant - The LLVM Constant to C Constant converter.
    759 void CWriter::printConstant(Constant *CPV, bool Static) {
    760   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
    761     switch (CE->getOpcode()) {
    762     case Instruction::Trunc:
    763     case Instruction::ZExt:
    764     case Instruction::SExt:
    765     case Instruction::FPTrunc:
    766     case Instruction::FPExt:
    767     case Instruction::UIToFP:
    768     case Instruction::SIToFP:
    769     case Instruction::FPToUI:
    770     case Instruction::FPToSI:
    771     case Instruction::PtrToInt:
    772     case Instruction::IntToPtr:
    773     case Instruction::BitCast:
    774       Out << "(";
    775       printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
    776       if (CE->getOpcode() == Instruction::SExt &&
    777           CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
    778         // Make sure we really sext from bool here by subtracting from 0
    779         Out << "0-";
    780       }
    781       printConstant(CE->getOperand(0), Static);
    782       if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
    783           (CE->getOpcode() == Instruction::Trunc ||
    784            CE->getOpcode() == Instruction::FPToUI ||
    785            CE->getOpcode() == Instruction::FPToSI ||
    786            CE->getOpcode() == Instruction::PtrToInt)) {
    787         // Make sure we really truncate to bool here by anding with 1
    788         Out << "&1u";
    789       }
    790       Out << ')';
    791       return;
    792 
    793     case Instruction::GetElementPtr:
    794       Out << "(";
    795       printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
    796                          gep_type_end(CPV), Static);
    797       Out << ")";
    798       return;
    799     case Instruction::Select:
    800       Out << '(';
    801       printConstant(CE->getOperand(0), Static);
    802       Out << '?';
    803       printConstant(CE->getOperand(1), Static);
    804       Out << ':';
    805       printConstant(CE->getOperand(2), Static);
    806       Out << ')';
    807       return;
    808     case Instruction::Add:
    809     case Instruction::FAdd:
    810     case Instruction::Sub:
    811     case Instruction::FSub:
    812     case Instruction::Mul:
    813     case Instruction::FMul:
    814     case Instruction::SDiv:
    815     case Instruction::UDiv:
    816     case Instruction::FDiv:
    817     case Instruction::URem:
    818     case Instruction::SRem:
    819     case Instruction::FRem:
    820     case Instruction::And:
    821     case Instruction::Or:
    822     case Instruction::Xor:
    823     case Instruction::ICmp:
    824     case Instruction::Shl:
    825     case Instruction::LShr:
    826     case Instruction::AShr:
    827     {
    828       Out << '(';
    829       bool NeedsClosingParens = printConstExprCast(CE, Static);
    830       printConstantWithCast(CE->getOperand(0), CE->getOpcode());
    831       switch (CE->getOpcode()) {
    832       case Instruction::Add:
    833       case Instruction::FAdd: Out << " + "; break;
    834       case Instruction::Sub:
    835       case Instruction::FSub: Out << " - "; break;
    836       case Instruction::Mul:
    837       case Instruction::FMul: Out << " * "; break;
    838       case Instruction::URem:
    839       case Instruction::SRem:
    840       case Instruction::FRem: Out << " % "; break;
    841       case Instruction::UDiv:
    842       case Instruction::SDiv:
    843       case Instruction::FDiv: Out << " / "; break;
    844       case Instruction::And: Out << " & "; break;
    845       case Instruction::Or:  Out << " | "; break;
    846       case Instruction::Xor: Out << " ^ "; break;
    847       case Instruction::Shl: Out << " << "; break;
    848       case Instruction::LShr:
    849       case Instruction::AShr: Out << " >> "; break;
    850       case Instruction::ICmp:
    851         switch (CE->getPredicate()) {
    852           case ICmpInst::ICMP_EQ: Out << " == "; break;
    853           case ICmpInst::ICMP_NE: Out << " != "; break;
    854           case ICmpInst::ICMP_SLT:
    855           case ICmpInst::ICMP_ULT: Out << " < "; break;
    856           case ICmpInst::ICMP_SLE:
    857           case ICmpInst::ICMP_ULE: Out << " <= "; break;
    858           case ICmpInst::ICMP_SGT:
    859           case ICmpInst::ICMP_UGT: Out << " > "; break;
    860           case ICmpInst::ICMP_SGE:
    861           case ICmpInst::ICMP_UGE: Out << " >= "; break;
    862           default: llvm_unreachable("Illegal ICmp predicate");
    863         }
    864         break;
    865       default: llvm_unreachable("Illegal opcode here!");
    866       }
    867       printConstantWithCast(CE->getOperand(1), CE->getOpcode());
    868       if (NeedsClosingParens)
    869         Out << "))";
    870       Out << ')';
    871       return;
    872     }
    873     case Instruction::FCmp: {
    874       Out << '(';
    875       bool NeedsClosingParens = printConstExprCast(CE, Static);
    876       if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
    877         Out << "0";
    878       else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
    879         Out << "1";
    880       else {
    881         const char* op = 0;
    882         switch (CE->getPredicate()) {
    883         default: llvm_unreachable("Illegal FCmp predicate");
    884         case FCmpInst::FCMP_ORD: op = "ord"; break;
    885         case FCmpInst::FCMP_UNO: op = "uno"; break;
    886         case FCmpInst::FCMP_UEQ: op = "ueq"; break;
    887         case FCmpInst::FCMP_UNE: op = "une"; break;
    888         case FCmpInst::FCMP_ULT: op = "ult"; break;
    889         case FCmpInst::FCMP_ULE: op = "ule"; break;
    890         case FCmpInst::FCMP_UGT: op = "ugt"; break;
    891         case FCmpInst::FCMP_UGE: op = "uge"; break;
    892         case FCmpInst::FCMP_OEQ: op = "oeq"; break;
    893         case FCmpInst::FCMP_ONE: op = "one"; break;
    894         case FCmpInst::FCMP_OLT: op = "olt"; break;
    895         case FCmpInst::FCMP_OLE: op = "ole"; break;
    896         case FCmpInst::FCMP_OGT: op = "ogt"; break;
    897         case FCmpInst::FCMP_OGE: op = "oge"; break;
    898         }
    899         Out << "llvm_fcmp_" << op << "(";
    900         printConstantWithCast(CE->getOperand(0), CE->getOpcode());
    901         Out << ", ";
    902         printConstantWithCast(CE->getOperand(1), CE->getOpcode());
    903         Out << ")";
    904       }
    905       if (NeedsClosingParens)
    906         Out << "))";
    907       Out << ')';
    908       return;
    909     }
    910     default:
    911 #ifndef NDEBUG
    912       errs() << "CWriter Error: Unhandled constant expression: "
    913            << *CE << "\n";
    914 #endif
    915       llvm_unreachable(0);
    916     }
    917   } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
    918     Out << "((";
    919     printType(Out, CPV->getType()); // sign doesn't matter
    920     Out << ")/*UNDEF*/";
    921     if (!CPV->getType()->isVectorTy()) {
    922       Out << "0)";
    923     } else {
    924       Out << "{})";
    925     }
    926     return;
    927   }
    928 
    929   if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
    930     Type* Ty = CI->getType();
    931     if (Ty == Type::getInt1Ty(CPV->getContext()))
    932       Out << (CI->getZExtValue() ? '1' : '0');
    933     else if (Ty == Type::getInt32Ty(CPV->getContext()))
    934       Out << CI->getZExtValue() << 'u';
    935     else if (Ty->getPrimitiveSizeInBits() > 32)
    936       Out << CI->getZExtValue() << "ull";
    937     else {
    938       Out << "((";
    939       printSimpleType(Out, Ty, false) << ')';
    940       if (CI->isMinValue(true))
    941         Out << CI->getZExtValue() << 'u';
    942       else
    943         Out << CI->getSExtValue();
    944       Out << ')';
    945     }
    946     return;
    947   }
    948 
    949   switch (CPV->getType()->getTypeID()) {
    950   case Type::FloatTyID:
    951   case Type::DoubleTyID:
    952   case Type::X86_FP80TyID:
    953   case Type::PPC_FP128TyID:
    954   case Type::FP128TyID: {
    955     ConstantFP *FPC = cast<ConstantFP>(CPV);
    956     std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
    957     if (I != FPConstantMap.end()) {
    958       // Because of FP precision problems we must load from a stack allocated
    959       // value that holds the value in hex.
    960       Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
    961                        "float" :
    962                        FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
    963                        "double" :
    964                        "long double")
    965           << "*)&FPConstant" << I->second << ')';
    966     } else {
    967       double V;
    968       if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
    969         V = FPC->getValueAPF().convertToFloat();
    970       else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
    971         V = FPC->getValueAPF().convertToDouble();
    972       else {
    973         // Long double.  Convert the number to double, discarding precision.
    974         // This is not awesome, but it at least makes the CBE output somewhat
    975         // useful.
    976         APFloat Tmp = FPC->getValueAPF();
    977         bool LosesInfo;
    978         Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
    979         V = Tmp.convertToDouble();
    980       }
    981 
    982       if (IsNAN(V)) {
    983         // The value is NaN
    984 
    985         // FIXME the actual NaN bits should be emitted.
    986         // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
    987         // it's 0x7ff4.
    988         const unsigned long QuietNaN = 0x7ff8UL;
    989         //const unsigned long SignalNaN = 0x7ff4UL;
    990 
    991         // We need to grab the first part of the FP #
    992         char Buffer[100];
    993 
    994         uint64_t ll = DoubleToBits(V);
    995         sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
    996 
    997         std::string Num(&Buffer[0], &Buffer[6]);
    998         unsigned long Val = strtoul(Num.c_str(), 0, 16);
    999 
   1000         if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
   1001           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
   1002               << Buffer << "\") /*nan*/ ";
   1003         else
   1004           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
   1005               << Buffer << "\") /*nan*/ ";
   1006       } else if (IsInf(V)) {
   1007         // The value is Inf
   1008         if (V < 0) Out << '-';
   1009         Out << "LLVM_INF" <<
   1010             (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
   1011             << " /*inf*/ ";
   1012       } else {
   1013         std::string Num;
   1014 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
   1015         // Print out the constant as a floating point number.
   1016         char Buffer[100];
   1017         sprintf(Buffer, "%a", V);
   1018         Num = Buffer;
   1019 #else
   1020         Num = ftostr(FPC->getValueAPF());
   1021 #endif
   1022        Out << Num;
   1023       }
   1024     }
   1025     break;
   1026   }
   1027 
   1028   case Type::ArrayTyID:
   1029     // Use C99 compound expression literal initializer syntax.
   1030     if (!Static) {
   1031       Out << "(";
   1032       printType(Out, CPV->getType());
   1033       Out << ")";
   1034     }
   1035     Out << "{ "; // Arrays are wrapped in struct types.
   1036     if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
   1037       printConstantArray(CA, Static);
   1038     } else {
   1039       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
   1040       ArrayType *AT = cast<ArrayType>(CPV->getType());
   1041       Out << '{';
   1042       if (AT->getNumElements()) {
   1043         Out << ' ';
   1044         Constant *CZ = Constant::getNullValue(AT->getElementType());
   1045         printConstant(CZ, Static);
   1046         for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
   1047           Out << ", ";
   1048           printConstant(CZ, Static);
   1049         }
   1050       }
   1051       Out << " }";
   1052     }
   1053     Out << " }"; // Arrays are wrapped in struct types.
   1054     break;
   1055 
   1056   case Type::VectorTyID:
   1057     // Use C99 compound expression literal initializer syntax.
   1058     if (!Static) {
   1059       Out << "(";
   1060       printType(Out, CPV->getType());
   1061       Out << ")";
   1062     }
   1063     if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
   1064       printConstantVector(CV, Static);
   1065     } else {
   1066       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
   1067       VectorType *VT = cast<VectorType>(CPV->getType());
   1068       Out << "{ ";
   1069       Constant *CZ = Constant::getNullValue(VT->getElementType());
   1070       printConstant(CZ, Static);
   1071       for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
   1072         Out << ", ";
   1073         printConstant(CZ, Static);
   1074       }
   1075       Out << " }";
   1076     }
   1077     break;
   1078 
   1079   case Type::StructTyID:
   1080     // Use C99 compound expression literal initializer syntax.
   1081     if (!Static) {
   1082       Out << "(";
   1083       printType(Out, CPV->getType());
   1084       Out << ")";
   1085     }
   1086     if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
   1087       StructType *ST = cast<StructType>(CPV->getType());
   1088       Out << '{';
   1089       if (ST->getNumElements()) {
   1090         Out << ' ';
   1091         printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
   1092         for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
   1093           Out << ", ";
   1094           printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
   1095         }
   1096       }
   1097       Out << " }";
   1098     } else {
   1099       Out << '{';
   1100       if (CPV->getNumOperands()) {
   1101         Out << ' ';
   1102         printConstant(cast<Constant>(CPV->getOperand(0)), Static);
   1103         for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
   1104           Out << ", ";
   1105           printConstant(cast<Constant>(CPV->getOperand(i)), Static);
   1106         }
   1107       }
   1108       Out << " }";
   1109     }
   1110     break;
   1111 
   1112   case Type::PointerTyID:
   1113     if (isa<ConstantPointerNull>(CPV)) {
   1114       Out << "((";
   1115       printType(Out, CPV->getType()); // sign doesn't matter
   1116       Out << ")/*NULL*/0)";
   1117       break;
   1118     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
   1119       writeOperand(GV, Static);
   1120       break;
   1121     }
   1122     // FALL THROUGH
   1123   default:
   1124 #ifndef NDEBUG
   1125     errs() << "Unknown constant type: " << *CPV << "\n";
   1126 #endif
   1127     llvm_unreachable(0);
   1128   }
   1129 }
   1130 
   1131 // Some constant expressions need to be casted back to the original types
   1132 // because their operands were casted to the expected type. This function takes
   1133 // care of detecting that case and printing the cast for the ConstantExpr.
