Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/AnalysisBasedWarnings.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/RecursiveASTVisitor.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/LiteralSupport.h"
     33 #include "clang/Lex/Preprocessor.h"
     34 #include "clang/Sema/DeclSpec.h"
     35 #include "clang/Sema/Designator.h"
     36 #include "clang/Sema/Scope.h"
     37 #include "clang/Sema/ScopeInfo.h"
     38 #include "clang/Sema/ParsedTemplate.h"
     39 #include "clang/Sema/Template.h"
     40 using namespace clang;
     41 using namespace sema;
     42 
     43 
     44 /// \brief Determine whether the use of this declaration is valid, and
     45 /// emit any corresponding diagnostics.
     46 ///
     47 /// This routine diagnoses various problems with referencing
     48 /// declarations that can occur when using a declaration. For example,
     49 /// it might warn if a deprecated or unavailable declaration is being
     50 /// used, or produce an error (and return true) if a C++0x deleted
     51 /// function is being used.
     52 ///
     53 /// If IgnoreDeprecated is set to true, this should not warn about deprecated
     54 /// decls.
     55 ///
     56 /// \returns true if there was an error (this declaration cannot be
     57 /// referenced), false otherwise.
     58 ///
     59 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
     60                              const ObjCInterfaceDecl *UnknownObjCClass) {
     61   if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
     62     // If there were any diagnostics suppressed by template argument deduction,
     63     // emit them now.
     64     llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
     65       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
     66     if (Pos != SuppressedDiagnostics.end()) {
     67       llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
     68       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
     69         Diag(Suppressed[I].first, Suppressed[I].second);
     70 
     71       // Clear out the list of suppressed diagnostics, so that we don't emit
     72       // them again for this specialization. However, we don't obsolete this
     73       // entry from the table, because we want to avoid ever emitting these
     74       // diagnostics again.
     75       Suppressed.clear();
     76     }
     77   }
     78 
     79   // See if this is an auto-typed variable whose initializer we are parsing.
     80   if (ParsingInitForAutoVars.count(D)) {
     81     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
     82       << D->getDeclName();
     83     return true;
     84   }
     85 
     86   // See if this is a deleted function.
     87   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     88     if (FD->isDeleted()) {
     89       Diag(Loc, diag::err_deleted_function_use);
     90       Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
     91       return true;
     92     }
     93   }
     94 
     95   // See if this declaration is unavailable or deprecated.
     96   std::string Message;
     97   switch (D->getAvailability(&Message)) {
     98   case AR_Available:
     99   case AR_NotYetIntroduced:
    100     break;
    101 
    102   case AR_Deprecated:
    103     EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
    104     break;
    105 
    106   case AR_Unavailable:
    107     if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
    108       if (Message.empty()) {
    109         if (!UnknownObjCClass)
    110           Diag(Loc, diag::err_unavailable) << D->getDeclName();
    111         else
    112           Diag(Loc, diag::warn_unavailable_fwdclass_message)
    113                << D->getDeclName();
    114       }
    115       else
    116         Diag(Loc, diag::err_unavailable_message)
    117           << D->getDeclName() << Message;
    118       Diag(D->getLocation(), diag::note_unavailable_here)
    119         << isa<FunctionDecl>(D) << false;
    120     }
    121     break;
    122   }
    123 
    124   // Warn if this is used but marked unused.
    125   if (D->hasAttr<UnusedAttr>())
    126     Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
    127 
    128   return false;
    129 }
    130 
    131 /// \brief Retrieve the message suffix that should be added to a
    132 /// diagnostic complaining about the given function being deleted or
    133 /// unavailable.
    134 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    135   // FIXME: C++0x implicitly-deleted special member functions could be
    136   // detected here so that we could improve diagnostics to say, e.g.,
    137   // "base class 'A' had a deleted copy constructor".
    138   if (FD->isDeleted())
    139     return std::string();
    140 
    141   std::string Message;
    142   if (FD->getAvailability(&Message))
    143     return ": " + Message;
    144 
    145   return std::string();
    146 }
    147 
    148 /// DiagnoseSentinelCalls - This routine checks on method dispatch calls
    149 /// (and other functions in future), which have been declared with sentinel
    150 /// attribute. It warns if call does not have the sentinel argument.
    151 ///
    152 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    153                                  Expr **Args, unsigned NumArgs) {
    154   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    155   if (!attr)
    156     return;
    157 
    158   // FIXME: In C++0x, if any of the arguments are parameter pack
    159   // expansions, we can't check for the sentinel now.
    160   int sentinelPos = attr->getSentinel();
    161   int nullPos = attr->getNullPos();
    162 
    163   // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
    164   // base class. Then we won't be needing two versions of the same code.
    165   unsigned int i = 0;
    166   bool warnNotEnoughArgs = false;
    167   int isMethod = 0;
    168   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    169     // skip over named parameters.
    170     ObjCMethodDecl::param_iterator P, E = MD->param_end();
    171     for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
    172       if (nullPos)
    173         --nullPos;
    174       else
    175         ++i;
    176     }
    177     warnNotEnoughArgs = (P != E || i >= NumArgs);
    178     isMethod = 1;
    179   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    180     // skip over named parameters.
    181     ObjCMethodDecl::param_iterator P, E = FD->param_end();
    182     for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
    183       if (nullPos)
    184         --nullPos;
    185       else
    186         ++i;
    187     }
    188     warnNotEnoughArgs = (P != E || i >= NumArgs);
    189   } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
    190     // block or function pointer call.
    191     QualType Ty = V->getType();
    192     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
    193       const FunctionType *FT = Ty->isFunctionPointerType()
    194       ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
    195       : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
    196       if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
    197         unsigned NumArgsInProto = Proto->getNumArgs();
    198         unsigned k;
    199         for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
    200           if (nullPos)
    201             --nullPos;
    202           else
    203             ++i;
    204         }
    205         warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
    206       }
    207       if (Ty->isBlockPointerType())
    208         isMethod = 2;
    209     } else
    210       return;
    211   } else
    212     return;
    213 
    214   if (warnNotEnoughArgs) {
    215     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    216     Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
    217     return;
    218   }
    219   int sentinel = i;
    220   while (sentinelPos > 0 && i < NumArgs-1) {
    221     --sentinelPos;
    222     ++i;
    223   }
    224   if (sentinelPos > 0) {
    225     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    226     Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
    227     return;
    228   }
    229   while (i < NumArgs-1) {
    230     ++i;
    231     ++sentinel;
    232   }
    233   Expr *sentinelExpr = Args[sentinel];
    234   if (!sentinelExpr) return;
    235   if (sentinelExpr->isTypeDependent()) return;
    236   if (sentinelExpr->isValueDependent()) return;
    237 
    238   // nullptr_t is always treated as null.
    239   if (sentinelExpr->getType()->isNullPtrType()) return;
    240 
    241   if (sentinelExpr->getType()->isAnyPointerType() &&
    242       sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
    243                                             Expr::NPC_ValueDependentIsNull))
    244     return;
    245 
    246   // Unfortunately, __null has type 'int'.
    247   if (isa<GNUNullExpr>(sentinelExpr)) return;
    248 
    249   Diag(Loc, diag::warn_missing_sentinel) << isMethod;
    250   Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
    251 }
    252 
    253 SourceRange Sema::getExprRange(ExprTy *E) const {
    254   Expr *Ex = (Expr *)E;
    255   return Ex? Ex->getSourceRange() : SourceRange();
    256 }
    257 
    258 //===----------------------------------------------------------------------===//
    259 //  Standard Promotions and Conversions
    260 //===----------------------------------------------------------------------===//
    261 
    262 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    263 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    264   QualType Ty = E->getType();
    265   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    266 
    267   if (Ty->isFunctionType())
    268     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    269                           CK_FunctionToPointerDecay).take();
    270   else if (Ty->isArrayType()) {
    271     // In C90 mode, arrays only promote to pointers if the array expression is
    272     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    273     // type 'array of type' is converted to an expression that has type 'pointer
    274     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    275     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    276     // (C90) to "an expression" (C99).
    277     //
    278     // C++ 4.2p1:
    279     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    280     // T" can be converted to an rvalue of type "pointer to T".
    281     //
    282     if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
    283       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    284                             CK_ArrayToPointerDecay).take();
    285   }
    286   return Owned(E);
    287 }
    288 
    289 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    290   // Check to see if we are dereferencing a null pointer.  If so,
    291   // and if not volatile-qualified, this is undefined behavior that the
    292   // optimizer will delete, so warn about it.  People sometimes try to use this
    293   // to get a deterministic trap and are surprised by clang's behavior.  This
    294   // only handles the pattern "*null", which is a very syntactic check.
    295   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    296     if (UO->getOpcode() == UO_Deref &&
    297         UO->getSubExpr()->IgnoreParenCasts()->
    298           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    299         !UO->getType().isVolatileQualified()) {
    300     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    301                           S.PDiag(diag::warn_indirection_through_null)
    302                             << UO->getSubExpr()->getSourceRange());
    303     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    304                         S.PDiag(diag::note_indirection_through_null));
    305   }
    306 }
    307 
    308 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    309   // C++ [conv.lval]p1:
    310   //   A glvalue of a non-function, non-array type T can be
    311   //   converted to a prvalue.
    312   if (!E->isGLValue()) return Owned(E);
    313 
    314   QualType T = E->getType();
    315   assert(!T.isNull() && "r-value conversion on typeless expression?");
    316 
    317   // Create a load out of an ObjCProperty l-value, if necessary.
    318   if (E->getObjectKind() == OK_ObjCProperty) {
    319     ExprResult Res = ConvertPropertyForRValue(E);
    320     if (Res.isInvalid())
    321       return Owned(E);
    322     E = Res.take();
    323     if (!E->isGLValue())
    324       return Owned(E);
    325   }
    326 
    327   // We don't want to throw lvalue-to-rvalue casts on top of
    328   // expressions of certain types in C++.
    329   if (getLangOptions().CPlusPlus &&
    330       (E->getType() == Context.OverloadTy ||
    331        T->isDependentType() ||
    332        T->isRecordType()))
    333     return Owned(E);
    334 
    335   // The C standard is actually really unclear on this point, and
    336   // DR106 tells us what the result should be but not why.  It's
    337   // generally best to say that void types just doesn't undergo
    338   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    339   // 'void' type are never l-values, but qualified void can be.
    340   if (T->isVoidType())
    341     return Owned(E);
    342 
    343   CheckForNullPointerDereference(*this, E);
    344 
    345   // C++ [conv.lval]p1:
    346   //   [...] If T is a non-class type, the type of the prvalue is the
    347   //   cv-unqualified version of T. Otherwise, the type of the
    348   //   rvalue is T.
    349   //
    350   // C99 6.3.2.1p2:
    351   //   If the lvalue has qualified type, the value has the unqualified
    352   //   version of the type of the lvalue; otherwise, the value has the
    353   //   type of the lvalue.
    354   if (T.hasQualifiers())
    355     T = T.getUnqualifiedType();
    356 
    357   CheckArrayAccess(E);
    358 
    359   return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
    360                                         E, 0, VK_RValue));
    361 }
    362 
    363 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    364   ExprResult Res = DefaultFunctionArrayConversion(E);
    365   if (Res.isInvalid())
    366     return ExprError();
    367   Res = DefaultLvalueConversion(Res.take());
    368   if (Res.isInvalid())
    369     return ExprError();
    370   return move(Res);
    371 }
    372 
    373 
    374 /// UsualUnaryConversions - Performs various conversions that are common to most
    375 /// operators (C99 6.3). The conversions of array and function types are
    376 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    377 /// apply if the array is an argument to the sizeof or address (&) operators.
    378 /// In these instances, this routine should *not* be called.
    379 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    380   // First, convert to an r-value.
    381   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    382   if (Res.isInvalid())
    383     return Owned(E);
    384   E = Res.take();
    385 
    386   QualType Ty = E->getType();
    387   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    388 
    389   // Try to perform integral promotions if the object has a theoretically
    390   // promotable type.
    391   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    392     // C99 6.3.1.1p2:
    393     //
    394     //   The following may be used in an expression wherever an int or
    395     //   unsigned int may be used:
    396     //     - an object or expression with an integer type whose integer
    397     //       conversion rank is less than or equal to the rank of int
    398     //       and unsigned int.
    399     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    400     //
    401     //   If an int can represent all values of the original type, the
    402     //   value is converted to an int; otherwise, it is converted to an
    403     //   unsigned int. These are called the integer promotions. All
    404     //   other types are unchanged by the integer promotions.
    405 
    406     QualType PTy = Context.isPromotableBitField(E);
    407     if (!PTy.isNull()) {
    408       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
    409       return Owned(E);
    410     }
    411     if (Ty->isPromotableIntegerType()) {
    412       QualType PT = Context.getPromotedIntegerType(Ty);
    413       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
    414       return Owned(E);
    415     }
    416   }
    417   return Owned(E);
    418 }
    419 
    420 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    421 /// do not have a prototype. Arguments that have type float are promoted to
    422 /// double. All other argument types are converted by UsualUnaryConversions().
    423 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    424   QualType Ty = E->getType();
    425   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    426 
    427   ExprResult Res = UsualUnaryConversions(E);
    428   if (Res.isInvalid())
    429     return Owned(E);
    430   E = Res.take();
    431 
    432   // If this is a 'float' (CVR qualified or typedef) promote to double.
    433   if (Ty->isSpecificBuiltinType(BuiltinType::Float))
    434     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
    435 
    436   return Owned(E);
    437 }
    438 
    439 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    440 /// will warn if the resulting type is not a POD type, and rejects ObjC
    441 /// interfaces passed by value.
    442 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    443                                                   FunctionDecl *FDecl) {
    444   ExprResult ExprRes = CheckPlaceholderExpr(E);
    445   if (ExprRes.isInvalid())
    446     return ExprError();
    447 
    448   ExprRes = DefaultArgumentPromotion(E);
    449   if (ExprRes.isInvalid())
    450     return ExprError();
    451   E = ExprRes.take();
    452 
    453   // __builtin_va_start takes the second argument as a "varargs" argument, but
    454   // it doesn't actually do anything with it.  It doesn't need to be non-pod
    455   // etc.
    456   if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
    457     return Owned(E);
    458 
    459   // Don't allow one to pass an Objective-C interface to a vararg.
    460   if (E->getType()->isObjCObjectType() &&
    461     DiagRuntimeBehavior(E->getLocStart(), 0,
    462                         PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    463                           << E->getType() << CT))
    464     return ExprError();
    465 
    466   if (!E->getType().isPODType(Context)) {
    467     // C++0x [expr.call]p7:
    468     //   Passing a potentially-evaluated argument of class type (Clause 9)
    469     //   having a non-trivial copy constructor, a non-trivial move constructor,
    470     //   or a non-trivial destructor, with no corresponding parameter,
    471     //   is conditionally-supported with implementation-defined semantics.
    472     bool TrivialEnough = false;
    473     if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType())  {
    474       if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
    475         if (Record->hasTrivialCopyConstructor() &&
    476             Record->hasTrivialMoveConstructor() &&
    477             Record->hasTrivialDestructor())
    478           TrivialEnough = true;
    479       }
    480     }
    481 
    482     if (!TrivialEnough &&
    483         getLangOptions().ObjCAutoRefCount &&
    484         E->getType()->isObjCLifetimeType())
    485       TrivialEnough = true;
    486 
    487     if (TrivialEnough) {
    488       // Nothing to diagnose. This is okay.
    489     } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
    490                           PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    491                             << getLangOptions().CPlusPlus0x << E->getType()
    492                             << CT)) {
    493       // Turn this into a trap.
    494       CXXScopeSpec SS;
    495       UnqualifiedId Name;
    496       Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    497                          E->getLocStart());
    498       ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
    499       if (TrapFn.isInvalid())
    500         return ExprError();
    501 
    502       ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
    503                                       MultiExprArg(), E->getLocEnd());
    504       if (Call.isInvalid())
    505         return ExprError();
    506 
    507       ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    508                                     Call.get(), E);
    509       if (Comma.isInvalid())
    510         return ExprError();
    511 
    512       E = Comma.get();
    513     }
    514   }
    515 
    516   return Owned(E);
    517 }
    518 
    519 /// UsualArithmeticConversions - Performs various conversions that are common to
    520 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
    521 /// routine returns the first non-arithmetic type found. The client is
    522 /// responsible for emitting appropriate error diagnostics.
    523 /// FIXME: verify the conversion rules for "complex int" are consistent with
    524 /// GCC.
    525 QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
    526                                           bool isCompAssign) {
    527   if (!isCompAssign) {
    528     lhsExpr = UsualUnaryConversions(lhsExpr.take());
    529     if (lhsExpr.isInvalid())
    530       return QualType();
    531   }
    532 
    533   rhsExpr = UsualUnaryConversions(rhsExpr.take());
    534   if (rhsExpr.isInvalid())
    535     return QualType();
    536 
    537   // For conversion purposes, we ignore any qualifiers.
    538   // For example, "const float" and "float" are equivalent.
    539   QualType lhs =
    540     Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
    541   QualType rhs =
    542     Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
    543 
    544   // If both types are identical, no conversion is needed.
    545   if (lhs == rhs)
    546     return lhs;
    547 
    548   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
    549   // The caller can deal with this (e.g. pointer + int).
    550   if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
    551     return lhs;
    552 
    553   // Apply unary and bitfield promotions to the LHS's type.
    554   QualType lhs_unpromoted = lhs;
    555   if (lhs->isPromotableIntegerType())
    556     lhs = Context.getPromotedIntegerType(lhs);
    557   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
    558   if (!LHSBitfieldPromoteTy.isNull())
    559     lhs = LHSBitfieldPromoteTy;
    560   if (lhs != lhs_unpromoted && !isCompAssign)
    561     lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
    562 
    563   // If both types are identical, no conversion is needed.
    564   if (lhs == rhs)
    565     return lhs;
    566 
    567   // At this point, we have two different arithmetic types.
    568 
    569   // Handle complex types first (C99 6.3.1.8p1).
    570   bool LHSComplexFloat = lhs->isComplexType();
    571   bool RHSComplexFloat = rhs->isComplexType();
    572   if (LHSComplexFloat || RHSComplexFloat) {
    573     // if we have an integer operand, the result is the complex type.
    574 
    575     if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
    576       if (rhs->isIntegerType()) {
    577         QualType fp = cast<ComplexType>(lhs)->getElementType();
    578         rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
    579         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
    580       } else {
    581         assert(rhs->isComplexIntegerType());
    582         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
    583       }
    584       return lhs;
    585     }
    586 
    587     if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
    588       if (!isCompAssign) {
    589         // int -> float -> _Complex float
    590         if (lhs->isIntegerType()) {
    591           QualType fp = cast<ComplexType>(rhs)->getElementType();
    592           lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
    593           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
    594         } else {
    595           assert(lhs->isComplexIntegerType());
    596           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
    597         }
    598       }
    599       return rhs;
    600     }
    601 
    602     // This handles complex/complex, complex/float, or float/complex.
    603     // When both operands are complex, the shorter operand is converted to the
    604     // type of the longer, and that is the type of the result. This corresponds
    605     // to what is done when combining two real floating-point operands.
    606     // The fun begins when size promotion occur across type domains.
    607     // From H&S 6.3.4: When one operand is complex and the other is a real
    608     // floating-point type, the less precise type is converted, within it's
    609     // real or complex domain, to the precision of the other type. For example,
    610     // when combining a "long double" with a "double _Complex", the
    611     // "double _Complex" is promoted to "long double _Complex".
    612     int order = Context.getFloatingTypeOrder(lhs, rhs);
    613 
    614     // If both are complex, just cast to the more precise type.
    615     if (LHSComplexFloat && RHSComplexFloat) {
    616       if (order > 0) {
    617         // _Complex float -> _Complex double
    618         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
    619         return lhs;
    620 
    621       } else if (order < 0) {
    622         // _Complex float -> _Complex double
    623         if (!isCompAssign)
    624           lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
    625         return rhs;
    626       }
    627       return lhs;
    628     }
    629 
    630     // If just the LHS is complex, the RHS needs to be converted,
    631     // and the LHS might need to be promoted.
    632     if (LHSComplexFloat) {
    633       if (order > 0) { // LHS is wider
    634         // float -> _Complex double
    635         QualType fp = cast<ComplexType>(lhs)->getElementType();
    636         rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
    637         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
    638         return lhs;
    639       }
    640 
    641       // RHS is at least as wide.  Find its corresponding complex type.
    642       QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
    643 
    644       // double -> _Complex double
    645       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
    646 
    647       // _Complex float -> _Complex double
    648       if (!isCompAssign && order < 0)
    649         lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
    650 
    651       return result;
    652     }
    653 
    654     // Just the RHS is complex, so the LHS needs to be converted
    655     // and the RHS might need to be promoted.
    656     assert(RHSComplexFloat);
    657 
    658     if (order < 0) { // RHS is wider
    659       // float -> _Complex double
    660       if (!isCompAssign) {
    661         QualType fp = cast<ComplexType>(rhs)->getElementType();
    662         lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
    663         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
    664       }
    665       return rhs;
    666     }
    667 
    668     // LHS is at least as wide.  Find its corresponding complex type.
    669     QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
    670 
    671     // double -> _Complex double
    672     if (!isCompAssign)
    673       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
    674 
    675     // _Complex float -> _Complex double
    676     if (order > 0)
    677       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
    678 
    679     return result;
    680   }
    681 
    682   // Now handle "real" floating types (i.e. float, double, long double).
    683   bool LHSFloat = lhs->isRealFloatingType();
    684   bool RHSFloat = rhs->isRealFloatingType();
    685   if (LHSFloat || RHSFloat) {
    686     // If we have two real floating types, convert the smaller operand
    687     // to the bigger result.
    688     if (LHSFloat && RHSFloat) {
    689       int order = Context.getFloatingTypeOrder(lhs, rhs);
    690       if (order > 0) {
    691         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
    692         return lhs;
    693       }
    694 
    695       assert(order < 0 && "illegal float comparison");
    696       if (!isCompAssign)
    697         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
    698       return rhs;
    699     }
    700 
    701     // If we have an integer operand, the result is the real floating type.
    702     if (LHSFloat) {
    703       if (rhs->isIntegerType()) {
    704         // Convert rhs to the lhs floating point type.
    705         rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
    706         return lhs;
    707       }
    708 
    709       // Convert both sides to the appropriate complex float.
    710       assert(rhs->isComplexIntegerType());
    711       QualType result = Context.getComplexType(lhs);
    712 
    713       // _Complex int -> _Complex float
    714       rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
    715 
    716       // float -> _Complex float
    717       if (!isCompAssign)
    718         lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
    719 
    720       return result;
    721     }
    722 
    723     assert(RHSFloat);
    724     if (lhs->isIntegerType()) {
    725       // Convert lhs to the rhs floating point type.
    726       if (!isCompAssign)
    727         lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
    728       return rhs;
    729     }
    730 
    731     // Convert both sides to the appropriate complex float.
    732     assert(lhs->isComplexIntegerType());
    733     QualType result = Context.getComplexType(rhs);
    734 
    735     // _Complex int -> _Complex float
    736     if (!isCompAssign)
    737       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
    738 
    739     // float -> _Complex float
    740     rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
    741 
    742     return result;
    743   }
    744 
    745   // Handle GCC complex int extension.
    746   // FIXME: if the operands are (int, _Complex long), we currently
    747   // don't promote the complex.  Also, signedness?
    748   const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
    749   const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
    750   if (lhsComplexInt && rhsComplexInt) {
    751     int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
    752                                             rhsComplexInt->getElementType());
    753     assert(order && "inequal types with equal element ordering");
    754     if (order > 0) {
    755       // _Complex int -> _Complex long
    756       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
    757       return lhs;
    758     }
    759 
    760     if (!isCompAssign)
    761       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
    762     return rhs;
    763   } else if (lhsComplexInt) {
    764     // int -> _Complex int
    765     rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
    766     return lhs;
    767   } else if (rhsComplexInt) {
    768     // int -> _Complex int
    769     if (!isCompAssign)
    770       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
    771     return rhs;
    772   }
    773 
    774   // Finally, we have two differing integer types.
    775   // The rules for this case are in C99 6.3.1.8
    776   int compare = Context.getIntegerTypeOrder(lhs, rhs);
    777   bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
    778        rhsSigned = rhs->hasSignedIntegerRepresentation();
    779   if (lhsSigned == rhsSigned) {
    780     // Same signedness; use the higher-ranked type
    781     if (compare >= 0) {
    782       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
    783       return lhs;
    784     } else if (!isCompAssign)
    785       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
    786     return rhs;
    787   } else if (compare != (lhsSigned ? 1 : -1)) {
    788     // The unsigned type has greater than or equal rank to the
    789     // signed type, so use the unsigned type
    790     if (rhsSigned) {
    791       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
    792       return lhs;
    793     } else if (!isCompAssign)
    794       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
    795     return rhs;
    796   } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
    797     // The two types are different widths; if we are here, that
    798     // means the signed type is larger than the unsigned type, so
    799     // use the signed type.
    800     if (lhsSigned) {
    801       rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
    802       return lhs;
    803     } else if (!isCompAssign)
    804       lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
    805     return rhs;
    806   } else {
    807     // The signed type is higher-ranked than the unsigned type,
    808     // but isn't actually any bigger (like unsigned int and long
    809     // on most 32-bit systems).  Use the unsigned type corresponding
    810     // to the signed type.
    811     QualType result =
    812       Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
    813     rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
    814     if (!isCompAssign)
    815       lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
    816     return result;
    817   }
    818 }
    819 
    820 //===----------------------------------------------------------------------===//
    821 //  Semantic Analysis for various Expression Types
    822 //===----------------------------------------------------------------------===//
    823 
    824 
    825 ExprResult
    826 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
    827                                 SourceLocation DefaultLoc,
    828                                 SourceLocation RParenLoc,
    829                                 Expr *ControllingExpr,
    830                                 MultiTypeArg types,
    831                                 MultiExprArg exprs) {
    832   unsigned NumAssocs = types.size();
    833   assert(NumAssocs == exprs.size());
    834 
    835   ParsedType *ParsedTypes = types.release();
    836   Expr **Exprs = exprs.release();
    837 
    838   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
    839   for (unsigned i = 0; i < NumAssocs; ++i) {
    840     if (ParsedTypes[i])
    841       (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
    842     else
    843       Types[i] = 0;
    844   }
    845 
    846   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
    847                                              ControllingExpr, Types, Exprs,
    848                                              NumAssocs);
    849   delete [] Types;
    850   return ER;
    851 }
    852 
    853 ExprResult
    854 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
    855                                  SourceLocation DefaultLoc,
    856                                  SourceLocation RParenLoc,
    857                                  Expr *ControllingExpr,
    858                                  TypeSourceInfo **Types,
    859                                  Expr **Exprs,
    860                                  unsigned NumAssocs) {
    861   bool TypeErrorFound = false,
    862        IsResultDependent = ControllingExpr->isTypeDependent(),
    863        ContainsUnexpandedParameterPack
    864          = ControllingExpr->containsUnexpandedParameterPack();
    865 
    866   for (unsigned i = 0; i < NumAssocs; ++i) {
    867     if (Exprs[i]->containsUnexpandedParameterPack())
    868       ContainsUnexpandedParameterPack = true;
    869 
    870     if (Types[i]) {
    871       if (Types[i]->getType()->containsUnexpandedParameterPack())
    872         ContainsUnexpandedParameterPack = true;
    873 
    874       if (Types[i]->getType()->isDependentType()) {
    875         IsResultDependent = true;
    876       } else {
    877         // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
    878         // complete object type other than a variably modified type."
    879         unsigned D = 0;
    880         if (Types[i]->getType()->isIncompleteType())
    881           D = diag::err_assoc_type_incomplete;
    882         else if (!Types[i]->getType()->isObjectType())
    883           D = diag::err_assoc_type_nonobject;
    884         else if (Types[i]->getType()->isVariablyModifiedType())
    885           D = diag::err_assoc_type_variably_modified;
    886 
    887         if (D != 0) {
    888           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
    889             << Types[i]->getTypeLoc().getSourceRange()
    890             << Types[i]->getType();
    891           TypeErrorFound = true;
    892         }
    893 
    894         // C1X 6.5.1.1p2 "No two generic associations in the same generic
    895         // selection shall specify compatible types."
    896         for (unsigned j = i+1; j < NumAssocs; ++j)
    897           if (Types[j] && !Types[j]->getType()->isDependentType() &&
    898               Context.typesAreCompatible(Types[i]->getType(),
    899                                          Types[j]->getType())) {
    900             Diag(Types[j]->getTypeLoc().getBeginLoc(),
    901                  diag::err_assoc_compatible_types)
    902               << Types[j]->getTypeLoc().getSourceRange()
    903               << Types[j]->getType()
    904               << Types[i]->getType();
    905             Diag(Types[i]->getTypeLoc().getBeginLoc(),
    906                  diag::note_compat_assoc)
    907               << Types[i]->getTypeLoc().getSourceRange()
    908               << Types[i]->getType();
    909             TypeErrorFound = true;
    910           }
    911       }
    912     }
    913   }
    914   if (TypeErrorFound)
    915     return ExprError();
    916 
    917   // If we determined that the generic selection is result-dependent, don't
    918   // try to compute the result expression.
    919   if (IsResultDependent)
    920     return Owned(new (Context) GenericSelectionExpr(
    921                    Context, KeyLoc, ControllingExpr,
    922                    Types, Exprs, NumAssocs, DefaultLoc,
    923                    RParenLoc, ContainsUnexpandedParameterPack));
    924 
    925   llvm::SmallVector<unsigned, 1> CompatIndices;
    926   unsigned DefaultIndex = -1U;
    927   for (unsigned i = 0; i < NumAssocs; ++i) {
    928     if (!Types[i])
    929       DefaultIndex = i;
    930     else if (Context.typesAreCompatible(ControllingExpr->getType(),
    931                                         Types[i]->getType()))
    932       CompatIndices.push_back(i);
    933   }
    934 
    935   // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
    936   // type compatible with at most one of the types named in its generic
    937   // association list."
    938   if (CompatIndices.size() > 1) {
    939     // We strip parens here because the controlling expression is typically
    940     // parenthesized in macro definitions.
    941     ControllingExpr = ControllingExpr->IgnoreParens();
    942     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
    943       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
    944       << (unsigned) CompatIndices.size();
    945     for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
    946          E = CompatIndices.end(); I != E; ++I) {
    947       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
    948            diag::note_compat_assoc)
    949         << Types[*I]->getTypeLoc().getSourceRange()
    950         << Types[*I]->getType();
    951     }
    952     return ExprError();
    953   }
    954 
    955   // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
    956   // its controlling expression shall have type compatible with exactly one of
    957   // the types named in its generic association list."
    958   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
    959     // We strip parens here because the controlling expression is typically
    960     // parenthesized in macro definitions.
