1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Initialization.h" 16 #include "clang/Sema/Lookup.h" 17 #include "clang/Sema/AnalysisBasedWarnings.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTMutationListener.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/RecursiveASTVisitor.h" 28 #include "clang/AST/TypeLoc.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/LiteralSupport.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Sema/DeclSpec.h" 35 #include "clang/Sema/Designator.h" 36 #include "clang/Sema/Scope.h" 37 #include "clang/Sema/ScopeInfo.h" 38 #include "clang/Sema/ParsedTemplate.h" 39 #include "clang/Sema/Template.h" 40 using namespace clang; 41 using namespace sema; 42 43 44 /// \brief Determine whether the use of this declaration is valid, and 45 /// emit any corresponding diagnostics. 46 /// 47 /// This routine diagnoses various problems with referencing 48 /// declarations that can occur when using a declaration. For example, 49 /// it might warn if a deprecated or unavailable declaration is being 50 /// used, or produce an error (and return true) if a C++0x deleted 51 /// function is being used. 52 /// 53 /// If IgnoreDeprecated is set to true, this should not warn about deprecated 54 /// decls. 55 /// 56 /// \returns true if there was an error (this declaration cannot be 57 /// referenced), false otherwise. 58 /// 59 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, 60 const ObjCInterfaceDecl *UnknownObjCClass) { 61 if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) { 62 // If there were any diagnostics suppressed by template argument deduction, 63 // emit them now. 64 llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator 65 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); 66 if (Pos != SuppressedDiagnostics.end()) { 67 llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second; 68 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I) 69 Diag(Suppressed[I].first, Suppressed[I].second); 70 71 // Clear out the list of suppressed diagnostics, so that we don't emit 72 // them again for this specialization. However, we don't obsolete this 73 // entry from the table, because we want to avoid ever emitting these 74 // diagnostics again. 75 Suppressed.clear(); 76 } 77 } 78 79 // See if this is an auto-typed variable whose initializer we are parsing. 80 if (ParsingInitForAutoVars.count(D)) { 81 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) 82 << D->getDeclName(); 83 return true; 84 } 85 86 // See if this is a deleted function. 87 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 88 if (FD->isDeleted()) { 89 Diag(Loc, diag::err_deleted_function_use); 90 Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true; 91 return true; 92 } 93 } 94 95 // See if this declaration is unavailable or deprecated. 96 std::string Message; 97 switch (D->getAvailability(&Message)) { 98 case AR_Available: 99 case AR_NotYetIntroduced: 100 break; 101 102 case AR_Deprecated: 103 EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass); 104 break; 105 106 case AR_Unavailable: 107 if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) { 108 if (Message.empty()) { 109 if (!UnknownObjCClass) 110 Diag(Loc, diag::err_unavailable) << D->getDeclName(); 111 else 112 Diag(Loc, diag::warn_unavailable_fwdclass_message) 113 << D->getDeclName(); 114 } 115 else 116 Diag(Loc, diag::err_unavailable_message) 117 << D->getDeclName() << Message; 118 Diag(D->getLocation(), diag::note_unavailable_here) 119 << isa<FunctionDecl>(D) << false; 120 } 121 break; 122 } 123 124 // Warn if this is used but marked unused. 125 if (D->hasAttr<UnusedAttr>()) 126 Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); 127 128 return false; 129 } 130 131 /// \brief Retrieve the message suffix that should be added to a 132 /// diagnostic complaining about the given function being deleted or 133 /// unavailable. 134 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) { 135 // FIXME: C++0x implicitly-deleted special member functions could be 136 // detected here so that we could improve diagnostics to say, e.g., 137 // "base class 'A' had a deleted copy constructor". 138 if (FD->isDeleted()) 139 return std::string(); 140 141 std::string Message; 142 if (FD->getAvailability(&Message)) 143 return ": " + Message; 144 145 return std::string(); 146 } 147 148 /// DiagnoseSentinelCalls - This routine checks on method dispatch calls 149 /// (and other functions in future), which have been declared with sentinel 150 /// attribute. It warns if call does not have the sentinel argument. 151 /// 152 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, 153 Expr **Args, unsigned NumArgs) { 154 const SentinelAttr *attr = D->getAttr<SentinelAttr>(); 155 if (!attr) 156 return; 157 158 // FIXME: In C++0x, if any of the arguments are parameter pack 159 // expansions, we can't check for the sentinel now. 160 int sentinelPos = attr->getSentinel(); 161 int nullPos = attr->getNullPos(); 162 163 // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common 164 // base class. Then we won't be needing two versions of the same code. 165 unsigned int i = 0; 166 bool warnNotEnoughArgs = false; 167 int isMethod = 0; 168 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 169 // skip over named parameters. 170 ObjCMethodDecl::param_iterator P, E = MD->param_end(); 171 for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) { 172 if (nullPos) 173 --nullPos; 174 else 175 ++i; 176 } 177 warnNotEnoughArgs = (P != E || i >= NumArgs); 178 isMethod = 1; 179 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 180 // skip over named parameters. 181 ObjCMethodDecl::param_iterator P, E = FD->param_end(); 182 for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) { 183 if (nullPos) 184 --nullPos; 185 else 186 ++i; 187 } 188 warnNotEnoughArgs = (P != E || i >= NumArgs); 189 } else if (VarDecl *V = dyn_cast<VarDecl>(D)) { 190 // block or function pointer call. 191 QualType Ty = V->getType(); 192 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { 193 const FunctionType *FT = Ty->isFunctionPointerType() 194 ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>() 195 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); 196 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) { 197 unsigned NumArgsInProto = Proto->getNumArgs(); 198 unsigned k; 199 for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) { 200 if (nullPos) 201 --nullPos; 202 else 203 ++i; 204 } 205 warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs); 206 } 207 if (Ty->isBlockPointerType()) 208 isMethod = 2; 209 } else 210 return; 211 } else 212 return; 213 214 if (warnNotEnoughArgs) { 215 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); 216 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; 217 return; 218 } 219 int sentinel = i; 220 while (sentinelPos > 0 && i < NumArgs-1) { 221 --sentinelPos; 222 ++i; 223 } 224 if (sentinelPos > 0) { 225 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); 226 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; 227 return; 228 } 229 while (i < NumArgs-1) { 230 ++i; 231 ++sentinel; 232 } 233 Expr *sentinelExpr = Args[sentinel]; 234 if (!sentinelExpr) return; 235 if (sentinelExpr->isTypeDependent()) return; 236 if (sentinelExpr->isValueDependent()) return; 237 238 // nullptr_t is always treated as null. 239 if (sentinelExpr->getType()->isNullPtrType()) return; 240 241 if (sentinelExpr->getType()->isAnyPointerType() && 242 sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context, 243 Expr::NPC_ValueDependentIsNull)) 244 return; 245 246 // Unfortunately, __null has type 'int'. 247 if (isa<GNUNullExpr>(sentinelExpr)) return; 248 249 Diag(Loc, diag::warn_missing_sentinel) << isMethod; 250 Diag(D->getLocation(), diag::note_sentinel_here) << isMethod; 251 } 252 253 SourceRange Sema::getExprRange(ExprTy *E) const { 254 Expr *Ex = (Expr *)E; 255 return Ex? Ex->getSourceRange() : SourceRange(); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // Standard Promotions and Conversions 260 //===----------------------------------------------------------------------===// 261 262 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). 263 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) { 264 QualType Ty = E->getType(); 265 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); 266 267 if (Ty->isFunctionType()) 268 E = ImpCastExprToType(E, Context.getPointerType(Ty), 269 CK_FunctionToPointerDecay).take(); 270 else if (Ty->isArrayType()) { 271 // In C90 mode, arrays only promote to pointers if the array expression is 272 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has 273 // type 'array of type' is converted to an expression that has type 'pointer 274 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression 275 // that has type 'array of type' ...". The relevant change is "an lvalue" 276 // (C90) to "an expression" (C99). 277 // 278 // C++ 4.2p1: 279 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of 280 // T" can be converted to an rvalue of type "pointer to T". 281 // 282 if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue()) 283 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), 284 CK_ArrayToPointerDecay).take(); 285 } 286 return Owned(E); 287 } 288 289 static void CheckForNullPointerDereference(Sema &S, Expr *E) { 290 // Check to see if we are dereferencing a null pointer. If so, 291 // and if not volatile-qualified, this is undefined behavior that the 292 // optimizer will delete, so warn about it. People sometimes try to use this 293 // to get a deterministic trap and are surprised by clang's behavior. This 294 // only handles the pattern "*null", which is a very syntactic check. 295 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 296 if (UO->getOpcode() == UO_Deref && 297 UO->getSubExpr()->IgnoreParenCasts()-> 298 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) && 299 !UO->getType().isVolatileQualified()) { 300 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 301 S.PDiag(diag::warn_indirection_through_null) 302 << UO->getSubExpr()->getSourceRange()); 303 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 304 S.PDiag(diag::note_indirection_through_null)); 305 } 306 } 307 308 ExprResult Sema::DefaultLvalueConversion(Expr *E) { 309 // C++ [conv.lval]p1: 310 // A glvalue of a non-function, non-array type T can be 311 // converted to a prvalue. 312 if (!E->isGLValue()) return Owned(E); 313 314 QualType T = E->getType(); 315 assert(!T.isNull() && "r-value conversion on typeless expression?"); 316 317 // Create a load out of an ObjCProperty l-value, if necessary. 318 if (E->getObjectKind() == OK_ObjCProperty) { 319 ExprResult Res = ConvertPropertyForRValue(E); 320 if (Res.isInvalid()) 321 return Owned(E); 322 E = Res.take(); 323 if (!E->isGLValue()) 324 return Owned(E); 325 } 326 327 // We don't want to throw lvalue-to-rvalue casts on top of 328 // expressions of certain types in C++. 329 if (getLangOptions().CPlusPlus && 330 (E->getType() == Context.OverloadTy || 331 T->isDependentType() || 332 T->isRecordType())) 333 return Owned(E); 334 335 // The C standard is actually really unclear on this point, and 336 // DR106 tells us what the result should be but not why. It's 337 // generally best to say that void types just doesn't undergo 338 // lvalue-to-rvalue at all. Note that expressions of unqualified 339 // 'void' type are never l-values, but qualified void can be. 340 if (T->isVoidType()) 341 return Owned(E); 342 343 CheckForNullPointerDereference(*this, E); 344 345 // C++ [conv.lval]p1: 346 // [...] If T is a non-class type, the type of the prvalue is the 347 // cv-unqualified version of T. Otherwise, the type of the 348 // rvalue is T. 349 // 350 // C99 6.3.2.1p2: 351 // If the lvalue has qualified type, the value has the unqualified 352 // version of the type of the lvalue; otherwise, the value has the 353 // type of the lvalue. 354 if (T.hasQualifiers()) 355 T = T.getUnqualifiedType(); 356 357 CheckArrayAccess(E); 358 359 return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, 360 E, 0, VK_RValue)); 361 } 362 363 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) { 364 ExprResult Res = DefaultFunctionArrayConversion(E); 365 if (Res.isInvalid()) 366 return ExprError(); 367 Res = DefaultLvalueConversion(Res.take()); 368 if (Res.isInvalid()) 369 return ExprError(); 370 return move(Res); 371 } 372 373 374 /// UsualUnaryConversions - Performs various conversions that are common to most 375 /// operators (C99 6.3). The conversions of array and function types are 376 /// sometimes suppressed. For example, the array->pointer conversion doesn't 377 /// apply if the array is an argument to the sizeof or address (&) operators. 378 /// In these instances, this routine should *not* be called. 379 ExprResult Sema::UsualUnaryConversions(Expr *E) { 380 // First, convert to an r-value. 381 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 382 if (Res.isInvalid()) 383 return Owned(E); 384 E = Res.take(); 385 386 QualType Ty = E->getType(); 387 assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); 388 389 // Try to perform integral promotions if the object has a theoretically 390 // promotable type. 391 if (Ty->isIntegralOrUnscopedEnumerationType()) { 392 // C99 6.3.1.1p2: 393 // 394 // The following may be used in an expression wherever an int or 395 // unsigned int may be used: 396 // - an object or expression with an integer type whose integer 397 // conversion rank is less than or equal to the rank of int 398 // and unsigned int. 399 // - A bit-field of type _Bool, int, signed int, or unsigned int. 400 // 401 // If an int can represent all values of the original type, the 402 // value is converted to an int; otherwise, it is converted to an 403 // unsigned int. These are called the integer promotions. All 404 // other types are unchanged by the integer promotions. 405 406 QualType PTy = Context.isPromotableBitField(E); 407 if (!PTy.isNull()) { 408 E = ImpCastExprToType(E, PTy, CK_IntegralCast).take(); 409 return Owned(E); 410 } 411 if (Ty->isPromotableIntegerType()) { 412 QualType PT = Context.getPromotedIntegerType(Ty); 413 E = ImpCastExprToType(E, PT, CK_IntegralCast).take(); 414 return Owned(E); 415 } 416 } 417 return Owned(E); 418 } 419 420 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that 421 /// do not have a prototype. Arguments that have type float are promoted to 422 /// double. All other argument types are converted by UsualUnaryConversions(). 423 ExprResult Sema::DefaultArgumentPromotion(Expr *E) { 424 QualType Ty = E->getType(); 425 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); 426 427 ExprResult Res = UsualUnaryConversions(E); 428 if (Res.isInvalid()) 429 return Owned(E); 430 E = Res.take(); 431 432 // If this is a 'float' (CVR qualified or typedef) promote to double. 433 if (Ty->isSpecificBuiltinType(BuiltinType::Float)) 434 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take(); 435 436 return Owned(E); 437 } 438 439 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but 440 /// will warn if the resulting type is not a POD type, and rejects ObjC 441 /// interfaces passed by value. 442 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, 443 FunctionDecl *FDecl) { 444 ExprResult ExprRes = CheckPlaceholderExpr(E); 445 if (ExprRes.isInvalid()) 446 return ExprError(); 447 448 ExprRes = DefaultArgumentPromotion(E); 449 if (ExprRes.isInvalid()) 450 return ExprError(); 451 E = ExprRes.take(); 452 453 // __builtin_va_start takes the second argument as a "varargs" argument, but 454 // it doesn't actually do anything with it. It doesn't need to be non-pod 455 // etc. 456 if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start) 457 return Owned(E); 458 459 // Don't allow one to pass an Objective-C interface to a vararg. 460 if (E->getType()->isObjCObjectType() && 461 DiagRuntimeBehavior(E->getLocStart(), 0, 462 PDiag(diag::err_cannot_pass_objc_interface_to_vararg) 463 << E->getType() << CT)) 464 return ExprError(); 465 466 if (!E->getType().isPODType(Context)) { 467 // C++0x [expr.call]p7: 468 // Passing a potentially-evaluated argument of class type (Clause 9) 469 // having a non-trivial copy constructor, a non-trivial move constructor, 470 // or a non-trivial destructor, with no corresponding parameter, 471 // is conditionally-supported with implementation-defined semantics. 472 bool TrivialEnough = false; 473 if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType()) { 474 if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) { 475 if (Record->hasTrivialCopyConstructor() && 476 Record->hasTrivialMoveConstructor() && 477 Record->hasTrivialDestructor()) 478 TrivialEnough = true; 479 } 480 } 481 482 if (!TrivialEnough && 483 getLangOptions().ObjCAutoRefCount && 484 E->getType()->isObjCLifetimeType()) 485 TrivialEnough = true; 486 487 if (TrivialEnough) { 488 // Nothing to diagnose. This is okay. 489 } else if (DiagRuntimeBehavior(E->getLocStart(), 0, 490 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) 491 << getLangOptions().CPlusPlus0x << E->getType() 492 << CT)) { 493 // Turn this into a trap. 494 CXXScopeSpec SS; 495 UnqualifiedId Name; 496 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), 497 E->getLocStart()); 498 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false); 499 if (TrapFn.isInvalid()) 500 return ExprError(); 501 502 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(), 503 MultiExprArg(), E->getLocEnd()); 504 if (Call.isInvalid()) 505 return ExprError(); 506 507 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma, 508 Call.get(), E); 509 if (Comma.isInvalid()) 510 return ExprError(); 511 512 E = Comma.get(); 513 } 514 } 515 516 return Owned(E); 517 } 518 519 /// UsualArithmeticConversions - Performs various conversions that are common to 520 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this 521 /// routine returns the first non-arithmetic type found. The client is 522 /// responsible for emitting appropriate error diagnostics. 523 /// FIXME: verify the conversion rules for "complex int" are consistent with 524 /// GCC. 525 QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr, 526 bool isCompAssign) { 527 if (!isCompAssign) { 528 lhsExpr = UsualUnaryConversions(lhsExpr.take()); 529 if (lhsExpr.isInvalid()) 530 return QualType(); 531 } 532 533 rhsExpr = UsualUnaryConversions(rhsExpr.take()); 534 if (rhsExpr.isInvalid()) 535 return QualType(); 536 537 // For conversion purposes, we ignore any qualifiers. 538 // For example, "const float" and "float" are equivalent. 539 QualType lhs = 540 Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType(); 541 QualType rhs = 542 Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType(); 543 544 // If both types are identical, no conversion is needed. 545 if (lhs == rhs) 546 return lhs; 547 548 // If either side is a non-arithmetic type (e.g. a pointer), we are done. 549 // The caller can deal with this (e.g. pointer + int). 550 if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) 551 return lhs; 552 553 // Apply unary and bitfield promotions to the LHS's type. 554 QualType lhs_unpromoted = lhs; 555 if (lhs->isPromotableIntegerType()) 556 lhs = Context.getPromotedIntegerType(lhs); 557 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get()); 558 if (!LHSBitfieldPromoteTy.isNull()) 559 lhs = LHSBitfieldPromoteTy; 560 if (lhs != lhs_unpromoted && !isCompAssign) 561 lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast); 562 563 // If both types are identical, no conversion is needed. 564 if (lhs == rhs) 565 return lhs; 566 567 // At this point, we have two different arithmetic types. 568 569 // Handle complex types first (C99 6.3.1.8p1). 570 bool LHSComplexFloat = lhs->isComplexType(); 571 bool RHSComplexFloat = rhs->isComplexType(); 572 if (LHSComplexFloat || RHSComplexFloat) { 573 // if we have an integer operand, the result is the complex type. 574 575 if (!RHSComplexFloat && !rhs->isRealFloatingType()) { 576 if (rhs->isIntegerType()) { 577 QualType fp = cast<ComplexType>(lhs)->getElementType(); 578 rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating); 579 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex); 580 } else { 581 assert(rhs->isComplexIntegerType()); 582 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex); 583 } 584 return lhs; 585 } 586 587 if (!LHSComplexFloat && !lhs->isRealFloatingType()) { 588 if (!isCompAssign) { 589 // int -> float -> _Complex float 590 if (lhs->isIntegerType()) { 591 QualType fp = cast<ComplexType>(rhs)->getElementType(); 592 lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating); 593 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex); 594 } else { 595 assert(lhs->isComplexIntegerType()); 596 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex); 597 } 598 } 599 return rhs; 600 } 601 602 // This handles complex/complex, complex/float, or float/complex. 603 // When both operands are complex, the shorter operand is converted to the 604 // type of the longer, and that is the type of the result. This corresponds 605 // to what is done when combining two real floating-point operands. 606 // The fun begins when size promotion occur across type domains. 607 // From H&S 6.3.4: When one operand is complex and the other is a real 608 // floating-point type, the less precise type is converted, within it's 609 // real or complex domain, to the precision of the other type. For example, 610 // when combining a "long double" with a "double _Complex", the 611 // "double _Complex" is promoted to "long double _Complex". 612 int order = Context.getFloatingTypeOrder(lhs, rhs); 613 614 // If both are complex, just cast to the more precise type. 615 if (LHSComplexFloat && RHSComplexFloat) { 616 if (order > 0) { 617 // _Complex float -> _Complex double 618 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast); 619 return lhs; 620 621 } else if (order < 0) { 622 // _Complex float -> _Complex double 623 if (!isCompAssign) 624 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast); 625 return rhs; 626 } 627 return lhs; 628 } 629 630 // If just the LHS is complex, the RHS needs to be converted, 631 // and the LHS might need to be promoted. 632 if (LHSComplexFloat) { 633 if (order > 0) { // LHS is wider 634 // float -> _Complex double 635 QualType fp = cast<ComplexType>(lhs)->getElementType(); 636 rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast); 637 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex); 638 return lhs; 639 } 640 641 // RHS is at least as wide. Find its corresponding complex type. 642 QualType result = (order == 0 ? lhs : Context.getComplexType(rhs)); 643 644 // double -> _Complex double 645 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex); 646 647 // _Complex float -> _Complex double 648 if (!isCompAssign && order < 0) 649 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast); 650 651 return result; 652 } 653 654 // Just the RHS is complex, so the LHS needs to be converted 655 // and the RHS might need to be promoted. 656 assert(RHSComplexFloat); 657 658 if (order < 0) { // RHS is wider 659 // float -> _Complex double 660 if (!isCompAssign) { 661 QualType fp = cast<ComplexType>(rhs)->getElementType(); 662 lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast); 663 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex); 664 } 665 return rhs; 666 } 667 668 // LHS is at least as wide. Find its corresponding complex type. 669 QualType result = (order == 0 ? rhs : Context.getComplexType(lhs)); 670 671 // double -> _Complex double 672 if (!isCompAssign) 673 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex); 674 675 // _Complex float -> _Complex double 676 if (order > 0) 677 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast); 678 679 return result; 680 } 681 682 // Now handle "real" floating types (i.e. float, double, long double). 683 bool LHSFloat = lhs->isRealFloatingType(); 684 bool RHSFloat = rhs->isRealFloatingType(); 685 if (LHSFloat || RHSFloat) { 686 // If we have two real floating types, convert the smaller operand 687 // to the bigger result. 688 if (LHSFloat && RHSFloat) { 689 int order = Context.getFloatingTypeOrder(lhs, rhs); 690 if (order > 0) { 691 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast); 692 return lhs; 693 } 694 695 assert(order < 0 && "illegal float comparison"); 696 if (!isCompAssign) 697 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast); 698 return rhs; 699 } 700 701 // If we have an integer operand, the result is the real floating type. 702 if (LHSFloat) { 703 if (rhs->isIntegerType()) { 704 // Convert rhs to the lhs floating point type. 705 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating); 706 return lhs; 707 } 708 709 // Convert both sides to the appropriate complex float. 710 assert(rhs->isComplexIntegerType()); 711 QualType result = Context.getComplexType(lhs); 712 713 // _Complex int -> _Complex float 714 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex); 715 716 // float -> _Complex float 717 if (!isCompAssign) 718 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex); 719 720 return result; 721 } 722 723 assert(RHSFloat); 724 if (lhs->isIntegerType()) { 725 // Convert lhs to the rhs floating point type. 726 if (!isCompAssign) 727 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating); 728 return rhs; 729 } 730 731 // Convert both sides to the appropriate complex float. 732 assert(lhs->isComplexIntegerType()); 733 QualType result = Context.getComplexType(rhs); 734 735 // _Complex int -> _Complex float 736 if (!isCompAssign) 737 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex); 738 739 // float -> _Complex float 740 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex); 741 742 return result; 743 } 744 745 // Handle GCC complex int extension. 746 // FIXME: if the operands are (int, _Complex long), we currently 747 // don't promote the complex. Also, signedness? 748 const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); 749 const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); 750 if (lhsComplexInt && rhsComplexInt) { 751 int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), 752 rhsComplexInt->getElementType()); 753 assert(order && "inequal types with equal element ordering"); 754 if (order > 0) { 755 // _Complex int -> _Complex long 756 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast); 757 return lhs; 758 } 759 760 if (!isCompAssign) 761 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast); 762 return rhs; 763 } else if (lhsComplexInt) { 764 // int -> _Complex int 765 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex); 766 return lhs; 767 } else if (rhsComplexInt) { 768 // int -> _Complex int 769 if (!isCompAssign) 770 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex); 771 return rhs; 772 } 773 774 // Finally, we have two differing integer types. 775 // The rules for this case are in C99 6.3.1.8 776 int compare = Context.getIntegerTypeOrder(lhs, rhs); 777 bool lhsSigned = lhs->hasSignedIntegerRepresentation(), 778 rhsSigned = rhs->hasSignedIntegerRepresentation(); 779 if (lhsSigned == rhsSigned) { 780 // Same signedness; use the higher-ranked type 781 if (compare >= 0) { 782 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); 783 return lhs; 784 } else if (!isCompAssign) 785 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); 786 return rhs; 787 } else if (compare != (lhsSigned ? 1 : -1)) { 788 // The unsigned type has greater than or equal rank to the 789 // signed type, so use the unsigned type 790 if (rhsSigned) { 791 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); 792 return lhs; 793 } else if (!isCompAssign) 794 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); 795 return rhs; 796 } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { 797 // The two types are different widths; if we are here, that 798 // means the signed type is larger than the unsigned type, so 799 // use the signed type. 800 if (lhsSigned) { 801 rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast); 802 return lhs; 803 } else if (!isCompAssign) 804 lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast); 805 return rhs; 806 } else { 807 // The signed type is higher-ranked than the unsigned type, 808 // but isn't actually any bigger (like unsigned int and long 809 // on most 32-bit systems). Use the unsigned type corresponding 810 // to the signed type. 811 QualType result = 812 Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); 813 rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast); 814 if (!isCompAssign) 815 lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast); 816 return result; 817 } 818 } 819 820 //===----------------------------------------------------------------------===// 821 // Semantic Analysis for various Expression Types 822 //===----------------------------------------------------------------------===// 823 824 825 ExprResult 826 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, 827 SourceLocation DefaultLoc, 828 SourceLocation RParenLoc, 829 Expr *ControllingExpr, 830 MultiTypeArg types, 831 MultiExprArg exprs) { 832 unsigned NumAssocs = types.size(); 833 assert(NumAssocs == exprs.size()); 834 835 ParsedType *ParsedTypes = types.release(); 836 Expr **Exprs = exprs.release(); 837 838 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; 839 for (unsigned i = 0; i < NumAssocs; ++i) { 840 if (ParsedTypes[i]) 841 (void) GetTypeFromParser(ParsedTypes[i], &Types[i]); 842 else 843 Types[i] = 0; 844 } 845 846 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, 847 ControllingExpr, Types, Exprs, 848 NumAssocs); 849 delete [] Types; 850 return ER; 851 } 852 853 ExprResult 854 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, 855 SourceLocation DefaultLoc, 856 SourceLocation RParenLoc, 857 Expr *ControllingExpr, 858 TypeSourceInfo **Types, 859 Expr **Exprs, 860 unsigned NumAssocs) { 861 bool TypeErrorFound = false, 862 IsResultDependent = ControllingExpr->isTypeDependent(), 863 ContainsUnexpandedParameterPack 864 = ControllingExpr->containsUnexpandedParameterPack(); 865 866 for (unsigned i = 0; i < NumAssocs; ++i) { 867 if (Exprs[i]->containsUnexpandedParameterPack()) 868 ContainsUnexpandedParameterPack = true; 869 870 if (Types[i]) { 871 if (Types[i]->getType()->containsUnexpandedParameterPack()) 872 ContainsUnexpandedParameterPack = true; 873 874 if (Types[i]->getType()->isDependentType()) { 875 IsResultDependent = true; 876 } else { 877 // C1X 6.5.1.1p2 "The type name in a generic association shall specify a 878 // complete object type other than a variably modified type." 879 unsigned D = 0; 880 if (Types[i]->getType()->isIncompleteType()) 881 D = diag::err_assoc_type_incomplete; 882 else if (!Types[i]->getType()->isObjectType()) 883 D = diag::err_assoc_type_nonobject; 884 else if (Types[i]->getType()->isVariablyModifiedType()) 885 D = diag::err_assoc_type_variably_modified; 886 887 if (D != 0) { 888 Diag(Types[i]->getTypeLoc().getBeginLoc(), D) 889 << Types[i]->getTypeLoc().getSourceRange() 890 << Types[i]->getType(); 891 TypeErrorFound = true; 892 } 893 894 // C1X 6.5.1.1p2 "No two generic associations in the same generic 895 // selection shall specify compatible types." 896 for (unsigned j = i+1; j < NumAssocs; ++j) 897 if (Types[j] && !Types[j]->getType()->isDependentType() && 898 Context.typesAreCompatible(Types[i]->getType(), 899 Types[j]->getType())) { 900 Diag(Types[j]->getTypeLoc().getBeginLoc(), 901 diag::err_assoc_compatible_types) 902 << Types[j]->getTypeLoc().getSourceRange() 903 << Types[j]->getType() 904 << Types[i]->getType(); 905 Diag(Types[i]->getTypeLoc().getBeginLoc(), 906 diag::note_compat_assoc) 907 << Types[i]->getTypeLoc().getSourceRange() 908 << Types[i]->getType(); 909 TypeErrorFound = true; 910 } 911 } 912 } 913 } 914 if (TypeErrorFound) 915 return ExprError(); 916 917 // If we determined that the generic selection is result-dependent, don't 918 // try to compute the result expression. 919 if (IsResultDependent) 920 return Owned(new (Context) GenericSelectionExpr( 921 Context, KeyLoc, ControllingExpr, 922 Types, Exprs, NumAssocs, DefaultLoc, 923 RParenLoc, ContainsUnexpandedParameterPack)); 924 925 llvm::SmallVector<unsigned, 1> CompatIndices; 926 unsigned DefaultIndex = -1U; 927 for (unsigned i = 0; i < NumAssocs; ++i) { 928 if (!Types[i]) 929 DefaultIndex = i; 930 else if (Context.typesAreCompatible(ControllingExpr->getType(), 931 Types[i]->getType())) 932 CompatIndices.push_back(i); 933 } 934 935 // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have 936 // type compatible with at most one of the types named in its generic 937 // association list." 938 if (CompatIndices.size() > 1) { 939 // We strip parens here because the controlling expression is typically 940 // parenthesized in macro definitions. 941 ControllingExpr = ControllingExpr->IgnoreParens(); 942 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match) 943 << ControllingExpr->getSourceRange() << ControllingExpr->getType() 944 << (unsigned) CompatIndices.size(); 945 for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(), 946 E = CompatIndices.end(); I != E; ++I) { 947 Diag(Types[*I]->getTypeLoc().getBeginLoc(), 948 diag::note_compat_assoc) 949 << Types[*I]->getTypeLoc().getSourceRange() 950 << Types[*I]->getType(); 951 } 952 return ExprError(); 953 } 954 955 // C1X 6.5.1.1p2 "If a generic selection has no default generic association, 956 // its controlling expression shall have type compatible with exactly one of 957 // the types named in its generic association list." 958 if (DefaultIndex == -1U && CompatIndices.size() == 0) { 959 // We strip parens here because the controlling expression is typically 960 // parenthesized in macro definitions. 961 ControllingExpr = ControllingExpr->IgnoreParens(); 962 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match) 963 << ControllingExpr->getSourceRange() << ControllingExpr->getType(); 964 return ExprError(); 965 } 966 967 // C1X 6.5.1.1p3 "If a generic selection has a generic association with a 968 // type name that is compatible with the type of the controlling expression, 969 // then the result expression of the generic selection is the expression 970 // in that generic association. Otherwise, the result expression of the 971 // generic selection is the expression in the default generic association." 972 unsigned ResultIndex = 973 CompatIndices.size() ? CompatIndices[0] : DefaultIndex; 974 975 return Owned(new (Context) GenericSelectionExpr( 976 Context, KeyLoc, ControllingExpr, 977 Types, Exprs, NumAssocs, DefaultLoc, 978 RParenLoc, ContainsUnexpandedParameterPack, 979 ResultIndex)); 980 } 981 982 /// ActOnStringLiteral - The specified tokens were lexed as pasted string 983 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string 984 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from 985 /// multiple tokens. However, the common case is that StringToks points to one 986 /// string. 987 /// 988 ExprResult 989 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { 990 assert(NumStringToks && "Must have at least one string!"); 991 992 StringLiteralParser Literal(StringToks, NumStringToks, PP); 993 if (Literal.hadError) 994 return ExprError(); 995 996 llvm::SmallVector<SourceLocation, 4> StringTokLocs; 997 for (unsigned i = 0; i != NumStringToks; ++i) 998 StringTokLocs.push_back(StringToks[i].getLocation()); 999 1000 QualType StrTy = Context.CharTy; 1001 if (Literal.AnyWide) 1002 StrTy = Context.getWCharType(); 1003 else if (Literal.Pascal) 1004 StrTy = Context.UnsignedCharTy; 1005 1006 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 1007 if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) 1008 StrTy.addConst(); 1009 1010 // Get an array type for the string, according to C99 6.4.5. This includes 1011 // the nul terminator character as well as the string length for pascal 1012 // strings. 1013 StrTy = Context.getConstantArrayType(StrTy, 1014 llvm::APInt(32, Literal.GetNumStringChars()+1), 1015 ArrayType::Normal, 0); 1016 1017 // Pass &StringTokLocs[0], StringTokLocs.size() to factory! 1018 return Owned(StringLiteral::Create(Context, Literal.GetString(), 1019 Literal.AnyWide, Literal.Pascal, StrTy, 1020 &StringTokLocs[0], 1021 StringTokLocs.size())); 1022 } 1023 1024 enum CaptureResult { 1025 /// No capture is required. 1026 CR_NoCapture, 1027 1028 /// A capture is required. 1029 CR_Capture, 1030 1031 /// A by-ref capture is required. 1032 CR_CaptureByRef, 1033 1034 /// An error occurred when trying to capture the given variable. 1035 CR_Error 1036 }; 1037 1038 /// Diagnose an uncapturable value reference. 1039 /// 1040 /// \param var - the variable referenced 1041 /// \param DC - the context which we couldn't capture through 1042 static CaptureResult 1043 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, 1044 VarDecl *var, DeclContext *DC) { 1045 switch (S.ExprEvalContexts.back().Context) { 1046 case Sema::Unevaluated: 1047 // The argument will never be evaluated, so don't complain. 1048 return CR_NoCapture; 1049 1050 case Sema::PotentiallyEvaluated: 1051 case Sema::PotentiallyEvaluatedIfUsed: 1052 break; 1053 1054 case Sema::PotentiallyPotentiallyEvaluated: 1055 // FIXME: delay these! 1056 break; 1057 } 1058 1059 // Don't diagnose about capture if we're not actually in code right 1060 // now; in general, there are more appropriate places that will 1061 // diagnose this. 1062 if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture; 1063 1064 // Certain madnesses can happen with parameter declarations, which 1065 // we want to ignore. 1066 if (isa<ParmVarDecl>(var)) { 1067 // - If the parameter still belongs to the translation unit, then 1068 // we're actually just using one parameter in the declaration of 1069 // the next. This is useful in e.g. VLAs. 1070 if (isa<TranslationUnitDecl>(var->getDeclContext())) 1071 return CR_NoCapture; 1072 1073 // - This particular madness can happen in ill-formed default 1074 // arguments; claim it's okay and let downstream code handle it. 1075 if (S.CurContext == var->getDeclContext()->getParent()) 1076 return CR_NoCapture; 1077 } 1078 1079 DeclarationName functionName; 1080 if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext())) 1081 functionName = fn->getDeclName(); 1082 // FIXME: variable from enclosing block that we couldn't capture from! 1083 1084 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function) 1085 << var->getIdentifier() << functionName; 1086 S.Diag(var->getLocation(), diag::note_local_variable_declared_here) 1087 << var->getIdentifier(); 1088 1089 return CR_Error; 1090 } 1091 1092 /// There is a well-formed capture at a particular scope level; 1093 /// propagate it through all the nested blocks. 1094 static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex, 1095 const BlockDecl::Capture &capture) { 1096 VarDecl *var = capture.getVariable(); 1097 1098 // Update all the inner blocks with the capture information. 1099 for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size(); 1100 i != e; ++i) { 1101 BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]); 1102 innerBlock->Captures.push_back( 1103 BlockDecl::Capture(capture.getVariable(), capture.isByRef(), 1104 /*nested*/ true, capture.getCopyExpr())); 1105 innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1 1106 } 1107 1108 return capture.isByRef() ? CR_CaptureByRef : CR_Capture; 1109 } 1110 1111 /// shouldCaptureValueReference - Determine if a reference to the 1112 /// given value in the current context requires a variable capture. 1113 /// 1114 /// This also keeps the captures set in the BlockScopeInfo records 1115 /// up-to-date. 1116 static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc, 1117 ValueDecl *value) { 1118 // Only variables ever require capture. 1119 VarDecl *var = dyn_cast<VarDecl>(value); 1120 if (!var) return CR_NoCapture; 1121 1122 // Fast path: variables from the current context never require capture. 1123 DeclContext *DC = S.CurContext; 1124 if (var->getDeclContext() == DC) return CR_NoCapture; 1125 1126 // Only variables with local storage require capture. 1127 // FIXME: What about 'const' variables in C++? 1128 if (!var->hasLocalStorage()) return CR_NoCapture; 1129 1130 // Otherwise, we need to capture. 1131 1132 unsigned functionScopesIndex = S.FunctionScopes.size() - 1; 1133 do { 1134 // Only blocks (and eventually C++0x closures) can capture; other 1135 // scopes don't work. 1136 if (!isa<BlockDecl>(DC)) 1137 return diagnoseUncapturableValueReference(S, loc, var, DC); 1138 1139 BlockScopeInfo *blockScope = 1140 cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); 1141 assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC)); 1142 1143 // Check whether we've already captured it in this block. If so, 1144 // we're done. 1145 if (unsigned indexPlus1 = blockScope->CaptureMap[var]) 1146 return propagateCapture(S, functionScopesIndex, 1147 blockScope->Captures[indexPlus1 - 1]); 1148 1149 functionScopesIndex--; 1150 DC = cast<BlockDecl>(DC)->getDeclContext(); 1151 } while (var->getDeclContext() != DC); 1152 1153 // Okay, we descended all the way to the block that defines the variable. 1154 // Actually try to capture it. 1155 QualType type = var->getType(); 1156 1157 // Prohibit variably-modified types. 1158 if (type->isVariablyModifiedType()) { 1159 S.Diag(loc, diag::err_ref_vm_type); 1160 S.Diag(var->getLocation(), diag::note_declared_at); 1161 return CR_Error; 1162 } 1163 1164 // Prohibit arrays, even in __block variables, but not references to 1165 // them. 1166 if (type->isArrayType()) { 1167 S.Diag(loc, diag::err_ref_array_type); 1168 S.Diag(var->getLocation(), diag::note_declared_at); 1169 return CR_Error; 1170 } 1171 1172 S.MarkDeclarationReferenced(loc, var); 1173 1174 // The BlocksAttr indicates the variable is bound by-reference. 1175 bool byRef = var->hasAttr<BlocksAttr>(); 1176 1177 // Build a copy expression. 1178 Expr *copyExpr = 0; 1179 const RecordType *rtype; 1180 if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() && 1181 (rtype = type->getAs<RecordType>())) { 1182 1183 // The capture logic needs the destructor, so make sure we mark it. 1184 // Usually this is unnecessary because most local variables have 1185 // their destructors marked at declaration time, but parameters are 1186 // an exception because it's technically only the call site that 1187 // actually requires the destructor. 1188 if (isa<ParmVarDecl>(var)) 1189 S.FinalizeVarWithDestructor(var, rtype); 1190 1191 // According to the blocks spec, the capture of a variable from 1192 // the stack requires a const copy constructor. This is not true 1193 // of the copy/move done to move a __block variable to the heap. 1194 type.addConst(); 1195 1196 Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc); 1197 ExprResult result = 1198 S.PerformCopyInitialization( 1199 InitializedEntity::InitializeBlock(var->getLocation(), 1200 type, false), 1201 loc, S.Owned(declRef)); 1202 1203 // Build a full-expression copy expression if initialization 1204 // succeeded and used a non-trivial constructor. Recover from 1205 // errors by pretending that the copy isn't necessary. 1206 if (!result.isInvalid() && 1207 !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) { 1208 result = S.MaybeCreateExprWithCleanups(result); 1209 copyExpr = result.take(); 1210 } 1211 } 1212 1213 // We're currently at the declarer; go back to the closure. 1214 functionScopesIndex++; 1215 BlockScopeInfo *blockScope = 1216 cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]); 1217 1218 // Build a valid capture in this scope. 1219 blockScope->Captures.push_back( 1220 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr)); 1221 blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1 1222 1223 // Propagate that to inner captures if necessary. 1224 return propagateCapture(S, functionScopesIndex, 1225 blockScope->Captures.back()); 1226 } 1227 1228 static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd, 1229 const DeclarationNameInfo &NameInfo, 1230 bool byRef) { 1231 assert(isa<VarDecl>(vd) && "capturing non-variable"); 1232 1233 VarDecl *var = cast<VarDecl>(vd); 1234 assert(var->hasLocalStorage() && "capturing non-local"); 1235 assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong"); 1236 1237 QualType exprType = var->getType().getNonReferenceType(); 1238 1239 BlockDeclRefExpr *BDRE; 1240 if (!byRef) { 1241 // The variable will be bound by copy; make it const within the 1242 // closure, but record that this was done in the expression. 