1 /* 2 * Copyright 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 /** 25 * \file ast_to_hir.c 26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR). 27 * 28 * During the conversion to HIR, the majority of the symantic checking is 29 * preformed on the program. This includes: 30 * 31 * * Symbol table management 32 * * Type checking 33 * * Function binding 34 * 35 * The majority of this work could be done during parsing, and the parser could 36 * probably generate HIR directly. However, this results in frequent changes 37 * to the parser code. Since we do not assume that every system this complier 38 * is built on will have Flex and Bison installed, we have to store the code 39 * generated by these tools in our version control system. In other parts of 40 * the system we've seen problems where a parser was changed but the generated 41 * code was not committed, merge conflicts where created because two developers 42 * had slightly different versions of Bison installed, etc. 43 * 44 * I have also noticed that running Bison generated parsers in GDB is very 45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very 46 * well 'print $1' in GDB. 47 * 48 * As a result, my preference is to put as little C code as possible in the 49 * parser (and lexer) sources. 50 */ 51 52 #include "main/core.h" /* for struct gl_extensions */ 53 #include "glsl_symbol_table.h" 54 #include "glsl_parser_extras.h" 55 #include "ast.h" 56 #include "glsl_types.h" 57 #include "ir.h" 58 59 void 60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) 61 { 62 _mesa_glsl_initialize_variables(instructions, state); 63 _mesa_glsl_initialize_functions(instructions, state); 64 65 state->symbols->language_version = state->language_version; 66 67 state->current_function = NULL; 68 69 /* Section 4.2 of the GLSL 1.20 specification states: 70 * "The built-in functions are scoped in a scope outside the global scope 71 * users declare global variables in. That is, a shader's global scope, 72 * available for user-defined functions and global variables, is nested 73 * inside the scope containing the built-in functions." 74 * 75 * Since built-in functions like ftransform() access built-in variables, 76 * it follows that those must be in the outer scope as well. 77 * 78 * We push scope here to create this nesting effect...but don't pop. 79 * This way, a shader's globals are still in the symbol table for use 80 * by the linker. 81 */ 82 state->symbols->push_scope(); 83 84 foreach_list_typed (ast_node, ast, link, & state->translation_unit) 85 ast->hir(instructions, state); 86 } 87 88 89 /** 90 * If a conversion is available, convert one operand to a different type 91 * 92 * The \c from \c ir_rvalue is converted "in place". 93 * 94 * \param to Type that the operand it to be converted to 95 * \param from Operand that is being converted 96 * \param state GLSL compiler state 97 * 98 * \return 99 * If a conversion is possible (or unnecessary), \c true is returned. 100 * Otherwise \c false is returned. 101 */ 102 bool 103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, 104 struct _mesa_glsl_parse_state *state) 105 { 106 void *ctx = state; 107 if (to->base_type == from->type->base_type) 108 return true; 109 110 /* This conversion was added in GLSL 1.20. If the compilation mode is 111 * GLSL 1.10, the conversion is skipped. 112 */ 113 if (state->language_version < 120) 114 return false; 115 116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: 117 * 118 * "There are no implicit array or structure conversions. For 119 * example, an array of int cannot be implicitly converted to an 120 * array of float. There are no implicit conversions between 121 * signed and unsigned integers." 122 */ 123 /* FINISHME: The above comment is partially a lie. There is int/uint 124 * FINISHME: conversion for immediate constants. 125 */ 126 if (!to->is_float() || !from->type->is_numeric()) 127 return false; 128 129 /* Convert to a floating point type with the same number of components 130 * as the original type - i.e. int to float, not int to vec4. 131 */ 132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements, 133 from->type->matrix_columns); 134 135 switch (from->type->base_type) { 136 case GLSL_TYPE_INT: 137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL); 138 break; 139 case GLSL_TYPE_UINT: 140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL); 141 break; 142 case GLSL_TYPE_BOOL: 143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL); 144 break; 145 default: 146 assert(0); 147 } 148 149 return true; 150 } 151 152 153 static const struct glsl_type * 154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 155 bool multiply, 156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 157 { 158 const glsl_type *type_a = value_a->type; 159 const glsl_type *type_b = value_b->type; 160 161 /* From GLSL 1.50 spec, page 56: 162 * 163 * "The arithmetic binary operators add (+), subtract (-), 164 * multiply (*), and divide (/) operate on integer and 165 * floating-point scalars, vectors, and matrices." 166 */ 167 if (!type_a->is_numeric() || !type_b->is_numeric()) { 168 _mesa_glsl_error(loc, state, 169 "Operands to arithmetic operators must be numeric"); 170 return glsl_type::error_type; 171 } 172 173 174 /* "If one operand is floating-point based and the other is 175 * not, then the conversions from Section 4.1.10 "Implicit 176 * Conversions" are applied to the non-floating-point-based operand." 177 */ 178 if (!apply_implicit_conversion(type_a, value_b, state) 179 && !apply_implicit_conversion(type_b, value_a, state)) { 180 _mesa_glsl_error(loc, state, 181 "Could not implicitly convert operands to " 182 "arithmetic operator"); 183 return glsl_type::error_type; 184 } 185 type_a = value_a->type; 186 type_b = value_b->type; 187 188 /* "If the operands are integer types, they must both be signed or 189 * both be unsigned." 190 * 191 * From this rule and the preceeding conversion it can be inferred that 192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. 193 * The is_numeric check above already filtered out the case where either 194 * type is not one of these, so now the base types need only be tested for 195 * equality. 196 */ 197 if (type_a->base_type != type_b->base_type) { 198 _mesa_glsl_error(loc, state, 199 "base type mismatch for arithmetic operator"); 200 return glsl_type::error_type; 201 } 202 203 /* "All arithmetic binary operators result in the same fundamental type 204 * (signed integer, unsigned integer, or floating-point) as the 205 * operands they operate on, after operand type conversion. After 206 * conversion, the following cases are valid 207 * 208 * * The two operands are scalars. In this case the operation is 209 * applied, resulting in a scalar." 210 */ 211 if (type_a->is_scalar() && type_b->is_scalar()) 212 return type_a; 213 214 /* "* One operand is a scalar, and the other is a vector or matrix. 215 * In this case, the scalar operation is applied independently to each 216 * component of the vector or matrix, resulting in the same size 217 * vector or matrix." 218 */ 219 if (type_a->is_scalar()) { 220 if (!type_b->is_scalar()) 221 return type_b; 222 } else if (type_b->is_scalar()) { 223 return type_a; 224 } 225 226 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been 228 * handled. 229 */ 230 assert(!type_a->is_scalar()); 231 assert(!type_b->is_scalar()); 232 233 /* "* The two operands are vectors of the same size. In this case, the 234 * operation is done component-wise resulting in the same size 235 * vector." 236 */ 237 if (type_a->is_vector() && type_b->is_vector()) { 238 if (type_a == type_b) { 239 return type_a; 240 } else { 241 _mesa_glsl_error(loc, state, 242 "vector size mismatch for arithmetic operator"); 243 return glsl_type::error_type; 244 } 245 } 246 247 /* All of the combinations of <scalar, scalar>, <vector, scalar>, 248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and 249 * <vector, vector> have been handled. At least one of the operands must 250 * be matrix. Further, since there are no integer matrix types, the base 251 * type of both operands must be float. 252 */ 253 assert(type_a->is_matrix() || type_b->is_matrix()); 254 assert(type_a->base_type == GLSL_TYPE_FLOAT); 255 assert(type_b->base_type == GLSL_TYPE_FLOAT); 256 257 /* "* The operator is add (+), subtract (-), or divide (/), and the 258 * operands are matrices with the same number of rows and the same 259 * number of columns. In this case, the operation is done component- 260 * wise resulting in the same size matrix." 261 * * The operator is multiply (*), where both operands are matrices or 262 * one operand is a vector and the other a matrix. A right vector 263 * operand is treated as a column vector and a left vector operand as a 264 * row vector. In all these cases, it is required that the number of 265 * columns of the left operand is equal to the number of rows of the 266 * right operand. Then, the multiply (*) operation does a linear 267 * algebraic multiply, yielding an object that has the same number of 268 * rows as the left operand and the same number of columns as the right 269 * operand. Section 5.10 "Vector and Matrix Operations" explains in 270 * more detail how vectors and matrices are operated on." 271 */ 272 if (! multiply) { 273 if (type_a == type_b) 274 return type_a; 275 } else { 276 if (type_a->is_matrix() && type_b->is_matrix()) { 277 /* Matrix multiply. The columns of A must match the rows of B. Given 278 * the other previously tested constraints, this means the vector type 279 * of a row from A must be the same as the vector type of a column from 280 * B. 281 */ 282 if (type_a->row_type() == type_b->column_type()) { 283 /* The resulting matrix has the number of columns of matrix B and 284 * the number of rows of matrix A. We get the row count of A by 285 * looking at the size of a vector that makes up a column. The 286 * transpose (size of a row) is done for B. 287 */ 288 const glsl_type *const type = 289 glsl_type::get_instance(type_a->base_type, 290 type_a->column_type()->vector_elements, 291 type_b->row_type()->vector_elements); 292 assert(type != glsl_type::error_type); 293 294 return type; 295 } 296 } else if (type_a->is_matrix()) { 297 /* A is a matrix and B is a column vector. Columns of A must match 298 * rows of B. Given the other previously tested constraints, this 299 * means the vector type of a row from A must be the same as the 300 * vector the type of B. 301 */ 302 if (type_a->row_type() == type_b) { 303 /* The resulting vector has a number of elements equal to 304 * the number of rows of matrix A. */ 305 const glsl_type *const type = 306 glsl_type::get_instance(type_a->base_type, 307 type_a->column_type()->vector_elements, 308 1); 309 assert(type != glsl_type::error_type); 310 311 return type; 312 } 313 } else { 314 assert(type_b->is_matrix()); 315 316 /* A is a row vector and B is a matrix. Columns of A must match rows 317 * of B. Given the other previously tested constraints, this means 318 * the type of A must be the same as the vector type of a column from 319 * B. 320 */ 321 if (type_a == type_b->column_type()) { 322 /* The resulting vector has a number of elements equal to 323 * the number of columns of matrix B. */ 324 const glsl_type *const type = 325 glsl_type::get_instance(type_a->base_type, 326 type_b->row_type()->vector_elements, 327 1); 328 assert(type != glsl_type::error_type); 329 330 return type; 331 } 332 } 333 334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication"); 335 return glsl_type::error_type; 336 } 337 338 339 /* "All other cases are illegal." 340 */ 341 _mesa_glsl_error(loc, state, "type mismatch"); 342 return glsl_type::error_type; 343 } 344 345 346 static const struct glsl_type * 347 unary_arithmetic_result_type(const struct glsl_type *type, 348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 349 { 350 /* From GLSL 1.50 spec, page 57: 351 * 352 * "The arithmetic unary operators negate (-), post- and pre-increment 353 * and decrement (-- and ++) operate on integer or floating-point 354 * values (including vectors and matrices). All unary operators work 355 * component-wise on their operands. These result with the same type 356 * they operated on." 357 */ 358 if (!type->is_numeric()) { 359 _mesa_glsl_error(loc, state, 360 "Operands to arithmetic operators must be numeric"); 361 return glsl_type::error_type; 362 } 363 364 return type; 365 } 366 367 /** 368 * \brief Return the result type of a bit-logic operation. 