    961     ControllingExpr = ControllingExpr->IgnoreParens();
    962     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
    963       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
    964     return ExprError();
    965   }
    966 
    967   // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
    968   // type name that is compatible with the type of the controlling expression,
    969   // then the result expression of the generic selection is the expression
    970   // in that generic association. Otherwise, the result expression of the
    971   // generic selection is the expression in the default generic association."
    972   unsigned ResultIndex =
    973     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
    974 
    975   return Owned(new (Context) GenericSelectionExpr(
    976                  Context, KeyLoc, ControllingExpr,
    977                  Types, Exprs, NumAssocs, DefaultLoc,
    978                  RParenLoc, ContainsUnexpandedParameterPack,
    979                  ResultIndex));
    980 }
    981 
    982 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
    983 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
    984 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
    985 /// multiple tokens.  However, the common case is that StringToks points to one
    986 /// string.
    987 ///
    988 ExprResult
    989 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
    990   assert(NumStringToks && "Must have at least one string!");
    991 
    992   StringLiteralParser Literal(StringToks, NumStringToks, PP);
    993   if (Literal.hadError)
    994     return ExprError();
    995 
    996   llvm::SmallVector<SourceLocation, 4> StringTokLocs;
    997   for (unsigned i = 0; i != NumStringToks; ++i)
    998     StringTokLocs.push_back(StringToks[i].getLocation());
    999 
   1000   QualType StrTy = Context.CharTy;
   1001   if (Literal.AnyWide)
   1002     StrTy = Context.getWCharType();
   1003   else if (Literal.Pascal)
   1004     StrTy = Context.UnsignedCharTy;
   1005 
   1006   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1007   if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
   1008     StrTy.addConst();
   1009 
   1010   // Get an array type for the string, according to C99 6.4.5.  This includes
   1011   // the nul terminator character as well as the string length for pascal
   1012   // strings.
   1013   StrTy = Context.getConstantArrayType(StrTy,
   1014                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1015                                        ArrayType::Normal, 0);
   1016 
   1017   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1018   return Owned(StringLiteral::Create(Context, Literal.GetString(),
   1019                                      Literal.AnyWide, Literal.Pascal, StrTy,
   1020                                      &StringTokLocs[0],
   1021                                      StringTokLocs.size()));
   1022 }
   1023 
   1024 enum CaptureResult {
   1025   /// No capture is required.
   1026   CR_NoCapture,
   1027 
   1028   /// A capture is required.
   1029   CR_Capture,
   1030 
   1031   /// A by-ref capture is required.
   1032   CR_CaptureByRef,
   1033 
   1034   /// An error occurred when trying to capture the given variable.
   1035   CR_Error
   1036 };
   1037 
   1038 /// Diagnose an uncapturable value reference.
   1039 ///
   1040 /// \param var - the variable referenced
   1041 /// \param DC - the context which we couldn't capture through
   1042 static CaptureResult
   1043 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   1044                                    VarDecl *var, DeclContext *DC) {
   1045   switch (S.ExprEvalContexts.back().Context) {
   1046   case Sema::Unevaluated:
   1047     // The argument will never be evaluated, so don't complain.
   1048     return CR_NoCapture;
   1049 
   1050   case Sema::PotentiallyEvaluated:
   1051   case Sema::PotentiallyEvaluatedIfUsed:
   1052     break;
   1053 
   1054   case Sema::PotentiallyPotentiallyEvaluated:
   1055     // FIXME: delay these!
   1056     break;
   1057   }
   1058 
   1059   // Don't diagnose about capture if we're not actually in code right
   1060   // now; in general, there are more appropriate places that will
   1061   // diagnose this.
   1062   if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
   1063 
   1064   // Certain madnesses can happen with parameter declarations, which
   1065   // we want to ignore.
   1066   if (isa<ParmVarDecl>(var)) {
   1067     // - If the parameter still belongs to the translation unit, then
   1068     //   we're actually just using one parameter in the declaration of
   1069     //   the next.  This is useful in e.g. VLAs.
   1070     if (isa<TranslationUnitDecl>(var->getDeclContext()))
   1071       return CR_NoCapture;
   1072 
   1073     // - This particular madness can happen in ill-formed default
   1074     //   arguments; claim it's okay and let downstream code handle it.
   1075     if (S.CurContext == var->getDeclContext()->getParent())
   1076       return CR_NoCapture;
   1077   }
   1078 
   1079   DeclarationName functionName;
   1080   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
   1081     functionName = fn->getDeclName();
   1082   // FIXME: variable from enclosing block that we couldn't capture from!
   1083 
   1084   S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   1085     << var->getIdentifier() << functionName;
   1086   S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
   1087     << var->getIdentifier();
   1088 
   1089   return CR_Error;
   1090 }
   1091 
   1092 /// There is a well-formed capture at a particular scope level;
   1093 /// propagate it through all the nested blocks.
   1094 static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
   1095                                       const BlockDecl::Capture &capture) {
   1096   VarDecl *var = capture.getVariable();
   1097 
   1098   // Update all the inner blocks with the capture information.
   1099   for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
   1100          i != e; ++i) {
   1101     BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
   1102     innerBlock->Captures.push_back(
   1103       BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
   1104                          /*nested*/ true, capture.getCopyExpr()));
   1105     innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
   1106   }
   1107 
   1108   return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
   1109 }
   1110 
   1111 /// shouldCaptureValueReference - Determine if a reference to the
   1112 /// given value in the current context requires a variable capture.
   1113 ///
   1114 /// This also keeps the captures set in the BlockScopeInfo records
   1115 /// up-to-date.
   1116 static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
   1117                                                  ValueDecl *value) {
   1118   // Only variables ever require capture.
   1119   VarDecl *var = dyn_cast<VarDecl>(value);
   1120   if (!var) return CR_NoCapture;
   1121 
   1122   // Fast path: variables from the current context never require capture.
   1123   DeclContext *DC = S.CurContext;
   1124   if (var->getDeclContext() == DC) return CR_NoCapture;
   1125 
   1126   // Only variables with local storage require capture.
   1127   // FIXME: What about 'const' variables in C++?
   1128   if (!var->hasLocalStorage()) return CR_NoCapture;
   1129 
   1130   // Otherwise, we need to capture.
   1131 
   1132   unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
   1133   do {
   1134     // Only blocks (and eventually C++0x closures) can capture; other
   1135     // scopes don't work.
   1136     if (!isa<BlockDecl>(DC))
   1137       return diagnoseUncapturableValueReference(S, loc, var, DC);
   1138 
   1139     BlockScopeInfo *blockScope =
   1140       cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
   1141     assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
   1142 
   1143     // Check whether we've already captured it in this block.  If so,
   1144     // we're done.
   1145     if (unsigned indexPlus1 = blockScope->CaptureMap[var])
   1146       return propagateCapture(S, functionScopesIndex,
   1147                               blockScope->Captures[indexPlus1 - 1]);
   1148 
   1149     functionScopesIndex--;
   1150     DC = cast<BlockDecl>(DC)->getDeclContext();
   1151   } while (var->getDeclContext() != DC);
   1152 
   1153   // Okay, we descended all the way to the block that defines the variable.
   1154   // Actually try to capture it.
   1155   QualType type = var->getType();
   1156 
   1157   // Prohibit variably-modified types.
   1158   if (type->isVariablyModifiedType()) {
   1159     S.Diag(loc, diag::err_ref_vm_type);
   1160     S.Diag(var->getLocation(), diag::note_declared_at);
   1161     return CR_Error;
   1162   }
   1163 
   1164   // Prohibit arrays, even in __block variables, but not references to
   1165   // them.
   1166   if (type->isArrayType()) {
   1167     S.Diag(loc, diag::err_ref_array_type);
   1168     S.Diag(var->getLocation(), diag::note_declared_at);
   1169     return CR_Error;
   1170   }
   1171 
   1172   S.MarkDeclarationReferenced(loc, var);
   1173 
   1174   // The BlocksAttr indicates the variable is bound by-reference.
   1175   bool byRef = var->hasAttr<BlocksAttr>();
   1176 
   1177   // Build a copy expression.
   1178   Expr *copyExpr = 0;
   1179   const RecordType *rtype;
   1180   if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
   1181       (rtype = type->getAs<RecordType>())) {
   1182 
   1183     // The capture logic needs the destructor, so make sure we mark it.
   1184     // Usually this is unnecessary because most local variables have
   1185     // their destructors marked at declaration time, but parameters are
   1186     // an exception because it's technically only the call site that
   1187     // actually requires the destructor.
   1188     if (isa<ParmVarDecl>(var))
   1189       S.FinalizeVarWithDestructor(var, rtype);
   1190 
   1191     // According to the blocks spec, the capture of a variable from
   1192     // the stack requires a const copy constructor.  This is not true
   1193     // of the copy/move done to move a __block variable to the heap.
   1194     type.addConst();
   1195 
   1196     Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
   1197     ExprResult result =
   1198       S.PerformCopyInitialization(
   1199                       InitializedEntity::InitializeBlock(var->getLocation(),
   1200                                                          type, false),
   1201                                   loc, S.Owned(declRef));
   1202 
   1203     // Build a full-expression copy expression if initialization
   1204     // succeeded and used a non-trivial constructor.  Recover from
   1205     // errors by pretending that the copy isn't necessary.
   1206     if (!result.isInvalid() &&
   1207         !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
   1208       result = S.MaybeCreateExprWithCleanups(result);
   1209       copyExpr = result.take();
   1210     }
   1211   }
   1212 
   1213   // We're currently at the declarer; go back to the closure.
   1214   functionScopesIndex++;
   1215   BlockScopeInfo *blockScope =
   1216     cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
   1217 
   1218   // Build a valid capture in this scope.
   1219   blockScope->Captures.push_back(
   1220                  BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
   1221   blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
   1222 
   1223   // Propagate that to inner captures if necessary.
   1224   return propagateCapture(S, functionScopesIndex,
   1225                           blockScope->Captures.back());
   1226 }
   1227 
   1228 static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
   1229                                         const DeclarationNameInfo &NameInfo,
   1230                                         bool byRef) {
   1231   assert(isa<VarDecl>(vd) && "capturing non-variable");
   1232 
   1233   VarDecl *var = cast<VarDecl>(vd);
   1234   assert(var->hasLocalStorage() && "capturing non-local");
   1235   assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
   1236 
   1237   QualType exprType = var->getType().getNonReferenceType();
   1238 
   1239   BlockDeclRefExpr *BDRE;
   1240   if (!byRef) {
   1241     // The variable will be bound by copy; make it const within the
   1242     // closure, but record that this was done in the expression.
   1243     bool constAdded = !exprType.isConstQualified();
   1244     exprType.addConst();
   1245 
   1246     BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
   1247                                             NameInfo.getLoc(), false,
   1248                                             constAdded);
   1249   } else {
   1250     BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
   1251                                             NameInfo.getLoc(), true);
   1252   }
   1253 
   1254   return S.Owned(BDRE);
   1255 }
   1256 
   1257 ExprResult
   1258 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1259                        SourceLocation Loc,
   1260                        const CXXScopeSpec *SS) {
   1261   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1262   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1263 }
   1264 
   1265 /// BuildDeclRefExpr - Build an expression that references a
   1266 /// declaration that does not require a closure capture.
   1267 ExprResult
   1268 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1269                        const DeclarationNameInfo &NameInfo,
   1270                        const CXXScopeSpec *SS) {
   1271   MarkDeclarationReferenced(NameInfo.getLoc(), D);
   1272 
   1273   Expr *E = DeclRefExpr::Create(Context,
   1274                                 SS? SS->getWithLocInContext(Context)
   1275                                   : NestedNameSpecifierLoc(),
   1276                                 D, NameInfo, Ty, VK);
   1277 
   1278   // Just in case we're building an illegal pointer-to-member.
   1279   if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
   1280     E->setObjectKind(OK_BitField);
   1281 
   1282   return Owned(E);
   1283 }
   1284 
   1285 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1286 /// possibly a list of template arguments.
   1287 ///
   1288 /// If this produces template arguments, it is permitted to call
   1289 /// DecomposeTemplateName.
   1290 ///
   1291 /// This actually loses a lot of source location information for
   1292 /// non-standard name kinds; we should consider preserving that in
   1293 /// some way.
   1294 void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1295                                  TemplateArgumentListInfo &Buffer,
   1296                                  DeclarationNameInfo &NameInfo,
   1297                               const TemplateArgumentListInfo *&TemplateArgs) {
   1298   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1299     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1300     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1301 
   1302     ASTTemplateArgsPtr TemplateArgsPtr(*this,
   1303                                        Id.TemplateId->getTemplateArgs(),
   1304                                        Id.TemplateId->NumArgs);
   1305     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1306     TemplateArgsPtr.release();
   1307 
   1308     TemplateName TName = Id.TemplateId->Template.get();
   1309     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1310     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1311     TemplateArgs = &Buffer;
   1312   } else {
   1313     NameInfo = GetNameFromUnqualifiedId(Id);
   1314     TemplateArgs = 0;
   1315   }
   1316 }
   1317 
   1318 /// Diagnose an empty lookup.
   1319 ///
   1320 /// \return false if new lookup candidates were found
   1321 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1322                                CorrectTypoContext CTC) {
   1323   DeclarationName Name = R.getLookupName();
   1324 
   1325   unsigned diagnostic = diag::err_undeclared_var_use;
   1326   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1327   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1328       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1329       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1330     diagnostic = diag::err_undeclared_use;
   1331     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1332   }
   1333 
   1334   // If the original lookup was an unqualified lookup, fake an
   1335   // unqualified lookup.  This is useful when (for example) the
   1336   // original lookup would not have found something because it was a
   1337   // dependent name.
   1338   for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
   1339        DC; DC = DC->getParent()) {
   1340     if (isa<CXXRecordDecl>(DC)) {
   1341       LookupQualifiedName(R, DC);
   1342 
   1343       if (!R.empty()) {
   1344         // Don't give errors about ambiguities in this lookup.
   1345         R.suppressDiagnostics();
   1346 
   1347         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1348         bool isInstance = CurMethod &&
   1349                           CurMethod->isInstance() &&
   1350                           DC == CurMethod->getParent();
   1351 
   1352         // Give a code modification hint to insert 'this->'.
   1353         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1354         // Actually quite difficult!
   1355         if (isInstance) {
   1356           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1357               CallsUndergoingInstantiation.back()->getCallee());
   1358           CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
   1359               CurMethod->getInstantiatedFromMemberFunction());
   1360           if (DepMethod) {
   1361             Diag(R.getNameLoc(), diagnostic) << Name
   1362               << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1363             QualType DepThisType = DepMethod->getThisType(Context);
   1364             CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1365                                        R.getNameLoc(), DepThisType, false);
   1366             TemplateArgumentListInfo TList;
   1367             if (ULE->hasExplicitTemplateArgs())
   1368               ULE->copyTemplateArgumentsInto(TList);
   1369 
   1370             CXXScopeSpec SS;
   1371             SS.Adopt(ULE->getQualifierLoc());
   1372             CXXDependentScopeMemberExpr *DepExpr =
   1373                 CXXDependentScopeMemberExpr::Create(
   1374                     Context, DepThis, DepThisType, true, SourceLocation(),
   1375                     SS.getWithLocInContext(Context), NULL,
   1376                     R.getLookupNameInfo(), &TList);
   1377             CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1378           } else {
   1379             // FIXME: we should be able to handle this case too. It is correct
   1380             // to add this-> here. This is a workaround for PR7947.
   1381             Diag(R.getNameLoc(), diagnostic) << Name;
   1382           }
   1383         } else {
   1384           Diag(R.getNameLoc(), diagnostic) << Name;
   1385         }
   1386 
   1387         // Do we really want to note all of these?
   1388         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1389           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1390 
   1391         // Tell the callee to try to recover.
   1392         return false;
   1393       }
   1394 
   1395       R.clear();
   1396     }
   1397   }
   1398 
   1399   // We didn't find anything, so try to correct for a typo.
   1400   TypoCorrection Corrected;
   1401   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
   1402                                     S, &SS, NULL, false, CTC))) {
   1403     std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
   1404     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
   1405     R.setLookupName(Corrected.getCorrection());
   1406 
   1407     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   1408       R.addDecl(ND);
   1409       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   1410         if (SS.isEmpty())
   1411           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
   1412             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1413         else
   1414           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1415             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1416             << SS.getRange()
   1417             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1418         if (ND)
   1419           Diag(ND->getLocation(), diag::note_previous_decl)
   1420             << CorrectedQuotedStr;
   1421 
   1422         // Tell the callee to try to recover.
   1423         return false;
   1424       }
   1425 
   1426       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
   1427         // FIXME: If we ended up with a typo for a type name or
   1428         // Objective-C class name, we're in trouble because the parser
   1429         // is in the wrong place to recover. Suggest the typo
   1430         // correction, but don't make it a fix-it since we're not going
   1431         // to recover well anyway.
   1432         if (SS.isEmpty())
   1433           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
   1434         else
   1435           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1436             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1437             << SS.getRange();
   1438 
   1439         // Don't try to recover; it won't work.
   1440         return true;
   1441       }
   1442     } else {
   1443       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1444       // because we aren't able to recover.
   1445       if (SS.isEmpty())
   1446         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
   1447       else
   1448         Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1449         << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
   1450         << SS.getRange();
   1451       return true;
   1452     }
   1453   }
   1454   R.clear();
   1455 
   1456   // Emit a special diagnostic for failed member lookups.
   1457   // FIXME: computing the declaration context might fail here (?)
   1458   if (!SS.isEmpty()) {
   1459     Diag(R.getNameLoc(), diag::err_no_member)
   1460       << Name << computeDeclContext(SS, false)
   1461       << SS.getRange();
   1462     return true;
   1463   }
   1464 
   1465   // Give up, we can't recover.
   1466   Diag(R.getNameLoc(), diagnostic) << Name;
   1467   return true;
   1468 }
   1469 
   1470 ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
   1471   ObjCMethodDecl *CurMeth = getCurMethodDecl();
   1472   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
   1473   if (!IDecl)
   1474     return 0;
   1475   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
   1476   if (!ClassImpDecl)
   1477     return 0;
   1478   ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
   1479   if (!property)
   1480     return 0;
   1481   if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
   1482     if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
   1483         PIDecl->getPropertyIvarDecl())
   1484       return 0;
   1485   return property;
   1486 }
   1487 
   1488 bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
   1489   ObjCMethodDecl *CurMeth = getCurMethodDecl();
   1490   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
   1491   if (!IDecl)
   1492     return false;
   1493   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
   1494   if (!ClassImpDecl)
   1495     return false;
   1496   if (ObjCPropertyImplDecl *PIDecl
   1497                 = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
   1498     if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
   1499         PIDecl->getPropertyIvarDecl())
   1500       return false;
   1501 
   1502   return true;
   1503 }
   1504 
   1505 ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
   1506                                               IdentifierInfo *II,
   1507                                               SourceLocation NameLoc) {
   1508   ObjCMethodDecl *CurMeth = getCurMethodDecl();
   1509   bool LookForIvars;
   1510   if (Lookup.empty())
   1511     LookForIvars = true;
   1512   else if (CurMeth->isClassMethod())
   1513     LookForIvars = false;
   1514   else
   1515     LookForIvars = (Lookup.isSingleResult() &&
   1516                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
   1517                     (Lookup.getAsSingle<VarDecl>() != 0));
   1518   if (!LookForIvars)
   1519     return 0;
   1520 
   1521   ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
   1522   if (!IDecl)
   1523     return 0;
   1524   ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
   1525   if (!ClassImpDecl)
   1526     return 0;
   1527   bool DynamicImplSeen = false;
   1528   ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
   1529   if (!property)
   1530     return 0;
   1531   if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
   1532     DynamicImplSeen =
   1533       (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
   1534     // property implementation has a designated ivar. No need to assume a new
   1535     // one.
   1536     if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
   1537       return 0;
   1538   }
   1539   if (!DynamicImplSeen) {
   1540     QualType PropType = Context.getCanonicalType(property->getType());
   1541     ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
   1542                                               NameLoc, NameLoc,
   1543                                               II, PropType, /*Dinfo=*/0,
   1544                                               ObjCIvarDecl::Private,
   1545                                               (Expr *)0, true);
   1546     ClassImpDecl->addDecl(Ivar);
   1547     IDecl->makeDeclVisibleInContext(Ivar, false);
   1548     property->setPropertyIvarDecl(Ivar);
   1549     return Ivar;
   1550   }
   1551   return 0;
   1552 }
   1553 
   1554 ExprResult Sema::ActOnIdExpression(Scope *S,
   1555                                    CXXScopeSpec &SS,
   1556                                    UnqualifiedId &Id,
   1557                                    bool HasTrailingLParen,
   1558                                    bool isAddressOfOperand) {
   1559   assert(!(isAddressOfOperand && HasTrailingLParen) &&
   1560          "cannot be direct & operand and have a trailing lparen");
   1561 
   1562   if (SS.isInvalid())
   1563     return ExprError();
   1564 
   1565   TemplateArgumentListInfo TemplateArgsBuffer;
   1566 
   1567   // Decompose the UnqualifiedId into the following data.
   1568   DeclarationNameInfo NameInfo;
   1569   const TemplateArgumentListInfo *TemplateArgs;
   1570   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   1571 
   1572   DeclarationName Name = NameInfo.getName();
   1573   IdentifierInfo *II = Name.getAsIdentifierInfo();
   1574   SourceLocation NameLoc = NameInfo.getLoc();
   1575 
   1576   // C++ [temp.dep.expr]p3:
   1577   //   An id-expression is type-dependent if it contains:
   1578   //     -- an identifier that was declared with a dependent type,
   1579   //        (note: handled after lookup)
   1580   //     -- a template-id that is dependent,
   1581   //        (note: handled in BuildTemplateIdExpr)
   1582   //     -- a conversion-function-id that specifies a dependent type,
   1583   //     -- a nested-name-specifier that contains a class-name that
   1584   //        names a dependent type.
   1585   // Determine whether this is a member of an unknown specialization;
   1586   // we need to handle these differently.
   1587   bool DependentID = false;
   1588   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   1589       Name.getCXXNameType()->isDependentType()) {
   1590     DependentID = true;
   1591   } else if (SS.isSet()) {
   1592     if (DeclContext *DC = computeDeclContext(SS, false)) {
   1593       if (RequireCompleteDeclContext(SS, DC))
   1594         return ExprError();
   1595     } else {
   1596       DependentID = true;
   1597     }
   1598   }
   1599 
   1600   if (DependentID)
   1601     return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
   1602                                       TemplateArgs);
   1603 
   1604   bool IvarLookupFollowUp = false;
   1605   // Perform the required lookup.
   1606   LookupResult R(*this, NameInfo,
   1607                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   1608                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   1609   if (TemplateArgs) {
   1610     // Lookup the template name again to correctly establish the context in
   1611     // which it was found. This is really unfortunate as we already did the
   1612     // lookup to determine that it was a template name in the first place. If
   1613     // this becomes a performance hit, we can work harder to preserve those
   1614     // results until we get here but it's likely not worth it.
   1615     bool MemberOfUnknownSpecialization;
   1616     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   1617                        MemberOfUnknownSpecialization);
   1618 
   1619     if (MemberOfUnknownSpecialization ||
   1620         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   1621       return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
   1622                                         TemplateArgs);
   1623   } else {
   1624     IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
   1625     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   1626 
   1627     // If the result might be in a dependent base class, this is a dependent
   1628     // id-expression.
   1629     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   1630       return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
   1631                                         TemplateArgs);
   1632 
   1633     // If this reference is in an Objective-C method, then we need to do
   1634     // some special Objective-C lookup, too.
   1635     if (IvarLookupFollowUp) {
   1636       ExprResult E(LookupInObjCMethod(R, S, II, true));
   1637       if (E.isInvalid())
   1638         return ExprError();
   1639 
   1640       if (Expr *Ex = E.takeAs<Expr>())
   1641         return Owned(Ex);
   1642 
   1643       // Synthesize ivars lazily.
   1644       if (getLangOptions().ObjCDefaultSynthProperties &&
   1645           getLangOptions().ObjCNonFragileABI2) {
   1646         if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
   1647           if (const ObjCPropertyDecl *Property =
   1648                 canSynthesizeProvisionalIvar(II)) {
   1649             Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
   1650             Diag(Property->getLocation(), diag::note_property_declare);
   1651           }
   1652           return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
   1653                                    isAddressOfOperand);
   1654         }
   1655       }
   1656       // for further use, this must be set to false if in class method.
   1657       IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
   1658     }
   1659   }
   1660 
   1661   if (R.isAmbiguous())
   1662     return ExprError();
   1663 
   1664   // Determine whether this name might be a candidate for
   1665   // argument-dependent lookup.
   1666   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   1667 
   1668   if (R.empty() && !ADL) {
   1669     // Otherwise, this could be an implicitly declared function reference (legal
   1670     // in C90, extension in C99, forbidden in C++).
   1671     if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
   1672       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   1673       if (D) R.addDecl(D);
   1674     }
   1675 
   1676     // If this name wasn't predeclared and if this is not a function
   1677     // call, diagnose the problem.
   1678     if (R.empty()) {
   1679       if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
   1680         return ExprError();
   1681 
   1682       assert(!R.empty() &&
   1683              "DiagnoseEmptyLookup returned false but added no results");
   1684 
   1685       // If we found an Objective-C instance variable, let
   1686       // LookupInObjCMethod build the appropriate expression to
   1687       // reference the ivar.
   1688       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   1689         R.clear();
   1690         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   1691         assert(E.isInvalid() || E.get());
   1692         return move(E);
   1693       }
   1694     }
   1695   }
   1696 
   1697   // This is guaranteed from this point on.
   1698   assert(!R.empty() || ADL);
   1699 
   1700   // Check whether this might be a C++ implicit instance member access.
   1701   // C++ [class.mfct.non-static]p3:
   1702   //   When an id-expression that is not part of a class member access
   1703   //   syntax and not used to form a pointer to member is used in the
   1704   //   body of a non-static member function of class X, if name lookup
   1705   //   resolves the name in the id-expression to a non-static non-type
   1706   //   member of some class C, the id-expression is transformed into a
   1707   //   class member access expression using (*this) as the
   1708   //   postfix-expression to the left of the . operator.
   1709   //
   1710   // But we don't actually need to do this for '&' operands if R
   1711   // resolved to a function or overloaded function set, because the
   1712   // expression is ill-formed if it actually works out to be a
   1713   // non-static member function:
   1714   //
   1715   // C++ [expr.ref]p4:
   1716   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   1717   //   [t]he expression can be used only as the left-hand operand of a
   1718   //   member function call.
   1719   //
   1720   // There are other safeguards against such uses, but it's important
   1721   // to get this right here so that we don't end up making a
   1722   // spuriously dependent expression if we're inside a dependent
   1723   // instance method.
   1724   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   1725     bool MightBeImplicitMember;
   1726     if (!isAddressOfOperand)
   1727       MightBeImplicitMember = true;
   1728     else if (!SS.isEmpty())
   1729       MightBeImplicitMember = false;
   1730     else if (R.isOverloadedResult())
   1731       MightBeImplicitMember = false;
   1732     else if (R.isUnresolvableResult())
   1733       MightBeImplicitMember = true;
   1734     else
   1735       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   1736                               isa<IndirectFieldDecl>(R.getFoundDecl());
   1737 
   1738     if (MightBeImplicitMember)
   1739       return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
   1740   }
   1741 
   1742   if (TemplateArgs)
   1743     return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
   1744 
   1745   return BuildDeclarationNameExpr(SS, R, ADL);
   1746 }
   1747 
   1748 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   1749 /// declaration name, generally during template instantiation.
   1750 /// There's a large number of things which don't need to be done along
   1751 /// this path.
   1752 ExprResult
   1753 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   1754                                         const DeclarationNameInfo &NameInfo) {
   1755   DeclContext *DC;
   1756   if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
   1757     return BuildDependentDeclRefExpr(SS, NameInfo, 0);
   1758 
   1759   if (RequireCompleteDeclContext(SS, DC))
   1760     return ExprError();
   1761 
   1762   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   1763   LookupQualifiedName(R, DC);
   1764 
   1765   if (R.isAmbiguous())
   1766     return ExprError();
   1767 
   1768   if (R.empty()) {
   1769     Diag(NameInfo.getLoc(), diag::err_no_member)
   1770       << NameInfo.getName() << DC << SS.getRange();
   1771     return ExprError();
   1772   }
   1773 
   1774   return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
   1775 }
   1776 
   1777 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   1778 /// detected that we're currently inside an ObjC method.  Perform some
   1779 /// additional lookup.
   1780 ///
   1781 /// Ideally, most of this would be done by lookup, but there's
   1782 /// actually quite a lot of extra work involved.
   1783 ///
   1784 /// Returns a null sentinel to indicate trivial success.
   1785 ExprResult
   1786 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   1787                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   1788   SourceLocation Loc = Lookup.getNameLoc();
   1789   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   1790 
   1791   // There are two cases to handle here.  1) scoped lookup could have failed,
   1792   // in which case we should look for an ivar.  2) scoped lookup could have
   1793   // found a decl, but that decl is outside the current instance method (i.e.
   1794   // a global variable).  In these two cases, we do a lookup for an ivar with
   1795   // this name, if the lookup sucedes, we replace it our current decl.
   1796 
   1797   // If we're in a class method, we don't normally want to look for
   1798   // ivars.  But if we don't find anything else, and there's an
   1799   // ivar, that's an error.
   1800   bool IsClassMethod = CurMethod->isClassMethod();
   1801 
   1802   bool LookForIvars;
   1803   if (Lookup.empty())
   1804     LookForIvars = true;
   1805   else if (IsClassMethod)
   1806     LookForIvars = false;
   1807   else
   1808     LookForIvars = (Lookup.isSingleResult() &&
   1809                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   1810   ObjCInterfaceDecl *IFace = 0;
   1811   if (LookForIvars) {
   1812     IFace = CurMethod->getClassInterface();
   1813     ObjCInterfaceDecl *ClassDeclared;
   1814     if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   1815       // Diagnose using an ivar in a class method.
   1816       if (IsClassMethod)
   1817         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   1818                          << IV->getDeclName());
   1819 
   1820       // If we're referencing an invalid decl, just return this as a silent
   1821       // error node.  The error diagnostic was already emitted on the decl.
   1822       if (IV->isInvalidDecl())
   1823         return ExprError();
   1824 
   1825       // Check if referencing a field with __attribute__((deprecated)).
   1826       if (DiagnoseUseOfDecl(IV, Loc))
   1827         return ExprError();
   1828 
   1829       // Diagnose the use of an ivar outside of the declaring class.
   1830       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   1831           ClassDeclared != IFace)
   1832         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   1833 
   1834       // FIXME: This should use a new expr for a direct reference, don't
   1835       // turn this into Self->ivar, just return a BareIVarExpr or something.