1243 bool constAdded = !exprType.isConstQualified(); 1244 exprType.addConst(); 1245 1246 BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, 1247 NameInfo.getLoc(), false, 1248 constAdded); 1249 } else { 1250 BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue, 1251 NameInfo.getLoc(), true); 1252 } 1253 1254 return S.Owned(BDRE); 1255 } 1256 1257 ExprResult 1258 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, 1259 SourceLocation Loc, 1260 const CXXScopeSpec *SS) { 1261 DeclarationNameInfo NameInfo(D->getDeclName(), Loc); 1262 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); 1263 } 1264 1265 /// BuildDeclRefExpr - Build an expression that references a 1266 /// declaration that does not require a closure capture. 1267 ExprResult 1268 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, 1269 const DeclarationNameInfo &NameInfo, 1270 const CXXScopeSpec *SS) { 1271 MarkDeclarationReferenced(NameInfo.getLoc(), D); 1272 1273 Expr *E = DeclRefExpr::Create(Context, 1274 SS? SS->getWithLocInContext(Context) 1275 : NestedNameSpecifierLoc(), 1276 D, NameInfo, Ty, VK); 1277 1278 // Just in case we're building an illegal pointer-to-member. 1279 if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth()) 1280 E->setObjectKind(OK_BitField); 1281 1282 return Owned(E); 1283 } 1284 1285 /// Decomposes the given name into a DeclarationNameInfo, its location, and 1286 /// possibly a list of template arguments. 1287 /// 1288 /// If this produces template arguments, it is permitted to call 1289 /// DecomposeTemplateName. 1290 /// 1291 /// This actually loses a lot of source location information for 1292 /// non-standard name kinds; we should consider preserving that in 1293 /// some way. 1294 void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, 1295 TemplateArgumentListInfo &Buffer, 1296 DeclarationNameInfo &NameInfo, 1297 const TemplateArgumentListInfo *&TemplateArgs) { 1298 if (Id.getKind() == UnqualifiedId::IK_TemplateId) { 1299 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); 1300 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); 1301 1302 ASTTemplateArgsPtr TemplateArgsPtr(*this, 1303 Id.TemplateId->getTemplateArgs(), 1304 Id.TemplateId->NumArgs); 1305 translateTemplateArguments(TemplateArgsPtr, Buffer); 1306 TemplateArgsPtr.release(); 1307 1308 TemplateName TName = Id.TemplateId->Template.get(); 1309 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; 1310 NameInfo = Context.getNameForTemplate(TName, TNameLoc); 1311 TemplateArgs = &Buffer; 1312 } else { 1313 NameInfo = GetNameFromUnqualifiedId(Id); 1314 TemplateArgs = 0; 1315 } 1316 } 1317 1318 /// Diagnose an empty lookup. 1319 /// 1320 /// \return false if new lookup candidates were found 1321 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, 1322 CorrectTypoContext CTC) { 1323 DeclarationName Name = R.getLookupName(); 1324 1325 unsigned diagnostic = diag::err_undeclared_var_use; 1326 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; 1327 if (Name.getNameKind() == DeclarationName::CXXOperatorName || 1328 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || 1329 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 1330 diagnostic = diag::err_undeclared_use; 1331 diagnostic_suggest = diag::err_undeclared_use_suggest; 1332 } 1333 1334 // If the original lookup was an unqualified lookup, fake an 1335 // unqualified lookup. This is useful when (for example) the 1336 // original lookup would not have found something because it was a 1337 // dependent name. 1338 for (DeclContext *DC = SS.isEmpty() ? CurContext : 0; 1339 DC; DC = DC->getParent()) { 1340 if (isa<CXXRecordDecl>(DC)) { 1341 LookupQualifiedName(R, DC); 1342 1343 if (!R.empty()) { 1344 // Don't give errors about ambiguities in this lookup. 1345 R.suppressDiagnostics(); 1346 1347 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); 1348 bool isInstance = CurMethod && 1349 CurMethod->isInstance() && 1350 DC == CurMethod->getParent(); 1351 1352 // Give a code modification hint to insert 'this->'. 1353 // TODO: fixit for inserting 'Base<T>::' in the other cases. 1354 // Actually quite difficult! 1355 if (isInstance) { 1356 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>( 1357 CallsUndergoingInstantiation.back()->getCallee()); 1358 CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>( 1359 CurMethod->getInstantiatedFromMemberFunction()); 1360 if (DepMethod) { 1361 Diag(R.getNameLoc(), diagnostic) << Name 1362 << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); 1363 QualType DepThisType = DepMethod->getThisType(Context); 1364 CXXThisExpr *DepThis = new (Context) CXXThisExpr( 1365 R.getNameLoc(), DepThisType, false); 1366 TemplateArgumentListInfo TList; 1367 if (ULE->hasExplicitTemplateArgs()) 1368 ULE->copyTemplateArgumentsInto(TList); 1369 1370 CXXScopeSpec SS; 1371 SS.Adopt(ULE->getQualifierLoc()); 1372 CXXDependentScopeMemberExpr *DepExpr = 1373 CXXDependentScopeMemberExpr::Create( 1374 Context, DepThis, DepThisType, true, SourceLocation(), 1375 SS.getWithLocInContext(Context), NULL, 1376 R.getLookupNameInfo(), &TList); 1377 CallsUndergoingInstantiation.back()->setCallee(DepExpr); 1378 } else { 1379 // FIXME: we should be able to handle this case too. It is correct 1380 // to add this-> here. This is a workaround for PR7947. 1381 Diag(R.getNameLoc(), diagnostic) << Name; 1382 } 1383 } else { 1384 Diag(R.getNameLoc(), diagnostic) << Name; 1385 } 1386 1387 // Do we really want to note all of these? 1388 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 1389 Diag((*I)->getLocation(), diag::note_dependent_var_use); 1390 1391 // Tell the callee to try to recover. 1392 return false; 1393 } 1394 1395 R.clear(); 1396 } 1397 } 1398 1399 // We didn't find anything, so try to correct for a typo. 1400 TypoCorrection Corrected; 1401 if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), 1402 S, &SS, NULL, false, CTC))) { 1403 std::string CorrectedStr(Corrected.getAsString(getLangOptions())); 1404 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions())); 1405 R.setLookupName(Corrected.getCorrection()); 1406 1407 if (NamedDecl *ND = Corrected.getCorrectionDecl()) { 1408 R.addDecl(ND); 1409 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) { 1410 if (SS.isEmpty()) 1411 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr 1412 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); 1413 else 1414 Diag(R.getNameLoc(), diag::err_no_member_suggest) 1415 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr 1416 << SS.getRange() 1417 << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr); 1418 if (ND) 1419 Diag(ND->getLocation(), diag::note_previous_decl) 1420 << CorrectedQuotedStr; 1421 1422 // Tell the callee to try to recover. 1423 return false; 1424 } 1425 1426 if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) { 1427 // FIXME: If we ended up with a typo for a type name or 1428 // Objective-C class name, we're in trouble because the parser 1429 // is in the wrong place to recover. Suggest the typo 1430 // correction, but don't make it a fix-it since we're not going 1431 // to recover well anyway. 1432 if (SS.isEmpty()) 1433 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr; 1434 else 1435 Diag(R.getNameLoc(), diag::err_no_member_suggest) 1436 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr 1437 << SS.getRange(); 1438 1439 // Don't try to recover; it won't work. 1440 return true; 1441 } 1442 } else { 1443 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it 1444 // because we aren't able to recover. 1445 if (SS.isEmpty()) 1446 Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr; 1447 else 1448 Diag(R.getNameLoc(), diag::err_no_member_suggest) 1449 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr 1450 << SS.getRange(); 1451 return true; 1452 } 1453 } 1454 R.clear(); 1455 1456 // Emit a special diagnostic for failed member lookups. 1457 // FIXME: computing the declaration context might fail here (?) 1458 if (!SS.isEmpty()) { 1459 Diag(R.getNameLoc(), diag::err_no_member) 1460 << Name << computeDeclContext(SS, false) 1461 << SS.getRange(); 1462 return true; 1463 } 1464 1465 // Give up, we can't recover. 1466 Diag(R.getNameLoc(), diagnostic) << Name; 1467 return true; 1468 } 1469 1470 ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) { 1471 ObjCMethodDecl *CurMeth = getCurMethodDecl(); 1472 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); 1473 if (!IDecl) 1474 return 0; 1475 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); 1476 if (!ClassImpDecl) 1477 return 0; 1478 ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II); 1479 if (!property) 1480 return 0; 1481 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) 1482 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || 1483 PIDecl->getPropertyIvarDecl()) 1484 return 0; 1485 return property; 1486 } 1487 1488 bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) { 1489 ObjCMethodDecl *CurMeth = getCurMethodDecl(); 1490 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); 1491 if (!IDecl) 1492 return false; 1493 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); 1494 if (!ClassImpDecl) 1495 return false; 1496 if (ObjCPropertyImplDecl *PIDecl 1497 = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier())) 1498 if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic || 1499 PIDecl->getPropertyIvarDecl()) 1500 return false; 1501 1502 return true; 1503 } 1504 1505 ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup, 1506 IdentifierInfo *II, 1507 SourceLocation NameLoc) { 1508 ObjCMethodDecl *CurMeth = getCurMethodDecl(); 1509 bool LookForIvars; 1510 if (Lookup.empty()) 1511 LookForIvars = true; 1512 else if (CurMeth->isClassMethod()) 1513 LookForIvars = false; 1514 else 1515 LookForIvars = (Lookup.isSingleResult() && 1516 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() && 1517 (Lookup.getAsSingle<VarDecl>() != 0)); 1518 if (!LookForIvars) 1519 return 0; 1520 1521 ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface(); 1522 if (!IDecl) 1523 return 0; 1524 ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation(); 1525 if (!ClassImpDecl) 1526 return 0; 1527 bool DynamicImplSeen = false; 1528 ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II); 1529 if (!property) 1530 return 0; 1531 if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) { 1532 DynamicImplSeen = 1533 (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic); 1534 // property implementation has a designated ivar. No need to assume a new 1535 // one. 1536 if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl()) 1537 return 0; 1538 } 1539 if (!DynamicImplSeen) { 1540 QualType PropType = Context.getCanonicalType(property->getType()); 1541 ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl, 1542 NameLoc, NameLoc, 1543 II, PropType, /*Dinfo=*/0, 1544 ObjCIvarDecl::Private, 1545 (Expr *)0, true); 1546 ClassImpDecl->addDecl(Ivar); 1547 IDecl->makeDeclVisibleInContext(Ivar, false); 1548 property->setPropertyIvarDecl(Ivar); 1549 return Ivar; 1550 } 1551 return 0; 1552 } 1553 1554 ExprResult Sema::ActOnIdExpression(Scope *S, 1555 CXXScopeSpec &SS, 1556 UnqualifiedId &Id, 1557 bool HasTrailingLParen, 1558 bool isAddressOfOperand) { 1559 assert(!(isAddressOfOperand && HasTrailingLParen) && 1560 "cannot be direct & operand and have a trailing lparen"); 1561 1562 if (SS.isInvalid()) 1563 return ExprError(); 1564 1565 TemplateArgumentListInfo TemplateArgsBuffer; 1566 1567 // Decompose the UnqualifiedId into the following data. 1568 DeclarationNameInfo NameInfo; 1569 const TemplateArgumentListInfo *TemplateArgs; 1570 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); 1571 1572 DeclarationName Name = NameInfo.getName(); 1573 IdentifierInfo *II = Name.getAsIdentifierInfo(); 1574 SourceLocation NameLoc = NameInfo.getLoc(); 1575 1576 // C++ [temp.dep.expr]p3: 1577 // An id-expression is type-dependent if it contains: 1578 // -- an identifier that was declared with a dependent type, 1579 // (note: handled after lookup) 1580 // -- a template-id that is dependent, 1581 // (note: handled in BuildTemplateIdExpr) 1582 // -- a conversion-function-id that specifies a dependent type, 1583 // -- a nested-name-specifier that contains a class-name that 1584 // names a dependent type. 1585 // Determine whether this is a member of an unknown specialization; 1586 // we need to handle these differently. 1587 bool DependentID = false; 1588 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 1589 Name.getCXXNameType()->isDependentType()) { 1590 DependentID = true; 1591 } else if (SS.isSet()) { 1592 if (DeclContext *DC = computeDeclContext(SS, false)) { 1593 if (RequireCompleteDeclContext(SS, DC)) 1594 return ExprError(); 1595 } else { 1596 DependentID = true; 1597 } 1598 } 1599 1600 if (DependentID) 1601 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, 1602 TemplateArgs); 1603 1604 bool IvarLookupFollowUp = false; 1605 // Perform the required lookup. 1606 LookupResult R(*this, NameInfo, 1607 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam) 1608 ? LookupObjCImplicitSelfParam : LookupOrdinaryName); 1609 if (TemplateArgs) { 1610 // Lookup the template name again to correctly establish the context in 1611 // which it was found. This is really unfortunate as we already did the 1612 // lookup to determine that it was a template name in the first place. If 1613 // this becomes a performance hit, we can work harder to preserve those 1614 // results until we get here but it's likely not worth it. 1615 bool MemberOfUnknownSpecialization; 1616 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, 1617 MemberOfUnknownSpecialization); 1618 1619 if (MemberOfUnknownSpecialization || 1620 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) 1621 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, 1622 TemplateArgs); 1623 } else { 1624 IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl()); 1625 LookupParsedName(R, S, &SS, !IvarLookupFollowUp); 1626 1627 // If the result might be in a dependent base class, this is a dependent 1628 // id-expression. 1629 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) 1630 return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand, 1631 TemplateArgs); 1632 1633 // If this reference is in an Objective-C method, then we need to do 1634 // some special Objective-C lookup, too. 1635 if (IvarLookupFollowUp) { 1636 ExprResult E(LookupInObjCMethod(R, S, II, true)); 1637 if (E.isInvalid()) 1638 return ExprError(); 1639 1640 if (Expr *Ex = E.takeAs<Expr>()) 1641 return Owned(Ex); 1642 1643 // Synthesize ivars lazily. 1644 if (getLangOptions().ObjCDefaultSynthProperties && 1645 getLangOptions().ObjCNonFragileABI2) { 1646 if (SynthesizeProvisionalIvar(R, II, NameLoc)) { 1647 if (const ObjCPropertyDecl *Property = 1648 canSynthesizeProvisionalIvar(II)) { 1649 Diag(NameLoc, diag::warn_synthesized_ivar_access) << II; 1650 Diag(Property->getLocation(), diag::note_property_declare); 1651 } 1652 return ActOnIdExpression(S, SS, Id, HasTrailingLParen, 1653 isAddressOfOperand); 1654 } 1655 } 1656 // for further use, this must be set to false if in class method. 1657 IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod(); 1658 } 1659 } 1660 1661 if (R.isAmbiguous()) 1662 return ExprError(); 1663 1664 // Determine whether this name might be a candidate for 1665 // argument-dependent lookup. 1666 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); 1667 1668 if (R.empty() && !ADL) { 1669 // Otherwise, this could be an implicitly declared function reference (legal 1670 // in C90, extension in C99, forbidden in C++). 1671 if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) { 1672 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); 1673 if (D) R.addDecl(D); 1674 } 1675 1676 // If this name wasn't predeclared and if this is not a function 1677 // call, diagnose the problem. 1678 if (R.empty()) { 1679 if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown)) 1680 return ExprError(); 1681 1682 assert(!R.empty() && 1683 "DiagnoseEmptyLookup returned false but added no results"); 1684 1685 // If we found an Objective-C instance variable, let 1686 // LookupInObjCMethod build the appropriate expression to 1687 // reference the ivar. 1688 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { 1689 R.clear(); 1690 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); 1691 assert(E.isInvalid() || E.get()); 1692 return move(E); 1693 } 1694 } 1695 } 1696 1697 // This is guaranteed from this point on. 1698 assert(!R.empty() || ADL); 1699 1700 // Check whether this might be a C++ implicit instance member access. 1701 // C++ [class.mfct.non-static]p3: 1702 // When an id-expression that is not part of a class member access 1703 // syntax and not used to form a pointer to member is used in the 1704 // body of a non-static member function of class X, if name lookup 1705 // resolves the name in the id-expression to a non-static non-type 1706 // member of some class C, the id-expression is transformed into a 1707 // class member access expression using (*this) as the 1708 // postfix-expression to the left of the . operator. 1709 // 1710 // But we don't actually need to do this for '&' operands if R 1711 // resolved to a function or overloaded function set, because the 1712 // expression is ill-formed if it actually works out to be a 1713 // non-static member function: 1714 // 1715 // C++ [expr.ref]p4: 1716 // Otherwise, if E1.E2 refers to a non-static member function. . . 1717 // [t]he expression can be used only as the left-hand operand of a 1718 // member function call. 1719 // 1720 // There are other safeguards against such uses, but it's important 1721 // to get this right here so that we don't end up making a 1722 // spuriously dependent expression if we're inside a dependent 1723 // instance method. 1724 if (!R.empty() && (*R.begin())->isCXXClassMember()) { 1725 bool MightBeImplicitMember; 1726 if (!isAddressOfOperand) 1727 MightBeImplicitMember = true; 1728 else if (!SS.isEmpty()) 1729 MightBeImplicitMember = false; 1730 else if (R.isOverloadedResult()) 1731 MightBeImplicitMember = false; 1732 else if (R.isUnresolvableResult()) 1733 MightBeImplicitMember = true; 1734 else 1735 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || 1736 isa<IndirectFieldDecl>(R.getFoundDecl()); 1737 1738 if (MightBeImplicitMember) 1739 return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs); 1740 } 1741 1742 if (TemplateArgs) 1743 return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs); 1744 1745 return BuildDeclarationNameExpr(SS, R, ADL); 1746 } 1747 1748 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified 1749 /// declaration name, generally during template instantiation. 1750 /// There's a large number of things which don't need to be done along 1751 /// this path. 1752 ExprResult 1753 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, 1754 const DeclarationNameInfo &NameInfo) { 1755 DeclContext *DC; 1756 if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext()) 1757 return BuildDependentDeclRefExpr(SS, NameInfo, 0); 1758 1759 if (RequireCompleteDeclContext(SS, DC)) 1760 return ExprError(); 1761 1762 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1763 LookupQualifiedName(R, DC); 1764 1765 if (R.isAmbiguous()) 1766 return ExprError(); 1767 1768 if (R.empty()) { 1769 Diag(NameInfo.getLoc(), diag::err_no_member) 1770 << NameInfo.getName() << DC << SS.getRange(); 1771 return ExprError(); 1772 } 1773 1774 return BuildDeclarationNameExpr(SS, R, /*ADL*/ false); 1775 } 1776 1777 /// LookupInObjCMethod - The parser has read a name in, and Sema has 1778 /// detected that we're currently inside an ObjC method. Perform some 1779 /// additional lookup. 1780 /// 1781 /// Ideally, most of this would be done by lookup, but there's 1782 /// actually quite a lot of extra work involved. 1783 /// 1784 /// Returns a null sentinel to indicate trivial success. 1785 ExprResult 1786 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, 1787 IdentifierInfo *II, bool AllowBuiltinCreation) { 1788 SourceLocation Loc = Lookup.getNameLoc(); 1789 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 1790 1791 // There are two cases to handle here. 1) scoped lookup could have failed, 1792 // in which case we should look for an ivar. 2) scoped lookup could have 1793 // found a decl, but that decl is outside the current instance method (i.e. 1794 // a global variable). In these two cases, we do a lookup for an ivar with 1795 // this name, if the lookup sucedes, we replace it our current decl. 1796 1797 // If we're in a class method, we don't normally want to look for 1798 // ivars. But if we don't find anything else, and there's an 1799 // ivar, that's an error. 1800 bool IsClassMethod = CurMethod->isClassMethod(); 1801 1802 bool LookForIvars; 1803 if (Lookup.empty()) 1804 LookForIvars = true; 1805 else if (IsClassMethod) 1806 LookForIvars = false; 1807 else 1808 LookForIvars = (Lookup.isSingleResult() && 1809 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); 1810 ObjCInterfaceDecl *IFace = 0; 1811 if (LookForIvars) { 1812 IFace = CurMethod->getClassInterface(); 1813 ObjCInterfaceDecl *ClassDeclared; 1814 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { 1815 // Diagnose using an ivar in a class method. 1816 if (IsClassMethod) 1817 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method) 1818 << IV->getDeclName()); 1819 1820 // If we're referencing an invalid decl, just return this as a silent 1821 // error node. The error diagnostic was already emitted on the decl. 1822 if (IV->isInvalidDecl()) 1823 return ExprError(); 1824 1825 // Check if referencing a field with __attribute__((deprecated)). 1826 if (DiagnoseUseOfDecl(IV, Loc)) 1827 return ExprError(); 1828 1829 // Diagnose the use of an ivar outside of the declaring class. 1830 if (IV->getAccessControl() == ObjCIvarDecl::Private && 1831 ClassDeclared != IFace) 1832 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName(); 1833 1834 // FIXME: This should use a new expr for a direct reference, don't 1835 // turn this into Self->ivar, just return a BareIVarExpr or something. 1836 IdentifierInfo &II = Context.Idents.get("self"); 1837 UnqualifiedId SelfName; 1838 SelfName.setIdentifier(&II, SourceLocation()); 1839 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam); 1840 CXXScopeSpec SelfScopeSpec; 1841 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, 1842 SelfName, false, false); 1843 if (SelfExpr.isInvalid()) 1844 return ExprError(); 1845 1846 SelfExpr = DefaultLvalueConversion(SelfExpr.take()); 1847 if (SelfExpr.isInvalid()) 1848 return ExprError(); 1849 1850 MarkDeclarationReferenced(Loc, IV); 1851 return Owned(new (Context) 1852 ObjCIvarRefExpr(IV, IV->getType(), Loc, 1853 SelfExpr.take(), true, true)); 1854 } 1855 } else if (CurMethod->isInstanceMethod()) { 1856 // We should warn if a local variable hides an ivar. 1857 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); 1858 ObjCInterfaceDecl *ClassDeclared; 1859 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { 1860 if (IV->getAccessControl() != ObjCIvarDecl::Private || 1861 IFace == ClassDeclared) 1862 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); 1863 } 1864 } 1865 1866 if (Lookup.empty() && II && AllowBuiltinCreation) { 1867 // FIXME. Consolidate this with similar code in LookupName. 1868 if (unsigned BuiltinID = II->getBuiltinID()) { 1869 if (!(getLangOptions().CPlusPlus && 1870 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) { 1871 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, 1872 S, Lookup.isForRedeclaration(), 1873 Lookup.getNameLoc()); 1874 if (D) Lookup.addDecl(D); 1875 } 1876 } 1877 } 1878 // Sentinel value saying that we didn't do anything special. 1879 return Owned((Expr*) 0); 1880 } 1881 1882 /// \brief Cast a base object to a member's actual type. 1883 /// 1884 /// Logically this happens in three phases: 1885 /// 1886 /// * First we cast from the base type to the naming class. 1887 /// The naming class is the class into which we were looking 1888 /// when we found the member; it's the qualifier type if a 1889 /// qualifier was provided, and otherwise it's the base type. 1890 /// 1891 /// * Next we cast from the naming class to the declaring class. 1892 /// If the member we found was brought into a class's scope by 1893 /// a using declaration, this is that class; otherwise it's 1894 /// the class declaring the member. 1895 /// 1896 /// * Finally we cast from the declaring class to the "true" 1897 /// declaring class of the member. This conversion does not 1898 /// obey access control. 1899 ExprResult 1900 Sema::PerformObjectMemberConversion(Expr *From, 1901 NestedNameSpecifier *Qualifier, 1902 NamedDecl *FoundDecl, 1903 NamedDecl *Member) { 1904 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); 1905 if (!RD) 1906 return Owned(From); 1907 1908 QualType DestRecordType; 1909 QualType DestType; 1910 QualType FromRecordType; 1911 QualType FromType = From->getType(); 1912 bool PointerConversions = false; 1913 if (isa<FieldDecl>(Member)) { 1914 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); 1915 1916 if (FromType->getAs<PointerType>()) { 1917 DestType = Context.getPointerType(DestRecordType); 1918 FromRecordType = FromType->getPointeeType(); 1919 PointerConversions = true; 1920 } else { 1921 DestType = DestRecordType; 1922 FromRecordType = FromType; 1923 } 1924 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { 1925 if (Method->isStatic()) 1926 return Owned(From); 1927 1928 DestType = Method->getThisType(Context); 1929 DestRecordType = DestType->getPointeeType(); 1930 1931 if (FromType->getAs<PointerType>()) { 1932 FromRecordType = FromType->getPointeeType(); 1933 PointerConversions = true; 1934 } else { 1935 FromRecordType = FromType; 1936 DestType = DestRecordType; 1937 } 1938 } else { 1939 // No conversion necessary. 1940 return Owned(From); 1941 } 1942 1943 if (DestType->isDependentType() || FromType->isDependentType()) 1944 return Owned(From); 1945 1946 // If the unqualified types are the same, no conversion is necessary. 1947 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) 1948 return Owned(From); 1949 1950 SourceRange FromRange = From->getSourceRange(); 1951 SourceLocation FromLoc = FromRange.getBegin(); 1952 1953 ExprValueKind VK = CastCategory(From); 1954 1955 // C++ [class.member.lookup]p8: 1956 // [...] Ambiguities can often be resolved by qualifying a name with its 1957 // class name. 1958 // 1959 // If the member was a qualified name and the qualified referred to a 1960 // specific base subobject type, we'll cast to that intermediate type 1961 // first and then to the object in which the member is declared. That allows 1962 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: 1963 // 1964 // class Base { public: int x; }; 1965 // class Derived1 : public Base { }; 1966 // class Derived2 : public Base { }; 1967 // class VeryDerived : public Derived1, public Derived2 { void f(); }; 1968 // 1969 // void VeryDerived::f() { 1970 // x = 17; // error: ambiguous base subobjects 1971 // Derived1::x = 17; // okay, pick the Base subobject of Derived1 1972 // } 1973 if (Qualifier) { 1974 QualType QType = QualType(Qualifier->getAsType(), 0); 1975 assert(!QType.isNull() && "lookup done with dependent qualifier?"); 1976 assert(QType->isRecordType() && "lookup done with non-record type"); 1977 1978 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); 1979 1980 // In C++98, the qualifier type doesn't actually have to be a base 1981 // type of the object type, in which case we just ignore it. 1982 // Otherwise build the appropriate casts. 1983 if (IsDerivedFrom(FromRecordType, QRecordType)) { 1984 CXXCastPath BasePath; 1985 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, 1986 FromLoc, FromRange, &BasePath)) 1987 return ExprError(); 1988 1989 if (PointerConversions) 1990 QType = Context.getPointerType(QType); 1991 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, 1992 VK, &BasePath).take(); 1993 1994 FromType = QType; 1995 FromRecordType = QRecordType; 1996 1997 // If the qualifier type was the same as the destination type, 1998 // we're done. 1999 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) 2000 return Owned(From); 2001 } 2002 } 2003 2004 bool IgnoreAccess = false; 2005 2006 // If we actually found the member through a using declaration, cast 2007 // down to the using declaration's type. 2008 // 2009 // Pointer equality is fine here because only one declaration of a 2010 // class ever has member declarations. 2011 if (FoundDecl->getDeclContext() != Member->getDeclContext()) { 2012 assert(isa<UsingShadowDecl>(FoundDecl)); 2013 QualType URecordType = Context.getTypeDeclType( 2014 cast<CXXRecordDecl>(FoundDecl->getDeclContext())); 2015 2016 // We only need to do this if the naming-class to declaring-class 2017 // conversion is non-trivial. 2018 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { 2019 assert(IsDerivedFrom(FromRecordType, URecordType)); 2020 CXXCastPath BasePath; 2021 if (CheckDerivedToBaseConversion(FromRecordType, URecordType, 2022 FromLoc, FromRange, &BasePath)) 2023 return ExprError(); 2024 2025 QualType UType = URecordType; 2026 if (PointerConversions) 2027 UType = Context.getPointerType(UType); 2028 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, 2029 VK, &BasePath).take(); 2030 FromType = UType; 2031 FromRecordType = URecordType; 2032 } 2033 2034 // We don't do access control for the conversion from the 2035 // declaring class to the true declaring class. 2036 IgnoreAccess = true; 2037 } 2038 2039 CXXCastPath BasePath; 2040 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, 2041 FromLoc, FromRange, &BasePath, 2042 IgnoreAccess)) 2043 return ExprError(); 2044 2045 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, 2046 VK, &BasePath); 2047 } 2048 2049 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, 2050 const LookupResult &R, 2051 bool HasTrailingLParen) { 2052 // Only when used directly as the postfix-expression of a call. 2053 if (!HasTrailingLParen) 2054 return false; 2055 2056 // Never if a scope specifier was provided. 2057 if (SS.isSet()) 2058 return false; 2059 2060 // Only in C++ or ObjC++. 2061 if (!getLangOptions().CPlusPlus) 2062 return false; 2063 2064 // Turn off ADL when we find certain kinds of declarations during 2065 // normal lookup: 2066 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 2067 NamedDecl *D = *I; 2068 2069 // C++0x [basic.lookup.argdep]p3: 2070 // -- a declaration of a class member 2071 // Since using decls preserve this property, we check this on the 2072 // original decl. 2073 if (D->isCXXClassMember()) 2074 return false; 2075 2076 // C++0x [basic.lookup.argdep]p3: 2077 // -- a block-scope function declaration that is not a 2078 // using-declaration 2079 // NOTE: we also trigger this for function templates (in fact, we 2080 // don't check the decl type at all, since all other decl types 2081 // turn off ADL anyway). 2082 if (isa<UsingShadowDecl>(D)) 2083 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2084 else if (D->getDeclContext()->isFunctionOrMethod()) 2085 return false; 2086 2087 // C++0x [basic.lookup.argdep]p3: 2088 // -- a declaration that is neither a function or a function 2089 // template 2090 // And also for builtin functions. 2091 if (isa<FunctionDecl>(D)) { 2092 FunctionDecl *FDecl = cast<FunctionDecl>(D); 2093 2094 // But also builtin functions. 2095 if (FDecl->getBuiltinID() && FDecl->isImplicit()) 2096 return false; 2097 } else if (!isa<FunctionTemplateDecl>(D)) 2098 return false; 2099 } 2100 2101 return true; 2102 } 2103 2104 2105 /// Diagnoses obvious problems with the use of the given declaration 2106 /// as an expression. This is only actually called for lookups that 2107 /// were not overloaded, and it doesn't promise that the declaration 2108 /// will in fact be used. 2109 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { 2110 if (isa<TypedefNameDecl>(D)) { 2111 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); 2112 return true; 2113 } 2114 2115 if (isa<ObjCInterfaceDecl>(D)) { 2116 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); 2117 return true; 2118 } 2119 2120 if (isa<NamespaceDecl>(D)) { 2121 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); 2122 return true; 2123 } 2124 2125 return false; 2126 } 2127 2128 ExprResult 2129 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, 2130 LookupResult &R, 2131 bool NeedsADL) { 2132 // If this is a single, fully-resolved result and we don't need ADL, 2133 // just build an ordinary singleton decl ref. 2134 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>()) 2135 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), 2136 R.getFoundDecl()); 2137 2138 // We only need to check the declaration if there's exactly one 2139 // result, because in the overloaded case the results can only be 2140 // functions and function templates. 2141 if (R.isSingleResult() && 2142 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) 2143 return ExprError(); 2144 2145 // Otherwise, just build an unresolved lookup expression. Suppress 2146 // any lookup-related diagnostics; we'll hash these out later, when 2147 // we've picked a target. 2148 R.suppressDiagnostics(); 2149 2150 UnresolvedLookupExpr *ULE 2151 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2152 SS.getWithLocInContext(Context), 2153 R.getLookupNameInfo(), 2154 NeedsADL, R.isOverloadedResult(), 2155 R.begin(), R.end()); 2156 2157 return Owned(ULE); 2158 } 2159 2160 /// \brief Complete semantic analysis for a reference to the given declaration. 2161 ExprResult 2162 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, 2163 const DeclarationNameInfo &NameInfo, 2164 NamedDecl *D) { 2165 assert(D && "Cannot refer to a NULL declaration"); 2166 assert(!isa<FunctionTemplateDecl>(D) && 2167 "Cannot refer unambiguously to a function template"); 2168 2169 SourceLocation Loc = NameInfo.getLoc(); 2170 if (CheckDeclInExpr(*this, Loc, D)) 2171 return ExprError(); 2172 2173 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { 2174 // Specifically diagnose references to class templates that are missing 2175 // a template argument list. 2176 Diag(Loc, diag::err_template_decl_ref) 2177 << Template << SS.getRange(); 2178 Diag(Template->getLocation(), diag::note_template_decl_here); 2179 return ExprError(); 2180 } 2181 2182 // Make sure that we're referring to a value. 2183 ValueDecl *VD = dyn_cast<ValueDecl>(D); 2184 if (!VD) { 2185 Diag(Loc, diag::err_ref_non_value) 2186 << D << SS.getRange(); 2187 Diag(D->getLocation(), diag::note_declared_at); 2188 return ExprError(); 2189 } 2190 2191 // Check whether this declaration can be used. Note that we suppress 2192 // this check when we're going to perform argument-dependent lookup 2193 // on this function name, because this might not be the function 2194 // that overload resolution actually selects. 2195 if (DiagnoseUseOfDecl(VD, Loc)) 2196 return ExprError(); 2197 2198 // Only create DeclRefExpr's for valid Decl's. 2199 if (VD->isInvalidDecl()) 2200 return ExprError(); 2201 2202 // Handle members of anonymous structs and unions. If we got here, 2203 // and the reference is to a class member indirect field, then this 2204 // must be the subject of a pointer-to-member expression. 2205 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) 2206 if (!indirectField->isCXXClassMember()) 2207 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), 2208 indirectField); 2209 2210 // If the identifier reference is inside a block, and it refers to a value 2211 // that is outside the block, create a BlockDeclRefExpr instead of a 2212 // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when 2213 // the block is formed. 2214 // 2215 // We do not do this for things like enum constants, global variables, etc, 2216 // as they do not get snapshotted. 2217 // 2218 switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) { 2219 case CR_Error: 2220 return ExprError(); 2221 2222 case CR_Capture: 2223 assert(!SS.isSet() && "referenced local variable with scope specifier?"); 2224 return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false); 2225 2226 case CR_CaptureByRef: 2227 assert(!SS.isSet() && "referenced local variable with scope specifier?"); 2228 return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true); 2229 2230 case CR_NoCapture: { 2231 // If this reference is not in a block or if the referenced 2232 // variable is within the block, create a normal DeclRefExpr. 2233 2234 QualType type = VD->getType(); 2235 ExprValueKind valueKind = VK_RValue; 2236 2237 switch (D->getKind()) { 2238 // Ignore all the non-ValueDecl kinds. 2239 #define ABSTRACT_DECL(kind) 2240 #define VALUE(type, base) 2241 #define DECL(type, base) \ 2242 case Decl::type: 2243 #include "clang/AST/DeclNodes.inc" 2244 llvm_unreachable("invalid value decl kind"); 2245 return ExprError(); 2246 2247 // These shouldn't make it here. 2248 case Decl::ObjCAtDefsField: 2249 case Decl::ObjCIvar: 2250 llvm_unreachable("forming non-member reference to ivar?"); 2251 return ExprError(); 2252 2253 // Enum constants are always r-values and never references. 2254 // Unresolved using declarations are dependent. 2255 case Decl::EnumConstant: 2256 case Decl::UnresolvedUsingValue: 2257 valueKind = VK_RValue; 2258 break; 2259 2260 // Fields and indirect fields that got here must be for 2261 // pointer-to-member expressions; we just call them l-values for 2262 // internal consistency, because this subexpression doesn't really 2263 // exist in the high-level semantics. 2264 case Decl::Field: 2265 case Decl::IndirectField: 2266 assert(getLangOptions().CPlusPlus && 2267 "building reference to field in C?"); 2268 2269 // These can't have reference type in well-formed programs, but 2270 // for internal consistency we do this anyway. 2271 type = type.getNonReferenceType(); 2272 valueKind = VK_LValue; 2273 break; 2274 2275 // Non-type template parameters are either l-values or r-values 2276 // depending on the type. 2277 case Decl::NonTypeTemplateParm: { 2278 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { 2279 type = reftype->getPointeeType(); 2280 valueKind = VK_LValue; // even if the parameter is an r-value reference 2281 break; 2282 } 2283 2284 // For non-references, we need to strip qualifiers just in case 2285 // the template parameter was declared as 'const int' or whatever. 2286 valueKind = VK_RValue; 2287 type = type.getUnqualifiedType(); 2288 break; 2289 } 2290 2291 case Decl::Var: 2292 // In C, "extern void blah;" is valid and is an r-value. 2293 if (!getLangOptions().CPlusPlus && 2294 !type.hasQualifiers() && 2295 type->isVoidType()) { 2296 valueKind = VK_RValue; 2297 break; 2298 } 2299 // fallthrough 2300 2301 case Decl::ImplicitParam: 2302 case Decl::ParmVar: 2303 // These are always l-values. 2304 valueKind = VK_LValue; 2305 type = type.getNonReferenceType(); 2306 break; 2307 2308 case Decl::Function: { 2309 const FunctionType *fty = type->castAs<FunctionType>(); 2310 2311 // If we're referring to a function with an __unknown_anytype 2312 // result type, make the entire expression __unknown_anytype. 2313 if (fty->getResultType() == Context.UnknownAnyTy) { 2314 type = Context.UnknownAnyTy; 2315 valueKind = VK_RValue; 2316 break; 2317 } 2318 2319 // Functions are l-values in C++. 2320 if (getLangOptions().CPlusPlus) { 2321 valueKind = VK_LValue; 2322 break; 2323 } 2324 2325 // C99 DR 316 says that, if a function type comes from a 2326 // function definition (without a prototype), that type is only 2327 // used for checking compatibility. Therefore, when referencing 2328 // the function, we pretend that we don't have the full function 2329 // type. 2330 if (!cast<FunctionDecl>(VD)->hasPrototype() && 2331 isa<FunctionProtoType>(fty)) 2332 type = Context.getFunctionNoProtoType(fty->getResultType(), 2333 fty->getExtInfo()); 2334 2335 // Functions are r-values in C. 2336 valueKind = VK_RValue; 2337 break; 2338 } 2339 2340 case Decl::CXXMethod: 2341 // If we're referring to a method with an __unknown_anytype 2342 // result type, make the entire expression __unknown_anytype. 2343 // This should only be possible with a type written directly. 2344 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType())) 2345 if (proto->getResultType() == Context.UnknownAnyTy) { 2346 type = Context.UnknownAnyTy; 2347 valueKind = VK_RValue; 2348 break; 2349 } 2350 2351 // C++ methods are l-values if static, r-values if non-static. 2352 if (cast<CXXMethodDecl>(VD)->isStatic()) { 2353 valueKind = VK_LValue; 2354 break; 2355 } 2356 // fallthrough 2357 2358 case Decl::CXXConversion: 2359 case Decl::CXXDestructor: 2360 case Decl::CXXConstructor: 2361 valueKind = VK_RValue; 2362 break; 2363 } 2364 2365 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS); 2366 } 2367 2368 } 2369 2370 llvm_unreachable("unknown capture result"); 2371 return ExprError(); 2372 } 2373 2374 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { 2375 PredefinedExpr::IdentType IT; 2376 2377 switch (Kind) { 2378 default: assert(0 && "Unknown simple primary expr!"); 2379 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] 2380 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; 2381 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; 2382 } 2383 2384 // Pre-defined identifiers are of type char[x], where x is the length of the 2385 // string. 2386 2387 Decl *currentDecl = getCurFunctionOrMethodDecl(); 2388 if (!currentDecl && getCurBlock()) 2389 currentDecl = getCurBlock()->TheDecl; 2390 if (!currentDecl) { 2391 Diag(Loc, diag::ext_predef_outside_function); 2392 currentDecl = Context.getTranslationUnitDecl(); 2393 } 2394 2395 QualType ResTy; 2396 if (cast<DeclContext>(currentDecl)->isDependentContext()) { 2397 ResTy = Context.DependentTy; 2398 } else { 2399 unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length(); 2400 2401 llvm::APInt LengthI(32, Length + 1); 2402 ResTy = Context.CharTy.withConst(); 2403 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); 2404 } 2405 return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT)); 2406 } 2407 2408 ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { 2409 llvm::SmallString<16> CharBuffer; 2410 bool Invalid = false; 2411 llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); 2412 if (Invalid) 2413 return ExprError(); 2414 2415 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), 2416 PP); 2417 if (Literal.hadError()) 2418 return ExprError(); 2419 2420 QualType Ty; 2421 if (!getLangOptions().CPlusPlus) 2422 Ty = Context.IntTy; // 'x' and L'x' -> int in C. 2423 else if (Literal.isWide()) 2424 Ty = Context.WCharTy; // L'x' -> wchar_t in C++. 2425 else if (Literal.isMultiChar()) 2426 Ty = Context.IntTy; // 'wxyz' -> int in C++. 2427 else 2428 Ty = Context.CharTy; // 'x' -> char in C++ 2429 2430 return Owned(new (Context) CharacterLiteral(Literal.getValue(), 2431 Literal.isWide(), 2432 Ty, Tok.getLocation())); 2433 } 2434 2435 ExprResult Sema::ActOnNumericConstant(const Token &Tok) { 2436 // Fast path for a single digit (which is quite common). A single digit 2437 // cannot have a trigraph, escaped newline, radix prefix, or type suffix. 2438 if (Tok.getLength() == 1) { 2439 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); 2440 unsigned IntSize = Context.Target.getIntWidth(); 2441 return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'), 2442 Context.IntTy, Tok.getLocation())); 2443 } 2444 2445 llvm::SmallString<512> IntegerBuffer; 2446 // Add padding so that NumericLiteralParser can overread by one character. 2447 IntegerBuffer.resize(Tok.getLength()+1); 2448 const char *ThisTokBegin = &IntegerBuffer[0]; 2449 2450 // Get the spelling of the token, which eliminates trigraphs, etc. 2451 bool Invalid = false; 2452 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); 2453 if (Invalid) 2454 return ExprError(); 2455 2456 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, 2457 Tok.getLocation(), PP); 2458 if (Literal.hadError) 2459 return ExprError(); 2460 2461 Expr *Res; 2462 2463 if (Literal.isFloatingLiteral()) { 2464 QualType Ty; 2465 if (Literal.isFloat) 2466 Ty = Context.FloatTy; 2467 else if (!Literal.isLong) 2468 Ty = Context.DoubleTy; 2469 else 2470 Ty = Context.LongDoubleTy; 2471 2472 const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); 2473 2474 using llvm::APFloat; 2475 APFloat Val(Format); 2476 2477 APFloat::opStatus result = Literal.GetFloatValue(Val); 2478 2479 // Overflow is always an error, but underflow is only an error if 2480 // we underflowed to zero (APFloat reports denormals as underflow). 