369 * 370 * If the given types to the bit-logic operator are invalid, return 371 * glsl_type::error_type. 372 * 373 * \param type_a Type of LHS of bit-logic op 374 * \param type_b Type of RHS of bit-logic op 375 */ 376 static const struct glsl_type * 377 bit_logic_result_type(const struct glsl_type *type_a, 378 const struct glsl_type *type_b, 379 ast_operators op, 380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 381 { 382 if (state->language_version < 130) { 383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30"); 384 return glsl_type::error_type; 385 } 386 387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec: 388 * 389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or 390 * (|). The operands must be of type signed or unsigned integers or 391 * integer vectors." 392 */ 393 if (!type_a->is_integer()) { 394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer", 395 ast_expression::operator_string(op)); 396 return glsl_type::error_type; 397 } 398 if (!type_b->is_integer()) { 399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer", 400 ast_expression::operator_string(op)); 401 return glsl_type::error_type; 402 } 403 404 /* "The fundamental types of the operands (signed or unsigned) must 405 * match," 406 */ 407 if (type_a->base_type != type_b->base_type) { 408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same " 409 "base type", ast_expression::operator_string(op)); 410 return glsl_type::error_type; 411 } 412 413 /* "The operands cannot be vectors of differing size." */ 414 if (type_a->is_vector() && 415 type_b->is_vector() && 416 type_a->vector_elements != type_b->vector_elements) { 417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of " 418 "different sizes", ast_expression::operator_string(op)); 419 return glsl_type::error_type; 420 } 421 422 /* "If one operand is a scalar and the other a vector, the scalar is 423 * applied component-wise to the vector, resulting in the same type as 424 * the vector. The fundamental types of the operands [...] will be the 425 * resulting fundamental type." 426 */ 427 if (type_a->is_scalar()) 428 return type_b; 429 else 430 return type_a; 431 } 432 433 static const struct glsl_type * 434 modulus_result_type(const struct glsl_type *type_a, 435 const struct glsl_type *type_b, 436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 437 { 438 /* From GLSL 1.50 spec, page 56: 439 * "The operator modulus (%) operates on signed or unsigned integers or 440 * integer vectors. The operand types must both be signed or both be 441 * unsigned." 442 */ 443 if (!type_a->is_integer() || !type_b->is_integer() 444 || (type_a->base_type != type_b->base_type)) { 445 _mesa_glsl_error(loc, state, "type mismatch"); 446 return glsl_type::error_type; 447 } 448 449 /* "The operands cannot be vectors of differing size. If one operand is 450 * a scalar and the other vector, then the scalar is applied component- 451 * wise to the vector, resulting in the same type as the vector. If both 452 * are vectors of the same size, the result is computed component-wise." 453 */ 454 if (type_a->is_vector()) { 455 if (!type_b->is_vector() 456 || (type_a->vector_elements == type_b->vector_elements)) 457 return type_a; 458 } else 459 return type_b; 460 461 /* "The operator modulus (%) is not defined for any other data types 462 * (non-integer types)." 463 */ 464 _mesa_glsl_error(loc, state, "type mismatch"); 465 return glsl_type::error_type; 466 } 467 468 469 static const struct glsl_type * 470 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, 471 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 472 { 473 const glsl_type *type_a = value_a->type; 474 const glsl_type *type_b = value_b->type; 475 476 /* From GLSL 1.50 spec, page 56: 477 * "The relational operators greater than (>), less than (<), greater 478 * than or equal (>=), and less than or equal (<=) operate only on 479 * scalar integer and scalar floating-point expressions." 480 */ 481 if (!type_a->is_numeric() 482 || !type_b->is_numeric() 483 || !type_a->is_scalar() 484 || !type_b->is_scalar()) { 485 _mesa_glsl_error(loc, state, 486 "Operands to relational operators must be scalar and " 487 "numeric"); 488 return glsl_type::error_type; 489 } 490 491 /* "Either the operands' types must match, or the conversions from 492 * Section 4.1.10 "Implicit Conversions" will be applied to the integer 493 * operand, after which the types must match." 494 */ 495 if (!apply_implicit_conversion(type_a, value_b, state) 496 && !apply_implicit_conversion(type_b, value_a, state)) { 497 _mesa_glsl_error(loc, state, 498 "Could not implicitly convert operands to " 499 "relational operator"); 500 return glsl_type::error_type; 501 } 502 type_a = value_a->type; 503 type_b = value_b->type; 504 505 if (type_a->base_type != type_b->base_type) { 506 _mesa_glsl_error(loc, state, "base type mismatch"); 507 return glsl_type::error_type; 508 } 509 510 /* "The result is scalar Boolean." 511 */ 512 return glsl_type::bool_type; 513 } 514 515 /** 516 * \brief Return the result type of a bit-shift operation. 517 * 518 * If the given types to the bit-shift operator are invalid, return 519 * glsl_type::error_type. 520 * 521 * \param type_a Type of LHS of bit-shift op 522 * \param type_b Type of RHS of bit-shift op 523 */ 524 static const struct glsl_type * 525 shift_result_type(const struct glsl_type *type_a, 526 const struct glsl_type *type_b, 527 ast_operators op, 528 struct _mesa_glsl_parse_state *state, YYLTYPE *loc) 529 { 530 if (state->language_version < 130) { 531 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30"); 532 return glsl_type::error_type; 533 } 534 535 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec: 536 * 537 * "The shift operators (<<) and (>>). For both operators, the operands 538 * must be signed or unsigned integers or integer vectors. One operand 539 * can be signed while the other is unsigned." 540 */ 541 if (!type_a->is_integer()) { 542 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or " 543 "integer vector", ast_expression::operator_string(op)); 544 return glsl_type::error_type; 545 546 } 547 if (!type_b->is_integer()) { 548 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or " 549 "integer vector", ast_expression::operator_string(op)); 550 return glsl_type::error_type; 551 } 552 553 /* "If the first operand is a scalar, the second operand has to be 554 * a scalar as well." 555 */ 556 if (type_a->is_scalar() && !type_b->is_scalar()) { 557 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the " 558 "second must be scalar as well", 559 ast_expression::operator_string(op)); 560 return glsl_type::error_type; 561 } 562 563 /* If both operands are vectors, check that they have same number of 564 * elements. 565 */ 566 if (type_a->is_vector() && 567 type_b->is_vector() && 568 type_a->vector_elements != type_b->vector_elements) { 569 _mesa_glsl_error(loc, state, "Vector operands to operator %s must " 570 "have same number of elements", 571 ast_expression::operator_string(op)); 572 return glsl_type::error_type; 573 } 574 575 /* "In all cases, the resulting type will be the same type as the left 576 * operand." 577 */ 578 return type_a; 579 } 580 581 /** 582 * Validates that a value can be assigned to a location with a specified type 583 * 584 * Validates that \c rhs can be assigned to some location. If the types are 585 * not an exact match but an automatic conversion is possible, \c rhs will be 586 * converted. 587 * 588 * \return 589 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. 590 * Otherwise the actual RHS to be assigned will be returned. This may be 591 * \c rhs, or it may be \c rhs after some type conversion. 592 * 593 * \note 594 * In addition to being used for assignments, this function is used to 595 * type-check return values. 596 */ 597 ir_rvalue * 598 validate_assignment(struct _mesa_glsl_parse_state *state, 599 const glsl_type *lhs_type, ir_rvalue *rhs) 600 { 601 const glsl_type *rhs_type = rhs->type; 602 603 /* If there is already some error in the RHS, just return it. Anything 604 * else will lead to an avalanche of error message back to the user. 605 */ 606 if (rhs_type->is_error()) 607 return rhs; 608 609 /* If the types are identical, the assignment can trivially proceed. 610 */ 611 if (rhs_type == lhs_type) 612 return rhs; 613 614 /* If the array element types are the same and the size of the LHS is zero, 615 * the assignment is okay. 616 * 617 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this 618 * is handled by ir_dereference::is_lvalue. 619 */ 620 if (lhs_type->is_array() && rhs->type->is_array() 621 && (lhs_type->element_type() == rhs->type->element_type()) 622 && (lhs_type->array_size() == 0)) { 623 return rhs; 624 } 625 626 /* Check for implicit conversion in GLSL 1.20 */ 627 if (apply_implicit_conversion(lhs_type, rhs, state)) { 628 rhs_type = rhs->type; 629 if (rhs_type == lhs_type) 630 return rhs; 631 } 632 633 return NULL; 634 } 635 636 ir_rvalue * 637 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, 638 ir_rvalue *lhs, ir_rvalue *rhs, 639 YYLTYPE lhs_loc) 640 { 641 void *ctx = state; 642 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); 643 644 if (!error_emitted) { 645 if (!lhs->is_lvalue()) { 646 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); 647 error_emitted = true; 648 } 649 650 if (state->es_shader && lhs->type->is_array()) { 651 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not " 652 "allowed in GLSL ES 1.00."); 653 error_emitted = true; 654 } 655 } 656 657 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs); 658 if (new_rhs == NULL) { 659 _mesa_glsl_error(& lhs_loc, state, "type mismatch"); 660 } else { 661 rhs = new_rhs; 662 663 /* If the LHS array was not declared with a size, it takes it size from 664 * the RHS. If the LHS is an l-value and a whole array, it must be a 665 * dereference of a variable. Any other case would require that the LHS 666 * is either not an l-value or not a whole array. 667 */ 668 if (lhs->type->array_size() == 0) { 669 ir_dereference *const d = lhs->as_dereference(); 670 671 assert(d != NULL); 672 673 ir_variable *const var = d->variable_referenced(); 674 675 assert(var != NULL); 676 677 if (var->max_array_access >= unsigned(rhs->type->array_size())) { 678 /* FINISHME: This should actually log the location of the RHS. */ 679 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " 680 "previous access", 681 var->max_array_access); 682 } 683 684 var->type = glsl_type::get_array_instance(lhs->type->element_type(), 685 rhs->type->array_size()); 686 d->type = var->type; 687 } 688 } 689 690 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, 691 * but not post_inc) need the converted assigned value as an rvalue 692 * to handle things like: 693 * 694 * i = j += 1; 695 * 696 * So we always just store the computed value being assigned to a 697 * temporary and return a deref of that temporary. If the rvalue 698 * ends up not being used, the temp will get copy-propagated out. 699 */ 700 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", 701 ir_var_temporary); 702 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var); 703 instructions->push_tail(var); 704 instructions->push_tail(new(ctx) ir_assignment(deref_var, 705 rhs, 706 NULL)); 707 deref_var = new(ctx) ir_dereference_variable(var); 708 709 if (!error_emitted) 710 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL)); 711 712 return new(ctx) ir_dereference_variable(var); 713 } 714 715 static ir_rvalue * 716 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) 717 { 718 void *ctx = hieralloc_parent(lvalue); 719 ir_variable *var; 720 721 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", 722 ir_var_temporary); 723 instructions->push_tail(var); 724 var->mode = ir_var_auto; 725 726 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), 727 lvalue, NULL)); 728 729 /* Once we've created this temporary, mark it read only so it's no 730 * longer considered an lvalue. 