   1836       IdentifierInfo &II = Context.Idents.get("self");
   1837       UnqualifiedId SelfName;
   1838       SelfName.setIdentifier(&II, SourceLocation());
   1839       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   1840       CXXScopeSpec SelfScopeSpec;
   1841       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
   1842                                               SelfName, false, false);
   1843       if (SelfExpr.isInvalid())
   1844         return ExprError();
   1845 
   1846       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
   1847       if (SelfExpr.isInvalid())
   1848         return ExprError();
   1849 
   1850       MarkDeclarationReferenced(Loc, IV);
   1851       return Owned(new (Context)
   1852                    ObjCIvarRefExpr(IV, IV->getType(), Loc,
   1853                                    SelfExpr.take(), true, true));
   1854     }
   1855   } else if (CurMethod->isInstanceMethod()) {
   1856     // We should warn if a local variable hides an ivar.
   1857     ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
   1858     ObjCInterfaceDecl *ClassDeclared;
   1859     if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   1860       if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   1861           IFace == ClassDeclared)
   1862         Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   1863     }
   1864   }
   1865 
   1866   if (Lookup.empty() && II && AllowBuiltinCreation) {
   1867     // FIXME. Consolidate this with similar code in LookupName.
   1868     if (unsigned BuiltinID = II->getBuiltinID()) {
   1869       if (!(getLangOptions().CPlusPlus &&
   1870             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   1871         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   1872                                            S, Lookup.isForRedeclaration(),
   1873                                            Lookup.getNameLoc());
   1874         if (D) Lookup.addDecl(D);
   1875       }
   1876     }
   1877   }
   1878   // Sentinel value saying that we didn't do anything special.
   1879   return Owned((Expr*) 0);
   1880 }
   1881 
   1882 /// \brief Cast a base object to a member's actual type.
   1883 ///
   1884 /// Logically this happens in three phases:
   1885 ///
   1886 /// * First we cast from the base type to the naming class.
   1887 ///   The naming class is the class into which we were looking
   1888 ///   when we found the member;  it's the qualifier type if a
   1889 ///   qualifier was provided, and otherwise it's the base type.
   1890 ///
   1891 /// * Next we cast from the naming class to the declaring class.
   1892 ///   If the member we found was brought into a class's scope by
   1893 ///   a using declaration, this is that class;  otherwise it's
   1894 ///   the class declaring the member.
   1895 ///
   1896 /// * Finally we cast from the declaring class to the "true"
   1897 ///   declaring class of the member.  This conversion does not
   1898 ///   obey access control.
   1899 ExprResult
   1900 Sema::PerformObjectMemberConversion(Expr *From,
   1901                                     NestedNameSpecifier *Qualifier,
   1902                                     NamedDecl *FoundDecl,
   1903                                     NamedDecl *Member) {
   1904   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   1905   if (!RD)
   1906     return Owned(From);
   1907 
   1908   QualType DestRecordType;
   1909   QualType DestType;
   1910   QualType FromRecordType;
   1911   QualType FromType = From->getType();
   1912   bool PointerConversions = false;
   1913   if (isa<FieldDecl>(Member)) {
   1914     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   1915 
   1916     if (FromType->getAs<PointerType>()) {
   1917       DestType = Context.getPointerType(DestRecordType);
   1918       FromRecordType = FromType->getPointeeType();
   1919       PointerConversions = true;
   1920     } else {
   1921       DestType = DestRecordType;
   1922       FromRecordType = FromType;
   1923     }
   1924   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   1925     if (Method->isStatic())
   1926       return Owned(From);
   1927 
   1928     DestType = Method->getThisType(Context);
   1929     DestRecordType = DestType->getPointeeType();
   1930 
   1931     if (FromType->getAs<PointerType>()) {
   1932       FromRecordType = FromType->getPointeeType();
   1933       PointerConversions = true;
   1934     } else {
   1935       FromRecordType = FromType;
   1936       DestType = DestRecordType;
   1937     }
   1938   } else {
   1939     // No conversion necessary.
   1940     return Owned(From);
   1941   }
   1942 
   1943   if (DestType->isDependentType() || FromType->isDependentType())
   1944     return Owned(From);
   1945 
   1946   // If the unqualified types are the same, no conversion is necessary.
   1947   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   1948     return Owned(From);
   1949 
   1950   SourceRange FromRange = From->getSourceRange();
   1951   SourceLocation FromLoc = FromRange.getBegin();
   1952 
   1953   ExprValueKind VK = CastCategory(From);
   1954 
   1955   // C++ [class.member.lookup]p8:
   1956   //   [...] Ambiguities can often be resolved by qualifying a name with its
   1957   //   class name.
   1958   //
   1959   // If the member was a qualified name and the qualified referred to a
   1960   // specific base subobject type, we'll cast to that intermediate type
   1961   // first and then to the object in which the member is declared. That allows
   1962   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   1963   //
   1964   //   class Base { public: int x; };
   1965   //   class Derived1 : public Base { };
   1966   //   class Derived2 : public Base { };
   1967   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   1968   //
   1969   //   void VeryDerived::f() {
   1970   //     x = 17; // error: ambiguous base subobjects
   1971   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   1972   //   }
   1973   if (Qualifier) {
   1974     QualType QType = QualType(Qualifier->getAsType(), 0);
   1975     assert(!QType.isNull() && "lookup done with dependent qualifier?");
   1976     assert(QType->isRecordType() && "lookup done with non-record type");
   1977 
   1978     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   1979 
   1980     // In C++98, the qualifier type doesn't actually have to be a base
   1981     // type of the object type, in which case we just ignore it.
   1982     // Otherwise build the appropriate casts.
   1983     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   1984       CXXCastPath BasePath;
   1985       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   1986                                        FromLoc, FromRange, &BasePath))
   1987         return ExprError();
   1988 
   1989       if (PointerConversions)
   1990         QType = Context.getPointerType(QType);
   1991       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   1992                                VK, &BasePath).take();
   1993 
   1994       FromType = QType;
   1995       FromRecordType = QRecordType;
   1996 
   1997       // If the qualifier type was the same as the destination type,
   1998       // we're done.
   1999       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2000         return Owned(From);
   2001     }
   2002   }
   2003 
   2004   bool IgnoreAccess = false;
   2005 
   2006   // If we actually found the member through a using declaration, cast
   2007   // down to the using declaration's type.
   2008   //
   2009   // Pointer equality is fine here because only one declaration of a
   2010   // class ever has member declarations.
   2011   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2012     assert(isa<UsingShadowDecl>(FoundDecl));
   2013     QualType URecordType = Context.getTypeDeclType(
   2014                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2015 
   2016     // We only need to do this if the naming-class to declaring-class
   2017     // conversion is non-trivial.
   2018     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2019       assert(IsDerivedFrom(FromRecordType, URecordType));
   2020       CXXCastPath BasePath;
   2021       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2022                                        FromLoc, FromRange, &BasePath))
   2023         return ExprError();
   2024 
   2025       QualType UType = URecordType;
   2026       if (PointerConversions)
   2027         UType = Context.getPointerType(UType);
   2028       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2029                                VK, &BasePath).take();
   2030       FromType = UType;
   2031       FromRecordType = URecordType;
   2032     }
   2033 
   2034     // We don't do access control for the conversion from the
   2035     // declaring class to the true declaring class.
   2036     IgnoreAccess = true;
   2037   }
   2038 
   2039   CXXCastPath BasePath;
   2040   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2041                                    FromLoc, FromRange, &BasePath,
   2042                                    IgnoreAccess))
   2043     return ExprError();
   2044 
   2045   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2046                            VK, &BasePath);
   2047 }
   2048 
   2049 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2050                                       const LookupResult &R,
   2051                                       bool HasTrailingLParen) {
   2052   // Only when used directly as the postfix-expression of a call.
   2053   if (!HasTrailingLParen)
   2054     return false;
   2055 
   2056   // Never if a scope specifier was provided.
   2057   if (SS.isSet())
   2058     return false;
   2059 
   2060   // Only in C++ or ObjC++.
   2061   if (!getLangOptions().CPlusPlus)
   2062     return false;
   2063 
   2064   // Turn off ADL when we find certain kinds of declarations during
   2065   // normal lookup:
   2066   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2067     NamedDecl *D = *I;
   2068 
   2069     // C++0x [basic.lookup.argdep]p3:
   2070     //     -- a declaration of a class member
   2071     // Since using decls preserve this property, we check this on the
   2072     // original decl.
   2073     if (D->isCXXClassMember())
   2074       return false;
   2075 
   2076     // C++0x [basic.lookup.argdep]p3:
   2077     //     -- a block-scope function declaration that is not a
   2078     //        using-declaration
   2079     // NOTE: we also trigger this for function templates (in fact, we
   2080     // don't check the decl type at all, since all other decl types
   2081     // turn off ADL anyway).
   2082     if (isa<UsingShadowDecl>(D))
   2083       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2084     else if (D->getDeclContext()->isFunctionOrMethod())
   2085       return false;
   2086 
   2087     // C++0x [basic.lookup.argdep]p3:
   2088     //     -- a declaration that is neither a function or a function
   2089     //        template
   2090     // And also for builtin functions.
   2091     if (isa<FunctionDecl>(D)) {
   2092       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2093 
   2094       // But also builtin functions.
   2095       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2096         return false;
   2097     } else if (!isa<FunctionTemplateDecl>(D))
   2098       return false;
   2099   }
   2100 
   2101   return true;
   2102 }
   2103 
   2104 
   2105 /// Diagnoses obvious problems with the use of the given declaration
   2106 /// as an expression.  This is only actually called for lookups that
   2107 /// were not overloaded, and it doesn't promise that the declaration
   2108 /// will in fact be used.
   2109 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2110   if (isa<TypedefNameDecl>(D)) {
   2111     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2112     return true;
   2113   }
   2114 
   2115   if (isa<ObjCInterfaceDecl>(D)) {
   2116     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2117     return true;
   2118   }
   2119 
   2120   if (isa<NamespaceDecl>(D)) {
   2121     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2122     return true;
   2123   }
   2124 
   2125   return false;
   2126 }
   2127 
   2128 ExprResult
   2129 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2130                                LookupResult &R,
   2131                                bool NeedsADL) {
   2132   // If this is a single, fully-resolved result and we don't need ADL,
   2133   // just build an ordinary singleton decl ref.
   2134   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2135     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
   2136                                     R.getFoundDecl());
   2137 
   2138   // We only need to check the declaration if there's exactly one
   2139   // result, because in the overloaded case the results can only be
   2140   // functions and function templates.
   2141   if (R.isSingleResult() &&
   2142       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2143     return ExprError();
   2144 
   2145   // Otherwise, just build an unresolved lookup expression.  Suppress
   2146   // any lookup-related diagnostics; we'll hash these out later, when
   2147   // we've picked a target.
   2148   R.suppressDiagnostics();
   2149 
   2150   UnresolvedLookupExpr *ULE
   2151     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2152                                    SS.getWithLocInContext(Context),
   2153                                    R.getLookupNameInfo(),
   2154                                    NeedsADL, R.isOverloadedResult(),
   2155                                    R.begin(), R.end());
   2156 
   2157   return Owned(ULE);
   2158 }
   2159 
   2160 /// \brief Complete semantic analysis for a reference to the given declaration.
   2161 ExprResult
   2162 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2163                                const DeclarationNameInfo &NameInfo,
   2164                                NamedDecl *D) {
   2165   assert(D && "Cannot refer to a NULL declaration");
   2166   assert(!isa<FunctionTemplateDecl>(D) &&
   2167          "Cannot refer unambiguously to a function template");
   2168 
   2169   SourceLocation Loc = NameInfo.getLoc();
   2170   if (CheckDeclInExpr(*this, Loc, D))
   2171     return ExprError();
   2172 
   2173   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2174     // Specifically diagnose references to class templates that are missing
   2175     // a template argument list.
   2176     Diag(Loc, diag::err_template_decl_ref)
   2177       << Template << SS.getRange();
   2178     Diag(Template->getLocation(), diag::note_template_decl_here);
   2179     return ExprError();
   2180   }
   2181 
   2182   // Make sure that we're referring to a value.
   2183   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2184   if (!VD) {
   2185     Diag(Loc, diag::err_ref_non_value)
   2186       << D << SS.getRange();
   2187     Diag(D->getLocation(), diag::note_declared_at);
   2188     return ExprError();
   2189   }
   2190 
   2191   // Check whether this declaration can be used. Note that we suppress
   2192   // this check when we're going to perform argument-dependent lookup
   2193   // on this function name, because this might not be the function
   2194   // that overload resolution actually selects.
   2195   if (DiagnoseUseOfDecl(VD, Loc))
   2196     return ExprError();
   2197 
   2198   // Only create DeclRefExpr's for valid Decl's.
   2199   if (VD->isInvalidDecl())
   2200     return ExprError();
   2201 
   2202   // Handle members of anonymous structs and unions.  If we got here,
   2203   // and the reference is to a class member indirect field, then this
   2204   // must be the subject of a pointer-to-member expression.
   2205   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2206     if (!indirectField->isCXXClassMember())
   2207       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2208                                                       indirectField);
   2209 
   2210   // If the identifier reference is inside a block, and it refers to a value
   2211   // that is outside the block, create a BlockDeclRefExpr instead of a
   2212   // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
   2213   // the block is formed.
   2214   //
   2215   // We do not do this for things like enum constants, global variables, etc,
   2216   // as they do not get snapshotted.
   2217   //
   2218   switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
   2219   case CR_Error:
   2220     return ExprError();
   2221 
   2222   case CR_Capture:
   2223     assert(!SS.isSet() && "referenced local variable with scope specifier?");
   2224     return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
   2225 
   2226   case CR_CaptureByRef:
   2227     assert(!SS.isSet() && "referenced local variable with scope specifier?");
   2228     return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
   2229 
   2230   case CR_NoCapture: {
   2231     // If this reference is not in a block or if the referenced
   2232     // variable is within the block, create a normal DeclRefExpr.
   2233 
   2234     QualType type = VD->getType();
   2235     ExprValueKind valueKind = VK_RValue;
   2236 
   2237     switch (D->getKind()) {
   2238     // Ignore all the non-ValueDecl kinds.
   2239 #define ABSTRACT_DECL(kind)
   2240 #define VALUE(type, base)
   2241 #define DECL(type, base) \
   2242     case Decl::type:
   2243 #include "clang/AST/DeclNodes.inc"
   2244       llvm_unreachable("invalid value decl kind");
   2245       return ExprError();
   2246 
   2247     // These shouldn't make it here.
   2248     case Decl::ObjCAtDefsField:
   2249     case Decl::ObjCIvar:
   2250       llvm_unreachable("forming non-member reference to ivar?");
   2251       return ExprError();
   2252 
   2253     // Enum constants are always r-values and never references.
   2254     // Unresolved using declarations are dependent.
   2255     case Decl::EnumConstant:
   2256     case Decl::UnresolvedUsingValue:
   2257       valueKind = VK_RValue;
   2258       break;
   2259 
   2260     // Fields and indirect fields that got here must be for
   2261     // pointer-to-member expressions; we just call them l-values for
   2262     // internal consistency, because this subexpression doesn't really
   2263     // exist in the high-level semantics.
   2264     case Decl::Field:
   2265     case Decl::IndirectField:
   2266       assert(getLangOptions().CPlusPlus &&
   2267              "building reference to field in C?");
   2268 
   2269       // These can't have reference type in well-formed programs, but
   2270       // for internal consistency we do this anyway.
   2271       type = type.getNonReferenceType();
   2272       valueKind = VK_LValue;
   2273       break;
   2274 
   2275     // Non-type template parameters are either l-values or r-values
   2276     // depending on the type.
   2277     case Decl::NonTypeTemplateParm: {
   2278       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2279         type = reftype->getPointeeType();
   2280         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2281         break;
   2282       }
   2283 
   2284       // For non-references, we need to strip qualifiers just in case
   2285       // the template parameter was declared as 'const int' or whatever.
   2286       valueKind = VK_RValue;
   2287       type = type.getUnqualifiedType();
   2288       break;
   2289     }
   2290 
   2291     case Decl::Var:
   2292       // In C, "extern void blah;" is valid and is an r-value.
   2293       if (!getLangOptions().CPlusPlus &&
   2294           !type.hasQualifiers() &&
   2295           type->isVoidType()) {
   2296         valueKind = VK_RValue;
   2297         break;
   2298       }
   2299       // fallthrough
   2300 
   2301     case Decl::ImplicitParam:
   2302     case Decl::ParmVar:
   2303       // These are always l-values.
   2304       valueKind = VK_LValue;
   2305       type = type.getNonReferenceType();
   2306       break;
   2307 
   2308     case Decl::Function: {
   2309       const FunctionType *fty = type->castAs<FunctionType>();
   2310 
   2311       // If we're referring to a function with an __unknown_anytype
   2312       // result type, make the entire expression __unknown_anytype.
   2313       if (fty->getResultType() == Context.UnknownAnyTy) {
   2314         type = Context.UnknownAnyTy;
   2315         valueKind = VK_RValue;
   2316         break;
   2317       }
   2318 
   2319       // Functions are l-values in C++.
   2320       if (getLangOptions().CPlusPlus) {
   2321         valueKind = VK_LValue;
   2322         break;
   2323       }
   2324 
   2325       // C99 DR 316 says that, if a function type comes from a
   2326       // function definition (without a prototype), that type is only
   2327       // used for checking compatibility. Therefore, when referencing
   2328       // the function, we pretend that we don't have the full function
   2329       // type.
   2330       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2331           isa<FunctionProtoType>(fty))
   2332         type = Context.getFunctionNoProtoType(fty->getResultType(),
   2333                                               fty->getExtInfo());
   2334 
   2335       // Functions are r-values in C.
   2336       valueKind = VK_RValue;
   2337       break;
   2338     }
   2339 
   2340     case Decl::CXXMethod:
   2341       // If we're referring to a method with an __unknown_anytype
   2342       // result type, make the entire expression __unknown_anytype.
   2343       // This should only be possible with a type written directly.
   2344       if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
   2345         if (proto->getResultType() == Context.UnknownAnyTy) {
   2346           type = Context.UnknownAnyTy;
   2347           valueKind = VK_RValue;
   2348           break;
   2349         }
   2350 
   2351       // C++ methods are l-values if static, r-values if non-static.
   2352       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2353         valueKind = VK_LValue;
   2354         break;
   2355       }
   2356       // fallthrough
   2357 
   2358     case Decl::CXXConversion:
   2359     case Decl::CXXDestructor:
   2360     case Decl::CXXConstructor:
   2361       valueKind = VK_RValue;
   2362       break;
   2363     }
   2364 
   2365     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
   2366   }
   2367 
   2368   }
   2369 
   2370   llvm_unreachable("unknown capture result");
   2371   return ExprError();
   2372 }
   2373 
   2374 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   2375   PredefinedExpr::IdentType IT;
   2376 
   2377   switch (Kind) {
   2378   default: assert(0 && "Unknown simple primary expr!");
   2379   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   2380   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   2381   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   2382   }
   2383 
   2384   // Pre-defined identifiers are of type char[x], where x is the length of the
   2385   // string.
   2386 
   2387   Decl *currentDecl = getCurFunctionOrMethodDecl();
   2388   if (!currentDecl && getCurBlock())
   2389     currentDecl = getCurBlock()->TheDecl;
   2390   if (!currentDecl) {
   2391     Diag(Loc, diag::ext_predef_outside_function);
   2392     currentDecl = Context.getTranslationUnitDecl();
   2393   }
   2394 
   2395   QualType ResTy;
   2396   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
   2397     ResTy = Context.DependentTy;
   2398   } else {
   2399     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
   2400 
   2401     llvm::APInt LengthI(32, Length + 1);
   2402     ResTy = Context.CharTy.withConst();
   2403     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
   2404   }
   2405   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
   2406 }
   2407 
   2408 ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
   2409   llvm::SmallString<16> CharBuffer;
   2410   bool Invalid = false;
   2411   llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   2412   if (Invalid)
   2413     return ExprError();
   2414 
   2415   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   2416                             PP);
   2417   if (Literal.hadError())
   2418     return ExprError();
   2419 
   2420   QualType Ty;
   2421   if (!getLangOptions().CPlusPlus)
   2422     Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
   2423   else if (Literal.isWide())
   2424     Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
   2425   else if (Literal.isMultiChar())
   2426     Ty = Context.IntTy;   // 'wxyz' -> int in C++.
   2427   else
   2428     Ty = Context.CharTy;  // 'x' -> char in C++
   2429 
   2430   return Owned(new (Context) CharacterLiteral(Literal.getValue(),
   2431                                               Literal.isWide(),
   2432                                               Ty, Tok.getLocation()));
   2433 }
   2434 
   2435 ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
   2436   // Fast path for a single digit (which is quite common).  A single digit
   2437   // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
   2438   if (Tok.getLength() == 1) {
   2439     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   2440     unsigned IntSize = Context.Target.getIntWidth();
   2441     return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
   2442                     Context.IntTy, Tok.getLocation()));
   2443   }
   2444 
   2445   llvm::SmallString<512> IntegerBuffer;
   2446   // Add padding so that NumericLiteralParser can overread by one character.
   2447   IntegerBuffer.resize(Tok.getLength()+1);
   2448   const char *ThisTokBegin = &IntegerBuffer[0];
   2449 
   2450   // Get the spelling of the token, which eliminates trigraphs, etc.
   2451   bool Invalid = false;
   2452   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
   2453   if (Invalid)
   2454     return ExprError();
   2455 
   2456   NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
   2457                                Tok.getLocation(), PP);
   2458   if (Literal.hadError)
   2459     return ExprError();
   2460 
   2461   Expr *Res;
   2462 
   2463   if (Literal.isFloatingLiteral()) {
   2464     QualType Ty;
   2465     if (Literal.isFloat)
   2466       Ty = Context.FloatTy;
   2467     else if (!Literal.isLong)
   2468       Ty = Context.DoubleTy;
   2469     else
   2470       Ty = Context.LongDoubleTy;
   2471 
   2472     const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
   2473 
   2474     using llvm::APFloat;
   2475     APFloat Val(Format);
   2476 
   2477     APFloat::opStatus result = Literal.GetFloatValue(Val);
   2478 
   2479     // Overflow is always an error, but underflow is only an error if
   2480     // we underflowed to zero (APFloat reports denormals as underflow).
   2481     if ((result & APFloat::opOverflow) ||
   2482         ((result & APFloat::opUnderflow) && Val.isZero())) {
   2483       unsigned diagnostic;
   2484       llvm::SmallString<20> buffer;
   2485       if (result & APFloat::opOverflow) {
   2486         diagnostic = diag::warn_float_overflow;
   2487         APFloat::getLargest(Format).toString(buffer);
   2488       } else {
   2489         diagnostic = diag::warn_float_underflow;
   2490         APFloat::getSmallest(Format).toString(buffer);
   2491       }
   2492 
   2493       Diag(Tok.getLocation(), diagnostic)
   2494         << Ty
   2495         << llvm::StringRef(buffer.data(), buffer.size());
   2496     }
   2497 
   2498     bool isExact = (result == APFloat::opOK);
   2499     Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
   2500 
   2501     if (Ty == Context.DoubleTy) {
   2502       if (getLangOptions().SinglePrecisionConstants) {
   2503         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   2504       } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
   2505         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   2506         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   2507       }
   2508     }
   2509   } else if (!Literal.isIntegerLiteral()) {
   2510     return ExprError();
   2511   } else {
   2512     QualType Ty;
   2513 
   2514     // long long is a C99 feature.
   2515     if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
   2516         Literal.isLongLong)
   2517       Diag(Tok.getLocation(), diag::ext_longlong);
   2518 
   2519     // Get the value in the widest-possible width.
   2520     llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
   2521 
   2522     if (Literal.GetIntegerValue(ResultVal)) {
   2523       // If this value didn't fit into uintmax_t, warn and force to ull.
   2524       Diag(Tok.getLocation(), diag::warn_integer_too_large);
   2525       Ty = Context.UnsignedLongLongTy;
   2526       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   2527              "long long is not intmax_t?");
   2528     } else {
   2529       // If this value fits into a ULL, try to figure out what else it fits into
   2530       // according to the rules of C99 6.4.4.1p5.
   2531 
   2532       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   2533       // be an unsigned int.
   2534       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   2535 
   2536       // Check from smallest to largest, picking the smallest type we can.
   2537       unsigned Width = 0;
   2538       if (!Literal.isLong && !Literal.isLongLong) {
   2539         // Are int/unsigned possibilities?
   2540         unsigned IntSize = Context.Target.getIntWidth();
   2541 
   2542         // Does it fit in a unsigned int?
   2543         if (ResultVal.isIntN(IntSize)) {
   2544           // Does it fit in a signed int?
   2545           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   2546             Ty = Context.IntTy;
   2547           else if (AllowUnsigned)
   2548             Ty = Context.UnsignedIntTy;
   2549           Width = IntSize;
   2550         }
   2551       }
   2552 
   2553       // Are long/unsigned long possibilities?
   2554       if (Ty.isNull() && !Literal.isLongLong) {
   2555         unsigned LongSize = Context.Target.getLongWidth();
   2556 
   2557         // Does it fit in a unsigned long?
   2558         if (ResultVal.isIntN(LongSize)) {
   2559           // Does it fit in a signed long?
   2560           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   2561             Ty = Context.LongTy;
   2562           else if (AllowUnsigned)
   2563             Ty = Context.UnsignedLongTy;
   2564           Width = LongSize;
   2565         }
   2566       }
   2567 
   2568       // Finally, check long long if needed.
   2569       if (Ty.isNull()) {
   2570         unsigned LongLongSize = Context.Target.getLongLongWidth();
   2571 
   2572         // Does it fit in a unsigned long long?
   2573         if (ResultVal.isIntN(LongLongSize)) {
   2574           // Does it fit in a signed long long?
   2575           // To be compatible with MSVC, hex integer literals ending with the
   2576           // LL or i64 suffix are always signed in Microsoft mode.
   2577           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   2578               (getLangOptions().Microsoft && Literal.isLongLong)))
   2579             Ty = Context.LongLongTy;
   2580           else if (AllowUnsigned)
   2581             Ty = Context.UnsignedLongLongTy;
   2582           Width = LongLongSize;
   2583         }
   2584       }
   2585 
   2586       // If we still couldn't decide a type, we probably have something that
   2587       // does not fit in a signed long long, but has no U suffix.
   2588       if (Ty.isNull()) {
   2589         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
   2590         Ty = Context.UnsignedLongLongTy;
   2591         Width = Context.Target.getLongLongWidth();
   2592       }
   2593 
   2594       if (ResultVal.getBitWidth() != Width)
   2595         ResultVal = ResultVal.trunc(Width);
   2596     }
   2597     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   2598   }
   2599 
   2600   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   2601   if (Literal.isImaginary)
   2602     Res = new (Context) ImaginaryLiteral(Res,
   2603                                         Context.getComplexType(Res->getType()));
   2604 
   2605   return Owned(Res);
   2606 }
   2607 
   2608 ExprResult Sema::ActOnParenExpr(SourceLocation L,
   2609                                               SourceLocation R, Expr *E) {
   2610   assert((E != 0) && "ActOnParenExpr() missing expr");
   2611   return Owned(new (Context) ParenExpr(L, R, E));
   2612 }
   2613 
   2614 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   2615                                          SourceLocation Loc,
   2616                                          SourceRange ArgRange) {
   2617   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   2618   // scalar or vector data type argument..."
   2619   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   2620   // type (C99 6.2.5p18) or void.
   2621   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   2622     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   2623       << T << ArgRange;
   2624     return true;
   2625   }
   2626 
   2627   assert((T->isVoidType() || !T->isIncompleteType()) &&
   2628          "Scalar types should always be complete");
   2629   return false;
   2630 }
   2631 
   2632 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   2633                                            SourceLocation Loc,
   2634                                            SourceRange ArgRange,
   2635                                            UnaryExprOrTypeTrait TraitKind) {
   2636   // C99 6.5.3.4p1:
   2637   if (T->isFunctionType()) {
   2638     // alignof(function) is allowed as an extension.
   2639     if (TraitKind == UETT_SizeOf)
   2640       S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
   2641     return false;
   2642   }
   2643 
   2644   // Allow sizeof(void)/alignof(void) as an extension.
   2645   if (T->isVoidType()) {
   2646     S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
   2647     return false;
   2648   }
   2649 
   2650   return true;
   2651 }
   2652 
   2653 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   2654                                              SourceLocation Loc,
   2655                                              SourceRange ArgRange,
   2656                                              UnaryExprOrTypeTrait TraitKind) {
   2657   // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
   2658   if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
   2659     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   2660       << T << (TraitKind == UETT_SizeOf)
   2661       << ArgRange;
   2662     return true;
   2663   }
   2664 
   2665   return false;
   2666 }
   2667 
   2668 /// \brief Check the constrains on expression operands to unary type expression
   2669 /// and type traits.
   2670 ///
   2671 /// Completes any types necessary and validates the constraints on the operand
   2672 /// expression. The logic mostly mirrors the type-based overload, but may modify
   2673 /// the expression as it completes the type for that expression through template
   2674 /// instantiation, etc.
   2675 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
   2676                                             UnaryExprOrTypeTrait ExprKind) {
   2677   QualType ExprTy = Op->getType();
   2678 
   2679   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   2680   //   the result is the size of the referenced type."
   2681   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   2682   //   result shall be the alignment of the referenced type."
   2683   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
   2684     ExprTy = Ref->getPointeeType();
   2685 
   2686   if (ExprKind == UETT_VecStep)
   2687     return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
   2688                                         Op->getSourceRange());
   2689 
   2690   // Whitelist some types as extensions
   2691   if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
   2692                                       Op->getSourceRange(), ExprKind))
   2693     return false;
   2694 
   2695   if (RequireCompleteExprType(Op,
   2696                               PDiag(diag::err_sizeof_alignof_incomplete_type)
   2697                               << ExprKind << Op->getSourceRange(),
   2698                               std::make_pair(SourceLocation(), PDiag(0))))
   2699     return true;
   2700 
   2701   // Completeing the expression's type may have changed it.
   2702   ExprTy = Op->getType();
   2703   if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
   2704     ExprTy = Ref->getPointeeType();
   2705 
   2706   if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
   2707                                        Op->getSourceRange(), ExprKind))
   2708     return true;
   2709 
   2710   if (ExprKind == UETT_SizeOf) {
   2711     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
   2712       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   2713         QualType OType = PVD->getOriginalType();
   2714         QualType Type = PVD->getType();
   2715         if (Type->isPointerType() && OType->isArrayType()) {
   2716           Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
   2717             << Type << OType;
   2718           Diag(PVD->getLocation(), diag::note_declared_at);
   2719         }
   2720       }
   2721     }
   2722   }
   2723 
   2724   return false;
   2725 }
   2726 
   2727 /// \brief Check the constraints on operands to unary expression and type
   2728 /// traits.
   2729 ///
   2730 /// This will complete any types necessary, and validate the various constraints
   2731 /// on those operands.
   2732 ///
   2733 /// The UsualUnaryConversions() function is *not* called by this routine.
   2734 /// C99 6.3.2.1p[2-4] all state:
   2735 ///   Except when it is the operand of the sizeof operator ...
   2736 ///
   2737 /// C++ [expr.sizeof]p4
   2738 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   2739 ///   standard conversions are not applied to the operand of sizeof.