2481 if ((result & APFloat::opOverflow) || 2482 ((result & APFloat::opUnderflow) && Val.isZero())) { 2483 unsigned diagnostic; 2484 llvm::SmallString<20> buffer; 2485 if (result & APFloat::opOverflow) { 2486 diagnostic = diag::warn_float_overflow; 2487 APFloat::getLargest(Format).toString(buffer); 2488 } else { 2489 diagnostic = diag::warn_float_underflow; 2490 APFloat::getSmallest(Format).toString(buffer); 2491 } 2492 2493 Diag(Tok.getLocation(), diagnostic) 2494 << Ty 2495 << llvm::StringRef(buffer.data(), buffer.size()); 2496 } 2497 2498 bool isExact = (result == APFloat::opOK); 2499 Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation()); 2500 2501 if (Ty == Context.DoubleTy) { 2502 if (getLangOptions().SinglePrecisionConstants) { 2503 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); 2504 } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) { 2505 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); 2506 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take(); 2507 } 2508 } 2509 } else if (!Literal.isIntegerLiteral()) { 2510 return ExprError(); 2511 } else { 2512 QualType Ty; 2513 2514 // long long is a C99 feature. 2515 if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && 2516 Literal.isLongLong) 2517 Diag(Tok.getLocation(), diag::ext_longlong); 2518 2519 // Get the value in the widest-possible width. 2520 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); 2521 2522 if (Literal.GetIntegerValue(ResultVal)) { 2523 // If this value didn't fit into uintmax_t, warn and force to ull. 2524 Diag(Tok.getLocation(), diag::warn_integer_too_large); 2525 Ty = Context.UnsignedLongLongTy; 2526 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && 2527 "long long is not intmax_t?"); 2528 } else { 2529 // If this value fits into a ULL, try to figure out what else it fits into 2530 // according to the rules of C99 6.4.4.1p5. 2531 2532 // Octal, Hexadecimal, and integers with a U suffix are allowed to 2533 // be an unsigned int. 2534 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; 2535 2536 // Check from smallest to largest, picking the smallest type we can. 2537 unsigned Width = 0; 2538 if (!Literal.isLong && !Literal.isLongLong) { 2539 // Are int/unsigned possibilities? 2540 unsigned IntSize = Context.Target.getIntWidth(); 2541 2542 // Does it fit in a unsigned int? 2543 if (ResultVal.isIntN(IntSize)) { 2544 // Does it fit in a signed int? 2545 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) 2546 Ty = Context.IntTy; 2547 else if (AllowUnsigned) 2548 Ty = Context.UnsignedIntTy; 2549 Width = IntSize; 2550 } 2551 } 2552 2553 // Are long/unsigned long possibilities? 2554 if (Ty.isNull() && !Literal.isLongLong) { 2555 unsigned LongSize = Context.Target.getLongWidth(); 2556 2557 // Does it fit in a unsigned long? 2558 if (ResultVal.isIntN(LongSize)) { 2559 // Does it fit in a signed long? 2560 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) 2561 Ty = Context.LongTy; 2562 else if (AllowUnsigned) 2563 Ty = Context.UnsignedLongTy; 2564 Width = LongSize; 2565 } 2566 } 2567 2568 // Finally, check long long if needed. 2569 if (Ty.isNull()) { 2570 unsigned LongLongSize = Context.Target.getLongLongWidth(); 2571 2572 // Does it fit in a unsigned long long? 2573 if (ResultVal.isIntN(LongLongSize)) { 2574 // Does it fit in a signed long long? 2575 // To be compatible with MSVC, hex integer literals ending with the 2576 // LL or i64 suffix are always signed in Microsoft mode. 2577 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || 2578 (getLangOptions().Microsoft && Literal.isLongLong))) 2579 Ty = Context.LongLongTy; 2580 else if (AllowUnsigned) 2581 Ty = Context.UnsignedLongLongTy; 2582 Width = LongLongSize; 2583 } 2584 } 2585 2586 // If we still couldn't decide a type, we probably have something that 2587 // does not fit in a signed long long, but has no U suffix. 2588 if (Ty.isNull()) { 2589 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); 2590 Ty = Context.UnsignedLongLongTy; 2591 Width = Context.Target.getLongLongWidth(); 2592 } 2593 2594 if (ResultVal.getBitWidth() != Width) 2595 ResultVal = ResultVal.trunc(Width); 2596 } 2597 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); 2598 } 2599 2600 // If this is an imaginary literal, create the ImaginaryLiteral wrapper. 2601 if (Literal.isImaginary) 2602 Res = new (Context) ImaginaryLiteral(Res, 2603 Context.getComplexType(Res->getType())); 2604 2605 return Owned(Res); 2606 } 2607 2608 ExprResult Sema::ActOnParenExpr(SourceLocation L, 2609 SourceLocation R, Expr *E) { 2610 assert((E != 0) && "ActOnParenExpr() missing expr"); 2611 return Owned(new (Context) ParenExpr(L, R, E)); 2612 } 2613 2614 static bool CheckVecStepTraitOperandType(Sema &S, QualType T, 2615 SourceLocation Loc, 2616 SourceRange ArgRange) { 2617 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in 2618 // scalar or vector data type argument..." 2619 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic 2620 // type (C99 6.2.5p18) or void. 2621 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { 2622 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) 2623 << T << ArgRange; 2624 return true; 2625 } 2626 2627 assert((T->isVoidType() || !T->isIncompleteType()) && 2628 "Scalar types should always be complete"); 2629 return false; 2630 } 2631 2632 static bool CheckExtensionTraitOperandType(Sema &S, QualType T, 2633 SourceLocation Loc, 2634 SourceRange ArgRange, 2635 UnaryExprOrTypeTrait TraitKind) { 2636 // C99 6.5.3.4p1: 2637 if (T->isFunctionType()) { 2638 // alignof(function) is allowed as an extension. 2639 if (TraitKind == UETT_SizeOf) 2640 S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange; 2641 return false; 2642 } 2643 2644 // Allow sizeof(void)/alignof(void) as an extension. 2645 if (T->isVoidType()) { 2646 S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange; 2647 return false; 2648 } 2649 2650 return true; 2651 } 2652 2653 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, 2654 SourceLocation Loc, 2655 SourceRange ArgRange, 2656 UnaryExprOrTypeTrait TraitKind) { 2657 // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode. 2658 if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) { 2659 S.Diag(Loc, diag::err_sizeof_nonfragile_interface) 2660 << T << (TraitKind == UETT_SizeOf) 2661 << ArgRange; 2662 return true; 2663 } 2664 2665 return false; 2666 } 2667 2668 /// \brief Check the constrains on expression operands to unary type expression 2669 /// and type traits. 2670 /// 2671 /// Completes any types necessary and validates the constraints on the operand 2672 /// expression. The logic mostly mirrors the type-based overload, but may modify 2673 /// the expression as it completes the type for that expression through template 2674 /// instantiation, etc. 2675 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op, 2676 UnaryExprOrTypeTrait ExprKind) { 2677 QualType ExprTy = Op->getType(); 2678 2679 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2680 // the result is the size of the referenced type." 2681 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the 2682 // result shall be the alignment of the referenced type." 2683 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>()) 2684 ExprTy = Ref->getPointeeType(); 2685 2686 if (ExprKind == UETT_VecStep) 2687 return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(), 2688 Op->getSourceRange()); 2689 2690 // Whitelist some types as extensions 2691 if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(), 2692 Op->getSourceRange(), ExprKind)) 2693 return false; 2694 2695 if (RequireCompleteExprType(Op, 2696 PDiag(diag::err_sizeof_alignof_incomplete_type) 2697 << ExprKind << Op->getSourceRange(), 2698 std::make_pair(SourceLocation(), PDiag(0)))) 2699 return true; 2700 2701 // Completeing the expression's type may have changed it. 2702 ExprTy = Op->getType(); 2703 if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>()) 2704 ExprTy = Ref->getPointeeType(); 2705 2706 if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(), 2707 Op->getSourceRange(), ExprKind)) 2708 return true; 2709 2710 if (ExprKind == UETT_SizeOf) { 2711 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) { 2712 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { 2713 QualType OType = PVD->getOriginalType(); 2714 QualType Type = PVD->getType(); 2715 if (Type->isPointerType() && OType->isArrayType()) { 2716 Diag(Op->getExprLoc(), diag::warn_sizeof_array_param) 2717 << Type << OType; 2718 Diag(PVD->getLocation(), diag::note_declared_at); 2719 } 2720 } 2721 } 2722 } 2723 2724 return false; 2725 } 2726 2727 /// \brief Check the constraints on operands to unary expression and type 2728 /// traits. 2729 /// 2730 /// This will complete any types necessary, and validate the various constraints 2731 /// on those operands. 2732 /// 2733 /// The UsualUnaryConversions() function is *not* called by this routine. 2734 /// C99 6.3.2.1p[2-4] all state: 2735 /// Except when it is the operand of the sizeof operator ... 2736 /// 2737 /// C++ [expr.sizeof]p4 2738 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer 2739 /// standard conversions are not applied to the operand of sizeof. 2740 /// 2741 /// This policy is followed for all of the unary trait expressions. 2742 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType, 2743 SourceLocation OpLoc, 2744 SourceRange ExprRange, 2745 UnaryExprOrTypeTrait ExprKind) { 2746 if (exprType->isDependentType()) 2747 return false; 2748 2749 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 2750 // the result is the size of the referenced type." 2751 // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the 2752 // result shall be the alignment of the referenced type." 2753 if (const ReferenceType *Ref = exprType->getAs<ReferenceType>()) 2754 exprType = Ref->getPointeeType(); 2755 2756 if (ExprKind == UETT_VecStep) 2757 return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange); 2758 2759 // Whitelist some types as extensions 2760 if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange, 2761 ExprKind)) 2762 return false; 2763 2764 if (RequireCompleteType(OpLoc, exprType, 2765 PDiag(diag::err_sizeof_alignof_incomplete_type) 2766 << ExprKind << ExprRange)) 2767 return true; 2768 2769 if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange, 2770 ExprKind)) 2771 return true; 2772 2773 return false; 2774 } 2775 2776 static bool CheckAlignOfExpr(Sema &S, Expr *E) { 2777 E = E->IgnoreParens(); 2778 2779 // alignof decl is always ok. 2780 if (isa<DeclRefExpr>(E)) 2781 return false; 2782 2783 // Cannot know anything else if the expression is dependent. 2784 if (E->isTypeDependent()) 2785 return false; 2786 2787 if (E->getBitField()) { 2788 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) 2789 << 1 << E->getSourceRange(); 2790 return true; 2791 } 2792 2793 // Alignment of a field access is always okay, so long as it isn't a 2794 // bit-field. 2795 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) 2796 if (isa<FieldDecl>(ME->getMemberDecl())) 2797 return false; 2798 2799 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf); 2800 } 2801 2802 bool Sema::CheckVecStepExpr(Expr *E) { 2803 E = E->IgnoreParens(); 2804 2805 // Cannot know anything else if the expression is dependent. 2806 if (E->isTypeDependent()) 2807 return false; 2808 2809 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); 2810 } 2811 2812 /// \brief Build a sizeof or alignof expression given a type operand. 2813 ExprResult 2814 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, 2815 SourceLocation OpLoc, 2816 UnaryExprOrTypeTrait ExprKind, 2817 SourceRange R) { 2818 if (!TInfo) 2819 return ExprError(); 2820 2821 QualType T = TInfo->getType(); 2822 2823 if (!T->isDependentType() && 2824 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) 2825 return ExprError(); 2826 2827 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. 2828 return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo, 2829 Context.getSizeType(), 2830 OpLoc, R.getEnd())); 2831 } 2832 2833 /// \brief Build a sizeof or alignof expression given an expression 2834 /// operand. 2835 ExprResult 2836 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, 2837 UnaryExprOrTypeTrait ExprKind) { 2838 ExprResult PE = CheckPlaceholderExpr(E); 2839 if (PE.isInvalid()) 2840 return ExprError(); 2841 2842 E = PE.get(); 2843 2844 // Verify that the operand is valid. 2845 bool isInvalid = false; 2846 if (E->isTypeDependent()) { 2847 // Delay type-checking for type-dependent expressions. 2848 } else if (ExprKind == UETT_AlignOf) { 2849 isInvalid = CheckAlignOfExpr(*this, E); 2850 } else if (ExprKind == UETT_VecStep) { 2851 isInvalid = CheckVecStepExpr(E); 2852 } else if (E->getBitField()) { // C99 6.5.3.4p1. 2853 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0; 2854 isInvalid = true; 2855 } else { 2856 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); 2857 } 2858 2859 if (isInvalid) 2860 return ExprError(); 2861 2862 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. 2863 return Owned(new (Context) UnaryExprOrTypeTraitExpr( 2864 ExprKind, E, Context.getSizeType(), OpLoc, 2865 E->getSourceRange().getEnd())); 2866 } 2867 2868 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c 2869 /// expr and the same for @c alignof and @c __alignof 2870 /// Note that the ArgRange is invalid if isType is false. 2871 ExprResult 2872 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, 2873 UnaryExprOrTypeTrait ExprKind, bool isType, 2874 void *TyOrEx, const SourceRange &ArgRange) { 2875 // If error parsing type, ignore. 2876 if (TyOrEx == 0) return ExprError(); 2877 2878 if (isType) { 2879 TypeSourceInfo *TInfo; 2880 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); 2881 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); 2882 } 2883 2884 Expr *ArgEx = (Expr *)TyOrEx; 2885 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); 2886 return move(Result); 2887 } 2888 2889 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, 2890 bool isReal) { 2891 if (V.get()->isTypeDependent()) 2892 return S.Context.DependentTy; 2893 2894 // _Real and _Imag are only l-values for normal l-values. 2895 if (V.get()->getObjectKind() != OK_Ordinary) { 2896 V = S.DefaultLvalueConversion(V.take()); 2897 if (V.isInvalid()) 2898 return QualType(); 2899 } 2900 2901 // These operators return the element type of a complex type. 2902 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) 2903 return CT->getElementType(); 2904 2905 // Otherwise they pass through real integer and floating point types here. 2906 if (V.get()->getType()->isArithmeticType()) 2907 return V.get()->getType(); 2908 2909 // Test for placeholders. 2910 ExprResult PR = S.CheckPlaceholderExpr(V.get()); 2911 if (PR.isInvalid()) return QualType(); 2912 if (PR.get() != V.get()) { 2913 V = move(PR); 2914 return CheckRealImagOperand(S, V, Loc, isReal); 2915 } 2916 2917 // Reject anything else. 2918 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() 2919 << (isReal ? "__real" : "__imag"); 2920 return QualType(); 2921 } 2922 2923 2924 2925 ExprResult 2926 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, 2927 tok::TokenKind Kind, Expr *Input) { 2928 UnaryOperatorKind Opc; 2929 switch (Kind) { 2930 default: assert(0 && "Unknown unary op!"); 2931 case tok::plusplus: Opc = UO_PostInc; break; 2932 case tok::minusminus: Opc = UO_PostDec; break; 2933 } 2934 2935 return BuildUnaryOp(S, OpLoc, Opc, Input); 2936 } 2937 2938 ExprResult 2939 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, 2940 Expr *Idx, SourceLocation RLoc) { 2941 // Since this might be a postfix expression, get rid of ParenListExprs. 2942 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 2943 if (Result.isInvalid()) return ExprError(); 2944 Base = Result.take(); 2945 2946 Expr *LHSExp = Base, *RHSExp = Idx; 2947 2948 if (getLangOptions().CPlusPlus && 2949 (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) { 2950 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, 2951 Context.DependentTy, 2952 VK_LValue, OK_Ordinary, 2953 RLoc)); 2954 } 2955 2956 if (getLangOptions().CPlusPlus && 2957 (LHSExp->getType()->isRecordType() || 2958 LHSExp->getType()->isEnumeralType() || 2959 RHSExp->getType()->isRecordType() || 2960 RHSExp->getType()->isEnumeralType())) { 2961 return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx); 2962 } 2963 2964 return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc); 2965 } 2966 2967 2968 ExprResult 2969 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, 2970 Expr *Idx, SourceLocation RLoc) { 2971 Expr *LHSExp = Base; 2972 Expr *RHSExp = Idx; 2973 2974 // Perform default conversions. 2975 if (!LHSExp->getType()->getAs<VectorType>()) { 2976 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); 2977 if (Result.isInvalid()) 2978 return ExprError(); 2979 LHSExp = Result.take(); 2980 } 2981 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); 2982 if (Result.isInvalid()) 2983 return ExprError(); 2984 RHSExp = Result.take(); 2985 2986 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); 2987 ExprValueKind VK = VK_LValue; 2988 ExprObjectKind OK = OK_Ordinary; 2989 2990 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent 2991 // to the expression *((e1)+(e2)). This means the array "Base" may actually be 2992 // in the subscript position. As a result, we need to derive the array base 2993 // and index from the expression types. 2994 Expr *BaseExpr, *IndexExpr; 2995 QualType ResultType; 2996 if (LHSTy->isDependentType() || RHSTy->isDependentType()) { 2997 BaseExpr = LHSExp; 2998 IndexExpr = RHSExp; 2999 ResultType = Context.DependentTy; 3000 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { 3001 BaseExpr = LHSExp; 3002 IndexExpr = RHSExp; 3003 ResultType = PTy->getPointeeType(); 3004 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { 3005 // Handle the uncommon case of "123[Ptr]". 3006 BaseExpr = RHSExp; 3007 IndexExpr = LHSExp; 3008 ResultType = PTy->getPointeeType(); 3009 } else if (const ObjCObjectPointerType *PTy = 3010 LHSTy->getAs<ObjCObjectPointerType>()) { 3011 BaseExpr = LHSExp; 3012 IndexExpr = RHSExp; 3013 ResultType = PTy->getPointeeType(); 3014 } else if (const ObjCObjectPointerType *PTy = 3015 RHSTy->getAs<ObjCObjectPointerType>()) { 3016 // Handle the uncommon case of "123[Ptr]". 3017 BaseExpr = RHSExp; 3018 IndexExpr = LHSExp; 3019 ResultType = PTy->getPointeeType(); 3020 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { 3021 BaseExpr = LHSExp; // vectors: V[123] 3022 IndexExpr = RHSExp; 3023 VK = LHSExp->getValueKind(); 3024 if (VK != VK_RValue) 3025 OK = OK_VectorComponent; 3026 3027 // FIXME: need to deal with const... 3028 ResultType = VTy->getElementType(); 3029 } else if (LHSTy->isArrayType()) { 3030 // If we see an array that wasn't promoted by 3031 // DefaultFunctionArrayLvalueConversion, it must be an array that 3032 // wasn't promoted because of the C90 rule that doesn't 3033 // allow promoting non-lvalue arrays. Warn, then 3034 // force the promotion here. 3035 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << 3036 LHSExp->getSourceRange(); 3037 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), 3038 CK_ArrayToPointerDecay).take(); 3039 LHSTy = LHSExp->getType(); 3040 3041 BaseExpr = LHSExp; 3042 IndexExpr = RHSExp; 3043 ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); 3044 } else if (RHSTy->isArrayType()) { 3045 // Same as previous, except for 123[f().a] case 3046 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) << 3047 RHSExp->getSourceRange(); 3048 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), 3049 CK_ArrayToPointerDecay).take(); 3050 RHSTy = RHSExp->getType(); 3051 3052 BaseExpr = RHSExp; 3053 IndexExpr = LHSExp; 3054 ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); 3055 } else { 3056 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) 3057 << LHSExp->getSourceRange() << RHSExp->getSourceRange()); 3058 } 3059 // C99 6.5.2.1p1 3060 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) 3061 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) 3062 << IndexExpr->getSourceRange()); 3063 3064 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || 3065 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) 3066 && !IndexExpr->isTypeDependent()) 3067 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); 3068 3069 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, 3070 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object 3071 // type. Note that Functions are not objects, and that (in C99 parlance) 3072 // incomplete types are not object types. 3073 if (ResultType->isFunctionType()) { 3074 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type) 3075 << ResultType << BaseExpr->getSourceRange(); 3076 return ExprError(); 3077 } 3078 3079 if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) { 3080 // GNU extension: subscripting on pointer to void 3081 Diag(LLoc, diag::ext_gnu_subscript_void_type) 3082 << BaseExpr->getSourceRange(); 3083 3084 // C forbids expressions of unqualified void type from being l-values. 3085 // See IsCForbiddenLValueType. 3086 if (!ResultType.hasQualifiers()) VK = VK_RValue; 3087 } else if (!ResultType->isDependentType() && 3088 RequireCompleteType(LLoc, ResultType, 3089 PDiag(diag::err_subscript_incomplete_type) 3090 << BaseExpr->getSourceRange())) 3091 return ExprError(); 3092 3093 // Diagnose bad cases where we step over interface counts. 3094 if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { 3095 Diag(LLoc, diag::err_subscript_nonfragile_interface) 3096 << ResultType << BaseExpr->getSourceRange(); 3097 return ExprError(); 3098 } 3099 3100 assert(VK == VK_RValue || LangOpts.CPlusPlus || 3101 !ResultType.isCForbiddenLValueType()); 3102 3103 return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp, 3104 ResultType, VK, OK, RLoc)); 3105 } 3106 3107 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, 3108 FunctionDecl *FD, 3109 ParmVarDecl *Param) { 3110 if (Param->hasUnparsedDefaultArg()) { 3111 Diag(CallLoc, 3112 diag::err_use_of_default_argument_to_function_declared_later) << 3113 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); 3114 Diag(UnparsedDefaultArgLocs[Param], 3115 diag::note_default_argument_declared_here); 3116 return ExprError(); 3117 } 3118 3119 if (Param->hasUninstantiatedDefaultArg()) { 3120 Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); 3121 3122 // Instantiate the expression. 3123 MultiLevelTemplateArgumentList ArgList 3124 = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true); 3125 3126 std::pair<const TemplateArgument *, unsigned> Innermost 3127 = ArgList.getInnermost(); 3128 InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first, 3129 Innermost.second); 3130 3131 ExprResult Result; 3132 { 3133 // C++ [dcl.fct.default]p5: 3134 // The names in the [default argument] expression are bound, and 3135 // the semantic constraints are checked, at the point where the 3136 // default argument expression appears. 3137 ContextRAII SavedContext(*this, FD); 3138 Result = SubstExpr(UninstExpr, ArgList); 3139 } 3140 if (Result.isInvalid()) 3141 return ExprError(); 3142 3143 // Check the expression as an initializer for the parameter. 3144 InitializedEntity Entity 3145 = InitializedEntity::InitializeParameter(Context, Param); 3146 InitializationKind Kind 3147 = InitializationKind::CreateCopy(Param->getLocation(), 3148 /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin()); 3149 Expr *ResultE = Result.takeAs<Expr>(); 3150 3151 InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1); 3152 Result = InitSeq.Perform(*this, Entity, Kind, 3153 MultiExprArg(*this, &ResultE, 1)); 3154 if (Result.isInvalid()) 3155 return ExprError(); 3156 3157 // Build the default argument expression. 3158 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, 3159 Result.takeAs<Expr>())); 3160 } 3161 3162 // If the default expression creates temporaries, we need to 3163 // push them to the current stack of expression temporaries so they'll 3164 // be properly destroyed. 3165 // FIXME: We should really be rebuilding the default argument with new 3166 // bound temporaries; see the comment in PR5810. 3167 for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) { 3168 CXXTemporary *Temporary = Param->getDefaultArgTemporary(i); 3169 MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(), 3170 const_cast<CXXDestructorDecl*>(Temporary->getDestructor())); 3171 ExprTemporaries.push_back(Temporary); 3172 ExprNeedsCleanups = true; 3173 } 3174 3175 // We already type-checked the argument, so we know it works. 3176 // Just mark all of the declarations in this potentially-evaluated expression 3177 // as being "referenced". 3178 MarkDeclarationsReferencedInExpr(Param->getDefaultArg()); 3179 return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param)); 3180 } 3181 3182 /// ConvertArgumentsForCall - Converts the arguments specified in 3183 /// Args/NumArgs to the parameter types of the function FDecl with 3184 /// function prototype Proto. Call is the call expression itself, and 3185 /// Fn is the function expression. For a C++ member function, this 3186 /// routine does not attempt to convert the object argument. Returns 3187 /// true if the call is ill-formed. 3188 bool 3189 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, 3190 FunctionDecl *FDecl, 3191 const FunctionProtoType *Proto, 3192 Expr **Args, unsigned NumArgs, 3193 SourceLocation RParenLoc) { 3194 // Bail out early if calling a builtin with custom typechecking. 3195 // We don't need to do this in the 3196 if (FDecl) 3197 if (unsigned ID = FDecl->getBuiltinID()) 3198 if (Context.BuiltinInfo.hasCustomTypechecking(ID)) 3199 return false; 3200 3201 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by 3202 // assignment, to the types of the corresponding parameter, ... 3203 unsigned NumArgsInProto = Proto->getNumArgs(); 3204 bool Invalid = false; 3205 3206 // If too few arguments are available (and we don't have default 3207 // arguments for the remaining parameters), don't make the call. 3208 if (NumArgs < NumArgsInProto) { 3209 if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) 3210 return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) 3211 << Fn->getType()->isBlockPointerType() 3212 << NumArgsInProto << NumArgs << Fn->getSourceRange(); 3213 Call->setNumArgs(Context, NumArgsInProto); 3214 } 3215 3216 // If too many are passed and not variadic, error on the extras and drop 3217 // them. 3218 if (NumArgs > NumArgsInProto) { 3219 if (!Proto->isVariadic()) { 3220 Diag(Args[NumArgsInProto]->getLocStart(), 3221 diag::err_typecheck_call_too_many_args) 3222 << Fn->getType()->isBlockPointerType() 3223 << NumArgsInProto << NumArgs << Fn->getSourceRange() 3224 << SourceRange(Args[NumArgsInProto]->getLocStart(), 3225 Args[NumArgs-1]->getLocEnd()); 3226 3227 // Emit the location of the prototype. 3228 if (FDecl && !FDecl->getBuiltinID()) 3229 Diag(FDecl->getLocStart(), 3230 diag::note_typecheck_call_too_many_args) 3231 << FDecl; 3232 3233 // This deletes the extra arguments. 3234 Call->setNumArgs(Context, NumArgsInProto); 3235 return true; 3236 } 3237 } 3238 llvm::SmallVector<Expr *, 8> AllArgs; 3239 VariadicCallType CallType = 3240 Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; 3241 if (Fn->getType()->isBlockPointerType()) 3242 CallType = VariadicBlock; // Block 3243 else if (isa<MemberExpr>(Fn)) 3244 CallType = VariadicMethod; 3245 Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl, 3246 Proto, 0, Args, NumArgs, AllArgs, CallType); 3247 if (Invalid) 3248 return true; 3249 unsigned TotalNumArgs = AllArgs.size(); 3250 for (unsigned i = 0; i < TotalNumArgs; ++i) 3251 Call->setArg(i, AllArgs[i]); 3252 3253 return false; 3254 } 3255 3256 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, 3257 FunctionDecl *FDecl, 3258 const FunctionProtoType *Proto, 3259 unsigned FirstProtoArg, 3260 Expr **Args, unsigned NumArgs, 3261 llvm::SmallVector<Expr *, 8> &AllArgs, 3262 VariadicCallType CallType) { 3263 unsigned NumArgsInProto = Proto->getNumArgs(); 3264 unsigned NumArgsToCheck = NumArgs; 3265 bool Invalid = false; 3266 if (NumArgs != NumArgsInProto) 3267 // Use default arguments for missing arguments 3268 NumArgsToCheck = NumArgsInProto; 3269 unsigned ArgIx = 0; 3270 // Continue to check argument types (even if we have too few/many args). 3271 for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) { 3272 QualType ProtoArgType = Proto->getArgType(i); 3273 3274 Expr *Arg; 3275 if (ArgIx < NumArgs) { 3276 Arg = Args[ArgIx++]; 3277 3278 if (RequireCompleteType(Arg->getSourceRange().getBegin(), 3279 ProtoArgType, 3280 PDiag(diag::err_call_incomplete_argument) 3281 << Arg->getSourceRange())) 3282 return true; 3283 3284 // Pass the argument 3285 ParmVarDecl *Param = 0; 3286 if (FDecl && i < FDecl->getNumParams()) 3287 Param = FDecl->getParamDecl(i); 3288 3289 InitializedEntity Entity = 3290 Param? InitializedEntity::InitializeParameter(Context, Param) 3291 : InitializedEntity::InitializeParameter(Context, ProtoArgType, 3292 Proto->isArgConsumed(i)); 3293 ExprResult ArgE = PerformCopyInitialization(Entity, 3294 SourceLocation(), 3295 Owned(Arg)); 3296 if (ArgE.isInvalid()) 3297 return true; 3298 3299 Arg = ArgE.takeAs<Expr>(); 3300 } else { 3301 ParmVarDecl *Param = FDecl->getParamDecl(i); 3302 3303 ExprResult ArgExpr = 3304 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); 3305 if (ArgExpr.isInvalid()) 3306 return true; 3307 3308 Arg = ArgExpr.takeAs<Expr>(); 3309 } 3310 AllArgs.push_back(Arg); 3311 } 3312 3313 // If this is a variadic call, handle args passed through "...". 3314 if (CallType != VariadicDoesNotApply) { 3315 3316 // Assume that extern "C" functions with variadic arguments that 3317 // return __unknown_anytype aren't *really* variadic. 3318 if (Proto->getResultType() == Context.UnknownAnyTy && 3319 FDecl && FDecl->isExternC()) { 3320 for (unsigned i = ArgIx; i != NumArgs; ++i) { 3321 ExprResult arg; 3322 if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens())) 3323 arg = DefaultFunctionArrayLvalueConversion(Args[i]); 3324 else 3325 arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl); 3326 Invalid |= arg.isInvalid(); 3327 AllArgs.push_back(arg.take()); 3328 } 3329 3330 // Otherwise do argument promotion, (C99 6.5.2.2p7). 3331 } else { 3332 for (unsigned i = ArgIx; i != NumArgs; ++i) { 3333 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl); 3334 Invalid |= Arg.isInvalid(); 3335 AllArgs.push_back(Arg.take()); 3336 } 3337 } 3338 } 3339 return Invalid; 3340 } 3341 3342 /// Given a function expression of unknown-any type, try to rebuild it 3343 /// to have a function type. 3344 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); 3345 3346 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. 3347 /// This provides the location of the left/right parens and a list of comma 3348 /// locations. 3349 ExprResult 3350 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, 3351 MultiExprArg args, SourceLocation RParenLoc, 3352 Expr *ExecConfig) { 3353 unsigned NumArgs = args.size(); 3354 3355 // Since this might be a postfix expression, get rid of ParenListExprs. 3356 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn); 3357 if (Result.isInvalid()) return ExprError(); 3358 Fn = Result.take(); 3359 3360 Expr **Args = args.release(); 3361 3362 if (getLangOptions().CPlusPlus) { 3363 // If this is a pseudo-destructor expression, build the call immediately. 3364 if (isa<CXXPseudoDestructorExpr>(Fn)) { 3365 if (NumArgs > 0) { 3366 // Pseudo-destructor calls should not have any arguments. 3367 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args) 3368 << FixItHint::CreateRemoval( 3369 SourceRange(Args[0]->getLocStart(), 3370 Args[NumArgs-1]->getLocEnd())); 3371 3372 NumArgs = 0; 3373 } 3374 3375 return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy, 3376 VK_RValue, RParenLoc)); 3377 } 3378 3379 // Determine whether this is a dependent call inside a C++ template, 3380 // in which case we won't do any semantic analysis now. 3381 // FIXME: Will need to cache the results of name lookup (including ADL) in 3382 // Fn. 3383 bool Dependent = false; 3384 if (Fn->isTypeDependent()) 3385 Dependent = true; 3386 else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs)) 3387 Dependent = true; 3388 3389 if (Dependent) { 3390 if (ExecConfig) { 3391 return Owned(new (Context) CUDAKernelCallExpr( 3392 Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs, 3393 Context.DependentTy, VK_RValue, RParenLoc)); 3394 } else { 3395 return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs, 3396 Context.DependentTy, VK_RValue, 3397 RParenLoc)); 3398 } 3399 } 3400 3401 // Determine whether this is a call to an object (C++ [over.call.object]). 3402 if (Fn->getType()->isRecordType()) 3403 return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs, 3404 RParenLoc)); 3405 3406 if (Fn->getType() == Context.UnknownAnyTy) { 3407 ExprResult result = rebuildUnknownAnyFunction(*this, Fn); 3408 if (result.isInvalid()) return ExprError(); 3409 Fn = result.take(); 3410 } 3411 3412 if (Fn->getType() == Context.BoundMemberTy) { 3413 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, 3414 RParenLoc); 3415 } 3416 } 3417 3418 // Check for overloaded calls. This can happen even in C due to extensions. 3419 if (Fn->getType() == Context.OverloadTy) { 3420 OverloadExpr::FindResult find = OverloadExpr::find(Fn); 3421 3422 // We aren't supposed to apply this logic if there's an '&' involved. 3423 if (!find.IsAddressOfOperand) { 3424 OverloadExpr *ovl = find.Expression; 3425 if (isa<UnresolvedLookupExpr>(ovl)) { 3426 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl); 3427 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs, 3428 RParenLoc, ExecConfig); 3429 } else { 3430 return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs, 3431 RParenLoc); 3432 } 3433 } 3434 } 3435 3436 // If we're directly calling a function, get the appropriate declaration. 3437 3438 Expr *NakedFn = Fn->IgnoreParens(); 3439 3440 NamedDecl *NDecl = 0; 3441 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) 3442 if (UnOp->getOpcode() == UO_AddrOf) 3443 NakedFn = UnOp->getSubExpr()->IgnoreParens(); 3444 3445 if (isa<DeclRefExpr>(NakedFn)) 3446 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl(); 3447 else if (isa<MemberExpr>(NakedFn)) 3448 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); 3449 3450 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc, 3451 ExecConfig); 3452 } 3453 3454 ExprResult 3455 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, 3456 MultiExprArg execConfig, SourceLocation GGGLoc) { 3457 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); 3458 if (!ConfigDecl) 3459 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) 3460 << "cudaConfigureCall"); 3461 QualType ConfigQTy = ConfigDecl->getType(); 3462 3463 DeclRefExpr *ConfigDR = new (Context) DeclRefExpr( 3464 ConfigDecl, ConfigQTy, VK_LValue, LLLLoc); 3465 3466 return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0); 3467 } 3468 3469 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments. 3470 /// 3471 /// __builtin_astype( value, dst type ) 3472 /// 3473 ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty, 3474 SourceLocation BuiltinLoc, 3475 SourceLocation RParenLoc) { 3476 ExprValueKind VK = VK_RValue; 3477 ExprObjectKind OK = OK_Ordinary; 3478 QualType DstTy = GetTypeFromParser(destty); 3479 QualType SrcTy = expr->getType(); 3480 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy)) 3481 return ExprError(Diag(BuiltinLoc, 3482 diag::err_invalid_astype_of_different_size) 3483 << DstTy 3484 << SrcTy 3485 << expr->getSourceRange()); 3486 return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc, RParenLoc)); 3487 } 3488 3489 /// BuildResolvedCallExpr - Build a call to a resolved expression, 3490 /// i.e. an expression not of \p OverloadTy. The expression should 3491 /// unary-convert to an expression of function-pointer or 3492 /// block-pointer type. 3493 /// 3494 /// \param NDecl the declaration being called, if available 3495 ExprResult 3496 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, 3497 SourceLocation LParenLoc, 3498 Expr **Args, unsigned NumArgs, 3499 SourceLocation RParenLoc, 3500 Expr *Config) { 3501 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); 3502 3503 // Promote the function operand. 3504 ExprResult Result = UsualUnaryConversions(Fn); 3505 if (Result.isInvalid()) 3506 return ExprError(); 3507 Fn = Result.take(); 3508 3509 // Make the call expr early, before semantic checks. This guarantees cleanup 3510 // of arguments and function on error. 3511 CallExpr *TheCall; 3512 if (Config) { 3513 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn, 3514 cast<CallExpr>(Config), 3515 Args, NumArgs, 3516 Context.BoolTy, 3517 VK_RValue, 3518 RParenLoc); 3519 } else { 3520 TheCall = new (Context) CallExpr(Context, Fn, 3521 Args, NumArgs, 3522 Context.BoolTy, 3523 VK_RValue, 3524 RParenLoc); 3525 } 3526 3527 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); 3528 3529 // Bail out early if calling a builtin with custom typechecking. 3530 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) 3531 return CheckBuiltinFunctionCall(BuiltinID, TheCall); 3532 3533 retry: 3534 const FunctionType *FuncT; 3535 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { 3536 // C99 6.5.2.2p1 - "The expression that denotes the called function shall 3537 // have type pointer to function". 3538 FuncT = PT->getPointeeType()->getAs<FunctionType>(); 3539 if (FuncT == 0) 3540 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) 3541 << Fn->getType() << Fn->getSourceRange()); 3542 } else if (const BlockPointerType *BPT = 3543 Fn->getType()->getAs<BlockPointerType>()) { 3544 FuncT = BPT->getPointeeType()->castAs<FunctionType>(); 3545 } else { 3546 // Handle calls to expressions of unknown-any type. 3547 if (Fn->getType() == Context.UnknownAnyTy) { 3548 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); 3549 if (rewrite.isInvalid()) return ExprError(); 3550 Fn = rewrite.take(); 3551 TheCall->setCallee(Fn); 3552 goto retry; 3553 } 3554 3555 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) 3556 << Fn->getType() << Fn->getSourceRange()); 3557 } 3558 3559 if (getLangOptions().CUDA) { 3560 if (Config) { 3561 // CUDA: Kernel calls must be to global functions 3562 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) 3563 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) 3564 << FDecl->getName() << Fn->getSourceRange()); 3565 3566 // CUDA: Kernel function must have 'void' return type 3567 if (!FuncT->getResultType()->isVoidType()) 3568 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) 3569 << Fn->getType() << Fn->getSourceRange()); 3570 } 3571 } 3572 3573 // Check for a valid return type 3574 if (CheckCallReturnType(FuncT->getResultType(), 3575 Fn->getSourceRange().getBegin(), TheCall, 3576 FDecl)) 3577 return ExprError(); 3578 3579 // We know the result type of the call, set it. 3580 TheCall->setType(FuncT->getCallResultType(Context)); 3581 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType())); 3582 3583 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) { 3584 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs, 3585 RParenLoc)) 3586 return ExprError(); 3587 } else { 3588 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); 3589 3590 if (FDecl) { 3591 // Check if we have too few/too many template arguments, based 3592 // on our knowledge of the function definition. 3593 const FunctionDecl *Def = 0; 3594 if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) { 3595 const FunctionProtoType *Proto 3596 = Def->getType()->getAs<FunctionProtoType>(); 3597 if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) 3598 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) 3599 << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange(); 3600 } 3601 3602 // If the function we're calling isn't a function prototype, but we have 3603 // a function prototype from a prior declaratiom, use that prototype. 3604 if (!FDecl->hasPrototype()) 3605 Proto = FDecl->getType()->getAs<FunctionProtoType>(); 3606 } 3607 3608 // Promote the arguments (C99 6.5.2.2p6). 3609 for (unsigned i = 0; i != NumArgs; i++) { 3610 Expr *Arg = Args[i]; 3611 3612 if (Proto && i < Proto->getNumArgs()) { 3613 InitializedEntity Entity 3614 = InitializedEntity::InitializeParameter(Context, 3615 Proto->getArgType(i), 3616 Proto->isArgConsumed(i)); 3617 ExprResult ArgE = PerformCopyInitialization(Entity, 3618 SourceLocation(), 3619 Owned(Arg)); 3620 if (ArgE.isInvalid()) 3621 return true; 3622 3623 Arg = ArgE.takeAs<Expr>(); 3624 3625 } else { 3626 ExprResult ArgE = DefaultArgumentPromotion(Arg); 3627 3628 if (ArgE.isInvalid()) 3629 return true; 3630 3631 Arg = ArgE.takeAs<Expr>(); 3632 } 3633 3634 if (RequireCompleteType(Arg->getSourceRange().getBegin(), 3635 Arg->getType(), 3636 PDiag(diag::err_call_incomplete_argument) 3637 << Arg->getSourceRange())) 3638 return ExprError(); 3639 3640 TheCall->setArg(i, Arg); 3641 } 3642 } 3643 3644 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) 3645 if (!Method->isStatic()) 3646 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) 3647 << Fn->getSourceRange()); 3648 3649 // Check for sentinels 3650 if (NDecl) 3651 DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs); 3652 3653 // Do special checking on direct calls to functions. 3654 if (FDecl) { 3655 if (CheckFunctionCall(FDecl, TheCall)) 3656 return ExprError(); 3657 3658 if (BuiltinID) 3659 return CheckBuiltinFunctionCall(BuiltinID, TheCall); 3660 } else if (NDecl) { 3661 if (CheckBlockCall(NDecl, TheCall)) 3662 return ExprError(); 3663 } 3664 3665 return MaybeBindToTemporary(TheCall); 3666 } 3667 3668 ExprResult 3669 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, 3670 SourceLocation RParenLoc, Expr *InitExpr) { 3671 assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); 3672 // FIXME: put back this assert when initializers are worked out. 3673 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); 3674 3675 TypeSourceInfo *TInfo; 3676 QualType literalType = GetTypeFromParser(Ty, &TInfo); 3677 if (!TInfo) 3678 TInfo = Context.getTrivialTypeSourceInfo(literalType); 3679 3680 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); 3681 } 3682 3683 ExprResult 3684 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, 3685 SourceLocation RParenLoc, Expr *literalExpr) { 3686 QualType literalType = TInfo->getType(); 3687 3688 if (literalType->isArrayType()) { 3689 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType), 3690 PDiag(diag::err_illegal_decl_array_incomplete_type) 3691 << SourceRange(LParenLoc, 3692 literalExpr->getSourceRange().getEnd()))) 3693 return ExprError(); 3694 if (literalType->isVariableArrayType()) 3695 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init) 3696 << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())); 3697 } else if (!literalType->isDependentType() && 3698 RequireCompleteType(LParenLoc, literalType, 3699 PDiag(diag::err_typecheck_decl_incomplete_type) 3700 << SourceRange(LParenLoc, 3701 literalExpr->getSourceRange().getEnd()))) 3702 return ExprError(); 3703 3704 InitializedEntity Entity 3705 = InitializedEntity::InitializeTemporary(literalType); 3706 InitializationKind Kind 3707 = InitializationKind::CreateCStyleCast(LParenLoc, 3708 SourceRange(LParenLoc, RParenLoc)); 3709 InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1); 3710 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, 3711 MultiExprArg(*this, &literalExpr, 1), 3712 &literalType); 3713 if (Result.isInvalid()) 3714 return ExprError(); 3715 literalExpr = Result.get(); 3716 3717 bool isFileScope = getCurFunctionOrMethodDecl() == 0; 3718 if (isFileScope) { // 6.5.2.5p3 3719 if (CheckForConstantInitializer(literalExpr, literalType)) 3720 return ExprError(); 3721 } 3722 3723 // In C, compound literals are l-values for some reason. 3724 ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue; 3725 3726 return MaybeBindToTemporary( 3727 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, 3728 VK, literalExpr, isFileScope)); 3729 } 3730 3731 ExprResult 3732 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist, 3733 SourceLocation RBraceLoc) { 3734 unsigned NumInit = initlist.size(); 3735 Expr **InitList = initlist.release(); 3736 3737 // Semantic analysis for initializers is done by ActOnDeclarator() and 3738 // CheckInitializer() - it requires knowledge of the object being intialized. 3739 3740 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList, 3741 NumInit, RBraceLoc); 3742 E->setType(Context.VoidTy); // FIXME: just a place holder for now. 3743 return Owned(E); 3744 } 3745 3746 /// Prepares for a scalar cast, performing all the necessary stages 3747 /// except the final cast and returning the kind required. 3748 static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) { 3749 // Both Src and Dest are scalar types, i.e. arithmetic or pointer. 