   1134 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
   1135   bool NeedsExplicitCast = false;
   1136   Type *Ty = CE->getOperand(0)->getType();
   1137   bool TypeIsSigned = false;
   1138   switch (CE->getOpcode()) {
   1139   case Instruction::Add:
   1140   case Instruction::Sub:
   1141   case Instruction::Mul:
   1142     // We need to cast integer arithmetic so that it is always performed
   1143     // as unsigned, to avoid undefined behavior on overflow.
   1144   case Instruction::LShr:
   1145   case Instruction::URem:
   1146   case Instruction::UDiv: NeedsExplicitCast = true; break;
   1147   case Instruction::AShr:
   1148   case Instruction::SRem:
   1149   case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
   1150   case Instruction::SExt:
   1151     Ty = CE->getType();
   1152     NeedsExplicitCast = true;
   1153     TypeIsSigned = true;
   1154     break;
   1155   case Instruction::ZExt:
   1156   case Instruction::Trunc:
   1157   case Instruction::FPTrunc:
   1158   case Instruction::FPExt:
   1159   case Instruction::UIToFP:
   1160   case Instruction::SIToFP:
   1161   case Instruction::FPToUI:
   1162   case Instruction::FPToSI:
   1163   case Instruction::PtrToInt:
   1164   case Instruction::IntToPtr:
   1165   case Instruction::BitCast:
   1166     Ty = CE->getType();
   1167     NeedsExplicitCast = true;
   1168     break;
   1169   default: break;
   1170   }
   1171   if (NeedsExplicitCast) {
   1172     Out << "((";
   1173     if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
   1174       printSimpleType(Out, Ty, TypeIsSigned);
   1175     else
   1176       printType(Out, Ty); // not integer, sign doesn't matter
   1177     Out << ")(";
   1178   }
   1179   return NeedsExplicitCast;
   1180 }
   1181 
   1182 //  Print a constant assuming that it is the operand for a given Opcode. The
   1183 //  opcodes that care about sign need to cast their operands to the expected
   1184 //  type before the operation proceeds. This function does the casting.
   1185 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
   1186 
   1187   // Extract the operand's type, we'll need it.
   1188   Type* OpTy = CPV->getType();
   1189 
   1190   // Indicate whether to do the cast or not.
   1191   bool shouldCast = false;
   1192   bool typeIsSigned = false;
   1193 
   1194   // Based on the Opcode for which this Constant is being written, determine
   1195   // the new type to which the operand should be casted by setting the value
   1196   // of OpTy. If we change OpTy, also set shouldCast to true so it gets
   1197   // casted below.
   1198   switch (Opcode) {
   1199     default:
   1200       // for most instructions, it doesn't matter
   1201       break;
   1202     case Instruction::Add:
   1203     case Instruction::Sub:
   1204     case Instruction::Mul:
   1205       // We need to cast integer arithmetic so that it is always performed
   1206       // as unsigned, to avoid undefined behavior on overflow.
   1207     case Instruction::LShr:
   1208     case Instruction::UDiv:
   1209     case Instruction::URem:
   1210       shouldCast = true;
   1211       break;
   1212     case Instruction::AShr:
   1213     case Instruction::SDiv:
   1214     case Instruction::SRem:
   1215       shouldCast = true;
   1216       typeIsSigned = true;
   1217       break;
   1218   }
   1219 
   1220   // Write out the casted constant if we should, otherwise just write the
   1221   // operand.
   1222   if (shouldCast) {
   1223     Out << "((";
   1224     printSimpleType(Out, OpTy, typeIsSigned);
   1225     Out << ")";
   1226     printConstant(CPV, false);
   1227     Out << ")";
   1228   } else
   1229     printConstant(CPV, false);
   1230 }
   1231 
   1232 std::string CWriter::GetValueName(const Value *Operand) {
   1233 
   1234   // Resolve potential alias.
   1235   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
   1236     if (const Value *V = GA->resolveAliasedGlobal(false))
   1237       Operand = V;
   1238   }
   1239 
   1240   // Mangle globals with the standard mangler interface for LLC compatibility.
   1241   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
   1242     SmallString<128> Str;
   1243     Mang->getNameWithPrefix(Str, GV, false);
   1244     return CBEMangle(Str.str().str());
   1245   }
   1246 
   1247   std::string Name = Operand->getName();
   1248 
   1249   if (Name.empty()) { // Assign unique names to local temporaries.
   1250     unsigned &No = AnonValueNumbers[Operand];
   1251     if (No == 0)
   1252       No = ++NextAnonValueNumber;
   1253     Name = "tmp__" + utostr(No);
   1254   }
   1255 
   1256   std::string VarName;
   1257   VarName.reserve(Name.capacity());
   1258 
   1259   for (std::string::iterator I = Name.begin(), E = Name.end();
   1260        I != E; ++I) {
   1261     char ch = *I;
   1262 
   1263     if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
   1264           (ch >= '0' && ch <= '9') || ch == '_')) {
   1265       char buffer[5];
   1266       sprintf(buffer, "_%x_", ch);
   1267       VarName += buffer;
   1268     } else
   1269       VarName += ch;
   1270   }
   1271 
   1272   return "llvm_cbe_" + VarName;
   1273 }
   1274 
   1275 /// writeInstComputationInline - Emit the computation for the specified
   1276 /// instruction inline, with no destination provided.
   1277 void CWriter::writeInstComputationInline(Instruction &I) {
   1278   // We can't currently support integer types other than 1, 8, 16, 32, 64.
   1279   // Validate this.
   1280   Type *Ty = I.getType();
   1281   if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
   1282         Ty!=Type::getInt8Ty(I.getContext()) &&
   1283         Ty!=Type::getInt16Ty(I.getContext()) &&
   1284         Ty!=Type::getInt32Ty(I.getContext()) &&
   1285         Ty!=Type::getInt64Ty(I.getContext()))) {
   1286       report_fatal_error("The C backend does not currently support integer "
   1287                         "types of widths other than 1, 8, 16, 32, 64.\n"
   1288                         "This is being tracked as PR 4158.");
   1289   }
   1290 
   1291   // If this is a non-trivial bool computation, make sure to truncate down to
   1292   // a 1 bit value.  This is important because we want "add i1 x, y" to return
   1293   // "0" when x and y are true, not "2" for example.
   1294   bool NeedBoolTrunc = false;
   1295   if (I.getType() == Type::getInt1Ty(I.getContext()) &&
   1296       !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
   1297     NeedBoolTrunc = true;
   1298 
   1299   if (NeedBoolTrunc)
   1300     Out << "((";
   1301 
   1302   visit(I);
   1303 
   1304   if (NeedBoolTrunc)
   1305     Out << ")&1)";
   1306 }
   1307 
   1308 
   1309 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
   1310   if (Instruction *I = dyn_cast<Instruction>(Operand))
   1311     // Should we inline this instruction to build a tree?
   1312     if (isInlinableInst(*I) && !isDirectAlloca(I)) {
   1313       Out << '(';
   1314       writeInstComputationInline(*I);
   1315       Out << ')';
   1316       return;
   1317     }
   1318 
   1319   Constant* CPV = dyn_cast<Constant>(Operand);
   1320 
   1321   if (CPV && !isa<GlobalValue>(CPV))
   1322     printConstant(CPV, Static);
   1323   else
   1324     Out << GetValueName(Operand);
   1325 }
   1326 
   1327 void CWriter::writeOperand(Value *Operand, bool Static) {
   1328   bool isAddressImplicit = isAddressExposed(Operand);
   1329   if (isAddressImplicit)
   1330     Out << "(&";  // Global variables are referenced as their addresses by llvm
   1331 
   1332   writeOperandInternal(Operand, Static);
   1333 
   1334   if (isAddressImplicit)
   1335     Out << ')';
   1336 }
   1337 
   1338 // Some instructions need to have their result value casted back to the
   1339 // original types because their operands were casted to the expected type.
   1340 // This function takes care of detecting that case and printing the cast
   1341 // for the Instruction.
   1342 bool CWriter::writeInstructionCast(const Instruction &I) {
   1343   Type *Ty = I.getOperand(0)->getType();
   1344   switch (I.getOpcode()) {
   1345   case Instruction::Add:
   1346   case Instruction::Sub:
   1347   case Instruction::Mul:
   1348     // We need to cast integer arithmetic so that it is always performed
   1349     // as unsigned, to avoid undefined behavior on overflow.
   1350   case Instruction::LShr:
   1351   case Instruction::URem:
   1352   case Instruction::UDiv:
   1353     Out << "((";
   1354     printSimpleType(Out, Ty, false);
   1355     Out << ")(";
   1356     return true;
   1357   case Instruction::AShr:
   1358   case Instruction::SRem:
   1359   case Instruction::SDiv:
   1360     Out << "((";
   1361     printSimpleType(Out, Ty, true);
   1362     Out << ")(";
   1363     return true;
   1364   default: break;
   1365   }
   1366   return false;
   1367 }
   1368 
   1369 // Write the operand with a cast to another type based on the Opcode being used.
   1370 // This will be used in cases where an instruction has specific type
   1371 // requirements (usually signedness) for its operands.
   1372 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
   1373 
   1374   // Extract the operand's type, we'll need it.
   1375   Type* OpTy = Operand->getType();
   1376 
   1377   // Indicate whether to do the cast or not.
   1378   bool shouldCast = false;
   1379 
   1380   // Indicate whether the cast should be to a signed type or not.
   1381   bool castIsSigned = false;
   1382 
   1383   // Based on the Opcode for which this Operand is being written, determine
   1384   // the new type to which the operand should be casted by setting the value
   1385   // of OpTy. If we change OpTy, also set shouldCast to true.
   1386   switch (Opcode) {
   1387     default:
   1388       // for most instructions, it doesn't matter
   1389       break;
   1390     case Instruction::Add:
   1391     case Instruction::Sub:
   1392     case Instruction::Mul:
   1393       // We need to cast integer arithmetic so that it is always performed
   1394       // as unsigned, to avoid undefined behavior on overflow.
   1395     case Instruction::LShr:
   1396     case Instruction::UDiv:
   1397     case Instruction::URem: // Cast to unsigned first
   1398       shouldCast = true;
   1399       castIsSigned = false;
   1400       break;
   1401     case Instruction::GetElementPtr:
   1402     case Instruction::AShr:
   1403     case Instruction::SDiv:
   1404     case Instruction::SRem: // Cast to signed first
   1405       shouldCast = true;
   1406       castIsSigned = true;
   1407       break;
   1408   }
   1409 
   1410   // Write out the casted operand if we should, otherwise just write the
   1411   // operand.
   1412   if (shouldCast) {
   1413     Out << "((";
   1414     printSimpleType(Out, OpTy, castIsSigned);
   1415     Out << ")";
   1416     writeOperand(Operand);
   1417     Out << ")";
   1418   } else
   1419     writeOperand(Operand);
   1420 }
   1421 
   1422 // Write the operand with a cast to another type based on the icmp predicate
   1423 // being used.
   1424 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
   1425   // This has to do a cast to ensure the operand has the right signedness.
   1426   // Also, if the operand is a pointer, we make sure to cast to an integer when
   1427   // doing the comparison both for signedness and so that the C compiler doesn't
   1428   // optimize things like "p < NULL" to false (p may contain an integer value
   1429   // f.e.).
   1430   bool shouldCast = Cmp.isRelational();
   1431 
   1432   // Write out the casted operand if we should, otherwise just write the
   1433   // operand.
   1434   if (!shouldCast) {
   1435     writeOperand(Operand);
   1436     return;
   1437   }
   1438 
   1439   // Should this be a signed comparison?  If so, convert to signed.
   1440   bool castIsSigned = Cmp.isSigned();
   1441 
   1442   // If the operand was a pointer, convert to a large integer type.
   1443   Type* OpTy = Operand->getType();
   1444   if (OpTy->isPointerTy())
   1445     OpTy = TD->getIntPtrType(Operand->getContext());
   1446 
   1447   Out << "((";
   1448   printSimpleType(Out, OpTy, castIsSigned);
   1449   Out << ")";
   1450   writeOperand(Operand);
   1451   Out << ")";
   1452 }
   1453 
   1454 // generateCompilerSpecificCode - This is where we add conditional compilation
   1455 // directives to cater to specific compilers as need be.
   1456 //
   1457 static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
   1458                                          const TargetData *TD) {
   1459   // Alloca is hard to get, and we don't want to include stdlib.h here.