   2740 ///
   2741 /// This policy is followed for all of the unary trait expressions.
   2742 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
   2743                                             SourceLocation OpLoc,
   2744                                             SourceRange ExprRange,
   2745                                             UnaryExprOrTypeTrait ExprKind) {
   2746   if (exprType->isDependentType())
   2747     return false;
   2748 
   2749   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   2750   //   the result is the size of the referenced type."
   2751   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   2752   //   result shall be the alignment of the referenced type."
   2753   if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
   2754     exprType = Ref->getPointeeType();
   2755 
   2756   if (ExprKind == UETT_VecStep)
   2757     return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
   2758 
   2759   // Whitelist some types as extensions
   2760   if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
   2761                                       ExprKind))
   2762     return false;
   2763 
   2764   if (RequireCompleteType(OpLoc, exprType,
   2765                           PDiag(diag::err_sizeof_alignof_incomplete_type)
   2766                           << ExprKind << ExprRange))
   2767     return true;
   2768 
   2769   if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
   2770                                        ExprKind))
   2771     return true;
   2772 
   2773   return false;
   2774 }
   2775 
   2776 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   2777   E = E->IgnoreParens();
   2778 
   2779   // alignof decl is always ok.
   2780   if (isa<DeclRefExpr>(E))
   2781     return false;
   2782 
   2783   // Cannot know anything else if the expression is dependent.
   2784   if (E->isTypeDependent())
   2785     return false;
   2786 
   2787   if (E->getBitField()) {
   2788     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   2789        << 1 << E->getSourceRange();
   2790     return true;
   2791   }
   2792 
   2793   // Alignment of a field access is always okay, so long as it isn't a
   2794   // bit-field.
   2795   if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
   2796     if (isa<FieldDecl>(ME->getMemberDecl()))
   2797       return false;
   2798 
   2799   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   2800 }
   2801 
   2802 bool Sema::CheckVecStepExpr(Expr *E) {
   2803   E = E->IgnoreParens();
   2804 
   2805   // Cannot know anything else if the expression is dependent.
   2806   if (E->isTypeDependent())
   2807     return false;
   2808 
   2809   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   2810 }
   2811 
   2812 /// \brief Build a sizeof or alignof expression given a type operand.
   2813 ExprResult
   2814 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   2815                                      SourceLocation OpLoc,
   2816                                      UnaryExprOrTypeTrait ExprKind,
   2817                                      SourceRange R) {
   2818   if (!TInfo)
   2819     return ExprError();
   2820 
   2821   QualType T = TInfo->getType();
   2822 
   2823   if (!T->isDependentType() &&
   2824       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   2825     return ExprError();
   2826 
   2827   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   2828   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
   2829                                                       Context.getSizeType(),
   2830                                                       OpLoc, R.getEnd()));
   2831 }
   2832 
   2833 /// \brief Build a sizeof or alignof expression given an expression
   2834 /// operand.
   2835 ExprResult
   2836 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   2837                                      UnaryExprOrTypeTrait ExprKind) {
   2838   ExprResult PE = CheckPlaceholderExpr(E);
   2839   if (PE.isInvalid())
   2840     return ExprError();
   2841 
   2842   E = PE.get();
   2843 
   2844   // Verify that the operand is valid.
   2845   bool isInvalid = false;
   2846   if (E->isTypeDependent()) {
   2847     // Delay type-checking for type-dependent expressions.
   2848   } else if (ExprKind == UETT_AlignOf) {
   2849     isInvalid = CheckAlignOfExpr(*this, E);
   2850   } else if (ExprKind == UETT_VecStep) {
   2851     isInvalid = CheckVecStepExpr(E);
   2852   } else if (E->getBitField()) {  // C99 6.5.3.4p1.
   2853     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   2854     isInvalid = true;
   2855   } else {
   2856     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   2857   }
   2858 
   2859   if (isInvalid)
   2860     return ExprError();
   2861 
   2862   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   2863   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
   2864       ExprKind, E, Context.getSizeType(), OpLoc,
   2865       E->getSourceRange().getEnd()));
   2866 }
   2867 
   2868 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   2869 /// expr and the same for @c alignof and @c __alignof
   2870 /// Note that the ArgRange is invalid if isType is false.
   2871 ExprResult
   2872 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   2873                                     UnaryExprOrTypeTrait ExprKind, bool isType,
   2874                                     void *TyOrEx, const SourceRange &ArgRange) {
   2875   // If error parsing type, ignore.
   2876   if (TyOrEx == 0) return ExprError();
   2877 
   2878   if (isType) {
   2879     TypeSourceInfo *TInfo;
   2880     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   2881     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   2882   }
   2883 
   2884   Expr *ArgEx = (Expr *)TyOrEx;
   2885   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   2886   return move(Result);
   2887 }
   2888 
   2889 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   2890                                      bool isReal) {
   2891   if (V.get()->isTypeDependent())
   2892     return S.Context.DependentTy;
   2893 
   2894   // _Real and _Imag are only l-values for normal l-values.
   2895   if (V.get()->getObjectKind() != OK_Ordinary) {
   2896     V = S.DefaultLvalueConversion(V.take());
   2897     if (V.isInvalid())
   2898       return QualType();
   2899   }
   2900 
   2901   // These operators return the element type of a complex type.
   2902   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   2903     return CT->getElementType();
   2904 
   2905   // Otherwise they pass through real integer and floating point types here.
   2906   if (V.get()->getType()->isArithmeticType())
   2907     return V.get()->getType();
   2908 
   2909   // Test for placeholders.
   2910   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   2911   if (PR.isInvalid()) return QualType();
   2912   if (PR.get() != V.get()) {
   2913     V = move(PR);
   2914     return CheckRealImagOperand(S, V, Loc, isReal);
   2915   }
   2916 
   2917   // Reject anything else.
   2918   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   2919     << (isReal ? "__real" : "__imag");
   2920   return QualType();
   2921 }
   2922 
   2923 
   2924 
   2925 ExprResult
   2926 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   2927                           tok::TokenKind Kind, Expr *Input) {
   2928   UnaryOperatorKind Opc;
   2929   switch (Kind) {
   2930   default: assert(0 && "Unknown unary op!");
   2931   case tok::plusplus:   Opc = UO_PostInc; break;
   2932   case tok::minusminus: Opc = UO_PostDec; break;
   2933   }
   2934 
   2935   return BuildUnaryOp(S, OpLoc, Opc, Input);
   2936 }
   2937 
   2938 ExprResult
   2939 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
   2940                               Expr *Idx, SourceLocation RLoc) {
   2941   // Since this might be a postfix expression, get rid of ParenListExprs.
   2942   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   2943   if (Result.isInvalid()) return ExprError();
   2944   Base = Result.take();
   2945 
   2946   Expr *LHSExp = Base, *RHSExp = Idx;
   2947 
   2948   if (getLangOptions().CPlusPlus &&
   2949       (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
   2950     return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
   2951                                                   Context.DependentTy,
   2952                                                   VK_LValue, OK_Ordinary,
   2953                                                   RLoc));
   2954   }
   2955 
   2956   if (getLangOptions().CPlusPlus &&
   2957       (LHSExp->getType()->isRecordType() ||
   2958        LHSExp->getType()->isEnumeralType() ||
   2959        RHSExp->getType()->isRecordType() ||
   2960        RHSExp->getType()->isEnumeralType())) {
   2961     return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
   2962   }
   2963 
   2964   return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
   2965 }
   2966 
   2967 
   2968 ExprResult
   2969 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   2970                                      Expr *Idx, SourceLocation RLoc) {
   2971   Expr *LHSExp = Base;
   2972   Expr *RHSExp = Idx;
   2973 
   2974   // Perform default conversions.
   2975   if (!LHSExp->getType()->getAs<VectorType>()) {
   2976     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   2977     if (Result.isInvalid())
   2978       return ExprError();
   2979     LHSExp = Result.take();
   2980   }
   2981   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   2982   if (Result.isInvalid())
   2983     return ExprError();
   2984   RHSExp = Result.take();
   2985 
   2986   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   2987   ExprValueKind VK = VK_LValue;
   2988   ExprObjectKind OK = OK_Ordinary;
   2989 
   2990   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   2991   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   2992   // in the subscript position. As a result, we need to derive the array base
   2993   // and index from the expression types.
   2994   Expr *BaseExpr, *IndexExpr;
   2995   QualType ResultType;
   2996   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   2997     BaseExpr = LHSExp;
   2998     IndexExpr = RHSExp;
   2999     ResultType = Context.DependentTy;
   3000   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3001     BaseExpr = LHSExp;
   3002     IndexExpr = RHSExp;
   3003     ResultType = PTy->getPointeeType();
   3004   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   3005      // Handle the uncommon case of "123[Ptr]".
   3006     BaseExpr = RHSExp;
   3007     IndexExpr = LHSExp;
   3008     ResultType = PTy->getPointeeType();
   3009   } else if (const ObjCObjectPointerType *PTy =
   3010                LHSTy->getAs<ObjCObjectPointerType>()) {
   3011     BaseExpr = LHSExp;
   3012     IndexExpr = RHSExp;
   3013     ResultType = PTy->getPointeeType();
   3014   } else if (const ObjCObjectPointerType *PTy =
   3015                RHSTy->getAs<ObjCObjectPointerType>()) {
   3016      // Handle the uncommon case of "123[Ptr]".
   3017     BaseExpr = RHSExp;
   3018     IndexExpr = LHSExp;
   3019     ResultType = PTy->getPointeeType();
   3020   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   3021     BaseExpr = LHSExp;    // vectors: V[123]
   3022     IndexExpr = RHSExp;
   3023     VK = LHSExp->getValueKind();
   3024     if (VK != VK_RValue)
   3025       OK = OK_VectorComponent;
   3026 
   3027     // FIXME: need to deal with const...
   3028     ResultType = VTy->getElementType();
   3029   } else if (LHSTy->isArrayType()) {
   3030     // If we see an array that wasn't promoted by
   3031     // DefaultFunctionArrayLvalueConversion, it must be an array that
   3032     // wasn't promoted because of the C90 rule that doesn't
   3033     // allow promoting non-lvalue arrays.  Warn, then
   3034     // force the promotion here.
   3035     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3036         LHSExp->getSourceRange();
   3037     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   3038                                CK_ArrayToPointerDecay).take();
   3039     LHSTy = LHSExp->getType();
   3040 
   3041     BaseExpr = LHSExp;
   3042     IndexExpr = RHSExp;
   3043     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   3044   } else if (RHSTy->isArrayType()) {
   3045     // Same as previous, except for 123[f().a] case
   3046     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3047         RHSExp->getSourceRange();
   3048     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   3049                                CK_ArrayToPointerDecay).take();
   3050     RHSTy = RHSExp->getType();
   3051 
   3052     BaseExpr = RHSExp;
   3053     IndexExpr = LHSExp;
   3054     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   3055   } else {
   3056     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   3057        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   3058   }
   3059   // C99 6.5.2.1p1
   3060   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   3061     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   3062                      << IndexExpr->getSourceRange());
   3063 
   3064   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3065        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   3066          && !IndexExpr->isTypeDependent())
   3067     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   3068 
   3069   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   3070   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   3071   // type. Note that Functions are not objects, and that (in C99 parlance)
   3072   // incomplete types are not object types.
   3073   if (ResultType->isFunctionType()) {
   3074     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   3075       << ResultType << BaseExpr->getSourceRange();
   3076     return ExprError();
   3077   }
   3078 
   3079   if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
   3080     // GNU extension: subscripting on pointer to void
   3081     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   3082       << BaseExpr->getSourceRange();
   3083 
   3084     // C forbids expressions of unqualified void type from being l-values.
   3085     // See IsCForbiddenLValueType.
   3086     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   3087   } else if (!ResultType->isDependentType() &&
   3088       RequireCompleteType(LLoc, ResultType,
   3089                           PDiag(diag::err_subscript_incomplete_type)
   3090                             << BaseExpr->getSourceRange()))
   3091     return ExprError();
   3092 
   3093   // Diagnose bad cases where we step over interface counts.
   3094   if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
   3095     Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3096       << ResultType << BaseExpr->getSourceRange();
   3097     return ExprError();
   3098   }
   3099 
   3100   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   3101          !ResultType.isCForbiddenLValueType());
   3102 
   3103   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
   3104                                                 ResultType, VK, OK, RLoc));
   3105 }
   3106 
   3107 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   3108                                         FunctionDecl *FD,
   3109                                         ParmVarDecl *Param) {
   3110   if (Param->hasUnparsedDefaultArg()) {
   3111     Diag(CallLoc,
   3112          diag::err_use_of_default_argument_to_function_declared_later) <<
   3113       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   3114     Diag(UnparsedDefaultArgLocs[Param],
   3115          diag::note_default_argument_declared_here);
   3116     return ExprError();
   3117   }
   3118 
   3119   if (Param->hasUninstantiatedDefaultArg()) {
   3120     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   3121 
   3122     // Instantiate the expression.
   3123     MultiLevelTemplateArgumentList ArgList
   3124       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
   3125 
   3126     std::pair<const TemplateArgument *, unsigned> Innermost
   3127       = ArgList.getInnermost();
   3128     InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
   3129                                Innermost.second);
   3130 
   3131     ExprResult Result;
   3132     {
   3133       // C++ [dcl.fct.default]p5:
   3134       //   The names in the [default argument] expression are bound, and
   3135       //   the semantic constraints are checked, at the point where the
   3136       //   default argument expression appears.
   3137       ContextRAII SavedContext(*this, FD);
   3138       Result = SubstExpr(UninstExpr, ArgList);
   3139     }
   3140     if (Result.isInvalid())
   3141       return ExprError();
   3142 
   3143     // Check the expression as an initializer for the parameter.
   3144     InitializedEntity Entity
   3145       = InitializedEntity::InitializeParameter(Context, Param);
   3146     InitializationKind Kind
   3147       = InitializationKind::CreateCopy(Param->getLocation(),
   3148              /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
   3149     Expr *ResultE = Result.takeAs<Expr>();
   3150 
   3151     InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
   3152     Result = InitSeq.Perform(*this, Entity, Kind,
   3153                              MultiExprArg(*this, &ResultE, 1));
   3154     if (Result.isInvalid())
   3155       return ExprError();
   3156 
   3157     // Build the default argument expression.
   3158     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
   3159                                            Result.takeAs<Expr>()));
   3160   }
   3161 
   3162   // If the default expression creates temporaries, we need to
   3163   // push them to the current stack of expression temporaries so they'll
   3164   // be properly destroyed.
   3165   // FIXME: We should really be rebuilding the default argument with new
   3166   // bound temporaries; see the comment in PR5810.
   3167   for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
   3168     CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
   3169     MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
   3170                     const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
   3171     ExprTemporaries.push_back(Temporary);
   3172     ExprNeedsCleanups = true;
   3173   }
   3174 
   3175   // We already type-checked the argument, so we know it works.
   3176   // Just mark all of the declarations in this potentially-evaluated expression
   3177   // as being "referenced".
   3178   MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
   3179   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
   3180 }
   3181 
   3182 /// ConvertArgumentsForCall - Converts the arguments specified in
   3183 /// Args/NumArgs to the parameter types of the function FDecl with
   3184 /// function prototype Proto. Call is the call expression itself, and
   3185 /// Fn is the function expression. For a C++ member function, this
   3186 /// routine does not attempt to convert the object argument. Returns
   3187 /// true if the call is ill-formed.
   3188 bool
   3189 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   3190                               FunctionDecl *FDecl,
   3191                               const FunctionProtoType *Proto,
   3192                               Expr **Args, unsigned NumArgs,
   3193                               SourceLocation RParenLoc) {
   3194   // Bail out early if calling a builtin with custom typechecking.
   3195   // We don't need to do this in the
   3196   if (FDecl)
   3197     if (unsigned ID = FDecl->getBuiltinID())
   3198       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   3199         return false;
   3200 
   3201   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   3202   // assignment, to the types of the corresponding parameter, ...
   3203   unsigned NumArgsInProto = Proto->getNumArgs();
   3204   bool Invalid = false;
   3205 
   3206   // If too few arguments are available (and we don't have default
   3207   // arguments for the remaining parameters), don't make the call.
   3208   if (NumArgs < NumArgsInProto) {
   3209     if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
   3210       return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
   3211         << Fn->getType()->isBlockPointerType()
   3212         << NumArgsInProto << NumArgs << Fn->getSourceRange();
   3213     Call->setNumArgs(Context, NumArgsInProto);
   3214   }
   3215 
   3216   // If too many are passed and not variadic, error on the extras and drop
   3217   // them.
   3218   if (NumArgs > NumArgsInProto) {
   3219     if (!Proto->isVariadic()) {
   3220       Diag(Args[NumArgsInProto]->getLocStart(),
   3221            diag::err_typecheck_call_too_many_args)
   3222         << Fn->getType()->isBlockPointerType()
   3223         << NumArgsInProto << NumArgs << Fn->getSourceRange()
   3224         << SourceRange(Args[NumArgsInProto]->getLocStart(),
   3225                        Args[NumArgs-1]->getLocEnd());
   3226 
   3227       // Emit the location of the prototype.
   3228       if (FDecl && !FDecl->getBuiltinID())
   3229         Diag(FDecl->getLocStart(),
   3230              diag::note_typecheck_call_too_many_args)
   3231              << FDecl;
   3232 
   3233       // This deletes the extra arguments.
   3234       Call->setNumArgs(Context, NumArgsInProto);
   3235       return true;
   3236     }
   3237   }
   3238   llvm::SmallVector<Expr *, 8> AllArgs;
   3239   VariadicCallType CallType =
   3240     Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   3241   if (Fn->getType()->isBlockPointerType())
   3242     CallType = VariadicBlock; // Block
   3243   else if (isa<MemberExpr>(Fn))
   3244     CallType = VariadicMethod;
   3245   Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
   3246                                    Proto, 0, Args, NumArgs, AllArgs, CallType);
   3247   if (Invalid)
   3248     return true;
   3249   unsigned TotalNumArgs = AllArgs.size();
   3250   for (unsigned i = 0; i < TotalNumArgs; ++i)
   3251     Call->setArg(i, AllArgs[i]);
   3252 
   3253   return false;
   3254 }
   3255 
   3256 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
   3257                                   FunctionDecl *FDecl,
   3258                                   const FunctionProtoType *Proto,
   3259                                   unsigned FirstProtoArg,
   3260                                   Expr **Args, unsigned NumArgs,
   3261                                   llvm::SmallVector<Expr *, 8> &AllArgs,
   3262                                   VariadicCallType CallType) {
   3263   unsigned NumArgsInProto = Proto->getNumArgs();
   3264   unsigned NumArgsToCheck = NumArgs;
   3265   bool Invalid = false;
   3266   if (NumArgs != NumArgsInProto)
   3267     // Use default arguments for missing arguments
   3268     NumArgsToCheck = NumArgsInProto;
   3269   unsigned ArgIx = 0;
   3270   // Continue to check argument types (even if we have too few/many args).
   3271   for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
   3272     QualType ProtoArgType = Proto->getArgType(i);
   3273 
   3274     Expr *Arg;
   3275     if (ArgIx < NumArgs) {
   3276       Arg = Args[ArgIx++];
   3277 
   3278       if (RequireCompleteType(Arg->getSourceRange().getBegin(),
   3279                               ProtoArgType,
   3280                               PDiag(diag::err_call_incomplete_argument)
   3281                               << Arg->getSourceRange()))
   3282         return true;
   3283 
   3284       // Pass the argument
   3285       ParmVarDecl *Param = 0;
   3286       if (FDecl && i < FDecl->getNumParams())
   3287         Param = FDecl->getParamDecl(i);
   3288 
   3289       InitializedEntity Entity =
   3290         Param? InitializedEntity::InitializeParameter(Context, Param)
   3291              : InitializedEntity::InitializeParameter(Context, ProtoArgType,
   3292                                                       Proto->isArgConsumed(i));
   3293       ExprResult ArgE = PerformCopyInitialization(Entity,
   3294                                                   SourceLocation(),
   3295                                                   Owned(Arg));
   3296       if (ArgE.isInvalid())
   3297         return true;
   3298 
   3299       Arg = ArgE.takeAs<Expr>();
   3300     } else {
   3301       ParmVarDecl *Param = FDecl->getParamDecl(i);
   3302 
   3303       ExprResult ArgExpr =
   3304         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   3305       if (ArgExpr.isInvalid())
   3306         return true;
   3307 
   3308       Arg = ArgExpr.takeAs<Expr>();
   3309     }
   3310     AllArgs.push_back(Arg);
   3311   }
   3312 
   3313   // If this is a variadic call, handle args passed through "...".
   3314   if (CallType != VariadicDoesNotApply) {
   3315 
   3316     // Assume that extern "C" functions with variadic arguments that
   3317     // return __unknown_anytype aren't *really* variadic.
   3318     if (Proto->getResultType() == Context.UnknownAnyTy &&
   3319         FDecl && FDecl->isExternC()) {
   3320       for (unsigned i = ArgIx; i != NumArgs; ++i) {
   3321         ExprResult arg;
   3322         if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
   3323           arg = DefaultFunctionArrayLvalueConversion(Args[i]);
   3324         else
   3325           arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
   3326         Invalid |= arg.isInvalid();
   3327         AllArgs.push_back(arg.take());
   3328       }
   3329 
   3330     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   3331     } else {
   3332       for (unsigned i = ArgIx; i != NumArgs; ++i) {
   3333         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
   3334         Invalid |= Arg.isInvalid();
   3335         AllArgs.push_back(Arg.take());
   3336       }
   3337     }
   3338   }
   3339   return Invalid;
   3340 }
   3341 
   3342 /// Given a function expression of unknown-any type, try to rebuild it
   3343 /// to have a function type.
   3344 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   3345 
   3346 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   3347 /// This provides the location of the left/right parens and a list of comma
   3348 /// locations.
   3349 ExprResult
   3350 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   3351                     MultiExprArg args, SourceLocation RParenLoc,
   3352                     Expr *ExecConfig) {
   3353   unsigned NumArgs = args.size();
   3354 
   3355   // Since this might be a postfix expression, get rid of ParenListExprs.
   3356   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   3357   if (Result.isInvalid()) return ExprError();
   3358   Fn = Result.take();
   3359 
   3360   Expr **Args = args.release();
   3361 
   3362   if (getLangOptions().CPlusPlus) {
   3363     // If this is a pseudo-destructor expression, build the call immediately.
   3364     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   3365       if (NumArgs > 0) {
   3366         // Pseudo-destructor calls should not have any arguments.
   3367         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   3368           << FixItHint::CreateRemoval(
   3369                                     SourceRange(Args[0]->getLocStart(),
   3370                                                 Args[NumArgs-1]->getLocEnd()));
   3371 
   3372         NumArgs = 0;
   3373       }
   3374 
   3375       return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
   3376                                           VK_RValue, RParenLoc));
   3377     }
   3378 
   3379     // Determine whether this is a dependent call inside a C++ template,
   3380     // in which case we won't do any semantic analysis now.
   3381     // FIXME: Will need to cache the results of name lookup (including ADL) in
   3382     // Fn.
   3383     bool Dependent = false;
   3384     if (Fn->isTypeDependent())
   3385       Dependent = true;
   3386     else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
   3387       Dependent = true;
   3388 
   3389     if (Dependent) {
   3390       if (ExecConfig) {
   3391         return Owned(new (Context) CUDAKernelCallExpr(
   3392             Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
   3393             Context.DependentTy, VK_RValue, RParenLoc));
   3394       } else {
   3395         return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
   3396                                             Context.DependentTy, VK_RValue,
   3397                                             RParenLoc));
   3398       }
   3399     }
   3400 
   3401     // Determine whether this is a call to an object (C++ [over.call.object]).
   3402     if (Fn->getType()->isRecordType())
   3403       return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
   3404                                                 RParenLoc));
   3405 
   3406     if (Fn->getType() == Context.UnknownAnyTy) {
   3407       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   3408       if (result.isInvalid()) return ExprError();
   3409       Fn = result.take();
   3410     }
   3411 
   3412     if (Fn->getType() == Context.BoundMemberTy) {
   3413       return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
   3414                                        RParenLoc);
   3415     }
   3416   }
   3417 
   3418   // Check for overloaded calls.  This can happen even in C due to extensions.
   3419   if (Fn->getType() == Context.OverloadTy) {
   3420     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   3421 
   3422     // We aren't supposed to apply this logic if there's an '&' involved.
   3423     if (!find.IsAddressOfOperand) {
   3424       OverloadExpr *ovl = find.Expression;
   3425       if (isa<UnresolvedLookupExpr>(ovl)) {
   3426         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   3427         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
   3428                                        RParenLoc, ExecConfig);
   3429       } else {
   3430         return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
   3431                                          RParenLoc);
   3432       }
   3433     }
   3434   }
   3435 
   3436   // If we're directly calling a function, get the appropriate declaration.
   3437 
   3438   Expr *NakedFn = Fn->IgnoreParens();
   3439 
   3440   NamedDecl *NDecl = 0;
   3441   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   3442     if (UnOp->getOpcode() == UO_AddrOf)
   3443       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   3444 
   3445   if (isa<DeclRefExpr>(NakedFn))
   3446     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   3447   else if (isa<MemberExpr>(NakedFn))
   3448     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   3449 
   3450   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
   3451                                ExecConfig);
   3452 }
   3453 
   3454 ExprResult
   3455 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
   3456                               MultiExprArg execConfig, SourceLocation GGGLoc) {
   3457   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
   3458   if (!ConfigDecl)
   3459     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
   3460                           << "cudaConfigureCall");
   3461   QualType ConfigQTy = ConfigDecl->getType();
   3462 
   3463   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
   3464       ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
   3465 
   3466   return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
   3467 }
   3468 
   3469 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   3470 ///
   3471 /// __builtin_astype( value, dst type )
   3472 ///
   3473 ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
   3474                                  SourceLocation BuiltinLoc,
   3475                                  SourceLocation RParenLoc) {
   3476   ExprValueKind VK = VK_RValue;
   3477   ExprObjectKind OK = OK_Ordinary;
   3478   QualType DstTy = GetTypeFromParser(destty);
   3479   QualType SrcTy = expr->getType();
   3480   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   3481     return ExprError(Diag(BuiltinLoc,
   3482                           diag::err_invalid_astype_of_different_size)
   3483                      << DstTy
   3484                      << SrcTy
   3485                      << expr->getSourceRange());
   3486   return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc, RParenLoc));
   3487 }
   3488 
   3489 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   3490 /// i.e. an expression not of \p OverloadTy.  The expression should
   3491 /// unary-convert to an expression of function-pointer or
   3492 /// block-pointer type.
   3493 ///
   3494 /// \param NDecl the declaration being called, if available
   3495 ExprResult
   3496 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   3497                             SourceLocation LParenLoc,
   3498                             Expr **Args, unsigned NumArgs,
   3499                             SourceLocation RParenLoc,
   3500                             Expr *Config) {
   3501   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   3502 
   3503   // Promote the function operand.
   3504   ExprResult Result = UsualUnaryConversions(Fn);
   3505   if (Result.isInvalid())
   3506     return ExprError();
   3507   Fn = Result.take();
   3508 
   3509   // Make the call expr early, before semantic checks.  This guarantees cleanup
   3510   // of arguments and function on error.
   3511   CallExpr *TheCall;
   3512   if (Config) {
   3513     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   3514                                                cast<CallExpr>(Config),
   3515                                                Args, NumArgs,
   3516                                                Context.BoolTy,
   3517                                                VK_RValue,
   3518                                                RParenLoc);
   3519   } else {
   3520     TheCall = new (Context) CallExpr(Context, Fn,
   3521                                      Args, NumArgs,
   3522                                      Context.BoolTy,
   3523                                      VK_RValue,
   3524                                      RParenLoc);
   3525   }
   3526 
   3527   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   3528 
   3529   // Bail out early if calling a builtin with custom typechecking.
   3530   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   3531     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   3532 
   3533  retry:
   3534   const FunctionType *FuncT;
   3535   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   3536     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   3537     // have type pointer to function".
   3538     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   3539     if (FuncT == 0)
   3540       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   3541                          << Fn->getType() << Fn->getSourceRange());
   3542   } else if (const BlockPointerType *BPT =
   3543                Fn->getType()->getAs<BlockPointerType>()) {
   3544     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   3545   } else {
   3546     // Handle calls to expressions of unknown-any type.
   3547     if (Fn->getType() == Context.UnknownAnyTy) {
   3548       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   3549       if (rewrite.isInvalid()) return ExprError();
   3550       Fn = rewrite.take();
   3551       TheCall->setCallee(Fn);
   3552       goto retry;
   3553     }
   3554 
   3555     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   3556       << Fn->getType() << Fn->getSourceRange());
   3557   }
   3558 
   3559   if (getLangOptions().CUDA) {
   3560     if (Config) {
   3561       // CUDA: Kernel calls must be to global functions
   3562       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   3563         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   3564             << FDecl->getName() << Fn->getSourceRange());
   3565 
   3566       // CUDA: Kernel function must have 'void' return type
   3567       if (!FuncT->getResultType()->isVoidType())
   3568         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   3569             << Fn->getType() << Fn->getSourceRange());
   3570     }
   3571   }
   3572 
   3573   // Check for a valid return type
   3574   if (CheckCallReturnType(FuncT->getResultType(),
   3575                           Fn->getSourceRange().getBegin(), TheCall,
   3576                           FDecl))
   3577     return ExprError();
   3578 
   3579   // We know the result type of the call, set it.
   3580   TheCall->setType(FuncT->getCallResultType(Context));
   3581   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
   3582 
   3583   if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
   3584     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
   3585                                 RParenLoc))
   3586       return ExprError();
   3587   } else {
   3588     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   3589 
   3590     if (FDecl) {
   3591       // Check if we have too few/too many template arguments, based
   3592       // on our knowledge of the function definition.
   3593       const FunctionDecl *Def = 0;
   3594       if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
   3595         const FunctionProtoType *Proto
   3596           = Def->getType()->getAs<FunctionProtoType>();
   3597         if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
   3598           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   3599             << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
   3600       }
   3601 
   3602       // If the function we're calling isn't a function prototype, but we have
   3603       // a function prototype from a prior declaratiom, use that prototype.
   3604       if (!FDecl->hasPrototype())
   3605         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   3606     }
   3607 
   3608     // Promote the arguments (C99 6.5.2.2p6).