3750 // Also, callers should have filtered out the invalid cases with 3751 // pointers. Everything else should be possible. 3752 3753 QualType SrcTy = Src.get()->getType(); 3754 if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy)) 3755 return CK_NoOp; 3756 3757 switch (SrcTy->getScalarTypeKind()) { 3758 case Type::STK_MemberPointer: 3759 llvm_unreachable("member pointer type in C"); 3760 3761 case Type::STK_Pointer: 3762 switch (DestTy->getScalarTypeKind()) { 3763 case Type::STK_Pointer: 3764 return DestTy->isObjCObjectPointerType() ? 3765 CK_AnyPointerToObjCPointerCast : 3766 CK_BitCast; 3767 case Type::STK_Bool: 3768 return CK_PointerToBoolean; 3769 case Type::STK_Integral: 3770 return CK_PointerToIntegral; 3771 case Type::STK_Floating: 3772 case Type::STK_FloatingComplex: 3773 case Type::STK_IntegralComplex: 3774 case Type::STK_MemberPointer: 3775 llvm_unreachable("illegal cast from pointer"); 3776 } 3777 break; 3778 3779 case Type::STK_Bool: // casting from bool is like casting from an integer 3780 case Type::STK_Integral: 3781 switch (DestTy->getScalarTypeKind()) { 3782 case Type::STK_Pointer: 3783 if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) 3784 return CK_NullToPointer; 3785 return CK_IntegralToPointer; 3786 case Type::STK_Bool: 3787 return CK_IntegralToBoolean; 3788 case Type::STK_Integral: 3789 return CK_IntegralCast; 3790 case Type::STK_Floating: 3791 return CK_IntegralToFloating; 3792 case Type::STK_IntegralComplex: 3793 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), 3794 CK_IntegralCast); 3795 return CK_IntegralRealToComplex; 3796 case Type::STK_FloatingComplex: 3797 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), 3798 CK_IntegralToFloating); 3799 return CK_FloatingRealToComplex; 3800 case Type::STK_MemberPointer: 3801 llvm_unreachable("member pointer type in C"); 3802 } 3803 break; 3804 3805 case Type::STK_Floating: 3806 switch (DestTy->getScalarTypeKind()) { 3807 case Type::STK_Floating: 3808 return CK_FloatingCast; 3809 case Type::STK_Bool: 3810 return CK_FloatingToBoolean; 3811 case Type::STK_Integral: 3812 return CK_FloatingToIntegral; 3813 case Type::STK_FloatingComplex: 3814 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), 3815 CK_FloatingCast); 3816 return CK_FloatingRealToComplex; 3817 case Type::STK_IntegralComplex: 3818 Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(), 3819 CK_FloatingToIntegral); 3820 return CK_IntegralRealToComplex; 3821 case Type::STK_Pointer: 3822 llvm_unreachable("valid float->pointer cast?"); 3823 case Type::STK_MemberPointer: 3824 llvm_unreachable("member pointer type in C"); 3825 } 3826 break; 3827 3828 case Type::STK_FloatingComplex: 3829 switch (DestTy->getScalarTypeKind()) { 3830 case Type::STK_FloatingComplex: 3831 return CK_FloatingComplexCast; 3832 case Type::STK_IntegralComplex: 3833 return CK_FloatingComplexToIntegralComplex; 3834 case Type::STK_Floating: { 3835 QualType ET = SrcTy->getAs<ComplexType>()->getElementType(); 3836 if (S.Context.hasSameType(ET, DestTy)) 3837 return CK_FloatingComplexToReal; 3838 Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal); 3839 return CK_FloatingCast; 3840 } 3841 case Type::STK_Bool: 3842 return CK_FloatingComplexToBoolean; 3843 case Type::STK_Integral: 3844 Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(), 3845 CK_FloatingComplexToReal); 3846 return CK_FloatingToIntegral; 3847 case Type::STK_Pointer: 3848 llvm_unreachable("valid complex float->pointer cast?"); 3849 case Type::STK_MemberPointer: 3850 llvm_unreachable("member pointer type in C"); 3851 } 3852 break; 3853 3854 case Type::STK_IntegralComplex: 3855 switch (DestTy->getScalarTypeKind()) { 3856 case Type::STK_FloatingComplex: 3857 return CK_IntegralComplexToFloatingComplex; 3858 case Type::STK_IntegralComplex: 3859 return CK_IntegralComplexCast; 3860 case Type::STK_Integral: { 3861 QualType ET = SrcTy->getAs<ComplexType>()->getElementType(); 3862 if (S.Context.hasSameType(ET, DestTy)) 3863 return CK_IntegralComplexToReal; 3864 Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal); 3865 return CK_IntegralCast; 3866 } 3867 case Type::STK_Bool: 3868 return CK_IntegralComplexToBoolean; 3869 case Type::STK_Floating: 3870 Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(), 3871 CK_IntegralComplexToReal); 3872 return CK_IntegralToFloating; 3873 case Type::STK_Pointer: 3874 llvm_unreachable("valid complex int->pointer cast?"); 3875 case Type::STK_MemberPointer: 3876 llvm_unreachable("member pointer type in C"); 3877 } 3878 break; 3879 } 3880 3881 llvm_unreachable("Unhandled scalar cast"); 3882 return CK_BitCast; 3883 } 3884 3885 /// CheckCastTypes - Check type constraints for casting between types. 3886 ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR, 3887 QualType castType, Expr *castExpr, 3888 CastKind& Kind, ExprValueKind &VK, 3889 CXXCastPath &BasePath, bool FunctionalStyle) { 3890 if (castExpr->getType() == Context.UnknownAnyTy) 3891 return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath); 3892 3893 if (getLangOptions().CPlusPlus) 3894 return CXXCheckCStyleCast(SourceRange(CastStartLoc, 3895 castExpr->getLocEnd()), 3896 castType, VK, castExpr, Kind, BasePath, 3897 FunctionalStyle); 3898 3899 assert(!castExpr->getType()->isPlaceholderType()); 3900 3901 // We only support r-value casts in C. 3902 VK = VK_RValue; 3903 3904 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression 3905 // type needs to be scalar. 3906 if (castType->isVoidType()) { 3907 // We don't necessarily do lvalue-to-rvalue conversions on this. 3908 ExprResult castExprRes = IgnoredValueConversions(castExpr); 3909 if (castExprRes.isInvalid()) 3910 return ExprError(); 3911 castExpr = castExprRes.take(); 3912 3913 // Cast to void allows any expr type. 3914 Kind = CK_ToVoid; 3915 return Owned(castExpr); 3916 } 3917 3918 ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr); 3919 if (castExprRes.isInvalid()) 3920 return ExprError(); 3921 castExpr = castExprRes.take(); 3922 3923 if (RequireCompleteType(TyR.getBegin(), castType, 3924 diag::err_typecheck_cast_to_incomplete)) 3925 return ExprError(); 3926 3927 if (!castType->isScalarType() && !castType->isVectorType()) { 3928 if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) && 3929 (castType->isStructureType() || castType->isUnionType())) { 3930 // GCC struct/union extension: allow cast to self. 3931 // FIXME: Check that the cast destination type is complete. 3932 Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) 3933 << castType << castExpr->getSourceRange(); 3934 Kind = CK_NoOp; 3935 return Owned(castExpr); 3936 } 3937 3938 if (castType->isUnionType()) { 3939 // GCC cast to union extension 3940 RecordDecl *RD = castType->getAs<RecordType>()->getDecl(); 3941 RecordDecl::field_iterator Field, FieldEnd; 3942 for (Field = RD->field_begin(), FieldEnd = RD->field_end(); 3943 Field != FieldEnd; ++Field) { 3944 if (Context.hasSameUnqualifiedType(Field->getType(), 3945 castExpr->getType()) && 3946 !Field->isUnnamedBitfield()) { 3947 Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union) 3948 << castExpr->getSourceRange(); 3949 break; 3950 } 3951 } 3952 if (Field == FieldEnd) { 3953 Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type) 3954 << castExpr->getType() << castExpr->getSourceRange(); 3955 return ExprError(); 3956 } 3957 Kind = CK_ToUnion; 3958 return Owned(castExpr); 3959 } 3960 3961 // Reject any other conversions to non-scalar types. 3962 Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) 3963 << castType << castExpr->getSourceRange(); 3964 return ExprError(); 3965 } 3966 3967 // The type we're casting to is known to be a scalar or vector. 3968 3969 // Require the operand to be a scalar or vector. 3970 if (!castExpr->getType()->isScalarType() && 3971 !castExpr->getType()->isVectorType()) { 3972 Diag(castExpr->getLocStart(), 3973 diag::err_typecheck_expect_scalar_operand) 3974 << castExpr->getType() << castExpr->getSourceRange(); 3975 return ExprError(); 3976 } 3977 3978 if (castType->isExtVectorType()) 3979 return CheckExtVectorCast(TyR, castType, castExpr, Kind); 3980 3981 if (castType->isVectorType()) { 3982 if (castType->getAs<VectorType>()->getVectorKind() == 3983 VectorType::AltiVecVector && 3984 (castExpr->getType()->isIntegerType() || 3985 castExpr->getType()->isFloatingType())) { 3986 Kind = CK_VectorSplat; 3987 return Owned(castExpr); 3988 } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) { 3989 return ExprError(); 3990 } else 3991 return Owned(castExpr); 3992 } 3993 if (castExpr->getType()->isVectorType()) { 3994 if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind)) 3995 return ExprError(); 3996 else 3997 return Owned(castExpr); 3998 } 3999 4000 // The source and target types are both scalars, i.e. 4001 // - arithmetic types (fundamental, enum, and complex) 4002 // - all kinds of pointers 4003 // Note that member pointers were filtered out with C++, above. 4004 4005 if (isa<ObjCSelectorExpr>(castExpr)) { 4006 Diag(castExpr->getLocStart(), diag::err_cast_selector_expr); 4007 return ExprError(); 4008 } 4009 4010 // If either type is a pointer, the other type has to be either an 4011 // integer or a pointer. 4012 QualType castExprType = castExpr->getType(); 4013 if (!castType->isArithmeticType()) { 4014 if (!castExprType->isIntegralType(Context) && 4015 castExprType->isArithmeticType()) { 4016 Diag(castExpr->getLocStart(), 4017 diag::err_cast_pointer_from_non_pointer_int) 4018 << castExprType << castExpr->getSourceRange(); 4019 return ExprError(); 4020 } 4021 } else if (!castExpr->getType()->isArithmeticType()) { 4022 if (!castType->isIntegralType(Context) && castType->isArithmeticType()) { 4023 Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int) 4024 << castType << castExpr->getSourceRange(); 4025 return ExprError(); 4026 } 4027 } 4028 4029 if (getLangOptions().ObjCAutoRefCount) { 4030 // Diagnose problems with Objective-C casts involving lifetime qualifiers. 4031 CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()), 4032 castType, castExpr, CCK_CStyleCast); 4033 4034 if (const PointerType *CastPtr = castType->getAs<PointerType>()) { 4035 if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) { 4036 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); 4037 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); 4038 if (CastPtr->getPointeeType()->isObjCLifetimeType() && 4039 ExprPtr->getPointeeType()->isObjCLifetimeType() && 4040 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { 4041 Diag(castExpr->getLocStart(), 4042 diag::err_typecheck_incompatible_ownership) 4043 << castExprType << castType << AA_Casting 4044 << castExpr->getSourceRange(); 4045 4046 return ExprError(); 4047 } 4048 } 4049 } 4050 else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) { 4051 Diag(castExpr->getLocStart(), 4052 diag::err_arc_convesion_of_weak_unavailable) << 1 4053 << castExprType << castType 4054 << castExpr->getSourceRange(); 4055 return ExprError(); 4056 } 4057 } 4058 4059 castExprRes = Owned(castExpr); 4060 Kind = PrepareScalarCast(*this, castExprRes, castType); 4061 if (castExprRes.isInvalid()) 4062 return ExprError(); 4063 castExpr = castExprRes.take(); 4064 4065 if (Kind == CK_BitCast) 4066 CheckCastAlign(castExpr, castType, TyR); 4067 4068 return Owned(castExpr); 4069 } 4070 4071 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, 4072 CastKind &Kind) { 4073 assert(VectorTy->isVectorType() && "Not a vector type!"); 4074 4075 if (Ty->isVectorType() || Ty->isIntegerType()) { 4076 if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) 4077 return Diag(R.getBegin(), 4078 Ty->isVectorType() ? 4079 diag::err_invalid_conversion_between_vectors : 4080 diag::err_invalid_conversion_between_vector_and_integer) 4081 << VectorTy << Ty << R; 4082 } else 4083 return Diag(R.getBegin(), 4084 diag::err_invalid_conversion_between_vector_and_scalar) 4085 << VectorTy << Ty << R; 4086 4087 Kind = CK_BitCast; 4088 return false; 4089 } 4090 4091 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, 4092 Expr *CastExpr, CastKind &Kind) { 4093 assert(DestTy->isExtVectorType() && "Not an extended vector type!"); 4094 4095 QualType SrcTy = CastExpr->getType(); 4096 4097 // If SrcTy is a VectorType, the total size must match to explicitly cast to 4098 // an ExtVectorType. 4099 if (SrcTy->isVectorType()) { 4100 if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) { 4101 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) 4102 << DestTy << SrcTy << R; 4103 return ExprError(); 4104 } 4105 Kind = CK_BitCast; 4106 return Owned(CastExpr); 4107 } 4108 4109 // All non-pointer scalars can be cast to ExtVector type. The appropriate 4110 // conversion will take place first from scalar to elt type, and then 4111 // splat from elt type to vector. 4112 if (SrcTy->isPointerType()) 4113 return Diag(R.getBegin(), 4114 diag::err_invalid_conversion_between_vector_and_scalar) 4115 << DestTy << SrcTy << R; 4116 4117 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType(); 4118 ExprResult CastExprRes = Owned(CastExpr); 4119 CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy); 4120 if (CastExprRes.isInvalid()) 4121 return ExprError(); 4122 CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take(); 4123 4124 Kind = CK_VectorSplat; 4125 return Owned(CastExpr); 4126 } 4127 4128 ExprResult 4129 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, 4130 Declarator &D, ParsedType &Ty, 4131 SourceLocation RParenLoc, Expr *castExpr) { 4132 assert(!D.isInvalidType() && (castExpr != 0) && 4133 "ActOnCastExpr(): missing type or expr"); 4134 4135 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType()); 4136 if (D.isInvalidType()) 4137 return ExprError(); 4138 4139 if (getLangOptions().CPlusPlus) { 4140 // Check that there are no default arguments (C++ only). 4141 CheckExtraCXXDefaultArguments(D); 4142 } 4143 4144 QualType castType = castTInfo->getType(); 4145 Ty = CreateParsedType(castType, castTInfo); 4146 4147 bool isVectorLiteral = false; 4148 4149 // Check for an altivec or OpenCL literal, 4150 // i.e. all the elements are integer constants. 4151 ParenExpr *PE = dyn_cast<ParenExpr>(castExpr); 4152 ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr); 4153 if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) { 4154 if (PLE && PLE->getNumExprs() == 0) { 4155 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); 4156 return ExprError(); 4157 } 4158 if (PE || PLE->getNumExprs() == 1) { 4159 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); 4160 if (!E->getType()->isVectorType()) 4161 isVectorLiteral = true; 4162 } 4163 else 4164 isVectorLiteral = true; 4165 } 4166 4167 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' 4168 // then handle it as such. 4169 if (isVectorLiteral) 4170 return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo); 4171 4172 // If the Expr being casted is a ParenListExpr, handle it specially. 4173 // This is not an AltiVec-style cast, so turn the ParenListExpr into a 4174 // sequence of BinOp comma operators. 4175 if (isa<ParenListExpr>(castExpr)) { 4176 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr); 4177 if (Result.isInvalid()) return ExprError(); 4178 castExpr = Result.take(); 4179 } 4180 4181 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr); 4182 } 4183 4184 ExprResult 4185 Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, 4186 SourceLocation RParenLoc, Expr *castExpr) { 4187 CastKind Kind = CK_Invalid; 4188 ExprValueKind VK = VK_RValue; 4189 CXXCastPath BasePath; 4190 ExprResult CastResult = 4191 CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(), 4192 castExpr, Kind, VK, BasePath); 4193 if (CastResult.isInvalid()) 4194 return ExprError(); 4195 castExpr = CastResult.take(); 4196 4197 return Owned(CStyleCastExpr::Create(Context, 4198 Ty->getType().getNonLValueExprType(Context), 4199 VK, Kind, castExpr, &BasePath, Ty, 4200 LParenLoc, RParenLoc)); 4201 } 4202 4203 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, 4204 SourceLocation RParenLoc, Expr *E, 4205 TypeSourceInfo *TInfo) { 4206 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && 4207 "Expected paren or paren list expression"); 4208 4209 Expr **exprs; 4210 unsigned numExprs; 4211 Expr *subExpr; 4212 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { 4213 exprs = PE->getExprs(); 4214 numExprs = PE->getNumExprs(); 4215 } else { 4216 subExpr = cast<ParenExpr>(E)->getSubExpr(); 4217 exprs = &subExpr; 4218 numExprs = 1; 4219 } 4220 4221 QualType Ty = TInfo->getType(); 4222 assert(Ty->isVectorType() && "Expected vector type"); 4223 4224 llvm::SmallVector<Expr *, 8> initExprs; 4225 const VectorType *VTy = Ty->getAs<VectorType>(); 4226 unsigned numElems = Ty->getAs<VectorType>()->getNumElements(); 4227 4228 // '(...)' form of vector initialization in AltiVec: the number of 4229 // initializers must be one or must match the size of the vector. 4230 // If a single value is specified in the initializer then it will be 4231 // replicated to all the components of the vector 4232 if (VTy->getVectorKind() == VectorType::AltiVecVector) { 4233 // The number of initializers must be one or must match the size of the 4234 // vector. If a single value is specified in the initializer then it will 4235 // be replicated to all the components of the vector 4236 if (numExprs == 1) { 4237 QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); 4238 ExprResult Literal = Owned(exprs[0]); 4239 Literal = ImpCastExprToType(Literal.take(), ElemTy, 4240 PrepareScalarCast(*this, Literal, ElemTy)); 4241 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take()); 4242 } 4243 else if (numExprs < numElems) { 4244 Diag(E->getExprLoc(), 4245 diag::err_incorrect_number_of_vector_initializers); 4246 return ExprError(); 4247 } 4248 else 4249 for (unsigned i = 0, e = numExprs; i != e; ++i) 4250 initExprs.push_back(exprs[i]); 4251 } 4252 else { 4253 // For OpenCL, when the number of initializers is a single value, 4254 // it will be replicated to all components of the vector. 4255 if (getLangOptions().OpenCL && 4256 VTy->getVectorKind() == VectorType::GenericVector && 4257 numExprs == 1) { 4258 QualType ElemTy = Ty->getAs<VectorType>()->getElementType(); 4259 ExprResult Literal = Owned(exprs[0]); 4260 Literal = ImpCastExprToType(Literal.take(), ElemTy, 4261 PrepareScalarCast(*this, Literal, ElemTy)); 4262 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take()); 4263 } 4264 4265 for (unsigned i = 0, e = numExprs; i != e; ++i) 4266 initExprs.push_back(exprs[i]); 4267 } 4268 // FIXME: This means that pretty-printing the final AST will produce curly 4269 // braces instead of the original commas. 4270 InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc, 4271 &initExprs[0], 4272 initExprs.size(), RParenLoc); 4273 initE->setType(Ty); 4274 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); 4275 } 4276 4277 /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence 4278 /// of comma binary operators. 4279 ExprResult 4280 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) { 4281 ParenListExpr *E = dyn_cast<ParenListExpr>(expr); 4282 if (!E) 4283 return Owned(expr); 4284 4285 ExprResult Result(E->getExpr(0)); 4286 4287 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) 4288 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), 4289 E->getExpr(i)); 4290 4291 if (Result.isInvalid()) return ExprError(); 4292 4293 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); 4294 } 4295 4296 ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L, 4297 SourceLocation R, 4298 MultiExprArg Val) { 4299 unsigned nexprs = Val.size(); 4300 Expr **exprs = reinterpret_cast<Expr**>(Val.release()); 4301 assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list"); 4302 Expr *expr; 4303 if (nexprs == 1) 4304 expr = new (Context) ParenExpr(L, R, exprs[0]); 4305 else 4306 expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R, 4307 exprs[nexprs-1]->getType()); 4308 return Owned(expr); 4309 } 4310 4311 /// \brief Emit a specialized diagnostic when one expression is a null pointer 4312 /// constant and the other is not a pointer. 4313 bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS, 4314 SourceLocation QuestionLoc) { 4315 Expr *NullExpr = LHS; 4316 Expr *NonPointerExpr = RHS; 4317 Expr::NullPointerConstantKind NullKind = 4318 NullExpr->isNullPointerConstant(Context, 4319 Expr::NPC_ValueDependentIsNotNull); 4320 4321 if (NullKind == Expr::NPCK_NotNull) { 4322 NullExpr = RHS; 4323 NonPointerExpr = LHS; 4324 NullKind = 4325 NullExpr->isNullPointerConstant(Context, 4326 Expr::NPC_ValueDependentIsNotNull); 4327 } 4328 4329 if (NullKind == Expr::NPCK_NotNull) 4330 return false; 4331 4332 if (NullKind == Expr::NPCK_ZeroInteger) { 4333 // In this case, check to make sure that we got here from a "NULL" 4334 // string in the source code. 4335 NullExpr = NullExpr->IgnoreParenImpCasts(); 4336 SourceLocation loc = NullExpr->getExprLoc(); 4337 if (!findMacroSpelling(loc, "NULL")) 4338 return false; 4339 } 4340 4341 int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr); 4342 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) 4343 << NonPointerExpr->getType() << DiagType 4344 << NonPointerExpr->getSourceRange(); 4345 return true; 4346 } 4347 4348 /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension. 4349 /// In that case, lhs = cond. 4350 /// C99 6.5.15 4351 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, 4352 ExprValueKind &VK, ExprObjectKind &OK, 4353 SourceLocation QuestionLoc) { 4354 4355 ExprResult lhsResult = CheckPlaceholderExpr(LHS.get()); 4356 if (!lhsResult.isUsable()) return QualType(); 4357 LHS = move(lhsResult); 4358 4359 ExprResult rhsResult = CheckPlaceholderExpr(RHS.get()); 4360 if (!rhsResult.isUsable()) return QualType(); 4361 RHS = move(rhsResult); 4362 4363 // C++ is sufficiently different to merit its own checker. 4364 if (getLangOptions().CPlusPlus) 4365 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); 4366 4367 VK = VK_RValue; 4368 OK = OK_Ordinary; 4369 4370 Cond = UsualUnaryConversions(Cond.take()); 4371 if (Cond.isInvalid()) 4372 return QualType(); 4373 LHS = UsualUnaryConversions(LHS.take()); 4374 if (LHS.isInvalid()) 4375 return QualType(); 4376 RHS = UsualUnaryConversions(RHS.take()); 4377 if (RHS.isInvalid()) 4378 return QualType(); 4379 4380 QualType CondTy = Cond.get()->getType(); 4381 QualType LHSTy = LHS.get()->getType(); 4382 QualType RHSTy = RHS.get()->getType(); 4383 4384 // first, check the condition. 4385 if (!CondTy->isScalarType()) { // C99 6.5.15p2 4386 // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar. 4387 // Throw an error if its not either. 4388 if (getLangOptions().OpenCL) { 4389 if (!CondTy->isVectorType()) { 4390 Diag(Cond.get()->getLocStart(), 4391 diag::err_typecheck_cond_expect_scalar_or_vector) 4392 << CondTy; 4393 return QualType(); 4394 } 4395 } 4396 else { 4397 Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) 4398 << CondTy; 4399 return QualType(); 4400 } 4401 } 4402 4403 // Now check the two expressions. 4404 if (LHSTy->isVectorType() || RHSTy->isVectorType()) 4405 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); 4406 4407 // OpenCL: If the condition is a vector, and both operands are scalar, 4408 // attempt to implicity convert them to the vector type to act like the 4409 // built in select. 4410 if (getLangOptions().OpenCL && CondTy->isVectorType()) { 4411 // Both operands should be of scalar type. 4412 if (!LHSTy->isScalarType()) { 4413 Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) 4414 << CondTy; 4415 return QualType(); 4416 } 4417 if (!RHSTy->isScalarType()) { 4418 Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar) 4419 << CondTy; 4420 return QualType(); 4421 } 4422 // Implicity convert these scalars to the type of the condition. 4423 LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast); 4424 RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast); 4425 } 4426 4427 // If both operands have arithmetic type, do the usual arithmetic conversions 4428 // to find a common type: C99 6.5.15p3,5. 4429 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { 4430 UsualArithmeticConversions(LHS, RHS); 4431 if (LHS.isInvalid() || RHS.isInvalid()) 4432 return QualType(); 4433 return LHS.get()->getType(); 4434 } 4435 4436 // If both operands are the same structure or union type, the result is that 4437 // type. 4438 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 4439 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) 4440 if (LHSRT->getDecl() == RHSRT->getDecl()) 4441 // "If both the operands have structure or union type, the result has 4442 // that type." This implies that CV qualifiers are dropped. 4443 return LHSTy.getUnqualifiedType(); 4444 // FIXME: Type of conditional expression must be complete in C mode. 4445 } 4446 4447 // C99 6.5.15p5: "If both operands have void type, the result has void type." 4448 // The following || allows only one side to be void (a GCC-ism). 4449 if (LHSTy->isVoidType() || RHSTy->isVoidType()) { 4450 if (!LHSTy->isVoidType()) 4451 Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void) 4452 << RHS.get()->getSourceRange(); 4453 if (!RHSTy->isVoidType()) 4454 Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void) 4455 << LHS.get()->getSourceRange(); 4456 LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid); 4457 RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid); 4458 return Context.VoidTy; 4459 } 4460 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has 4461 // the type of the other operand." 4462 if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) && 4463 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4464 // promote the null to a pointer. 4465 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer); 4466 return LHSTy; 4467 } 4468 if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) && 4469 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4470 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer); 4471 return RHSTy; 4472 } 4473 4474 // All objective-c pointer type analysis is done here. 4475 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, 4476 QuestionLoc); 4477 if (LHS.isInvalid() || RHS.isInvalid()) 4478 return QualType(); 4479 if (!compositeType.isNull()) 4480 return compositeType; 4481 4482 4483 // Handle block pointer types. 4484 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) { 4485 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { 4486 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { 4487 QualType destType = Context.getPointerType(Context.VoidTy); 4488 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); 4489 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); 4490 return destType; 4491 } 4492 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 4493 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4494 return QualType(); 4495 } 4496 // We have 2 block pointer types. 4497 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { 4498 // Two identical block pointer types are always compatible. 4499 return LHSTy; 4500 } 4501 // The block pointer types aren't identical, continue checking. 4502 QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType(); 4503 QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType(); 4504 4505 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), 4506 rhptee.getUnqualifiedType())) { 4507 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) 4508 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4509 // In this situation, we assume void* type. No especially good 4510 // reason, but this is what gcc does, and we do have to pick 4511 // to get a consistent AST. 4512 QualType incompatTy = Context.getPointerType(Context.VoidTy); 4513 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); 4514 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); 4515 return incompatTy; 4516 } 4517 // The block pointer types are compatible. 4518 LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast); 4519 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); 4520 return LHSTy; 4521 } 4522 4523 // Check constraints for C object pointers types (C99 6.5.15p3,6). 4524 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 4525 // get the "pointed to" types 4526 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); 4527 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); 4528 4529 // ignore qualifiers on void (C99 6.5.15p3, clause 6) 4530 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { 4531 // Figure out necessary qualifiers (C99 6.5.15p6) 4532 QualType destPointee 4533 = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); 4534 QualType destType = Context.getPointerType(destPointee); 4535 // Add qualifiers if necessary. 4536 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp); 4537 // Promote to void*. 4538 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); 4539 return destType; 4540 } 4541 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { 4542 QualType destPointee 4543 = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); 4544 QualType destType = Context.getPointerType(destPointee); 4545 // Add qualifiers if necessary. 4546 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp); 4547 // Promote to void*. 4548 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); 4549 return destType; 4550 } 4551 4552 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { 4553 // Two identical pointer types are always compatible. 4554 return LHSTy; 4555 } 4556 if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), 4557 rhptee.getUnqualifiedType())) { 4558 Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers) 4559 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4560 // In this situation, we assume void* type. No especially good 4561 // reason, but this is what gcc does, and we do have to pick 4562 // to get a consistent AST. 4563 QualType incompatTy = Context.getPointerType(Context.VoidTy); 4564 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); 4565 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); 4566 return incompatTy; 4567 } 4568 // The pointer types are compatible. 4569 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to 4570 // differently qualified versions of compatible types, the result type is 4571 // a pointer to an appropriately qualified version of the *composite* 4572 // type. 4573 // FIXME: Need to calculate the composite type. 4574 // FIXME: Need to add qualifiers 4575 LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast); 4576 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); 4577 return LHSTy; 4578 } 4579 4580 // GCC compatibility: soften pointer/integer mismatch. Note that 4581 // null pointers have been filtered out by this point. 4582 if (RHSTy->isPointerType() && LHSTy->isIntegerType()) { 4583 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) 4584 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4585 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer); 4586 return RHSTy; 4587 } 4588 if (LHSTy->isPointerType() && RHSTy->isIntegerType()) { 4589 Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch) 4590 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4591 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer); 4592 return LHSTy; 4593 } 4594 4595 // Emit a better diagnostic if one of the expressions is a null pointer 4596 // constant and the other is not a pointer type. In this case, the user most 4597 // likely forgot to take the address of the other expression. 4598 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 4599 return QualType(); 4600 4601 // Otherwise, the operands are not compatible. 4602 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 4603 << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4604 return QualType(); 4605 } 4606 4607 /// FindCompositeObjCPointerType - Helper method to find composite type of 4608 /// two objective-c pointer types of the two input expressions. 4609 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, 4610 SourceLocation QuestionLoc) { 4611 QualType LHSTy = LHS.get()->getType(); 4612 QualType RHSTy = RHS.get()->getType(); 4613 4614 // Handle things like Class and struct objc_class*. Here we case the result 4615 // to the pseudo-builtin, because that will be implicitly cast back to the 4616 // redefinition type if an attempt is made to access its fields. 4617 if (LHSTy->isObjCClassType() && 4618 (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) { 4619 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); 4620 return LHSTy; 4621 } 4622 if (RHSTy->isObjCClassType() && 4623 (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) { 4624 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); 4625 return RHSTy; 4626 } 4627 // And the same for struct objc_object* / id 4628 if (LHSTy->isObjCIdType() && 4629 (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) { 4630 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); 4631 return LHSTy; 4632 } 4633 if (RHSTy->isObjCIdType() && 4634 (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) { 4635 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); 4636 return RHSTy; 4637 } 4638 // And the same for struct objc_selector* / SEL 4639 if (Context.isObjCSelType(LHSTy) && 4640 (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) { 4641 RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast); 4642 return LHSTy; 4643 } 4644 if (Context.isObjCSelType(RHSTy) && 4645 (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) { 4646 LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast); 4647 return RHSTy; 4648 } 4649 // Check constraints for Objective-C object pointers types. 4650 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { 4651 4652 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { 4653 // Two identical object pointer types are always compatible. 4654 return LHSTy; 4655 } 4656 const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>(); 4657 const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>(); 4658 QualType compositeType = LHSTy; 4659 4660 // If both operands are interfaces and either operand can be 4661 // assigned to the other, use that type as the composite 4662 // type. This allows 4663 // xxx ? (A*) a : (B*) b 4664 // where B is a subclass of A. 4665 // 4666 // Additionally, as for assignment, if either type is 'id' 4667 // allow silent coercion. Finally, if the types are 4668 // incompatible then make sure to use 'id' as the composite 4669 // type so the result is acceptable for sending messages to. 4670 4671 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. 4672 // It could return the composite type. 4673 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { 4674 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; 4675 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { 4676 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; 4677 } else if ((LHSTy->isObjCQualifiedIdType() || 4678 RHSTy->isObjCQualifiedIdType()) && 4679 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) { 4680 // Need to handle "id<xx>" explicitly. 4681 // GCC allows qualified id and any Objective-C type to devolve to 4682 // id. Currently localizing to here until clear this should be 4683 // part of ObjCQualifiedIdTypesAreCompatible. 4684 compositeType = Context.getObjCIdType(); 4685 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { 4686 compositeType = Context.getObjCIdType(); 4687 } else if (!(compositeType = 4688 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) 4689 ; 4690 else { 4691 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) 4692 << LHSTy << RHSTy 4693 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4694 QualType incompatTy = Context.getObjCIdType(); 4695 LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast); 4696 RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast); 4697 return incompatTy; 4698 } 4699 // The object pointer types are compatible. 4700 LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast); 4701 RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast); 4702 return compositeType; 4703 } 4704 // Check Objective-C object pointer types and 'void *' 4705 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { 4706 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType(); 4707 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); 4708 QualType destPointee 4709 = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); 4710 QualType destType = Context.getPointerType(destPointee); 4711 // Add qualifiers if necessary. 4712 LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp); 4713 // Promote to void*. 4714 RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast); 4715 return destType; 4716 } 4717 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { 4718 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType(); 4719 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType(); 4720 QualType destPointee 4721 = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); 4722 QualType destType = Context.getPointerType(destPointee); 4723 // Add qualifiers if necessary. 4724 RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp); 4725 // Promote to void*. 4726 LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast); 4727 return destType; 4728 } 4729 return QualType(); 4730 } 4731 4732 /// SuggestParentheses - Emit a note with a fixit hint that wraps 4733 /// ParenRange in parentheses. 4734 static void SuggestParentheses(Sema &Self, SourceLocation Loc, 4735 const PartialDiagnostic &Note, 4736 SourceRange ParenRange) { 4737 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd()); 4738 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && 4739 EndLoc.isValid()) { 4740 Self.Diag(Loc, Note) 4741 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") 4742 << FixItHint::CreateInsertion(EndLoc, ")"); 4743 } else { 4744 // We can't display the parentheses, so just show the bare note. 4745 Self.Diag(Loc, Note) << ParenRange; 4746 } 4747 } 4748 4749 static bool IsArithmeticOp(BinaryOperatorKind Opc) { 4750 return Opc >= BO_Mul && Opc <= BO_Shr; 4751 } 4752 4753 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary 4754 /// expression, either using a built-in or overloaded operator, 4755 /// and sets *OpCode to the opcode and *RHS to the right-hand side expression. 4756 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, 4757 Expr **RHS) { 4758 E = E->IgnoreParenImpCasts(); 4759 E = E->IgnoreConversionOperator(); 4760 E = E->IgnoreParenImpCasts(); 4761 4762 // Built-in binary operator. 4763 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { 4764 if (IsArithmeticOp(OP->getOpcode())) { 4765 *Opcode = OP->getOpcode(); 4766 *RHS = OP->getRHS(); 4767 return true; 4768 } 4769 } 4770 4771 // Overloaded operator. 4772 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { 4773 if (Call->getNumArgs() != 2) 4774 return false; 4775 4776 // Make sure this is really a binary operator that is safe to pass into 4777 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. 4778 OverloadedOperatorKind OO = Call->getOperator(); 4779 if (OO < OO_Plus || OO > OO_Arrow) 4780 return false; 4781 4782 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); 4783 if (IsArithmeticOp(OpKind)) { 4784 *Opcode = OpKind; 4785 *RHS = Call->getArg(1); 4786 return true; 4787 } 4788 } 4789 4790 return false; 4791 } 4792 4793 static bool IsLogicOp(BinaryOperatorKind Opc) { 4794 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr); 4795 } 4796 4797 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type 4798 /// or is a logical expression such as (x==y) which has int type, but is 4799 /// commonly interpreted as boolean. 4800 static bool ExprLooksBoolean(Expr *E) { 4801 E = E->IgnoreParenImpCasts(); 4802 4803 if (E->getType()->isBooleanType()) 4804 return true; 4805 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) 4806 return IsLogicOp(OP->getOpcode()); 4807 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) 4808 return OP->getOpcode() == UO_LNot; 4809 4810 return false; 4811 } 4812 4813 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator 4814 /// and binary operator are mixed in a way that suggests the programmer assumed 4815 /// the conditional operator has higher precedence, for example: 4816 /// "int x = a + someBinaryCondition ? 1 : 2". 4817 static void DiagnoseConditionalPrecedence(Sema &Self, 4818 SourceLocation OpLoc, 4819 Expr *Condition, 4820 Expr *LHS, 4821 Expr *RHS) { 4822 BinaryOperatorKind CondOpcode; 4823 Expr *CondRHS; 4824 4825 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) 4826 return; 4827 if (!ExprLooksBoolean(CondRHS)) 4828 return; 4829 4830 // The condition is an arithmetic binary expression, with a right- 4831 // hand side that looks boolean, so warn. 4832 4833 Self.Diag(OpLoc, diag::warn_precedence_conditional) 4834 << Condition->getSourceRange() 4835 << BinaryOperator::getOpcodeStr(CondOpcode); 4836 4837 SuggestParentheses(Self, OpLoc, 4838 Self.PDiag(diag::note_precedence_conditional_silence) 4839 << BinaryOperator::getOpcodeStr(CondOpcode), 4840 SourceRange(Condition->getLocStart(), Condition->getLocEnd())); 4841 4842 SuggestParentheses(Self, OpLoc, 4843 Self.PDiag(diag::note_precedence_conditional_first), 4844 SourceRange(CondRHS->getLocStart(), RHS->getLocEnd())); 4845 } 4846 4847 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null 4848 /// in the case of a the GNU conditional expr extension. 4849 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, 4850 SourceLocation ColonLoc, 4851 Expr *CondExpr, Expr *LHSExpr, 4852 Expr *RHSExpr) { 4853 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS 4854 // was the condition. 4855 OpaqueValueExpr *opaqueValue = 0; 4856 Expr *commonExpr = 0; 4857 if (LHSExpr == 0) { 4858 commonExpr = CondExpr; 4859 4860 // We usually want to apply unary conversions *before* saving, except 4861 // in the special case of a C++ l-value conditional. 4862 if (!(getLangOptions().CPlusPlus 4863 && !commonExpr->isTypeDependent() 4864 && commonExpr->getValueKind() == RHSExpr->getValueKind() 4865 && commonExpr->isGLValue() 4866 && commonExpr->isOrdinaryOrBitFieldObject() 4867 && RHSExpr->isOrdinaryOrBitFieldObject() 4868 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { 4869 ExprResult commonRes = UsualUnaryConversions(commonExpr); 4870 if (commonRes.isInvalid()) 4871 return ExprError(); 4872 commonExpr = commonRes.take(); 4873 } 4874 4875 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), 4876 commonExpr->getType(), 4877 commonExpr->getValueKind(), 4878 commonExpr->getObjectKind()); 4879 LHSExpr = CondExpr = opaqueValue; 4880 } 4881 4882 ExprValueKind VK = VK_RValue; 4883 ExprObjectKind OK = OK_Ordinary; 4884 ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr); 4885 QualType result = CheckConditionalOperands(Cond, LHS, RHS, 4886 VK, OK, QuestionLoc); 4887 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || 4888 RHS.isInvalid()) 4889 return ExprError(); 4890 4891 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), 4892 RHS.get()); 4893 4894 if (!commonExpr) 4895 return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc, 4896 LHS.take(), ColonLoc, 4897 RHS.take(), result, VK, OK)); 4898 4899 return Owned(new (Context) 4900 BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(), 4901 RHS.take(), QuestionLoc, ColonLoc, result, VK, OK)); 4902 } 4903 4904 // checkPointerTypesForAssignment - This is a very tricky routine (despite 4905 // being closely modeled after the C99 spec:-). The odd characteristic of this 4906 // routine is it effectively iqnores the qualifiers on the top level pointee. 4907 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. 4908 // FIXME: add a couple examples in this comment. 4909 static Sema::AssignConvertType 4910 checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { 4911 assert(lhsType.isCanonical() && "LHS not canonicalized!"); 4912 assert(rhsType.isCanonical() && "RHS not canonicalized!"); 4913 4914 // get the "pointed to" type (ignoring qualifiers at the top level) 4915 const Type *lhptee, *rhptee; 4916 Qualifiers lhq, rhq; 4917 llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split(); 4918 llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split(); 4919 4920 Sema::AssignConvertType ConvTy = Sema::Compatible; 4921 4922 // C99 6.5.16.1p1: This following citation is common to constraints 4923 // 3 & 4 (below). ...and the type *pointed to* by the left has all the 4924 // qualifiers of the type *pointed to* by the right; 4925 Qualifiers lq; 4926 4927 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. 