   1460   Out << "/* get a declaration for alloca */\n"
   1461       << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
   1462       << "#define  alloca(x) __builtin_alloca((x))\n"
   1463       << "#define _alloca(x) __builtin_alloca((x))\n"
   1464       << "#elif defined(__APPLE__)\n"
   1465       << "extern void *__builtin_alloca(unsigned long);\n"
   1466       << "#define alloca(x) __builtin_alloca(x)\n"
   1467       << "#define longjmp _longjmp\n"
   1468       << "#define setjmp _setjmp\n"
   1469       << "#elif defined(__sun__)\n"
   1470       << "#if defined(__sparcv9)\n"
   1471       << "extern void *__builtin_alloca(unsigned long);\n"
   1472       << "#else\n"
   1473       << "extern void *__builtin_alloca(unsigned int);\n"
   1474       << "#endif\n"
   1475       << "#define alloca(x) __builtin_alloca(x)\n"
   1476       << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
   1477       << "#define alloca(x) __builtin_alloca(x)\n"
   1478       << "#elif defined(_MSC_VER)\n"
   1479       << "#define inline _inline\n"
   1480       << "#define alloca(x) _alloca(x)\n"
   1481       << "#else\n"
   1482       << "#include <alloca.h>\n"
   1483       << "#endif\n\n";
   1484 
   1485   // We output GCC specific attributes to preserve 'linkonce'ness on globals.
   1486   // If we aren't being compiled with GCC, just drop these attributes.
   1487   Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
   1488       << "#define __attribute__(X)\n"
   1489       << "#endif\n\n";
   1490 
   1491   // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
   1492   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
   1493       << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
   1494       << "#elif defined(__GNUC__)\n"
   1495       << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
   1496       << "#else\n"
   1497       << "#define __EXTERNAL_WEAK__\n"
   1498       << "#endif\n\n";
   1499 
   1500   // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
   1501   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
   1502       << "#define __ATTRIBUTE_WEAK__\n"
   1503       << "#elif defined(__GNUC__)\n"
   1504       << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
   1505       << "#else\n"
   1506       << "#define __ATTRIBUTE_WEAK__\n"
   1507       << "#endif\n\n";
   1508 
   1509   // Add hidden visibility support. FIXME: APPLE_CC?
   1510   Out << "#if defined(__GNUC__)\n"
   1511       << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
   1512       << "#endif\n\n";
   1513 
   1514   // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
   1515   // From the GCC documentation:
   1516   //
   1517   //   double __builtin_nan (const char *str)
   1518   //
   1519   // This is an implementation of the ISO C99 function nan.
   1520   //
   1521   // Since ISO C99 defines this function in terms of strtod, which we do
   1522   // not implement, a description of the parsing is in order. The string is
   1523   // parsed as by strtol; that is, the base is recognized by leading 0 or
   1524   // 0x prefixes. The number parsed is placed in the significand such that
   1525   // the least significant bit of the number is at the least significant
   1526   // bit of the significand. The number is truncated to fit the significand
   1527   // field provided. The significand is forced to be a quiet NaN.
   1528   //
   1529   // This function, if given a string literal, is evaluated early enough
   1530   // that it is considered a compile-time constant.
   1531   //
   1532   //   float __builtin_nanf (const char *str)
   1533   //
   1534   // Similar to __builtin_nan, except the return type is float.
   1535   //
   1536   //   double __builtin_inf (void)
   1537   //
   1538   // Similar to __builtin_huge_val, except a warning is generated if the
   1539   // target floating-point format does not support infinities. This
   1540   // function is suitable for implementing the ISO C99 macro INFINITY.
   1541   //
   1542   //   float __builtin_inff (void)
   1543   //
   1544   // Similar to __builtin_inf, except the return type is float.
   1545   Out << "#ifdef __GNUC__\n"
   1546       << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
   1547       << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
   1548       << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
   1549       << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
   1550       << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
   1551       << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
   1552       << "#define LLVM_PREFETCH(addr,rw,locality) "
   1553                               "__builtin_prefetch(addr,rw,locality)\n"
   1554       << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
   1555       << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
   1556       << "#define LLVM_ASM           __asm__\n"
   1557       << "#else\n"
   1558       << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
   1559       << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
   1560       << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
   1561       << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
   1562       << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
   1563       << "#define LLVM_INFF          0.0F                    /* Float */\n"
   1564       << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
   1565       << "#define __ATTRIBUTE_CTOR__\n"
   1566       << "#define __ATTRIBUTE_DTOR__\n"
   1567       << "#define LLVM_ASM(X)\n"
   1568       << "#endif\n\n";
   1569 
   1570   Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
   1571       << "#define __builtin_stack_save() 0   /* not implemented */\n"
   1572       << "#define __builtin_stack_restore(X) /* noop */\n"
   1573       << "#endif\n\n";
   1574 
   1575   // Output typedefs for 128-bit integers. If these are needed with a
   1576   // 32-bit target or with a C compiler that doesn't support mode(TI),
   1577   // more drastic measures will be needed.
   1578   Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
   1579       << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
   1580       << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
   1581       << "#endif\n\n";
   1582 
   1583   // Output target-specific code that should be inserted into main.
   1584   Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
   1585 }
   1586 
   1587 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
   1588 /// the StaticTors set.
   1589 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
   1590   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
   1591   if (!InitList) return;
   1592 
   1593   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
   1594     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
   1595       if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
   1596 
   1597       if (CS->getOperand(1)->isNullValue())
   1598         return;  // Found a null terminator, exit printing.
   1599       Constant *FP = CS->getOperand(1);
   1600       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
   1601         if (CE->isCast())
   1602           FP = CE->getOperand(0);
   1603       if (Function *F = dyn_cast<Function>(FP))
   1604         StaticTors.insert(F);
   1605     }
   1606 }
   1607 
   1608 enum SpecialGlobalClass {
   1609   NotSpecial = 0,
   1610   GlobalCtors, GlobalDtors,
   1611   NotPrinted
   1612 };
   1613 
   1614 /// getGlobalVariableClass - If this is a global that is specially recognized
   1615 /// by LLVM, return a code that indicates how we should handle it.
   1616 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
   1617   // If this is a global ctors/dtors list, handle it now.
   1618   if (GV->hasAppendingLinkage() && GV->use_empty()) {
   1619     if (GV->getName() == "llvm.global_ctors")
   1620       return GlobalCtors;
   1621     else if (GV->getName() == "llvm.global_dtors")
   1622       return GlobalDtors;
   1623   }
   1624 
   1625   // Otherwise, if it is other metadata, don't print it.  This catches things
   1626   // like debug information.
   1627   if (GV->getSection() == "llvm.metadata")
   1628     return NotPrinted;
   1629 
   1630   return NotSpecial;
   1631 }
   1632 
   1633 // PrintEscapedString - Print each character of the specified string, escaping
   1634 // it if it is not printable or if it is an escape char.
   1635 static void PrintEscapedString(const char *Str, unsigned Length,
   1636                                raw_ostream &Out) {
   1637   for (unsigned i = 0; i != Length; ++i) {
   1638     unsigned char C = Str[i];
   1639     if (isprint(C) && C != '\\' && C != '"')
   1640       Out << C;
   1641     else if (C == '\\')
   1642       Out << "\\\\";
   1643     else if (C == '\"')
   1644       Out << "\\\"";
   1645     else if (C == '\t')
   1646       Out << "\\t";
   1647     else
   1648       Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   1649   }
   1650 }
   1651 
   1652 // PrintEscapedString - Print each character of the specified string, escaping
   1653 // it if it is not printable or if it is an escape char.
   1654 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
   1655   PrintEscapedString(Str.c_str(), Str.size(), Out);
   1656 }
   1657 
   1658 bool CWriter::doInitialization(Module &M) {
   1659   FunctionPass::doInitialization(M);
   1660 
   1661   // Initialize
   1662   TheModule = &M;
   1663 
   1664   TD = new TargetData(&M);
   1665   IL = new IntrinsicLowering(*TD);
   1666   IL->AddPrototypes(M);
   1667 
   1668 #if 0
   1669   std::string Triple = TheModule->getTargetTriple();
   1670   if (Triple.empty())
   1671     Triple = llvm::sys::getHostTriple();
   1672 
   1673   std::string E;
   1674   if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
   1675     TAsm = Match->createMCAsmInfo(Triple);
   1676 #endif
   1677   TAsm = new CBEMCAsmInfo();
   1678   MRI  = new MCRegisterInfo();
   1679   TCtx = new MCContext(*TAsm, *MRI, NULL, NULL);
   1680   Mang = new Mangler(*TCtx, *TD);
   1681 
   1682   // Keep track of which functions are static ctors/dtors so they can have
   1683   // an attribute added to their prototypes.
   1684   std::set<Function*> StaticCtors, StaticDtors;
   1685   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1686        I != E; ++I) {
   1687     switch (getGlobalVariableClass(I)) {
   1688     default: break;
   1689     case GlobalCtors:
   1690       FindStaticTors(I, StaticCtors);
   1691       break;
   1692     case GlobalDtors:
   1693       FindStaticTors(I, StaticDtors);
   1694       break;
   1695     }
   1696   }
   1697 
   1698   // get declaration for alloca
   1699   Out << "/* Provide Declarations */\n";
   1700   Out << "#include <stdarg.h>\n";      // Varargs support
   1701   Out << "#include <setjmp.h>\n";      // Unwind support
   1702   Out << "#include <limits.h>\n";      // With overflow intrinsics support.
   1703   generateCompilerSpecificCode(Out, TD);
   1704 
   1705   // Provide a definition for `bool' if not compiling with a C++ compiler.
   1706   Out << "\n"
   1707       << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
   1708 
   1709       << "\n\n/* Support for floating point constants */\n"
   1710       << "typedef unsigned long long ConstantDoubleTy;\n"
   1711       << "typedef unsigned int        ConstantFloatTy;\n"
   1712       << "typedef struct { unsigned long long f1; unsigned short f2; "
   1713          "unsigned short pad[3]; } ConstantFP80Ty;\n"
   1714       // This is used for both kinds of 128-bit long double; meaning differs.
   1715       << "typedef struct { unsigned long long f1; unsigned long long f2; }"
   1716          " ConstantFP128Ty;\n"
   1717       << "\n\n/* Global Declarations */\n";
   1718 
   1719   // First output all the declarations for the program, because C requires
   1720   // Functions & globals to be declared before they are used.
   1721   //
   1722   if (!M.getModuleInlineAsm().empty()) {
   1723     Out << "/* Module asm statements */\n"
   1724         << "asm(";
   1725 
   1726     // Split the string into lines, to make it easier to read the .ll file.
   1727     std::string Asm = M.getModuleInlineAsm();
   1728     size_t CurPos = 0;
   1729     size_t NewLine = Asm.find_first_of('\n', CurPos);
   1730     while (NewLine != std::string::npos) {
   1731       // We found a newline, print the portion of the asm string from the
   1732       // last newline up to this newline.
   1733       Out << "\"";
   1734       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
   1735                          Out);
   1736       Out << "\\n\"\n";
   1737       CurPos = NewLine+1;
   1738       NewLine = Asm.find_first_of('\n', CurPos);
   1739     }
   1740     Out << "\"";
   1741     PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
   1742     Out << "\");\n"
   1743         << "/* End Module asm statements */\n";
   1744   }
   1745 
   1746   // Loop over the symbol table, emitting all named constants.
   1747   printModuleTypes();
   1748 
   1749   // Global variable declarations...
   1750   if (!M.global_empty()) {
   1751     Out << "\n/* External Global Variable Declarations */\n";
   1752     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1753          I != E; ++I) {
   1754 
   1755       if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
   1756           I->hasCommonLinkage())
   1757         Out << "extern ";
   1758       else if (I->hasDLLImportLinkage())
   1759         Out << "__declspec(dllimport) ";
   1760       else
   1761         continue; // Internal Global
   1762 
   1763       // Thread Local Storage
   1764       if (I->isThreadLocal())
   1765         Out << "__thread ";
   1766 
   1767       printType(Out, I->getType()->getElementType(), false, GetValueName(I));
   1768 
   1769       if (I->hasExternalWeakLinkage())
   1770          Out << " __EXTERNAL_WEAK__";
   1771       Out << ";\n";
   1772     }
   1773   }
   1774 
   1775   // Function declarations
   1776   Out << "\n/* Function Declarations */\n";
   1777   Out << "double fmod(double, double);\n";   // Support for FP rem
   1778   Out << "float fmodf(float, float);\n";
   1779   Out << "long double fmodl(long double, long double);\n";
   1780 
   1781   // Store the intrinsics which will be declared/defined below.
   1782   SmallVector<const Function*, 8> intrinsicsToDefine;
   1783 
   1784   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1785     // Don't print declarations for intrinsic functions.
   1786     // Store the used intrinsics, which need to be explicitly defined.
   1787     if (I->isIntrinsic()) {
   1788       switch (I->getIntrinsicID()) {
   1789         default:
   1790           break;
   1791         case Intrinsic::uadd_with_overflow:
   1792         case Intrinsic::sadd_with_overflow:
   1793           intrinsicsToDefine.push_back(I);
   1794           break;
   1795       }
   1796       continue;
   1797     }
   1798 
   1799     if (I->getName() == "setjmp" ||
   1800         I->getName() == "longjmp" || I->getName() == "_setjmp")
   1801       continue;
   1802 
   1803     if (I->hasExternalWeakLinkage())
   1804       Out << "extern ";
   1805     printFunctionSignature(I, true);
   1806     if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
   1807       Out << " __ATTRIBUTE_WEAK__";
   1808     if (I->hasExternalWeakLinkage())
   1809       Out << " __EXTERNAL_WEAK__";
   1810     if (StaticCtors.count(I))
   1811       Out << " __ATTRIBUTE_CTOR__";
   1812     if (StaticDtors.count(I))
   1813       Out << " __ATTRIBUTE_DTOR__";
   1814     if (I->hasHiddenVisibility())
   1815       Out << " __HIDDEN__";
   1816 
   1817     if (I->hasName() && I->getName()[0] == 1)
   1818       Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
   1819 
   1820     Out << ";\n";
   1821   }
   1822 
   1823   // Output the global variable declarations
   1824   if (!M.global_empty()) {
   1825     Out << "\n\n/* Global Variable Declarations */\n";
   1826     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1827          I != E; ++I)
   1828       if (!I->isDeclaration()) {
   1829         // Ignore special globals, such as debug info.