   3609     for (unsigned i = 0; i != NumArgs; i++) {
   3610       Expr *Arg = Args[i];
   3611 
   3612       if (Proto && i < Proto->getNumArgs()) {
   3613         InitializedEntity Entity
   3614           = InitializedEntity::InitializeParameter(Context,
   3615                                                    Proto->getArgType(i),
   3616                                                    Proto->isArgConsumed(i));
   3617         ExprResult ArgE = PerformCopyInitialization(Entity,
   3618                                                     SourceLocation(),
   3619                                                     Owned(Arg));
   3620         if (ArgE.isInvalid())
   3621           return true;
   3622 
   3623         Arg = ArgE.takeAs<Expr>();
   3624 
   3625       } else {
   3626         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   3627 
   3628         if (ArgE.isInvalid())
   3629           return true;
   3630 
   3631         Arg = ArgE.takeAs<Expr>();
   3632       }
   3633 
   3634       if (RequireCompleteType(Arg->getSourceRange().getBegin(),
   3635                               Arg->getType(),
   3636                               PDiag(diag::err_call_incomplete_argument)
   3637                                 << Arg->getSourceRange()))
   3638         return ExprError();
   3639 
   3640       TheCall->setArg(i, Arg);
   3641     }
   3642   }
   3643 
   3644   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   3645     if (!Method->isStatic())
   3646       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   3647         << Fn->getSourceRange());
   3648 
   3649   // Check for sentinels
   3650   if (NDecl)
   3651     DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
   3652 
   3653   // Do special checking on direct calls to functions.
   3654   if (FDecl) {
   3655     if (CheckFunctionCall(FDecl, TheCall))
   3656       return ExprError();
   3657 
   3658     if (BuiltinID)
   3659       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   3660   } else if (NDecl) {
   3661     if (CheckBlockCall(NDecl, TheCall))
   3662       return ExprError();
   3663   }
   3664 
   3665   return MaybeBindToTemporary(TheCall);
   3666 }
   3667 
   3668 ExprResult
   3669 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   3670                            SourceLocation RParenLoc, Expr *InitExpr) {
   3671   assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
   3672   // FIXME: put back this assert when initializers are worked out.
   3673   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
   3674 
   3675   TypeSourceInfo *TInfo;
   3676   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   3677   if (!TInfo)
   3678     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   3679 
   3680   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   3681 }
   3682 
   3683 ExprResult
   3684 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   3685                                SourceLocation RParenLoc, Expr *literalExpr) {
   3686   QualType literalType = TInfo->getType();
   3687 
   3688   if (literalType->isArrayType()) {
   3689     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   3690              PDiag(diag::err_illegal_decl_array_incomplete_type)
   3691                << SourceRange(LParenLoc,
   3692                               literalExpr->getSourceRange().getEnd())))
   3693       return ExprError();
   3694     if (literalType->isVariableArrayType())
   3695       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   3696         << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
   3697   } else if (!literalType->isDependentType() &&
   3698              RequireCompleteType(LParenLoc, literalType,
   3699                       PDiag(diag::err_typecheck_decl_incomplete_type)
   3700                         << SourceRange(LParenLoc,
   3701                                        literalExpr->getSourceRange().getEnd())))
   3702     return ExprError();
   3703 
   3704   InitializedEntity Entity
   3705     = InitializedEntity::InitializeTemporary(literalType);
   3706   InitializationKind Kind
   3707     = InitializationKind::CreateCStyleCast(LParenLoc,
   3708                                            SourceRange(LParenLoc, RParenLoc));
   3709   InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
   3710   ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   3711                                        MultiExprArg(*this, &literalExpr, 1),
   3712                                             &literalType);
   3713   if (Result.isInvalid())
   3714     return ExprError();
   3715   literalExpr = Result.get();
   3716 
   3717   bool isFileScope = getCurFunctionOrMethodDecl() == 0;
   3718   if (isFileScope) { // 6.5.2.5p3
   3719     if (CheckForConstantInitializer(literalExpr, literalType))
   3720       return ExprError();
   3721   }
   3722 
   3723   // In C, compound literals are l-values for some reason.
   3724   ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
   3725 
   3726   return MaybeBindToTemporary(
   3727            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   3728                                              VK, literalExpr, isFileScope));
   3729 }
   3730 
   3731 ExprResult
   3732 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
   3733                     SourceLocation RBraceLoc) {
   3734   unsigned NumInit = initlist.size();
   3735   Expr **InitList = initlist.release();
   3736 
   3737   // Semantic analysis for initializers is done by ActOnDeclarator() and
   3738   // CheckInitializer() - it requires knowledge of the object being intialized.
   3739 
   3740   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
   3741                                                NumInit, RBraceLoc);
   3742   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   3743   return Owned(E);
   3744 }
   3745 
   3746 /// Prepares for a scalar cast, performing all the necessary stages
   3747 /// except the final cast and returning the kind required.
   3748 static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
   3749   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   3750   // Also, callers should have filtered out the invalid cases with
   3751   // pointers.  Everything else should be possible.
   3752 
   3753   QualType SrcTy = Src.get()->getType();
   3754   if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
   3755     return CK_NoOp;
   3756 
   3757   switch (SrcTy->getScalarTypeKind()) {
   3758   case Type::STK_MemberPointer:
   3759     llvm_unreachable("member pointer type in C");
   3760 
   3761   case Type::STK_Pointer:
   3762     switch (DestTy->getScalarTypeKind()) {
   3763     case Type::STK_Pointer:
   3764       return DestTy->isObjCObjectPointerType() ?
   3765                 CK_AnyPointerToObjCPointerCast :
   3766                 CK_BitCast;
   3767     case Type::STK_Bool:
   3768       return CK_PointerToBoolean;
   3769     case Type::STK_Integral:
   3770       return CK_PointerToIntegral;
   3771     case Type::STK_Floating:
   3772     case Type::STK_FloatingComplex:
   3773     case Type::STK_IntegralComplex:
   3774     case Type::STK_MemberPointer:
   3775       llvm_unreachable("illegal cast from pointer");
   3776     }
   3777     break;
   3778 
   3779   case Type::STK_Bool: // casting from bool is like casting from an integer
   3780   case Type::STK_Integral:
   3781     switch (DestTy->getScalarTypeKind()) {
   3782     case Type::STK_Pointer:
   3783       if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
   3784         return CK_NullToPointer;
   3785       return CK_IntegralToPointer;
   3786     case Type::STK_Bool:
   3787       return CK_IntegralToBoolean;
   3788     case Type::STK_Integral:
   3789       return CK_IntegralCast;
   3790     case Type::STK_Floating:
   3791       return CK_IntegralToFloating;
   3792     case Type::STK_IntegralComplex:
   3793       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
   3794                                 CK_IntegralCast);
   3795       return CK_IntegralRealToComplex;
   3796     case Type::STK_FloatingComplex:
   3797       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
   3798                                 CK_IntegralToFloating);
   3799       return CK_FloatingRealToComplex;
   3800     case Type::STK_MemberPointer:
   3801       llvm_unreachable("member pointer type in C");
   3802     }
   3803     break;
   3804 
   3805   case Type::STK_Floating:
   3806     switch (DestTy->getScalarTypeKind()) {
   3807     case Type::STK_Floating:
   3808       return CK_FloatingCast;
   3809     case Type::STK_Bool:
   3810       return CK_FloatingToBoolean;
   3811     case Type::STK_Integral:
   3812       return CK_FloatingToIntegral;
   3813     case Type::STK_FloatingComplex:
   3814       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
   3815                                 CK_FloatingCast);
   3816       return CK_FloatingRealToComplex;
   3817     case Type::STK_IntegralComplex:
   3818       Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
   3819                                 CK_FloatingToIntegral);
   3820       return CK_IntegralRealToComplex;
   3821     case Type::STK_Pointer:
   3822       llvm_unreachable("valid float->pointer cast?");
   3823     case Type::STK_MemberPointer:
   3824       llvm_unreachable("member pointer type in C");
   3825     }
   3826     break;
   3827 
   3828   case Type::STK_FloatingComplex:
   3829     switch (DestTy->getScalarTypeKind()) {
   3830     case Type::STK_FloatingComplex:
   3831       return CK_FloatingComplexCast;
   3832     case Type::STK_IntegralComplex:
   3833       return CK_FloatingComplexToIntegralComplex;
   3834     case Type::STK_Floating: {
   3835       QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
   3836       if (S.Context.hasSameType(ET, DestTy))
   3837         return CK_FloatingComplexToReal;
   3838       Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
   3839       return CK_FloatingCast;
   3840     }
   3841     case Type::STK_Bool:
   3842       return CK_FloatingComplexToBoolean;
   3843     case Type::STK_Integral:
   3844       Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
   3845                                 CK_FloatingComplexToReal);
   3846       return CK_FloatingToIntegral;
   3847     case Type::STK_Pointer:
   3848       llvm_unreachable("valid complex float->pointer cast?");
   3849     case Type::STK_MemberPointer:
   3850       llvm_unreachable("member pointer type in C");
   3851     }
   3852     break;
   3853 
   3854   case Type::STK_IntegralComplex:
   3855     switch (DestTy->getScalarTypeKind()) {
   3856     case Type::STK_FloatingComplex:
   3857       return CK_IntegralComplexToFloatingComplex;
   3858     case Type::STK_IntegralComplex:
   3859       return CK_IntegralComplexCast;
   3860     case Type::STK_Integral: {
   3861       QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
   3862       if (S.Context.hasSameType(ET, DestTy))
   3863         return CK_IntegralComplexToReal;
   3864       Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
   3865       return CK_IntegralCast;
   3866     }
   3867     case Type::STK_Bool:
   3868       return CK_IntegralComplexToBoolean;
   3869     case Type::STK_Floating:
   3870       Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
   3871                                 CK_IntegralComplexToReal);
   3872       return CK_IntegralToFloating;
   3873     case Type::STK_Pointer:
   3874       llvm_unreachable("valid complex int->pointer cast?");
   3875     case Type::STK_MemberPointer:
   3876       llvm_unreachable("member pointer type in C");
   3877     }
   3878     break;
   3879   }
   3880 
   3881   llvm_unreachable("Unhandled scalar cast");
   3882   return CK_BitCast;
   3883 }
   3884 
   3885 /// CheckCastTypes - Check type constraints for casting between types.
   3886 ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR,
   3887                                 QualType castType, Expr *castExpr,
   3888                                 CastKind& Kind, ExprValueKind &VK,
   3889                                 CXXCastPath &BasePath, bool FunctionalStyle) {
   3890   if (castExpr->getType() == Context.UnknownAnyTy)
   3891     return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
   3892 
   3893   if (getLangOptions().CPlusPlus)
   3894     return CXXCheckCStyleCast(SourceRange(CastStartLoc,
   3895                                           castExpr->getLocEnd()),
   3896                               castType, VK, castExpr, Kind, BasePath,
   3897                               FunctionalStyle);
   3898 
   3899   assert(!castExpr->getType()->isPlaceholderType());
   3900 
   3901   // We only support r-value casts in C.
   3902   VK = VK_RValue;
   3903 
   3904   // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
   3905   // type needs to be scalar.
   3906   if (castType->isVoidType()) {
   3907     // We don't necessarily do lvalue-to-rvalue conversions on this.
   3908     ExprResult castExprRes = IgnoredValueConversions(castExpr);
   3909     if (castExprRes.isInvalid())
   3910       return ExprError();
   3911     castExpr = castExprRes.take();
   3912 
   3913     // Cast to void allows any expr type.
   3914     Kind = CK_ToVoid;
   3915     return Owned(castExpr);
   3916   }
   3917 
   3918   ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
   3919   if (castExprRes.isInvalid())
   3920     return ExprError();
   3921   castExpr = castExprRes.take();
   3922 
   3923   if (RequireCompleteType(TyR.getBegin(), castType,
   3924                           diag::err_typecheck_cast_to_incomplete))
   3925     return ExprError();
   3926 
   3927   if (!castType->isScalarType() && !castType->isVectorType()) {
   3928     if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
   3929         (castType->isStructureType() || castType->isUnionType())) {
   3930       // GCC struct/union extension: allow cast to self.
   3931       // FIXME: Check that the cast destination type is complete.
   3932       Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
   3933         << castType << castExpr->getSourceRange();
   3934       Kind = CK_NoOp;
   3935       return Owned(castExpr);
   3936     }
   3937 
   3938     if (castType->isUnionType()) {
   3939       // GCC cast to union extension
   3940       RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
   3941       RecordDecl::field_iterator Field, FieldEnd;
   3942       for (Field = RD->field_begin(), FieldEnd = RD->field_end();
   3943            Field != FieldEnd; ++Field) {
   3944         if (Context.hasSameUnqualifiedType(Field->getType(),
   3945                                            castExpr->getType()) &&
   3946             !Field->isUnnamedBitfield()) {
   3947           Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
   3948             << castExpr->getSourceRange();
   3949           break;
   3950         }
   3951       }
   3952       if (Field == FieldEnd) {
   3953         Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
   3954           << castExpr->getType() << castExpr->getSourceRange();
   3955         return ExprError();
   3956       }
   3957       Kind = CK_ToUnion;
   3958       return Owned(castExpr);
   3959     }
   3960 
   3961     // Reject any other conversions to non-scalar types.
   3962     Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
   3963       << castType << castExpr->getSourceRange();
   3964     return ExprError();
   3965   }
   3966 
   3967   // The type we're casting to is known to be a scalar or vector.
   3968 
   3969   // Require the operand to be a scalar or vector.
   3970   if (!castExpr->getType()->isScalarType() &&
   3971       !castExpr->getType()->isVectorType()) {
   3972     Diag(castExpr->getLocStart(),
   3973                 diag::err_typecheck_expect_scalar_operand)
   3974       << castExpr->getType() << castExpr->getSourceRange();
   3975     return ExprError();
   3976   }
   3977 
   3978   if (castType->isExtVectorType())
   3979     return CheckExtVectorCast(TyR, castType, castExpr, Kind);
   3980 
   3981   if (castType->isVectorType()) {
   3982     if (castType->getAs<VectorType>()->getVectorKind() ==
   3983         VectorType::AltiVecVector &&
   3984           (castExpr->getType()->isIntegerType() ||
   3985            castExpr->getType()->isFloatingType())) {
   3986       Kind = CK_VectorSplat;
   3987       return Owned(castExpr);
   3988     } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
   3989       return ExprError();
   3990     } else
   3991       return Owned(castExpr);
   3992   }
   3993   if (castExpr->getType()->isVectorType()) {
   3994     if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
   3995       return ExprError();
   3996     else
   3997       return Owned(castExpr);
   3998   }
   3999 
   4000   // The source and target types are both scalars, i.e.
   4001   //   - arithmetic types (fundamental, enum, and complex)
   4002   //   - all kinds of pointers
   4003   // Note that member pointers were filtered out with C++, above.
   4004 
   4005   if (isa<ObjCSelectorExpr>(castExpr)) {
   4006     Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
   4007     return ExprError();
   4008   }
   4009 
   4010   // If either type is a pointer, the other type has to be either an
   4011   // integer or a pointer.
   4012   QualType castExprType = castExpr->getType();
   4013   if (!castType->isArithmeticType()) {
   4014     if (!castExprType->isIntegralType(Context) &&
   4015         castExprType->isArithmeticType()) {
   4016       Diag(castExpr->getLocStart(),
   4017            diag::err_cast_pointer_from_non_pointer_int)
   4018         << castExprType << castExpr->getSourceRange();
   4019       return ExprError();
   4020     }
   4021   } else if (!castExpr->getType()->isArithmeticType()) {
   4022     if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
   4023       Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
   4024         << castType << castExpr->getSourceRange();
   4025       return ExprError();
   4026     }
   4027   }
   4028 
   4029   if (getLangOptions().ObjCAutoRefCount) {
   4030     // Diagnose problems with Objective-C casts involving lifetime qualifiers.
   4031     CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()),
   4032                            castType, castExpr, CCK_CStyleCast);
   4033 
   4034     if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
   4035       if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
   4036         Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
   4037         Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
   4038         if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
   4039             ExprPtr->getPointeeType()->isObjCLifetimeType() &&
   4040             !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
   4041           Diag(castExpr->getLocStart(),
   4042                diag::err_typecheck_incompatible_ownership)
   4043             << castExprType << castType << AA_Casting
   4044             << castExpr->getSourceRange();
   4045 
   4046           return ExprError();
   4047         }
   4048       }
   4049     }
   4050     else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
   4051            Diag(castExpr->getLocStart(),
   4052                 diag::err_arc_convesion_of_weak_unavailable) << 1
   4053                 << castExprType << castType
   4054                 << castExpr->getSourceRange();
   4055           return ExprError();
   4056     }
   4057   }
   4058 
   4059   castExprRes = Owned(castExpr);
   4060   Kind = PrepareScalarCast(*this, castExprRes, castType);
   4061   if (castExprRes.isInvalid())
   4062     return ExprError();
   4063   castExpr = castExprRes.take();
   4064 
   4065   if (Kind == CK_BitCast)
   4066     CheckCastAlign(castExpr, castType, TyR);
   4067 
   4068   return Owned(castExpr);
   4069 }
   4070 
   4071 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   4072                            CastKind &Kind) {
   4073   assert(VectorTy->isVectorType() && "Not a vector type!");
   4074 
   4075   if (Ty->isVectorType() || Ty->isIntegerType()) {
   4076     if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
   4077       return Diag(R.getBegin(),
   4078                   Ty->isVectorType() ?
   4079                   diag::err_invalid_conversion_between_vectors :
   4080                   diag::err_invalid_conversion_between_vector_and_integer)
   4081         << VectorTy << Ty << R;
   4082   } else
   4083     return Diag(R.getBegin(),
   4084                 diag::err_invalid_conversion_between_vector_and_scalar)
   4085       << VectorTy << Ty << R;
   4086 
   4087   Kind = CK_BitCast;
   4088   return false;
   4089 }
   4090 
   4091 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   4092                                     Expr *CastExpr, CastKind &Kind) {
   4093   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   4094 
   4095   QualType SrcTy = CastExpr->getType();
   4096 
   4097   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   4098   // an ExtVectorType.
   4099   if (SrcTy->isVectorType()) {
   4100     if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
   4101       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   4102         << DestTy << SrcTy << R;
   4103       return ExprError();
   4104     }
   4105     Kind = CK_BitCast;
   4106     return Owned(CastExpr);
   4107   }
   4108 
   4109   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   4110   // conversion will take place first from scalar to elt type, and then
   4111   // splat from elt type to vector.
   4112   if (SrcTy->isPointerType())
   4113     return Diag(R.getBegin(),
   4114                 diag::err_invalid_conversion_between_vector_and_scalar)
   4115       << DestTy << SrcTy << R;
   4116 
   4117   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   4118   ExprResult CastExprRes = Owned(CastExpr);
   4119   CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
   4120   if (CastExprRes.isInvalid())
   4121     return ExprError();
   4122   CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
   4123 
   4124   Kind = CK_VectorSplat;
   4125   return Owned(CastExpr);
   4126 }
   4127 
   4128 ExprResult
   4129 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   4130                     Declarator &D, ParsedType &Ty,
   4131                     SourceLocation RParenLoc, Expr *castExpr) {
   4132   assert(!D.isInvalidType() && (castExpr != 0) &&
   4133          "ActOnCastExpr(): missing type or expr");
   4134 
   4135   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
   4136   if (D.isInvalidType())
   4137     return ExprError();
   4138 
   4139   if (getLangOptions().CPlusPlus) {
   4140     // Check that there are no default arguments (C++ only).
   4141     CheckExtraCXXDefaultArguments(D);
   4142   }
   4143 
   4144   QualType castType = castTInfo->getType();
   4145   Ty = CreateParsedType(castType, castTInfo);
   4146 
   4147   bool isVectorLiteral = false;
   4148 
   4149   // Check for an altivec or OpenCL literal,
   4150   // i.e. all the elements are integer constants.
   4151   ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
   4152   ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
   4153   if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
   4154     if (PLE && PLE->getNumExprs() == 0) {
   4155       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   4156       return ExprError();
   4157     }
   4158     if (PE || PLE->getNumExprs() == 1) {
   4159       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   4160       if (!E->getType()->isVectorType())
   4161         isVectorLiteral = true;
   4162     }
   4163     else
   4164       isVectorLiteral = true;
   4165   }
   4166 
   4167   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   4168   // then handle it as such.
   4169   if (isVectorLiteral)
   4170     return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
   4171 
   4172   // If the Expr being casted is a ParenListExpr, handle it specially.
   4173   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   4174   // sequence of BinOp comma operators.
   4175   if (isa<ParenListExpr>(castExpr)) {
   4176     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
   4177     if (Result.isInvalid()) return ExprError();
   4178     castExpr = Result.take();
   4179   }
   4180 
   4181   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
   4182 }
   4183 
   4184 ExprResult
   4185 Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
   4186                           SourceLocation RParenLoc, Expr *castExpr) {
   4187   CastKind Kind = CK_Invalid;
   4188   ExprValueKind VK = VK_RValue;
   4189   CXXCastPath BasePath;
   4190   ExprResult CastResult =
   4191     CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(),
   4192                    castExpr, Kind, VK, BasePath);
   4193   if (CastResult.isInvalid())
   4194     return ExprError();
   4195   castExpr = CastResult.take();
   4196 
   4197   return Owned(CStyleCastExpr::Create(Context,
   4198                                       Ty->getType().getNonLValueExprType(Context),
   4199                                       VK, Kind, castExpr, &BasePath, Ty,
   4200                                       LParenLoc, RParenLoc));
   4201 }
   4202 
   4203 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   4204                                     SourceLocation RParenLoc, Expr *E,
   4205                                     TypeSourceInfo *TInfo) {
   4206   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   4207          "Expected paren or paren list expression");
   4208 
   4209   Expr **exprs;
   4210   unsigned numExprs;
   4211   Expr *subExpr;
   4212   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   4213     exprs = PE->getExprs();
   4214     numExprs = PE->getNumExprs();
   4215   } else {
   4216     subExpr = cast<ParenExpr>(E)->getSubExpr();
   4217     exprs = &subExpr;
   4218     numExprs = 1;
   4219   }
   4220 
   4221   QualType Ty = TInfo->getType();
   4222   assert(Ty->isVectorType() && "Expected vector type");
   4223 
   4224   llvm::SmallVector<Expr *, 8> initExprs;
   4225   const VectorType *VTy = Ty->getAs<VectorType>();
   4226   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   4227 
   4228   // '(...)' form of vector initialization in AltiVec: the number of
   4229   // initializers must be one or must match the size of the vector.
   4230   // If a single value is specified in the initializer then it will be
   4231   // replicated to all the components of the vector
   4232   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   4233     // The number of initializers must be one or must match the size of the
   4234     // vector. If a single value is specified in the initializer then it will
   4235     // be replicated to all the components of the vector
   4236     if (numExprs == 1) {
   4237       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   4238       ExprResult Literal = Owned(exprs[0]);
   4239       Literal = ImpCastExprToType(Literal.take(), ElemTy,
   4240                                   PrepareScalarCast(*this, Literal, ElemTy));
   4241       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
   4242     }
   4243     else if (numExprs < numElems) {
   4244       Diag(E->getExprLoc(),
   4245            diag::err_incorrect_number_of_vector_initializers);
   4246       return ExprError();
   4247     }
   4248     else
   4249       for (unsigned i = 0, e = numExprs; i != e; ++i)
   4250         initExprs.push_back(exprs[i]);
   4251   }
   4252   else {
   4253     // For OpenCL, when the number of initializers is a single value,
   4254     // it will be replicated to all components of the vector.
   4255     if (getLangOptions().OpenCL &&
   4256         VTy->getVectorKind() == VectorType::GenericVector &&
   4257         numExprs == 1) {
   4258         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   4259         ExprResult Literal = Owned(exprs[0]);
   4260         Literal = ImpCastExprToType(Literal.take(), ElemTy,
   4261                                     PrepareScalarCast(*this, Literal, ElemTy));
   4262         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
   4263     }
   4264 
   4265     for (unsigned i = 0, e = numExprs; i != e; ++i)
   4266       initExprs.push_back(exprs[i]);
   4267   }
   4268   // FIXME: This means that pretty-printing the final AST will produce curly
   4269   // braces instead of the original commas.
   4270   InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
   4271                                                    &initExprs[0],
   4272                                                    initExprs.size(), RParenLoc);
   4273   initE->setType(Ty);
   4274   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   4275 }
   4276 
   4277 /// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
   4278 /// of comma binary operators.
   4279 ExprResult
   4280 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
   4281   ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
   4282   if (!E)
   4283     return Owned(expr);
   4284 
   4285   ExprResult Result(E->getExpr(0));
   4286 
   4287   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   4288     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   4289                         E->getExpr(i));
   4290 
   4291   if (Result.isInvalid()) return ExprError();
   4292 
   4293   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   4294 }
   4295 
   4296 ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
   4297                                                   SourceLocation R,
   4298                                                   MultiExprArg Val) {
   4299   unsigned nexprs = Val.size();
   4300   Expr **exprs = reinterpret_cast<Expr**>(Val.release());
   4301   assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
   4302   Expr *expr;
   4303   if (nexprs == 1)
   4304     expr = new (Context) ParenExpr(L, R, exprs[0]);
   4305   else
   4306     expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
   4307                                        exprs[nexprs-1]->getType());
   4308   return Owned(expr);
   4309 }
   4310 
   4311 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   4312 /// constant and the other is not a pointer.
   4313 bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
   4314                                       SourceLocation QuestionLoc) {
   4315   Expr *NullExpr = LHS;
   4316   Expr *NonPointerExpr = RHS;
   4317   Expr::NullPointerConstantKind NullKind =
   4318       NullExpr->isNullPointerConstant(Context,
   4319                                       Expr::NPC_ValueDependentIsNotNull);
   4320 
   4321   if (NullKind == Expr::NPCK_NotNull) {
   4322     NullExpr = RHS;
   4323     NonPointerExpr = LHS;
   4324     NullKind =
   4325         NullExpr->isNullPointerConstant(Context,
   4326                                         Expr::NPC_ValueDependentIsNotNull);
   4327   }
   4328 
   4329   if (NullKind == Expr::NPCK_NotNull)
   4330     return false;
   4331 
   4332   if (NullKind == Expr::NPCK_ZeroInteger) {
   4333     // In this case, check to make sure that we got here from a "NULL"
   4334     // string in the source code.
   4335     NullExpr = NullExpr->IgnoreParenImpCasts();
   4336     SourceLocation loc = NullExpr->getExprLoc();
   4337     if (!findMacroSpelling(loc, "NULL"))
   4338       return false;
   4339   }
   4340 
   4341   int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
   4342   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   4343       << NonPointerExpr->getType() << DiagType
   4344       << NonPointerExpr->getSourceRange();
   4345   return true;
   4346 }
   4347 
   4348 /// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
   4349 /// In that case, lhs = cond.
   4350 /// C99 6.5.15
   4351 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
   4352                                         ExprValueKind &VK, ExprObjectKind &OK,
   4353                                         SourceLocation QuestionLoc) {
   4354 
   4355   ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
   4356   if (!lhsResult.isUsable()) return QualType();
   4357   LHS = move(lhsResult);
   4358 
   4359   ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
   4360   if (!rhsResult.isUsable()) return QualType();
   4361   RHS = move(rhsResult);
   4362 
   4363   // C++ is sufficiently different to merit its own checker.
   4364   if (getLangOptions().CPlusPlus)
   4365     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   4366 
   4367   VK = VK_RValue;
   4368   OK = OK_Ordinary;
   4369 
   4370   Cond = UsualUnaryConversions(Cond.take());
   4371   if (Cond.isInvalid())
   4372     return QualType();
   4373   LHS = UsualUnaryConversions(LHS.take());
   4374   if (LHS.isInvalid())
   4375     return QualType();
   4376   RHS = UsualUnaryConversions(RHS.take());
   4377   if (RHS.isInvalid())
   4378     return QualType();
   4379 
   4380   QualType CondTy = Cond.get()->getType();
   4381   QualType LHSTy = LHS.get()->getType();
   4382   QualType RHSTy = RHS.get()->getType();
   4383 
   4384   // first, check the condition.
   4385   if (!CondTy->isScalarType()) { // C99 6.5.15p2
   4386     // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
   4387     // Throw an error if its not either.
   4388     if (getLangOptions().OpenCL) {
   4389       if (!CondTy->isVectorType()) {
   4390         Diag(Cond.get()->getLocStart(),
   4391              diag::err_typecheck_cond_expect_scalar_or_vector)
   4392           << CondTy;
   4393         return QualType();
   4394       }
   4395     }
   4396     else {
   4397       Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   4398         << CondTy;
   4399       return QualType();
   4400     }
   4401   }
   4402 
   4403   // Now check the two expressions.
   4404   if (LHSTy->isVectorType() || RHSTy->isVectorType())
   4405     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4406 
   4407   // OpenCL: If the condition is a vector, and both operands are scalar,
   4408   // attempt to implicity convert them to the vector type to act like the
   4409   // built in select.
   4410   if (getLangOptions().OpenCL && CondTy->isVectorType()) {
   4411     // Both operands should be of scalar type.
   4412     if (!LHSTy->isScalarType()) {
   4413       Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   4414         << CondTy;
   4415       return QualType();
   4416     }
   4417     if (!RHSTy->isScalarType()) {
   4418       Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   4419         << CondTy;
   4420       return QualType();
   4421     }
   4422     // Implicity convert these scalars to the type of the condition.
   4423     LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
   4424     RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
   4425   }
   4426 
   4427   // If both operands have arithmetic type, do the usual arithmetic conversions
   4428   // to find a common type: C99 6.5.15p3,5.
   4429   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
   4430     UsualArithmeticConversions(LHS, RHS);
   4431     if (LHS.isInvalid() || RHS.isInvalid())
   4432       return QualType();
   4433     return LHS.get()->getType();
   4434   }
   4435 
   4436   // If both operands are the same structure or union type, the result is that
   4437   // type.
   4438   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   4439     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   4440       if (LHSRT->getDecl() == RHSRT->getDecl())
   4441         // "If both the operands have structure or union type, the result has
   4442         // that type."  This implies that CV qualifiers are dropped.
   4443         return LHSTy.getUnqualifiedType();
   4444     // FIXME: Type of conditional expression must be complete in C mode.
   4445   }
   4446 
   4447   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   4448   // The following || allows only one side to be void (a GCC-ism).
   4449   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   4450     if (!LHSTy->isVoidType())
   4451       Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
   4452         << RHS.get()->getSourceRange();
   4453     if (!RHSTy->isVoidType())
   4454       Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
   4455         << LHS.get()->getSourceRange();
   4456     LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
   4457     RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
   4458     return Context.VoidTy;
   4459   }
   4460   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   4461   // the type of the other operand."
   4462   if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
   4463       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4464     // promote the null to a pointer.
   4465     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
   4466     return LHSTy;
   4467   }
   4468   if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
   4469       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4470     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
   4471     return RHSTy;
   4472   }
   4473 
   4474   // All objective-c pointer type analysis is done here.
   4475   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   4476                                                         QuestionLoc);
   4477   if (LHS.isInvalid() || RHS.isInvalid())
   4478     return QualType();
   4479   if (!compositeType.isNull())
   4480     return compositeType;
   4481 
   4482 
   4483   // Handle block pointer types.
   4484   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
   4485     if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   4486       if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   4487         QualType destType = Context.getPointerType(Context.VoidTy);
   4488         LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   4489         RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   4490         return destType;
   4491       }
   4492       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4493       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4494       return QualType();
   4495     }
   4496     // We have 2 block pointer types.