731 */ 732 var->read_only = true; 733 734 return new(ctx) ir_dereference_variable(var); 735 } 736 737 738 ir_rvalue * 739 ast_node::hir(exec_list *instructions, 740 struct _mesa_glsl_parse_state *state) 741 { 742 (void) instructions; 743 (void) state; 744 745 return NULL; 746 } 747 748 static void 749 mark_whole_array_access(ir_rvalue *access) 750 { 751 ir_dereference_variable *deref = access->as_dereference_variable(); 752 753 if (deref) { 754 deref->var->max_array_access = deref->type->length - 1; 755 } 756 } 757 758 static ir_rvalue * 759 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1) 760 { 761 int join_op; 762 ir_rvalue *cmp = NULL; 763 764 if (operation == ir_binop_all_equal) 765 join_op = ir_binop_logic_and; 766 else 767 join_op = ir_binop_logic_or; 768 769 switch (op0->type->base_type) { 770 case GLSL_TYPE_FLOAT: 771 case GLSL_TYPE_UINT: 772 case GLSL_TYPE_INT: 773 case GLSL_TYPE_BOOL: 774 return new(mem_ctx) ir_expression(operation, op0, op1); 775 776 case GLSL_TYPE_ARRAY: { 777 for (unsigned int i = 0; i < op0->type->length; i++) { 778 ir_rvalue *e0, *e1, *result; 779 780 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL), 781 new(mem_ctx) ir_constant(i)); 782 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL), 783 new(mem_ctx) ir_constant(i)); 784 result = do_comparison(mem_ctx, operation, e0, e1); 785 786 if (cmp) { 787 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 788 } else { 789 cmp = result; 790 } 791 } 792 793 mark_whole_array_access(op0); 794 mark_whole_array_access(op1); 795 break; 796 } 797 798 case GLSL_TYPE_STRUCT: { 799 for (unsigned int i = 0; i < op0->type->length; i++) { 800 ir_rvalue *e0, *e1, *result; 801 const char *field_name = op0->type->fields.structure[i].name; 802 803 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL), 804 field_name); 805 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL), 806 field_name); 807 result = do_comparison(mem_ctx, operation, e0, e1); 808 809 if (cmp) { 810 cmp = new(mem_ctx) ir_expression(join_op, cmp, result); 811 } else { 812 cmp = result; 813 } 814 } 815 break; 816 } 817 818 case GLSL_TYPE_ERROR: 819 case GLSL_TYPE_VOID: 820 case GLSL_TYPE_SAMPLER: 821 /* I assume a comparison of a struct containing a sampler just 822 * ignores the sampler present in the type. 823 */ 824 break; 825 826 default: 827 assert(!"Should not get here."); 828 break; 829 } 830 831 if (cmp == NULL) 832 cmp = new(mem_ctx) ir_constant(true); 833 834 return cmp; 835 } 836 837 ir_rvalue * 838 ast_expression::hir(exec_list *instructions, 839 struct _mesa_glsl_parse_state *state) 840 { 841 void *ctx = state; 842 static const int operations[AST_NUM_OPERATORS] = { 843 -1, /* ast_assign doesn't convert to ir_expression. */ 844 -1, /* ast_plus doesn't convert to ir_expression. */ 845 ir_unop_neg, 846 ir_binop_add, 847 ir_binop_sub, 848 ir_binop_mul, 849 ir_binop_div, 850 ir_binop_mod, 851 ir_binop_lshift, 852 ir_binop_rshift, 853 ir_binop_less, 854 ir_binop_greater, 855 ir_binop_lequal, 856 ir_binop_gequal, 857 ir_binop_all_equal, 858 ir_binop_any_nequal, 859 ir_binop_bit_and, 860 ir_binop_bit_xor, 861 ir_binop_bit_or, 862 ir_unop_bit_not, 863 ir_binop_logic_and, 864 ir_binop_logic_xor, 865 ir_binop_logic_or, 866 ir_unop_logic_not, 867 868 /* Note: The following block of expression types actually convert 869 * to multiple IR instructions. 870 */ 871 ir_binop_mul, /* ast_mul_assign */ 872 ir_binop_div, /* ast_div_assign */ 873 ir_binop_mod, /* ast_mod_assign */ 874 ir_binop_add, /* ast_add_assign */ 875 ir_binop_sub, /* ast_sub_assign */ 876 ir_binop_lshift, /* ast_ls_assign */ 877 ir_binop_rshift, /* ast_rs_assign */ 878 ir_binop_bit_and, /* ast_and_assign */ 879 ir_binop_bit_xor, /* ast_xor_assign */ 880 ir_binop_bit_or, /* ast_or_assign */ 881 882 -1, /* ast_conditional doesn't convert to ir_expression. */ 883 ir_binop_add, /* ast_pre_inc. */ 884 ir_binop_sub, /* ast_pre_dec. */ 885 ir_binop_add, /* ast_post_inc. */ 886 ir_binop_sub, /* ast_post_dec. */ 887 -1, /* ast_field_selection doesn't conv to ir_expression. */ 888 -1, /* ast_array_index doesn't convert to ir_expression. */ 889 -1, /* ast_function_call doesn't conv to ir_expression. */ 890 -1, /* ast_identifier doesn't convert to ir_expression. */ 891 -1, /* ast_int_constant doesn't convert to ir_expression. */ 892 -1, /* ast_uint_constant doesn't conv to ir_expression. */ 893 -1, /* ast_float_constant doesn't conv to ir_expression. */ 894 -1, /* ast_bool_constant doesn't conv to ir_expression. */ 895 -1, /* ast_sequence doesn't convert to ir_expression. */ 896 }; 897 ir_rvalue *result = NULL; 898 ir_rvalue *op[3]; 899 const struct glsl_type *type = glsl_type::error_type; 900 bool error_emitted = false; 901 YYLTYPE loc; 902 903 loc = this->get_location(); 904 905 switch (this->oper) { 906 case ast_assign: { 907 op[0] = this->subexpressions[0]->hir(instructions, state); 908 op[1] = this->subexpressions[1]->hir(instructions, state); 909 910 result = do_assignment(instructions, state, op[0], op[1], 911 this->subexpressions[0]->get_location()); 912 error_emitted = result->type->is_error(); 913 type = result->type; 914 break; 915 } 916 917 case ast_plus: 918 op[0] = this->subexpressions[0]->hir(instructions, state); 919 920 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 921 922 error_emitted = type->is_error(); 923 924 result = op[0]; 925 break; 926 927 case ast_neg: 928 op[0] = this->subexpressions[0]->hir(instructions, state); 929 930 type = unary_arithmetic_result_type(op[0]->type, state, & loc); 931 932 error_emitted = type->is_error(); 933 934 result = new(ctx) ir_expression(operations[this->oper], type, 935 op[0], NULL); 936 break; 937 938 case ast_add: 939 case ast_sub: 940 case ast_mul: 941 case ast_div: 942 op[0] = this->subexpressions[0]->hir(instructions, state); 943 op[1] = this->subexpressions[1]->hir(instructions, state); 944 945 type = arithmetic_result_type(op[0], op[1], 946 (this->oper == ast_mul), 947 state, & loc); 948 error_emitted = type->is_error(); 949 950 result = new(ctx) ir_expression(operations[this->oper], type, 951 op[0], op[1]); 952 break; 953 954 case ast_mod: 955 op[0] = this->subexpressions[0]->hir(instructions, state); 956 op[1] = this->subexpressions[1]->hir(instructions, state); 957 958 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc); 959 960 assert(operations[this->oper] == ir_binop_mod); 961 962 result = new(ctx) ir_expression(operations[this->oper], type, 963 op[0], op[1]); 964 error_emitted = type->is_error(); 965 break; 966 967 case ast_lshift: 968 case ast_rshift: 969 if (state->language_version < 130) { 970 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30", 971 operator_string(this->oper)); 972 error_emitted = true; 973 } 974 975 op[0] = this->subexpressions[0]->hir(instructions, state); 976 op[1] = this->subexpressions[1]->hir(instructions, state); 977 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 978 &loc); 979 result = new(ctx) ir_expression(operations[this->oper], type, 980 op[0], op[1]); 981 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 982 break; 983 984 case ast_less: 985 case ast_greater: 986 case ast_lequal: 987 case ast_gequal: 988 op[0] = this->subexpressions[0]->hir(instructions, state); 989 op[1] = this->subexpressions[1]->hir(instructions, state); 990 991 type = relational_result_type(op[0], op[1], state, & loc); 992 993 /* The relational operators must either generate an error or result 994 * in a scalar boolean. See page 57 of the GLSL 1.50 spec. 995 */ 996 assert(type->is_error() 997 || ((type->base_type == GLSL_TYPE_BOOL) 998 && type->is_scalar())); 999 1000 result = new(ctx) ir_expression(operations[this->oper], type, 1001 op[0], op[1]); 1002 error_emitted = type->is_error(); 1003 break; 1004 1005 case ast_nequal: 1006 case ast_equal: 1007 op[0] = this->subexpressions[0]->hir(instructions, state); 1008 op[1] = this->subexpressions[1]->hir(instructions, state); 1009 1010 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: 1011 * 1012 * "The equality operators equal (==), and not equal (!=) 1013 * operate on all types. They result in a scalar Boolean. If 1014 * the operand types do not match, then there must be a 1015 * conversion from Section 4.1.10 "Implicit Conversions" 1016 * applied to one operand that can make them match, in which 1017 * case this conversion is done." 1018 */ 1019 if ((!apply_implicit_conversion(op[0]->type, op[1], state) 1020 && !apply_implicit_conversion(op[1]->type, op[0], state)) 1021 || (op[0]->type != op[1]->type)) { 1022 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " 1023 "type", (this->oper == ast_equal) ? "==" : "!="); 1024 error_emitted = true; 1025 } else if ((state->language_version <= 110) 1026 && (op[0]->type->is_array() || op[1]->type->is_array())) { 1027 _mesa_glsl_error(& loc, state, "array comparisons forbidden in " 1028 "GLSL 1.10"); 1029 error_emitted = true; 1030 } 1031 1032 result = do_comparison(ctx, operations[this->oper], op[0], op[1]); 1033 type = glsl_type::bool_type; 1034 1035 assert(error_emitted || (result->type == glsl_type::bool_type)); 1036 break; 1037 1038 case ast_bit_and: 1039 case ast_bit_xor: 1040 case ast_bit_or: 1041 op[0] = this->subexpressions[0]->hir(instructions, state); 1042 op[1] = this->subexpressions[1]->hir(instructions, state); 1043 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper, 1044 state, &loc); 1045 result = new(ctx) ir_expression(operations[this->oper], type, 1046 op[0], op[1]); 1047 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1048 break; 1049 1050 case ast_bit_not: 1051 op[0] = this->subexpressions[0]->hir(instructions, state); 1052 1053 if (state->language_version < 130) { 1054 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30"); 1055 error_emitted = true; 1056 } 1057 1058 if (!op[0]->type->is_integer()) { 1059 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); 1060 error_emitted = true; 1061 } 1062 1063 type = op[0]->type; 1064 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); 1065 break; 1066 1067 case ast_logic_and: { 1068 op[0] = this->subexpressions[0]->hir(instructions, state); 1069 1070 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { 1071 YYLTYPE loc = this->subexpressions[0]->get_location(); 1072 1073 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean", 1074 operator_string(this->oper)); 1075 error_emitted = true; 1076 } 1077 1078 ir_constant *op0_const = op[0]->constant_expression_value(); 1079 if (op0_const) { 1080 if (op0_const->value.b[0]) { 1081 op[1] = this->subexpressions[1]->hir(instructions, state); 1082 1083 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { 1084 YYLTYPE loc = this->subexpressions[1]->get_location(); 1085 1086 _mesa_glsl_error(& loc, state, 1087 "RHS of `%s' must be scalar boolean", 1088 operator_string(this->oper)); 1089 error_emitted = true; 1090 } 1091 result = op[1]; 1092 } else { 1093 result = op0_const; 1094 } 1095 type = glsl_type::bool_type; 1096 } else { 1097 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1098 "and_tmp", 1099 ir_var_temporary); 1100 instructions->push_tail(tmp); 1101 1102 ir_if *const stmt = new(ctx) ir_if(op[0]); 1103 instructions->push_tail(stmt); 1104 1105 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state); 1106 1107 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { 1108 YYLTYPE loc = this->subexpressions[1]->get_location(); 1109 1110 _mesa_glsl_error(& loc, state, 1111 "RHS of `%s' must be scalar boolean", 1112 operator_string(this->oper)); 1113 error_emitted = true; 1114 } 1115 1116 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1117 ir_assignment *const then_assign = 1118 new(ctx) ir_assignment(then_deref, op[1], NULL); 1119 stmt->then_instructions.push_tail(then_assign); 1120 1121 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1122 ir_assignment *const else_assign = 1123 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL); 1124 stmt->else_instructions.push_tail(else_assign); 1125 1126 result = new(ctx) ir_dereference_variable(tmp); 1127 type = tmp->type; 1128 } 1129 break; 1130 } 1131 1132 case ast_logic_or: { 1133 op[0] = this->subexpressions[0]->hir(instructions, state); 1134 1135 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { 1136 YYLTYPE loc = this->subexpressions[0]->get_location(); 1137 1138 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean", 1139 operator_string(this->oper)); 1140 error_emitted = true; 1141 } 1142 1143 ir_constant *op0_const = op[0]->constant_expression_value(); 1144 if (op0_const) { 1145 if (op0_const->value.b[0]) { 1146 result = op0_const; 1147 } else { 1148 op[1] = this->subexpressions[1]->hir(instructions, state); 1149 1150 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { 1151 YYLTYPE loc = this->subexpressions[1]->get_location(); 1152 1153 _mesa_glsl_error(& loc, state, 1154 "RHS of `%s' must be scalar boolean", 1155 operator_string(this->oper)); 1156 error_emitted = true; 1157 } 1158 result = op[1]; 1159 } 1160 type = glsl_type::bool_type; 1161 } else { 1162 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, 1163 "or_tmp", 1164 ir_var_temporary); 1165 instructions->push_tail(tmp); 1166 1167 ir_if *const stmt = new(ctx) ir_if(op[0]); 