   1830         if (getGlobalVariableClass(I))
   1831           continue;
   1832 
   1833         if (I->hasLocalLinkage())
   1834           Out << "static ";
   1835         else
   1836           Out << "extern ";
   1837 
   1838         // Thread Local Storage
   1839         if (I->isThreadLocal())
   1840           Out << "__thread ";
   1841 
   1842         printType(Out, I->getType()->getElementType(), false,
   1843                   GetValueName(I));
   1844 
   1845         if (I->hasLinkOnceLinkage())
   1846           Out << " __attribute__((common))";
   1847         else if (I->hasCommonLinkage())     // FIXME is this right?
   1848           Out << " __ATTRIBUTE_WEAK__";
   1849         else if (I->hasWeakLinkage())
   1850           Out << " __ATTRIBUTE_WEAK__";
   1851         else if (I->hasExternalWeakLinkage())
   1852           Out << " __EXTERNAL_WEAK__";
   1853         if (I->hasHiddenVisibility())
   1854           Out << " __HIDDEN__";
   1855         Out << ";\n";
   1856       }
   1857   }
   1858 
   1859   // Output the global variable definitions and contents...
   1860   if (!M.global_empty()) {
   1861     Out << "\n\n/* Global Variable Definitions and Initialization */\n";
   1862     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1863          I != E; ++I)
   1864       if (!I->isDeclaration()) {
   1865         // Ignore special globals, such as debug info.
   1866         if (getGlobalVariableClass(I))
   1867           continue;
   1868 
   1869         if (I->hasLocalLinkage())
   1870           Out << "static ";
   1871         else if (I->hasDLLImportLinkage())
   1872           Out << "__declspec(dllimport) ";
   1873         else if (I->hasDLLExportLinkage())
   1874           Out << "__declspec(dllexport) ";
   1875 
   1876         // Thread Local Storage
   1877         if (I->isThreadLocal())
   1878           Out << "__thread ";
   1879 
   1880         printType(Out, I->getType()->getElementType(), false,
   1881                   GetValueName(I));
   1882         if (I->hasLinkOnceLinkage())
   1883           Out << " __attribute__((common))";
   1884         else if (I->hasWeakLinkage())
   1885           Out << " __ATTRIBUTE_WEAK__";
   1886         else if (I->hasCommonLinkage())
   1887           Out << " __ATTRIBUTE_WEAK__";
   1888 
   1889         if (I->hasHiddenVisibility())
   1890           Out << " __HIDDEN__";
   1891 
   1892         // If the initializer is not null, emit the initializer.  If it is null,
   1893         // we try to avoid emitting large amounts of zeros.  The problem with
   1894         // this, however, occurs when the variable has weak linkage.  In this
   1895         // case, the assembler will complain about the variable being both weak
   1896         // and common, so we disable this optimization.
   1897         // FIXME common linkage should avoid this problem.
   1898         if (!I->getInitializer()->isNullValue()) {
   1899           Out << " = " ;
   1900           writeOperand(I->getInitializer(), true);
   1901         } else if (I->hasWeakLinkage()) {
   1902           // We have to specify an initializer, but it doesn't have to be
   1903           // complete.  If the value is an aggregate, print out { 0 }, and let
   1904           // the compiler figure out the rest of the zeros.
   1905           Out << " = " ;
   1906           if (I->getInitializer()->getType()->isStructTy() ||
   1907               I->getInitializer()->getType()->isVectorTy()) {
   1908             Out << "{ 0 }";
   1909           } else if (I->getInitializer()->getType()->isArrayTy()) {
   1910             // As with structs and vectors, but with an extra set of braces
   1911             // because arrays are wrapped in structs.
   1912             Out << "{ { 0 } }";
   1913           } else {
   1914             // Just print it out normally.
   1915             writeOperand(I->getInitializer(), true);
   1916           }
   1917         }
   1918         Out << ";\n";
   1919       }
   1920   }
   1921 
   1922   if (!M.empty())
   1923     Out << "\n\n/* Function Bodies */\n";
   1924 
   1925   // Emit some helper functions for dealing with FCMP instruction's
   1926   // predicates
   1927   Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
   1928   Out << "return X == X && Y == Y; }\n";
   1929   Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
   1930   Out << "return X != X || Y != Y; }\n";
   1931   Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
   1932   Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
   1933   Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
   1934   Out << "return X != Y; }\n";
   1935   Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
   1936   Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
   1937   Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
   1938   Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
   1939   Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
   1940   Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
   1941   Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
   1942   Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
   1943   Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
   1944   Out << "return X == Y ; }\n";
   1945   Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
   1946   Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
   1947   Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
   1948   Out << "return X <  Y ; }\n";
   1949   Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
   1950   Out << "return X >  Y ; }\n";
   1951   Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
   1952   Out << "return X <= Y ; }\n";
   1953   Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
   1954   Out << "return X >= Y ; }\n";
   1955 
   1956   // Emit definitions of the intrinsics.
   1957   for (SmallVector<const Function*, 8>::const_iterator
   1958        I = intrinsicsToDefine.begin(),
   1959        E = intrinsicsToDefine.end(); I != E; ++I) {
   1960     printIntrinsicDefinition(**I, Out);
   1961   }
   1962 
   1963   return false;
   1964 }
   1965 
   1966 
   1967 /// Output all floating point constants that cannot be printed accurately...
   1968 void CWriter::printFloatingPointConstants(Function &F) {
   1969   // Scan the module for floating point constants.  If any FP constant is used
   1970   // in the function, we want to redirect it here so that we do not depend on
   1971   // the precision of the printed form, unless the printed form preserves
   1972   // precision.
   1973   //
   1974   for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
   1975        I != E; ++I)
   1976     printFloatingPointConstants(*I);
   1977 
   1978   Out << '\n';
   1979 }
   1980 
   1981 void CWriter::printFloatingPointConstants(const Constant *C) {
   1982   // If this is a constant expression, recursively check for constant fp values.
   1983   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1984     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
   1985       printFloatingPointConstants(CE->getOperand(i));
   1986     return;
   1987   }
   1988 
   1989   // Otherwise, check for a FP constant that we need to print.
   1990   const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
   1991   if (FPC == 0 ||
   1992       // Do not put in FPConstantMap if safe.
   1993       isFPCSafeToPrint(FPC) ||
   1994       // Already printed this constant?
   1995       FPConstantMap.count(FPC))
   1996     return;
   1997 
   1998   FPConstantMap[FPC] = FPCounter;  // Number the FP constants
   1999 
   2000   if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
   2001     double Val = FPC->getValueAPF().convertToDouble();
   2002     uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
   2003     Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
   2004     << " = 0x" << utohexstr(i)
   2005     << "ULL;    /* " << Val << " */\n";
   2006   } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
   2007     float Val = FPC->getValueAPF().convertToFloat();
   2008     uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
   2009     getZExtValue();
   2010     Out << "static const ConstantFloatTy FPConstant" << FPCounter++
   2011     << " = 0x" << utohexstr(i)
   2012     << "U;    /* " << Val << " */\n";
   2013   } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
   2014     // api needed to prevent premature destruction
   2015     APInt api = FPC->getValueAPF().bitcastToAPInt();
   2016     const uint64_t *p = api.getRawData();
   2017     Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
   2018     << " = { 0x" << utohexstr(p[0])
   2019     << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
   2020     << "}; /* Long double constant */\n";
   2021   } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
   2022              FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
   2023     APInt api = FPC->getValueAPF().bitcastToAPInt();
   2024     const uint64_t *p = api.getRawData();
   2025     Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
   2026     << " = { 0x"
   2027     << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
   2028     << "}; /* Long double constant */\n";
   2029 
   2030   } else {
   2031     llvm_unreachable("Unknown float type!");
   2032   }
   2033 }
   2034 
   2035 
   2036 /// printSymbolTable - Run through symbol table looking for type names.  If a
   2037 /// type name is found, emit its declaration...
   2038 ///
   2039 void CWriter::printModuleTypes() {
   2040   Out << "/* Helper union for bitcasts */\n";
   2041   Out << "typedef union {\n";
   2042   Out << "  unsigned int Int32;\n";
   2043   Out << "  unsigned long long Int64;\n";
   2044   Out << "  float Float;\n";
   2045   Out << "  double Double;\n";
   2046   Out << "} llvmBitCastUnion;\n";
   2047 
   2048   // Get all of the struct types used in the module.
   2049   std::vector<StructType*> StructTypes;
   2050   TheModule->findUsedStructTypes(StructTypes);
   2051 
   2052   if (StructTypes.empty()) return;
   2053 
   2054   Out << "/* Structure forward decls */\n";
   2055 
   2056   unsigned NextTypeID = 0;
   2057 
   2058   // If any of them are missing names, add a unique ID to UnnamedStructIDs.
   2059   // Print out forward declarations for structure types.
   2060   for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
   2061     StructType *ST = StructTypes[i];
   2062 
   2063     if (ST->isAnonymous() || ST->getName().empty())
   2064       UnnamedStructIDs[ST] = NextTypeID++;
   2065 
   2066     std::string Name = getStructName(ST);
   2067 
   2068     Out << "typedef struct " << Name << ' ' << Name << ";\n";
   2069   }
   2070 
   2071   Out << '\n';
   2072 
   2073   // Keep track of which structures have been printed so far.
   2074   SmallPtrSet<Type *, 16> StructPrinted;
   2075 
   2076   // Loop over all structures then push them into the stack so they are
   2077   // printed in the correct order.
   2078   //
   2079   Out << "/* Structure contents */\n";
   2080   for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
   2081     if (StructTypes[i]->isStructTy())
   2082       // Only print out used types!
   2083       printContainedStructs(StructTypes[i], StructPrinted);
   2084 }
   2085 
   2086 // Push the struct onto the stack and recursively push all structs
   2087 // this one depends on.
   2088 //
   2089 // TODO:  Make this work properly with vector types
   2090 //
   2091 void CWriter::printContainedStructs(Type *Ty,
   2092                                 SmallPtrSet<Type *, 16> &StructPrinted) {
   2093   // Don't walk through pointers.
   2094   if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
   2095     return;
   2096 
   2097   // Print all contained types first.
   2098   for (Type::subtype_iterator I = Ty->subtype_begin(),
   2099        E = Ty->subtype_end(); I != E; ++I)
   2100     printContainedStructs(*I, StructPrinted);
   2101 
   2102   if (StructType *ST = dyn_cast<StructType>(Ty)) {
   2103     // Check to see if we have already printed this struct.
   2104     if (!StructPrinted.insert(Ty)) return;
   2105 
   2106     // Print structure type out.
   2107     printType(Out, ST, false, getStructName(ST), true);
   2108     Out << ";\n\n";
   2109   }
   2110 }
   2111 
   2112 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
   2113   /// isStructReturn - Should this function actually return a struct by-value?
   2114   bool isStructReturn = F->hasStructRetAttr();
   2115 
   2116   if (F->hasLocalLinkage()) Out << "static ";
   2117   if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
   2118   if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
   2119   switch (F->getCallingConv()) {
   2120    case CallingConv::X86_StdCall:
   2121     Out << "__attribute__((stdcall)) ";
   2122     break;
   2123    case CallingConv::X86_FastCall:
   2124     Out << "__attribute__((fastcall)) ";
   2125     break;
   2126    case CallingConv::X86_ThisCall:
   2127     Out << "__attribute__((thiscall)) ";
   2128     break;
   2129    default:
   2130     break;
   2131   }
   2132 
   2133   // Loop over the arguments, printing them...
   2134   FunctionType *FT = cast<FunctionType>(F->getFunctionType());
   2135   const AttrListPtr &PAL = F->getAttributes();
   2136 
   2137   std::string tstr;
   2138   raw_string_ostream FunctionInnards(tstr);
   2139 
   2140   // Print out the name...
   2141   FunctionInnards << GetValueName(F) << '(';
   2142 
   2143   bool PrintedArg = false;
   2144   if (!F->isDeclaration()) {
   2145     if (!F->arg_empty()) {
   2146       Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   2147       unsigned Idx = 1;
   2148 
   2149       // If this is a struct-return function, don't print the hidden
   2150       // struct-return argument.
   2151       if (isStructReturn) {
   2152         assert(I != E && "Invalid struct return function!");
   2153         ++I;
   2154         ++Idx;
   2155       }
   2156 
   2157       std::string ArgName;
   2158       for (; I != E; ++I) {
   2159         if (PrintedArg) FunctionInnards << ", ";
   2160         if (I->hasName() || !Prototype)
   2161           ArgName = GetValueName(I);
   2162         else
   2163           ArgName = "";
   2164         Type *ArgTy = I->getType();
   2165         if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
   2166           ArgTy = cast<PointerType>(ArgTy)->getElementType();
   2167           ByValParams.insert(I);
   2168         }
   2169         printType(FunctionInnards, ArgTy,
   2170             /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
   2171             ArgName);
   2172         PrintedArg = true;
   2173         ++Idx;
   2174       }
   2175     }
   2176   } else {
   2177     // Loop over the arguments, printing them.