   4497     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   4498       // Two identical block pointer types are always compatible.
   4499       return LHSTy;
   4500     }
   4501     // The block pointer types aren't identical, continue checking.
   4502     QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
   4503     QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
   4504 
   4505     if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
   4506                                     rhptee.getUnqualifiedType())) {
   4507       Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
   4508       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4509       // In this situation, we assume void* type. No especially good
   4510       // reason, but this is what gcc does, and we do have to pick
   4511       // to get a consistent AST.
   4512       QualType incompatTy = Context.getPointerType(Context.VoidTy);
   4513       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
   4514       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
   4515       return incompatTy;
   4516     }
   4517     // The block pointer types are compatible.
   4518     LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
   4519     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   4520     return LHSTy;
   4521   }
   4522 
   4523   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   4524   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
   4525     // get the "pointed to" types
   4526     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   4527     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   4528 
   4529     // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   4530     if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   4531       // Figure out necessary qualifiers (C99 6.5.15p6)
   4532       QualType destPointee
   4533         = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   4534       QualType destType = Context.getPointerType(destPointee);
   4535       // Add qualifiers if necessary.
   4536       LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
   4537       // Promote to void*.
   4538       RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   4539       return destType;
   4540     }
   4541     if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   4542       QualType destPointee
   4543         = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   4544       QualType destType = Context.getPointerType(destPointee);
   4545       // Add qualifiers if necessary.
   4546       RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
   4547       // Promote to void*.
   4548       LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   4549       return destType;
   4550     }
   4551 
   4552     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   4553       // Two identical pointer types are always compatible.
   4554       return LHSTy;
   4555     }
   4556     if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
   4557                                     rhptee.getUnqualifiedType())) {
   4558       Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
   4559         << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4560       // In this situation, we assume void* type. No especially good
   4561       // reason, but this is what gcc does, and we do have to pick
   4562       // to get a consistent AST.
   4563       QualType incompatTy = Context.getPointerType(Context.VoidTy);
   4564       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
   4565       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
   4566       return incompatTy;
   4567     }
   4568     // The pointer types are compatible.
   4569     // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
   4570     // differently qualified versions of compatible types, the result type is
   4571     // a pointer to an appropriately qualified version of the *composite*
   4572     // type.
   4573     // FIXME: Need to calculate the composite type.
   4574     // FIXME: Need to add qualifiers
   4575     LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
   4576     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   4577     return LHSTy;
   4578   }
   4579 
   4580   // GCC compatibility: soften pointer/integer mismatch.  Note that
   4581   // null pointers have been filtered out by this point.
   4582   if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
   4583     Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
   4584       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4585     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
   4586     return RHSTy;
   4587   }
   4588   if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
   4589     Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
   4590       << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4591     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
   4592     return LHSTy;
   4593   }
   4594 
   4595   // Emit a better diagnostic if one of the expressions is a null pointer
   4596   // constant and the other is not a pointer type. In this case, the user most
   4597   // likely forgot to take the address of the other expression.
   4598   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4599     return QualType();
   4600 
   4601   // Otherwise, the operands are not compatible.
   4602   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4603     << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4604   return QualType();
   4605 }
   4606 
   4607 /// FindCompositeObjCPointerType - Helper method to find composite type of
   4608 /// two objective-c pointer types of the two input expressions.
   4609 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   4610                                         SourceLocation QuestionLoc) {
   4611   QualType LHSTy = LHS.get()->getType();
   4612   QualType RHSTy = RHS.get()->getType();
   4613 
   4614   // Handle things like Class and struct objc_class*.  Here we case the result
   4615   // to the pseudo-builtin, because that will be implicitly cast back to the
   4616   // redefinition type if an attempt is made to access its fields.
   4617   if (LHSTy->isObjCClassType() &&
   4618       (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
   4619     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   4620     return LHSTy;
   4621   }
   4622   if (RHSTy->isObjCClassType() &&
   4623       (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
   4624     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
   4625     return RHSTy;
   4626   }
   4627   // And the same for struct objc_object* / id
   4628   if (LHSTy->isObjCIdType() &&
   4629       (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
   4630     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   4631     return LHSTy;
   4632   }
   4633   if (RHSTy->isObjCIdType() &&
   4634       (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
   4635     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
   4636     return RHSTy;
   4637   }
   4638   // And the same for struct objc_selector* / SEL
   4639   if (Context.isObjCSelType(LHSTy) &&
   4640       (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
   4641     RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
   4642     return LHSTy;
   4643   }
   4644   if (Context.isObjCSelType(RHSTy) &&
   4645       (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
   4646     LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
   4647     return RHSTy;
   4648   }
   4649   // Check constraints for Objective-C object pointers types.
   4650   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   4651 
   4652     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   4653       // Two identical object pointer types are always compatible.
   4654       return LHSTy;
   4655     }
   4656     const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
   4657     const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
   4658     QualType compositeType = LHSTy;
   4659 
   4660     // If both operands are interfaces and either operand can be
   4661     // assigned to the other, use that type as the composite
   4662     // type. This allows
   4663     //   xxx ? (A*) a : (B*) b
   4664     // where B is a subclass of A.
   4665     //
   4666     // Additionally, as for assignment, if either type is 'id'
   4667     // allow silent coercion. Finally, if the types are
   4668     // incompatible then make sure to use 'id' as the composite
   4669     // type so the result is acceptable for sending messages to.
   4670 
   4671     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   4672     // It could return the composite type.
   4673     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   4674       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   4675     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   4676       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   4677     } else if ((LHSTy->isObjCQualifiedIdType() ||
   4678                 RHSTy->isObjCQualifiedIdType()) &&
   4679                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   4680       // Need to handle "id<xx>" explicitly.
   4681       // GCC allows qualified id and any Objective-C type to devolve to
   4682       // id. Currently localizing to here until clear this should be
   4683       // part of ObjCQualifiedIdTypesAreCompatible.
   4684       compositeType = Context.getObjCIdType();
   4685     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   4686       compositeType = Context.getObjCIdType();
   4687     } else if (!(compositeType =
   4688                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
   4689       ;
   4690     else {
   4691       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   4692       << LHSTy << RHSTy
   4693       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4694       QualType incompatTy = Context.getObjCIdType();
   4695       LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
   4696       RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
   4697       return incompatTy;
   4698     }
   4699     // The object pointer types are compatible.
   4700     LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
   4701     RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
   4702     return compositeType;
   4703   }
   4704   // Check Objective-C object pointer types and 'void *'
   4705   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   4706     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   4707     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   4708     QualType destPointee
   4709     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   4710     QualType destType = Context.getPointerType(destPointee);
   4711     // Add qualifiers if necessary.
   4712     LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
   4713     // Promote to void*.
   4714     RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
   4715     return destType;
   4716   }
   4717   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   4718     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   4719     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   4720     QualType destPointee
   4721     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   4722     QualType destType = Context.getPointerType(destPointee);
   4723     // Add qualifiers if necessary.
   4724     RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
   4725     // Promote to void*.
   4726     LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
   4727     return destType;
   4728   }
   4729   return QualType();
   4730 }
   4731 
   4732 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   4733 /// ParenRange in parentheses.
   4734 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   4735                                const PartialDiagnostic &Note,
   4736                                SourceRange ParenRange) {
   4737   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
   4738   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   4739       EndLoc.isValid()) {
   4740     Self.Diag(Loc, Note)
   4741       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   4742       << FixItHint::CreateInsertion(EndLoc, ")");
   4743   } else {
   4744     // We can't display the parentheses, so just show the bare note.
   4745     Self.Diag(Loc, Note) << ParenRange;
   4746   }
   4747 }
   4748 
   4749 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   4750   return Opc >= BO_Mul && Opc <= BO_Shr;
   4751 }
   4752 
   4753 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   4754 /// expression, either using a built-in or overloaded operator,
   4755 /// and sets *OpCode to the opcode and *RHS to the right-hand side expression.
   4756 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   4757                                    Expr **RHS) {
   4758   E = E->IgnoreParenImpCasts();
   4759   E = E->IgnoreConversionOperator();
   4760   E = E->IgnoreParenImpCasts();
   4761 
   4762   // Built-in binary operator.
   4763   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   4764     if (IsArithmeticOp(OP->getOpcode())) {
   4765       *Opcode = OP->getOpcode();
   4766       *RHS = OP->getRHS();
   4767       return true;
   4768     }
   4769   }
   4770 
   4771   // Overloaded operator.
   4772   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   4773     if (Call->getNumArgs() != 2)
   4774       return false;
   4775 
   4776     // Make sure this is really a binary operator that is safe to pass into
   4777     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   4778     OverloadedOperatorKind OO = Call->getOperator();
   4779     if (OO < OO_Plus || OO > OO_Arrow)
   4780       return false;
   4781 
   4782     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   4783     if (IsArithmeticOp(OpKind)) {
   4784       *Opcode = OpKind;
   4785       *RHS = Call->getArg(1);
   4786       return true;
   4787     }
   4788   }
   4789 
   4790   return false;
   4791 }
   4792 
   4793 static bool IsLogicOp(BinaryOperatorKind Opc) {
   4794   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
   4795 }
   4796 
   4797 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   4798 /// or is a logical expression such as (x==y) which has int type, but is
   4799 /// commonly interpreted as boolean.
   4800 static bool ExprLooksBoolean(Expr *E) {
   4801   E = E->IgnoreParenImpCasts();
   4802 
   4803   if (E->getType()->isBooleanType())
   4804     return true;
   4805   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   4806     return IsLogicOp(OP->getOpcode());
   4807   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   4808     return OP->getOpcode() == UO_LNot;
   4809 
   4810   return false;
   4811 }
   4812 
   4813 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   4814 /// and binary operator are mixed in a way that suggests the programmer assumed
   4815 /// the conditional operator has higher precedence, for example:
   4816 /// "int x = a + someBinaryCondition ? 1 : 2".
   4817 static void DiagnoseConditionalPrecedence(Sema &Self,
   4818                                           SourceLocation OpLoc,
   4819                                           Expr *Condition,
   4820                                           Expr *LHS,
   4821                                           Expr *RHS) {
   4822   BinaryOperatorKind CondOpcode;
   4823   Expr *CondRHS;
   4824 
   4825   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   4826     return;
   4827   if (!ExprLooksBoolean(CondRHS))
   4828     return;
   4829 
   4830   // The condition is an arithmetic binary expression, with a right-
   4831   // hand side that looks boolean, so warn.
   4832 
   4833   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   4834       << Condition->getSourceRange()
   4835       << BinaryOperator::getOpcodeStr(CondOpcode);
   4836 
   4837   SuggestParentheses(Self, OpLoc,
   4838     Self.PDiag(diag::note_precedence_conditional_silence)
   4839       << BinaryOperator::getOpcodeStr(CondOpcode),
   4840     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   4841 
   4842   SuggestParentheses(Self, OpLoc,
   4843     Self.PDiag(diag::note_precedence_conditional_first),
   4844     SourceRange(CondRHS->getLocStart(), RHS->getLocEnd()));
   4845 }
   4846 
   4847 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   4848 /// in the case of a the GNU conditional expr extension.
   4849 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   4850                                     SourceLocation ColonLoc,
   4851                                     Expr *CondExpr, Expr *LHSExpr,
   4852                                     Expr *RHSExpr) {
   4853   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   4854   // was the condition.
   4855   OpaqueValueExpr *opaqueValue = 0;
   4856   Expr *commonExpr = 0;
   4857   if (LHSExpr == 0) {
   4858     commonExpr = CondExpr;
   4859 
   4860     // We usually want to apply unary conversions *before* saving, except
   4861     // in the special case of a C++ l-value conditional.
   4862     if (!(getLangOptions().CPlusPlus
   4863           && !commonExpr->isTypeDependent()
   4864           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   4865           && commonExpr->isGLValue()
   4866           && commonExpr->isOrdinaryOrBitFieldObject()
   4867           && RHSExpr->isOrdinaryOrBitFieldObject()
   4868           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   4869       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   4870       if (commonRes.isInvalid())
   4871         return ExprError();
   4872       commonExpr = commonRes.take();
   4873     }
   4874 
   4875     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   4876                                                 commonExpr->getType(),
   4877                                                 commonExpr->getValueKind(),
   4878                                                 commonExpr->getObjectKind());
   4879     LHSExpr = CondExpr = opaqueValue;
   4880   }
   4881 
   4882   ExprValueKind VK = VK_RValue;
   4883   ExprObjectKind OK = OK_Ordinary;
   4884   ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
   4885   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   4886                                              VK, OK, QuestionLoc);
   4887   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   4888       RHS.isInvalid())
   4889     return ExprError();
   4890 
   4891   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   4892                                 RHS.get());
   4893 
   4894   if (!commonExpr)
   4895     return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
   4896                                                    LHS.take(), ColonLoc,
   4897                                                    RHS.take(), result, VK, OK));
   4898 
   4899   return Owned(new (Context)
   4900     BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
   4901                               RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
   4902 }
   4903 
   4904 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   4905 // being closely modeled after the C99 spec:-). The odd characteristic of this
   4906 // routine is it effectively iqnores the qualifiers on the top level pointee.
   4907 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   4908 // FIXME: add a couple examples in this comment.
   4909 static Sema::AssignConvertType
   4910 checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
   4911   assert(lhsType.isCanonical() && "LHS not canonicalized!");
   4912   assert(rhsType.isCanonical() && "RHS not canonicalized!");
   4913 
   4914   // get the "pointed to" type (ignoring qualifiers at the top level)
   4915   const Type *lhptee, *rhptee;
   4916   Qualifiers lhq, rhq;
   4917   llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
   4918   llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
   4919 
   4920   Sema::AssignConvertType ConvTy = Sema::Compatible;
   4921 
   4922   // C99 6.5.16.1p1: This following citation is common to constraints
   4923   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   4924   // qualifiers of the type *pointed to* by the right;
   4925   Qualifiers lq;
   4926 
   4927   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   4928   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   4929       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   4930     // Ignore lifetime for further calculation.
   4931     lhq.removeObjCLifetime();
   4932     rhq.removeObjCLifetime();
   4933   }
   4934 
   4935   if (!lhq.compatiblyIncludes(rhq)) {
   4936     // Treat address-space mismatches as fatal.  TODO: address subspaces
   4937     if (lhq.getAddressSpace() != rhq.getAddressSpace())
   4938       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   4939 
   4940     // It's okay to add or remove GC or lifetime qualifiers when converting to
   4941     // and from void*.
   4942     else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
   4943                         .compatiblyIncludes(
   4944                                 rhq.withoutObjCGCAttr().withoutObjCGLifetime())
   4945              && (lhptee->isVoidType() || rhptee->isVoidType()))
   4946       ; // keep old
   4947 
   4948     // Treat lifetime mismatches as fatal.
   4949     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   4950       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   4951 
   4952     // For GCC compatibility, other qualifier mismatches are treated
   4953     // as still compatible in C.
   4954     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   4955   }
   4956 
   4957   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   4958   // incomplete type and the other is a pointer to a qualified or unqualified
   4959   // version of void...
   4960   if (lhptee->isVoidType()) {
   4961     if (rhptee->isIncompleteOrObjectType())
   4962       return ConvTy;
   4963 
   4964     // As an extension, we allow cast to/from void* to function pointer.
   4965     assert(rhptee->isFunctionType());
   4966     return Sema::FunctionVoidPointer;
   4967   }
   4968 
   4969   if (rhptee->isVoidType()) {
   4970     if (lhptee->isIncompleteOrObjectType())
   4971       return ConvTy;
   4972 
   4973     // As an extension, we allow cast to/from void* to function pointer.
   4974     assert(lhptee->isFunctionType());
   4975     return Sema::FunctionVoidPointer;
   4976   }
   4977 
   4978   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   4979   // unqualified versions of compatible types, ...
   4980   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   4981   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   4982     // Check if the pointee types are compatible ignoring the sign.
   4983     // We explicitly check for char so that we catch "char" vs
   4984     // "unsigned char" on systems where "char" is unsigned.
   4985     if (lhptee->isCharType())
   4986       ltrans = S.Context.UnsignedCharTy;
   4987     else if (lhptee->hasSignedIntegerRepresentation())
   4988       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   4989 
   4990     if (rhptee->isCharType())
   4991       rtrans = S.Context.UnsignedCharTy;
   4992     else if (rhptee->hasSignedIntegerRepresentation())
   4993       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   4994 
   4995     if (ltrans == rtrans) {
   4996       // Types are compatible ignoring the sign. Qualifier incompatibility
   4997       // takes priority over sign incompatibility because the sign
   4998       // warning can be disabled.
   4999       if (ConvTy != Sema::Compatible)
   5000         return ConvTy;
   5001 
   5002       return Sema::IncompatiblePointerSign;
   5003     }
   5004 
   5005     // If we are a multi-level pointer, it's possible that our issue is simply
   5006     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   5007     // the eventual target type is the same and the pointers have the same
   5008     // level of indirection, this must be the issue.
   5009     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   5010       do {
   5011         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   5012         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   5013       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   5014 
   5015       if (lhptee == rhptee)
   5016         return Sema::IncompatibleNestedPointerQualifiers;
   5017     }
   5018 
   5019     // General pointer incompatibility takes priority over qualifiers.
   5020     return Sema::IncompatiblePointer;
   5021   }
   5022   return ConvTy;
   5023 }
   5024 
   5025 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   5026 /// block pointer types are compatible or whether a block and normal pointer
   5027 /// are compatible. It is more restrict than comparing two function pointer
   5028 // types.
   5029 static Sema::AssignConvertType
   5030 checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
   5031                                     QualType rhsType) {
   5032   assert(lhsType.isCanonical() && "LHS not canonicalized!");
   5033   assert(rhsType.isCanonical() && "RHS not canonicalized!");
   5034 
   5035   QualType lhptee, rhptee;
   5036 
   5037   // get the "pointed to" type (ignoring qualifiers at the top level)
   5038   lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
   5039   rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
   5040 
   5041   // In C++, the types have to match exactly.
   5042   if (S.getLangOptions().CPlusPlus)
   5043     return Sema::IncompatibleBlockPointer;
   5044 
   5045   Sema::AssignConvertType ConvTy = Sema::Compatible;
   5046 
   5047   // For blocks we enforce that qualifiers are identical.
   5048   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   5049     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   5050 
   5051   if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
   5052     return Sema::IncompatibleBlockPointer;
   5053 
   5054   return ConvTy;
   5055 }
   5056 
   5057 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   5058 /// for assignment compatibility.
   5059 static Sema::AssignConvertType
   5060 checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
   5061   assert(lhsType.isCanonical() && "LHS was not canonicalized!");
   5062   assert(rhsType.isCanonical() && "RHS was not canonicalized!");
   5063 
   5064   if (lhsType->isObjCBuiltinType()) {
   5065     // Class is not compatible with ObjC object pointers.
   5066     if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
   5067         !rhsType->isObjCQualifiedClassType())
   5068       return Sema::IncompatiblePointer;
   5069     return Sema::Compatible;
   5070   }
   5071   if (rhsType->isObjCBuiltinType()) {
   5072     // Class is not compatible with ObjC object pointers.
   5073     if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
   5074         !lhsType->isObjCQualifiedClassType())
   5075       return Sema::IncompatiblePointer;
   5076     return Sema::Compatible;
   5077   }
   5078   QualType lhptee =
   5079   lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
   5080   QualType rhptee =
   5081   rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
   5082 
   5083   if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
   5084     return Sema::CompatiblePointerDiscardsQualifiers;
   5085 
   5086   if (S.Context.typesAreCompatible(lhsType, rhsType))
   5087     return Sema::Compatible;
   5088   if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
   5089     return Sema::IncompatibleObjCQualifiedId;
   5090   return Sema::IncompatiblePointer;
   5091 }
   5092 
   5093 Sema::AssignConvertType
   5094 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   5095                                  QualType lhsType, QualType rhsType) {
   5096   // Fake up an opaque expression.  We don't actually care about what
   5097   // cast operations are required, so if CheckAssignmentConstraints
   5098   // adds casts to this they'll be wasted, but fortunately that doesn't
   5099   // usually happen on valid code.
   5100   OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
   5101   ExprResult rhsPtr = &rhs;
   5102   CastKind K = CK_Invalid;
   5103 
   5104   return CheckAssignmentConstraints(lhsType, rhsPtr, K);
   5105 }
   5106 
   5107 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   5108 /// has code to accommodate several GCC extensions when type checking
   5109 /// pointers. Here are some objectionable examples that GCC considers warnings:
   5110 ///
   5111 ///  int a, *pint;
   5112 ///  short *pshort;
   5113 ///  struct foo *pfoo;
   5114 ///
   5115 ///  pint = pshort; // warning: assignment from incompatible pointer type
   5116 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   5117 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   5118 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   5119 ///
   5120 /// As a result, the code for dealing with pointers is more complex than the
   5121 /// C99 spec dictates.
   5122 ///
   5123 /// Sets 'Kind' for any result kind except Incompatible.
   5124 Sema::AssignConvertType
   5125 Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
   5126                                  CastKind &Kind) {
   5127   QualType rhsType = rhs.get()->getType();
   5128   QualType origLhsType = lhsType;
   5129 
   5130   // Get canonical types.  We're not formatting these types, just comparing
   5131   // them.
   5132   lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
   5133   rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
   5134 
   5135   // Common case: no conversion required.
   5136   if (lhsType == rhsType) {
   5137     Kind = CK_NoOp;
   5138     return Compatible;
   5139   }
   5140 
   5141   // If the left-hand side is a reference type, then we are in a
   5142   // (rare!) case where we've allowed the use of references in C,
   5143   // e.g., as a parameter type in a built-in function. In this case,
   5144   // just make sure that the type referenced is compatible with the
   5145   // right-hand side type. The caller is responsible for adjusting
   5146   // lhsType so that the resulting expression does not have reference
   5147   // type.
   5148   if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
   5149     if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
   5150       Kind = CK_LValueBitCast;
   5151       return Compatible;
   5152     }
   5153     return Incompatible;
   5154   }
   5155 
   5156   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   5157   // to the same ExtVector type.
   5158   if (lhsType->isExtVectorType()) {
   5159     if (rhsType->isExtVectorType())
   5160       return Incompatible;
   5161     if (rhsType->isArithmeticType()) {
   5162       // CK_VectorSplat does T -> vector T, so first cast to the
   5163       // element type.
   5164       QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
   5165       if (elType != rhsType) {
   5166         Kind = PrepareScalarCast(*this, rhs, elType);
   5167         rhs = ImpCastExprToType(rhs.take(), elType, Kind);
   5168       }
   5169       Kind = CK_VectorSplat;
   5170       return Compatible;
   5171     }
   5172   }
   5173 
   5174   // Conversions to or from vector type.
   5175   if (lhsType->isVectorType() || rhsType->isVectorType()) {
   5176     if (lhsType->isVectorType() && rhsType->isVectorType()) {
   5177       // Allow assignments of an AltiVec vector type to an equivalent GCC
   5178       // vector type and vice versa
   5179       if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
   5180         Kind = CK_BitCast;
   5181         return Compatible;
   5182       }
   5183 
   5184       // If we are allowing lax vector conversions, and LHS and RHS are both
   5185       // vectors, the total size only needs to be the same. This is a bitcast;
   5186       // no bits are changed but the result type is different.
   5187       if (getLangOptions().LaxVectorConversions &&
   5188           (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
   5189         Kind = CK_BitCast;
   5190         return IncompatibleVectors;
   5191       }
   5192     }
   5193     return Incompatible;
   5194   }
   5195 
   5196   // Arithmetic conversions.
   5197   if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
   5198       !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
   5199     Kind = PrepareScalarCast(*this, rhs, lhsType);
   5200     return Compatible;
   5201   }
   5202 
   5203   // Conversions to normal pointers.
   5204   if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
   5205     // U* -> T*
   5206     if (isa<PointerType>(rhsType)) {
   5207       Kind = CK_BitCast;
   5208       return checkPointerTypesForAssignment(*this, lhsType, rhsType);
   5209     }
   5210 
   5211     // int -> T*
   5212     if (rhsType->isIntegerType()) {
   5213       Kind = CK_IntegralToPointer; // FIXME: null?
   5214       return IntToPointer;
   5215     }
   5216 
   5217     // C pointers are not compatible with ObjC object pointers,
   5218     // with two exceptions:
   5219     if (isa<ObjCObjectPointerType>(rhsType)) {
   5220       //  - conversions to void*
   5221       if (lhsPointer->getPointeeType()->isVoidType()) {
   5222         Kind = CK_AnyPointerToObjCPointerCast;
   5223         return Compatible;
   5224       }
   5225 
   5226       //  - conversions from 'Class' to the redefinition type
   5227       if (rhsType->isObjCClassType() &&
   5228           Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
   5229         Kind = CK_BitCast;
   5230         return Compatible;
   5231       }
   5232 
   5233       Kind = CK_BitCast;
   5234       return IncompatiblePointer;
   5235     }
   5236 
   5237     // U^ -> void*
   5238     if (rhsType->getAs<BlockPointerType>()) {
   5239       if (lhsPointer->getPointeeType()->isVoidType()) {
   5240         Kind = CK_BitCast;
   5241         return Compatible;
   5242       }
   5243     }
   5244 
   5245     return Incompatible;
   5246   }
   5247 
   5248   // Conversions to block pointers.
   5249   if (isa<BlockPointerType>(lhsType)) {
   5250     // U^ -> T^
   5251     if (rhsType->isBlockPointerType()) {
   5252       Kind = CK_AnyPointerToBlockPointerCast;
   5253       return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
   5254     }
   5255 
   5256     // int or null -> T^
   5257     if (rhsType->isIntegerType()) {
   5258       Kind = CK_IntegralToPointer; // FIXME: null
   5259       return IntToBlockPointer;
   5260     }
   5261 
   5262     // id -> T^
   5263     if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
   5264       Kind = CK_AnyPointerToBlockPointerCast;
   5265       return Compatible;
   5266     }
   5267 
   5268     // void* -> T^
   5269     if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
   5270       if (RHSPT->getPointeeType()->isVoidType()) {
   5271         Kind = CK_AnyPointerToBlockPointerCast;
   5272         return Compatible;
   5273       }
   5274 
   5275     return Incompatible;
   5276   }
   5277 
   5278   // Conversions to Objective-C pointers.
   5279   if (isa<ObjCObjectPointerType>(lhsType)) {
   5280     // A* -> B*
   5281     if (rhsType->isObjCObjectPointerType()) {
   5282       Kind = CK_BitCast;
   5283       Sema::AssignConvertType result =
   5284         checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
   5285       if (getLangOptions().ObjCAutoRefCount &&
   5286           result == Compatible &&
   5287           !CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType))
   5288         result = IncompatibleObjCWeakRef;
   5289       return result;
   5290     }
   5291 
   5292     // int or null -> A*
   5293     if (rhsType->isIntegerType()) {
   5294       Kind = CK_IntegralToPointer; // FIXME: null
   5295       return IntToPointer;
   5296     }
   5297 
   5298     // In general, C pointers are not compatible with ObjC object pointers,
   5299     // with two exceptions:
   5300     if (isa<PointerType>(rhsType)) {
   5301       //  - conversions from 'void*'
   5302       if (rhsType->isVoidPointerType()) {
   5303         Kind = CK_AnyPointerToObjCPointerCast;
   5304         return Compatible;
   5305       }
   5306 
   5307       //  - conversions to 'Class' from its redefinition type
   5308       if (lhsType->isObjCClassType() &&
   5309           Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
   5310         Kind = CK_BitCast;
   5311         return Compatible;
   5312       }
   5313 
   5314       Kind = CK_AnyPointerToObjCPointerCast;
   5315       return IncompatiblePointer;
   5316     }
   5317 
   5318     // T^ -> A*
   5319     if (rhsType->isBlockPointerType()) {
   5320       Kind = CK_AnyPointerToObjCPointerCast;
   5321       return Compatible;
   5322     }
   5323 
   5324     return Incompatible;
   5325   }
   5326 
   5327   // Conversions from pointers that are not covered by the above.
   5328   if (isa<PointerType>(rhsType)) {
   5329     // T* -> _Bool
   5330     if (lhsType == Context.BoolTy) {
   5331       Kind = CK_PointerToBoolean;
   5332       return Compatible;
   5333     }
   5334 
   5335     // T* -> int
   5336     if (lhsType->isIntegerType()) {
   5337       Kind = CK_PointerToIntegral;
   5338       return PointerToInt;
   5339     }
   5340 
   5341     return Incompatible;
   5342   }
   5343 
   5344   // Conversions from Objective-C pointers that are not covered by the above.
   5345   if (isa<ObjCObjectPointerType>(rhsType)) {
   5346     // T* -> _Bool
   5347     if (lhsType == Context.BoolTy) {
   5348       Kind = CK_PointerToBoolean;
   5349       return Compatible;
   5350     }
   5351 
   5352     // T* -> int
   5353     if (lhsType->isIntegerType()) {
   5354       Kind = CK_PointerToIntegral;
   5355       return PointerToInt;
   5356     }
   5357 
   5358     return Incompatible;
   5359   }
   5360 
   5361   // struct A -> struct B
   5362   if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
   5363     if (Context.typesAreCompatible(lhsType, rhsType)) {
   5364       Kind = CK_NoOp;
   5365       return Compatible;
   5366     }
   5367   }
   5368 
   5369   return Incompatible;
   5370 }
   5371 
   5372 /// \brief Constructs a transparent union from an expression that is
   5373 /// used to initialize the transparent union.
   5374 static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
   5375                                       QualType UnionType, FieldDecl *Field) {
   5376   // Build an initializer list that designates the appropriate member
   5377   // of the transparent union.
   5378   Expr *E = EResult.take();
   5379   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   5380                                                    &E, 1,
   5381                                                    SourceLocation());
   5382   Initializer->setType(UnionType);
   5383   Initializer->setInitializedFieldInUnion(Field);
   5384 
   5385   // Build a compound literal constructing a value of the transparent
   5386   // union type from this initializer list.
   5387   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   5388   EResult = S.Owned(
   5389     new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   5390                                 VK_RValue, Initializer, false));
   5391 }
   5392 
   5393 Sema::AssignConvertType
   5394 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
   5395   QualType FromType = rExpr.get()->getType();
   5396 
   5397   // If the ArgType is a Union type, we want to handle a potential
   5398   // transparent_union GCC extension.
   5399   const RecordType *UT = ArgType->getAsUnionType();
   5400   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   5401     return Incompatible;
   5402 
   5403   // The field to initialize within the transparent union.
   5404   RecordDecl *UD = UT->getDecl();
   5405   FieldDecl *InitField = 0;
   5406   // It's compatible if the expression matches any of the fields.