1168 instructions->push_tail(stmt); 1169 1170 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state); 1171 1172 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { 1173 YYLTYPE loc = this->subexpressions[1]->get_location(); 1174 1175 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean", 1176 operator_string(this->oper)); 1177 error_emitted = true; 1178 } 1179 1180 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); 1181 ir_assignment *const then_assign = 1182 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL); 1183 stmt->then_instructions.push_tail(then_assign); 1184 1185 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); 1186 ir_assignment *const else_assign = 1187 new(ctx) ir_assignment(else_deref, op[1], NULL); 1188 stmt->else_instructions.push_tail(else_assign); 1189 1190 result = new(ctx) ir_dereference_variable(tmp); 1191 type = tmp->type; 1192 } 1193 break; 1194 } 1195 1196 case ast_logic_xor: 1197 op[0] = this->subexpressions[0]->hir(instructions, state); 1198 op[1] = this->subexpressions[1]->hir(instructions, state); 1199 1200 1201 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1202 op[0], op[1]); 1203 type = glsl_type::bool_type; 1204 break; 1205 1206 case ast_logic_not: 1207 op[0] = this->subexpressions[0]->hir(instructions, state); 1208 1209 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { 1210 YYLTYPE loc = this->subexpressions[0]->get_location(); 1211 1212 _mesa_glsl_error(& loc, state, 1213 "operand of `!' must be scalar boolean"); 1214 error_emitted = true; 1215 } 1216 1217 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, 1218 op[0], NULL); 1219 type = glsl_type::bool_type; 1220 break; 1221 1222 case ast_mul_assign: 1223 case ast_div_assign: 1224 case ast_add_assign: 1225 case ast_sub_assign: { 1226 op[0] = this->subexpressions[0]->hir(instructions, state); 1227 op[1] = this->subexpressions[1]->hir(instructions, state); 1228 1229 type = arithmetic_result_type(op[0], op[1], 1230 (this->oper == ast_mul_assign), 1231 state, & loc); 1232 1233 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1234 op[0], op[1]); 1235 1236 result = do_assignment(instructions, state, 1237 op[0]->clone(ctx, NULL), temp_rhs, 1238 this->subexpressions[0]->get_location()); 1239 type = result->type; 1240 error_emitted = (op[0]->type->is_error()); 1241 1242 /* GLSL 1.10 does not allow array assignment. However, we don't have to 1243 * explicitly test for this because none of the binary expression 1244 * operators allow array operands either. 1245 */ 1246 1247 break; 1248 } 1249 1250 case ast_mod_assign: { 1251 op[0] = this->subexpressions[0]->hir(instructions, state); 1252 op[1] = this->subexpressions[1]->hir(instructions, state); 1253 1254 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc); 1255 1256 assert(operations[this->oper] == ir_binop_mod); 1257 1258 ir_rvalue *temp_rhs; 1259 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1260 op[0], op[1]); 1261 1262 result = do_assignment(instructions, state, 1263 op[0]->clone(ctx, NULL), temp_rhs, 1264 this->subexpressions[0]->get_location()); 1265 type = result->type; 1266 error_emitted = type->is_error(); 1267 break; 1268 } 1269 1270 case ast_ls_assign: 1271 case ast_rs_assign: { 1272 op[0] = this->subexpressions[0]->hir(instructions, state); 1273 op[1] = this->subexpressions[1]->hir(instructions, state); 1274 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state, 1275 &loc); 1276 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1277 type, op[0], op[1]); 1278 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL), 1279 temp_rhs, 1280 this->subexpressions[0]->get_location()); 1281 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1282 break; 1283 } 1284 1285 case ast_and_assign: 1286 case ast_xor_assign: 1287 case ast_or_assign: { 1288 op[0] = this->subexpressions[0]->hir(instructions, state); 1289 op[1] = this->subexpressions[1]->hir(instructions, state); 1290 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper, 1291 state, &loc); 1292 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], 1293 type, op[0], op[1]); 1294 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL), 1295 temp_rhs, 1296 this->subexpressions[0]->get_location()); 1297 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1298 break; 1299 } 1300 1301 case ast_conditional: { 1302 op[0] = this->subexpressions[0]->hir(instructions, state); 1303 1304 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1305 * 1306 * "The ternary selection operator (?:). It operates on three 1307 * expressions (exp1 ? exp2 : exp3). This operator evaluates the 1308 * first expression, which must result in a scalar Boolean." 1309 */ 1310 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { 1311 YYLTYPE loc = this->subexpressions[0]->get_location(); 1312 1313 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean"); 1314 error_emitted = true; 1315 } 1316 1317 /* The :? operator is implemented by generating an anonymous temporary 1318 * followed by an if-statement. The last instruction in each branch of 1319 * the if-statement assigns a value to the anonymous temporary. This 1320 * temporary is the r-value of the expression. 1321 */ 1322 exec_list then_instructions; 1323 exec_list else_instructions; 1324 1325 op[1] = this->subexpressions[1]->hir(&then_instructions, state); 1326 op[2] = this->subexpressions[2]->hir(&else_instructions, state); 1327 1328 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: 1329 * 1330 * "The second and third expressions can be any type, as 1331 * long their types match, or there is a conversion in 1332 * Section 4.1.10 "Implicit Conversions" that can be applied 1333 * to one of the expressions to make their types match. This 1334 * resulting matching type is the type of the entire 1335 * expression." 1336 */ 1337 if ((!apply_implicit_conversion(op[1]->type, op[2], state) 1338 && !apply_implicit_conversion(op[2]->type, op[1], state)) 1339 || (op[1]->type != op[2]->type)) { 1340 YYLTYPE loc = this->subexpressions[1]->get_location(); 1341 1342 _mesa_glsl_error(& loc, state, "Second and third operands of ?: " 1343 "operator must have matching types."); 1344 error_emitted = true; 1345 type = glsl_type::error_type; 1346 } else { 1347 type = op[1]->type; 1348 } 1349 1350 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec: 1351 * 1352 * "The second and third expressions must be the same type, but can 1353 * be of any type other than an array." 1354 */ 1355 if ((state->language_version <= 110) && type->is_array()) { 1356 _mesa_glsl_error(& loc, state, "Second and third operands of ?: " 1357 "operator must not be arrays."); 1358 error_emitted = true; 1359 } 1360 1361 ir_constant *cond_val = op[0]->constant_expression_value(); 1362 ir_constant *then_val = op[1]->constant_expression_value(); 1363 ir_constant *else_val = op[2]->constant_expression_value(); 1364 1365 if (then_instructions.is_empty() 1366 && else_instructions.is_empty() 1367 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) { 1368 result = (cond_val->value.b[0]) ? then_val : else_val; 1369 } else { 1370 ir_variable *const tmp = 1371 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); 1372 instructions->push_tail(tmp); 1373 1374 ir_if *const stmt = new(ctx) ir_if(op[0]); 1375 instructions->push_tail(stmt); 1376 1377 then_instructions.move_nodes_to(& stmt->then_instructions); 1378 ir_dereference *const then_deref = 1379 new(ctx) ir_dereference_variable(tmp); 1380 ir_assignment *const then_assign = 1381 new(ctx) ir_assignment(then_deref, op[1], NULL); 1382 stmt->then_instructions.push_tail(then_assign); 1383 1384 else_instructions.move_nodes_to(& stmt->else_instructions); 1385 ir_dereference *const else_deref = 1386 new(ctx) ir_dereference_variable(tmp); 1387 ir_assignment *const else_assign = 1388 new(ctx) ir_assignment(else_deref, op[2], NULL); 1389 stmt->else_instructions.push_tail(else_assign); 1390 1391 result = new(ctx) ir_dereference_variable(tmp); 1392 } 1393 break; 1394 } 1395 1396 case ast_pre_inc: 1397 case ast_pre_dec: { 1398 op[0] = this->subexpressions[0]->hir(instructions, state); 1399 if (op[0]->type->base_type == GLSL_TYPE_FLOAT) 1400 op[1] = new(ctx) ir_constant(1.0f); 1401 else 1402 op[1] = new(ctx) ir_constant(1); 1403 1404 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1405 1406 ir_rvalue *temp_rhs; 1407 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1408 op[0], op[1]); 1409 1410 result = do_assignment(instructions, state, 1411 op[0]->clone(ctx, NULL), temp_rhs, 1412 this->subexpressions[0]->get_location()); 1413 type = result->type; 1414 error_emitted = op[0]->type->is_error(); 1415 break; 1416 } 1417 1418 case ast_post_inc: 1419 case ast_post_dec: { 1420 op[0] = this->subexpressions[0]->hir(instructions, state); 1421 if (op[0]->type->base_type == GLSL_TYPE_FLOAT) 1422 op[1] = new(ctx) ir_constant(1.0f); 1423 else 1424 op[1] = new(ctx) ir_constant(1); 1425 1426 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1427 1428 type = arithmetic_result_type(op[0], op[1], false, state, & loc); 1429 1430 ir_rvalue *temp_rhs; 1431 temp_rhs = new(ctx) ir_expression(operations[this->oper], type, 1432 op[0], op[1]); 1433 1434 /* Get a temporary of a copy of the lvalue before it's modified. 1435 * This may get thrown away later. 1436 */ 1437 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); 1438 1439 (void)do_assignment(instructions, state, 1440 op[0]->clone(ctx, NULL), temp_rhs, 1441 this->subexpressions[0]->get_location()); 1442 1443 type = result->type; 1444 error_emitted = op[0]->type->is_error(); 1445 break; 1446 } 1447 1448 case ast_field_selection: 1449 result = _mesa_ast_field_selection_to_hir(this, instructions, state); 1450 type = result->type; 1451 break; 1452 1453 case ast_array_index: { 1454 YYLTYPE index_loc = subexpressions[1]->get_location(); 1455 1456 op[0] = subexpressions[0]->hir(instructions, state); 1457 op[1] = subexpressions[1]->hir(instructions, state); 1458 1459 error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); 1460 1461 ir_rvalue *const array = op[0]; 1462 1463 result = new(ctx) ir_dereference_array(op[0], op[1]); 1464 1465 /* Do not use op[0] after this point. Use array. 1466 */ 1467 op[0] = NULL; 1468 1469 1470 if (error_emitted) 1471 break; 1472 1473 if (!array->type->is_array() 1474 && !array->type->is_matrix() 1475 && !array->type->is_vector()) { 1476 _mesa_glsl_error(& index_loc, state, 1477 "cannot dereference non-array / non-matrix / " 1478 "non-vector"); 1479 error_emitted = true; 1480 } 1481 1482 if (!op[1]->type->is_integer()) { 1483 _mesa_glsl_error(& index_loc, state, 1484 "array index must be integer type"); 1485 error_emitted = true; 1486 } else if (!op[1]->type->is_scalar()) { 1487 _mesa_glsl_error(& index_loc, state, 1488 "array index must be scalar"); 1489 error_emitted = true; 1490 } 1491 1492 /* If the array index is a constant expression and the array has a 1493 * declared size, ensure that the access is in-bounds. If the array 1494 * index is not a constant expression, ensure that the array has a 1495 * declared size. 1496 */ 1497 ir_constant *const const_index = op[1]->constant_expression_value(); 1498 if (const_index != NULL) { 1499 const int idx = const_index->value.i[0]; 1500 const char *type_name; 1501 unsigned bound = 0; 1502 1503 if (array->type->is_matrix()) { 1504 type_name = "matrix"; 1505 } else if (array->type->is_vector()) { 1506 type_name = "vector"; 1507 } else { 1508 type_name = "array"; 1509 } 1510 1511 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec: 1512 * 1513 * "It is illegal to declare an array with a size, and then 1514 * later (in the same shader) index the same array with an 1515 * integral constant expression greater than or equal to the 1516 * declared size. It is also illegal to index an array with a 1517 * negative constant expression." 1518 */ 1519 if (array->type->is_matrix()) { 1520 if (array->type->row_type()->vector_elements <= idx) { 1521 bound = array->type->row_type()->vector_elements; 1522 } 1523 } else if (array->type->is_vector()) { 1524 if (array->type->vector_elements <= idx) { 1525 bound = array->type->vector_elements; 1526 } 1527 } else { 1528 if ((array->type->array_size() > 0) 1529 && (array->type->array_size() <= idx)) { 1530 bound = array->type->array_size(); 1531 } 1532 } 1533 1534 if (bound > 0) { 1535 _mesa_glsl_error(& loc, state, "%s index must be < %u", 1536 type_name, bound); 1537 error_emitted = true; 1538 } else if (idx < 0) { 1539 _mesa_glsl_error(& loc, state, "%s index must be >= 0", 1540 type_name); 1541 error_emitted = true; 1542 } 1543 1544 if (array->type->is_array()) { 1545 /* If the array is a variable dereference, it dereferences the 1546 * whole array, by definition. Use this to get the variable. 