   2178     FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
   2179     unsigned Idx = 1;
   2180 
   2181     // If this is a struct-return function, don't print the hidden
   2182     // struct-return argument.
   2183     if (isStructReturn) {
   2184       assert(I != E && "Invalid struct return function!");
   2185       ++I;
   2186       ++Idx;
   2187     }
   2188 
   2189     for (; I != E; ++I) {
   2190       if (PrintedArg) FunctionInnards << ", ";
   2191       Type *ArgTy = *I;
   2192       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
   2193         assert(ArgTy->isPointerTy());
   2194         ArgTy = cast<PointerType>(ArgTy)->getElementType();
   2195       }
   2196       printType(FunctionInnards, ArgTy,
   2197              /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
   2198       PrintedArg = true;
   2199       ++Idx;
   2200     }
   2201   }
   2202 
   2203   if (!PrintedArg && FT->isVarArg()) {
   2204     FunctionInnards << "int vararg_dummy_arg";
   2205     PrintedArg = true;
   2206   }
   2207 
   2208   // Finish printing arguments... if this is a vararg function, print the ...,
   2209   // unless there are no known types, in which case, we just emit ().
   2210   //
   2211   if (FT->isVarArg() && PrintedArg) {
   2212     FunctionInnards << ",...";  // Output varargs portion of signature!
   2213   } else if (!FT->isVarArg() && !PrintedArg) {
   2214     FunctionInnards << "void"; // ret() -> ret(void) in C.
   2215   }
   2216   FunctionInnards << ')';
   2217 
   2218   // Get the return tpe for the function.
   2219   Type *RetTy;
   2220   if (!isStructReturn)
   2221     RetTy = F->getReturnType();
   2222   else {
   2223     // If this is a struct-return function, print the struct-return type.
   2224     RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
   2225   }
   2226 
   2227   // Print out the return type and the signature built above.
   2228   printType(Out, RetTy,
   2229             /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
   2230             FunctionInnards.str());
   2231 }
   2232 
   2233 static inline bool isFPIntBitCast(const Instruction &I) {
   2234   if (!isa<BitCastInst>(I))
   2235     return false;
   2236   Type *SrcTy = I.getOperand(0)->getType();
   2237   Type *DstTy = I.getType();
   2238   return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
   2239          (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
   2240 }
   2241 
   2242 void CWriter::printFunction(Function &F) {
   2243   /// isStructReturn - Should this function actually return a struct by-value?
   2244   bool isStructReturn = F.hasStructRetAttr();
   2245 
   2246   printFunctionSignature(&F, false);
   2247   Out << " {\n";
   2248 
   2249   // If this is a struct return function, handle the result with magic.
   2250   if (isStructReturn) {
   2251     Type *StructTy =
   2252       cast<PointerType>(F.arg_begin()->getType())->getElementType();
   2253     Out << "  ";
   2254     printType(Out, StructTy, false, "StructReturn");
   2255     Out << ";  /* Struct return temporary */\n";
   2256 
   2257     Out << "  ";
   2258     printType(Out, F.arg_begin()->getType(), false,
   2259               GetValueName(F.arg_begin()));
   2260     Out << " = &StructReturn;\n";
   2261   }
   2262 
   2263   bool PrintedVar = false;
   2264 
   2265   // print local variable information for the function
   2266   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
   2267     if (const AllocaInst *AI = isDirectAlloca(&*I)) {
   2268       Out << "  ";
   2269       printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
   2270       Out << ";    /* Address-exposed local */\n";
   2271       PrintedVar = true;
   2272     } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
   2273                !isInlinableInst(*I)) {
   2274       Out << "  ";
   2275       printType(Out, I->getType(), false, GetValueName(&*I));
   2276       Out << ";\n";
   2277 
   2278       if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
   2279         Out << "  ";
   2280         printType(Out, I->getType(), false,
   2281                   GetValueName(&*I)+"__PHI_TEMPORARY");
   2282         Out << ";\n";
   2283       }
   2284       PrintedVar = true;
   2285     }
   2286     // We need a temporary for the BitCast to use so it can pluck a value out
   2287     // of a union to do the BitCast. This is separate from the need for a
   2288     // variable to hold the result of the BitCast.
   2289     if (isFPIntBitCast(*I)) {
   2290       Out << "  llvmBitCastUnion " << GetValueName(&*I)
   2291           << "__BITCAST_TEMPORARY;\n";
   2292       PrintedVar = true;
   2293     }
   2294   }
   2295 
   2296   if (PrintedVar)
   2297     Out << '\n';
   2298 
   2299   if (F.hasExternalLinkage() && F.getName() == "main")
   2300     Out << "  CODE_FOR_MAIN();\n";
   2301 
   2302   // print the basic blocks
   2303   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   2304     if (Loop *L = LI->getLoopFor(BB)) {
   2305       if (L->getHeader() == BB && L->getParentLoop() == 0)
   2306         printLoop(L);
   2307     } else {
   2308       printBasicBlock(BB);
   2309     }
   2310   }
   2311 
   2312   Out << "}\n\n";
   2313 }
   2314 
   2315 void CWriter::printLoop(Loop *L) {
   2316   Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
   2317       << "' to make GCC happy */\n";
   2318   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
   2319     BasicBlock *BB = L->getBlocks()[i];
   2320     Loop *BBLoop = LI->getLoopFor(BB);
   2321     if (BBLoop == L)
   2322       printBasicBlock(BB);
   2323     else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
   2324       printLoop(BBLoop);
   2325   }
   2326   Out << "  } while (1); /* end of syntactic loop '"
   2327       << L->getHeader()->getName() << "' */\n";
   2328 }
   2329 
   2330 void CWriter::printBasicBlock(BasicBlock *BB) {
   2331 
   2332   // Don't print the label for the basic block if there are no uses, or if
   2333   // the only terminator use is the predecessor basic block's terminator.
   2334   // We have to scan the use list because PHI nodes use basic blocks too but
   2335   // do not require a label to be generated.
   2336   //
   2337   bool NeedsLabel = false;
   2338   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   2339     if (isGotoCodeNecessary(*PI, BB)) {
   2340       NeedsLabel = true;
   2341       break;
   2342     }
   2343 
   2344   if (NeedsLabel) Out << GetValueName(BB) << ":\n";
   2345 
   2346   // Output all of the instructions in the basic block...
   2347   for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
   2348        ++II) {
   2349     if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
   2350       if (II->getType() != Type::getVoidTy(BB->getContext()) &&
   2351           !isInlineAsm(*II))
   2352         outputLValue(II);
   2353       else
   2354         Out << "  ";
   2355       writeInstComputationInline(*II);
   2356       Out << ";\n";
   2357     }
   2358   }
   2359 
   2360   // Don't emit prefix or suffix for the terminator.
   2361   visit(*BB->getTerminator());
   2362 }
   2363 
   2364 
   2365 // Specific Instruction type classes... note that all of the casts are
   2366 // necessary because we use the instruction classes as opaque types...
   2367 //
   2368 void CWriter::visitReturnInst(ReturnInst &I) {
   2369   // If this is a struct return function, return the temporary struct.
   2370   bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
   2371 
   2372   if (isStructReturn) {
   2373     Out << "  return StructReturn;\n";
   2374     return;
   2375   }
   2376 
   2377   // Don't output a void return if this is the last basic block in the function
   2378   if (I.getNumOperands() == 0 &&
   2379       &*--I.getParent()->getParent()->end() == I.getParent() &&
   2380       !I.getParent()->size() == 1) {
   2381     return;
   2382   }
   2383 
   2384   Out << "  return";
   2385   if (I.getNumOperands()) {
   2386     Out << ' ';
   2387     writeOperand(I.getOperand(0));
   2388   }
   2389   Out << ";\n";
   2390 }
   2391 
   2392 void CWriter::visitSwitchInst(SwitchInst &SI) {
   2393 
   2394   Out << "  switch (";
   2395   writeOperand(SI.getOperand(0));
   2396   Out << ") {\n  default:\n";
   2397   printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
   2398   printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
   2399   Out << ";\n";
   2400   for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
   2401     Out << "  case ";
   2402     writeOperand(SI.getOperand(i));
   2403     Out << ":\n";
   2404     BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
   2405     printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
   2406     printBranchToBlock(SI.getParent(), Succ, 2);
   2407     if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
   2408       Out << "    break;\n";
   2409   }
   2410   Out << "  }\n";
   2411 }
   2412 
   2413 void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
   2414   Out << "  goto *(void*)(";
   2415   writeOperand(IBI.getOperand(0));
   2416   Out << ");\n";
   2417 }
   2418 
   2419 void CWriter::visitUnreachableInst(UnreachableInst &I) {
   2420   Out << "  /*UNREACHABLE*/;\n";
   2421 }
   2422 
   2423 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
   2424   /// FIXME: This should be reenabled, but loop reordering safe!!
   2425   return true;
   2426 
   2427   if (llvm::next(Function::iterator(From)) != Function::iterator(To))
   2428     return true;  // Not the direct successor, we need a goto.
   2429 
   2430   //isa<SwitchInst>(From->getTerminator())
   2431 
   2432   if (LI->getLoopFor(From) != LI->getLoopFor(To))
   2433     return true;
   2434   return false;
   2435 }
   2436 
   2437 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
   2438                                           BasicBlock *Successor,
   2439                                           unsigned Indent) {
   2440   for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
   2441     PHINode *PN = cast<PHINode>(I);
   2442     // Now we have to do the printing.
   2443     Value *IV = PN->getIncomingValueForBlock(CurBlock);
   2444     if (!isa<UndefValue>(IV)) {
   2445       Out << std::string(Indent, ' ');
   2446       Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
   2447       writeOperand(IV);
   2448       Out << ";   /* for PHI node */\n";
   2449     }
   2450   }
   2451 }
   2452 
   2453 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
   2454                                  unsigned Indent) {
   2455   if (isGotoCodeNecessary(CurBB, Succ)) {
   2456     Out << std::string(Indent, ' ') << "  goto ";
   2457     writeOperand(Succ);
   2458     Out << ";\n";
   2459   }
   2460 }
   2461 
   2462 // Branch instruction printing - Avoid printing out a branch to a basic block
   2463 // that immediately succeeds the current one.
   2464 //
   2465 void CWriter::visitBranchInst(BranchInst &I) {
   2466 
   2467   if (I.isConditional()) {
   2468     if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
   2469       Out << "  if (";
   2470       writeOperand(I.getCondition());
   2471       Out << ") {\n";
   2472 
   2473       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
   2474       printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
   2475 
   2476       if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
   2477         Out << "  } else {\n";
   2478         printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
   2479         printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
   2480       }
   2481     } else {
   2482       // First goto not necessary, assume second one is...
   2483       Out << "  if (!";
   2484       writeOperand(I.getCondition());
   2485       Out << ") {\n";
   2486 
   2487       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
   2488       printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
   2489     }
   2490 
   2491     Out << "  }\n";
   2492   } else {
   2493     printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
   2494     printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
   2495   }
   2496   Out << "\n";
   2497 }
   2498 
   2499 // PHI nodes get copied into temporary values at the end of predecessor basic
   2500 // blocks.  We now need to copy these temporary values into the REAL value for
   2501 // the PHI.
   2502 void CWriter::visitPHINode(PHINode &I) {
   2503   writeOperand(&I);
   2504   Out << "__PHI_TEMPORARY";
   2505 }
   2506 
   2507 
   2508 void CWriter::visitBinaryOperator(Instruction &I) {
   2509   // binary instructions, shift instructions, setCond instructions.
   2510   assert(!I.getType()->isPointerTy());
   2511 
   2512   // We must cast the results of binary operations which might be promoted.
   2513   bool needsCast = false;
   2514   if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
   2515       (I.getType() == Type::getInt16Ty(I.getContext()))
   2516       || (I.getType() == Type::getFloatTy(I.getContext()))) {
   2517     needsCast = true;
   2518     Out << "((";
   2519     printType(Out, I.getType(), false);
   2520     Out << ")(";
   2521   }
   2522 
   2523   // If this is a negation operation, print it out as such.  For FP, we don't
   2524   // want to print "-0.0 - X".
   2525   if (BinaryOperator::isNeg(&I)) {
   2526     Out << "-(";
   2527     writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
   2528     Out << ")";
   2529   } else if (BinaryOperator::isFNeg(&I)) {
   2530     Out << "-(";
   2531     writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
   2532     Out << ")";
   2533   } else if (I.getOpcode() == Instruction::FRem) {
   2534     // Output a call to fmod/fmodf instead of emitting a%b
   2535     if (I.getType() == Type::getFloatTy(I.getContext()))
   2536       Out << "fmodf(";
   2537     else if (I.getType() == Type::getDoubleTy(I.getContext()))
   2538       Out << "fmod(";
   2539     else  // all 3 flavors of long double
   2540       Out << "fmodl(";
   2541     writeOperand(I.getOperand(0));
   2542     Out << ", ";
   2543     writeOperand(I.getOperand(1));
   2544     Out << ")";
   2545   } else {
   2546 
   2547     // Write out the cast of the instruction's value back to the proper type
   2548     // if necessary.