   5407   for (RecordDecl::field_iterator it = UD->field_begin(),
   5408          itend = UD->field_end();
   5409        it != itend; ++it) {
   5410     if (it->getType()->isPointerType()) {
   5411       // If the transparent union contains a pointer type, we allow:
   5412       // 1) void pointer
   5413       // 2) null pointer constant
   5414       if (FromType->isPointerType())
   5415         if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
   5416           rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
   5417           InitField = *it;
   5418           break;
   5419         }
   5420 
   5421       if (rExpr.get()->isNullPointerConstant(Context,
   5422                                        Expr::NPC_ValueDependentIsNull)) {
   5423         rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
   5424         InitField = *it;
   5425         break;
   5426       }
   5427     }
   5428 
   5429     CastKind Kind = CK_Invalid;
   5430     if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
   5431           == Compatible) {
   5432       rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
   5433       InitField = *it;
   5434       break;
   5435     }
   5436   }
   5437 
   5438   if (!InitField)
   5439     return Incompatible;
   5440 
   5441   ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
   5442   return Compatible;
   5443 }
   5444 
   5445 Sema::AssignConvertType
   5446 Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
   5447   if (getLangOptions().CPlusPlus) {
   5448     if (!lhsType->isRecordType()) {
   5449       // C++ 5.17p3: If the left operand is not of class type, the
   5450       // expression is implicitly converted (C++ 4) to the
   5451       // cv-unqualified type of the left operand.
   5452       ExprResult Res = PerformImplicitConversion(rExpr.get(),
   5453                                                  lhsType.getUnqualifiedType(),
   5454                                                  AA_Assigning);
   5455       if (Res.isInvalid())
   5456         return Incompatible;
   5457       Sema::AssignConvertType result = Compatible;
   5458       if (getLangOptions().ObjCAutoRefCount &&
   5459           !CheckObjCARCUnavailableWeakConversion(lhsType, rExpr.get()->getType()))
   5460         result = IncompatibleObjCWeakRef;
   5461       rExpr = move(Res);
   5462       return result;
   5463     }
   5464 
   5465     // FIXME: Currently, we fall through and treat C++ classes like C
   5466     // structures.
   5467   }
   5468 
   5469   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   5470   // a null pointer constant.
   5471   if ((lhsType->isPointerType() ||
   5472        lhsType->isObjCObjectPointerType() ||
   5473        lhsType->isBlockPointerType())
   5474       && rExpr.get()->isNullPointerConstant(Context,
   5475                                       Expr::NPC_ValueDependentIsNull)) {
   5476     rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
   5477     return Compatible;
   5478   }
   5479 
   5480   // This check seems unnatural, however it is necessary to ensure the proper
   5481   // conversion of functions/arrays. If the conversion were done for all
   5482   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   5483   // expressions that suppress this implicit conversion (&, sizeof).
   5484   //
   5485   // Suppress this for references: C++ 8.5.3p5.
   5486   if (!lhsType->isReferenceType()) {
   5487     rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
   5488     if (rExpr.isInvalid())
   5489       return Incompatible;
   5490   }
   5491 
   5492   CastKind Kind = CK_Invalid;
   5493   Sema::AssignConvertType result =
   5494     CheckAssignmentConstraints(lhsType, rExpr, Kind);
   5495 
   5496   // C99 6.5.16.1p2: The value of the right operand is converted to the
   5497   // type of the assignment expression.
   5498   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   5499   // so that we can use references in built-in functions even in C.
   5500   // The getNonReferenceType() call makes sure that the resulting expression
   5501   // does not have reference type.
   5502   if (result != Incompatible && rExpr.get()->getType() != lhsType)
   5503     rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
   5504   return result;
   5505 }
   5506 
   5507 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
   5508   Diag(Loc, diag::err_typecheck_invalid_operands)
   5509     << lex.get()->getType() << rex.get()->getType()
   5510     << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5511   return QualType();
   5512 }
   5513 
   5514 QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex,
   5515                                    SourceLocation Loc, bool isCompAssign) {
   5516   // For conversion purposes, we ignore any qualifiers.
   5517   // For example, "const float" and "float" are equivalent.
   5518   QualType lhsType =
   5519     Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
   5520   QualType rhsType =
   5521     Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
   5522 
   5523   // If the vector types are identical, return.
   5524   if (lhsType == rhsType)
   5525     return lhsType;
   5526 
   5527   // Handle the case of equivalent AltiVec and GCC vector types
   5528   if (lhsType->isVectorType() && rhsType->isVectorType() &&
   5529       Context.areCompatibleVectorTypes(lhsType, rhsType)) {
   5530     if (lhsType->isExtVectorType()) {
   5531       rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
   5532       return lhsType;
   5533     }
   5534 
   5535     if (!isCompAssign)
   5536       lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
   5537     return rhsType;
   5538   }
   5539 
   5540   if (getLangOptions().LaxVectorConversions &&
   5541       Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) {
   5542     // If we are allowing lax vector conversions, and LHS and RHS are both
   5543     // vectors, the total size only needs to be the same. This is a
   5544     // bitcast; no bits are changed but the result type is different.
   5545     // FIXME: Should we really be allowing this?
   5546     rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
   5547     return lhsType;
   5548   }
   5549 
   5550   // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
   5551   // swap back (so that we don't reverse the inputs to a subtract, for instance.
   5552   bool swapped = false;
   5553   if (rhsType->isExtVectorType() && !isCompAssign) {
   5554     swapped = true;
   5555     std::swap(rex, lex);
   5556     std::swap(rhsType, lhsType);
   5557   }
   5558 
   5559   // Handle the case of an ext vector and scalar.
   5560   if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
   5561     QualType EltTy = LV->getElementType();
   5562     if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
   5563       int order = Context.getIntegerTypeOrder(EltTy, rhsType);
   5564       if (order > 0)
   5565         rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
   5566       if (order >= 0) {
   5567         rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
   5568         if (swapped) std::swap(rex, lex);
   5569         return lhsType;
   5570       }
   5571     }
   5572     if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
   5573         rhsType->isRealFloatingType()) {
   5574       int order = Context.getFloatingTypeOrder(EltTy, rhsType);
   5575       if (order > 0)
   5576         rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
   5577       if (order >= 0) {
   5578         rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
   5579         if (swapped) std::swap(rex, lex);
   5580         return lhsType;
   5581       }
   5582     }
   5583   }
   5584 
   5585   // Vectors of different size or scalar and non-ext-vector are errors.
   5586   if (swapped) std::swap(rex, lex);
   5587   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   5588     << lex.get()->getType() << rex.get()->getType()
   5589     << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5590   return QualType();
   5591 }
   5592 
   5593 QualType Sema::CheckMultiplyDivideOperands(
   5594   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
   5595   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
   5596     return CheckVectorOperands(lex, rex, Loc, isCompAssign);
   5597 
   5598   QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
   5599   if (lex.isInvalid() || rex.isInvalid())
   5600     return QualType();
   5601 
   5602   if (!lex.get()->getType()->isArithmeticType() ||
   5603       !rex.get()->getType()->isArithmeticType())
   5604     return InvalidOperands(Loc, lex, rex);
   5605 
   5606   // Check for division by zero.
   5607   if (isDiv &&
   5608       rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
   5609     DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
   5610                                      << rex.get()->getSourceRange());
   5611 
   5612   return compType;
   5613 }
   5614 
   5615 QualType Sema::CheckRemainderOperands(
   5616   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
   5617   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
   5618     if (lex.get()->getType()->hasIntegerRepresentation() &&
   5619         rex.get()->getType()->hasIntegerRepresentation())
   5620       return CheckVectorOperands(lex, rex, Loc, isCompAssign);
   5621     return InvalidOperands(Loc, lex, rex);
   5622   }
   5623 
   5624   QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
   5625   if (lex.isInvalid() || rex.isInvalid())
   5626     return QualType();
   5627 
   5628   if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
   5629     return InvalidOperands(Loc, lex, rex);
   5630 
   5631   // Check for remainder by zero.
   5632   if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
   5633     DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
   5634                                  << rex.get()->getSourceRange());
   5635 
   5636   return compType;
   5637 }
   5638 
   5639 /// \brief Diagnose invalid arithmetic on two void pointers.
   5640 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   5641                                                 Expr *LHS, Expr *RHS) {
   5642   S.Diag(Loc, S.getLangOptions().CPlusPlus
   5643                 ? diag::err_typecheck_pointer_arith_void_type
   5644                 : diag::ext_gnu_void_ptr)
   5645     << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
   5646 }
   5647 
   5648 /// \brief Diagnose invalid arithmetic on a void pointer.
   5649 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   5650                                             Expr *Pointer) {
   5651   S.Diag(Loc, S.getLangOptions().CPlusPlus
   5652                 ? diag::err_typecheck_pointer_arith_void_type
   5653                 : diag::ext_gnu_void_ptr)
   5654     << 0 /* one pointer */ << Pointer->getSourceRange();
   5655 }
   5656 
   5657 /// \brief Diagnose invalid arithmetic on two function pointers.
   5658 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   5659                                                     Expr *LHS, Expr *RHS) {
   5660   assert(LHS->getType()->isAnyPointerType());
   5661   assert(RHS->getType()->isAnyPointerType());
   5662   S.Diag(Loc, S.getLangOptions().CPlusPlus
   5663                 ? diag::err_typecheck_pointer_arith_function_type
   5664                 : diag::ext_gnu_ptr_func_arith)
   5665     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   5666     // We only show the second type if it differs from the first.
   5667     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   5668                                                    RHS->getType())
   5669     << RHS->getType()->getPointeeType()
   5670     << LHS->getSourceRange() << RHS->getSourceRange();
   5671 }
   5672 
   5673 /// \brief Diagnose invalid arithmetic on a function pointer.
   5674 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   5675                                                 Expr *Pointer) {
   5676   assert(Pointer->getType()->isAnyPointerType());
   5677   S.Diag(Loc, S.getLangOptions().CPlusPlus
   5678                 ? diag::err_typecheck_pointer_arith_function_type
   5679                 : diag::ext_gnu_ptr_func_arith)
   5680     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   5681     << 0 /* one pointer, so only one type */
   5682     << Pointer->getSourceRange();
   5683 }
   5684 
   5685 /// \brief Check the validity of an arithmetic pointer operand.
   5686 ///
   5687 /// If the operand has pointer type, this code will check for pointer types
   5688 /// which are invalid in arithmetic operations. These will be diagnosed
   5689 /// appropriately, including whether or not the use is supported as an
   5690 /// extension.
   5691 ///
   5692 /// \returns True when the operand is valid to use (even if as an extension).
   5693 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   5694                                             Expr *Operand) {
   5695   if (!Operand->getType()->isAnyPointerType()) return true;
   5696 
   5697   QualType PointeeTy = Operand->getType()->getPointeeType();
   5698   if (PointeeTy->isVoidType()) {
   5699     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   5700     return !S.getLangOptions().CPlusPlus;
   5701   }
   5702   if (PointeeTy->isFunctionType()) {
   5703     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   5704     return !S.getLangOptions().CPlusPlus;
   5705   }
   5706 
   5707   if ((Operand->getType()->isPointerType() &&
   5708        !Operand->getType()->isDependentType()) ||
   5709       Operand->getType()->isObjCObjectPointerType()) {
   5710     QualType PointeeTy = Operand->getType()->getPointeeType();
   5711     if (S.RequireCompleteType(
   5712           Loc, PointeeTy,
   5713           S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
   5714             << PointeeTy << Operand->getSourceRange()))
   5715       return false;
   5716   }
   5717 
   5718   return true;
   5719 }
   5720 
   5721 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   5722 /// operands.
   5723 ///
   5724 /// This routine will diagnose any invalid arithmetic on pointer operands much
   5725 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   5726 /// for emitting a single diagnostic even for operations where both LHS and RHS
   5727 /// are (potentially problematic) pointers.
   5728 ///
   5729 /// \returns True when the operand is valid to use (even if as an extension).
   5730 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   5731                                                 Expr *LHS, Expr *RHS) {
   5732   bool isLHSPointer = LHS->getType()->isAnyPointerType();
   5733   bool isRHSPointer = RHS->getType()->isAnyPointerType();
   5734   if (!isLHSPointer && !isRHSPointer) return true;
   5735 
   5736   QualType LHSPointeeTy, RHSPointeeTy;
   5737   if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
   5738   if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
   5739 
   5740   // Check for arithmetic on pointers to incomplete types.
   5741   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   5742   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   5743   if (isLHSVoidPtr || isRHSVoidPtr) {
   5744     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
   5745     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
   5746     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
   5747 
   5748     return !S.getLangOptions().CPlusPlus;
   5749   }
   5750 
   5751   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   5752   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   5753   if (isLHSFuncPtr || isRHSFuncPtr) {
   5754     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
   5755     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
   5756     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
   5757 
   5758     return !S.getLangOptions().CPlusPlus;
   5759   }
   5760 
   5761   Expr *Operands[] = { LHS, RHS };
   5762   for (unsigned i = 0; i < 2; ++i) {
   5763     Expr *Operand = Operands[i];
   5764     if ((Operand->getType()->isPointerType() &&
   5765          !Operand->getType()->isDependentType()) ||
   5766         Operand->getType()->isObjCObjectPointerType()) {
   5767       QualType PointeeTy = Operand->getType()->getPointeeType();
   5768       if (S.RequireCompleteType(
   5769             Loc, PointeeTy,
   5770             S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
   5771               << PointeeTy << Operand->getSourceRange()))
   5772         return false;
   5773     }
   5774   }
   5775   return true;
   5776 }
   5777 
   5778 QualType Sema::CheckAdditionOperands( // C99 6.5.6
   5779   ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
   5780   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
   5781     QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
   5782     if (CompLHSTy) *CompLHSTy = compType;
   5783     return compType;
   5784   }
   5785 
   5786   QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
   5787   if (lex.isInvalid() || rex.isInvalid())
   5788     return QualType();
   5789 
   5790   // handle the common case first (both operands are arithmetic).
   5791   if (lex.get()->getType()->isArithmeticType() &&
   5792       rex.get()->getType()->isArithmeticType()) {
   5793     if (CompLHSTy) *CompLHSTy = compType;
   5794     return compType;
   5795   }
   5796 
   5797   // Put any potential pointer into PExp
   5798   Expr* PExp = lex.get(), *IExp = rex.get();
   5799   if (IExp->getType()->isAnyPointerType())
   5800     std::swap(PExp, IExp);
   5801 
   5802   if (PExp->getType()->isAnyPointerType()) {
   5803     if (IExp->getType()->isIntegerType()) {
   5804       if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   5805         return QualType();
   5806 
   5807       QualType PointeeTy = PExp->getType()->getPointeeType();
   5808 
   5809       // Diagnose bad cases where we step over interface counts.
   5810       if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
   5811         Diag(Loc, diag::err_arithmetic_nonfragile_interface)
   5812           << PointeeTy << PExp->getSourceRange();
   5813         return QualType();
   5814       }
   5815 
   5816       if (CompLHSTy) {
   5817         QualType LHSTy = Context.isPromotableBitField(lex.get());
   5818         if (LHSTy.isNull()) {
   5819           LHSTy = lex.get()->getType();
   5820           if (LHSTy->isPromotableIntegerType())
   5821             LHSTy = Context.getPromotedIntegerType(LHSTy);
   5822         }
   5823         *CompLHSTy = LHSTy;
   5824       }
   5825       return PExp->getType();
   5826     }
   5827   }
   5828 
   5829   return InvalidOperands(Loc, lex, rex);
   5830 }
   5831 
   5832 // C99 6.5.6
   5833 QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
   5834                                         SourceLocation Loc, QualType* CompLHSTy) {
   5835   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
   5836     QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
   5837     if (CompLHSTy) *CompLHSTy = compType;
   5838     return compType;
   5839   }
   5840 
   5841   QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
   5842   if (lex.isInvalid() || rex.isInvalid())
   5843     return QualType();
   5844 
   5845   // Enforce type constraints: C99 6.5.6p3.
   5846 
   5847   // Handle the common case first (both operands are arithmetic).
   5848   if (lex.get()->getType()->isArithmeticType() &&
   5849       rex.get()->getType()->isArithmeticType()) {
   5850     if (CompLHSTy) *CompLHSTy = compType;
   5851     return compType;
   5852   }
   5853 
   5854   // Either ptr - int   or   ptr - ptr.
   5855   if (lex.get()->getType()->isAnyPointerType()) {
   5856     QualType lpointee = lex.get()->getType()->getPointeeType();
   5857 
   5858     // Diagnose bad cases where we step over interface counts.
   5859     if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
   5860       Diag(Loc, diag::err_arithmetic_nonfragile_interface)
   5861         << lpointee << lex.get()->getSourceRange();
   5862       return QualType();
   5863     }
   5864 
   5865     // The result type of a pointer-int computation is the pointer type.
   5866     if (rex.get()->getType()->isIntegerType()) {
   5867       if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
   5868         return QualType();
   5869 
   5870       if (CompLHSTy) *CompLHSTy = lex.get()->getType();
   5871       return lex.get()->getType();
   5872     }
   5873 
   5874     // Handle pointer-pointer subtractions.
   5875     if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
   5876       QualType rpointee = RHSPTy->getPointeeType();
   5877 
   5878       if (getLangOptions().CPlusPlus) {
   5879         // Pointee types must be the same: C++ [expr.add]
   5880         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   5881           Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   5882             << lex.get()->getType() << rex.get()->getType()
   5883             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5884           return QualType();
   5885         }
   5886       } else {
   5887         // Pointee types must be compatible C99 6.5.6p3
   5888         if (!Context.typesAreCompatible(
   5889                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   5890                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   5891           Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   5892             << lex.get()->getType() << rex.get()->getType()
   5893             << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5894           return QualType();
   5895         }
   5896       }
   5897 
   5898       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   5899                                                lex.get(), rex.get()))
   5900         return QualType();
   5901 
   5902       if (CompLHSTy) *CompLHSTy = lex.get()->getType();
   5903       return Context.getPointerDiffType();
   5904     }
   5905   }
   5906 
   5907   return InvalidOperands(Loc, lex, rex);
   5908 }
   5909 
   5910 static bool isScopedEnumerationType(QualType T) {
   5911   if (const EnumType *ET = dyn_cast<EnumType>(T))
   5912     return ET->getDecl()->isScoped();
   5913   return false;
   5914 }
   5915 
   5916 static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
   5917                                    SourceLocation Loc, unsigned Opc,
   5918                                    QualType LHSTy) {
   5919   llvm::APSInt Right;
   5920   // Check right/shifter operand
   5921   if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
   5922     return;
   5923 
   5924   if (Right.isNegative()) {
   5925     S.DiagRuntimeBehavior(Loc, rex.get(),
   5926                           S.PDiag(diag::warn_shift_negative)
   5927                             << rex.get()->getSourceRange());
   5928     return;
   5929   }
   5930   llvm::APInt LeftBits(Right.getBitWidth(),
   5931                        S.Context.getTypeSize(lex.get()->getType()));
   5932   if (Right.uge(LeftBits)) {
   5933     S.DiagRuntimeBehavior(Loc, rex.get(),
   5934                           S.PDiag(diag::warn_shift_gt_typewidth)
   5935                             << rex.get()->getSourceRange());
   5936     return;
   5937   }
   5938   if (Opc != BO_Shl)
   5939     return;
   5940 
   5941   // When left shifting an ICE which is signed, we can check for overflow which
   5942   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   5943   // integers have defined behavior modulo one more than the maximum value
   5944   // representable in the result type, so never warn for those.
   5945   llvm::APSInt Left;
   5946   if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
   5947       LHSTy->hasUnsignedIntegerRepresentation())
   5948     return;
   5949   llvm::APInt ResultBits =
   5950       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   5951   if (LeftBits.uge(ResultBits))
   5952     return;
   5953   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   5954   Result = Result.shl(Right);
   5955 
   5956   // Print the bit representation of the signed integer as an unsigned
   5957   // hexadecimal number.
   5958   llvm::SmallString<40> HexResult;
   5959   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   5960 
   5961   // If we are only missing a sign bit, this is less likely to result in actual
   5962   // bugs -- if the result is cast back to an unsigned type, it will have the
   5963   // expected value. Thus we place this behind a different warning that can be
   5964   // turned off separately if needed.
   5965   if (LeftBits == ResultBits - 1) {
   5966     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   5967         << HexResult.str() << LHSTy
   5968         << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5969     return;
   5970   }
   5971 
   5972   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   5973     << HexResult.str() << Result.getMinSignedBits() << LHSTy
   5974     << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   5975 }
   5976 
   5977 // C99 6.5.7
   5978 QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
   5979                                   unsigned Opc, bool isCompAssign) {
   5980   // C99 6.5.7p2: Each of the operands shall have integer type.
   5981   if (!lex.get()->getType()->hasIntegerRepresentation() ||
   5982       !rex.get()->getType()->hasIntegerRepresentation())
   5983     return InvalidOperands(Loc, lex, rex);
   5984 
   5985   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   5986   // hasIntegerRepresentation() above instead of this.
   5987   if (isScopedEnumerationType(lex.get()->getType()) ||
   5988       isScopedEnumerationType(rex.get()->getType())) {
   5989     return InvalidOperands(Loc, lex, rex);
   5990   }
   5991 
   5992   // Vector shifts promote their scalar inputs to vector type.
   5993   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
   5994     return CheckVectorOperands(lex, rex, Loc, isCompAssign);
   5995 
   5996   // Shifts don't perform usual arithmetic conversions, they just do integer
   5997   // promotions on each operand. C99 6.5.7p3
   5998 
   5999   // For the LHS, do usual unary conversions, but then reset them away
   6000   // if this is a compound assignment.
   6001   ExprResult old_lex = lex;
   6002   lex = UsualUnaryConversions(lex.take());
   6003   if (lex.isInvalid())
   6004     return QualType();
   6005   QualType LHSTy = lex.get()->getType();
   6006   if (isCompAssign) lex = old_lex;
   6007 
   6008   // The RHS is simpler.
   6009   rex = UsualUnaryConversions(rex.take());
   6010   if (rex.isInvalid())
   6011     return QualType();
   6012 
   6013   // Sanity-check shift operands
   6014   DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
   6015 
   6016   // "The type of the result is that of the promoted left operand."
   6017   return LHSTy;
   6018 }
   6019 
   6020 static bool IsWithinTemplateSpecialization(Decl *D) {
   6021   if (DeclContext *DC = D->getDeclContext()) {
   6022     if (isa<ClassTemplateSpecializationDecl>(DC))
   6023       return true;
   6024     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   6025       return FD->isFunctionTemplateSpecialization();
   6026   }
   6027   return false;
   6028 }
   6029 
   6030 // C99 6.5.8, C++ [expr.rel]
   6031 QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
   6032                                     unsigned OpaqueOpc, bool isRelational) {
   6033   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
   6034 
   6035   // Handle vector comparisons separately.
   6036   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
   6037     return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
   6038 
   6039   QualType lType = lex.get()->getType();
   6040   QualType rType = rex.get()->getType();
   6041 
   6042   Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
   6043   Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
   6044   QualType LHSStrippedType = LHSStripped->getType();
   6045   QualType RHSStrippedType = RHSStripped->getType();
   6046 
   6047 
   6048 
   6049   // Two different enums will raise a warning when compared.
   6050   if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
   6051     if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
   6052       if (LHSEnumType->getDecl()->getIdentifier() &&
   6053           RHSEnumType->getDecl()->getIdentifier() &&
   6054           !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
   6055         Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   6056           << LHSStrippedType << RHSStrippedType
   6057           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6058       }
   6059     }
   6060   }
   6061 
   6062   if (!lType->hasFloatingRepresentation() &&
   6063       !(lType->isBlockPointerType() && isRelational) &&
   6064       !lex.get()->getLocStart().isMacroID() &&
   6065       !rex.get()->getLocStart().isMacroID()) {
   6066     // For non-floating point types, check for self-comparisons of the form
   6067     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   6068     // often indicate logic errors in the program.
   6069     //
   6070     // NOTE: Don't warn about comparison expressions resulting from macro
   6071     // expansion. Also don't warn about comparisons which are only self
   6072     // comparisons within a template specialization. The warnings should catch
   6073     // obvious cases in the definition of the template anyways. The idea is to
   6074     // warn when the typed comparison operator will always evaluate to the same
   6075     // result.
   6076     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
   6077       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
   6078         if (DRL->getDecl() == DRR->getDecl() &&
   6079             !IsWithinTemplateSpecialization(DRL->getDecl())) {
   6080           DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
   6081                               << 0 // self-
   6082                               << (Opc == BO_EQ
   6083                                   || Opc == BO_LE
   6084                                   || Opc == BO_GE));
   6085         } else if (lType->isArrayType() && rType->isArrayType() &&
   6086                    !DRL->getDecl()->getType()->isReferenceType() &&
   6087                    !DRR->getDecl()->getType()->isReferenceType()) {
   6088             // what is it always going to eval to?
   6089             char always_evals_to;
   6090             switch(Opc) {
   6091             case BO_EQ: // e.g. array1 == array2
   6092               always_evals_to = 0; // false
   6093               break;
   6094             case BO_NE: // e.g. array1 != array2
   6095               always_evals_to = 1; // true
   6096               break;
   6097             default:
   6098               // best we can say is 'a constant'
   6099               always_evals_to = 2; // e.g. array1 <= array2
   6100               break;
   6101             }
   6102             DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
   6103                                 << 1 // array
   6104                                 << always_evals_to);
   6105         }
   6106       }
   6107     }
   6108 
   6109     if (isa<CastExpr>(LHSStripped))
   6110       LHSStripped = LHSStripped->IgnoreParenCasts();
   6111     if (isa<CastExpr>(RHSStripped))
   6112       RHSStripped = RHSStripped->IgnoreParenCasts();
   6113 
   6114     // Warn about comparisons against a string constant (unless the other
   6115     // operand is null), the user probably wants strcmp.
   6116     Expr *literalString = 0;
   6117     Expr *literalStringStripped = 0;
   6118     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   6119         !RHSStripped->isNullPointerConstant(Context,
   6120                                             Expr::NPC_ValueDependentIsNull)) {
   6121       literalString = lex.get();
   6122       literalStringStripped = LHSStripped;
   6123     } else if ((isa<StringLiteral>(RHSStripped) ||
   6124                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   6125                !LHSStripped->isNullPointerConstant(Context,
   6126                                             Expr::NPC_ValueDependentIsNull)) {
   6127       literalString = rex.get();
   6128       literalStringStripped = RHSStripped;
   6129     }
   6130 
   6131     if (literalString) {
   6132       std::string resultComparison;
   6133       switch (Opc) {
   6134       case BO_LT: resultComparison = ") < 0"; break;
   6135       case BO_GT: resultComparison = ") > 0"; break;
   6136       case BO_LE: resultComparison = ") <= 0"; break;
   6137       case BO_GE: resultComparison = ") >= 0"; break;
   6138       case BO_EQ: resultComparison = ") == 0"; break;
   6139       case BO_NE: resultComparison = ") != 0"; break;
   6140       default: assert(false && "Invalid comparison operator");
   6141       }
   6142 
   6143       DiagRuntimeBehavior(Loc, 0,
   6144         PDiag(diag::warn_stringcompare)
   6145           << isa<ObjCEncodeExpr>(literalStringStripped)
   6146           << literalString->getSourceRange());
   6147     }
   6148   }
   6149 
   6150   // C99 6.5.8p3 / C99 6.5.9p4
   6151   if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
   6152     UsualArithmeticConversions(lex, rex);
   6153     if (lex.isInvalid() || rex.isInvalid())
   6154       return QualType();
   6155   }
   6156   else {
   6157     lex = UsualUnaryConversions(lex.take());
   6158     if (lex.isInvalid())
   6159       return QualType();
   6160 
   6161     rex = UsualUnaryConversions(rex.take());
   6162     if (rex.isInvalid())
   6163       return QualType();
   6164   }
   6165 
   6166   lType = lex.get()->getType();
   6167   rType = rex.get()->getType();
   6168 
   6169   // The result of comparisons is 'bool' in C++, 'int' in C.
   6170   QualType ResultTy = Context.getLogicalOperationType();
   6171 
   6172   if (isRelational) {
   6173     if (lType->isRealType() && rType->isRealType())
   6174       return ResultTy;
   6175   } else {
   6176     // Check for comparisons of floating point operands using != and ==.
   6177     if (lType->hasFloatingRepresentation())
   6178       CheckFloatComparison(Loc, lex.get(), rex.get());
   6179 
   6180     if (lType->isArithmeticType() && rType->isArithmeticType())
   6181       return ResultTy;
   6182   }
   6183 
   6184   bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
   6185                                               Expr::NPC_ValueDependentIsNull);
   6186   bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
   6187                                               Expr::NPC_ValueDependentIsNull);
   6188 
   6189   // All of the following pointer-related warnings are GCC extensions, except
   6190   // when handling null pointer constants.
   6191   if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
   6192     QualType LCanPointeeTy =
   6193       Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
   6194     QualType RCanPointeeTy =
   6195       Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
   6196 
   6197     if (getLangOptions().CPlusPlus) {
   6198       if (LCanPointeeTy == RCanPointeeTy)
   6199         return ResultTy;
   6200       if (!isRelational &&
   6201           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   6202         // Valid unless comparison between non-null pointer and function pointer
   6203         // This is a gcc extension compatibility comparison.
   6204         // In a SFINAE context, we treat this as a hard error to maintain
   6205         // conformance with the C++ standard.
   6206         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   6207             && !LHSIsNull && !RHSIsNull) {
   6208           Diag(Loc,
   6209                isSFINAEContext()?
   6210                    diag::err_typecheck_comparison_of_fptr_to_void
   6211                  : diag::ext_typecheck_comparison_of_fptr_to_void)
   6212             << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6213 
   6214           if (isSFINAEContext())
   6215             return QualType();
   6216 
   6217           rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6218           return ResultTy;
   6219         }
   6220       }
   6221 
   6222       // C++ [expr.rel]p2:
   6223       //   [...] Pointer conversions (4.10) and qualification
   6224       //   conversions (4.4) are performed on pointer operands (or on
   6225       //   a pointer operand and a null pointer constant) to bring
   6226       //   them to their composite pointer type. [...]
   6227       //
   6228       // C++ [expr.eq]p1 uses the same notion for (in)equality
   6229       // comparisons of pointers.
   6230       bool NonStandardCompositeType = false;
   6231       QualType T = FindCompositePointerType(Loc, lex, rex,
   6232                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   6233       if (T.isNull()) {
   6234         Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
   6235           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6236         return QualType();
   6237       } else if (NonStandardCompositeType) {
   6238         Diag(Loc,
   6239              diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   6240           << lType << rType << T
   6241           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6242       }
   6243 
   6244       lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
   6245       rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
   6246       return ResultTy;
   6247     }
   6248     // C99 6.5.9p2 and C99 6.5.8p2
   6249     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   6250                                    RCanPointeeTy.getUnqualifiedType())) {
   6251       // Valid unless a relational comparison of function pointers
   6252       if (isRelational && LCanPointeeTy->isFunctionType()) {
   6253         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   6254           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6255       }
   6256     } else if (!isRelational &&
   6257                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   6258       // Valid unless comparison between non-null pointer and function pointer
   6259       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   6260           && !LHSIsNull && !RHSIsNull) {
   6261         Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
   6262           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6263       }
   6264     } else {
   6265       // Invalid
   6266       Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
   6267         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6268     }
   6269     if (LCanPointeeTy != RCanPointeeTy) {
   6270       if (LHSIsNull && !RHSIsNull)
   6271         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
   6272       else
   6273         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6274     }
   6275     return ResultTy;
   6276   }
   6277 
   6278   if (getLangOptions().CPlusPlus) {
   6279     // Comparison of nullptr_t with itself.