1547 * 1548 * FINISHME: Should some methods for getting / setting / testing 1549 * FINISHME: array access limits be added to ir_dereference? 1550 */ 1551 ir_variable *const v = array->whole_variable_referenced(); 1552 if ((v != NULL) && (unsigned(idx) > v->max_array_access)) 1553 v->max_array_access = idx; 1554 } 1555 } else if (array->type->array_size() == 0) { 1556 _mesa_glsl_error(&loc, state, "unsized array index must be constant"); 1557 } else { 1558 if (array->type->is_array()) { 1559 /* whole_variable_referenced can return NULL if the array is a 1560 * member of a structure. In this case it is safe to not update 1561 * the max_array_access field because it is never used for fields 1562 * of structures. 1563 */ 1564 ir_variable *v = array->whole_variable_referenced(); 1565 if (v != NULL) 1566 v->max_array_access = array->type->array_size(); 1567 // TODO: should this be array->type->array_size() - 1 1568 } 1569 } 1570 1571 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec: 1572 * 1573 * "Samplers aggregated into arrays within a shader (using square 1574 * brackets [ ]) can only be indexed with integral constant 1575 * expressions [...]." 1576 * 1577 * This restriction was added in GLSL 1.30. Shaders using earlier version 1578 * of the language should not be rejected by the compiler front-end for 1579 * using this construct. This allows useful things such as using a loop 1580 * counter as the index to an array of samplers. If the loop in unrolled, 1581 * the code should compile correctly. Instead, emit a warning. 1582 */ 1583 if (array->type->is_array() && 1584 array->type->element_type()->is_sampler() && 1585 const_index == NULL) { 1586 1587 if (state->language_version == 100) { 1588 _mesa_glsl_warning(&loc, state, 1589 "sampler arrays indexed with non-constant " 1590 "expressions is optional in GLSL ES 1.00"); 1591 } else if (state->language_version < 130) { 1592 _mesa_glsl_warning(&loc, state, 1593 "sampler arrays indexed with non-constant " 1594 "expressions is forbidden in GLSL 1.30 and " 1595 "later"); 1596 } else { 1597 _mesa_glsl_error(&loc, state, 1598 "sampler arrays indexed with non-constant " 1599 "expressions is forbidden in GLSL 1.30 and " 1600 "later"); 1601 error_emitted = true; 1602 } 1603 } 1604 1605 if (error_emitted) 1606 result->type = glsl_type::error_type; 1607 1608 type = result->type; 1609 break; 1610 } 1611 1612 case ast_function_call: 1613 /* Should *NEVER* get here. ast_function_call should always be handled 1614 * by ast_function_expression::hir. 1615 */ 1616 assert(0); 1617 break; 1618 1619 case ast_identifier: { 1620 /* ast_identifier can appear several places in a full abstract syntax 1621 * tree. This particular use must be at location specified in the grammar 1622 * as 'variable_identifier'. 1623 */ 1624 ir_variable *var = 1625 state->symbols->get_variable(this->primary_expression.identifier); 1626 1627 result = new(ctx) ir_dereference_variable(var); 1628 1629 if (var != NULL) { 1630 type = result->type; 1631 } else { 1632 _mesa_glsl_error(& loc, state, "`%s' undeclared", 1633 this->primary_expression.identifier); 1634 1635 error_emitted = true; 1636 } 1637 break; 1638 } 1639 1640 case ast_int_constant: 1641 type = glsl_type::int_type; 1642 result = new(ctx) ir_constant(this->primary_expression.int_constant); 1643 break; 1644 1645 case ast_uint_constant: 1646 type = glsl_type::uint_type; 1647 result = new(ctx) ir_constant(this->primary_expression.uint_constant); 1648 break; 1649 1650 case ast_float_constant: 1651 type = glsl_type::float_type; 1652 result = new(ctx) ir_constant(this->primary_expression.float_constant); 1653 break; 1654 1655 case ast_bool_constant: 1656 type = glsl_type::bool_type; 1657 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); 1658 break; 1659 1660 case ast_sequence: { 1661 /* It should not be possible to generate a sequence in the AST without 1662 * any expressions in it. 1663 */ 1664 assert(!this->expressions.is_empty()); 1665 1666 /* The r-value of a sequence is the last expression in the sequence. If 1667 * the other expressions in the sequence do not have side-effects (and 1668 * therefore add instructions to the instruction list), they get dropped 1669 * on the floor. 1670 */ 1671 foreach_list_typed (ast_node, ast, link, &this->expressions) 1672 result = ast->hir(instructions, state); 1673 1674 type = result->type; 1675 1676 /* Any errors should have already been emitted in the loop above. 1677 */ 1678 error_emitted = true; 1679 break; 1680 } 1681 } 1682 1683 if (type->is_error() && !error_emitted) 1684 _mesa_glsl_error(& loc, state, "type mismatch"); 1685 1686 return result; 1687 } 1688 1689 1690 ir_rvalue * 1691 ast_expression_statement::hir(exec_list *instructions, 1692 struct _mesa_glsl_parse_state *state) 1693 { 1694 /* It is possible to have expression statements that don't have an 1695 * expression. This is the solitary semicolon: 1696 * 1697 * for (i = 0; i < 5; i++) 1698 * ; 1699 * 1700 * In this case the expression will be NULL. Test for NULL and don't do 1701 * anything in that case. 1702 */ 1703 if (expression != NULL) 1704 expression->hir(instructions, state); 1705 1706 /* Statements do not have r-values. 1707 */ 1708 return NULL; 1709 } 1710 1711 1712 ir_rvalue * 1713 ast_compound_statement::hir(exec_list *instructions, 1714 struct _mesa_glsl_parse_state *state) 1715 { 1716 if (new_scope) 1717 state->symbols->push_scope(); 1718 1719 foreach_list_typed (ast_node, ast, link, &this->statements) 1720 ast->hir(instructions, state); 1721 1722 if (new_scope) 1723 state->symbols->pop_scope(); 1724 1725 /* Compound statements do not have r-values. 1726 */ 1727 return NULL; 1728 } 1729 1730 1731 static const glsl_type * 1732 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size, 1733 struct _mesa_glsl_parse_state *state) 1734 { 1735 unsigned length = 0; 1736 1737 /* FINISHME: Reject delcarations of multidimensional arrays. */ 1738 1739 if (array_size != NULL) { 1740 exec_list dummy_instructions; 1741 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); 1742 YYLTYPE loc = array_size->get_location(); 1743 1744 /* FINISHME: Verify that the grammar forbids side-effects in array 1745 * FINISHME: sizes. i.e., 'vec4 [x = 12] data' 1746 */ 1747 assert(dummy_instructions.is_empty()); 1748 1749 if (ir != NULL) { 1750 if (!ir->type->is_integer()) { 1751 _mesa_glsl_error(& loc, state, "array size must be integer type"); 1752 } else if (!ir->type->is_scalar()) { 1753 _mesa_glsl_error(& loc, state, "array size must be scalar type"); 1754 } else { 1755 ir_constant *const size = ir->constant_expression_value(); 1756 1757 if (size == NULL) { 1758 _mesa_glsl_error(& loc, state, "array size must be a " 1759 "constant valued expression"); 1760 } else if (size->value.i[0] <= 0) { 1761 _mesa_glsl_error(& loc, state, "array size must be > 0"); 1762 } else { 1763 assert(size->type == ir->type); 1764 length = size->value.u[0]; 1765 } 1766 } 1767 } 1768 } else if (state->es_shader) { 1769 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized 1770 * array declarations have been removed from the language. 1771 */ 1772 _mesa_glsl_error(loc, state, "unsized array declarations are not " 1773 "allowed in GLSL ES 1.00."); 1774 } 1775 1776 return glsl_type::get_array_instance(base, length); 1777 } 1778 1779 1780 const glsl_type * 1781 ast_type_specifier::glsl_type(const char **name, 1782 struct _mesa_glsl_parse_state *state) const 1783 { 1784 const struct glsl_type *type; 1785 1786 type = state->symbols->get_type(this->type_name); 1787 *name = this->type_name; 1788 1789 if (this->is_array) { 1790 YYLTYPE loc = this->get_location(); 1791 type = process_array_type(&loc, type, this->array_size, state); 1792 } 1793 1794 return type; 1795 } 1796 1797 1798 static void 1799 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, 1800 ir_variable *var, 1801 struct _mesa_glsl_parse_state *state, 1802 YYLTYPE *loc) 1803 { 1804 if (qual->flags.q.invariant) 1805 var->invariant = 1; 1806 1807 /* FINISHME: Mark 'in' variables at global scope as read-only. */ 1808 if (qual->flags.q.constant || qual->flags.q.attribute 1809 || qual->flags.q.uniform 1810 || (qual->flags.q.varying && (state->target == fragment_shader))) 1811 var->read_only = 1; 1812 1813 if (qual->flags.q.centroid) 1814 var->centroid = 1; 1815 1816 if (qual->flags.q.attribute && state->target != vertex_shader) { 1817 var->type = glsl_type::error_type; 1818 _mesa_glsl_error(loc, state, 1819 "`attribute' variables may not be declared in the " 1820 "%s shader", 1821 _mesa_glsl_shader_target_name(state->target)); 1822 } 1823 1824 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: 1825 * 1826 * "The varying qualifier can be used only with the data types 1827 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of 1828 * these." 1829 */ 1830 if (qual->flags.q.varying) { 1831 const glsl_type *non_array_type; 1832 1833 if (var->type && var->type->is_array()) 1834 non_array_type = var->type->fields.array; 1835 else 1836 non_array_type = var->type; 1837 1838 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) { 1839 var->type = glsl_type::error_type; 1840 _mesa_glsl_error(loc, state, 1841 "varying variables must be of base type float"); 1842 } 1843 } 1844 1845 /* If there is no qualifier that changes the mode of the variable, leave 1846 * the setting alone. 1847 */ 1848 if (qual->flags.q.in && qual->flags.q.out) 1849 var->mode = ir_var_inout; 1850 else if (qual->flags.q.attribute || qual->flags.q.in 1851 || (qual->flags.q.varying && (state->target == fragment_shader))) 1852 var->mode = ir_var_in; 1853 else if (qual->flags.q.out 1854 || (qual->flags.q.varying && (state->target == vertex_shader))) 1855 var->mode = ir_var_out; 1856 else if (qual->flags.q.uniform) 1857 var->mode = ir_var_uniform; 1858 1859 if (qual->flags.q.flat) 1860 var->interpolation = ir_var_flat; 1861 else if (qual->flags.q.noperspective) 1862 var->interpolation = ir_var_noperspective; 1863 else 1864 var->interpolation = ir_var_smooth; 1865 1866 var->pixel_center_integer = qual->flags.q.pixel_center_integer; 1867 var->origin_upper_left = qual->flags.q.origin_upper_left; 1868 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer) 1869 && (strcmp(var->name, "gl_FragCoord") != 0)) { 1870 const char *const qual_string = (qual->flags.q.origin_upper_left) 1871 ? "origin_upper_left" : "pixel_center_integer"; 1872 1873 _mesa_glsl_error(loc, state, 1874 "layout qualifier `%s' can only be applied to " 1875 "fragment shader input `gl_FragCoord'", 1876 qual_string); 1877 } 1878 1879 if (qual->flags.q.explicit_location) { 1880 const bool global_scope = (state->current_function == NULL); 1881 bool fail = false; 1882 const char *string = ""; 1883 1884 /* In the vertex shader only shader inputs can be given explicit 1885 * locations. 1886 * 1887 * In the fragment shader only shader outputs can be given explicit 1888 * locations. 1889 */ 1890 switch (state->target) { 1891 case vertex_shader: 1892 if (!global_scope || (var->mode != ir_var_in)) { 1893 fail = true; 1894 string = "input"; 1895 } 1896 break; 1897 1898 case geometry_shader: 1899 _mesa_glsl_error(loc, state, 1900 "geometry shader variables cannot be given " 1901 "explicit locations\n"); 1902 break; 1903 1904 case fragment_shader: 1905 if (!global_scope || (var->mode != ir_var_in)) { 1906 fail = true; 1907 string = "output"; 1908 } 1909 break; 1910 }; 1911 1912 if (fail) { 1913 _mesa_glsl_error(loc, state, 1914 "only %s shader %s variables can be given an " 1915 "explicit location\n", 1916 _mesa_glsl_shader_target_name(state->target), 1917 string); 1918 } else { 1919 var->explicit_location = true; 1920 1921 /* This bit of silliness is needed because invalid explicit locations 1922 * are supposed to be flagged during linking. Small negative values 1923 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias 1924 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS). 1925 * The linker needs to be able to differentiate these cases. This 1926 * ensures that negative values stay negative. 