   2549     bool NeedsClosingParens = writeInstructionCast(I);
   2550 
   2551     // Certain instructions require the operand to be forced to a specific type
   2552     // so we use writeOperandWithCast here instead of writeOperand. Similarly
   2553     // below for operand 1
   2554     writeOperandWithCast(I.getOperand(0), I.getOpcode());
   2555 
   2556     switch (I.getOpcode()) {
   2557     case Instruction::Add:
   2558     case Instruction::FAdd: Out << " + "; break;
   2559     case Instruction::Sub:
   2560     case Instruction::FSub: Out << " - "; break;
   2561     case Instruction::Mul:
   2562     case Instruction::FMul: Out << " * "; break;
   2563     case Instruction::URem:
   2564     case Instruction::SRem:
   2565     case Instruction::FRem: Out << " % "; break;
   2566     case Instruction::UDiv:
   2567     case Instruction::SDiv:
   2568     case Instruction::FDiv: Out << " / "; break;
   2569     case Instruction::And:  Out << " & "; break;
   2570     case Instruction::Or:   Out << " | "; break;
   2571     case Instruction::Xor:  Out << " ^ "; break;
   2572     case Instruction::Shl : Out << " << "; break;
   2573     case Instruction::LShr:
   2574     case Instruction::AShr: Out << " >> "; break;
   2575     default:
   2576 #ifndef NDEBUG
   2577        errs() << "Invalid operator type!" << I;
   2578 #endif
   2579        llvm_unreachable(0);
   2580     }
   2581 
   2582     writeOperandWithCast(I.getOperand(1), I.getOpcode());
   2583     if (NeedsClosingParens)
   2584       Out << "))";
   2585   }
   2586 
   2587   if (needsCast) {
   2588     Out << "))";
   2589   }
   2590 }
   2591 
   2592 void CWriter::visitICmpInst(ICmpInst &I) {
   2593   // We must cast the results of icmp which might be promoted.
   2594   bool needsCast = false;
   2595 
   2596   // Write out the cast of the instruction's value back to the proper type
   2597   // if necessary.
   2598   bool NeedsClosingParens = writeInstructionCast(I);
   2599 
   2600   // Certain icmp predicate require the operand to be forced to a specific type
   2601   // so we use writeOperandWithCast here instead of writeOperand. Similarly
   2602   // below for operand 1
   2603   writeOperandWithCast(I.getOperand(0), I);
   2604 
   2605   switch (I.getPredicate()) {
   2606   case ICmpInst::ICMP_EQ:  Out << " == "; break;
   2607   case ICmpInst::ICMP_NE:  Out << " != "; break;
   2608   case ICmpInst::ICMP_ULE:
   2609   case ICmpInst::ICMP_SLE: Out << " <= "; break;
   2610   case ICmpInst::ICMP_UGE:
   2611   case ICmpInst::ICMP_SGE: Out << " >= "; break;
   2612   case ICmpInst::ICMP_ULT:
   2613   case ICmpInst::ICMP_SLT: Out << " < "; break;
   2614   case ICmpInst::ICMP_UGT:
   2615   case ICmpInst::ICMP_SGT: Out << " > "; break;
   2616   default:
   2617 #ifndef NDEBUG
   2618     errs() << "Invalid icmp predicate!" << I;
   2619 #endif
   2620     llvm_unreachable(0);
   2621   }
   2622 
   2623   writeOperandWithCast(I.getOperand(1), I);
   2624   if (NeedsClosingParens)
   2625     Out << "))";
   2626 
   2627   if (needsCast) {
   2628     Out << "))";
   2629   }
   2630 }
   2631 
   2632 void CWriter::visitFCmpInst(FCmpInst &I) {
   2633   if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
   2634     Out << "0";
   2635     return;
   2636   }
   2637   if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
   2638     Out << "1";
   2639     return;
   2640   }
   2641 
   2642   const char* op = 0;
   2643   switch (I.getPredicate()) {
   2644   default: llvm_unreachable("Illegal FCmp predicate");
   2645   case FCmpInst::FCMP_ORD: op = "ord"; break;
   2646   case FCmpInst::FCMP_UNO: op = "uno"; break;
   2647   case FCmpInst::FCMP_UEQ: op = "ueq"; break;
   2648   case FCmpInst::FCMP_UNE: op = "une"; break;
   2649   case FCmpInst::FCMP_ULT: op = "ult"; break;
   2650   case FCmpInst::FCMP_ULE: op = "ule"; break;
   2651   case FCmpInst::FCMP_UGT: op = "ugt"; break;
   2652   case FCmpInst::FCMP_UGE: op = "uge"; break;
   2653   case FCmpInst::FCMP_OEQ: op = "oeq"; break;
   2654   case FCmpInst::FCMP_ONE: op = "one"; break;
   2655   case FCmpInst::FCMP_OLT: op = "olt"; break;
   2656   case FCmpInst::FCMP_OLE: op = "ole"; break;
   2657   case FCmpInst::FCMP_OGT: op = "ogt"; break;
   2658   case FCmpInst::FCMP_OGE: op = "oge"; break;
   2659   }
   2660 
   2661   Out << "llvm_fcmp_" << op << "(";
   2662   // Write the first operand
   2663   writeOperand(I.getOperand(0));
   2664   Out << ", ";
   2665   // Write the second operand
   2666   writeOperand(I.getOperand(1));
   2667   Out << ")";
   2668 }
   2669 
   2670 static const char * getFloatBitCastField(Type *Ty) {
   2671   switch (Ty->getTypeID()) {
   2672     default: llvm_unreachable("Invalid Type");
   2673     case Type::FloatTyID:  return "Float";
   2674     case Type::DoubleTyID: return "Double";
   2675     case Type::IntegerTyID: {
   2676       unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
   2677       if (NumBits <= 32)
   2678         return "Int32";
   2679       else
   2680         return "Int64";
   2681     }
   2682   }
   2683 }
   2684 
   2685 void CWriter::visitCastInst(CastInst &I) {
   2686   Type *DstTy = I.getType();
   2687   Type *SrcTy = I.getOperand(0)->getType();
   2688   if (isFPIntBitCast(I)) {
   2689     Out << '(';
   2690     // These int<->float and long<->double casts need to be handled specially
   2691     Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
   2692         << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
   2693     writeOperand(I.getOperand(0));
   2694     Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
   2695         << getFloatBitCastField(I.getType());
   2696     Out << ')';
   2697     return;
   2698   }
   2699 
   2700   Out << '(';
   2701   printCast(I.getOpcode(), SrcTy, DstTy);
   2702 
   2703   // Make a sext from i1 work by subtracting the i1 from 0 (an int).
   2704   if (SrcTy == Type::getInt1Ty(I.getContext()) &&
   2705       I.getOpcode() == Instruction::SExt)
   2706     Out << "0-";
   2707 
   2708   writeOperand(I.getOperand(0));
   2709 
   2710   if (DstTy == Type::getInt1Ty(I.getContext()) &&
   2711       (I.getOpcode() == Instruction::Trunc ||
   2712        I.getOpcode() == Instruction::FPToUI ||
   2713        I.getOpcode() == Instruction::FPToSI ||
   2714        I.getOpcode() == Instruction::PtrToInt)) {
   2715     // Make sure we really get a trunc to bool by anding the operand with 1
   2716     Out << "&1u";
   2717   }
   2718   Out << ')';
   2719 }
   2720 
   2721 void CWriter::visitSelectInst(SelectInst &I) {
   2722   Out << "((";
   2723   writeOperand(I.getCondition());
   2724   Out << ") ? (";
   2725   writeOperand(I.getTrueValue());
   2726   Out << ") : (";
   2727   writeOperand(I.getFalseValue());
   2728   Out << "))";
   2729 }
   2730 
   2731 // Returns the macro name or value of the max or min of an integer type
   2732 // (as defined in limits.h).
   2733 static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax,
   2734                             raw_ostream &Out) {
   2735   const char* type;
   2736   const char* sprefix = "";
   2737 
   2738   unsigned NumBits = Ty.getBitWidth();
   2739   if (NumBits <= 8) {
   2740     type = "CHAR";
   2741     sprefix = "S";
   2742   } else if (NumBits <= 16) {
   2743     type = "SHRT";
   2744   } else if (NumBits <= 32) {
   2745     type = "INT";
   2746   } else if (NumBits <= 64) {
   2747     type = "LLONG";
   2748   } else {
   2749     llvm_unreachable("Bit widths > 64 not implemented yet");
   2750   }
   2751 
   2752   if (isSigned)
   2753     Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
   2754   else
   2755     Out << "U" << type << (isMax ? "_MAX" : "0");
   2756 }
   2757 
   2758 #ifndef NDEBUG
   2759 static bool isSupportedIntegerSize(IntegerType &T) {
   2760   return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
   2761          T.getBitWidth() == 32 || T.getBitWidth() == 64;
   2762 }
   2763 #endif
   2764 
   2765 void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
   2766   FunctionType *funT = F.getFunctionType();
   2767   Type *retT = F.getReturnType();
   2768   IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
   2769 
   2770   assert(isSupportedIntegerSize(*elemT) &&
   2771          "CBackend does not support arbitrary size integers.");
   2772   assert(cast<StructType>(retT)->getElementType(0) == elemT &&
   2773          elemT == funT->getParamType(0) && funT->getNumParams() == 2);
   2774 
   2775   switch (F.getIntrinsicID()) {
   2776   default:
   2777     llvm_unreachable("Unsupported Intrinsic.");
   2778   case Intrinsic::uadd_with_overflow:
   2779     // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) {
   2780     //   Rty r;
   2781     //   r.field0 = a + b;
   2782     //   r.field1 = (r.field0 < a);
   2783     //   return r;
   2784     // }
   2785     Out << "static inline ";
   2786     printType(Out, retT);
   2787     Out << GetValueName(&F);
   2788     Out << "(";
   2789     printSimpleType(Out, elemT, false);
   2790     Out << "a,";
   2791     printSimpleType(Out, elemT, false);
   2792     Out << "b) {\n  ";
   2793     printType(Out, retT);
   2794     Out << "r;\n";
   2795     Out << "  r.field0 = a + b;\n";
   2796     Out << "  r.field1 = (r.field0 < a);\n";
   2797     Out << "  return r;\n}\n";
   2798     break;
   2799 
   2800   case Intrinsic::sadd_with_overflow:
   2801     // static inline Rty sadd_ixx(ixx a, ixx b) {
   2802     //   Rty r;
   2803     //   r.field1 = (b > 0 && a > XX_MAX - b) ||
   2804     //              (b < 0 && a < XX_MIN - b);
   2805     //   r.field0 = r.field1 ? 0 : a + b;
   2806     //   return r;
   2807     // }
   2808     Out << "static ";
   2809     printType(Out, retT);
   2810     Out << GetValueName(&F);
   2811     Out << "(";
   2812     printSimpleType(Out, elemT, true);
   2813     Out << "a,";
   2814     printSimpleType(Out, elemT, true);
   2815     Out << "b) {\n  ";
   2816     printType(Out, retT);
   2817     Out << "r;\n";
   2818     Out << "  r.field1 = (b > 0 && a > ";
   2819     printLimitValue(*elemT, true, true, Out);
   2820     Out << " - b) || (b < 0 && a < ";
   2821     printLimitValue(*elemT, true, false, Out);
   2822     Out << " - b);\n";
   2823     Out << "  r.field0 = r.field1 ? 0 : a + b;\n";
   2824     Out << "  return r;\n}\n";
   2825     break;
   2826   }
   2827 }
   2828 
   2829 void CWriter::lowerIntrinsics(Function &F) {
   2830   // This is used to keep track of intrinsics that get generated to a lowered
   2831   // function. We must generate the prototypes before the function body which
   2832   // will only be expanded on first use (by the loop below).
   2833   std::vector<Function*> prototypesToGen;
   2834 
   2835   // Examine all the instructions in this function to find the intrinsics that
   2836   // need to be lowered.
   2837   for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
   2838     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
   2839       if (CallInst *CI = dyn_cast<CallInst>(I++))
   2840         if (Function *F = CI->getCalledFunction())
   2841           switch (F->getIntrinsicID()) {
   2842           case Intrinsic::not_intrinsic:
   2843           case Intrinsic::memory_barrier:
   2844           case Intrinsic::vastart:
   2845           case Intrinsic::vacopy:
   2846           case Intrinsic::vaend:
   2847           case Intrinsic::returnaddress:
   2848           case Intrinsic::frameaddress:
   2849           case Intrinsic::setjmp:
   2850           case Intrinsic::longjmp:
   2851           case Intrinsic::prefetch:
   2852           case Intrinsic::powi:
   2853           case Intrinsic::x86_sse_cmp_ss:
   2854           case Intrinsic::x86_sse_cmp_ps:
   2855           case Intrinsic::x86_sse2_cmp_sd:
   2856           case Intrinsic::x86_sse2_cmp_pd:
   2857           case Intrinsic::ppc_altivec_lvsl:
   2858           case Intrinsic::uadd_with_overflow:
   2859           case Intrinsic::sadd_with_overflow:
   2860               // We directly implement these intrinsics
   2861             break;
   2862           default:
   2863             // If this is an intrinsic that directly corresponds to a GCC
   2864             // builtin, we handle it.
   2865             const char *BuiltinName = "";
   2866 #define GET_GCC_BUILTIN_NAME
   2867 #include "llvm/Intrinsics.gen"
   2868 #undef GET_GCC_BUILTIN_NAME
   2869             // If we handle it, don't lower it.
   2870             if (BuiltinName[0]) break;
   2871 
   2872             // All other intrinsic calls we must lower.
   2873             Instruction *Before = 0;
   2874             if (CI != &BB->front())
   2875               Before = prior(BasicBlock::iterator(CI));
   2876 
   2877             IL->LowerIntrinsicCall(CI);
   2878             if (Before) {        // Move iterator to instruction after call
   2879               I = Before; ++I;
   2880             } else {
   2881               I = BB->begin();
   2882             }
   2883             // If the intrinsic got lowered to another call, and that call has
   2884             // a definition then we need to make sure its prototype is emitted
   2885             // before any calls to it.