4928 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && 4929 lhq.compatiblyIncludesObjCLifetime(rhq)) { 4930 // Ignore lifetime for further calculation. 4931 lhq.removeObjCLifetime(); 4932 rhq.removeObjCLifetime(); 4933 } 4934 4935 if (!lhq.compatiblyIncludes(rhq)) { 4936 // Treat address-space mismatches as fatal. TODO: address subspaces 4937 if (lhq.getAddressSpace() != rhq.getAddressSpace()) 4938 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; 4939 4940 // It's okay to add or remove GC or lifetime qualifiers when converting to 4941 // and from void*. 4942 else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime() 4943 .compatiblyIncludes( 4944 rhq.withoutObjCGCAttr().withoutObjCGLifetime()) 4945 && (lhptee->isVoidType() || rhptee->isVoidType())) 4946 ; // keep old 4947 4948 // Treat lifetime mismatches as fatal. 4949 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) 4950 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; 4951 4952 // For GCC compatibility, other qualifier mismatches are treated 4953 // as still compatible in C. 4954 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; 4955 } 4956 4957 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or 4958 // incomplete type and the other is a pointer to a qualified or unqualified 4959 // version of void... 4960 if (lhptee->isVoidType()) { 4961 if (rhptee->isIncompleteOrObjectType()) 4962 return ConvTy; 4963 4964 // As an extension, we allow cast to/from void* to function pointer. 4965 assert(rhptee->isFunctionType()); 4966 return Sema::FunctionVoidPointer; 4967 } 4968 4969 if (rhptee->isVoidType()) { 4970 if (lhptee->isIncompleteOrObjectType()) 4971 return ConvTy; 4972 4973 // As an extension, we allow cast to/from void* to function pointer. 4974 assert(lhptee->isFunctionType()); 4975 return Sema::FunctionVoidPointer; 4976 } 4977 4978 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or 4979 // unqualified versions of compatible types, ... 4980 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); 4981 if (!S.Context.typesAreCompatible(ltrans, rtrans)) { 4982 // Check if the pointee types are compatible ignoring the sign. 4983 // We explicitly check for char so that we catch "char" vs 4984 // "unsigned char" on systems where "char" is unsigned. 4985 if (lhptee->isCharType()) 4986 ltrans = S.Context.UnsignedCharTy; 4987 else if (lhptee->hasSignedIntegerRepresentation()) 4988 ltrans = S.Context.getCorrespondingUnsignedType(ltrans); 4989 4990 if (rhptee->isCharType()) 4991 rtrans = S.Context.UnsignedCharTy; 4992 else if (rhptee->hasSignedIntegerRepresentation()) 4993 rtrans = S.Context.getCorrespondingUnsignedType(rtrans); 4994 4995 if (ltrans == rtrans) { 4996 // Types are compatible ignoring the sign. Qualifier incompatibility 4997 // takes priority over sign incompatibility because the sign 4998 // warning can be disabled. 4999 if (ConvTy != Sema::Compatible) 5000 return ConvTy; 5001 5002 return Sema::IncompatiblePointerSign; 5003 } 5004 5005 // If we are a multi-level pointer, it's possible that our issue is simply 5006 // one of qualification - e.g. char ** -> const char ** is not allowed. If 5007 // the eventual target type is the same and the pointers have the same 5008 // level of indirection, this must be the issue. 5009 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { 5010 do { 5011 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr(); 5012 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr(); 5013 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); 5014 5015 if (lhptee == rhptee) 5016 return Sema::IncompatibleNestedPointerQualifiers; 5017 } 5018 5019 // General pointer incompatibility takes priority over qualifiers. 5020 return Sema::IncompatiblePointer; 5021 } 5022 return ConvTy; 5023 } 5024 5025 /// checkBlockPointerTypesForAssignment - This routine determines whether two 5026 /// block pointer types are compatible or whether a block and normal pointer 5027 /// are compatible. It is more restrict than comparing two function pointer 5028 // types. 5029 static Sema::AssignConvertType 5030 checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType, 5031 QualType rhsType) { 5032 assert(lhsType.isCanonical() && "LHS not canonicalized!"); 5033 assert(rhsType.isCanonical() && "RHS not canonicalized!"); 5034 5035 QualType lhptee, rhptee; 5036 5037 // get the "pointed to" type (ignoring qualifiers at the top level) 5038 lhptee = cast<BlockPointerType>(lhsType)->getPointeeType(); 5039 rhptee = cast<BlockPointerType>(rhsType)->getPointeeType(); 5040 5041 // In C++, the types have to match exactly. 5042 if (S.getLangOptions().CPlusPlus) 5043 return Sema::IncompatibleBlockPointer; 5044 5045 Sema::AssignConvertType ConvTy = Sema::Compatible; 5046 5047 // For blocks we enforce that qualifiers are identical. 5048 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers()) 5049 ConvTy = Sema::CompatiblePointerDiscardsQualifiers; 5050 5051 if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType)) 5052 return Sema::IncompatibleBlockPointer; 5053 5054 return ConvTy; 5055 } 5056 5057 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types 5058 /// for assignment compatibility. 5059 static Sema::AssignConvertType 5060 checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) { 5061 assert(lhsType.isCanonical() && "LHS was not canonicalized!"); 5062 assert(rhsType.isCanonical() && "RHS was not canonicalized!"); 5063 5064 if (lhsType->isObjCBuiltinType()) { 5065 // Class is not compatible with ObjC object pointers. 5066 if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() && 5067 !rhsType->isObjCQualifiedClassType()) 5068 return Sema::IncompatiblePointer; 5069 return Sema::Compatible; 5070 } 5071 if (rhsType->isObjCBuiltinType()) { 5072 // Class is not compatible with ObjC object pointers. 5073 if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() && 5074 !lhsType->isObjCQualifiedClassType()) 5075 return Sema::IncompatiblePointer; 5076 return Sema::Compatible; 5077 } 5078 QualType lhptee = 5079 lhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); 5080 QualType rhptee = 5081 rhsType->getAs<ObjCObjectPointerType>()->getPointeeType(); 5082 5083 if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) 5084 return Sema::CompatiblePointerDiscardsQualifiers; 5085 5086 if (S.Context.typesAreCompatible(lhsType, rhsType)) 5087 return Sema::Compatible; 5088 if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) 5089 return Sema::IncompatibleObjCQualifiedId; 5090 return Sema::IncompatiblePointer; 5091 } 5092 5093 Sema::AssignConvertType 5094 Sema::CheckAssignmentConstraints(SourceLocation Loc, 5095 QualType lhsType, QualType rhsType) { 5096 // Fake up an opaque expression. We don't actually care about what 5097 // cast operations are required, so if CheckAssignmentConstraints 5098 // adds casts to this they'll be wasted, but fortunately that doesn't 5099 // usually happen on valid code. 5100 OpaqueValueExpr rhs(Loc, rhsType, VK_RValue); 5101 ExprResult rhsPtr = &rhs; 5102 CastKind K = CK_Invalid; 5103 5104 return CheckAssignmentConstraints(lhsType, rhsPtr, K); 5105 } 5106 5107 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently 5108 /// has code to accommodate several GCC extensions when type checking 5109 /// pointers. Here are some objectionable examples that GCC considers warnings: 5110 /// 5111 /// int a, *pint; 5112 /// short *pshort; 5113 /// struct foo *pfoo; 5114 /// 5115 /// pint = pshort; // warning: assignment from incompatible pointer type 5116 /// a = pint; // warning: assignment makes integer from pointer without a cast 5117 /// pint = a; // warning: assignment makes pointer from integer without a cast 5118 /// pint = pfoo; // warning: assignment from incompatible pointer type 5119 /// 5120 /// As a result, the code for dealing with pointers is more complex than the 5121 /// C99 spec dictates. 5122 /// 5123 /// Sets 'Kind' for any result kind except Incompatible. 5124 Sema::AssignConvertType 5125 Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs, 5126 CastKind &Kind) { 5127 QualType rhsType = rhs.get()->getType(); 5128 QualType origLhsType = lhsType; 5129 5130 // Get canonical types. We're not formatting these types, just comparing 5131 // them. 5132 lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); 5133 rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); 5134 5135 // Common case: no conversion required. 5136 if (lhsType == rhsType) { 5137 Kind = CK_NoOp; 5138 return Compatible; 5139 } 5140 5141 // If the left-hand side is a reference type, then we are in a 5142 // (rare!) case where we've allowed the use of references in C, 5143 // e.g., as a parameter type in a built-in function. In this case, 5144 // just make sure that the type referenced is compatible with the 5145 // right-hand side type. The caller is responsible for adjusting 5146 // lhsType so that the resulting expression does not have reference 5147 // type. 5148 if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) { 5149 if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) { 5150 Kind = CK_LValueBitCast; 5151 return Compatible; 5152 } 5153 return Incompatible; 5154 } 5155 5156 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type 5157 // to the same ExtVector type. 5158 if (lhsType->isExtVectorType()) { 5159 if (rhsType->isExtVectorType()) 5160 return Incompatible; 5161 if (rhsType->isArithmeticType()) { 5162 // CK_VectorSplat does T -> vector T, so first cast to the 5163 // element type. 5164 QualType elType = cast<ExtVectorType>(lhsType)->getElementType(); 5165 if (elType != rhsType) { 5166 Kind = PrepareScalarCast(*this, rhs, elType); 5167 rhs = ImpCastExprToType(rhs.take(), elType, Kind); 5168 } 5169 Kind = CK_VectorSplat; 5170 return Compatible; 5171 } 5172 } 5173 5174 // Conversions to or from vector type. 5175 if (lhsType->isVectorType() || rhsType->isVectorType()) { 5176 if (lhsType->isVectorType() && rhsType->isVectorType()) { 5177 // Allow assignments of an AltiVec vector type to an equivalent GCC 5178 // vector type and vice versa 5179 if (Context.areCompatibleVectorTypes(lhsType, rhsType)) { 5180 Kind = CK_BitCast; 5181 return Compatible; 5182 } 5183 5184 // If we are allowing lax vector conversions, and LHS and RHS are both 5185 // vectors, the total size only needs to be the same. This is a bitcast; 5186 // no bits are changed but the result type is different. 5187 if (getLangOptions().LaxVectorConversions && 5188 (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) { 5189 Kind = CK_BitCast; 5190 return IncompatibleVectors; 5191 } 5192 } 5193 return Incompatible; 5194 } 5195 5196 // Arithmetic conversions. 5197 if (lhsType->isArithmeticType() && rhsType->isArithmeticType() && 5198 !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) { 5199 Kind = PrepareScalarCast(*this, rhs, lhsType); 5200 return Compatible; 5201 } 5202 5203 // Conversions to normal pointers. 5204 if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) { 5205 // U* -> T* 5206 if (isa<PointerType>(rhsType)) { 5207 Kind = CK_BitCast; 5208 return checkPointerTypesForAssignment(*this, lhsType, rhsType); 5209 } 5210 5211 // int -> T* 5212 if (rhsType->isIntegerType()) { 5213 Kind = CK_IntegralToPointer; // FIXME: null? 5214 return IntToPointer; 5215 } 5216 5217 // C pointers are not compatible with ObjC object pointers, 5218 // with two exceptions: 5219 if (isa<ObjCObjectPointerType>(rhsType)) { 5220 // - conversions to void* 5221 if (lhsPointer->getPointeeType()->isVoidType()) { 5222 Kind = CK_AnyPointerToObjCPointerCast; 5223 return Compatible; 5224 } 5225 5226 // - conversions from 'Class' to the redefinition type 5227 if (rhsType->isObjCClassType() && 5228 Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) { 5229 Kind = CK_BitCast; 5230 return Compatible; 5231 } 5232 5233 Kind = CK_BitCast; 5234 return IncompatiblePointer; 5235 } 5236 5237 // U^ -> void* 5238 if (rhsType->getAs<BlockPointerType>()) { 5239 if (lhsPointer->getPointeeType()->isVoidType()) { 5240 Kind = CK_BitCast; 5241 return Compatible; 5242 } 5243 } 5244 5245 return Incompatible; 5246 } 5247 5248 // Conversions to block pointers. 5249 if (isa<BlockPointerType>(lhsType)) { 5250 // U^ -> T^ 5251 if (rhsType->isBlockPointerType()) { 5252 Kind = CK_AnyPointerToBlockPointerCast; 5253 return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType); 5254 } 5255 5256 // int or null -> T^ 5257 if (rhsType->isIntegerType()) { 5258 Kind = CK_IntegralToPointer; // FIXME: null 5259 return IntToBlockPointer; 5260 } 5261 5262 // id -> T^ 5263 if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) { 5264 Kind = CK_AnyPointerToBlockPointerCast; 5265 return Compatible; 5266 } 5267 5268 // void* -> T^ 5269 if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) 5270 if (RHSPT->getPointeeType()->isVoidType()) { 5271 Kind = CK_AnyPointerToBlockPointerCast; 5272 return Compatible; 5273 } 5274 5275 return Incompatible; 5276 } 5277 5278 // Conversions to Objective-C pointers. 5279 if (isa<ObjCObjectPointerType>(lhsType)) { 5280 // A* -> B* 5281 if (rhsType->isObjCObjectPointerType()) { 5282 Kind = CK_BitCast; 5283 Sema::AssignConvertType result = 5284 checkObjCPointerTypesForAssignment(*this, lhsType, rhsType); 5285 if (getLangOptions().ObjCAutoRefCount && 5286 result == Compatible && 5287 !CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType)) 5288 result = IncompatibleObjCWeakRef; 5289 return result; 5290 } 5291 5292 // int or null -> A* 5293 if (rhsType->isIntegerType()) { 5294 Kind = CK_IntegralToPointer; // FIXME: null 5295 return IntToPointer; 5296 } 5297 5298 // In general, C pointers are not compatible with ObjC object pointers, 5299 // with two exceptions: 5300 if (isa<PointerType>(rhsType)) { 5301 // - conversions from 'void*' 5302 if (rhsType->isVoidPointerType()) { 5303 Kind = CK_AnyPointerToObjCPointerCast; 5304 return Compatible; 5305 } 5306 5307 // - conversions to 'Class' from its redefinition type 5308 if (lhsType->isObjCClassType() && 5309 Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) { 5310 Kind = CK_BitCast; 5311 return Compatible; 5312 } 5313 5314 Kind = CK_AnyPointerToObjCPointerCast; 5315 return IncompatiblePointer; 5316 } 5317 5318 // T^ -> A* 5319 if (rhsType->isBlockPointerType()) { 5320 Kind = CK_AnyPointerToObjCPointerCast; 5321 return Compatible; 5322 } 5323 5324 return Incompatible; 5325 } 5326 5327 // Conversions from pointers that are not covered by the above. 5328 if (isa<PointerType>(rhsType)) { 5329 // T* -> _Bool 5330 if (lhsType == Context.BoolTy) { 5331 Kind = CK_PointerToBoolean; 5332 return Compatible; 5333 } 5334 5335 // T* -> int 5336 if (lhsType->isIntegerType()) { 5337 Kind = CK_PointerToIntegral; 5338 return PointerToInt; 5339 } 5340 5341 return Incompatible; 5342 } 5343 5344 // Conversions from Objective-C pointers that are not covered by the above. 5345 if (isa<ObjCObjectPointerType>(rhsType)) { 5346 // T* -> _Bool 5347 if (lhsType == Context.BoolTy) { 5348 Kind = CK_PointerToBoolean; 5349 return Compatible; 5350 } 5351 5352 // T* -> int 5353 if (lhsType->isIntegerType()) { 5354 Kind = CK_PointerToIntegral; 5355 return PointerToInt; 5356 } 5357 5358 return Incompatible; 5359 } 5360 5361 // struct A -> struct B 5362 if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { 5363 if (Context.typesAreCompatible(lhsType, rhsType)) { 5364 Kind = CK_NoOp; 5365 return Compatible; 5366 } 5367 } 5368 5369 return Incompatible; 5370 } 5371 5372 /// \brief Constructs a transparent union from an expression that is 5373 /// used to initialize the transparent union. 5374 static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult, 5375 QualType UnionType, FieldDecl *Field) { 5376 // Build an initializer list that designates the appropriate member 5377 // of the transparent union. 5378 Expr *E = EResult.take(); 5379 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), 5380 &E, 1, 5381 SourceLocation()); 5382 Initializer->setType(UnionType); 5383 Initializer->setInitializedFieldInUnion(Field); 5384 5385 // Build a compound literal constructing a value of the transparent 5386 // union type from this initializer list. 5387 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); 5388 EResult = S.Owned( 5389 new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, 5390 VK_RValue, Initializer, false)); 5391 } 5392 5393 Sema::AssignConvertType 5394 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) { 5395 QualType FromType = rExpr.get()->getType(); 5396 5397 // If the ArgType is a Union type, we want to handle a potential 5398 // transparent_union GCC extension. 5399 const RecordType *UT = ArgType->getAsUnionType(); 5400 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 5401 return Incompatible; 5402 5403 // The field to initialize within the transparent union. 5404 RecordDecl *UD = UT->getDecl(); 5405 FieldDecl *InitField = 0; 5406 // It's compatible if the expression matches any of the fields. 5407 for (RecordDecl::field_iterator it = UD->field_begin(), 5408 itend = UD->field_end(); 5409 it != itend; ++it) { 5410 if (it->getType()->isPointerType()) { 5411 // If the transparent union contains a pointer type, we allow: 5412 // 1) void pointer 5413 // 2) null pointer constant 5414 if (FromType->isPointerType()) 5415 if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 5416 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast); 5417 InitField = *it; 5418 break; 5419 } 5420 5421 if (rExpr.get()->isNullPointerConstant(Context, 5422 Expr::NPC_ValueDependentIsNull)) { 5423 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer); 5424 InitField = *it; 5425 break; 5426 } 5427 } 5428 5429 CastKind Kind = CK_Invalid; 5430 if (CheckAssignmentConstraints(it->getType(), rExpr, Kind) 5431 == Compatible) { 5432 rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind); 5433 InitField = *it; 5434 break; 5435 } 5436 } 5437 5438 if (!InitField) 5439 return Incompatible; 5440 5441 ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField); 5442 return Compatible; 5443 } 5444 5445 Sema::AssignConvertType 5446 Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) { 5447 if (getLangOptions().CPlusPlus) { 5448 if (!lhsType->isRecordType()) { 5449 // C++ 5.17p3: If the left operand is not of class type, the 5450 // expression is implicitly converted (C++ 4) to the 5451 // cv-unqualified type of the left operand. 5452 ExprResult Res = PerformImplicitConversion(rExpr.get(), 5453 lhsType.getUnqualifiedType(), 5454 AA_Assigning); 5455 if (Res.isInvalid()) 5456 return Incompatible; 5457 Sema::AssignConvertType result = Compatible; 5458 if (getLangOptions().ObjCAutoRefCount && 5459 !CheckObjCARCUnavailableWeakConversion(lhsType, rExpr.get()->getType())) 5460 result = IncompatibleObjCWeakRef; 5461 rExpr = move(Res); 5462 return result; 5463 } 5464 5465 // FIXME: Currently, we fall through and treat C++ classes like C 5466 // structures. 5467 } 5468 5469 // C99 6.5.16.1p1: the left operand is a pointer and the right is 5470 // a null pointer constant. 5471 if ((lhsType->isPointerType() || 5472 lhsType->isObjCObjectPointerType() || 5473 lhsType->isBlockPointerType()) 5474 && rExpr.get()->isNullPointerConstant(Context, 5475 Expr::NPC_ValueDependentIsNull)) { 5476 rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer); 5477 return Compatible; 5478 } 5479 5480 // This check seems unnatural, however it is necessary to ensure the proper 5481 // conversion of functions/arrays. If the conversion were done for all 5482 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary 5483 // expressions that suppress this implicit conversion (&, sizeof). 5484 // 5485 // Suppress this for references: C++ 8.5.3p5. 5486 if (!lhsType->isReferenceType()) { 5487 rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take()); 5488 if (rExpr.isInvalid()) 5489 return Incompatible; 5490 } 5491 5492 CastKind Kind = CK_Invalid; 5493 Sema::AssignConvertType result = 5494 CheckAssignmentConstraints(lhsType, rExpr, Kind); 5495 5496 // C99 6.5.16.1p2: The value of the right operand is converted to the 5497 // type of the assignment expression. 5498 // CheckAssignmentConstraints allows the left-hand side to be a reference, 5499 // so that we can use references in built-in functions even in C. 5500 // The getNonReferenceType() call makes sure that the resulting expression 5501 // does not have reference type. 5502 if (result != Incompatible && rExpr.get()->getType() != lhsType) 5503 rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind); 5504 return result; 5505 } 5506 5507 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) { 5508 Diag(Loc, diag::err_typecheck_invalid_operands) 5509 << lex.get()->getType() << rex.get()->getType() 5510 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5511 return QualType(); 5512 } 5513 5514 QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex, 5515 SourceLocation Loc, bool isCompAssign) { 5516 // For conversion purposes, we ignore any qualifiers. 5517 // For example, "const float" and "float" are equivalent. 5518 QualType lhsType = 5519 Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType(); 5520 QualType rhsType = 5521 Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType(); 5522 5523 // If the vector types are identical, return. 5524 if (lhsType == rhsType) 5525 return lhsType; 5526 5527 // Handle the case of equivalent AltiVec and GCC vector types 5528 if (lhsType->isVectorType() && rhsType->isVectorType() && 5529 Context.areCompatibleVectorTypes(lhsType, rhsType)) { 5530 if (lhsType->isExtVectorType()) { 5531 rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast); 5532 return lhsType; 5533 } 5534 5535 if (!isCompAssign) 5536 lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast); 5537 return rhsType; 5538 } 5539 5540 if (getLangOptions().LaxVectorConversions && 5541 Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) { 5542 // If we are allowing lax vector conversions, and LHS and RHS are both 5543 // vectors, the total size only needs to be the same. This is a 5544 // bitcast; no bits are changed but the result type is different. 5545 // FIXME: Should we really be allowing this? 5546 rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast); 5547 return lhsType; 5548 } 5549 5550 // Canonicalize the ExtVector to the LHS, remember if we swapped so we can 5551 // swap back (so that we don't reverse the inputs to a subtract, for instance. 5552 bool swapped = false; 5553 if (rhsType->isExtVectorType() && !isCompAssign) { 5554 swapped = true; 5555 std::swap(rex, lex); 5556 std::swap(rhsType, lhsType); 5557 } 5558 5559 // Handle the case of an ext vector and scalar. 5560 if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) { 5561 QualType EltTy = LV->getElementType(); 5562 if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) { 5563 int order = Context.getIntegerTypeOrder(EltTy, rhsType); 5564 if (order > 0) 5565 rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast); 5566 if (order >= 0) { 5567 rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat); 5568 if (swapped) std::swap(rex, lex); 5569 return lhsType; 5570 } 5571 } 5572 if (EltTy->isRealFloatingType() && rhsType->isScalarType() && 5573 rhsType->isRealFloatingType()) { 5574 int order = Context.getFloatingTypeOrder(EltTy, rhsType); 5575 if (order > 0) 5576 rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast); 5577 if (order >= 0) { 5578 rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat); 5579 if (swapped) std::swap(rex, lex); 5580 return lhsType; 5581 } 5582 } 5583 } 5584 5585 // Vectors of different size or scalar and non-ext-vector are errors. 5586 if (swapped) std::swap(rex, lex); 5587 Diag(Loc, diag::err_typecheck_vector_not_convertable) 5588 << lex.get()->getType() << rex.get()->getType() 5589 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5590 return QualType(); 5591 } 5592 5593 QualType Sema::CheckMultiplyDivideOperands( 5594 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) { 5595 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) 5596 return CheckVectorOperands(lex, rex, Loc, isCompAssign); 5597 5598 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); 5599 if (lex.isInvalid() || rex.isInvalid()) 5600 return QualType(); 5601 5602 if (!lex.get()->getType()->isArithmeticType() || 5603 !rex.get()->getType()->isArithmeticType()) 5604 return InvalidOperands(Loc, lex, rex); 5605 5606 // Check for division by zero. 5607 if (isDiv && 5608 rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 5609 DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero) 5610 << rex.get()->getSourceRange()); 5611 5612 return compType; 5613 } 5614 5615 QualType Sema::CheckRemainderOperands( 5616 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) { 5617 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { 5618 if (lex.get()->getType()->hasIntegerRepresentation() && 5619 rex.get()->getType()->hasIntegerRepresentation()) 5620 return CheckVectorOperands(lex, rex, Loc, isCompAssign); 5621 return InvalidOperands(Loc, lex, rex); 5622 } 5623 5624 QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); 5625 if (lex.isInvalid() || rex.isInvalid()) 5626 return QualType(); 5627 5628 if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType()) 5629 return InvalidOperands(Loc, lex, rex); 5630 5631 // Check for remainder by zero. 5632 if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 5633 DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero) 5634 << rex.get()->getSourceRange()); 5635 5636 return compType; 5637 } 5638 5639 /// \brief Diagnose invalid arithmetic on two void pointers. 5640 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, 5641 Expr *LHS, Expr *RHS) { 5642 S.Diag(Loc, S.getLangOptions().CPlusPlus 5643 ? diag::err_typecheck_pointer_arith_void_type 5644 : diag::ext_gnu_void_ptr) 5645 << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange(); 5646 } 5647 5648 /// \brief Diagnose invalid arithmetic on a void pointer. 5649 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, 5650 Expr *Pointer) { 5651 S.Diag(Loc, S.getLangOptions().CPlusPlus 5652 ? diag::err_typecheck_pointer_arith_void_type 5653 : diag::ext_gnu_void_ptr) 5654 << 0 /* one pointer */ << Pointer->getSourceRange(); 5655 } 5656 5657 /// \brief Diagnose invalid arithmetic on two function pointers. 5658 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, 5659 Expr *LHS, Expr *RHS) { 5660 assert(LHS->getType()->isAnyPointerType()); 5661 assert(RHS->getType()->isAnyPointerType()); 5662 S.Diag(Loc, S.getLangOptions().CPlusPlus 5663 ? diag::err_typecheck_pointer_arith_function_type 5664 : diag::ext_gnu_ptr_func_arith) 5665 << 1 /* two pointers */ << LHS->getType()->getPointeeType() 5666 // We only show the second type if it differs from the first. 5667 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), 5668 RHS->getType()) 5669 << RHS->getType()->getPointeeType() 5670 << LHS->getSourceRange() << RHS->getSourceRange(); 5671 } 5672 5673 /// \brief Diagnose invalid arithmetic on a function pointer. 5674 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, 5675 Expr *Pointer) { 5676 assert(Pointer->getType()->isAnyPointerType()); 5677 S.Diag(Loc, S.getLangOptions().CPlusPlus 5678 ? diag::err_typecheck_pointer_arith_function_type 5679 : diag::ext_gnu_ptr_func_arith) 5680 << 0 /* one pointer */ << Pointer->getType()->getPointeeType() 5681 << 0 /* one pointer, so only one type */ 5682 << Pointer->getSourceRange(); 5683 } 5684 5685 /// \brief Check the validity of an arithmetic pointer operand. 5686 /// 5687 /// If the operand has pointer type, this code will check for pointer types 5688 /// which are invalid in arithmetic operations. These will be diagnosed 5689 /// appropriately, including whether or not the use is supported as an 5690 /// extension. 5691 /// 5692 /// \returns True when the operand is valid to use (even if as an extension). 5693 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, 5694 Expr *Operand) { 5695 if (!Operand->getType()->isAnyPointerType()) return true; 5696 5697 QualType PointeeTy = Operand->getType()->getPointeeType(); 5698 if (PointeeTy->isVoidType()) { 5699 diagnoseArithmeticOnVoidPointer(S, Loc, Operand); 5700 return !S.getLangOptions().CPlusPlus; 5701 } 5702 if (PointeeTy->isFunctionType()) { 5703 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); 5704 return !S.getLangOptions().CPlusPlus; 5705 } 5706 5707 if ((Operand->getType()->isPointerType() && 5708 !Operand->getType()->isDependentType()) || 5709 Operand->getType()->isObjCObjectPointerType()) { 5710 QualType PointeeTy = Operand->getType()->getPointeeType(); 5711 if (S.RequireCompleteType( 5712 Loc, PointeeTy, 5713 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type) 5714 << PointeeTy << Operand->getSourceRange())) 5715 return false; 5716 } 5717 5718 return true; 5719 } 5720 5721 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer 5722 /// operands. 5723 /// 5724 /// This routine will diagnose any invalid arithmetic on pointer operands much 5725 /// like \see checkArithmeticOpPointerOperand. However, it has special logic 5726 /// for emitting a single diagnostic even for operations where both LHS and RHS 5727 /// are (potentially problematic) pointers. 5728 /// 5729 /// \returns True when the operand is valid to use (even if as an extension). 5730 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, 5731 Expr *LHS, Expr *RHS) { 5732 bool isLHSPointer = LHS->getType()->isAnyPointerType(); 5733 bool isRHSPointer = RHS->getType()->isAnyPointerType(); 5734 if (!isLHSPointer && !isRHSPointer) return true; 5735 5736 QualType LHSPointeeTy, RHSPointeeTy; 5737 if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType(); 5738 if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType(); 5739 5740 // Check for arithmetic on pointers to incomplete types. 5741 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); 5742 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); 5743 if (isLHSVoidPtr || isRHSVoidPtr) { 5744 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS); 5745 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS); 5746 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS); 5747 5748 return !S.getLangOptions().CPlusPlus; 5749 } 5750 5751 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); 5752 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); 5753 if (isLHSFuncPtr || isRHSFuncPtr) { 5754 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS); 5755 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS); 5756 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS); 5757 5758 return !S.getLangOptions().CPlusPlus; 5759 } 5760 5761 Expr *Operands[] = { LHS, RHS }; 5762 for (unsigned i = 0; i < 2; ++i) { 5763 Expr *Operand = Operands[i]; 5764 if ((Operand->getType()->isPointerType() && 5765 !Operand->getType()->isDependentType()) || 5766 Operand->getType()->isObjCObjectPointerType()) { 5767 QualType PointeeTy = Operand->getType()->getPointeeType(); 5768 if (S.RequireCompleteType( 5769 Loc, PointeeTy, 5770 S.PDiag(diag::err_typecheck_arithmetic_incomplete_type) 5771 << PointeeTy << Operand->getSourceRange())) 5772 return false; 5773 } 5774 } 5775 return true; 5776 } 5777 5778 QualType Sema::CheckAdditionOperands( // C99 6.5.6 5779 ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) { 5780 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { 5781 QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy); 5782 if (CompLHSTy) *CompLHSTy = compType; 5783 return compType; 5784 } 5785 5786 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); 5787 if (lex.isInvalid() || rex.isInvalid()) 5788 return QualType(); 5789 5790 // handle the common case first (both operands are arithmetic). 5791 if (lex.get()->getType()->isArithmeticType() && 5792 rex.get()->getType()->isArithmeticType()) { 5793 if (CompLHSTy) *CompLHSTy = compType; 5794 return compType; 5795 } 5796 5797 // Put any potential pointer into PExp 5798 Expr* PExp = lex.get(), *IExp = rex.get(); 5799 if (IExp->getType()->isAnyPointerType()) 5800 std::swap(PExp, IExp); 5801 5802 if (PExp->getType()->isAnyPointerType()) { 5803 if (IExp->getType()->isIntegerType()) { 5804 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) 5805 return QualType(); 5806 5807 QualType PointeeTy = PExp->getType()->getPointeeType(); 5808 5809 // Diagnose bad cases where we step over interface counts. 5810 if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { 5811 Diag(Loc, diag::err_arithmetic_nonfragile_interface) 5812 << PointeeTy << PExp->getSourceRange(); 5813 return QualType(); 5814 } 5815 5816 if (CompLHSTy) { 5817 QualType LHSTy = Context.isPromotableBitField(lex.get()); 5818 if (LHSTy.isNull()) { 5819 LHSTy = lex.get()->getType(); 5820 if (LHSTy->isPromotableIntegerType()) 5821 LHSTy = Context.getPromotedIntegerType(LHSTy); 5822 } 5823 *CompLHSTy = LHSTy; 5824 } 5825 return PExp->getType(); 5826 } 5827 } 5828 5829 return InvalidOperands(Loc, lex, rex); 5830 } 5831 5832 // C99 6.5.6 5833 QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex, 5834 SourceLocation Loc, QualType* CompLHSTy) { 5835 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { 5836 QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy); 5837 if (CompLHSTy) *CompLHSTy = compType; 5838 return compType; 5839 } 5840 5841 QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy); 5842 if (lex.isInvalid() || rex.isInvalid()) 5843 return QualType(); 5844 5845 // Enforce type constraints: C99 6.5.6p3. 5846 5847 // Handle the common case first (both operands are arithmetic). 5848 if (lex.get()->getType()->isArithmeticType() && 5849 rex.get()->getType()->isArithmeticType()) { 5850 if (CompLHSTy) *CompLHSTy = compType; 5851 return compType; 5852 } 5853 5854 // Either ptr - int or ptr - ptr. 5855 if (lex.get()->getType()->isAnyPointerType()) { 5856 QualType lpointee = lex.get()->getType()->getPointeeType(); 5857 5858 // Diagnose bad cases where we step over interface counts. 5859 if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) { 5860 Diag(Loc, diag::err_arithmetic_nonfragile_interface) 5861 << lpointee << lex.get()->getSourceRange(); 5862 return QualType(); 5863 } 5864 5865 // The result type of a pointer-int computation is the pointer type. 5866 if (rex.get()->getType()->isIntegerType()) { 5867 if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get())) 5868 return QualType(); 5869 5870 if (CompLHSTy) *CompLHSTy = lex.get()->getType(); 5871 return lex.get()->getType(); 5872 } 5873 5874 // Handle pointer-pointer subtractions. 5875 if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) { 5876 QualType rpointee = RHSPTy->getPointeeType(); 5877 5878 if (getLangOptions().CPlusPlus) { 5879 // Pointee types must be the same: C++ [expr.add] 5880 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { 5881 Diag(Loc, diag::err_typecheck_sub_ptr_compatible) 5882 << lex.get()->getType() << rex.get()->getType() 5883 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5884 return QualType(); 5885 } 5886 } else { 5887 // Pointee types must be compatible C99 6.5.6p3 5888 if (!Context.typesAreCompatible( 5889 Context.getCanonicalType(lpointee).getUnqualifiedType(), 5890 Context.getCanonicalType(rpointee).getUnqualifiedType())) { 5891 Diag(Loc, diag::err_typecheck_sub_ptr_compatible) 5892 << lex.get()->getType() << rex.get()->getType() 5893 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5894 return QualType(); 5895 } 5896 } 5897 5898 if (!checkArithmeticBinOpPointerOperands(*this, Loc, 5899 lex.get(), rex.get())) 5900 return QualType(); 5901 5902 if (CompLHSTy) *CompLHSTy = lex.get()->getType(); 5903 return Context.getPointerDiffType(); 5904 } 5905 } 5906 5907 return InvalidOperands(Loc, lex, rex); 5908 } 5909 5910 static bool isScopedEnumerationType(QualType T) { 5911 if (const EnumType *ET = dyn_cast<EnumType>(T)) 5912 return ET->getDecl()->isScoped(); 5913 return false; 5914 } 5915 5916 static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex, 5917 SourceLocation Loc, unsigned Opc, 5918 QualType LHSTy) { 5919 llvm::APSInt Right; 5920 // Check right/shifter operand 5921 if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context)) 5922 return; 5923 5924 if (Right.isNegative()) { 5925 S.DiagRuntimeBehavior(Loc, rex.get(), 5926 S.PDiag(diag::warn_shift_negative) 5927 << rex.get()->getSourceRange()); 5928 return; 5929 } 5930 llvm::APInt LeftBits(Right.getBitWidth(), 5931 S.Context.getTypeSize(lex.get()->getType())); 5932 if (Right.uge(LeftBits)) { 5933 S.DiagRuntimeBehavior(Loc, rex.get(), 5934 S.PDiag(diag::warn_shift_gt_typewidth) 5935 << rex.get()->getSourceRange()); 5936 return; 5937 } 5938 if (Opc != BO_Shl) 5939 return; 5940 5941 // When left shifting an ICE which is signed, we can check for overflow which 5942 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned 5943 // integers have defined behavior modulo one more than the maximum value 5944 // representable in the result type, so never warn for those. 5945 llvm::APSInt Left; 5946 if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) || 5947 LHSTy->hasUnsignedIntegerRepresentation()) 5948 return; 5949 llvm::APInt ResultBits = 5950 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); 5951 if (LeftBits.uge(ResultBits)) 5952 return; 5953 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); 5954 Result = Result.shl(Right); 5955 5956 // Print the bit representation of the signed integer as an unsigned 5957 // hexadecimal number. 5958 llvm::SmallString<40> HexResult; 5959 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); 5960 5961 // If we are only missing a sign bit, this is less likely to result in actual 5962 // bugs -- if the result is cast back to an unsigned type, it will have the 5963 // expected value. Thus we place this behind a different warning that can be 5964 // turned off separately if needed. 5965 if (LeftBits == ResultBits - 1) { 5966 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) 5967 << HexResult.str() << LHSTy 5968 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5969 return; 5970 } 5971 5972 S.Diag(Loc, diag::warn_shift_result_gt_typewidth) 5973 << HexResult.str() << Result.getMinSignedBits() << LHSTy 5974 << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 5975 } 5976 5977 // C99 6.5.7 5978 QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc, 5979 unsigned Opc, bool isCompAssign) { 5980 // C99 6.5.7p2: Each of the operands shall have integer type. 5981 if (!lex.get()->getType()->hasIntegerRepresentation() || 5982 !rex.get()->getType()->hasIntegerRepresentation()) 5983 return InvalidOperands(Loc, lex, rex); 5984 5985 // C++0x: Don't allow scoped enums. FIXME: Use something better than 5986 // hasIntegerRepresentation() above instead of this. 5987 if (isScopedEnumerationType(lex.get()->getType()) || 5988 isScopedEnumerationType(rex.get()->getType())) { 5989 return InvalidOperands(Loc, lex, rex); 5990 } 5991 5992 // Vector shifts promote their scalar inputs to vector type. 5993 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) 5994 return CheckVectorOperands(lex, rex, Loc, isCompAssign); 5995 5996 // Shifts don't perform usual arithmetic conversions, they just do integer 5997 // promotions on each operand. C99 6.5.7p3 5998 5999 // For the LHS, do usual unary conversions, but then reset them away 6000 // if this is a compound assignment. 6001 ExprResult old_lex = lex; 6002 lex = UsualUnaryConversions(lex.take()); 6003 if (lex.isInvalid()) 6004 return QualType(); 6005 QualType LHSTy = lex.get()->getType(); 6006 if (isCompAssign) lex = old_lex; 6007 6008 // The RHS is simpler. 6009 rex = UsualUnaryConversions(rex.take()); 6010 if (rex.isInvalid()) 6011 return QualType(); 6012 6013 // Sanity-check shift operands 6014 DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy); 6015 6016 // "The type of the result is that of the promoted left operand." 6017 return LHSTy; 6018 } 6019 6020 static bool IsWithinTemplateSpecialization(Decl *D) { 6021 if (DeclContext *DC = D->getDeclContext()) { 6022 if (isa<ClassTemplateSpecializationDecl>(DC)) 6023 return true; 6024 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) 6025 return FD->isFunctionTemplateSpecialization(); 6026 } 6027 return false; 6028 } 6029 6030 // C99 6.5.8, C++ [expr.rel] 6031 QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc, 6032 unsigned OpaqueOpc, bool isRelational) { 6033 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc; 6034 6035 // Handle vector comparisons separately. 6036 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) 6037 return CheckVectorCompareOperands(lex, rex, Loc, isRelational); 6038 6039 QualType lType = lex.get()->getType(); 6040 QualType rType = rex.get()->getType(); 6041 6042 Expr *LHSStripped = lex.get()->IgnoreParenImpCasts(); 6043 Expr *RHSStripped = rex.get()->IgnoreParenImpCasts(); 6044 QualType LHSStrippedType = LHSStripped->getType(); 6045 QualType RHSStrippedType = RHSStripped->getType(); 6046 6047 6048 6049 // Two different enums will raise a warning when compared. 6050 if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) { 6051 if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) { 6052 if (LHSEnumType->getDecl()->getIdentifier() && 6053 RHSEnumType->getDecl()->getIdentifier() && 6054 !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { 6055 Diag(Loc, diag::warn_comparison_of_mixed_enum_types) 6056 << LHSStrippedType << RHSStrippedType 6057 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6058 } 6059 } 6060 } 6061 6062 if (!lType->hasFloatingRepresentation() && 6063 !(lType->isBlockPointerType() && isRelational) && 6064 !lex.get()->getLocStart().isMacroID() && 6065 !rex.get()->getLocStart().isMacroID()) { 6066 // For non-floating point types, check for self-comparisons of the form 6067 // x == x, x != x, x < x, etc. These always evaluate to a constant, and 6068 // often indicate logic errors in the program. 6069 // 6070 // NOTE: Don't warn about comparison expressions resulting from macro 6071 // expansion. Also don't warn about comparisons which are only self 6072 // comparisons within a template specialization. The warnings should catch 6073 // obvious cases in the definition of the template anyways. The idea is to 6074 // warn when the typed comparison operator will always evaluate to the same 6075 // result. 6076 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) { 6077 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) { 6078 if (DRL->getDecl() == DRR->getDecl() && 6079 !IsWithinTemplateSpecialization(DRL->getDecl())) { 6080 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) 6081 << 0 // self- 6082 << (Opc == BO_EQ 6083 || Opc == BO_LE 6084 || Opc == BO_GE)); 6085 } else if (lType->isArrayType() && rType->isArrayType() && 6086 !DRL->getDecl()->getType()->isReferenceType() && 6087 !DRR->getDecl()->getType()->isReferenceType()) { 6088 // what is it always going to eval to? 6089 char always_evals_to; 6090 switch(Opc) { 6091 case BO_EQ: // e.g. array1 == array2 6092 always_evals_to = 0; // false 6093 break; 6094 case BO_NE: // e.g. array1 != array2 6095 always_evals_to = 1; // true 6096 break; 6097 default: 6098 // best we can say is 'a constant' 6099 always_evals_to = 2; // e.g. array1 <= array2 6100 break; 6101 } 6102 DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always) 6103 << 1 // array 6104 << always_evals_to); 6105 } 6106 } 6107 } 6108 6109 if (isa<CastExpr>(LHSStripped)) 6110 LHSStripped = LHSStripped->IgnoreParenCasts(); 6111 if (isa<CastExpr>(RHSStripped)) 6112 RHSStripped = RHSStripped->IgnoreParenCasts(); 6113 6114 // Warn about comparisons against a string constant (unless the other 6115 // operand is null), the user probably wants strcmp. 6116 Expr *literalString = 0; 6117 Expr *literalStringStripped = 0; 6118 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && 6119 !RHSStripped->isNullPointerConstant(Context, 6120 Expr::NPC_ValueDependentIsNull)) { 6121 literalString = lex.get(); 6122 literalStringStripped = LHSStripped; 6123 } else if ((isa<StringLiteral>(RHSStripped) || 6124 isa<ObjCEncodeExpr>(RHSStripped)) && 6125 !LHSStripped->isNullPointerConstant(Context, 6126 Expr::NPC_ValueDependentIsNull)) { 6127 literalString = rex.get(); 6128 literalStringStripped = RHSStripped; 6129 } 6130 6131 if (literalString) { 6132 std::string resultComparison; 6133 switch (Opc) { 6134 case BO_LT: resultComparison = ") < 0"; break; 6135 case BO_GT: resultComparison = ") > 0"; break; 6136 case BO_LE: resultComparison = ") <= 0"; break; 6137 case BO_GE: resultComparison = ") >= 0"; break; 6138 case BO_EQ: resultComparison = ") == 0"; break; 6139 case BO_NE: resultComparison = ") != 0"; break; 6140 default: assert(false && "Invalid comparison operator"); 6141 } 6142 6143 DiagRuntimeBehavior(Loc, 0, 6144 PDiag(diag::warn_stringcompare) 6145 << isa<ObjCEncodeExpr>(literalStringStripped) 6146 << literalString->getSourceRange()); 6147 } 6148 } 6149 6150 // C99 6.5.8p3 / C99 6.5.9p4 6151 if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) { 6152 UsualArithmeticConversions(lex, rex); 6153 if (lex.isInvalid() || rex.isInvalid()) 6154 return QualType(); 6155 } 6156 else { 6157 lex = UsualUnaryConversions(lex.take()); 6158 if (lex.isInvalid()) 6159 return QualType(); 6160 6161 rex = UsualUnaryConversions(rex.take()); 6162 if (rex.isInvalid()) 6163 return QualType(); 6164 } 6165 6166 lType = lex.get()->getType(); 6167 rType = rex.get()->getType(); 6168 6169 // The result of comparisons is 'bool' in C++, 'int' in C. 6170 QualType ResultTy = Context.getLogicalOperationType(); 6171 6172 if (isRelational) { 6173 if (lType->isRealType() && rType->isRealType()) 6174 return ResultTy; 6175 } else { 6176 // Check for comparisons of floating point operands using != and ==. 