1927 */ 1928 if (qual->location >= 0) { 1929 var->location = (state->target == vertex_shader) 1930 ? (qual->location + VERT_ATTRIB_GENERIC0) 1931 : (qual->location + FRAG_RESULT_DATA0); 1932 } else { 1933 var->location = qual->location; 1934 } 1935 } 1936 } 1937 1938 if (var->type->is_array() && state->language_version != 110) { 1939 var->array_lvalue = true; 1940 } 1941 } 1942 1943 1944 ir_rvalue * 1945 ast_declarator_list::hir(exec_list *instructions, 1946 struct _mesa_glsl_parse_state *state) 1947 { 1948 void *ctx = state; 1949 const struct glsl_type *decl_type; 1950 const char *type_name = NULL; 1951 ir_rvalue *result = NULL; 1952 YYLTYPE loc = this->get_location(); 1953 1954 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: 1955 * 1956 * "To ensure that a particular output variable is invariant, it is 1957 * necessary to use the invariant qualifier. It can either be used to 1958 * qualify a previously declared variable as being invariant 1959 * 1960 * invariant gl_Position; // make existing gl_Position be invariant" 1961 * 1962 * In these cases the parser will set the 'invariant' flag in the declarator 1963 * list, and the type will be NULL. 1964 */ 1965 if (this->invariant) { 1966 assert(this->type == NULL); 1967 1968 if (state->current_function != NULL) { 1969 _mesa_glsl_error(& loc, state, 1970 "All uses of `invariant' keyword must be at global " 1971 "scope\n"); 1972 } 1973 1974 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 1975 assert(!decl->is_array); 1976 assert(decl->array_size == NULL); 1977 assert(decl->initializer == NULL); 1978 1979 ir_variable *const earlier = 1980 state->symbols->get_variable(decl->identifier); 1981 if (earlier == NULL) { 1982 _mesa_glsl_error(& loc, state, 1983 "Undeclared variable `%s' cannot be marked " 1984 "invariant\n", decl->identifier); 1985 } else if ((state->target == vertex_shader) 1986 && (earlier->mode != ir_var_out)) { 1987 _mesa_glsl_error(& loc, state, 1988 "`%s' cannot be marked invariant, vertex shader " 1989 "outputs only\n", decl->identifier); 1990 } else if ((state->target == fragment_shader) 1991 && (earlier->mode != ir_var_in)) { 1992 _mesa_glsl_error(& loc, state, 1993 "`%s' cannot be marked invariant, fragment shader " 1994 "inputs only\n", decl->identifier); 1995 } else { 1996 earlier->invariant = true; 1997 } 1998 } 1999 2000 /* Invariant redeclarations do not have r-values. 2001 */ 2002 return NULL; 2003 } 2004 2005 assert(this->type != NULL); 2006 assert(!this->invariant); 2007 2008 /* The type specifier may contain a structure definition. Process that 2009 * before any of the variable declarations. 2010 */ 2011 (void) this->type->specifier->hir(instructions, state); 2012 2013 decl_type = this->type->specifier->glsl_type(& type_name, state); 2014 if (this->declarations.is_empty()) { 2015 /* The only valid case where the declaration list can be empty is when 2016 * the declaration is setting the default precision of a built-in type 2017 * (e.g., 'precision highp vec4;'). 2018 */ 2019 2020 if (decl_type != NULL) { 2021 } else { 2022 _mesa_glsl_error(& loc, state, "incomplete declaration"); 2023 } 2024 } 2025 2026 foreach_list_typed (ast_declaration, decl, link, &this->declarations) { 2027 const struct glsl_type *var_type; 2028 ir_variable *var; 2029 2030 /* FINISHME: Emit a warning if a variable declaration shadows a 2031 * FINISHME: declaration at a higher scope. 2032 */ 2033 2034 if ((decl_type == NULL) || decl_type->is_void()) { 2035 if (type_name != NULL) { 2036 _mesa_glsl_error(& loc, state, 2037 "invalid type `%s' in declaration of `%s'", 2038 type_name, decl->identifier); 2039 } else { 2040 _mesa_glsl_error(& loc, state, 2041 "invalid type in declaration of `%s'", 2042 decl->identifier); 2043 } 2044 continue; 2045 } 2046 2047 if (decl->is_array) { 2048 var_type = process_array_type(&loc, decl_type, decl->array_size, 2049 state); 2050 } else { 2051 var_type = decl_type; 2052 } 2053 2054 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto); 2055 2056 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; 2057 * 2058 * "Global variables can only use the qualifiers const, 2059 * attribute, uni form, or varying. Only one may be 2060 * specified. 2061 * 2062 * Local variables can only use the qualifier const." 2063 * 2064 * This is relaxed in GLSL 1.30. 2065 */ 2066 if (state->language_version < 120) { 2067 if (this->type->qualifier.flags.q.out) { 2068 _mesa_glsl_error(& loc, state, 2069 "`out' qualifier in declaration of `%s' " 2070 "only valid for function parameters in GLSL 1.10.", 2071 decl->identifier); 2072 } 2073 if (this->type->qualifier.flags.q.in) { 2074 _mesa_glsl_error(& loc, state, 2075 "`in' qualifier in declaration of `%s' " 2076 "only valid for function parameters in GLSL 1.10.", 2077 decl->identifier); 2078 } 2079 /* FINISHME: Test for other invalid qualifiers. */ 2080 } 2081 2082 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, 2083 & loc); 2084 2085 if (this->type->qualifier.flags.q.invariant) { 2086 if ((state->target == vertex_shader) && !(var->mode == ir_var_out || 2087 var->mode == ir_var_inout)) { 2088 /* FINISHME: Note that this doesn't work for invariant on 2089 * a function signature outval 2090 */ 2091 _mesa_glsl_error(& loc, state, 2092 "`%s' cannot be marked invariant, vertex shader " 2093 "outputs only\n", var->name); 2094 } else if ((state->target == fragment_shader) && 2095 !(var->mode == ir_var_in || var->mode == ir_var_inout)) { 2096 /* FINISHME: Note that this doesn't work for invariant on 2097 * a function signature inval 2098 */ 2099 _mesa_glsl_error(& loc, state, 2100 "`%s' cannot be marked invariant, fragment shader " 2101 "inputs only\n", var->name); 2102 } 2103 } 2104 2105 if (state->current_function != NULL) { 2106 const char *mode = NULL; 2107 const char *extra = ""; 2108 2109 /* There is no need to check for 'inout' here because the parser will 2110 * only allow that in function parameter lists. 2111 */ 2112 if (this->type->qualifier.flags.q.attribute) { 2113 mode = "attribute"; 2114 } else if (this->type->qualifier.flags.q.uniform) { 2115 mode = "uniform"; 2116 } else if (this->type->qualifier.flags.q.varying) { 2117 mode = "varying"; 2118 } else if (this->type->qualifier.flags.q.in) { 2119 mode = "in"; 2120 extra = " or in function parameter list"; 2121 } else if (this->type->qualifier.flags.q.out) { 2122 mode = "out"; 2123 extra = " or in function parameter list"; 2124 } 2125 2126 if (mode) { 2127 _mesa_glsl_error(& loc, state, 2128 "%s variable `%s' must be declared at " 2129 "global scope%s", 2130 mode, var->name, extra); 2131 } 2132 } else if (var->mode == ir_var_in) { 2133 if (state->target == vertex_shader) { 2134 bool error_emitted = false; 2135 2136 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: 2137 * 2138 * "Vertex shader inputs can only be float, floating-point 2139 * vectors, matrices, signed and unsigned integers and integer 2140 * vectors. Vertex shader inputs can also form arrays of these 2141 * types, but not structures." 2142 * 2143 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: 2144 * 2145 * "Vertex shader inputs can only be float, floating-point 2146 * vectors, matrices, signed and unsigned integers and integer 2147 * vectors. They cannot be arrays or structures." 2148 * 2149 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: 2150 * 2151 * "The attribute qualifier can be used only with float, 2152 * floating-point vectors, and matrices. Attribute variables 2153 * cannot be declared as arrays or structures." 2154 */ 2155 const glsl_type *check_type = var->type->is_array() 2156 ? var->type->fields.array : var->type; 2157 2158 switch (check_type->base_type) { 2159 case GLSL_TYPE_FLOAT: 2160 break; 2161 case GLSL_TYPE_UINT: 2162 case GLSL_TYPE_INT: 2163 if (state->language_version > 120) 2164 break; 2165 /* FALLTHROUGH */ 2166 default: 2167 _mesa_glsl_error(& loc, state, 2168 "vertex shader input / attribute cannot have " 2169 "type %s`%s'", 2170 var->type->is_array() ? "array of " : "", 2171 check_type->name); 2172 error_emitted = true; 2173 } 2174 2175 if (!error_emitted && (state->language_version <= 130) 2176 && var->type->is_array()) { 2177 _mesa_glsl_error(& loc, state, 2178 "vertex shader input / attribute cannot have " 2179 "array type"); 2180 error_emitted = true; 2181 } 2182 } 2183 } 2184 2185 /* Process the initializer and add its instructions to a temporary 2186 * list. This list will be added to the instruction stream (below) after 2187 * the declaration is added. This is done because in some cases (such as 2188 * redeclarations) the declaration may not actually be added to the 2189 * instruction stream. 2190 */ 2191 exec_list initializer_instructions; 2192 if (decl->initializer != NULL) { 2193 YYLTYPE initializer_loc = decl->initializer->get_location(); 2194 2195 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: 2196 * 2197 * "All uniform variables are read-only and are initialized either 2198 * directly by an application via API commands, or indirectly by 2199 * OpenGL." 2200 */ 2201 if ((state->language_version <= 110) 2202 && (var->mode == ir_var_uniform)) { 2203 _mesa_glsl_error(& initializer_loc, state, 2204 "cannot initialize uniforms in GLSL 1.10"); 2205 } 2206 2207 if (var->type->is_sampler()) { 2208 _mesa_glsl_error(& initializer_loc, state, 2209 "cannot initialize samplers"); 2210 } 2211 2212 if ((var->mode == ir_var_in) && (state->current_function == NULL)) { 2213 _mesa_glsl_error(& initializer_loc, state, 2214 "cannot initialize %s shader input / %s", 2215 _mesa_glsl_shader_target_name(state->target), 2216 (state->target == vertex_shader) 2217 ? "attribute" : "varying"); 2218 } 2219 2220 ir_dereference *const lhs = new(ctx) ir_dereference_variable(var); 2221 ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions, 2222 state); 2223 2224 /* Calculate the constant value if this is a const or uniform 2225 * declaration. 2226 */ 2227 if (this->type->qualifier.flags.q.constant 2228 || this->type->qualifier.flags.q.uniform) { 2229 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs); 2230 if (new_rhs != NULL) { 2231 rhs = new_rhs; 2232 2233 ir_constant *constant_value = rhs->constant_expression_value(); 2234 if (!constant_value) { 2235 _mesa_glsl_error(& initializer_loc, state, 2236 "initializer of %s variable `%s' must be a " 2237 "constant expression", 2238 (this->type->qualifier.flags.q.constant) 2239 ? "const" : "uniform", 2240 decl->identifier); 2241 if (var->type->is_numeric()) { 2242 /* Reduce cascading errors. */ 2243 var->constant_value = ir_constant::zero(ctx, var->type); 2244 } 2245 } else { 2246 rhs = constant_value; 2247 var->constant_value = constant_value; 2248 } 2249 } else { 2250 _mesa_glsl_error(&initializer_loc, state, 2251 "initializer of type %s cannot be assigned to " 2252 "variable of type %s", 2253 rhs->type->name, var->type->name); 2254 if (var->type->is_numeric()) { 2255 /* Reduce cascading errors. */ 2256 var->constant_value = ir_constant::zero(ctx, var->type); 2257 } 2258 } 2259 } 2260 2261 if (rhs && !rhs->type->is_error()) { 2262 bool temp = var->read_only; 2263 if (this->type->qualifier.flags.q.constant) 2264 var->read_only = false; 2265 2266 /* Never emit code to initialize a uniform. 2267 */ 2268 const glsl_type *initializer_type; 2269 if (!this->type->qualifier.flags.q.uniform) { 2270 result = do_assignment(&initializer_instructions, state, 2271 lhs, rhs, 2272 this->get_location()); 2273 initializer_type = result->type; 2274 } else 2275 initializer_type = rhs->type; 2276 2277 /* If the declared variable is an unsized array, it must inherrit 2278 * its full type from the initializer. A declaration such as 2279 * 2280 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0); 2281 * 2282 * becomes 2283 * 2284 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0); 2285 * 2286 * The assignment generated in the if-statement (below) will also 2287 * automatically handle this case for non-uniforms. 2288 * 2289 * If the declared variable is not an array, the types must 2290 * already match exactly. As a result, the type assignment 2291 * here can be done unconditionally. For non-uniforms the call 2292 * to do_assignment can change the type of the initializer (via 2293 * the implicit conversion rules). For uniforms the initializer 2294 * must be a constant expression, and the type of that expression 2295 * was validated above. 2296 */ 2297 var->type = initializer_type; 2298 2299 var->read_only = temp; 2300 } 2301 } 2302 2303 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: 2304 * 2305 * "It is an error to write to a const variable outside of 2306 * its declaration, so they must be initialized when 2307 * declared." 2308 */ 2309 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) { 2310 _mesa_glsl_error(& loc, state, 2311 "const declaration of `%s' must be initialized"); 2312 } 2313 2314 /* Check if this declaration is actually a re-declaration, either to 2315 * resize an array or add qualifiers to an existing variable. 