   2886             if (CallInst *Call = dyn_cast<CallInst>(I))
   2887               if (Function *NewF = Call->getCalledFunction())
   2888                 if (!NewF->isDeclaration())
   2889                   prototypesToGen.push_back(NewF);
   2890 
   2891             break;
   2892           }
   2893 
   2894   // We may have collected some prototypes to emit in the loop above.
   2895   // Emit them now, before the function that uses them is emitted. But,
   2896   // be careful not to emit them twice.
   2897   std::vector<Function*>::iterator I = prototypesToGen.begin();
   2898   std::vector<Function*>::iterator E = prototypesToGen.end();
   2899   for ( ; I != E; ++I) {
   2900     if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
   2901       Out << '\n';
   2902       printFunctionSignature(*I, true);
   2903       Out << ";\n";
   2904     }
   2905   }
   2906 }
   2907 
   2908 void CWriter::visitCallInst(CallInst &I) {
   2909   if (isa<InlineAsm>(I.getCalledValue()))
   2910     return visitInlineAsm(I);
   2911 
   2912   bool WroteCallee = false;
   2913 
   2914   // Handle intrinsic function calls first...
   2915   if (Function *F = I.getCalledFunction())
   2916     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   2917       if (visitBuiltinCall(I, ID, WroteCallee))
   2918         return;
   2919 
   2920   Value *Callee = I.getCalledValue();
   2921 
   2922   PointerType  *PTy   = cast<PointerType>(Callee->getType());
   2923   FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
   2924 
   2925   // If this is a call to a struct-return function, assign to the first
   2926   // parameter instead of passing it to the call.
   2927   const AttrListPtr &PAL = I.getAttributes();
   2928   bool hasByVal = I.hasByValArgument();
   2929   bool isStructRet = I.hasStructRetAttr();
   2930   if (isStructRet) {
   2931     writeOperandDeref(I.getArgOperand(0));
   2932     Out << " = ";
   2933   }
   2934 
   2935   if (I.isTailCall()) Out << " /*tail*/ ";
   2936 
   2937   if (!WroteCallee) {
   2938     // If this is an indirect call to a struct return function, we need to cast
   2939     // the pointer. Ditto for indirect calls with byval arguments.
   2940     bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
   2941 
   2942     // GCC is a real PITA.  It does not permit codegening casts of functions to
   2943     // function pointers if they are in a call (it generates a trap instruction
   2944     // instead!).  We work around this by inserting a cast to void* in between
   2945     // the function and the function pointer cast.  Unfortunately, we can't just
   2946     // form the constant expression here, because the folder will immediately
   2947     // nuke it.
   2948     //
   2949     // Note finally, that this is completely unsafe.  ANSI C does not guarantee
   2950     // that void* and function pointers have the same size. :( To deal with this
   2951     // in the common case, we handle casts where the number of arguments passed
   2952     // match exactly.
   2953     //
   2954     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
   2955       if (CE->isCast())
   2956         if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
   2957           NeedsCast = true;
   2958           Callee = RF;
   2959         }
   2960 
   2961     if (NeedsCast) {
   2962       // Ok, just cast the pointer type.
   2963       Out << "((";
   2964       if (isStructRet)
   2965         printStructReturnPointerFunctionType(Out, PAL,
   2966                              cast<PointerType>(I.getCalledValue()->getType()));
   2967       else if (hasByVal)
   2968         printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
   2969       else
   2970         printType(Out, I.getCalledValue()->getType());
   2971       Out << ")(void*)";
   2972     }
   2973     writeOperand(Callee);
   2974     if (NeedsCast) Out << ')';
   2975   }
   2976 
   2977   Out << '(';
   2978 
   2979   bool PrintedArg = false;
   2980   if(FTy->isVarArg() && !FTy->getNumParams()) {
   2981     Out << "0 /*dummy arg*/";
   2982     PrintedArg = true;
   2983   }
   2984 
   2985   unsigned NumDeclaredParams = FTy->getNumParams();
   2986   CallSite CS(&I);
   2987   CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
   2988   unsigned ArgNo = 0;
   2989   if (isStructRet) {   // Skip struct return argument.
   2990     ++AI;
   2991     ++ArgNo;
   2992   }
   2993 
   2994 
   2995   for (; AI != AE; ++AI, ++ArgNo) {
   2996     if (PrintedArg) Out << ", ";
   2997     if (ArgNo < NumDeclaredParams &&
   2998         (*AI)->getType() != FTy->getParamType(ArgNo)) {
   2999       Out << '(';
   3000       printType(Out, FTy->getParamType(ArgNo),
   3001             /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
   3002       Out << ')';
   3003     }
   3004     // Check if the argument is expected to be passed by value.
   3005     if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
   3006       writeOperandDeref(*AI);
   3007     else
   3008       writeOperand(*AI);
   3009     PrintedArg = true;
   3010   }
   3011   Out << ')';
   3012 }
   3013 
   3014 /// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
   3015 /// if the entire call is handled, return false if it wasn't handled, and
   3016 /// optionally set 'WroteCallee' if the callee has already been printed out.
   3017 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
   3018                                bool &WroteCallee) {
   3019   switch (ID) {
   3020   default: {
   3021     // If this is an intrinsic that directly corresponds to a GCC
   3022     // builtin, we emit it here.
   3023     const char *BuiltinName = "";
   3024     Function *F = I.getCalledFunction();
   3025 #define GET_GCC_BUILTIN_NAME
   3026 #include "llvm/Intrinsics.gen"
   3027 #undef GET_GCC_BUILTIN_NAME
   3028     assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
   3029 
   3030     Out << BuiltinName;
   3031     WroteCallee = true;
   3032     return false;
   3033   }
   3034   case Intrinsic::memory_barrier:
   3035     Out << "__sync_synchronize()";
   3036     return true;
   3037   case Intrinsic::vastart:
   3038     Out << "0; ";
   3039 
   3040     Out << "va_start(*(va_list*)";
   3041     writeOperand(I.getArgOperand(0));
   3042     Out << ", ";
   3043     // Output the last argument to the enclosing function.
   3044     if (I.getParent()->getParent()->arg_empty())
   3045       Out << "vararg_dummy_arg";
   3046     else
   3047       writeOperand(--I.getParent()->getParent()->arg_end());
   3048     Out << ')';
   3049     return true;
   3050   case Intrinsic::vaend:
   3051     if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
   3052       Out << "0; va_end(*(va_list*)";
   3053       writeOperand(I.getArgOperand(0));
   3054       Out << ')';
   3055     } else {
   3056       Out << "va_end(*(va_list*)0)";
   3057     }
   3058     return true;
   3059   case Intrinsic::vacopy:
   3060     Out << "0; ";
   3061     Out << "va_copy(*(va_list*)";
   3062     writeOperand(I.getArgOperand(0));
   3063     Out << ", *(va_list*)";
   3064     writeOperand(I.getArgOperand(1));
   3065     Out << ')';
   3066     return true;
   3067   case Intrinsic::returnaddress:
   3068     Out << "__builtin_return_address(";
   3069     writeOperand(I.getArgOperand(0));
   3070     Out << ')';
   3071     return true;
   3072   case Intrinsic::frameaddress:
   3073     Out << "__builtin_frame_address(";
   3074     writeOperand(I.getArgOperand(0));
   3075     Out << ')';
   3076     return true;
   3077   case Intrinsic::powi:
   3078     Out << "__builtin_powi(";
   3079     writeOperand(I.getArgOperand(0));
   3080     Out << ", ";
   3081     writeOperand(I.getArgOperand(1));
   3082     Out << ')';
   3083     return true;
   3084   case Intrinsic::setjmp:
   3085     Out << "setjmp(*(jmp_buf*)";
   3086     writeOperand(I.getArgOperand(0));
   3087     Out << ')';
   3088     return true;
   3089   case Intrinsic::longjmp:
   3090     Out << "longjmp(*(jmp_buf*)";
   3091     writeOperand(I.getArgOperand(0));
   3092     Out << ", ";
   3093     writeOperand(I.getArgOperand(1));
   3094     Out << ')';
   3095     return true;
   3096   case Intrinsic::prefetch:
   3097     Out << "LLVM_PREFETCH((const void *)";
   3098     writeOperand(I.getArgOperand(0));
   3099     Out << ", ";
   3100     writeOperand(I.getArgOperand(1));
   3101     Out << ", ";
   3102     writeOperand(I.getArgOperand(2));
   3103     Out << ")";
   3104     return true;
   3105   case Intrinsic::stacksave:
   3106     // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
   3107     // to work around GCC bugs (see PR1809).
   3108     Out << "0; *((void**)&" << GetValueName(&I)
   3109         << ") = __builtin_stack_save()";
   3110     return true;
   3111   case Intrinsic::x86_sse_cmp_ss:
   3112   case Intrinsic::x86_sse_cmp_ps:
   3113   case Intrinsic::x86_sse2_cmp_sd:
   3114   case Intrinsic::x86_sse2_cmp_pd:
   3115     Out << '(';
   3116     printType(Out, I.getType());
   3117     Out << ')';
   3118     // Multiple GCC builtins multiplex onto this intrinsic.
   3119     switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
   3120     default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
   3121     case 0: Out << "__builtin_ia32_cmpeq"; break;
   3122     case 1: Out << "__builtin_ia32_cmplt"; break;
   3123     case 2: Out << "__builtin_ia32_cmple"; break;
   3124     case 3: Out << "__builtin_ia32_cmpunord"; break;
   3125     case 4: Out << "__builtin_ia32_cmpneq"; break;
   3126     case 5: Out << "__builtin_ia32_cmpnlt"; break;
   3127     case 6: Out << "__builtin_ia32_cmpnle"; break;
   3128     case 7: Out << "__builtin_ia32_cmpord"; break;
   3129     }
   3130     if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
   3131       Out << 'p';
   3132     else
   3133       Out << 's';
   3134     if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
   3135       Out << 's';
   3136     else
   3137       Out << 'd';
   3138 
   3139     Out << "(";
   3140     writeOperand(I.getArgOperand(0));
   3141     Out << ", ";
   3142     writeOperand(I.getArgOperand(1));
   3143     Out << ")";
   3144     return true;
   3145   case Intrinsic::ppc_altivec_lvsl:
   3146     Out << '(';
   3147     printType(Out, I.getType());
   3148     Out << ')';
   3149     Out << "__builtin_altivec_lvsl(0, (void*)";
   3150     writeOperand(I.getArgOperand(0));
   3151     Out << ")";
   3152     return true;
   3153   case Intrinsic::uadd_with_overflow:
   3154   case Intrinsic::sadd_with_overflow:
   3155     Out << GetValueName(I.getCalledFunction()) << "(";
   3156     writeOperand(I.getArgOperand(0));
   3157     Out << ", ";
   3158     writeOperand(I.getArgOperand(1));
   3159     Out << ")";
   3160     return true;
   3161   }
   3162 }
   3163 
   3164 //This converts the llvm constraint string to something gcc is expecting.
   3165 //TODO: work out platform independent constraints and factor those out
   3166 //      of the per target tables
   3167 //      handle multiple constraint codes
   3168 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
   3169   assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
   3170 
   3171   // Grab the translation table from MCAsmInfo if it exists.
   3172   const MCAsmInfo *TargetAsm;
   3173   std::string Triple = TheModule->getTargetTriple();
   3174   if (Triple.empty())
   3175     Triple = llvm::sys::getHostTriple();
   3176 
   3177   std::string E;
   3178   if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
   3179     TargetAsm = Match->createMCAsmInfo(Triple);
   3180   else
   3181     return c.Codes[0];
   3182 
   3183   const char *const *table = TargetAsm->getAsmCBE();
   3184 
   3185   // Search the translation table if it exists.
   3186   for (int i = 0; table && table[i]; i += 2)
   3187     if (c.Codes[0] == table[i]) {
   3188       delete TargetAsm;
   3189       return table[i+1];
   3190     }
   3191 
   3192   // Default is identity.
   3193   delete TargetAsm;
   3194   return c.Codes[0];
   3195 }
   3196 
   3197 //TODO: import logic from AsmPrinter.cpp
   3198 static std::string gccifyAsm(std::string asmstr) {
   3199   for (std::string::size_type i = 0; i != asmstr.size(); ++i)
   3200     if (asmstr[i] == '\n')
   3201       asmstr.replace(i, 1, "\\n");
   3202     else if (asmstr[i] == '\t')
   3203       asmstr.replace(i, 1, "\\t");
   3204     else if (asmstr[i] == '$') {
   3205       if (asmstr[i + 1] == '{') {
   3206         std::string::size_type a = asmstr.find_first_of(':', i + 1);
   3207         std::string::size_type b = asmstr.find_first_of('}', i + 1);
   3208         std::string n = "%" +
   3209           asmstr.substr(a + 1, b - a - 1) +
   3210           asmstr.substr(i + 2, a - i - 2);
   3211         asmstr.replace(i, b - i + 1, n);
   3212         i += n.size() - 1;
   3213       } else
   3214         asmstr.replace(i, 1, "%");
   3215     }
   3216     else if (asmstr[i] == '%')//grr
   3217       { asmstr.replace(i, 1, "%%"); ++i;}
   3218 
   3219   return asmstr;
   3220 }
   3221 
   3222 //TODO: assumptions about what consume arguments from the call are likely wrong
   3223 //      handle communitivity
   3224 void CWriter::visitInlineAsm(CallInst &CI) {
   3225   InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
   3226   InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
   3227 
   3228   std::vector<std::pair<Value*, int> > ResultVals;
   3229   if (CI.getType() == Type::getVoidTy(CI.getContext()))
   3230     ;
   3231   else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
   3232     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
   3233       ResultVals.push_back(std::make_pair(&CI, (int)i));
   3234   } else {
   3235     ResultVals.push_back(std::make_pair(&CI, -1));
   3236   }
   3237 
   3238   // Fix up the asm string for gcc and emit it.