6177 if (lType->hasFloatingRepresentation()) 6178 CheckFloatComparison(Loc, lex.get(), rex.get()); 6179 6180 if (lType->isArithmeticType() && rType->isArithmeticType()) 6181 return ResultTy; 6182 } 6183 6184 bool LHSIsNull = lex.get()->isNullPointerConstant(Context, 6185 Expr::NPC_ValueDependentIsNull); 6186 bool RHSIsNull = rex.get()->isNullPointerConstant(Context, 6187 Expr::NPC_ValueDependentIsNull); 6188 6189 // All of the following pointer-related warnings are GCC extensions, except 6190 // when handling null pointer constants. 6191 if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 6192 QualType LCanPointeeTy = 6193 Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType()); 6194 QualType RCanPointeeTy = 6195 Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType()); 6196 6197 if (getLangOptions().CPlusPlus) { 6198 if (LCanPointeeTy == RCanPointeeTy) 6199 return ResultTy; 6200 if (!isRelational && 6201 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { 6202 // Valid unless comparison between non-null pointer and function pointer 6203 // This is a gcc extension compatibility comparison. 6204 // In a SFINAE context, we treat this as a hard error to maintain 6205 // conformance with the C++ standard. 6206 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) 6207 && !LHSIsNull && !RHSIsNull) { 6208 Diag(Loc, 6209 isSFINAEContext()? 6210 diag::err_typecheck_comparison_of_fptr_to_void 6211 : diag::ext_typecheck_comparison_of_fptr_to_void) 6212 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6213 6214 if (isSFINAEContext()) 6215 return QualType(); 6216 6217 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6218 return ResultTy; 6219 } 6220 } 6221 6222 // C++ [expr.rel]p2: 6223 // [...] Pointer conversions (4.10) and qualification 6224 // conversions (4.4) are performed on pointer operands (or on 6225 // a pointer operand and a null pointer constant) to bring 6226 // them to their composite pointer type. [...] 6227 // 6228 // C++ [expr.eq]p1 uses the same notion for (in)equality 6229 // comparisons of pointers. 6230 bool NonStandardCompositeType = false; 6231 QualType T = FindCompositePointerType(Loc, lex, rex, 6232 isSFINAEContext()? 0 : &NonStandardCompositeType); 6233 if (T.isNull()) { 6234 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) 6235 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6236 return QualType(); 6237 } else if (NonStandardCompositeType) { 6238 Diag(Loc, 6239 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) 6240 << lType << rType << T 6241 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6242 } 6243 6244 lex = ImpCastExprToType(lex.take(), T, CK_BitCast); 6245 rex = ImpCastExprToType(rex.take(), T, CK_BitCast); 6246 return ResultTy; 6247 } 6248 // C99 6.5.9p2 and C99 6.5.8p2 6249 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), 6250 RCanPointeeTy.getUnqualifiedType())) { 6251 // Valid unless a relational comparison of function pointers 6252 if (isRelational && LCanPointeeTy->isFunctionType()) { 6253 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers) 6254 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6255 } 6256 } else if (!isRelational && 6257 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { 6258 // Valid unless comparison between non-null pointer and function pointer 6259 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) 6260 && !LHSIsNull && !RHSIsNull) { 6261 Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void) 6262 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6263 } 6264 } else { 6265 // Invalid 6266 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) 6267 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6268 } 6269 if (LCanPointeeTy != RCanPointeeTy) { 6270 if (LHSIsNull && !RHSIsNull) 6271 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); 6272 else 6273 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6274 } 6275 return ResultTy; 6276 } 6277 6278 if (getLangOptions().CPlusPlus) { 6279 // Comparison of nullptr_t with itself. 6280 if (lType->isNullPtrType() && rType->isNullPtrType()) 6281 return ResultTy; 6282 6283 // Comparison of pointers with null pointer constants and equality 6284 // comparisons of member pointers to null pointer constants. 6285 if (RHSIsNull && 6286 ((lType->isAnyPointerType() || lType->isNullPtrType()) || 6287 (!isRelational && 6288 (lType->isMemberPointerType() || lType->isBlockPointerType())))) { 6289 rex = ImpCastExprToType(rex.take(), lType, 6290 lType->isMemberPointerType() 6291 ? CK_NullToMemberPointer 6292 : CK_NullToPointer); 6293 return ResultTy; 6294 } 6295 if (LHSIsNull && 6296 ((rType->isAnyPointerType() || rType->isNullPtrType()) || 6297 (!isRelational && 6298 (rType->isMemberPointerType() || rType->isBlockPointerType())))) { 6299 lex = ImpCastExprToType(lex.take(), rType, 6300 rType->isMemberPointerType() 6301 ? CK_NullToMemberPointer 6302 : CK_NullToPointer); 6303 return ResultTy; 6304 } 6305 6306 // Comparison of member pointers. 6307 if (!isRelational && 6308 lType->isMemberPointerType() && rType->isMemberPointerType()) { 6309 // C++ [expr.eq]p2: 6310 // In addition, pointers to members can be compared, or a pointer to 6311 // member and a null pointer constant. Pointer to member conversions 6312 // (4.11) and qualification conversions (4.4) are performed to bring 6313 // them to a common type. If one operand is a null pointer constant, 6314 // the common type is the type of the other operand. Otherwise, the 6315 // common type is a pointer to member type similar (4.4) to the type 6316 // of one of the operands, with a cv-qualification signature (4.4) 6317 // that is the union of the cv-qualification signatures of the operand 6318 // types. 6319 bool NonStandardCompositeType = false; 6320 QualType T = FindCompositePointerType(Loc, lex, rex, 6321 isSFINAEContext()? 0 : &NonStandardCompositeType); 6322 if (T.isNull()) { 6323 Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers) 6324 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6325 return QualType(); 6326 } else if (NonStandardCompositeType) { 6327 Diag(Loc, 6328 diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard) 6329 << lType << rType << T 6330 << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6331 } 6332 6333 lex = ImpCastExprToType(lex.take(), T, CK_BitCast); 6334 rex = ImpCastExprToType(rex.take(), T, CK_BitCast); 6335 return ResultTy; 6336 } 6337 6338 // Handle scoped enumeration types specifically, since they don't promote 6339 // to integers. 6340 if (lex.get()->getType()->isEnumeralType() && 6341 Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType())) 6342 return ResultTy; 6343 } 6344 6345 // Handle block pointer types. 6346 if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) { 6347 QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType(); 6348 QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType(); 6349 6350 if (!LHSIsNull && !RHSIsNull && 6351 !Context.typesAreCompatible(lpointee, rpointee)) { 6352 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) 6353 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6354 } 6355 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6356 return ResultTy; 6357 } 6358 6359 // Allow block pointers to be compared with null pointer constants. 6360 if (!isRelational 6361 && ((lType->isBlockPointerType() && rType->isPointerType()) 6362 || (lType->isPointerType() && rType->isBlockPointerType()))) { 6363 if (!LHSIsNull && !RHSIsNull) { 6364 if (!((rType->isPointerType() && rType->castAs<PointerType>() 6365 ->getPointeeType()->isVoidType()) 6366 || (lType->isPointerType() && lType->castAs<PointerType>() 6367 ->getPointeeType()->isVoidType()))) 6368 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) 6369 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6370 } 6371 if (LHSIsNull && !RHSIsNull) 6372 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); 6373 else 6374 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6375 return ResultTy; 6376 } 6377 6378 if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) { 6379 const PointerType *LPT = lType->getAs<PointerType>(); 6380 const PointerType *RPT = rType->getAs<PointerType>(); 6381 if (LPT || RPT) { 6382 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; 6383 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; 6384 6385 if (!LPtrToVoid && !RPtrToVoid && 6386 !Context.typesAreCompatible(lType, rType)) { 6387 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) 6388 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6389 } 6390 if (LHSIsNull && !RHSIsNull) 6391 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); 6392 else 6393 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6394 return ResultTy; 6395 } 6396 if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) { 6397 if (!Context.areComparableObjCPointerTypes(lType, rType)) 6398 Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) 6399 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6400 if (LHSIsNull && !RHSIsNull) 6401 lex = ImpCastExprToType(lex.take(), rType, CK_BitCast); 6402 else 6403 rex = ImpCastExprToType(rex.take(), lType, CK_BitCast); 6404 return ResultTy; 6405 } 6406 } 6407 if ((lType->isAnyPointerType() && rType->isIntegerType()) || 6408 (lType->isIntegerType() && rType->isAnyPointerType())) { 6409 unsigned DiagID = 0; 6410 bool isError = false; 6411 if ((LHSIsNull && lType->isIntegerType()) || 6412 (RHSIsNull && rType->isIntegerType())) { 6413 if (isRelational && !getLangOptions().CPlusPlus) 6414 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; 6415 } else if (isRelational && !getLangOptions().CPlusPlus) 6416 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; 6417 else if (getLangOptions().CPlusPlus) { 6418 DiagID = diag::err_typecheck_comparison_of_pointer_integer; 6419 isError = true; 6420 } else 6421 DiagID = diag::ext_typecheck_comparison_of_pointer_integer; 6422 6423 if (DiagID) { 6424 Diag(Loc, DiagID) 6425 << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange(); 6426 if (isError) 6427 return QualType(); 6428 } 6429 6430 if (lType->isIntegerType()) 6431 lex = ImpCastExprToType(lex.take(), rType, 6432 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); 6433 else 6434 rex = ImpCastExprToType(rex.take(), lType, 6435 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); 6436 return ResultTy; 6437 } 6438 6439 // Handle block pointers. 6440 if (!isRelational && RHSIsNull 6441 && lType->isBlockPointerType() && rType->isIntegerType()) { 6442 rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer); 6443 return ResultTy; 6444 } 6445 if (!isRelational && LHSIsNull 6446 && lType->isIntegerType() && rType->isBlockPointerType()) { 6447 lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer); 6448 return ResultTy; 6449 } 6450 6451 return InvalidOperands(Loc, lex, rex); 6452 } 6453 6454 /// CheckVectorCompareOperands - vector comparisons are a clang extension that 6455 /// operates on extended vector types. Instead of producing an IntTy result, 6456 /// like a scalar comparison, a vector comparison produces a vector of integer 6457 /// types. 6458 QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex, 6459 SourceLocation Loc, 6460 bool isRelational) { 6461 // Check to make sure we're operating on vectors of the same type and width, 6462 // Allowing one side to be a scalar of element type. 6463 QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false); 6464 if (vType.isNull()) 6465 return vType; 6466 6467 QualType lType = lex.get()->getType(); 6468 QualType rType = rex.get()->getType(); 6469 6470 // If AltiVec, the comparison results in a numeric type, i.e. 6471 // bool for C++, int for C 6472 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector) 6473 return Context.getLogicalOperationType(); 6474 6475 // For non-floating point types, check for self-comparisons of the form 6476 // x == x, x != x, x < x, etc. These always evaluate to a constant, and 6477 // often indicate logic errors in the program. 6478 if (!lType->hasFloatingRepresentation()) { 6479 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens())) 6480 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens())) 6481 if (DRL->getDecl() == DRR->getDecl()) 6482 DiagRuntimeBehavior(Loc, 0, 6483 PDiag(diag::warn_comparison_always) 6484 << 0 // self- 6485 << 2 // "a constant" 6486 ); 6487 } 6488 6489 // Check for comparisons of floating point operands using != and ==. 6490 if (!isRelational && lType->hasFloatingRepresentation()) { 6491 assert (rType->hasFloatingRepresentation()); 6492 CheckFloatComparison(Loc, lex.get(), rex.get()); 6493 } 6494 6495 // Return the type for the comparison, which is the same as vector type for 6496 // integer vectors, or an integer type of identical size and number of 6497 // elements for floating point vectors. 6498 if (lType->hasIntegerRepresentation()) 6499 return lType; 6500 6501 const VectorType *VTy = lType->getAs<VectorType>(); 6502 unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); 6503 if (TypeSize == Context.getTypeSize(Context.IntTy)) 6504 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); 6505 if (TypeSize == Context.getTypeSize(Context.LongTy)) 6506 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); 6507 6508 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && 6509 "Unhandled vector element size in vector compare"); 6510 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); 6511 } 6512 6513 inline QualType Sema::CheckBitwiseOperands( 6514 ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) { 6515 if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) { 6516 if (lex.get()->getType()->hasIntegerRepresentation() && 6517 rex.get()->getType()->hasIntegerRepresentation()) 6518 return CheckVectorOperands(lex, rex, Loc, isCompAssign); 6519 6520 return InvalidOperands(Loc, lex, rex); 6521 } 6522 6523 ExprResult lexResult = Owned(lex), rexResult = Owned(rex); 6524 QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign); 6525 if (lexResult.isInvalid() || rexResult.isInvalid()) 6526 return QualType(); 6527 lex = lexResult.take(); 6528 rex = rexResult.take(); 6529 6530 if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() && 6531 rex.get()->getType()->isIntegralOrUnscopedEnumerationType()) 6532 return compType; 6533 return InvalidOperands(Loc, lex, rex); 6534 } 6535 6536 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] 6537 ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) { 6538 6539 // Diagnose cases where the user write a logical and/or but probably meant a 6540 // bitwise one. We do this when the LHS is a non-bool integer and the RHS 6541 // is a constant. 6542 if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() && 6543 rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() && 6544 // Don't warn in macros or template instantiations. 6545 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) { 6546 // If the RHS can be constant folded, and if it constant folds to something 6547 // that isn't 0 or 1 (which indicate a potential logical operation that 6548 // happened to fold to true/false) then warn. 6549 // Parens on the RHS are ignored. 6550 Expr::EvalResult Result; 6551 if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects) 6552 if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) || 6553 (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) { 6554 Diag(Loc, diag::warn_logical_instead_of_bitwise) 6555 << rex.get()->getSourceRange() 6556 << (Opc == BO_LAnd ? "&&" : "||") 6557 << (Opc == BO_LAnd ? "&" : "|"); 6558 } 6559 } 6560 6561 if (!Context.getLangOptions().CPlusPlus) { 6562 lex = UsualUnaryConversions(lex.take()); 6563 if (lex.isInvalid()) 6564 return QualType(); 6565 6566 rex = UsualUnaryConversions(rex.take()); 6567 if (rex.isInvalid()) 6568 return QualType(); 6569 6570 if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType()) 6571 return InvalidOperands(Loc, lex, rex); 6572 6573 return Context.IntTy; 6574 } 6575 6576 // The following is safe because we only use this method for 6577 // non-overloadable operands. 6578 6579 // C++ [expr.log.and]p1 6580 // C++ [expr.log.or]p1 6581 // The operands are both contextually converted to type bool. 6582 ExprResult lexRes = PerformContextuallyConvertToBool(lex.get()); 6583 if (lexRes.isInvalid()) 6584 return InvalidOperands(Loc, lex, rex); 6585 lex = move(lexRes); 6586 6587 ExprResult rexRes = PerformContextuallyConvertToBool(rex.get()); 6588 if (rexRes.isInvalid()) 6589 return InvalidOperands(Loc, lex, rex); 6590 rex = move(rexRes); 6591 6592 // C++ [expr.log.and]p2 6593 // C++ [expr.log.or]p2 6594 // The result is a bool. 6595 return Context.BoolTy; 6596 } 6597 6598 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression 6599 /// is a read-only property; return true if so. A readonly property expression 6600 /// depends on various declarations and thus must be treated specially. 6601 /// 6602 static bool IsReadonlyProperty(Expr *E, Sema &S) { 6603 if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { 6604 const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); 6605 if (PropExpr->isImplicitProperty()) return false; 6606 6607 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); 6608 QualType BaseType = PropExpr->isSuperReceiver() ? 6609 PropExpr->getSuperReceiverType() : 6610 PropExpr->getBase()->getType(); 6611 6612 if (const ObjCObjectPointerType *OPT = 6613 BaseType->getAsObjCInterfacePointerType()) 6614 if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl()) 6615 if (S.isPropertyReadonly(PDecl, IFace)) 6616 return true; 6617 } 6618 return false; 6619 } 6620 6621 static bool IsConstProperty(Expr *E, Sema &S) { 6622 if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) { 6623 const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E); 6624 if (PropExpr->isImplicitProperty()) return false; 6625 6626 ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty(); 6627 QualType T = PDecl->getType(); 6628 if (T->isReferenceType()) 6629 T = T->getAs<ReferenceType>()->getPointeeType(); 6630 CanQualType CT = S.Context.getCanonicalType(T); 6631 return CT.isConstQualified(); 6632 } 6633 return false; 6634 } 6635 6636 static bool IsReadonlyMessage(Expr *E, Sema &S) { 6637 if (E->getStmtClass() != Expr::MemberExprClass) 6638 return false; 6639 const MemberExpr *ME = cast<MemberExpr>(E); 6640 NamedDecl *Member = ME->getMemberDecl(); 6641 if (isa<FieldDecl>(Member)) { 6642 Expr *Base = ME->getBase()->IgnoreParenImpCasts(); 6643 if (Base->getStmtClass() != Expr::ObjCMessageExprClass) 6644 return false; 6645 return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0; 6646 } 6647 return false; 6648 } 6649 6650 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, 6651 /// emit an error and return true. If so, return false. 6652 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { 6653 SourceLocation OrigLoc = Loc; 6654 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, 6655 &Loc); 6656 if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S)) 6657 IsLV = Expr::MLV_ReadonlyProperty; 6658 else if (Expr::MLV_ConstQualified && IsConstProperty(E, S)) 6659 IsLV = Expr::MLV_Valid; 6660 else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) 6661 IsLV = Expr::MLV_InvalidMessageExpression; 6662 if (IsLV == Expr::MLV_Valid) 6663 return false; 6664 6665 unsigned Diag = 0; 6666 bool NeedType = false; 6667 switch (IsLV) { // C99 6.5.16p2 6668 case Expr::MLV_ConstQualified: 6669 Diag = diag::err_typecheck_assign_const; 6670 6671 // In ARC, use some specialized diagnostics for occasions where we 6672 // infer 'const'. These are always pseudo-strong variables. 6673 if (S.getLangOptions().ObjCAutoRefCount) { 6674 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); 6675 if (declRef && isa<VarDecl>(declRef->getDecl())) { 6676 VarDecl *var = cast<VarDecl>(declRef->getDecl()); 6677 6678 // Use the normal diagnostic if it's pseudo-__strong but the 6679 // user actually wrote 'const'. 6680 if (var->isARCPseudoStrong() && 6681 (!var->getTypeSourceInfo() || 6682 !var->getTypeSourceInfo()->getType().isConstQualified())) { 6683 // There are two pseudo-strong cases: 6684 // - self 6685 ObjCMethodDecl *method = S.getCurMethodDecl(); 6686 if (method && var == method->getSelfDecl()) 6687 Diag = diag::err_typecheck_arr_assign_self; 6688 6689 // - fast enumeration variables 6690 else 6691 Diag = diag::err_typecheck_arr_assign_enumeration; 6692 6693 SourceRange Assign; 6694 if (Loc != OrigLoc) 6695 Assign = SourceRange(OrigLoc, OrigLoc); 6696 S.Diag(Loc, Diag) << E->getSourceRange() << Assign; 6697 // We need to preserve the AST regardless, so migration tool 6698 // can do its job. 6699 return false; 6700 } 6701 } 6702 } 6703 6704 break; 6705 case Expr::MLV_ArrayType: 6706 Diag = diag::err_typecheck_array_not_modifiable_lvalue; 6707 NeedType = true; 6708 break; 6709 case Expr::MLV_NotObjectType: 6710 Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; 6711 NeedType = true; 6712 break; 6713 case Expr::MLV_LValueCast: 6714 Diag = diag::err_typecheck_lvalue_casts_not_supported; 6715 break; 6716 case Expr::MLV_Valid: 6717 llvm_unreachable("did not take early return for MLV_Valid"); 6718 case Expr::MLV_InvalidExpression: 6719 case Expr::MLV_MemberFunction: 6720 case Expr::MLV_ClassTemporary: 6721 Diag = diag::err_typecheck_expression_not_modifiable_lvalue; 6722 break; 6723 case Expr::MLV_IncompleteType: 6724 case Expr::MLV_IncompleteVoidType: 6725 return S.RequireCompleteType(Loc, E->getType(), 6726 S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue) 6727 << E->getSourceRange()); 6728 case Expr::MLV_DuplicateVectorComponents: 6729 Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; 6730 break; 6731 case Expr::MLV_NotBlockQualified: 6732 Diag = diag::err_block_decl_ref_not_modifiable_lvalue; 6733 break; 6734 case Expr::MLV_ReadonlyProperty: 6735 Diag = diag::error_readonly_property_assignment; 6736 break; 6737 case Expr::MLV_NoSetterProperty: 6738 Diag = diag::error_nosetter_property_assignment; 6739 break; 6740 case Expr::MLV_InvalidMessageExpression: 6741 Diag = diag::error_readonly_message_assignment; 6742 break; 6743 case Expr::MLV_SubObjCPropertySetting: 6744 Diag = diag::error_no_subobject_property_setting; 6745 break; 6746 } 6747 6748 SourceRange Assign; 6749 if (Loc != OrigLoc) 6750 Assign = SourceRange(OrigLoc, OrigLoc); 6751 if (NeedType) 6752 S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign; 6753 else 6754 S.Diag(Loc, Diag) << E->getSourceRange() << Assign; 6755 return true; 6756 } 6757 6758 6759 6760 // C99 6.5.16.1 6761 QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS, 6762 SourceLocation Loc, 6763 QualType CompoundType) { 6764 // Verify that LHS is a modifiable lvalue, and emit error if not. 6765 if (CheckForModifiableLvalue(LHS, Loc, *this)) 6766 return QualType(); 6767 6768 QualType LHSType = LHS->getType(); 6769 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType; 6770 AssignConvertType ConvTy; 6771 if (CompoundType.isNull()) { 6772 QualType LHSTy(LHSType); 6773 // Simple assignment "x = y". 6774 if (LHS->getObjectKind() == OK_ObjCProperty) { 6775 ExprResult LHSResult = Owned(LHS); 6776 ConvertPropertyForLValue(LHSResult, RHS, LHSTy); 6777 if (LHSResult.isInvalid()) 6778 return QualType(); 6779 LHS = LHSResult.take(); 6780 } 6781 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 6782 if (RHS.isInvalid()) 6783 return QualType(); 6784 // Special case of NSObject attributes on c-style pointer types. 6785 if (ConvTy == IncompatiblePointer && 6786 ((Context.isObjCNSObjectType(LHSType) && 6787 RHSType->isObjCObjectPointerType()) || 6788 (Context.isObjCNSObjectType(RHSType) && 6789 LHSType->isObjCObjectPointerType()))) 6790 ConvTy = Compatible; 6791 6792 if (ConvTy == Compatible && 6793 getLangOptions().ObjCNonFragileABI && 6794 LHSType->isObjCObjectType()) 6795 Diag(Loc, diag::err_assignment_requires_nonfragile_object) 6796 << LHSType; 6797 6798 // If the RHS is a unary plus or minus, check to see if they = and + are 6799 // right next to each other. If so, the user may have typo'd "x =+ 4" 6800 // instead of "x += 4". 6801 Expr *RHSCheck = RHS.get(); 6802 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) 6803 RHSCheck = ICE->getSubExpr(); 6804 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { 6805 if ((UO->getOpcode() == UO_Plus || 6806 UO->getOpcode() == UO_Minus) && 6807 Loc.isFileID() && UO->getOperatorLoc().isFileID() && 6808 // Only if the two operators are exactly adjacent. 6809 Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() && 6810 // And there is a space or other character before the subexpr of the 6811 // unary +/-. We don't want to warn on "x=-1". 6812 Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() && 6813 UO->getSubExpr()->getLocStart().isFileID()) { 6814 Diag(Loc, diag::warn_not_compound_assign) 6815 << (UO->getOpcode() == UO_Plus ? "+" : "-") 6816 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); 6817 } 6818 } 6819 6820 if (ConvTy == Compatible) { 6821 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) 6822 checkRetainCycles(LHS, RHS.get()); 6823 else if (getLangOptions().ObjCAutoRefCount) 6824 checkUnsafeExprAssigns(Loc, LHS, RHS.get()); 6825 } 6826 } else { 6827 // Compound assignment "x += y" 6828 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType); 6829 } 6830 6831 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, 6832 RHS.get(), AA_Assigning)) 6833 return QualType(); 6834 6835 CheckForNullPointerDereference(*this, LHS); 6836 // Check for trivial buffer overflows. 6837 CheckArrayAccess(LHS->IgnoreParenCasts()); 6838 6839 // C99 6.5.16p3: The type of an assignment expression is the type of the 6840 // left operand unless the left operand has qualified type, in which case 6841 // it is the unqualified version of the type of the left operand. 6842 // C99 6.5.16.1p2: In simple assignment, the value of the right operand 6843 // is converted to the type of the assignment expression (above). 6844 // C++ 5.17p1: the type of the assignment expression is that of its left 6845 // operand. 6846 return (getLangOptions().CPlusPlus 6847 ? LHSType : LHSType.getUnqualifiedType()); 6848 } 6849 6850 // C99 6.5.17 6851 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS, 6852 SourceLocation Loc) { 6853 S.DiagnoseUnusedExprResult(LHS.get()); 6854 6855 LHS = S.CheckPlaceholderExpr(LHS.take()); 6856 RHS = S.CheckPlaceholderExpr(RHS.take()); 6857 if (LHS.isInvalid() || RHS.isInvalid()) 6858 return QualType(); 6859 6860 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its 6861 // operands, but not unary promotions. 6862 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1). 6863 6864 // So we treat the LHS as a ignored value, and in C++ we allow the 6865 // containing site to determine what should be done with the RHS. 6866 LHS = S.IgnoredValueConversions(LHS.take()); 6867 if (LHS.isInvalid()) 6868 return QualType(); 6869 6870 if (!S.getLangOptions().CPlusPlus) { 6871 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take()); 6872 if (RHS.isInvalid()) 6873 return QualType(); 6874 if (!RHS.get()->getType()->isVoidType()) 6875 S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type); 6876 } 6877 6878 return RHS.get()->getType(); 6879 } 6880 6881 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine 6882 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. 6883 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op, 6884 ExprValueKind &VK, 6885 SourceLocation OpLoc, 6886 bool isInc, bool isPrefix) { 6887 if (Op->isTypeDependent()) 6888 return S.Context.DependentTy; 6889 6890 QualType ResType = Op->getType(); 6891 assert(!ResType.isNull() && "no type for increment/decrement expression"); 6892 6893 if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) { 6894 // Decrement of bool is not allowed. 6895 if (!isInc) { 6896 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange(); 6897 return QualType(); 6898 } 6899 // Increment of bool sets it to true, but is deprecated. 6900 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange(); 6901 } else if (ResType->isRealType()) { 6902 // OK! 6903 } else if (ResType->isAnyPointerType()) { 6904 QualType PointeeTy = ResType->getPointeeType(); 6905 6906 // C99 6.5.2.4p2, 6.5.6p2 6907 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op)) 6908 return QualType(); 6909 6910 // Diagnose bad cases where we step over interface counts. 6911 else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) { 6912 S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface) 6913 << PointeeTy << Op->getSourceRange(); 6914 return QualType(); 6915 } 6916 } else if (ResType->isAnyComplexType()) { 6917 // C99 does not support ++/-- on complex types, we allow as an extension. 6918 S.Diag(OpLoc, diag::ext_integer_increment_complex) 6919 << ResType << Op->getSourceRange(); 6920 } else if (ResType->isPlaceholderType()) { 6921 ExprResult PR = S.CheckPlaceholderExpr(Op); 6922 if (PR.isInvalid()) return QualType(); 6923 return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc, 6924 isInc, isPrefix); 6925 } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) { 6926 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 ) 6927 } else { 6928 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) 6929 << ResType << int(isInc) << Op->getSourceRange(); 6930 return QualType(); 6931 } 6932 // At this point, we know we have a real, complex or pointer type. 6933 // Now make sure the operand is a modifiable lvalue. 6934 if (CheckForModifiableLvalue(Op, OpLoc, S)) 6935 return QualType(); 6936 // In C++, a prefix increment is the same type as the operand. Otherwise 6937 // (in C or with postfix), the increment is the unqualified type of the 6938 // operand. 6939 if (isPrefix && S.getLangOptions().CPlusPlus) { 6940 VK = VK_LValue; 6941 return ResType; 6942 } else { 6943 VK = VK_RValue; 6944 return ResType.getUnqualifiedType(); 6945 } 6946 } 6947 6948 ExprResult Sema::ConvertPropertyForRValue(Expr *E) { 6949 assert(E->getValueKind() == VK_LValue && 6950 E->getObjectKind() == OK_ObjCProperty); 6951 const ObjCPropertyRefExpr *PRE = E->getObjCProperty(); 6952 6953 QualType T = E->getType(); 6954 QualType ReceiverType; 6955 if (PRE->isObjectReceiver()) 6956 ReceiverType = PRE->getBase()->getType(); 6957 else if (PRE->isSuperReceiver()) 6958 ReceiverType = PRE->getSuperReceiverType(); 6959 else 6960 ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver()); 6961 6962 ExprValueKind VK = VK_RValue; 6963 if (PRE->isImplicitProperty()) { 6964 if (ObjCMethodDecl *GetterMethod = 6965 PRE->getImplicitPropertyGetter()) { 6966 T = getMessageSendResultType(ReceiverType, GetterMethod, 6967 PRE->isClassReceiver(), 6968 PRE->isSuperReceiver()); 6969 VK = Expr::getValueKindForType(GetterMethod->getResultType()); 6970 } 6971 else { 6972 Diag(PRE->getLocation(), diag::err_getter_not_found) 6973 << PRE->getBase()->getType(); 6974 } 6975 } 6976 6977 E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty, 6978 E, 0, VK); 6979 6980 ExprResult Result = MaybeBindToTemporary(E); 6981 if (!Result.isInvalid()) 6982 E = Result.take(); 6983 6984 return Owned(E); 6985 } 6986 6987 void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) { 6988 assert(LHS.get()->getValueKind() == VK_LValue && 6989 LHS.get()->getObjectKind() == OK_ObjCProperty); 6990 const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty(); 6991 6992 bool Consumed = false; 6993 6994 if (PropRef->isImplicitProperty()) { 6995 // If using property-dot syntax notation for assignment, and there is a 6996 // setter, RHS expression is being passed to the setter argument. So, 6997 // type conversion (and comparison) is RHS to setter's argument type. 6998 if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) { 6999 ObjCMethodDecl::param_iterator P = SetterMD->param_begin(); 7000 LHSTy = (*P)->getType(); 7001 Consumed = (getLangOptions().ObjCAutoRefCount && 7002 (*P)->hasAttr<NSConsumedAttr>()); 7003 7004 // Otherwise, if the getter returns an l-value, just call that. 7005 } else { 7006 QualType Result = PropRef->getImplicitPropertyGetter()->getResultType(); 7007 ExprValueKind VK = Expr::getValueKindForType(Result); 7008 if (VK == VK_LValue) { 7009 LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(), 7010 CK_GetObjCProperty, LHS.take(), 0, VK); 7011 return; 7012 } 7013 } 7014 } else if (getLangOptions().ObjCAutoRefCount) { 7015 const ObjCMethodDecl *setter 7016 = PropRef->getExplicitProperty()->getSetterMethodDecl(); 7017 if (setter) { 7018 ObjCMethodDecl::param_iterator P = setter->param_begin(); 7019 LHSTy = (*P)->getType(); 7020 Consumed = (*P)->hasAttr<NSConsumedAttr>(); 7021 } 7022 } 7023 7024 if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) || 7025 getLangOptions().ObjCAutoRefCount) { 7026 InitializedEntity Entity = 7027 InitializedEntity::InitializeParameter(Context, LHSTy, Consumed); 7028 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS); 7029 if (!ArgE.isInvalid()) { 7030 RHS = ArgE; 7031 if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver()) 7032 checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get()); 7033 } 7034 } 7035 } 7036 7037 7038 /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). 7039 /// This routine allows us to typecheck complex/recursive expressions 7040 /// where the declaration is needed for type checking. We only need to 7041 /// handle cases when the expression references a function designator 7042 /// or is an lvalue. Here are some examples: 7043 /// - &(x) => x 7044 /// - &*****f => f for f a function designator. 7045 /// - &s.xx => s 7046 /// - &s.zz[1].yy -> s, if zz is an array 7047 /// - *(x + 1) -> x, if x is an array 7048 /// - &"123"[2] -> 0 7049 /// - & __real__ x -> x 7050 static ValueDecl *getPrimaryDecl(Expr *E) { 7051 switch (E->getStmtClass()) { 7052 case Stmt::DeclRefExprClass: 7053 return cast<DeclRefExpr>(E)->getDecl(); 7054 case Stmt::MemberExprClass: 7055 // If this is an arrow operator, the address is an offset from 7056 // the base's value, so the object the base refers to is 7057 // irrelevant. 7058 if (cast<MemberExpr>(E)->isArrow()) 7059 return 0; 7060 // Otherwise, the expression refers to a part of the base 7061 return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); 7062 case Stmt::ArraySubscriptExprClass: { 7063 // FIXME: This code shouldn't be necessary! We should catch the implicit 7064 // promotion of register arrays earlier. 7065 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase(); 7066 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) { 7067 if (ICE->getSubExpr()->getType()->isArrayType()) 7068 return getPrimaryDecl(ICE->getSubExpr()); 7069 } 7070 return 0; 7071 } 7072 case Stmt::UnaryOperatorClass: { 7073 UnaryOperator *UO = cast<UnaryOperator>(E); 7074 7075 switch(UO->getOpcode()) { 7076 case UO_Real: 7077 case UO_Imag: 7078 case UO_Extension: 7079 return getPrimaryDecl(UO->getSubExpr()); 7080 default: 7081 return 0; 7082 } 7083 } 7084 case Stmt::ParenExprClass: 7085 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); 7086 case Stmt::ImplicitCastExprClass: 7087 // If the result of an implicit cast is an l-value, we care about 7088 // the sub-expression; otherwise, the result here doesn't matter. 7089 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); 7090 default: 7091 return 0; 7092 } 7093 } 7094 7095 /// CheckAddressOfOperand - The operand of & must be either a function 7096 /// designator or an lvalue designating an object. If it is an lvalue, the 7097 /// object cannot be declared with storage class register or be a bit field. 7098 /// Note: The usual conversions are *not* applied to the operand of the & 7099 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. 7100 /// In C++, the operand might be an overloaded function name, in which case 7101 /// we allow the '&' but retain the overloaded-function type. 7102 static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp, 7103 SourceLocation OpLoc) { 7104 if (OrigOp->isTypeDependent()) 7105 return S.Context.DependentTy; 7106 if (OrigOp->getType() == S.Context.OverloadTy) 7107 return S.Context.OverloadTy; 7108 if (OrigOp->getType() == S.Context.UnknownAnyTy) 7109 return S.Context.UnknownAnyTy; 7110 if (OrigOp->getType() == S.Context.BoundMemberTy) { 7111 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) 7112 << OrigOp->getSourceRange(); 7113 return QualType(); 7114 } 7115 7116 assert(!OrigOp->getType()->isPlaceholderType()); 7117 7118 // Make sure to ignore parentheses in subsequent checks 7119 Expr *op = OrigOp->IgnoreParens(); 7120 7121 if (S.getLangOptions().C99) { 7122 // Implement C99-only parts of addressof rules. 7123 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { 7124 if (uOp->getOpcode() == UO_Deref) 7125 // Per C99 6.5.3.2, the address of a deref always returns a valid result 7126 // (assuming the deref expression is valid). 7127 return uOp->getSubExpr()->getType(); 7128 } 7129 // Technically, there should be a check for array subscript 7130 // expressions here, but the result of one is always an lvalue anyway. 7131 } 7132 ValueDecl *dcl = getPrimaryDecl(op); 7133 Expr::LValueClassification lval = op->ClassifyLValue(S.Context); 7134 7135 if (lval == Expr::LV_ClassTemporary) { 7136 bool sfinae = S.isSFINAEContext(); 7137 S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary 7138 : diag::ext_typecheck_addrof_class_temporary) 7139 << op->getType() << op->getSourceRange(); 7140 if (sfinae) 7141 return QualType(); 7142 } else if (isa<ObjCSelectorExpr>(op)) { 7143 return S.Context.getPointerType(op->getType()); 7144 } else if (lval == Expr::LV_MemberFunction) { 7145 // If it's an instance method, make a member pointer. 7146 // The expression must have exactly the form &A::foo. 7147 7148 // If the underlying expression isn't a decl ref, give up. 7149 if (!isa<DeclRefExpr>(op)) { 7150 S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function) 7151 << OrigOp->getSourceRange(); 7152 return QualType(); 7153 } 7154 DeclRefExpr *DRE = cast<DeclRefExpr>(op); 7155 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); 7156 7157 // The id-expression was parenthesized. 7158 if (OrigOp != DRE) { 7159 S.Diag(OpLoc, diag::err_parens_pointer_member_function) 7160 << OrigOp->getSourceRange(); 7161 7162 // The method was named without a qualifier. 7163 } else if (!DRE->getQualifier()) { 7164 S.Diag(OpLoc, diag::err_unqualified_pointer_member_function) 7165 << op->getSourceRange(); 7166 } 7167 7168 return S.Context.getMemberPointerType(op->getType(), 7169 S.Context.getTypeDeclType(MD->getParent()).getTypePtr()); 7170 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) { 7171 // C99 6.5.3.2p1 7172 // The operand must be either an l-value or a function designator 7173 if (!op->getType()->isFunctionType()) { 7174 // FIXME: emit more specific diag... 7175 S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) 7176 << op->getSourceRange(); 7177 return QualType(); 7178 } 7179 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1 7180 // The operand cannot be a bit-field 7181 S.Diag(OpLoc, diag::err_typecheck_address_of) 7182 << "bit-field" << op->getSourceRange(); 7183 return QualType(); 7184 } else if (op->getObjectKind() == OK_VectorComponent) { 7185 // The operand cannot be an element of a vector 7186 S.Diag(OpLoc, diag::err_typecheck_address_of) 7187 << "vector element" << op->getSourceRange(); 7188 return QualType(); 7189 } else if (op->getObjectKind() == OK_ObjCProperty) { 7190 // cannot take address of a property expression. 7191 S.Diag(OpLoc, diag::err_typecheck_address_of) 7192 << "property expression" << op->getSourceRange(); 7193 return QualType(); 7194 } else if (dcl) { // C99 6.5.3.2p1 7195 // We have an lvalue with a decl. Make sure the decl is not declared 7196 // with the register storage-class specifier. 7197 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { 7198 // in C++ it is not error to take address of a register 7199 // variable (c++03 7.1.1P3) 7200 if (vd->getStorageClass() == SC_Register && 7201 !S.getLangOptions().CPlusPlus) { 7202 S.Diag(OpLoc, diag::err_typecheck_address_of) 7203 << "register variable" << op->getSourceRange(); 7204 return QualType(); 7205 } 7206 } else if (isa<FunctionTemplateDecl>(dcl)) { 7207 return S.Context.OverloadTy; 7208 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) { 7209 // Okay: we can take the address of a field. 7210 // Could be a pointer to member, though, if there is an explicit 7211 // scope qualifier for the class. 7212 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) { 7213 DeclContext *Ctx = dcl->getDeclContext(); 7214 if (Ctx && Ctx->isRecord()) { 7215 if (dcl->getType()->isReferenceType()) { 7216 S.Diag(OpLoc, 7217 diag::err_cannot_form_pointer_to_member_of_reference_type) 7218 << dcl->getDeclName() << dcl->getType(); 7219 return QualType(); 7220 } 7221 7222 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion()) 7223 Ctx = Ctx->getParent(); 7224 return S.Context.getMemberPointerType(op->getType(), 7225 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr()); 7226 } 7227 } 7228 } else if (!isa<FunctionDecl>(dcl)) 7229 assert(0 && "Unknown/unexpected decl type"); 7230 } 7231 7232 if (lval == Expr::LV_IncompleteVoidType) { 7233 // Taking the address of a void variable is technically illegal, but we 7234 // allow it in cases which are otherwise valid. 7235 // Example: "extern void x; void* y = &x;". 7236 S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange(); 7237 } 7238 7239 // If the operand has type "type", the result has type "pointer to type". 7240 if (op->getType()->isObjCObjectType()) 7241 return S.Context.getObjCObjectPointerType(op->getType()); 7242 return S.Context.getPointerType(op->getType()); 7243 } 7244 7245 /// CheckIndirectionOperand - Type check unary indirection (prefix '*'). 7246 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK, 7247 SourceLocation OpLoc) { 7248 if (Op->isTypeDependent()) 7249 return S.Context.DependentTy; 7250 7251 ExprResult ConvResult = S.UsualUnaryConversions(Op); 7252 if (ConvResult.isInvalid()) 7253 return QualType(); 7254 Op = ConvResult.take(); 7255 QualType OpTy = Op->getType(); 7256 QualType Result; 7257 7258 if (isa<CXXReinterpretCastExpr>(Op)) { 7259 QualType OpOrigType = Op->IgnoreParenCasts()->getType(); 7260 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true, 7261 Op->getSourceRange()); 7262 } 7263 7264 // Note that per both C89 and C99, indirection is always legal, even if OpTy 7265 // is an incomplete type or void. It would be possible to warn about 7266 // dereferencing a void pointer, but it's completely well-defined, and such a 7267 // warning is unlikely to catch any mistakes. 7268 if (const PointerType *PT = OpTy->getAs<PointerType>()) 7269 Result = PT->getPointeeType(); 7270 else if (const ObjCObjectPointerType *OPT = 7271 OpTy->getAs<ObjCObjectPointerType>()) 7272 Result = OPT->getPointeeType(); 7273 else { 7274 ExprResult PR = S.CheckPlaceholderExpr(Op); 7275 if (PR.isInvalid()) return QualType(); 7276 if (PR.take() != Op) 7277 return CheckIndirectionOperand(S, PR.take(), VK, OpLoc); 7278 } 7279 7280 if (Result.isNull()) { 7281 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) 7282 << OpTy << Op->getSourceRange(); 7283 return QualType(); 7284 } 7285 7286 // Dereferences are usually l-values... 