2316 * 2317 * This is allowed for variables in the current scope, or when at 2318 * global scope (for built-ins in the implicit outer scope). 2319 */ 2320 ir_variable *earlier = state->symbols->get_variable(decl->identifier); 2321 if (earlier != NULL && (state->current_function == NULL || 2322 state->symbols->name_declared_this_scope(decl->identifier))) { 2323 2324 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, 2325 * 2326 * "It is legal to declare an array without a size and then 2327 * later re-declare the same name as an array of the same 2328 * type and specify a size." 2329 */ 2330 if ((earlier->type->array_size() == 0) 2331 && var->type->is_array() 2332 && (var->type->element_type() == earlier->type->element_type())) { 2333 /* FINISHME: This doesn't match the qualifiers on the two 2334 * FINISHME: declarations. It's not 100% clear whether this is 2335 * FINISHME: required or not. 2336 */ 2337 2338 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: 2339 * 2340 * "The size [of gl_TexCoord] can be at most 2341 * gl_MaxTextureCoords." 2342 */ 2343 const unsigned size = unsigned(var->type->array_size()); 2344 if ((strcmp("gl_TexCoord", var->name) == 0) 2345 && (size > state->Const.MaxTextureCoords)) { 2346 YYLTYPE loc = this->get_location(); 2347 2348 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot " 2349 "be larger than gl_MaxTextureCoords (%u)\n", 2350 state->Const.MaxTextureCoords); 2351 } else if ((size > 0) && (size <= earlier->max_array_access)) { 2352 YYLTYPE loc = this->get_location(); 2353 2354 _mesa_glsl_error(& loc, state, "array size must be > %u due to " 2355 "previous access", 2356 earlier->max_array_access); 2357 } 2358 2359 earlier->type = var->type; 2360 delete var; 2361 var = NULL; 2362 } else if (state->ARB_fragment_coord_conventions_enable 2363 && strcmp(var->name, "gl_FragCoord") == 0 2364 && earlier->type == var->type 2365 && earlier->mode == var->mode) { 2366 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout 2367 * qualifiers. 2368 */ 2369 earlier->origin_upper_left = var->origin_upper_left; 2370 earlier->pixel_center_integer = var->pixel_center_integer; 2371 } else { 2372 YYLTYPE loc = this->get_location(); 2373 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier); 2374 } 2375 2376 continue; 2377 } 2378 2379 /* By now, we know it's a new variable declaration (we didn't hit the 2380 * above "continue"). 2381 * 2382 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 2383 * 2384 * "Identifiers starting with "gl_" are reserved for use by 2385 * OpenGL, and may not be declared in a shader as either a 2386 * variable or a function." 2387 */ 2388 if (strncmp(decl->identifier, "gl_", 3) == 0) 2389 _mesa_glsl_error(& loc, state, 2390 "identifier `%s' uses reserved `gl_' prefix", 2391 decl->identifier); 2392 2393 /* Add the variable to the symbol table. Note that the initializer's 2394 * IR was already processed earlier (though it hasn't been emitted yet), 2395 * without the variable in scope. 2396 * 2397 * This differs from most C-like languages, but it follows the GLSL 2398 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 2399 * spec: 2400 * 2401 * "Within a declaration, the scope of a name starts immediately 2402 * after the initializer if present or immediately after the name 2403 * being declared if not." 2404 */ 2405 if (!state->symbols->add_variable(var)) { 2406 YYLTYPE loc = this->get_location(); 2407 _mesa_glsl_error(&loc, state, "name `%s' already taken in the " 2408 "current scope", decl->identifier); 2409 continue; 2410 } 2411 2412 /* Push the variable declaration to the top. It means that all 2413 * the variable declarations will appear in a funny 2414 * last-to-first order, but otherwise we run into trouble if a 2415 * function is prototyped, a global var is decled, then the 2416 * function is defined with usage of the global var. See 2417 * glslparsertest's CorrectModule.frag. 2418 */ 2419 instructions->push_head(var); 2420 instructions->append_list(&initializer_instructions); 2421 } 2422 2423 2424 /* Generally, variable declarations do not have r-values. However, 2425 * one is used for the declaration in 2426 * 2427 * while (bool b = some_condition()) { 2428 * ... 2429 * } 2430 * 2431 * so we return the rvalue from the last seen declaration here. 2432 */ 2433 return result; 2434 } 2435 2436 2437 ir_rvalue * 2438 ast_parameter_declarator::hir(exec_list *instructions, 2439 struct _mesa_glsl_parse_state *state) 2440 { 2441 void *ctx = state; 2442 const struct glsl_type *type; 2443 const char *name = NULL; 2444 YYLTYPE loc = this->get_location(); 2445 2446 type = this->type->specifier->glsl_type(& name, state); 2447 2448 if (type == NULL) { 2449 if (name != NULL) { 2450 _mesa_glsl_error(& loc, state, 2451 "invalid type `%s' in declaration of `%s'", 2452 name, this->identifier); 2453 } else { 2454 _mesa_glsl_error(& loc, state, 2455 "invalid type in declaration of `%s'", 2456 this->identifier); 2457 } 2458 2459 type = glsl_type::error_type; 2460 } 2461 2462 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: 2463 * 2464 * "Functions that accept no input arguments need not use void in the 2465 * argument list because prototypes (or definitions) are required and 2466 * therefore there is no ambiguity when an empty argument list "( )" is 2467 * declared. The idiom "(void)" as a parameter list is provided for 2468 * convenience." 2469 * 2470 * Placing this check here prevents a void parameter being set up 2471 * for a function, which avoids tripping up checks for main taking 2472 * parameters and lookups of an unnamed symbol. 2473 */ 2474 if (type->is_void()) { 2475 if (this->identifier != NULL) 2476 _mesa_glsl_error(& loc, state, 2477 "named parameter cannot have type `void'"); 2478 2479 is_void = true; 2480 return NULL; 2481 } 2482 2483 if (formal_parameter && (this->identifier == NULL)) { 2484 _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); 2485 return NULL; 2486 } 2487 2488 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) 2489 * call already handled the "vec4[..] foo" case. 2490 */ 2491 if (this->is_array) { 2492 type = process_array_type(&loc, type, this->array_size, state); 2493 } 2494 2495 if (type->array_size() == 0) { 2496 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " 2497 "a declared size."); 2498 type = glsl_type::error_type; 2499 } 2500 2501 is_void = false; 2502 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in); 2503 2504 /* Apply any specified qualifiers to the parameter declaration. Note that 2505 * for function parameters the default mode is 'in'. 2506 */ 2507 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc); 2508 2509 instructions->push_tail(var); 2510 2511 /* Parameter declarations do not have r-values. 2512 */ 2513 return NULL; 2514 } 2515 2516 2517 void 2518 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, 2519 bool formal, 2520 exec_list *ir_parameters, 2521 _mesa_glsl_parse_state *state) 2522 { 2523 ast_parameter_declarator *void_param = NULL; 2524 unsigned count = 0; 2525 2526 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { 2527 param->formal_parameter = formal; 2528 param->hir(ir_parameters, state); 2529 2530 if (param->is_void) 2531 void_param = param; 2532 2533 count++; 2534 } 2535 2536 if ((void_param != NULL) && (count > 1)) { 2537 YYLTYPE loc = void_param->get_location(); 2538 2539 _mesa_glsl_error(& loc, state, 2540 "`void' parameter must be only parameter"); 2541 } 2542 } 2543 2544 2545 void 2546 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions, 2547 ir_function *f) 2548 { 2549 /* Emit the new function header */ 2550 if (state->current_function == NULL) { 2551 instructions->push_tail(f); 2552 } else { 2553 /* IR invariants disallow function declarations or definitions nested 2554 * within other function definitions. Insert the new ir_function 2555 * block in the instruction sequence before the ir_function block 2556 * containing the current ir_function_signature. 2557 */ 2558 ir_function *const curr = 2559 const_cast<ir_function *>(state->current_function->function()); 2560 2561 curr->insert_before(f); 2562 } 2563 } 2564 2565 2566 ir_rvalue * 2567 ast_function::hir(exec_list *instructions, 2568 struct _mesa_glsl_parse_state *state) 2569 { 2570 void *ctx = state; 2571 ir_function *f = NULL; 2572 ir_function_signature *sig = NULL; 2573 exec_list hir_parameters; 2574 2575 const char *const name = identifier; 2576 2577 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, 2578 * 2579 * "Function declarations (prototypes) cannot occur inside of functions; 2580 * they must be at global scope, or for the built-in functions, outside 2581 * the global scope." 2582 * 2583 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, 2584 * 2585 * "User defined functions may only be defined within the global scope." 2586 * 2587 * Note that this language does not appear in GLSL 1.10. 2588 */ 2589 if ((state->current_function != NULL) && (state->language_version != 110)) { 2590 YYLTYPE loc = this->get_location(); 2591 _mesa_glsl_error(&loc, state, 2592 "declaration of function `%s' not allowed within " 2593 "function body", name); 2594 } 2595 2596 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, 2597 * 2598 * "Identifiers starting with "gl_" are reserved for use by 2599 * OpenGL, and may not be declared in a shader as either a 2600 * variable or a function." 2601 */ 2602 if (strncmp(name, "gl_", 3) == 0) { 2603 YYLTYPE loc = this->get_location(); 2604 _mesa_glsl_error(&loc, state, 2605 "identifier `%s' uses reserved `gl_' prefix", name); 2606 } 2607 2608 /* Convert the list of function parameters to HIR now so that they can be 2609 * used below to compare this function's signature with previously seen 2610 * signatures for functions with the same name. 2611 */ 2612 ast_parameter_declarator::parameters_to_hir(& this->parameters, 2613 is_definition, 2614 & hir_parameters, state); 2615 2616 const char *return_type_name; 2617 const glsl_type *return_type = 2618 this->return_type->specifier->glsl_type(& return_type_name, state); 2619 2620 if (!return_type) { 2621 YYLTYPE loc = this->get_location(); 2622 _mesa_glsl_error(&loc, state, 2623 "function `%s' has undeclared return type `%s'", 2624 name, return_type_name); 2625 return_type = glsl_type::error_type; 2626 } 2627 2628 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: 2629 * "No qualifier is allowed on the return type of a function." 2630 */ 2631 if (this->return_type->has_qualifiers()) { 2632 YYLTYPE loc = this->get_location(); 2633 _mesa_glsl_error(& loc, state, 2634 "function `%s' return type has qualifiers", name); 2635 } 2636 2637 /* Verify that this function's signature either doesn't match a previously 2638 * seen signature for a function with the same name, or, if a match is found, 2639 * that the previously seen signature does not have an associated definition. 2640 */ 2641 f = state->symbols->get_function(name); 2642 if (f != NULL && (state->es_shader || f->has_user_signature())) { 2643 sig = f->exact_matching_signature(&hir_parameters); 2644 if (sig != NULL) { 2645 const char *badvar = sig->qualifiers_match(&hir_parameters); 2646 if (badvar != NULL) { 2647 YYLTYPE loc = this->get_location(); 2648 2649 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " 2650 "qualifiers don't match prototype", name, badvar); 2651 } 2652 2653 if (sig->return_type != return_type) { 2654 YYLTYPE loc = this->get_location(); 2655 2656 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " 2657 "match prototype", name); 2658 } 2659 2660 if (is_definition && sig->is_defined) { 2661 YYLTYPE loc = this->get_location(); 2662 2663 _mesa_glsl_error(& loc, state, "function `%s' redefined", name); 2664 } 2665 } 2666 } else { 2667 f = new(ctx) ir_function(name); 2668 if (!state->symbols->add_function(f)) { 2669 /* This function name shadows a non-function use of the same name. */ 2670 YYLTYPE loc = this->get_location(); 2671 2672 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " 2673 "non-function", name); 2674 return NULL; 2675 } 2676 2677 emit_function(state, instructions, f); 2678 } 2679 2680 /* Verify the return type of main() */ 2681 if (strcmp(name, "main") == 0) { 2682 if (! return_type->is_void()) { 2683 YYLTYPE loc = this->get_location(); 2684 2685 _mesa_glsl_error(& loc, state, "main() must return void"); 2686 } 2687 2688 if (!hir_parameters.is_empty()) { 2689 YYLTYPE loc = this->get_location(); 2690 2691 _mesa_glsl_error(& loc, state, "main() must not take any parameters"); 2692 } 2693 } 2694 2695 /* Finish storing the information about this new function in its signature. 