   3239   Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
   3240   Out << "        :";
   3241 
   3242   unsigned ValueCount = 0;
   3243   bool IsFirst = true;
   3244 
   3245   // Convert over all the output constraints.
   3246   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3247        E = Constraints.end(); I != E; ++I) {
   3248 
   3249     if (I->Type != InlineAsm::isOutput) {
   3250       ++ValueCount;
   3251       continue;  // Ignore non-output constraints.
   3252     }
   3253 
   3254     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3255     std::string C = InterpretASMConstraint(*I);
   3256     if (C.empty()) continue;
   3257 
   3258     if (!IsFirst) {
   3259       Out << ", ";
   3260       IsFirst = false;
   3261     }
   3262 
   3263     // Unpack the dest.
   3264     Value *DestVal;
   3265     int DestValNo = -1;
   3266 
   3267     if (ValueCount < ResultVals.size()) {
   3268       DestVal = ResultVals[ValueCount].first;
   3269       DestValNo = ResultVals[ValueCount].second;
   3270     } else
   3271       DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
   3272 
   3273     if (I->isEarlyClobber)
   3274       C = "&"+C;
   3275 
   3276     Out << "\"=" << C << "\"(" << GetValueName(DestVal);
   3277     if (DestValNo != -1)
   3278       Out << ".field" << DestValNo; // Multiple retvals.
   3279     Out << ")";
   3280     ++ValueCount;
   3281   }
   3282 
   3283 
   3284   // Convert over all the input constraints.
   3285   Out << "\n        :";
   3286   IsFirst = true;
   3287   ValueCount = 0;
   3288   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3289        E = Constraints.end(); I != E; ++I) {
   3290     if (I->Type != InlineAsm::isInput) {
   3291       ++ValueCount;
   3292       continue;  // Ignore non-input constraints.
   3293     }
   3294 
   3295     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3296     std::string C = InterpretASMConstraint(*I);
   3297     if (C.empty()) continue;
   3298 
   3299     if (!IsFirst) {
   3300       Out << ", ";
   3301       IsFirst = false;
   3302     }
   3303 
   3304     assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
   3305     Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
   3306 
   3307     Out << "\"" << C << "\"(";
   3308     if (!I->isIndirect)
   3309       writeOperand(SrcVal);
   3310     else
   3311       writeOperandDeref(SrcVal);
   3312     Out << ")";
   3313   }
   3314 
   3315   // Convert over the clobber constraints.
   3316   IsFirst = true;
   3317   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3318        E = Constraints.end(); I != E; ++I) {
   3319     if (I->Type != InlineAsm::isClobber)
   3320       continue;  // Ignore non-input constraints.
   3321 
   3322     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3323     std::string C = InterpretASMConstraint(*I);
   3324     if (C.empty()) continue;
   3325 
   3326     if (!IsFirst) {
   3327       Out << ", ";
   3328       IsFirst = false;
   3329     }
   3330 
   3331     Out << '\"' << C << '"';
   3332   }
   3333 
   3334   Out << ")";
   3335 }
   3336 
   3337 void CWriter::visitAllocaInst(AllocaInst &I) {
   3338   Out << '(';
   3339   printType(Out, I.getType());
   3340   Out << ") alloca(sizeof(";
   3341   printType(Out, I.getType()->getElementType());
   3342   Out << ')';
   3343   if (I.isArrayAllocation()) {
   3344     Out << " * " ;
   3345     writeOperand(I.getOperand(0));
   3346   }
   3347   Out << ')';
   3348 }
   3349 
   3350 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
   3351                                  gep_type_iterator E, bool Static) {
   3352 
   3353   // If there are no indices, just print out the pointer.
   3354   if (I == E) {
   3355     writeOperand(Ptr);
   3356     return;
   3357   }
   3358 
   3359   // Find out if the last index is into a vector.  If so, we have to print this
   3360   // specially.  Since vectors can't have elements of indexable type, only the
   3361   // last index could possibly be of a vector element.
   3362   VectorType *LastIndexIsVector = 0;
   3363   {
   3364     for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
   3365       LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
   3366   }
   3367 
   3368   Out << "(";
   3369 
   3370   // If the last index is into a vector, we can't print it as &a[i][j] because
   3371   // we can't index into a vector with j in GCC.  Instead, emit this as
   3372   // (((float*)&a[i])+j)
   3373   if (LastIndexIsVector) {
   3374     Out << "((";
   3375     printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
   3376     Out << ")(";
   3377   }
   3378 
   3379   Out << '&';
   3380 
   3381   // If the first index is 0 (very typical) we can do a number of
   3382   // simplifications to clean up the code.
   3383   Value *FirstOp = I.getOperand();
   3384   if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
   3385     // First index isn't simple, print it the hard way.
   3386     writeOperand(Ptr);
   3387   } else {
   3388     ++I;  // Skip the zero index.
   3389 
   3390     // Okay, emit the first operand. If Ptr is something that is already address
   3391     // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
   3392     if (isAddressExposed(Ptr)) {
   3393       writeOperandInternal(Ptr, Static);
   3394     } else if (I != E && (*I)->isStructTy()) {
   3395       // If we didn't already emit the first operand, see if we can print it as
   3396       // P->f instead of "P[0].f"
   3397       writeOperand(Ptr);
   3398       Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
   3399       ++I;  // eat the struct index as well.
   3400     } else {
   3401       // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
   3402       Out << "(*";
   3403       writeOperand(Ptr);
   3404       Out << ")";
   3405     }
   3406   }
   3407 
   3408   for (; I != E; ++I) {
   3409     if ((*I)->isStructTy()) {
   3410       Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
   3411     } else if ((*I)->isArrayTy()) {
   3412       Out << ".array[";
   3413       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3414       Out << ']';
   3415     } else if (!(*I)->isVectorTy()) {
   3416       Out << '[';
   3417       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3418       Out << ']';
   3419     } else {
   3420       // If the last index is into a vector, then print it out as "+j)".  This
   3421       // works with the 'LastIndexIsVector' code above.
   3422       if (isa<Constant>(I.getOperand()) &&
   3423           cast<Constant>(I.getOperand())->isNullValue()) {
   3424         Out << "))";  // avoid "+0".
   3425       } else {
   3426         Out << ")+(";
   3427         writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3428         Out << "))";
   3429       }
   3430     }
   3431   }
   3432   Out << ")";
   3433 }
   3434 
   3435 void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
   3436                                 bool IsVolatile, unsigned Alignment) {
   3437 
   3438   bool IsUnaligned = Alignment &&
   3439     Alignment < TD->getABITypeAlignment(OperandType);
   3440 
   3441   if (!IsUnaligned)
   3442     Out << '*';
   3443   if (IsVolatile || IsUnaligned) {
   3444     Out << "((";
   3445     if (IsUnaligned)
   3446       Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
   3447     printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
   3448     if (IsUnaligned) {
   3449       Out << "; } ";
   3450       if (IsVolatile) Out << "volatile ";
   3451       Out << "*";
   3452     }
   3453     Out << ")";
   3454   }
   3455 
   3456   writeOperand(Operand);
   3457 
   3458   if (IsVolatile || IsUnaligned) {
   3459     Out << ')';
   3460     if (IsUnaligned)
   3461       Out << "->data";
   3462   }
   3463 }
   3464 
   3465 void CWriter::visitLoadInst(LoadInst &I) {
   3466   writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
   3467                     I.getAlignment());
   3468 
   3469 }
   3470 
   3471 void CWriter::visitStoreInst(StoreInst &I) {
   3472   writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
   3473                     I.isVolatile(), I.getAlignment());
   3474   Out << " = ";
   3475   Value *Operand = I.getOperand(0);
   3476   Constant *BitMask = 0;
   3477   if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
   3478     if (!ITy->isPowerOf2ByteWidth())
   3479       // We have a bit width that doesn't match an even power-of-2 byte
   3480       // size. Consequently we must & the value with the type's bit mask
   3481       BitMask = ConstantInt::get(ITy, ITy->getBitMask());
   3482   if (BitMask)
   3483     Out << "((";
   3484   writeOperand(Operand);
   3485   if (BitMask) {
   3486     Out << ") & ";
   3487     printConstant(BitMask, false);
   3488     Out << ")";
   3489   }
   3490 }
   3491 
   3492 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
   3493   printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
   3494                      gep_type_end(I), false);
   3495 }
   3496 
   3497 void CWriter::visitVAArgInst(VAArgInst &I) {
   3498   Out << "va_arg(*(va_list*)";
   3499   writeOperand(I.getOperand(0));
   3500   Out << ", ";
   3501   printType(Out, I.getType());
   3502   Out << ");\n ";
   3503 }
   3504 
   3505 void CWriter::visitInsertElementInst(InsertElementInst &I) {
   3506   Type *EltTy = I.getType()->getElementType();
   3507   writeOperand(I.getOperand(0));
   3508   Out << ";\n  ";
   3509   Out << "((";
   3510   printType(Out, PointerType::getUnqual(EltTy));
   3511   Out << ")(&" << GetValueName(&I) << "))[";
   3512   writeOperand(I.getOperand(2));
   3513   Out << "] = (";
   3514   writeOperand(I.getOperand(1));
   3515   Out << ")";
   3516 }
   3517 
   3518 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
   3519   // We know that our operand is not inlined.
   3520   Out << "((";
   3521   Type *EltTy =
   3522     cast<VectorType>(I.getOperand(0)->getType())->getElementType();
   3523   printType(Out, PointerType::getUnqual(EltTy));
   3524   Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
   3525   writeOperand(I.getOperand(1));
   3526   Out << "]";
   3527 }
   3528 
   3529 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
   3530   Out << "(";
   3531   printType(Out, SVI.getType());
   3532   Out << "){ ";
   3533   VectorType *VT = SVI.getType();
   3534   unsigned NumElts = VT->getNumElements();
   3535   Type *EltTy = VT->getElementType();
   3536 
   3537   for (unsigned i = 0; i != NumElts; ++i) {
   3538     if (i) Out << ", ";
   3539     int SrcVal = SVI.getMaskValue(i);
   3540     if ((unsigned)SrcVal >= NumElts*2) {
   3541       Out << " 0/*undef*/ ";
   3542     } else {
   3543       Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
   3544       if (isa<Instruction>(Op)) {
   3545         // Do an extractelement of this value from the appropriate input.
   3546         Out << "((";
   3547         printType(Out, PointerType::getUnqual(EltTy));
   3548         Out << ")(&" << GetValueName(Op)
   3549             << "))[" << (SrcVal & (NumElts-1)) << "]";
   3550       } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
   3551         Out << "0";
   3552       } else {
   3553         printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
   3554                                                            (NumElts-1)),
   3555                       false);
   3556       }
   3557     }
   3558   }
   3559   Out << "}";
   3560 }
   3561 
   3562 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
   3563   // Start by copying the entire aggregate value into the result variable.
   3564   writeOperand(IVI.getOperand(0));
   3565   Out << ";\n  ";
   3566 
   3567   // Then do the insert to update the field.
   3568   Out << GetValueName(&IVI);
   3569   for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
   3570        i != e; ++i) {
   3571     Type *IndexedTy =
   3572       ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
   3573                                        makeArrayRef(b, i+1));
   3574     if (IndexedTy->isArrayTy())
   3575       Out << ".array[" << *i << "]";
   3576     else
   3577       Out << ".field" << *i;
   3578   }
   3579   Out << " = ";
   3580   writeOperand(IVI.getOperand(1));
   3581 }
   3582 
   3583 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
   3584   Out << "(";
   3585   if (isa<UndefValue>(EVI.getOperand(0))) {
   3586     Out << "(";
   3587     printType(Out, EVI.getType());
   3588     Out << ") 0/*UNDEF*/";
   3589   } else {
   3590     Out << GetValueName(EVI.getOperand(0));
   3591     for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
   3592          i != e; ++i) {
   3593       Type *IndexedTy =
   3594         ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
   3595                                          makeArrayRef(b, i+1));
   3596       if (IndexedTy->isArrayTy())
   3597         Out << ".array[" << *i << "]";
   3598       else
   3599         Out << ".field" << *i;
   3600     }
   3601   }
   3602   Out << ")";
   3603 }
   3604 
   3605 //===----------------------------------------------------------------------===//
   3606 //                       External Interface declaration
   3607 //===----------------------------------------------------------------------===//
   3608 
   3609 bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   3610                                          formatted_raw_ostream &o,
   3611                                          CodeGenFileType FileType,
   3612                                          CodeGenOpt::Level OptLevel,
   3613                                          bool DisableVerify) {
   3614   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   3615 
   3616   PM.add(createGCLoweringPass());
   3617   PM.add(createLowerInvokePass());
   3618   PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
   3619   PM.add(new CWriter(o));
   3620   PM.add(createGCInfoDeleter());
   3621   return false;
   3622 }
   3623