7287 VK = VK_LValue; 7288 7289 // ...except that certain expressions are never l-values in C. 7290 if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType()) 7291 VK = VK_RValue; 7292 7293 return Result; 7294 } 7295 7296 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode( 7297 tok::TokenKind Kind) { 7298 BinaryOperatorKind Opc; 7299 switch (Kind) { 7300 default: assert(0 && "Unknown binop!"); 7301 case tok::periodstar: Opc = BO_PtrMemD; break; 7302 case tok::arrowstar: Opc = BO_PtrMemI; break; 7303 case tok::star: Opc = BO_Mul; break; 7304 case tok::slash: Opc = BO_Div; break; 7305 case tok::percent: Opc = BO_Rem; break; 7306 case tok::plus: Opc = BO_Add; break; 7307 case tok::minus: Opc = BO_Sub; break; 7308 case tok::lessless: Opc = BO_Shl; break; 7309 case tok::greatergreater: Opc = BO_Shr; break; 7310 case tok::lessequal: Opc = BO_LE; break; 7311 case tok::less: Opc = BO_LT; break; 7312 case tok::greaterequal: Opc = BO_GE; break; 7313 case tok::greater: Opc = BO_GT; break; 7314 case tok::exclaimequal: Opc = BO_NE; break; 7315 case tok::equalequal: Opc = BO_EQ; break; 7316 case tok::amp: Opc = BO_And; break; 7317 case tok::caret: Opc = BO_Xor; break; 7318 case tok::pipe: Opc = BO_Or; break; 7319 case tok::ampamp: Opc = BO_LAnd; break; 7320 case tok::pipepipe: Opc = BO_LOr; break; 7321 case tok::equal: Opc = BO_Assign; break; 7322 case tok::starequal: Opc = BO_MulAssign; break; 7323 case tok::slashequal: Opc = BO_DivAssign; break; 7324 case tok::percentequal: Opc = BO_RemAssign; break; 7325 case tok::plusequal: Opc = BO_AddAssign; break; 7326 case tok::minusequal: Opc = BO_SubAssign; break; 7327 case tok::lesslessequal: Opc = BO_ShlAssign; break; 7328 case tok::greatergreaterequal: Opc = BO_ShrAssign; break; 7329 case tok::ampequal: Opc = BO_AndAssign; break; 7330 case tok::caretequal: Opc = BO_XorAssign; break; 7331 case tok::pipeequal: Opc = BO_OrAssign; break; 7332 case tok::comma: Opc = BO_Comma; break; 7333 } 7334 return Opc; 7335 } 7336 7337 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode( 7338 tok::TokenKind Kind) { 7339 UnaryOperatorKind Opc; 7340 switch (Kind) { 7341 default: assert(0 && "Unknown unary op!"); 7342 case tok::plusplus: Opc = UO_PreInc; break; 7343 case tok::minusminus: Opc = UO_PreDec; break; 7344 case tok::amp: Opc = UO_AddrOf; break; 7345 case tok::star: Opc = UO_Deref; break; 7346 case tok::plus: Opc = UO_Plus; break; 7347 case tok::minus: Opc = UO_Minus; break; 7348 case tok::tilde: Opc = UO_Not; break; 7349 case tok::exclaim: Opc = UO_LNot; break; 7350 case tok::kw___real: Opc = UO_Real; break; 7351 case tok::kw___imag: Opc = UO_Imag; break; 7352 case tok::kw___extension__: Opc = UO_Extension; break; 7353 } 7354 return Opc; 7355 } 7356 7357 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself. 7358 /// This warning is only emitted for builtin assignment operations. It is also 7359 /// suppressed in the event of macro expansions. 7360 static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs, 7361 SourceLocation OpLoc) { 7362 if (!S.ActiveTemplateInstantiations.empty()) 7363 return; 7364 if (OpLoc.isInvalid() || OpLoc.isMacroID()) 7365 return; 7366 lhs = lhs->IgnoreParenImpCasts(); 7367 rhs = rhs->IgnoreParenImpCasts(); 7368 const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs); 7369 const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs); 7370 if (!LeftDeclRef || !RightDeclRef || 7371 LeftDeclRef->getLocation().isMacroID() || 7372 RightDeclRef->getLocation().isMacroID()) 7373 return; 7374 const ValueDecl *LeftDecl = 7375 cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl()); 7376 const ValueDecl *RightDecl = 7377 cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl()); 7378 if (LeftDecl != RightDecl) 7379 return; 7380 if (LeftDecl->getType().isVolatileQualified()) 7381 return; 7382 if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>()) 7383 if (RefTy->getPointeeType().isVolatileQualified()) 7384 return; 7385 7386 S.Diag(OpLoc, diag::warn_self_assignment) 7387 << LeftDeclRef->getType() 7388 << lhs->getSourceRange() << rhs->getSourceRange(); 7389 } 7390 7391 /// CreateBuiltinBinOp - Creates a new built-in binary operation with 7392 /// operator @p Opc at location @c TokLoc. This routine only supports 7393 /// built-in operations; ActOnBinOp handles overloaded operators. 7394 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, 7395 BinaryOperatorKind Opc, 7396 Expr *lhsExpr, Expr *rhsExpr) { 7397 ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr); 7398 QualType ResultTy; // Result type of the binary operator. 7399 // The following two variables are used for compound assignment operators 7400 QualType CompLHSTy; // Type of LHS after promotions for computation 7401 QualType CompResultTy; // Type of computation result 7402 ExprValueKind VK = VK_RValue; 7403 ExprObjectKind OK = OK_Ordinary; 7404 7405 // Check if a 'foo<int>' involved in a binary op, identifies a single 7406 // function unambiguously (i.e. an lvalue ala 13.4) 7407 // But since an assignment can trigger target based overload, exclude it in 7408 // our blind search. i.e: 7409 // template<class T> void f(); template<class T, class U> void f(U); 7410 // f<int> == 0; // resolve f<int> blindly 7411 // void (*p)(int); p = f<int>; // resolve f<int> using target 7412 if (Opc != BO_Assign) { 7413 ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get()); 7414 if (!resolvedLHS.isUsable()) return ExprError(); 7415 lhs = move(resolvedLHS); 7416 7417 ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get()); 7418 if (!resolvedRHS.isUsable()) return ExprError(); 7419 rhs = move(resolvedRHS); 7420 } 7421 7422 // The canonical way to check for a GNU null is with isNullPointerConstant, 7423 // but we use a bit of a hack here for speed; this is a relatively 7424 // hot path, and isNullPointerConstant is slow. 7425 bool LeftNull = isa<GNUNullExpr>(lhs.get()->IgnoreParenImpCasts()); 7426 bool RightNull = isa<GNUNullExpr>(rhs.get()->IgnoreParenImpCasts()); 7427 7428 // Detect when a NULL constant is used improperly in an expression. These 7429 // are mainly cases where the null pointer is used as an integer instead 7430 // of a pointer. 7431 if (LeftNull || RightNull) { 7432 // Avoid analyzing cases where the result will either be invalid (and 7433 // diagnosed as such) or entirely valid and not something to warn about. 7434 QualType LeftType = lhs.get()->getType(); 7435 QualType RightType = rhs.get()->getType(); 7436 if (!LeftType->isBlockPointerType() && !LeftType->isMemberPointerType() && 7437 !LeftType->isFunctionType() && 7438 !RightType->isBlockPointerType() && 7439 !RightType->isMemberPointerType() && 7440 !RightType->isFunctionType()) { 7441 if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add || 7442 Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And || 7443 Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign || 7444 Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign || 7445 Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign || 7446 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign) { 7447 // These are the operations that would not make sense with a null pointer 7448 // no matter what the other expression is. 7449 Diag(OpLoc, diag::warn_null_in_arithmetic_operation) 7450 << (LeftNull ? lhs.get()->getSourceRange() : SourceRange()) 7451 << (RightNull ? rhs.get()->getSourceRange() : SourceRange()); 7452 } else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT || 7453 Opc == BO_EQ || Opc == BO_NE) { 7454 // These are the operations that would not make sense with a null pointer 7455 // if the other expression the other expression is not a pointer. 7456 if (LeftNull != RightNull && 7457 !LeftType->isAnyPointerType() && 7458 !LeftType->canDecayToPointerType() && 7459 !RightType->isAnyPointerType() && 7460 !RightType->canDecayToPointerType()) { 7461 Diag(OpLoc, diag::warn_null_in_arithmetic_operation) 7462 << (LeftNull ? lhs.get()->getSourceRange() 7463 : rhs.get()->getSourceRange()); 7464 } 7465 } 7466 } 7467 } 7468 7469 switch (Opc) { 7470 case BO_Assign: 7471 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType()); 7472 if (getLangOptions().CPlusPlus && 7473 lhs.get()->getObjectKind() != OK_ObjCProperty) { 7474 VK = lhs.get()->getValueKind(); 7475 OK = lhs.get()->getObjectKind(); 7476 } 7477 if (!ResultTy.isNull()) 7478 DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc); 7479 break; 7480 case BO_PtrMemD: 7481 case BO_PtrMemI: 7482 ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc, 7483 Opc == BO_PtrMemI); 7484 break; 7485 case BO_Mul: 7486 case BO_Div: 7487 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false, 7488 Opc == BO_Div); 7489 break; 7490 case BO_Rem: 7491 ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); 7492 break; 7493 case BO_Add: 7494 ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); 7495 break; 7496 case BO_Sub: 7497 ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); 7498 break; 7499 case BO_Shl: 7500 case BO_Shr: 7501 ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc); 7502 break; 7503 case BO_LE: 7504 case BO_LT: 7505 case BO_GE: 7506 case BO_GT: 7507 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true); 7508 break; 7509 case BO_EQ: 7510 case BO_NE: 7511 ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false); 7512 break; 7513 case BO_And: 7514 case BO_Xor: 7515 case BO_Or: 7516 ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); 7517 break; 7518 case BO_LAnd: 7519 case BO_LOr: 7520 ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc); 7521 break; 7522 case BO_MulAssign: 7523 case BO_DivAssign: 7524 CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true, 7525 Opc == BO_DivAssign); 7526 CompLHSTy = CompResultTy; 7527 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7528 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7529 break; 7530 case BO_RemAssign: 7531 CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); 7532 CompLHSTy = CompResultTy; 7533 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7534 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7535 break; 7536 case BO_AddAssign: 7537 CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy); 7538 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7539 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7540 break; 7541 case BO_SubAssign: 7542 CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy); 7543 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7544 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7545 break; 7546 case BO_ShlAssign: 7547 case BO_ShrAssign: 7548 CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true); 7549 CompLHSTy = CompResultTy; 7550 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7551 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7552 break; 7553 case BO_AndAssign: 7554 case BO_XorAssign: 7555 case BO_OrAssign: 7556 CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); 7557 CompLHSTy = CompResultTy; 7558 if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid()) 7559 ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy); 7560 break; 7561 case BO_Comma: 7562 ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc); 7563 if (getLangOptions().CPlusPlus && !rhs.isInvalid()) { 7564 VK = rhs.get()->getValueKind(); 7565 OK = rhs.get()->getObjectKind(); 7566 } 7567 break; 7568 } 7569 if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid()) 7570 return ExprError(); 7571 if (CompResultTy.isNull()) 7572 return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc, 7573 ResultTy, VK, OK, OpLoc)); 7574 if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) { 7575 VK = VK_LValue; 7576 OK = lhs.get()->getObjectKind(); 7577 } 7578 return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc, 7579 ResultTy, VK, OK, CompLHSTy, 7580 CompResultTy, OpLoc)); 7581 } 7582 7583 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison 7584 /// operators are mixed in a way that suggests that the programmer forgot that 7585 /// comparison operators have higher precedence. The most typical example of 7586 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1". 7587 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc, 7588 SourceLocation OpLoc,Expr *lhs,Expr *rhs){ 7589 typedef BinaryOperator BinOp; 7590 BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1), 7591 rhsopc = static_cast<BinOp::Opcode>(-1); 7592 if (BinOp *BO = dyn_cast<BinOp>(lhs)) 7593 lhsopc = BO->getOpcode(); 7594 if (BinOp *BO = dyn_cast<BinOp>(rhs)) 7595 rhsopc = BO->getOpcode(); 7596 7597 // Subs are not binary operators. 7598 if (lhsopc == -1 && rhsopc == -1) 7599 return; 7600 7601 // Bitwise operations are sometimes used as eager logical ops. 7602 // Don't diagnose this. 7603 if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) && 7604 (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc))) 7605 return; 7606 7607 if (BinOp::isComparisonOp(lhsopc)) { 7608 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) 7609 << SourceRange(lhs->getLocStart(), OpLoc) 7610 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc); 7611 SuggestParentheses(Self, OpLoc, 7612 Self.PDiag(diag::note_precedence_bitwise_silence) 7613 << BinOp::getOpcodeStr(lhsopc), 7614 lhs->getSourceRange()); 7615 SuggestParentheses(Self, OpLoc, 7616 Self.PDiag(diag::note_precedence_bitwise_first) 7617 << BinOp::getOpcodeStr(Opc), 7618 SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd())); 7619 } else if (BinOp::isComparisonOp(rhsopc)) { 7620 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel) 7621 << SourceRange(OpLoc, rhs->getLocEnd()) 7622 << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc); 7623 SuggestParentheses(Self, OpLoc, 7624 Self.PDiag(diag::note_precedence_bitwise_silence) 7625 << BinOp::getOpcodeStr(rhsopc), 7626 rhs->getSourceRange()); 7627 SuggestParentheses(Self, OpLoc, 7628 Self.PDiag(diag::note_precedence_bitwise_first) 7629 << BinOp::getOpcodeStr(Opc), 7630 SourceRange(lhs->getLocStart(), 7631 cast<BinOp>(rhs)->getLHS()->getLocStart())); 7632 } 7633 } 7634 7635 /// \brief It accepts a '&' expr that is inside a '|' one. 7636 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression 7637 /// in parentheses. 7638 static void 7639 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc, 7640 BinaryOperator *Bop) { 7641 assert(Bop->getOpcode() == BO_And); 7642 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or) 7643 << Bop->getSourceRange() << OpLoc; 7644 SuggestParentheses(Self, Bop->getOperatorLoc(), 7645 Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence), 7646 Bop->getSourceRange()); 7647 } 7648 7649 /// \brief It accepts a '&&' expr that is inside a '||' one. 7650 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression 7651 /// in parentheses. 7652 static void 7653 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc, 7654 BinaryOperator *Bop) { 7655 assert(Bop->getOpcode() == BO_LAnd); 7656 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or) 7657 << Bop->getSourceRange() << OpLoc; 7658 SuggestParentheses(Self, Bop->getOperatorLoc(), 7659 Self.PDiag(diag::note_logical_and_in_logical_or_silence), 7660 Bop->getSourceRange()); 7661 } 7662 7663 /// \brief Returns true if the given expression can be evaluated as a constant 7664 /// 'true'. 7665 static bool EvaluatesAsTrue(Sema &S, Expr *E) { 7666 bool Res; 7667 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res; 7668 } 7669 7670 /// \brief Returns true if the given expression can be evaluated as a constant 7671 /// 'false'. 7672 static bool EvaluatesAsFalse(Sema &S, Expr *E) { 7673 bool Res; 7674 return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res; 7675 } 7676 7677 /// \brief Look for '&&' in the left hand of a '||' expr. 7678 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc, 7679 Expr *OrLHS, Expr *OrRHS) { 7680 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) { 7681 if (Bop->getOpcode() == BO_LAnd) { 7682 // If it's "a && b || 0" don't warn since the precedence doesn't matter. 7683 if (EvaluatesAsFalse(S, OrRHS)) 7684 return; 7685 // If it's "1 && a || b" don't warn since the precedence doesn't matter. 7686 if (!EvaluatesAsTrue(S, Bop->getLHS())) 7687 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); 7688 } else if (Bop->getOpcode() == BO_LOr) { 7689 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) { 7690 // If it's "a || b && 1 || c" we didn't warn earlier for 7691 // "a || b && 1", but warn now. 7692 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS())) 7693 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop); 7694 } 7695 } 7696 } 7697 } 7698 7699 /// \brief Look for '&&' in the right hand of a '||' expr. 7700 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc, 7701 Expr *OrLHS, Expr *OrRHS) { 7702 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) { 7703 if (Bop->getOpcode() == BO_LAnd) { 7704 // If it's "0 || a && b" don't warn since the precedence doesn't matter. 7705 if (EvaluatesAsFalse(S, OrLHS)) 7706 return; 7707 // If it's "a || b && 1" don't warn since the precedence doesn't matter. 7708 if (!EvaluatesAsTrue(S, Bop->getRHS())) 7709 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop); 7710 } 7711 } 7712 } 7713 7714 /// \brief Look for '&' in the left or right hand of a '|' expr. 7715 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc, 7716 Expr *OrArg) { 7717 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) { 7718 if (Bop->getOpcode() == BO_And) 7719 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop); 7720 } 7721 } 7722 7723 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky 7724 /// precedence. 7725 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc, 7726 SourceLocation OpLoc, Expr *lhs, Expr *rhs){ 7727 // Diagnose "arg1 'bitwise' arg2 'eq' arg3". 7728 if (BinaryOperator::isBitwiseOp(Opc)) 7729 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs); 7730 7731 // Diagnose "arg1 & arg2 | arg3" 7732 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) { 7733 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs); 7734 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs); 7735 } 7736 7737 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does. 7738 // We don't warn for 'assert(a || b && "bad")' since this is safe. 7739 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) { 7740 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs); 7741 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs); 7742 } 7743 } 7744 7745 // Binary Operators. 'Tok' is the token for the operator. 7746 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, 7747 tok::TokenKind Kind, 7748 Expr *lhs, Expr *rhs) { 7749 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind); 7750 assert((lhs != 0) && "ActOnBinOp(): missing left expression"); 7751 assert((rhs != 0) && "ActOnBinOp(): missing right expression"); 7752 7753 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0" 7754 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs); 7755 7756 return BuildBinOp(S, TokLoc, Opc, lhs, rhs); 7757 } 7758 7759 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc, 7760 BinaryOperatorKind Opc, 7761 Expr *lhs, Expr *rhs) { 7762 if (getLangOptions().CPlusPlus) { 7763 bool UseBuiltinOperator; 7764 7765 if (lhs->isTypeDependent() || rhs->isTypeDependent()) { 7766 UseBuiltinOperator = false; 7767 } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) { 7768 UseBuiltinOperator = true; 7769 } else { 7770 UseBuiltinOperator = !lhs->getType()->isOverloadableType() && 7771 !rhs->getType()->isOverloadableType(); 7772 } 7773 7774 if (!UseBuiltinOperator) { 7775 // Find all of the overloaded operators visible from this 7776 // point. We perform both an operator-name lookup from the local 7777 // scope and an argument-dependent lookup based on the types of 7778 // the arguments. 7779 UnresolvedSet<16> Functions; 7780 OverloadedOperatorKind OverOp 7781 = BinaryOperator::getOverloadedOperator(Opc); 7782 if (S && OverOp != OO_None) 7783 LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(), 7784 Functions); 7785 7786 // Build the (potentially-overloaded, potentially-dependent) 7787 // binary operation. 7788 return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs); 7789 } 7790 } 7791 7792 // Build a built-in binary operation. 7793 return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs); 7794 } 7795 7796 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc, 7797 UnaryOperatorKind Opc, 7798 Expr *InputExpr) { 7799 ExprResult Input = Owned(InputExpr); 7800 ExprValueKind VK = VK_RValue; 7801 ExprObjectKind OK = OK_Ordinary; 7802 QualType resultType; 7803 switch (Opc) { 7804 case UO_PreInc: 7805 case UO_PreDec: 7806 case UO_PostInc: 7807 case UO_PostDec: 7808 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc, 7809 Opc == UO_PreInc || 7810 Opc == UO_PostInc, 7811 Opc == UO_PreInc || 7812 Opc == UO_PreDec); 7813 break; 7814 case UO_AddrOf: 7815 resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc); 7816 break; 7817 case UO_Deref: { 7818 ExprResult resolved = CheckPlaceholderExpr(Input.get()); 7819 if (!resolved.isUsable()) return ExprError(); 7820 Input = move(resolved); 7821 Input = DefaultFunctionArrayLvalueConversion(Input.take()); 7822 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc); 7823 break; 7824 } 7825 case UO_Plus: 7826 case UO_Minus: 7827 Input = UsualUnaryConversions(Input.take()); 7828 if (Input.isInvalid()) return ExprError(); 7829 resultType = Input.get()->getType(); 7830 if (resultType->isDependentType()) 7831 break; 7832 if (resultType->isArithmeticType() || // C99 6.5.3.3p1 7833 resultType->isVectorType()) 7834 break; 7835 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 7836 resultType->isEnumeralType()) 7837 break; 7838 else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 7839 Opc == UO_Plus && 7840 resultType->isPointerType()) 7841 break; 7842 else if (resultType->isPlaceholderType()) { 7843 Input = CheckPlaceholderExpr(Input.take()); 7844 if (Input.isInvalid()) return ExprError(); 7845 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); 7846 } 7847 7848 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) 7849 << resultType << Input.get()->getSourceRange()); 7850 7851 case UO_Not: // bitwise complement 7852 Input = UsualUnaryConversions(Input.take()); 7853 if (Input.isInvalid()) return ExprError(); 7854 resultType = Input.get()->getType(); 7855 if (resultType->isDependentType()) 7856 break; 7857 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. 7858 if (resultType->isComplexType() || resultType->isComplexIntegerType()) 7859 // C99 does not support '~' for complex conjugation. 7860 Diag(OpLoc, diag::ext_integer_complement_complex) 7861 << resultType << Input.get()->getSourceRange(); 7862 else if (resultType->hasIntegerRepresentation()) 7863 break; 7864 else if (resultType->isPlaceholderType()) { 7865 Input = CheckPlaceholderExpr(Input.take()); 7866 if (Input.isInvalid()) return ExprError(); 7867 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); 7868 } else { 7869 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) 7870 << resultType << Input.get()->getSourceRange()); 7871 } 7872 break; 7873 7874 case UO_LNot: // logical negation 7875 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). 7876 Input = DefaultFunctionArrayLvalueConversion(Input.take()); 7877 if (Input.isInvalid()) return ExprError(); 7878 resultType = Input.get()->getType(); 7879 if (resultType->isDependentType()) 7880 break; 7881 if (resultType->isScalarType()) { 7882 // C99 6.5.3.3p1: ok, fallthrough; 7883 if (Context.getLangOptions().CPlusPlus) { 7884 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9: 7885 // operand contextually converted to bool. 7886 Input = ImpCastExprToType(Input.take(), Context.BoolTy, 7887 ScalarTypeToBooleanCastKind(resultType)); 7888 } 7889 } else if (resultType->isPlaceholderType()) { 7890 Input = CheckPlaceholderExpr(Input.take()); 7891 if (Input.isInvalid()) return ExprError(); 7892 return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take()); 7893 } else { 7894 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr) 7895 << resultType << Input.get()->getSourceRange()); 7896 } 7897 7898 // LNot always has type int. C99 6.5.3.3p5. 7899 // In C++, it's bool. C++ 5.3.1p8 7900 resultType = Context.getLogicalOperationType(); 7901 break; 7902 case UO_Real: 7903 case UO_Imag: 7904 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real); 7905 // _Real and _Imag map ordinary l-values into ordinary l-values. 7906 if (Input.isInvalid()) return ExprError(); 7907 if (Input.get()->getValueKind() != VK_RValue && 7908 Input.get()->getObjectKind() == OK_Ordinary) 7909 VK = Input.get()->getValueKind(); 7910 break; 7911 case UO_Extension: 7912 resultType = Input.get()->getType(); 7913 VK = Input.get()->getValueKind(); 7914 OK = Input.get()->getObjectKind(); 7915 break; 7916 } 7917 if (resultType.isNull() || Input.isInvalid()) 7918 return ExprError(); 7919 7920 return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType, 7921 VK, OK, OpLoc)); 7922 } 7923 7924 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc, 7925 UnaryOperatorKind Opc, 7926 Expr *Input) { 7927 if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() && 7928 UnaryOperator::getOverloadedOperator(Opc) != OO_None) { 7929 // Find all of the overloaded operators visible from this 7930 // point. We perform both an operator-name lookup from the local 7931 // scope and an argument-dependent lookup based on the types of 7932 // the arguments. 7933 UnresolvedSet<16> Functions; 7934 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc); 7935 if (S && OverOp != OO_None) 7936 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(), 7937 Functions); 7938 7939 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input); 7940 } 7941 7942 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 7943 } 7944 7945 // Unary Operators. 'Tok' is the token for the operator. 7946 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, 7947 tok::TokenKind Op, Expr *Input) { 7948 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input); 7949 } 7950 7951 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". 7952 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, 7953 LabelDecl *TheDecl) { 7954 TheDecl->setUsed(); 7955 // Create the AST node. The address of a label always has type 'void*'. 7956 return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl, 7957 Context.getPointerType(Context.VoidTy))); 7958 } 7959 7960 /// Given the last statement in a statement-expression, check whether 7961 /// the result is a producing expression (like a call to an 7962 /// ns_returns_retained function) and, if so, rebuild it to hoist the 7963 /// release out of the full-expression. Otherwise, return null. 7964 /// Cannot fail. 7965 static Expr *maybeRebuildARCConsumingStmt(Stmt *s) { 7966 // Should always be wrapped with one of these. 7967 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s); 7968 if (!cleanups) return 0; 7969 7970 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr()); 7971 if (!cast || cast->getCastKind() != CK_ObjCConsumeObject) 7972 return 0; 7973 7974 // Splice out the cast. This shouldn't modify any interesting 7975 // features of the statement. 7976 Expr *producer = cast->getSubExpr(); 7977 assert(producer->getType() == cast->getType()); 7978 assert(producer->getValueKind() == cast->getValueKind()); 7979 cleanups->setSubExpr(producer); 7980 return cleanups; 7981 } 7982 7983 ExprResult 7984 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, 7985 SourceLocation RPLoc) { // "({..})" 7986 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); 7987 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); 7988 7989 bool isFileScope 7990 = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0); 7991 if (isFileScope) 7992 return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope)); 7993 7994 // FIXME: there are a variety of strange constraints to enforce here, for 7995 // example, it is not possible to goto into a stmt expression apparently. 7996 // More semantic analysis is needed. 7997 7998 // If there are sub stmts in the compound stmt, take the type of the last one 7999 // as the type of the stmtexpr. 8000 QualType Ty = Context.VoidTy; 8001 bool StmtExprMayBindToTemp = false; 8002 if (!Compound->body_empty()) { 8003 Stmt *LastStmt = Compound->body_back(); 8004 LabelStmt *LastLabelStmt = 0; 8005 // If LastStmt is a label, skip down through into the body. 8006 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) { 8007 LastLabelStmt = Label; 8008 LastStmt = Label->getSubStmt(); 8009 } 8010 8011 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) { 8012 // Do function/array conversion on the last expression, but not 8013 // lvalue-to-rvalue. However, initialize an unqualified type. 8014 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE); 8015 if (LastExpr.isInvalid()) 8016 return ExprError(); 8017 Ty = LastExpr.get()->getType().getUnqualifiedType(); 8018 8019 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) { 8020 // In ARC, if the final expression ends in a consume, splice 8021 // the consume out and bind it later. In the alternate case 8022 // (when dealing with a retainable type), the result 8023 // initialization will create a produce. In both cases the 8024 // result will be +1, and we'll need to balance that out with 8025 // a bind. 8026 if (Expr *rebuiltLastStmt 8027 = maybeRebuildARCConsumingStmt(LastExpr.get())) { 8028 LastExpr = rebuiltLastStmt; 8029 } else { 8030 LastExpr = PerformCopyInitialization( 8031 InitializedEntity::InitializeResult(LPLoc, 8032 Ty, 8033 false), 8034 SourceLocation(), 8035 LastExpr); 8036 } 8037 8038 if (LastExpr.isInvalid()) 8039 return ExprError(); 8040 if (LastExpr.get() != 0) { 8041 if (!LastLabelStmt) 8042 Compound->setLastStmt(LastExpr.take()); 8043 else 8044 LastLabelStmt->setSubStmt(LastExpr.take()); 8045 StmtExprMayBindToTemp = true; 8046 } 8047 } 8048 } 8049 } 8050 8051 // FIXME: Check that expression type is complete/non-abstract; statement 8052 // expressions are not lvalues. 8053 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc); 8054 if (StmtExprMayBindToTemp) 8055 return MaybeBindToTemporary(ResStmtExpr); 8056 return Owned(ResStmtExpr); 8057 } 8058 8059 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, 8060 TypeSourceInfo *TInfo, 8061 OffsetOfComponent *CompPtr, 8062 unsigned NumComponents, 8063 SourceLocation RParenLoc) { 8064 QualType ArgTy = TInfo->getType(); 8065 bool Dependent = ArgTy->isDependentType(); 8066 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange(); 8067 8068 // We must have at least one component that refers to the type, and the first 8069 // one is known to be a field designator. Verify that the ArgTy represents 8070 // a struct/union/class. 8071 if (!Dependent && !ArgTy->isRecordType()) 8072 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) 8073 << ArgTy << TypeRange); 8074 8075 // Type must be complete per C99 7.17p3 because a declaring a variable 8076 // with an incomplete type would be ill-formed. 8077 if (!Dependent 8078 && RequireCompleteType(BuiltinLoc, ArgTy, 8079 PDiag(diag::err_offsetof_incomplete_type) 8080 << TypeRange)) 8081 return ExprError(); 8082 8083 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a 8084 // GCC extension, diagnose them. 8085 // FIXME: This diagnostic isn't actually visible because the location is in 8086 // a system header! 8087 if (NumComponents != 1) 8088 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) 8089 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); 8090 8091 bool DidWarnAboutNonPOD = false; 8092 QualType CurrentType = ArgTy; 8093 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode; 8094 llvm::SmallVector<OffsetOfNode, 4> Comps; 8095 llvm::SmallVector<Expr*, 4> Exprs; 8096 for (unsigned i = 0; i != NumComponents; ++i) { 8097 const OffsetOfComponent &OC = CompPtr[i]; 8098 if (OC.isBrackets) { 8099 // Offset of an array sub-field. TODO: Should we allow vector elements? 8100 if (!CurrentType->isDependentType()) { 8101 const ArrayType *AT = Context.getAsArrayType(CurrentType); 8102 if(!AT) 8103 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type) 8104 << CurrentType); 8105 CurrentType = AT->getElementType(); 8106 } else 8107 CurrentType = Context.DependentTy; 8108 8109 // The expression must be an integral expression. 8110 // FIXME: An integral constant expression? 8111 Expr *Idx = static_cast<Expr*>(OC.U.E); 8112 if (!Idx->isTypeDependent() && !Idx->isValueDependent() && 8113 !Idx->getType()->isIntegerType()) 8114 return ExprError(Diag(Idx->getLocStart(), 8115 diag::err_typecheck_subscript_not_integer) 8116 << Idx->getSourceRange()); 8117 8118 // Record this array index. 8119 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd)); 8120 Exprs.push_back(Idx); 8121 continue; 8122 } 8123 8124 // Offset of a field. 8125 if (CurrentType->isDependentType()) { 8126 // We have the offset of a field, but we can't look into the dependent 8127 // type. Just record the identifier of the field. 8128 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd)); 8129 CurrentType = Context.DependentTy; 8130 continue; 8131 } 8132 8133 // We need to have a complete type to look into. 8134 if (RequireCompleteType(OC.LocStart, CurrentType, 8135 diag::err_offsetof_incomplete_type)) 8136 return ExprError(); 8137 8138 // Look for the designated field. 8139 const RecordType *RC = CurrentType->getAs<RecordType>(); 8140 if (!RC) 8141 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type) 8142 << CurrentType); 8143 RecordDecl *RD = RC->getDecl(); 8144 8145 // C++ [lib.support.types]p5: 8146 // The macro offsetof accepts a restricted set of type arguments in this 8147 // International Standard. type shall be a POD structure or a POD union 8148 // (clause 9). 8149 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 8150 if (!CRD->isPOD() && !DidWarnAboutNonPOD && 8151 DiagRuntimeBehavior(BuiltinLoc, 0, 8152 PDiag(diag::warn_offsetof_non_pod_type) 8153 << SourceRange(CompPtr[0].LocStart, OC.LocEnd) 8154 << CurrentType)) 8155 DidWarnAboutNonPOD = true; 8156 } 8157 8158 // Look for the field. 8159 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName); 8160 LookupQualifiedName(R, RD); 8161 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>(); 8162 IndirectFieldDecl *IndirectMemberDecl = 0; 8163 if (!MemberDecl) { 8164 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>())) 8165 MemberDecl = IndirectMemberDecl->getAnonField(); 8166 } 8167 8168 if (!MemberDecl) 8169 return ExprError(Diag(BuiltinLoc, diag::err_no_member) 8170 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, 8171 OC.LocEnd)); 8172 8173 // C99 7.17p3: 8174 // (If the specified member is a bit-field, the behavior is undefined.) 8175 // 8176 // We diagnose this as an error. 8177 if (MemberDecl->getBitWidth()) { 8178 Diag(OC.LocEnd, diag::err_offsetof_bitfield) 8179 << MemberDecl->getDeclName() 8180 << SourceRange(BuiltinLoc, RParenLoc); 8181 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl); 8182 return ExprError(); 8183 } 8184 8185 RecordDecl *Parent = MemberDecl->getParent(); 8186 if (IndirectMemberDecl) 8187 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext()); 8188 8189 // If the member was found in a base class, introduce OffsetOfNodes for 8190 // the base class indirections. 8191 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 8192 /*DetectVirtual=*/false); 8193 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) { 8194 CXXBasePath &Path = Paths.front(); 8195 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end(); 8196 B != BEnd; ++B) 8197 Comps.push_back(OffsetOfNode(B->Base)); 8198 } 8199 8200 if (IndirectMemberDecl) { 8201 for (IndirectFieldDecl::chain_iterator FI = 8202 IndirectMemberDecl->chain_begin(), 8203 FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) { 8204 assert(isa<FieldDecl>(*FI)); 8205 Comps.push_back(OffsetOfNode(OC.LocStart, 8206 cast<FieldDecl>(*FI), OC.LocEnd)); 8207 } 8208 } else 8209 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd)); 8210 8211 CurrentType = MemberDecl->getType().getNonReferenceType(); 8212 } 8213 8214 return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, 8215 TInfo, Comps.data(), Comps.size(), 8216 Exprs.data(), Exprs.size(), RParenLoc)); 8217 } 8218 8219 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S, 8220 SourceLocation BuiltinLoc, 8221 SourceLocation TypeLoc, 8222 ParsedType argty, 8223 OffsetOfComponent *CompPtr, 8224 unsigned NumComponents, 8225 SourceLocation RPLoc) { 8226 8227 TypeSourceInfo *ArgTInfo; 8228 QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo); 8229 if (ArgTy.isNull()) 8230 return ExprError(); 8231 8232 if (!ArgTInfo) 8233 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc); 8234 8235 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, 8236 RPLoc); 8237 } 8238 8239 8240 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, 8241 Expr *CondExpr, 8242 Expr *LHSExpr, Expr *RHSExpr, 8243 SourceLocation RPLoc) { 8244 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); 8245 8246 ExprValueKind VK = VK_RValue; 8247 ExprObjectKind OK = OK_Ordinary; 8248 QualType resType; 8249 bool ValueDependent = false; 8250 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) { 8251 resType = Context.DependentTy; 8252 ValueDependent = true; 8253 } else { 8254 // The conditional expression is required to be a constant expression. 8255 llvm::APSInt condEval(32); 8256 SourceLocation ExpLoc; 8257 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) 8258 return ExprError(Diag(ExpLoc, 8259 diag::err_typecheck_choose_expr_requires_constant) 8260 << CondExpr->getSourceRange()); 8261 8262 // If the condition is > zero, then the AST type is the same as the LSHExpr. 8263 Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr; 8264 8265 resType = ActiveExpr->getType(); 8266 ValueDependent = ActiveExpr->isValueDependent(); 8267 VK = ActiveExpr->getValueKind(); 8268 OK = ActiveExpr->getObjectKind(); 8269 } 8270 8271 return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, 8272 resType, VK, OK, RPLoc, 8273 resType->isDependentType(), 8274 ValueDependent)); 8275 } 8276 8277 //===----------------------------------------------------------------------===// 8278 // Clang Extensions. 8279 //===----------------------------------------------------------------------===// 8280 8281 /// ActOnBlockStart - This callback is invoked when a block literal is started. 8282 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { 8283 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc); 8284 PushBlockScope(BlockScope, Block); 8285 CurContext->addDecl(Block); 8286 if (BlockScope) 8287 PushDeclContext(BlockScope, Block); 8288 else 8289 CurContext = Block; 8290 } 8291 8292 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) { 8293 assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!"); 8294 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext); 8295 BlockScopeInfo *CurBlock = getCurBlock(); 8296 8297 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope); 8298 QualType T = Sig->getType(); 8299 8300 // GetTypeForDeclarator always produces a function type for a block 8301 // literal signature. Furthermore, it is always a FunctionProtoType 8302 // unless the function was written with a typedef. 8303 assert(T->isFunctionType() && 8304 "GetTypeForDeclarator made a non-function block signature"); 8305 8306 // Look for an explicit signature in that function type. 8307 FunctionProtoTypeLoc ExplicitSignature; 8308 8309 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens(); 8310 if (isa<FunctionProtoTypeLoc>(tmp)) { 8311 ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp); 8312 8313 // Check whether that explicit signature was synthesized by 8314 // GetTypeForDeclarator. If so, don't save that as part of the 8315 // written signature. 8316 if (ExplicitSignature.getLocalRangeBegin() == 8317 ExplicitSignature.getLocalRangeEnd()) { 8318 // This would be much cheaper if we stored TypeLocs instead of 8319 // TypeSourceInfos. 8320 TypeLoc Result = ExplicitSignature.getResultLoc(); 8321 unsigned Size = Result.getFullDataSize(); 8322 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size); 8323 Sig->getTypeLoc().initializeFullCopy(Result, Size); 8324 8325 ExplicitSignature = FunctionProtoTypeLoc(); 8326 } 8327 } 8328 8329 CurBlock->TheDecl->setSignatureAsWritten(Sig); 8330 CurBlock->FunctionType = T; 8331 8332 const FunctionType *Fn = T->getAs<FunctionType>(); 8333 QualType RetTy = Fn->getResultType(); 8334 bool isVariadic = 8335 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic()); 8336 8337 CurBlock->TheDecl->setIsVariadic(isVariadic); 8338 8339 // Don't allow returning a objc interface by value. 8340 if (RetTy->isObjCObjectType()) { 8341 Diag(ParamInfo.getSourceRange().getBegin(), 8342 diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy; 8343 return; 8344 } 8345 8346 // Context.DependentTy is used as a placeholder for a missing block 8347 // return type. TODO: what should we do with declarators like: 8348 // ^ * { ... } 8349 // If the answer is "apply template argument deduction".... 8350 if (RetTy != Context.DependentTy) 8351 CurBlock->ReturnType = RetTy; 8352 8353 // Push block parameters from the declarator if we had them. 8354 llvm::SmallVector<ParmVarDecl*, 8> Params; 8355 if (ExplicitSignature) { 8356 for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) { 8357 ParmVarDecl *Param = ExplicitSignature.getArg(I); 8358 if (Param->getIdentifier() == 0 && 8359 !Param->isImplicit() && 8360 !Param->isInvalidDecl() && 8361 !getLangOptions().CPlusPlus) 8362 Diag(Param->getLocation(), diag::err_parameter_name_omitted); 8363 Params.push_back(Param); 8364 } 8365 8366 // Fake up parameter variables if we have a typedef, like 8367 // ^ fntype { ... } 8368 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) { 8369 for (FunctionProtoType::arg_type_iterator 8370 I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) { 8371 ParmVarDecl *Param = 8372 BuildParmVarDeclForTypedef(CurBlock->TheDecl, 8373 ParamInfo.getSourceRange().getBegin(), 8374 *I); 8375 Params.push_back(Param); 8376 } 8377 } 8378 8379 // Set the parameters on the block decl. 8380 if (!Params.empty()) { 8381 CurBlock->TheDecl->setParams(Params.data(), Params.size()); 8382 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(), 8383 CurBlock->TheDecl->param_end(), 8384 /*CheckParameterNames=*/false); 8385 } 8386 8387 // Finally we can process decl attributes. 8388 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo); 8389 8390 if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) { 8391 Diag(ParamInfo.getAttributes()->getLoc(), 8392 diag::warn_attribute_sentinel_not_variadic) << 1; 8393 // FIXME: remove the attribute. 8394 } 8395 8396 // Put the parameter variables in scope. We can bail out immediately 8397 // if we don't have any. 8398 if (Params.empty()) 8399 return; 8400 8401 for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), 8402 E = CurBlock->TheDecl->param_end(); AI != E; ++AI) { 8403 (*AI)->setOwningFunction(CurBlock->TheDecl); 8404 8405 // If this has an identifier, add it to the scope stack. 8406 if ((*AI)->getIdentifier()) { 8407 CheckShadow(CurBlock->TheScope, *AI); 8408 8409 PushOnScopeChains(*AI, CurBlock->TheScope); 8410 } 8411 } 8412 } 8413 8414 /// ActOnBlockError - If there is an error parsing a block, this callback 8415 /// is invoked to pop the information about the block from the action impl. 8416 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { 8417 // Pop off CurBlock, handle nested blocks. 8418 PopDeclContext(); 8419 PopFunctionOrBlockScope(); 8420 } 8421 8422 /// ActOnBlockStmtExpr - This is called when the body of a block statement 8423 /// literal was successfully completed. ^(int x){...} 8424 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, 8425 Stmt *Body, Scope *CurScope) { 8426 // If blocks are disabled, emit an error. 8427 if (!LangOpts.Blocks) 8428 Diag(CaretLoc, diag::err_blocks_disable); 8429 8430 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back()); 8431 8432 PopDeclContext(); 8433 8434 QualType RetTy = Context.VoidTy; 8435 if (!BSI->ReturnType.isNull()) 8436 RetTy = BSI->ReturnType; 8437 8438 bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>(); 8439 QualType BlockTy; 8440 8441 // Set the captured variables on the block. 8442 BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(), 8443 BSI->CapturesCXXThis); 8444 8445 // If the user wrote a function type in some form, try to use that. 8446 if (!BSI->FunctionType.isNull()) { 8447 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>(); 8448 8449 FunctionType::ExtInfo Ext = FTy->getExtInfo(); 8450 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true); 8451 8452 // Turn protoless block types into nullary block types. 8453 if (isa<FunctionNoProtoType>(FTy)) { 8454 FunctionProtoType::ExtProtoInfo EPI; 8455 EPI.ExtInfo = Ext; 8456 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); 8457 8458 // Otherwise, if we don't need to change anything about the function type, 8459 // preserve its sugar structure. 