2696 */ 2697 if (sig == NULL) { 2698 sig = new(ctx) ir_function_signature(return_type); 2699 f->add_signature(sig); 2700 } 2701 2702 sig->replace_parameters(&hir_parameters); 2703 signature = sig; 2704 2705 /* Function declarations (prototypes) do not have r-values. 2706 */ 2707 return NULL; 2708 } 2709 2710 2711 ir_rvalue * 2712 ast_function_definition::hir(exec_list *instructions, 2713 struct _mesa_glsl_parse_state *state) 2714 { 2715 prototype->is_definition = true; 2716 prototype->hir(instructions, state); 2717 2718 ir_function_signature *signature = prototype->signature; 2719 if (signature == NULL) 2720 return NULL; 2721 2722 assert(state->current_function == NULL); 2723 state->current_function = signature; 2724 state->found_return = false; 2725 2726 /* Duplicate parameters declared in the prototype as concrete variables. 2727 * Add these to the symbol table. 2728 */ 2729 state->symbols->push_scope(); 2730 foreach_iter(exec_list_iterator, iter, signature->parameters) { 2731 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable(); 2732 2733 assert(var != NULL); 2734 2735 /* The only way a parameter would "exist" is if two parameters have 2736 * the same name. 2737 */ 2738 if (state->symbols->name_declared_this_scope(var->name)) { 2739 YYLTYPE loc = this->get_location(); 2740 2741 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); 2742 } else { 2743 state->symbols->add_variable(var); 2744 } 2745 } 2746 2747 /* Convert the body of the function to HIR. */ 2748 this->body->hir(&signature->body, state); 2749 signature->is_defined = true; 2750 2751 state->symbols->pop_scope(); 2752 2753 assert(state->current_function == signature); 2754 state->current_function = NULL; 2755 2756 if (!signature->return_type->is_void() && !state->found_return) { 2757 YYLTYPE loc = this->get_location(); 2758 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " 2759 "%s, but no return statement", 2760 signature->function_name(), 2761 signature->return_type->name); 2762 } 2763 2764 /* Function definitions do not have r-values. 2765 */ 2766 return NULL; 2767 } 2768 2769 2770 ir_rvalue * 2771 ast_jump_statement::hir(exec_list *instructions, 2772 struct _mesa_glsl_parse_state *state) 2773 { 2774 void *ctx = state; 2775 2776 switch (mode) { 2777 case ast_return: { 2778 ir_return *inst; 2779 assert(state->current_function); 2780 2781 if (opt_return_value) { 2782 if (state->current_function->return_type->base_type == 2783 GLSL_TYPE_VOID) { 2784 YYLTYPE loc = this->get_location(); 2785 2786 _mesa_glsl_error(& loc, state, 2787 "`return` with a value, in function `%s' " 2788 "returning void", 2789 state->current_function->function_name()); 2790 } 2791 2792 ir_rvalue *const ret = opt_return_value->hir(instructions, state); 2793 assert(ret != NULL); 2794 2795 /* Implicit conversions are not allowed for return values. */ 2796 if (state->current_function->return_type != ret->type) { 2797 YYLTYPE loc = this->get_location(); 2798 2799 _mesa_glsl_error(& loc, state, 2800 "`return' with wrong type %s, in function `%s' " 2801 "returning %s", 2802 ret->type->name, 2803 state->current_function->function_name(), 2804 state->current_function->return_type->name); 2805 } 2806 2807 inst = new(ctx) ir_return(ret); 2808 } else { 2809 if (state->current_function->return_type->base_type != 2810 GLSL_TYPE_VOID) { 2811 YYLTYPE loc = this->get_location(); 2812 2813 _mesa_glsl_error(& loc, state, 2814 "`return' with no value, in function %s returning " 2815 "non-void", 2816 state->current_function->function_name()); 2817 } 2818 inst = new(ctx) ir_return; 2819 } 2820 2821 state->found_return = true; 2822 instructions->push_tail(inst); 2823 break; 2824 } 2825 2826 case ast_discard: 2827 if (state->target != fragment_shader) { 2828 YYLTYPE loc = this->get_location(); 2829 2830 _mesa_glsl_error(& loc, state, 2831 "`discard' may only appear in a fragment shader"); 2832 } 2833 instructions->push_tail(new(ctx) ir_discard); 2834 break; 2835 2836 case ast_break: 2837 case ast_continue: 2838 /* FINISHME: Handle switch-statements. They cannot contain 'continue', 2839 * FINISHME: and they use a different IR instruction for 'break'. 2840 */ 2841 /* FINISHME: Correctly handle the nesting. If a switch-statement is 2842 * FINISHME: inside a loop, a 'continue' is valid and will bind to the 2843 * FINISHME: loop. 2844 */ 2845 if (state->loop_or_switch_nesting == NULL) { 2846 YYLTYPE loc = this->get_location(); 2847 2848 _mesa_glsl_error(& loc, state, 2849 "`%s' may only appear in a loop", 2850 (mode == ast_break) ? "break" : "continue"); 2851 } else { 2852 ir_loop *const loop = state->loop_or_switch_nesting->as_loop(); 2853 2854 /* Inline the for loop expression again, since we don't know 2855 * where near the end of the loop body the normal copy of it 2856 * is going to be placed. 2857 */ 2858 if (mode == ast_continue && 2859 state->loop_or_switch_nesting_ast->rest_expression) { 2860 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions, 2861 state); 2862 } 2863 2864 if (loop != NULL) { 2865 ir_loop_jump *const jump = 2866 new(ctx) ir_loop_jump((mode == ast_break) 2867 ? ir_loop_jump::jump_break 2868 : ir_loop_jump::jump_continue); 2869 instructions->push_tail(jump); 2870 } 2871 } 2872 2873 break; 2874 } 2875 2876 /* Jump instructions do not have r-values. 2877 */ 2878 return NULL; 2879 } 2880 2881 2882 ir_rvalue * 2883 ast_selection_statement::hir(exec_list *instructions, 2884 struct _mesa_glsl_parse_state *state) 2885 { 2886 void *ctx = state; 2887 2888 ir_rvalue *const condition = this->condition->hir(instructions, state); 2889 2890 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: 2891 * 2892 * "Any expression whose type evaluates to a Boolean can be used as the 2893 * conditional expression bool-expression. Vector types are not accepted 2894 * as the expression to if." 2895 * 2896 * The checks are separated so that higher quality diagnostics can be 2897 * generated for cases where both rules are violated. 2898 */ 2899 if (!condition->type->is_boolean() || !condition->type->is_scalar()) { 2900 YYLTYPE loc = this->condition->get_location(); 2901 2902 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " 2903 "boolean"); 2904 } 2905 2906 ir_if *const stmt = new(ctx) ir_if(condition); 2907 2908 if (then_statement != NULL) { 2909 state->symbols->push_scope(); 2910 then_statement->hir(& stmt->then_instructions, state); 2911 state->symbols->pop_scope(); 2912 } 2913 2914 if (else_statement != NULL) { 2915 state->symbols->push_scope(); 2916 else_statement->hir(& stmt->else_instructions, state); 2917 state->symbols->pop_scope(); 2918 } 2919 2920 instructions->push_tail(stmt); 2921 2922 /* if-statements do not have r-values. 2923 */ 2924 return NULL; 2925 } 2926 2927 2928 void 2929 ast_iteration_statement::condition_to_hir(ir_loop *stmt, 2930 struct _mesa_glsl_parse_state *state) 2931 { 2932 void *ctx = state; 2933 2934 if (condition != NULL) { 2935 ir_rvalue *const cond = 2936 condition->hir(& stmt->body_instructions, state); 2937 2938 if ((cond == NULL) 2939 || !cond->type->is_boolean() || !cond->type->is_scalar()) { 2940 YYLTYPE loc = condition->get_location(); 2941 2942 _mesa_glsl_error(& loc, state, 2943 "loop condition must be scalar boolean"); 2944 } else { 2945 /* As the first code in the loop body, generate a block that looks 2946 * like 'if (!condition) break;' as the loop termination condition. 2947 */ 2948 ir_rvalue *const not_cond = 2949 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond, 2950 NULL); 2951 2952 ir_if *const if_stmt = new(ctx) ir_if(not_cond); 2953 2954 ir_jump *const break_stmt = 2955 new(ctx) ir_loop_jump(ir_loop_jump::jump_break); 2956 2957 if_stmt->then_instructions.push_tail(break_stmt); 2958 stmt->body_instructions.push_tail(if_stmt); 2959 } 2960 } 2961 } 2962 2963 2964 ir_rvalue * 2965 ast_iteration_statement::hir(exec_list *instructions, 2966 struct _mesa_glsl_parse_state *state) 2967 { 2968 void *ctx = state; 2969 2970 /* For-loops and while-loops start a new scope, but do-while loops do not. 2971 */ 2972 if (mode != ast_do_while) 2973 state->symbols->push_scope(); 2974 2975 if (init_statement != NULL) 2976 init_statement->hir(instructions, state); 2977 2978 ir_loop *const stmt = new(ctx) ir_loop(); 2979 instructions->push_tail(stmt); 2980 2981 /* Track the current loop and / or switch-statement nesting. 2982 */ 2983 ir_instruction *const nesting = state->loop_or_switch_nesting; 2984 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast; 2985 2986 state->loop_or_switch_nesting = stmt; 2987 state->loop_or_switch_nesting_ast = this; 2988 2989 if (mode != ast_do_while) 2990 condition_to_hir(stmt, state); 2991 2992 if (body != NULL) 2993 body->hir(& stmt->body_instructions, state); 2994 2995 if (rest_expression != NULL) 2996 rest_expression->hir(& stmt->body_instructions, state); 2997 2998 if (mode == ast_do_while) 2999 condition_to_hir(stmt, state); 3000 3001 if (mode != ast_do_while) 3002 state->symbols->pop_scope(); 3003 3004 /* Restore previous nesting before returning. 3005 */ 3006 state->loop_or_switch_nesting = nesting; 3007 state->loop_or_switch_nesting_ast = nesting_ast; 3008 3009 /* Loops do not have r-values. 3010 */ 3011 return NULL; 3012 } 3013 3014 3015 ir_rvalue * 3016 ast_type_specifier::hir(exec_list *instructions, 3017 struct _mesa_glsl_parse_state *state) 3018 { 3019 if (this->structure != NULL) 3020 return this->structure->hir(instructions, state); 3021 3022 return NULL; 3023 } 3024 3025 3026 ir_rvalue * 3027 ast_struct_specifier::hir(exec_list *instructions, 3028 struct _mesa_glsl_parse_state *state) 3029 { 3030 unsigned decl_count = 0; 3031 3032 /* Make an initial pass over the list of structure fields to determine how 3033 * many there are. Each element in this list is an ast_declarator_list. 3034 * This means that we actually need to count the number of elements in the 3035 * 'declarations' list in each of the elements. 3036 */ 3037 foreach_list_typed (ast_declarator_list, decl_list, link, 3038 &this->declarations) { 3039 foreach_list_const (decl_ptr, & decl_list->declarations) { 3040 decl_count++; 3041 } 3042 } 3043 3044 /* Allocate storage for the structure fields and process the field 3045 * declarations. As the declarations are processed, try to also convert 3046 * the types to HIR. This ensures that structure definitions embedded in 3047 * other structure definitions are processed. 3048 */ 3049 glsl_struct_field *const fields = hieralloc_array(state, glsl_struct_field, 3050 decl_count); 3051 3052 unsigned i = 0; 3053 foreach_list_typed (ast_declarator_list, decl_list, link, 3054 &this->declarations) { 3055 const char *type_name; 3056 3057 decl_list->type->specifier->hir(instructions, state); 3058 3059 /* Section 10.9 of the GLSL ES 1.00 specification states that 3060 * embedded structure definitions have been removed from the language. 3061 */ 3062 if (state->es_shader && decl_list->type->specifier->structure != NULL) { 3063 YYLTYPE loc = this->get_location(); 3064 _mesa_glsl_error(&loc, state, "Embedded structure definitions are " 3065 "not allowed in GLSL ES 1.00."); 3066 } 3067 3068 const glsl_type *decl_type = 3069 decl_list->type->specifier->glsl_type(& type_name, state); 3070 3071 foreach_list_typed (ast_declaration, decl, link, 3072 &decl_list->declarations) { 3073 const struct glsl_type *field_type = decl_type; 3074 if (decl->is_array) { 3075 YYLTYPE loc = decl->get_location(); 3076 field_type = process_array_type(&loc, decl_type, decl->array_size, 3077 state); 3078 } 3079 fields[i].type = (field_type != NULL) 3080 ? field_type : glsl_type::error_type; 3081 fields[i].name = decl->identifier; 3082 i++; 3083 } 3084 } 3085 3086 assert(i == decl_count); 3087 3088 const glsl_type *t = 3089 glsl_type::get_record_instance(fields, decl_count, this->name); 3090 3091 YYLTYPE loc = this->get_location(); 3092 if (!state->symbols->add_type(name, t)) { 3093 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); 3094 } else { 3095 3096 const glsl_type **s = (const glsl_type **) 3097 realloc(state->user_structures, 3098 sizeof(state->user_structures[0]) * 3099 (state->num_user_structures + 1)); 3100 if (s != NULL) { 3101 s[state->num_user_structures] = t; 3102 state->user_structures = s; 3103 state->num_user_structures++; 3104 } 3105 } 3106 3107 /* Structure type definitions do not have r-values. 3108 */ 3109 return NULL; 3110 } 3111