8460 } else if (FTy->getResultType() == RetTy && 8461 (!NoReturn || FTy->getNoReturnAttr())) { 8462 BlockTy = BSI->FunctionType; 8463 8464 // Otherwise, make the minimal modifications to the function type. 8465 } else { 8466 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy); 8467 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 8468 EPI.TypeQuals = 0; // FIXME: silently? 8469 EPI.ExtInfo = Ext; 8470 BlockTy = Context.getFunctionType(RetTy, 8471 FPT->arg_type_begin(), 8472 FPT->getNumArgs(), 8473 EPI); 8474 } 8475 8476 // If we don't have a function type, just build one from nothing. 8477 } else { 8478 FunctionProtoType::ExtProtoInfo EPI; 8479 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn); 8480 BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI); 8481 } 8482 8483 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(), 8484 BSI->TheDecl->param_end()); 8485 BlockTy = Context.getBlockPointerType(BlockTy); 8486 8487 // If needed, diagnose invalid gotos and switches in the block. 8488 if (getCurFunction()->NeedsScopeChecking() && 8489 !hasAnyUnrecoverableErrorsInThisFunction()) 8490 DiagnoseInvalidJumps(cast<CompoundStmt>(Body)); 8491 8492 BSI->TheDecl->setBody(cast<CompoundStmt>(Body)); 8493 8494 for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(), 8495 ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) { 8496 const VarDecl *variable = ci->getVariable(); 8497 QualType T = variable->getType(); 8498 QualType::DestructionKind destructKind = T.isDestructedType(); 8499 if (destructKind != QualType::DK_none) 8500 getCurFunction()->setHasBranchProtectedScope(); 8501 } 8502 8503 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy); 8504 const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy(); 8505 PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result); 8506 8507 return Owned(Result); 8508 } 8509 8510 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, 8511 Expr *expr, ParsedType type, 8512 SourceLocation RPLoc) { 8513 TypeSourceInfo *TInfo; 8514 GetTypeFromParser(type, &TInfo); 8515 return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc); 8516 } 8517 8518 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc, 8519 Expr *E, TypeSourceInfo *TInfo, 8520 SourceLocation RPLoc) { 8521 Expr *OrigExpr = E; 8522 8523 // Get the va_list type 8524 QualType VaListType = Context.getBuiltinVaListType(); 8525 if (VaListType->isArrayType()) { 8526 // Deal with implicit array decay; for example, on x86-64, 8527 // va_list is an array, but it's supposed to decay to 8528 // a pointer for va_arg. 8529 VaListType = Context.getArrayDecayedType(VaListType); 8530 // Make sure the input expression also decays appropriately. 8531 ExprResult Result = UsualUnaryConversions(E); 8532 if (Result.isInvalid()) 8533 return ExprError(); 8534 E = Result.take(); 8535 } else { 8536 // Otherwise, the va_list argument must be an l-value because 8537 // it is modified by va_arg. 8538 if (!E->isTypeDependent() && 8539 CheckForModifiableLvalue(E, BuiltinLoc, *this)) 8540 return ExprError(); 8541 } 8542 8543 if (!E->isTypeDependent() && 8544 !Context.hasSameType(VaListType, E->getType())) { 8545 return ExprError(Diag(E->getLocStart(), 8546 diag::err_first_argument_to_va_arg_not_of_type_va_list) 8547 << OrigExpr->getType() << E->getSourceRange()); 8548 } 8549 8550 if (!TInfo->getType()->isDependentType()) { 8551 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(), 8552 PDiag(diag::err_second_parameter_to_va_arg_incomplete) 8553 << TInfo->getTypeLoc().getSourceRange())) 8554 return ExprError(); 8555 8556 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(), 8557 TInfo->getType(), 8558 PDiag(diag::err_second_parameter_to_va_arg_abstract) 8559 << TInfo->getTypeLoc().getSourceRange())) 8560 return ExprError(); 8561 8562 if (!TInfo->getType().isPODType(Context)) 8563 Diag(TInfo->getTypeLoc().getBeginLoc(), 8564 diag::warn_second_parameter_to_va_arg_not_pod) 8565 << TInfo->getType() 8566 << TInfo->getTypeLoc().getSourceRange(); 8567 8568 // Check for va_arg where arguments of the given type will be promoted 8569 // (i.e. this va_arg is guaranteed to have undefined behavior). 8570 QualType PromoteType; 8571 if (TInfo->getType()->isPromotableIntegerType()) { 8572 PromoteType = Context.getPromotedIntegerType(TInfo->getType()); 8573 if (Context.typesAreCompatible(PromoteType, TInfo->getType())) 8574 PromoteType = QualType(); 8575 } 8576 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float)) 8577 PromoteType = Context.DoubleTy; 8578 if (!PromoteType.isNull()) 8579 Diag(TInfo->getTypeLoc().getBeginLoc(), 8580 diag::warn_second_parameter_to_va_arg_never_compatible) 8581 << TInfo->getType() 8582 << PromoteType 8583 << TInfo->getTypeLoc().getSourceRange(); 8584 } 8585 8586 QualType T = TInfo->getType().getNonLValueExprType(Context); 8587 return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T)); 8588 } 8589 8590 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { 8591 // The type of __null will be int or long, depending on the size of 8592 // pointers on the target. 8593 QualType Ty; 8594 unsigned pw = Context.Target.getPointerWidth(0); 8595 if (pw == Context.Target.getIntWidth()) 8596 Ty = Context.IntTy; 8597 else if (pw == Context.Target.getLongWidth()) 8598 Ty = Context.LongTy; 8599 else if (pw == Context.Target.getLongLongWidth()) 8600 Ty = Context.LongLongTy; 8601 else { 8602 assert(!"I don't know size of pointer!"); 8603 Ty = Context.IntTy; 8604 } 8605 8606 return Owned(new (Context) GNUNullExpr(Ty, TokenLoc)); 8607 } 8608 8609 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType, 8610 Expr *SrcExpr, FixItHint &Hint) { 8611 if (!SemaRef.getLangOptions().ObjC1) 8612 return; 8613 8614 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>(); 8615 if (!PT) 8616 return; 8617 8618 // Check if the destination is of type 'id'. 8619 if (!PT->isObjCIdType()) { 8620 // Check if the destination is the 'NSString' interface. 8621 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); 8622 if (!ID || !ID->getIdentifier()->isStr("NSString")) 8623 return; 8624 } 8625 8626 // Strip off any parens and casts. 8627 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts()); 8628 if (!SL || SL->isWide()) 8629 return; 8630 8631 Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@"); 8632 } 8633 8634 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, 8635 SourceLocation Loc, 8636 QualType DstType, QualType SrcType, 8637 Expr *SrcExpr, AssignmentAction Action, 8638 bool *Complained) { 8639 if (Complained) 8640 *Complained = false; 8641 8642 // Decode the result (notice that AST's are still created for extensions). 8643 bool CheckInferredResultType = false; 8644 bool isInvalid = false; 8645 unsigned DiagKind; 8646 FixItHint Hint; 8647 8648 switch (ConvTy) { 8649 default: assert(0 && "Unknown conversion type"); 8650 case Compatible: return false; 8651 case PointerToInt: 8652 DiagKind = diag::ext_typecheck_convert_pointer_int; 8653 break; 8654 case IntToPointer: 8655 DiagKind = diag::ext_typecheck_convert_int_pointer; 8656 break; 8657 case IncompatiblePointer: 8658 MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint); 8659 DiagKind = diag::ext_typecheck_convert_incompatible_pointer; 8660 CheckInferredResultType = DstType->isObjCObjectPointerType() && 8661 SrcType->isObjCObjectPointerType(); 8662 break; 8663 case IncompatiblePointerSign: 8664 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign; 8665 break; 8666 case FunctionVoidPointer: 8667 DiagKind = diag::ext_typecheck_convert_pointer_void_func; 8668 break; 8669 case IncompatiblePointerDiscardsQualifiers: { 8670 // Perform array-to-pointer decay if necessary. 8671 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType); 8672 8673 Qualifiers lhq = SrcType->getPointeeType().getQualifiers(); 8674 Qualifiers rhq = DstType->getPointeeType().getQualifiers(); 8675 if (lhq.getAddressSpace() != rhq.getAddressSpace()) { 8676 DiagKind = diag::err_typecheck_incompatible_address_space; 8677 break; 8678 8679 8680 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) { 8681 DiagKind = diag::err_typecheck_incompatible_ownership; 8682 break; 8683 } 8684 8685 llvm_unreachable("unknown error case for discarding qualifiers!"); 8686 // fallthrough 8687 } 8688 case CompatiblePointerDiscardsQualifiers: 8689 // If the qualifiers lost were because we were applying the 8690 // (deprecated) C++ conversion from a string literal to a char* 8691 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: 8692 // Ideally, this check would be performed in 8693 // checkPointerTypesForAssignment. However, that would require a 8694 // bit of refactoring (so that the second argument is an 8695 // expression, rather than a type), which should be done as part 8696 // of a larger effort to fix checkPointerTypesForAssignment for 8697 // C++ semantics. 8698 if (getLangOptions().CPlusPlus && 8699 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) 8700 return false; 8701 DiagKind = diag::ext_typecheck_convert_discards_qualifiers; 8702 break; 8703 case IncompatibleNestedPointerQualifiers: 8704 DiagKind = diag::ext_nested_pointer_qualifier_mismatch; 8705 break; 8706 case IntToBlockPointer: 8707 DiagKind = diag::err_int_to_block_pointer; 8708 break; 8709 case IncompatibleBlockPointer: 8710 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer; 8711 break; 8712 case IncompatibleObjCQualifiedId: 8713 // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since 8714 // it can give a more specific diagnostic. 8715 DiagKind = diag::warn_incompatible_qualified_id; 8716 break; 8717 case IncompatibleVectors: 8718 DiagKind = diag::warn_incompatible_vectors; 8719 break; 8720 case IncompatibleObjCWeakRef: 8721 DiagKind = diag::err_arc_weak_unavailable_assign; 8722 break; 8723 case Incompatible: 8724 DiagKind = diag::err_typecheck_convert_incompatible; 8725 isInvalid = true; 8726 break; 8727 } 8728 8729 QualType FirstType, SecondType; 8730 switch (Action) { 8731 case AA_Assigning: 8732 case AA_Initializing: 8733 // The destination type comes first. 8734 FirstType = DstType; 8735 SecondType = SrcType; 8736 break; 8737 8738 case AA_Returning: 8739 case AA_Passing: 8740 case AA_Converting: 8741 case AA_Sending: 8742 case AA_Casting: 8743 // The source type comes first. 8744 FirstType = SrcType; 8745 SecondType = DstType; 8746 break; 8747 } 8748 8749 Diag(Loc, DiagKind) << FirstType << SecondType << Action 8750 << SrcExpr->getSourceRange() << Hint; 8751 if (CheckInferredResultType) 8752 EmitRelatedResultTypeNote(SrcExpr); 8753 8754 if (Complained) 8755 *Complained = true; 8756 return isInvalid; 8757 } 8758 8759 bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){ 8760 llvm::APSInt ICEResult; 8761 if (E->isIntegerConstantExpr(ICEResult, Context)) { 8762 if (Result) 8763 *Result = ICEResult; 8764 return false; 8765 } 8766 8767 Expr::EvalResult EvalResult; 8768 8769 if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || 8770 EvalResult.HasSideEffects) { 8771 Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); 8772 8773 if (EvalResult.Diag) { 8774 // We only show the note if it's not the usual "invalid subexpression" 8775 // or if it's actually in a subexpression. 8776 if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || 8777 E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) 8778 Diag(EvalResult.DiagLoc, EvalResult.Diag); 8779 } 8780 8781 return true; 8782 } 8783 8784 Diag(E->getExprLoc(), diag::ext_expr_not_ice) << 8785 E->getSourceRange(); 8786 8787 if (EvalResult.Diag && 8788 Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc) 8789 != Diagnostic::Ignored) 8790 Diag(EvalResult.DiagLoc, EvalResult.Diag); 8791 8792 if (Result) 8793 *Result = EvalResult.Val.getInt(); 8794 return false; 8795 } 8796 8797 void 8798 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { 8799 ExprEvalContexts.push_back( 8800 ExpressionEvaluationContextRecord(NewContext, 8801 ExprTemporaries.size(), 8802 ExprNeedsCleanups)); 8803 ExprNeedsCleanups = false; 8804 } 8805 8806 void 8807 Sema::PopExpressionEvaluationContext() { 8808 // Pop the current expression evaluation context off the stack. 8809 ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back(); 8810 ExprEvalContexts.pop_back(); 8811 8812 if (Rec.Context == PotentiallyPotentiallyEvaluated) { 8813 if (Rec.PotentiallyReferenced) { 8814 // Mark any remaining declarations in the current position of the stack 8815 // as "referenced". If they were not meant to be referenced, semantic 8816 // analysis would have eliminated them (e.g., in ActOnCXXTypeId). 8817 for (PotentiallyReferencedDecls::iterator 8818 I = Rec.PotentiallyReferenced->begin(), 8819 IEnd = Rec.PotentiallyReferenced->end(); 8820 I != IEnd; ++I) 8821 MarkDeclarationReferenced(I->first, I->second); 8822 } 8823 8824 if (Rec.PotentiallyDiagnosed) { 8825 // Emit any pending diagnostics. 8826 for (PotentiallyEmittedDiagnostics::iterator 8827 I = Rec.PotentiallyDiagnosed->begin(), 8828 IEnd = Rec.PotentiallyDiagnosed->end(); 8829 I != IEnd; ++I) 8830 Diag(I->first, I->second); 8831 } 8832 } 8833 8834 // When are coming out of an unevaluated context, clear out any 8835 // temporaries that we may have created as part of the evaluation of 8836 // the expression in that context: they aren't relevant because they 8837 // will never be constructed. 8838 if (Rec.Context == Unevaluated) { 8839 ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries, 8840 ExprTemporaries.end()); 8841 ExprNeedsCleanups = Rec.ParentNeedsCleanups; 8842 8843 // Otherwise, merge the contexts together. 8844 } else { 8845 ExprNeedsCleanups |= Rec.ParentNeedsCleanups; 8846 } 8847 8848 // Destroy the popped expression evaluation record. 8849 Rec.Destroy(); 8850 } 8851 8852 void Sema::DiscardCleanupsInEvaluationContext() { 8853 ExprTemporaries.erase( 8854 ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, 8855 ExprTemporaries.end()); 8856 ExprNeedsCleanups = false; 8857 } 8858 8859 /// \brief Note that the given declaration was referenced in the source code. 8860 /// 8861 /// This routine should be invoke whenever a given declaration is referenced 8862 /// in the source code, and where that reference occurred. If this declaration 8863 /// reference means that the the declaration is used (C++ [basic.def.odr]p2, 8864 /// C99 6.9p3), then the declaration will be marked as used. 8865 /// 8866 /// \param Loc the location where the declaration was referenced. 8867 /// 8868 /// \param D the declaration that has been referenced by the source code. 8869 void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) { 8870 assert(D && "No declaration?"); 8871 8872 D->setReferenced(); 8873 8874 if (D->isUsed(false)) 8875 return; 8876 8877 // Mark a parameter or variable declaration "used", regardless of whether we're in a 8878 // template or not. The reason for this is that unevaluated expressions 8879 // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and 8880 // -Wunused-parameters) 8881 if (isa<ParmVarDecl>(D) || 8882 (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) { 8883 D->setUsed(); 8884 return; 8885 } 8886 8887 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) 8888 return; 8889 8890 // Do not mark anything as "used" within a dependent context; wait for 8891 // an instantiation. 8892 if (CurContext->isDependentContext()) 8893 return; 8894 8895 switch (ExprEvalContexts.back().Context) { 8896 case Unevaluated: 8897 // We are in an expression that is not potentially evaluated; do nothing. 8898 return; 8899 8900 case PotentiallyEvaluated: 8901 // We are in a potentially-evaluated expression, so this declaration is 8902 // "used"; handle this below. 8903 break; 8904 8905 case PotentiallyPotentiallyEvaluated: 8906 // We are in an expression that may be potentially evaluated; queue this 8907 // declaration reference until we know whether the expression is 8908 // potentially evaluated. 8909 ExprEvalContexts.back().addReferencedDecl(Loc, D); 8910 return; 8911 8912 case PotentiallyEvaluatedIfUsed: 8913 // Referenced declarations will only be used if the construct in the 8914 // containing expression is used. 8915 return; 8916 } 8917 8918 // Note that this declaration has been used. 8919 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 8920 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) { 8921 if (Constructor->isTrivial()) 8922 return; 8923 if (!Constructor->isUsed(false)) 8924 DefineImplicitDefaultConstructor(Loc, Constructor); 8925 } else if (Constructor->isDefaulted() && 8926 Constructor->isCopyConstructor()) { 8927 if (!Constructor->isUsed(false)) 8928 DefineImplicitCopyConstructor(Loc, Constructor); 8929 } 8930 8931 MarkVTableUsed(Loc, Constructor->getParent()); 8932 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 8933 if (Destructor->isDefaulted() && !Destructor->isUsed(false)) 8934 DefineImplicitDestructor(Loc, Destructor); 8935 if (Destructor->isVirtual()) 8936 MarkVTableUsed(Loc, Destructor->getParent()); 8937 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) { 8938 if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() && 8939 MethodDecl->getOverloadedOperator() == OO_Equal) { 8940 if (!MethodDecl->isUsed(false)) 8941 DefineImplicitCopyAssignment(Loc, MethodDecl); 8942 } else if (MethodDecl->isVirtual()) 8943 MarkVTableUsed(Loc, MethodDecl->getParent()); 8944 } 8945 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 8946 // Recursive functions should be marked when used from another function. 8947 if (CurContext == Function) return; 8948 8949 // Implicit instantiation of function templates and member functions of 8950 // class templates. 8951 if (Function->isImplicitlyInstantiable()) { 8952 bool AlreadyInstantiated = false; 8953 if (FunctionTemplateSpecializationInfo *SpecInfo 8954 = Function->getTemplateSpecializationInfo()) { 8955 if (SpecInfo->getPointOfInstantiation().isInvalid()) 8956 SpecInfo->setPointOfInstantiation(Loc); 8957 else if (SpecInfo->getTemplateSpecializationKind() 8958 == TSK_ImplicitInstantiation) 8959 AlreadyInstantiated = true; 8960 } else if (MemberSpecializationInfo *MSInfo 8961 = Function->getMemberSpecializationInfo()) { 8962 if (MSInfo->getPointOfInstantiation().isInvalid()) 8963 MSInfo->setPointOfInstantiation(Loc); 8964 else if (MSInfo->getTemplateSpecializationKind() 8965 == TSK_ImplicitInstantiation) 8966 AlreadyInstantiated = true; 8967 } 8968 8969 if (!AlreadyInstantiated) { 8970 if (isa<CXXRecordDecl>(Function->getDeclContext()) && 8971 cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass()) 8972 PendingLocalImplicitInstantiations.push_back(std::make_pair(Function, 8973 Loc)); 8974 else 8975 PendingInstantiations.push_back(std::make_pair(Function, Loc)); 8976 } 8977 } else { 8978 // Walk redefinitions, as some of them may be instantiable. 8979 for (FunctionDecl::redecl_iterator i(Function->redecls_begin()), 8980 e(Function->redecls_end()); i != e; ++i) { 8981 if (!i->isUsed(false) && i->isImplicitlyInstantiable()) 8982 MarkDeclarationReferenced(Loc, *i); 8983 } 8984 } 8985 8986 // Keep track of used but undefined functions. 8987 if (!Function->isPure() && !Function->hasBody() && 8988 Function->getLinkage() != ExternalLinkage) { 8989 SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()]; 8990 if (old.isInvalid()) old = Loc; 8991 } 8992 8993 Function->setUsed(true); 8994 return; 8995 } 8996 8997 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 8998 // Implicit instantiation of static data members of class templates. 8999 if (Var->isStaticDataMember() && 9000 Var->getInstantiatedFromStaticDataMember()) { 9001 MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo(); 9002 assert(MSInfo && "Missing member specialization information?"); 9003 if (MSInfo->getPointOfInstantiation().isInvalid() && 9004 MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) { 9005 MSInfo->setPointOfInstantiation(Loc); 9006 // This is a modification of an existing AST node. Notify listeners. 9007 if (ASTMutationListener *L = getASTMutationListener()) 9008 L->StaticDataMemberInstantiated(Var); 9009 PendingInstantiations.push_back(std::make_pair(Var, Loc)); 9010 } 9011 } 9012 9013 // Keep track of used but undefined variables. We make a hole in 9014 // the warning for static const data members with in-line 9015 // initializers. 9016 if (Var->hasDefinition() == VarDecl::DeclarationOnly 9017 && Var->getLinkage() != ExternalLinkage 9018 && !(Var->isStaticDataMember() && Var->hasInit())) { 9019 SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()]; 9020 if (old.isInvalid()) old = Loc; 9021 } 9022 9023 D->setUsed(true); 9024 return; 9025 } 9026 } 9027 9028 namespace { 9029 // Mark all of the declarations referenced 9030 // FIXME: Not fully implemented yet! We need to have a better understanding 9031 // of when we're entering 9032 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> { 9033 Sema &S; 9034 SourceLocation Loc; 9035 9036 public: 9037 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited; 9038 9039 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { } 9040 9041 bool TraverseTemplateArgument(const TemplateArgument &Arg); 9042 bool TraverseRecordType(RecordType *T); 9043 }; 9044 } 9045 9046 bool MarkReferencedDecls::TraverseTemplateArgument( 9047 const TemplateArgument &Arg) { 9048 if (Arg.getKind() == TemplateArgument::Declaration) { 9049 S.MarkDeclarationReferenced(Loc, Arg.getAsDecl()); 9050 } 9051 9052 return Inherited::TraverseTemplateArgument(Arg); 9053 } 9054 9055 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) { 9056 if (ClassTemplateSpecializationDecl *Spec 9057 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) { 9058 const TemplateArgumentList &Args = Spec->getTemplateArgs(); 9059 return TraverseTemplateArguments(Args.data(), Args.size()); 9060 } 9061 9062 return true; 9063 } 9064 9065 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) { 9066 MarkReferencedDecls Marker(*this, Loc); 9067 Marker.TraverseType(Context.getCanonicalType(T)); 9068 } 9069 9070 namespace { 9071 /// \brief Helper class that marks all of the declarations referenced by 9072 /// potentially-evaluated subexpressions as "referenced". 9073 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> { 9074 Sema &S; 9075 9076 public: 9077 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited; 9078 9079 explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { } 9080 9081 void VisitDeclRefExpr(DeclRefExpr *E) { 9082 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); 9083 } 9084 9085 void VisitMemberExpr(MemberExpr *E) { 9086 S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl()); 9087 Inherited::VisitMemberExpr(E); 9088 } 9089 9090 void VisitCXXNewExpr(CXXNewExpr *E) { 9091 if (E->getConstructor()) 9092 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); 9093 if (E->getOperatorNew()) 9094 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew()); 9095 if (E->getOperatorDelete()) 9096 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); 9097 Inherited::VisitCXXNewExpr(E); 9098 } 9099 9100 void VisitCXXDeleteExpr(CXXDeleteExpr *E) { 9101 if (E->getOperatorDelete()) 9102 S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete()); 9103 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType()); 9104 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { 9105 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); 9106 S.MarkDeclarationReferenced(E->getLocStart(), 9107 S.LookupDestructor(Record)); 9108 } 9109 9110 Inherited::VisitCXXDeleteExpr(E); 9111 } 9112 9113 void VisitCXXConstructExpr(CXXConstructExpr *E) { 9114 S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor()); 9115 Inherited::VisitCXXConstructExpr(E); 9116 } 9117 9118 void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) { 9119 S.MarkDeclarationReferenced(E->getLocation(), E->getDecl()); 9120 } 9121 9122 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { 9123 Visit(E->getExpr()); 9124 } 9125 }; 9126 } 9127 9128 /// \brief Mark any declarations that appear within this expression or any 9129 /// potentially-evaluated subexpressions as "referenced". 9130 void Sema::MarkDeclarationsReferencedInExpr(Expr *E) { 9131 EvaluatedExprMarker(*this).Visit(E); 9132 } 9133 9134 /// \brief Emit a diagnostic that describes an effect on the run-time behavior 9135 /// of the program being compiled. 9136 /// 9137 /// This routine emits the given diagnostic when the code currently being 9138 /// type-checked is "potentially evaluated", meaning that there is a 9139 /// possibility that the code will actually be executable. Code in sizeof() 9140 /// expressions, code used only during overload resolution, etc., are not 9141 /// potentially evaluated. This routine will suppress such diagnostics or, 9142 /// in the absolutely nutty case of potentially potentially evaluated 9143 /// expressions (C++ typeid), queue the diagnostic to potentially emit it 9144 /// later. 9145 /// 9146 /// This routine should be used for all diagnostics that describe the run-time 9147 /// behavior of a program, such as passing a non-POD value through an ellipsis. 9148 /// Failure to do so will likely result in spurious diagnostics or failures 9149 /// during overload resolution or within sizeof/alignof/typeof/typeid. 9150 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt, 9151 const PartialDiagnostic &PD) { 9152 switch (ExprEvalContexts.back().Context) { 9153 case Unevaluated: 9154 // The argument will never be evaluated, so don't complain. 9155 break; 9156 9157 case PotentiallyEvaluated: 9158 case PotentiallyEvaluatedIfUsed: 9159 if (stmt && getCurFunctionOrMethodDecl()) { 9160 FunctionScopes.back()->PossiblyUnreachableDiags. 9161 push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt)); 9162 } 9163 else 9164 Diag(Loc, PD); 9165 9166 return true; 9167 9168 case PotentiallyPotentiallyEvaluated: 9169 ExprEvalContexts.back().addDiagnostic(Loc, PD); 9170 break; 9171 } 9172 9173 return false; 9174 } 9175 9176 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc, 9177 CallExpr *CE, FunctionDecl *FD) { 9178 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType()) 9179 return false; 9180 9181 PartialDiagnostic Note = 9182 FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here) 9183 << FD->getDeclName() : PDiag(); 9184 SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation(); 9185 9186 if (RequireCompleteType(Loc, ReturnType, 9187 FD ? 9188 PDiag(diag::err_call_function_incomplete_return) 9189 << CE->getSourceRange() << FD->getDeclName() : 9190 PDiag(diag::err_call_incomplete_return) 9191 << CE->getSourceRange(), 9192 std::make_pair(NoteLoc, Note))) 9193 return true; 9194 9195 return false; 9196 } 9197 9198 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses 9199 // will prevent this condition from triggering, which is what we want. 9200 void Sema::DiagnoseAssignmentAsCondition(Expr *E) { 9201 SourceLocation Loc; 9202 9203 unsigned diagnostic = diag::warn_condition_is_assignment; 9204 bool IsOrAssign = false; 9205 9206 if (isa<BinaryOperator>(E)) { 9207 BinaryOperator *Op = cast<BinaryOperator>(E); 9208 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign) 9209 return; 9210 9211 IsOrAssign = Op->getOpcode() == BO_OrAssign; 9212 9213 // Greylist some idioms by putting them into a warning subcategory. 9214 if (ObjCMessageExpr *ME 9215 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) { 9216 Selector Sel = ME->getSelector(); 9217 9218 // self = [<foo> init...] 9219 if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init")) 9220 diagnostic = diag::warn_condition_is_idiomatic_assignment; 9221 9222 // <foo> = [<bar> nextObject] 9223 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject") 9224 diagnostic = diag::warn_condition_is_idiomatic_assignment; 9225 } 9226 9227 Loc = Op->getOperatorLoc(); 9228 } else if (isa<CXXOperatorCallExpr>(E)) { 9229 CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E); 9230 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual) 9231 return; 9232 9233 IsOrAssign = Op->getOperator() == OO_PipeEqual; 9234 Loc = Op->getOperatorLoc(); 9235 } else { 9236 // Not an assignment. 9237 return; 9238 } 9239 9240 Diag(Loc, diagnostic) << E->getSourceRange(); 9241 9242 SourceLocation Open = E->getSourceRange().getBegin(); 9243 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd()); 9244 Diag(Loc, diag::note_condition_assign_silence) 9245 << FixItHint::CreateInsertion(Open, "(") 9246 << FixItHint::CreateInsertion(Close, ")"); 9247 9248 if (IsOrAssign) 9249 Diag(Loc, diag::note_condition_or_assign_to_comparison) 9250 << FixItHint::CreateReplacement(Loc, "!="); 9251 else 9252 Diag(Loc, diag::note_condition_assign_to_comparison) 9253 << FixItHint::CreateReplacement(Loc, "=="); 9254 } 9255 9256 /// \brief Redundant parentheses over an equality comparison can indicate 9257 /// that the user intended an assignment used as condition. 9258 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) { 9259 // Don't warn if the parens came from a macro. 9260 SourceLocation parenLoc = parenE->getLocStart(); 9261 if (parenLoc.isInvalid() || parenLoc.isMacroID()) 9262 return; 9263 // Don't warn for dependent expressions. 9264 if (parenE->isTypeDependent()) 9265 return; 9266 9267 Expr *E = parenE->IgnoreParens(); 9268 9269 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E)) 9270 if (opE->getOpcode() == BO_EQ && 9271 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context) 9272 == Expr::MLV_Valid) { 9273 SourceLocation Loc = opE->getOperatorLoc(); 9274 9275 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange(); 9276 Diag(Loc, diag::note_equality_comparison_silence) 9277 << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin()) 9278 << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd()); 9279 Diag(Loc, diag::note_equality_comparison_to_assign) 9280 << FixItHint::CreateReplacement(Loc, "="); 9281 } 9282 } 9283 9284 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) { 9285 DiagnoseAssignmentAsCondition(E); 9286 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E)) 9287 DiagnoseEqualityWithExtraParens(parenE); 9288 9289 ExprResult result = CheckPlaceholderExpr(E); 9290 if (result.isInvalid()) return ExprError(); 9291 E = result.take(); 9292 9293 if (!E->isTypeDependent()) { 9294 if (getLangOptions().CPlusPlus) 9295 return CheckCXXBooleanCondition(E); // C++ 6.4p4 9296 9297 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E); 9298 if (ERes.isInvalid()) 9299 return ExprError(); 9300 E = ERes.take(); 9301 9302 QualType T = E->getType(); 9303 if (!T->isScalarType()) { // C99 6.8.4.1p1 9304 Diag(Loc, diag::err_typecheck_statement_requires_scalar) 9305 << T << E->getSourceRange(); 9306 return ExprError(); 9307 } 9308 } 9309 9310 return Owned(E); 9311 } 9312 9313 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc, 9314 Expr *Sub) { 9315 if (!Sub) 9316 return ExprError(); 9317 9318 return CheckBooleanCondition(Sub, Loc); 9319 } 9320 9321 namespace { 9322 /// A visitor for rebuilding a call to an __unknown_any expression 9323 /// to have an appropriate type. 9324 struct RebuildUnknownAnyFunction 9325 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> { 9326 9327 Sema &S; 9328 9329 RebuildUnknownAnyFunction(Sema &S) : S(S) {} 9330 9331 ExprResult VisitStmt(Stmt *S) { 9332 llvm_unreachable("unexpected statement!"); 9333 return ExprError(); 9334 } 9335 9336 ExprResult VisitExpr(Expr *expr) { 9337 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call) 9338 << expr->getSourceRange(); 9339 return ExprError(); 9340 } 9341 9342 /// Rebuild an expression which simply semantically wraps another 9343 /// expression which it shares the type and value kind of. 9344 template <class T> ExprResult rebuildSugarExpr(T *expr) { 9345 ExprResult subResult = Visit(expr->getSubExpr()); 9346 if (subResult.isInvalid()) return ExprError(); 9347 9348 Expr *subExpr = subResult.take(); 9349 expr->setSubExpr(subExpr); 9350 expr->setType(subExpr->getType()); 9351 expr->setValueKind(subExpr->getValueKind()); 9352 assert(expr->getObjectKind() == OK_Ordinary); 9353 return expr; 9354 } 9355 9356 ExprResult VisitParenExpr(ParenExpr *paren) { 9357 return rebuildSugarExpr(paren); 9358 } 9359 9360 ExprResult VisitUnaryExtension(UnaryOperator *op) { 9361 return rebuildSugarExpr(op); 9362 } 9363 9364 ExprResult VisitUnaryAddrOf(UnaryOperator *op) { 9365 ExprResult subResult = Visit(op->getSubExpr()); 9366 if (subResult.isInvalid()) return ExprError(); 9367 9368 Expr *subExpr = subResult.take(); 9369 op->setSubExpr(subExpr); 9370 op->setType(S.Context.getPointerType(subExpr->getType())); 9371 assert(op->getValueKind() == VK_RValue); 9372 assert(op->getObjectKind() == OK_Ordinary); 9373 return op; 9374 } 9375 9376 ExprResult resolveDecl(Expr *expr, ValueDecl *decl) { 9377 if (!isa<FunctionDecl>(decl)) return VisitExpr(expr); 9378 9379 expr->setType(decl->getType()); 9380 9381 assert(expr->getValueKind() == VK_RValue); 9382 if (S.getLangOptions().CPlusPlus && 9383 !(isa<CXXMethodDecl>(decl) && 9384 cast<CXXMethodDecl>(decl)->isInstance())) 9385 expr->setValueKind(VK_LValue); 9386 9387 return expr; 9388 } 9389 9390 ExprResult VisitMemberExpr(MemberExpr *mem) { 9391 return resolveDecl(mem, mem->getMemberDecl()); 9392 } 9393 9394 ExprResult VisitDeclRefExpr(DeclRefExpr *ref) { 9395 return resolveDecl(ref, ref->getDecl()); 9396 } 9397 }; 9398 } 9399 9400 /// Given a function expression of unknown-any type, try to rebuild it 9401 /// to have a function type. 9402 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) { 9403 ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn); 9404 if (result.isInvalid()) return ExprError(); 9405 return S.DefaultFunctionArrayConversion(result.take()); 9406 } 9407 9408 namespace { 9409 /// A visitor for rebuilding an expression of type __unknown_anytype 9410 /// into one which resolves the type directly on the referring 9411 /// expression. Strict preservation of the original source 9412 /// structure is not a goal. 9413 struct RebuildUnknownAnyExpr 9414 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> { 9415 9416 Sema &S; 9417 9418 /// The current destination type. 9419 QualType DestType; 9420 9421 RebuildUnknownAnyExpr(Sema &S, QualType castType) 9422 : S(S), DestType(castType) {} 9423 9424 ExprResult VisitStmt(Stmt *S) { 9425 llvm_unreachable("unexpected statement!"); 9426 return ExprError(); 9427 } 9428 9429 ExprResult VisitExpr(Expr *expr) { 9430 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr) 9431 << expr->getSourceRange(); 9432 return ExprError(); 9433 } 9434 9435 ExprResult VisitCallExpr(CallExpr *call); 9436 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message); 9437 9438 /// Rebuild an expression which simply semantically wraps another 9439 /// expression which it shares the type and value kind of. 9440 template <class T> ExprResult rebuildSugarExpr(T *expr) { 9441 ExprResult subResult = Visit(expr->getSubExpr()); 9442 if (subResult.isInvalid()) return ExprError(); 9443 Expr *subExpr = subResult.take(); 9444 expr->setSubExpr(subExpr); 9445 expr->setType(subExpr->getType()); 9446 expr->setValueKind(subExpr->getValueKind()); 9447 assert(expr->getObjectKind() == OK_Ordinary); 9448 return expr; 9449 } 9450 9451 ExprResult VisitParenExpr(ParenExpr *paren) { 9452 return rebuildSugarExpr(paren); 9453 } 9454 9455 ExprResult VisitUnaryExtension(UnaryOperator *op) { 9456 return rebuildSugarExpr(op); 9457 } 9458 9459 ExprResult VisitUnaryAddrOf(UnaryOperator *op) { 9460 const PointerType *ptr = DestType->getAs<PointerType>(); 9461 if (!ptr) { 9462 S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof) 9463 << op->getSourceRange(); 9464 return ExprError(); 9465 } 9466 assert(op->getValueKind() == VK_RValue); 9467 assert(op->getObjectKind() == OK_Ordinary); 9468 op->setType(DestType); 9469 9470 // Build the sub-expression as if it were an object of the pointee type. 9471 DestType = ptr->getPointeeType(); 9472 ExprResult subResult = Visit(op->getSubExpr()); 9473 if (subResult.isInvalid()) return ExprError(); 9474 op->setSubExpr(subResult.take()); 9475 return op; 9476 } 9477 9478 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice); 9479 9480 ExprResult resolveDecl(Expr *expr, ValueDecl *decl); 9481 9482 ExprResult VisitMemberExpr(MemberExpr *mem) { 9483 return resolveDecl(mem, mem->getMemberDecl()); 9484 } 9485 9486 ExprResult VisitDeclRefExpr(DeclRefExpr *ref) { 9487 return resolveDecl(ref, ref->getDecl()); 9488 } 9489 }; 9490 } 9491 9492 /// Rebuilds a call expression which yielded __unknown_anytype. 9493 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) { 9494 Expr *callee = call->getCallee(); 9495 9496 enum FnKind { 9497 FK_MemberFunction, 9498 FK_FunctionPointer, 9499 FK_BlockPointer 9500 }; 9501 9502 FnKind kind; 9503 QualType type = callee->getType(); 9504 if (type == S.Context.BoundMemberTy) { 9505 assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call)); 9506 kind = FK_MemberFunction; 9507 type = Expr::findBoundMemberType(callee); 9508 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 9509 type = ptr->getPointeeType(); 9510 kind = FK_FunctionPointer; 9511 } else { 9512 type = type->castAs<BlockPointerType>()->getPointeeType(); 9513 kind = FK_BlockPointer; 9514 } 9515 const FunctionType *fnType = type->castAs<FunctionType>(); 9516 9517 // Verify that this is a legal result type of a function. 9518 if (DestType->isArrayType() || DestType->isFunctionType()) { 9519 unsigned diagID = diag::err_func_returning_array_function; 9520 if (kind == FK_BlockPointer) 9521 diagID = diag::err_block_returning_array_function; 9522 9523 S.Diag(call->getExprLoc(), diagID) 9524 << DestType->isFunctionType() << DestType; 9525 return ExprError(); 9526 } 9527 9528 // Otherwise, go ahead and set DestType as the call's result. 9529 call->setType(DestType.getNonLValueExprType(S.Context)); 9530 call->setValueKind(Expr::getValueKindForType(DestType)); 9531 assert(call->getObjectKind() == OK_Ordinary); 9532 9533 // Rebuild the function type, replacing the result type with DestType. 9534 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) 9535 DestType = S.Context.getFunctionType(DestType, 9536 proto->arg_type_begin(), 9537 proto->getNumArgs(), 9538 proto->getExtProtoInfo()); 9539 else 9540 DestType = S.Context.getFunctionNoProtoType(DestType, 9541 fnType->getExtInfo()); 9542 9543 // Rebuild the appropriate pointer-to-function type. 9544 switch (kind) { 9545 case FK_MemberFunction: 9546 // Nothing to do. 9547 break; 9548 9549 case FK_FunctionPointer: 9550 DestType = S.Context.getPointerType(DestType); 9551 break; 9552 9553 case FK_BlockPointer: 9554 DestType = S.Context.getBlockPointerType(DestType); 9555 break; 9556 } 9557 9558 // Finally, we can recurse. 9559 ExprResult calleeResult = Visit(callee); 9560 if (!calleeResult.isUsable()) return ExprError(); 9561 call->setCallee(calleeResult.take()); 9562 9563 // Bind a temporary if necessary. 9564 return S.MaybeBindToTemporary(call); 9565 } 9566 9567 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) { 9568 // Verify that this is a legal result type of a call. 9569 if (DestType->isArrayType() || DestType->isFunctionType()) { 9570 S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function) 9571 << DestType->isFunctionType() << DestType; 9572 return ExprError(); 9573 } 9574 9575 // Rewrite the method result type if available. 9576 if (ObjCMethodDecl *method = msg->getMethodDecl()) { 9577 assert(method->getResultType() == S.Context.UnknownAnyTy); 9578 method->setResultType(DestType); 9579 } 9580 9581 // Change the type of the message. 9582 msg->setType(DestType.getNonReferenceType()); 9583 msg->setValueKind(Expr::getValueKindForType(DestType)); 9584 9585 return S.MaybeBindToTemporary(msg); 9586 } 9587 9588 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) { 9589 // The only case we should ever see here is a function-to-pointer decay. 9590 assert(ice->getCastKind() == CK_FunctionToPointerDecay); 9591 assert(ice->getValueKind() == VK_RValue); 9592 assert(ice->getObjectKind() == OK_Ordinary); 9593 9594 ice->setType(DestType); 9595 9596 // Rebuild the sub-expression as the pointee (function) type. 9597 DestType = DestType->castAs<PointerType>()->getPointeeType(); 9598 9599 ExprResult result = Visit(ice->getSubExpr()); 9600 if (!result.isUsable()) return ExprError(); 9601 9602 ice->setSubExpr(result.take()); 9603 return S.Owned(ice); 9604 } 9605 9606 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) { 9607 ExprValueKind valueKind = VK_LValue; 9608 QualType type = DestType; 9609 9610 // We know how to make this work for certain kinds of decls: 9611 9612 // - functions 9613 if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) { 9614 // This is true because FunctionDecls must always have function 9615 // type, so we can't be resolving the entire thing at once. 9616 assert(type->isFunctionType()); 9617 9618 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn)) 9619 if (method->isInstance()) { 9620 valueKind = VK_RValue; 9621 type = S.Context.BoundMemberTy; 9622 } 9623 9624 // Function references aren't l-values in C. 9625 if (!S.getLangOptions().CPlusPlus) 9626 valueKind = VK_RValue; 9627 9628 // - variables 9629 } else if (isa<VarDecl>(decl)) { 9630 if (const ReferenceType *refTy = type->getAs<ReferenceType>()) { 9631 type = refTy->getPointeeType(); 9632 } else if (type->isFunctionType()) { 9633 S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type) 9634 << decl << expr->getSourceRange(); 9635 return ExprError(); 9636 } 9637 9638 // - nothing else 9639 } else { 9640 S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl) 9641 << decl << expr->getSourceRange(); 9642 return ExprError(); 9643 } 9644 9645 decl->setType(DestType); 9646 expr->setType(type); 9647 expr->setValueKind(valueKind); 9648 return S.Owned(expr); 9649 } 9650 9651 /// Check a cast of an unknown-any type. We intentionally only 9652 /// trigger this for C-style casts. 9653 ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType, 9654 Expr *castExpr, CastKind &castKind, 9655 ExprValueKind &VK, CXXCastPath &path) { 9656 // Rewrite the casted expression from scratch. 9657 ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr); 9658 if (!result.isUsable()) return ExprError(); 9659 9660 castExpr = result.take(); 9661 VK = castExpr->getValueKind(); 9662 castKind = CK_NoOp; 9663 9664 return castExpr; 9665 } 9666 9667 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) { 9668 Expr *orig = e; 9669 unsigned diagID = diag::err_uncasted_use_of_unknown_any; 9670 while (true) { 9671 e = e->IgnoreParenImpCasts(); 9672 if (CallExpr *call = dyn_cast<CallExpr>(e)) { 9673 e = call->getCallee(); 9674 diagID = diag::err_uncasted_call_of_unknown_any; 9675 } else { 9676 break; 9677 } 9678 } 9679 9680 SourceLocation loc; 9681 NamedDecl *d; 9682 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 9683 loc = ref->getLocation(); 9684 d = ref->getDecl(); 9685 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) { 9686 loc = mem->getMemberLoc(); 9687 d = mem->getMemberDecl(); 9688 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) { 9689 diagID = diag::err_uncasted_call_of_unknown_any; 9690 loc = msg->getSelectorLoc(); 9691 d = msg->getMethodDecl(); 9692 assert(d && "unknown method returning __unknown_any?"); 9693 } else { 9694 S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr) 9695 << e->getSourceRange(); 9696 return ExprError(); 9697 } 9698 9699 S.Diag(loc, diagID) << d << orig->getSourceRange(); 9700 9701 // Never recoverable. 9702 return ExprError(); 9703 } 9704 9705 /// Check for operands with placeholder types and complain if found. 9706 /// Returns true if there was an error and no recovery was possible. 9707 ExprResult Sema::CheckPlaceholderExpr(Expr *E) { 9708 // Placeholder types are always *exactly* the appropriate builtin type. 9709 QualType type = E->getType(); 9710 9711 // Overloaded expressions. 9712 if (type == Context.OverloadTy) 9713 return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true, 9714 E->getSourceRange(), 9715 QualType(), 9716 diag::err_ovl_unresolvable); 9717 9718 // Bound member functions. 9719 if (type == Context.BoundMemberTy) { 9720 Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func) 9721 << E->getSourceRange(); 9722 return ExprError(); 9723 } 9724 9725 // Expressions of unknown type. 9726 if (type == Context.UnknownAnyTy) 9727 return diagnoseUnknownAnyExpr(*this, E); 9728 9729 assert(!type->isPlaceholderType()); 9730 return Owned(E); 9731 } 9732 9733 bool Sema::CheckCaseExpression(Expr *expr) { 9734 if (expr->isTypeDependent()) 9735 return true; 9736 if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context)) 9737 return expr->getType()->isIntegralOrEnumerationType(); 9738 return false; 9739 } 9740