   6280     if (lType->isNullPtrType() && rType->isNullPtrType())
   6281       return ResultTy;
   6282 
   6283     // Comparison of pointers with null pointer constants and equality
   6284     // comparisons of member pointers to null pointer constants.
   6285     if (RHSIsNull &&
   6286         ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
   6287          (!isRelational &&
   6288           (lType->isMemberPointerType() || lType->isBlockPointerType())))) {
   6289       rex = ImpCastExprToType(rex.take(), lType,
   6290                         lType->isMemberPointerType()
   6291                           ? CK_NullToMemberPointer
   6292                           : CK_NullToPointer);
   6293       return ResultTy;
   6294     }
   6295     if (LHSIsNull &&
   6296         ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
   6297          (!isRelational &&
   6298           (rType->isMemberPointerType() || rType->isBlockPointerType())))) {
   6299       lex = ImpCastExprToType(lex.take(), rType,
   6300                         rType->isMemberPointerType()
   6301                           ? CK_NullToMemberPointer
   6302                           : CK_NullToPointer);
   6303       return ResultTy;
   6304     }
   6305 
   6306     // Comparison of member pointers.
   6307     if (!isRelational &&
   6308         lType->isMemberPointerType() && rType->isMemberPointerType()) {
   6309       // C++ [expr.eq]p2:
   6310       //   In addition, pointers to members can be compared, or a pointer to
   6311       //   member and a null pointer constant. Pointer to member conversions
   6312       //   (4.11) and qualification conversions (4.4) are performed to bring
   6313       //   them to a common type. If one operand is a null pointer constant,
   6314       //   the common type is the type of the other operand. Otherwise, the
   6315       //   common type is a pointer to member type similar (4.4) to the type
   6316       //   of one of the operands, with a cv-qualification signature (4.4)
   6317       //   that is the union of the cv-qualification signatures of the operand
   6318       //   types.
   6319       bool NonStandardCompositeType = false;
   6320       QualType T = FindCompositePointerType(Loc, lex, rex,
   6321                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   6322       if (T.isNull()) {
   6323         Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
   6324           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6325         return QualType();
   6326       } else if (NonStandardCompositeType) {
   6327         Diag(Loc,
   6328              diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   6329           << lType << rType << T
   6330           << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6331       }
   6332 
   6333       lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
   6334       rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
   6335       return ResultTy;
   6336     }
   6337 
   6338     // Handle scoped enumeration types specifically, since they don't promote
   6339     // to integers.
   6340     if (lex.get()->getType()->isEnumeralType() &&
   6341         Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
   6342       return ResultTy;
   6343   }
   6344 
   6345   // Handle block pointer types.
   6346   if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
   6347     QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
   6348     QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
   6349 
   6350     if (!LHSIsNull && !RHSIsNull &&
   6351         !Context.typesAreCompatible(lpointee, rpointee)) {
   6352       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   6353         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6354     }
   6355     rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6356     return ResultTy;
   6357   }
   6358 
   6359   // Allow block pointers to be compared with null pointer constants.
   6360   if (!isRelational
   6361       && ((lType->isBlockPointerType() && rType->isPointerType())
   6362           || (lType->isPointerType() && rType->isBlockPointerType()))) {
   6363     if (!LHSIsNull && !RHSIsNull) {
   6364       if (!((rType->isPointerType() && rType->castAs<PointerType>()
   6365              ->getPointeeType()->isVoidType())
   6366             || (lType->isPointerType() && lType->castAs<PointerType>()
   6367                 ->getPointeeType()->isVoidType())))
   6368         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   6369           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6370     }
   6371     if (LHSIsNull && !RHSIsNull)
   6372       lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
   6373     else
   6374       rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6375     return ResultTy;
   6376   }
   6377 
   6378   if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
   6379     const PointerType *LPT = lType->getAs<PointerType>();
   6380     const PointerType *RPT = rType->getAs<PointerType>();
   6381     if (LPT || RPT) {
   6382       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   6383       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   6384 
   6385       if (!LPtrToVoid && !RPtrToVoid &&
   6386           !Context.typesAreCompatible(lType, rType)) {
   6387         Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
   6388           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6389       }
   6390       if (LHSIsNull && !RHSIsNull)
   6391         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
   6392       else
   6393         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6394       return ResultTy;
   6395     }
   6396     if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
   6397       if (!Context.areComparableObjCPointerTypes(lType, rType))
   6398         Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
   6399           << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6400       if (LHSIsNull && !RHSIsNull)
   6401         lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
   6402       else
   6403         rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
   6404       return ResultTy;
   6405     }
   6406   }
   6407   if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
   6408       (lType->isIntegerType() && rType->isAnyPointerType())) {
   6409     unsigned DiagID = 0;
   6410     bool isError = false;
   6411     if ((LHSIsNull && lType->isIntegerType()) ||
   6412         (RHSIsNull && rType->isIntegerType())) {
   6413       if (isRelational && !getLangOptions().CPlusPlus)
   6414         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   6415     } else if (isRelational && !getLangOptions().CPlusPlus)
   6416       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   6417     else if (getLangOptions().CPlusPlus) {
   6418       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   6419       isError = true;
   6420     } else
   6421       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   6422 
   6423     if (DiagID) {
   6424       Diag(Loc, DiagID)
   6425         << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
   6426       if (isError)
   6427         return QualType();
   6428     }
   6429 
   6430     if (lType->isIntegerType())
   6431       lex = ImpCastExprToType(lex.take(), rType,
   6432                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   6433     else
   6434       rex = ImpCastExprToType(rex.take(), lType,
   6435                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   6436     return ResultTy;
   6437   }
   6438 
   6439   // Handle block pointers.
   6440   if (!isRelational && RHSIsNull
   6441       && lType->isBlockPointerType() && rType->isIntegerType()) {
   6442     rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
   6443     return ResultTy;
   6444   }
   6445   if (!isRelational && LHSIsNull
   6446       && lType->isIntegerType() && rType->isBlockPointerType()) {
   6447     lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
   6448     return ResultTy;
   6449   }
   6450 
   6451   return InvalidOperands(Loc, lex, rex);
   6452 }
   6453 
   6454 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   6455 /// operates on extended vector types.  Instead of producing an IntTy result,
   6456 /// like a scalar comparison, a vector comparison produces a vector of integer
   6457 /// types.
   6458 QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
   6459                                           SourceLocation Loc,
   6460                                           bool isRelational) {
   6461   // Check to make sure we're operating on vectors of the same type and width,
   6462   // Allowing one side to be a scalar of element type.
   6463   QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
   6464   if (vType.isNull())
   6465     return vType;
   6466 
   6467   QualType lType = lex.get()->getType();
   6468   QualType rType = rex.get()->getType();
   6469 
   6470   // If AltiVec, the comparison results in a numeric type, i.e.
   6471   // bool for C++, int for C
   6472   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   6473     return Context.getLogicalOperationType();
   6474 
   6475   // For non-floating point types, check for self-comparisons of the form
   6476   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   6477   // often indicate logic errors in the program.
   6478   if (!lType->hasFloatingRepresentation()) {
   6479     if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
   6480       if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
   6481         if (DRL->getDecl() == DRR->getDecl())
   6482           DiagRuntimeBehavior(Loc, 0,
   6483                               PDiag(diag::warn_comparison_always)
   6484                                 << 0 // self-
   6485                                 << 2 // "a constant"
   6486                               );
   6487   }
   6488 
   6489   // Check for comparisons of floating point operands using != and ==.
   6490   if (!isRelational && lType->hasFloatingRepresentation()) {
   6491     assert (rType->hasFloatingRepresentation());
   6492     CheckFloatComparison(Loc, lex.get(), rex.get());
   6493   }
   6494 
   6495   // Return the type for the comparison, which is the same as vector type for
   6496   // integer vectors, or an integer type of identical size and number of
   6497   // elements for floating point vectors.
   6498   if (lType->hasIntegerRepresentation())
   6499     return lType;
   6500 
   6501   const VectorType *VTy = lType->getAs<VectorType>();
   6502   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   6503   if (TypeSize == Context.getTypeSize(Context.IntTy))
   6504     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   6505   if (TypeSize == Context.getTypeSize(Context.LongTy))
   6506     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   6507 
   6508   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   6509          "Unhandled vector element size in vector compare");
   6510   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   6511 }
   6512 
   6513 inline QualType Sema::CheckBitwiseOperands(
   6514   ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
   6515   if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
   6516     if (lex.get()->getType()->hasIntegerRepresentation() &&
   6517         rex.get()->getType()->hasIntegerRepresentation())
   6518       return CheckVectorOperands(lex, rex, Loc, isCompAssign);
   6519 
   6520     return InvalidOperands(Loc, lex, rex);
   6521   }
   6522 
   6523   ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
   6524   QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
   6525   if (lexResult.isInvalid() || rexResult.isInvalid())
   6526     return QualType();
   6527   lex = lexResult.take();
   6528   rex = rexResult.take();
   6529 
   6530   if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
   6531       rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
   6532     return compType;
   6533   return InvalidOperands(Loc, lex, rex);
   6534 }
   6535 
   6536 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
   6537   ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
   6538 
   6539   // Diagnose cases where the user write a logical and/or but probably meant a
   6540   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   6541   // is a constant.
   6542   if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
   6543       rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
   6544       // Don't warn in macros or template instantiations.
   6545       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   6546     // If the RHS can be constant folded, and if it constant folds to something
   6547     // that isn't 0 or 1 (which indicate a potential logical operation that
   6548     // happened to fold to true/false) then warn.
   6549     // Parens on the RHS are ignored.
   6550     Expr::EvalResult Result;
   6551     if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
   6552       if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
   6553           (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
   6554         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   6555           << rex.get()->getSourceRange()
   6556           << (Opc == BO_LAnd ? "&&" : "||")
   6557           << (Opc == BO_LAnd ? "&" : "|");
   6558     }
   6559   }
   6560 
   6561   if (!Context.getLangOptions().CPlusPlus) {
   6562     lex = UsualUnaryConversions(lex.take());
   6563     if (lex.isInvalid())
   6564       return QualType();
   6565 
   6566     rex = UsualUnaryConversions(rex.take());
   6567     if (rex.isInvalid())
   6568       return QualType();
   6569 
   6570     if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
   6571       return InvalidOperands(Loc, lex, rex);
   6572 
   6573     return Context.IntTy;
   6574   }
   6575 
   6576   // The following is safe because we only use this method for
   6577   // non-overloadable operands.
   6578 
   6579   // C++ [expr.log.and]p1
   6580   // C++ [expr.log.or]p1
   6581   // The operands are both contextually converted to type bool.
   6582   ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
   6583   if (lexRes.isInvalid())
   6584     return InvalidOperands(Loc, lex, rex);
   6585   lex = move(lexRes);
   6586 
   6587   ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
   6588   if (rexRes.isInvalid())
   6589     return InvalidOperands(Loc, lex, rex);
   6590   rex = move(rexRes);
   6591 
   6592   // C++ [expr.log.and]p2
   6593   // C++ [expr.log.or]p2
   6594   // The result is a bool.
   6595   return Context.BoolTy;
   6596 }
   6597 
   6598 /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
   6599 /// is a read-only property; return true if so. A readonly property expression
   6600 /// depends on various declarations and thus must be treated specially.
   6601 ///
   6602 static bool IsReadonlyProperty(Expr *E, Sema &S) {
   6603   if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
   6604     const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
   6605     if (PropExpr->isImplicitProperty()) return false;
   6606 
   6607     ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
   6608     QualType BaseType = PropExpr->isSuperReceiver() ?
   6609                             PropExpr->getSuperReceiverType() :
   6610                             PropExpr->getBase()->getType();
   6611 
   6612     if (const ObjCObjectPointerType *OPT =
   6613           BaseType->getAsObjCInterfacePointerType())
   6614       if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
   6615         if (S.isPropertyReadonly(PDecl, IFace))
   6616           return true;
   6617   }
   6618   return false;
   6619 }
   6620 
   6621 static bool IsConstProperty(Expr *E, Sema &S) {
   6622   if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
   6623     const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
   6624     if (PropExpr->isImplicitProperty()) return false;
   6625 
   6626     ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
   6627     QualType T = PDecl->getType();
   6628     if (T->isReferenceType())
   6629       T = T->getAs<ReferenceType>()->getPointeeType();
   6630     CanQualType CT = S.Context.getCanonicalType(T);
   6631     return CT.isConstQualified();
   6632   }
   6633   return false;
   6634 }
   6635 
   6636 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   6637   if (E->getStmtClass() != Expr::MemberExprClass)
   6638     return false;
   6639   const MemberExpr *ME = cast<MemberExpr>(E);
   6640   NamedDecl *Member = ME->getMemberDecl();
   6641   if (isa<FieldDecl>(Member)) {
   6642     Expr *Base = ME->getBase()->IgnoreParenImpCasts();
   6643     if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
   6644       return false;
   6645     return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
   6646   }
   6647   return false;
   6648 }
   6649 
   6650 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   6651 /// emit an error and return true.  If so, return false.
   6652 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   6653   SourceLocation OrigLoc = Loc;
   6654   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   6655                                                               &Loc);
   6656   if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
   6657     IsLV = Expr::MLV_ReadonlyProperty;
   6658   else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
   6659     IsLV = Expr::MLV_Valid;
   6660   else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   6661     IsLV = Expr::MLV_InvalidMessageExpression;
   6662   if (IsLV == Expr::MLV_Valid)
   6663     return false;
   6664 
   6665   unsigned Diag = 0;
   6666   bool NeedType = false;
   6667   switch (IsLV) { // C99 6.5.16p2
   6668   case Expr::MLV_ConstQualified:
   6669     Diag = diag::err_typecheck_assign_const;
   6670 
   6671     // In ARC, use some specialized diagnostics for occasions where we
   6672     // infer 'const'.  These are always pseudo-strong variables.
   6673     if (S.getLangOptions().ObjCAutoRefCount) {
   6674       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   6675       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   6676         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   6677 
   6678         // Use the normal diagnostic if it's pseudo-__strong but the
   6679         // user actually wrote 'const'.
   6680         if (var->isARCPseudoStrong() &&
   6681             (!var->getTypeSourceInfo() ||
   6682              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   6683           // There are two pseudo-strong cases:
   6684           //  - self
   6685           ObjCMethodDecl *method = S.getCurMethodDecl();
   6686           if (method && var == method->getSelfDecl())
   6687             Diag = diag::err_typecheck_arr_assign_self;
   6688 
   6689           //  - fast enumeration variables
   6690           else
   6691             Diag = diag::err_typecheck_arr_assign_enumeration;
   6692 
   6693           SourceRange Assign;
   6694           if (Loc != OrigLoc)
   6695             Assign = SourceRange(OrigLoc, OrigLoc);
   6696           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   6697           // We need to preserve the AST regardless, so migration tool
   6698           // can do its job.
   6699           return false;
   6700         }
   6701       }
   6702     }
   6703 
   6704     break;
   6705   case Expr::MLV_ArrayType:
   6706     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
   6707     NeedType = true;
   6708     break;
   6709   case Expr::MLV_NotObjectType:
   6710     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
   6711     NeedType = true;
   6712     break;
   6713   case Expr::MLV_LValueCast:
   6714     Diag = diag::err_typecheck_lvalue_casts_not_supported;
   6715     break;
   6716   case Expr::MLV_Valid:
   6717     llvm_unreachable("did not take early return for MLV_Valid");
   6718   case Expr::MLV_InvalidExpression:
   6719   case Expr::MLV_MemberFunction:
   6720   case Expr::MLV_ClassTemporary:
   6721     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
   6722     break;
   6723   case Expr::MLV_IncompleteType:
   6724   case Expr::MLV_IncompleteVoidType:
   6725     return S.RequireCompleteType(Loc, E->getType(),
   6726               S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
   6727                   << E->getSourceRange());
   6728   case Expr::MLV_DuplicateVectorComponents:
   6729     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   6730     break;
   6731   case Expr::MLV_NotBlockQualified:
   6732     Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
   6733     break;
   6734   case Expr::MLV_ReadonlyProperty:
   6735     Diag = diag::error_readonly_property_assignment;
   6736     break;
   6737   case Expr::MLV_NoSetterProperty:
   6738     Diag = diag::error_nosetter_property_assignment;
   6739     break;
   6740   case Expr::MLV_InvalidMessageExpression:
   6741     Diag = diag::error_readonly_message_assignment;
   6742     break;
   6743   case Expr::MLV_SubObjCPropertySetting:
   6744     Diag = diag::error_no_subobject_property_setting;
   6745     break;
   6746   }
   6747 
   6748   SourceRange Assign;
   6749   if (Loc != OrigLoc)
   6750     Assign = SourceRange(OrigLoc, OrigLoc);
   6751   if (NeedType)
   6752     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
   6753   else
   6754     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   6755   return true;
   6756 }
   6757 
   6758 
   6759 
   6760 // C99 6.5.16.1
   6761 QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
   6762                                        SourceLocation Loc,
   6763                                        QualType CompoundType) {
   6764   // Verify that LHS is a modifiable lvalue, and emit error if not.
   6765   if (CheckForModifiableLvalue(LHS, Loc, *this))
   6766     return QualType();
   6767 
   6768   QualType LHSType = LHS->getType();
   6769   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
   6770   AssignConvertType ConvTy;
   6771   if (CompoundType.isNull()) {
   6772     QualType LHSTy(LHSType);
   6773     // Simple assignment "x = y".
   6774     if (LHS->getObjectKind() == OK_ObjCProperty) {
   6775       ExprResult LHSResult = Owned(LHS);
   6776       ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
   6777       if (LHSResult.isInvalid())
   6778         return QualType();
   6779       LHS = LHSResult.take();
   6780     }
   6781     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   6782     if (RHS.isInvalid())
   6783       return QualType();
   6784     // Special case of NSObject attributes on c-style pointer types.
   6785     if (ConvTy == IncompatiblePointer &&
   6786         ((Context.isObjCNSObjectType(LHSType) &&
   6787           RHSType->isObjCObjectPointerType()) ||
   6788          (Context.isObjCNSObjectType(RHSType) &&
   6789           LHSType->isObjCObjectPointerType())))
   6790       ConvTy = Compatible;
   6791 
   6792     if (ConvTy == Compatible &&
   6793         getLangOptions().ObjCNonFragileABI &&
   6794         LHSType->isObjCObjectType())
   6795       Diag(Loc, diag::err_assignment_requires_nonfragile_object)
   6796         << LHSType;
   6797 
   6798     // If the RHS is a unary plus or minus, check to see if they = and + are
   6799     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   6800     // instead of "x += 4".
   6801     Expr *RHSCheck = RHS.get();
   6802     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   6803       RHSCheck = ICE->getSubExpr();
   6804     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   6805       if ((UO->getOpcode() == UO_Plus ||
   6806            UO->getOpcode() == UO_Minus) &&
   6807           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   6808           // Only if the two operators are exactly adjacent.
   6809           Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
   6810           // And there is a space or other character before the subexpr of the
   6811           // unary +/-.  We don't want to warn on "x=-1".
   6812           Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   6813           UO->getSubExpr()->getLocStart().isFileID()) {
   6814         Diag(Loc, diag::warn_not_compound_assign)
   6815           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   6816           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   6817       }
   6818     }
   6819 
   6820     if (ConvTy == Compatible) {
   6821       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
   6822         checkRetainCycles(LHS, RHS.get());
   6823       else if (getLangOptions().ObjCAutoRefCount)
   6824         checkUnsafeExprAssigns(Loc, LHS, RHS.get());
   6825     }
   6826   } else {
   6827     // Compound assignment "x += y"
   6828     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   6829   }
   6830 
   6831   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   6832                                RHS.get(), AA_Assigning))
   6833     return QualType();
   6834 
   6835   CheckForNullPointerDereference(*this, LHS);
   6836   // Check for trivial buffer overflows.
   6837   CheckArrayAccess(LHS->IgnoreParenCasts());
   6838 
   6839   // C99 6.5.16p3: The type of an assignment expression is the type of the
   6840   // left operand unless the left operand has qualified type, in which case
   6841   // it is the unqualified version of the type of the left operand.
   6842   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   6843   // is converted to the type of the assignment expression (above).
   6844   // C++ 5.17p1: the type of the assignment expression is that of its left
   6845   // operand.
   6846   return (getLangOptions().CPlusPlus
   6847           ? LHSType : LHSType.getUnqualifiedType());
   6848 }
   6849 
   6850 // C99 6.5.17
   6851 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   6852                                    SourceLocation Loc) {
   6853   S.DiagnoseUnusedExprResult(LHS.get());
   6854 
   6855   LHS = S.CheckPlaceholderExpr(LHS.take());
   6856   RHS = S.CheckPlaceholderExpr(RHS.take());
   6857   if (LHS.isInvalid() || RHS.isInvalid())
   6858     return QualType();
   6859 
   6860   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   6861   // operands, but not unary promotions.
   6862   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   6863 
   6864   // So we treat the LHS as a ignored value, and in C++ we allow the
   6865   // containing site to determine what should be done with the RHS.
   6866   LHS = S.IgnoredValueConversions(LHS.take());
   6867   if (LHS.isInvalid())
   6868     return QualType();
   6869 
   6870   if (!S.getLangOptions().CPlusPlus) {
   6871     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
   6872     if (RHS.isInvalid())
   6873       return QualType();
   6874     if (!RHS.get()->getType()->isVoidType())
   6875       S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
   6876   }
   6877 
   6878   return RHS.get()->getType();
   6879 }
   6880 
   6881 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   6882 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   6883 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   6884                                                ExprValueKind &VK,
   6885                                                SourceLocation OpLoc,
   6886                                                bool isInc, bool isPrefix) {
   6887   if (Op->isTypeDependent())
   6888     return S.Context.DependentTy;
   6889 
   6890   QualType ResType = Op->getType();
   6891   assert(!ResType.isNull() && "no type for increment/decrement expression");
   6892 
   6893   if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
   6894     // Decrement of bool is not allowed.
   6895     if (!isInc) {
   6896       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   6897       return QualType();
   6898     }
   6899     // Increment of bool sets it to true, but is deprecated.
   6900     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
   6901   } else if (ResType->isRealType()) {
   6902     // OK!
   6903   } else if (ResType->isAnyPointerType()) {
   6904     QualType PointeeTy = ResType->getPointeeType();
   6905 
   6906     // C99 6.5.2.4p2, 6.5.6p2
   6907     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   6908       return QualType();
   6909 
   6910     // Diagnose bad cases where we step over interface counts.
   6911     else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
   6912       S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
   6913         << PointeeTy << Op->getSourceRange();
   6914       return QualType();
   6915     }
   6916   } else if (ResType->isAnyComplexType()) {
   6917     // C99 does not support ++/-- on complex types, we allow as an extension.
   6918     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   6919       << ResType << Op->getSourceRange();
   6920   } else if (ResType->isPlaceholderType()) {
   6921     ExprResult PR = S.CheckPlaceholderExpr(Op);
   6922     if (PR.isInvalid()) return QualType();
   6923     return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
   6924                                           isInc, isPrefix);
   6925   } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
   6926     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   6927   } else {
   6928     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   6929       << ResType << int(isInc) << Op->getSourceRange();
   6930     return QualType();
   6931   }
   6932   // At this point, we know we have a real, complex or pointer type.
   6933   // Now make sure the operand is a modifiable lvalue.
   6934   if (CheckForModifiableLvalue(Op, OpLoc, S))
   6935     return QualType();
   6936   // In C++, a prefix increment is the same type as the operand. Otherwise
   6937   // (in C or with postfix), the increment is the unqualified type of the
   6938   // operand.
   6939   if (isPrefix && S.getLangOptions().CPlusPlus) {
   6940     VK = VK_LValue;
   6941     return ResType;
   6942   } else {
   6943     VK = VK_RValue;
   6944     return ResType.getUnqualifiedType();
   6945   }
   6946 }
   6947 
   6948 ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
   6949   assert(E->getValueKind() == VK_LValue &&
   6950          E->getObjectKind() == OK_ObjCProperty);
   6951   const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
   6952 
   6953   QualType T = E->getType();
   6954   QualType ReceiverType;
   6955   if (PRE->isObjectReceiver())
   6956     ReceiverType = PRE->getBase()->getType();
   6957   else if (PRE->isSuperReceiver())
   6958     ReceiverType = PRE->getSuperReceiverType();
   6959   else
   6960     ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
   6961 
   6962   ExprValueKind VK = VK_RValue;
   6963   if (PRE->isImplicitProperty()) {
   6964     if (ObjCMethodDecl *GetterMethod =
   6965           PRE->getImplicitPropertyGetter()) {
   6966       T = getMessageSendResultType(ReceiverType, GetterMethod,
   6967                                    PRE->isClassReceiver(),
   6968                                    PRE->isSuperReceiver());
   6969       VK = Expr::getValueKindForType(GetterMethod->getResultType());
   6970     }
   6971     else {
   6972       Diag(PRE->getLocation(), diag::err_getter_not_found)
   6973             << PRE->getBase()->getType();
   6974     }
   6975   }
   6976 
   6977   E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
   6978                                E, 0, VK);
   6979 
   6980   ExprResult Result = MaybeBindToTemporary(E);
   6981   if (!Result.isInvalid())
   6982     E = Result.take();
   6983 
   6984   return Owned(E);
   6985 }
   6986 
   6987 void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
   6988   assert(LHS.get()->getValueKind() == VK_LValue &&
   6989          LHS.get()->getObjectKind() == OK_ObjCProperty);
   6990   const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
   6991 
   6992   bool Consumed = false;
   6993 
   6994   if (PropRef->isImplicitProperty()) {
   6995     // If using property-dot syntax notation for assignment, and there is a
   6996     // setter, RHS expression is being passed to the setter argument. So,
   6997     // type conversion (and comparison) is RHS to setter's argument type.
   6998     if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
   6999       ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
   7000       LHSTy = (*P)->getType();
   7001       Consumed = (getLangOptions().ObjCAutoRefCount &&
   7002                   (*P)->hasAttr<NSConsumedAttr>());
   7003 
   7004     // Otherwise, if the getter returns an l-value, just call that.
   7005     } else {
   7006       QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
   7007       ExprValueKind VK = Expr::getValueKindForType(Result);
   7008       if (VK == VK_LValue) {
   7009         LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
   7010                                         CK_GetObjCProperty, LHS.take(), 0, VK);
   7011         return;
   7012       }
   7013     }
   7014   } else if (getLangOptions().ObjCAutoRefCount) {
   7015     const ObjCMethodDecl *setter
   7016       = PropRef->getExplicitProperty()->getSetterMethodDecl();
   7017     if (setter) {
   7018       ObjCMethodDecl::param_iterator P = setter->param_begin();
   7019       LHSTy = (*P)->getType();
   7020       Consumed = (*P)->hasAttr<NSConsumedAttr>();
   7021     }
   7022   }
   7023 
   7024   if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) ||
   7025       getLangOptions().ObjCAutoRefCount) {
   7026     InitializedEntity Entity =
   7027       InitializedEntity::InitializeParameter(Context, LHSTy, Consumed);
   7028     ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
   7029     if (!ArgE.isInvalid()) {
   7030       RHS = ArgE;
   7031       if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver())
   7032         checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get());
   7033     }
   7034   }
   7035 }
   7036 
   7037 
   7038 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   7039 /// This routine allows us to typecheck complex/recursive expressions
   7040 /// where the declaration is needed for type checking. We only need to
   7041 /// handle cases when the expression references a function designator
   7042 /// or is an lvalue. Here are some examples:
   7043 ///  - &(x) => x
   7044 ///  - &*****f => f for f a function designator.
   7045 ///  - &s.xx => s
   7046 ///  - &s.zz[1].yy -> s, if zz is an array
   7047 ///  - *(x + 1) -> x, if x is an array
   7048 ///  - &"123"[2] -> 0
   7049 ///  - & __real__ x -> x
   7050 static ValueDecl *getPrimaryDecl(Expr *E) {
   7051   switch (E->getStmtClass()) {
   7052   case Stmt::DeclRefExprClass:
   7053     return cast<DeclRefExpr>(E)->getDecl();
   7054   case Stmt::MemberExprClass:
   7055     // If this is an arrow operator, the address is an offset from
   7056     // the base's value, so the object the base refers to is
   7057     // irrelevant.
   7058     if (cast<MemberExpr>(E)->isArrow())
   7059       return 0;
   7060     // Otherwise, the expression refers to a part of the base
   7061     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   7062   case Stmt::ArraySubscriptExprClass: {
   7063     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   7064     // promotion of register arrays earlier.
   7065     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   7066     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   7067       if (ICE->getSubExpr()->getType()->isArrayType())
   7068         return getPrimaryDecl(ICE->getSubExpr());
   7069     }
   7070     return 0;
   7071   }
   7072   case Stmt::UnaryOperatorClass: {
   7073     UnaryOperator *UO = cast<UnaryOperator>(E);
   7074 
   7075     switch(UO->getOpcode()) {
   7076     case UO_Real:
   7077     case UO_Imag:
   7078     case UO_Extension:
   7079       return getPrimaryDecl(UO->getSubExpr());
   7080     default:
   7081       return 0;
   7082     }
   7083   }
   7084   case Stmt::ParenExprClass:
   7085     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   7086   case Stmt::ImplicitCastExprClass:
   7087     // If the result of an implicit cast is an l-value, we care about
   7088     // the sub-expression; otherwise, the result here doesn't matter.
   7089     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   7090   default:
   7091     return 0;
   7092   }
   7093 }
   7094 
   7095 /// CheckAddressOfOperand - The operand of & must be either a function
   7096 /// designator or an lvalue designating an object. If it is an lvalue, the
   7097 /// object cannot be declared with storage class register or be a bit field.
   7098 /// Note: The usual conversions are *not* applied to the operand of the &
   7099 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   7100 /// In C++, the operand might be an overloaded function name, in which case
   7101 /// we allow the '&' but retain the overloaded-function type.
   7102 static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
   7103                                       SourceLocation OpLoc) {
   7104   if (OrigOp->isTypeDependent())
   7105     return S.Context.DependentTy;
   7106   if (OrigOp->getType() == S.Context.OverloadTy)
   7107     return S.Context.OverloadTy;
   7108   if (OrigOp->getType() == S.Context.UnknownAnyTy)
   7109     return S.Context.UnknownAnyTy;
   7110   if (OrigOp->getType() == S.Context.BoundMemberTy) {
   7111     S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   7112       << OrigOp->getSourceRange();
   7113     return QualType();
   7114   }
   7115 
   7116   assert(!OrigOp->getType()->isPlaceholderType());
   7117 
   7118   // Make sure to ignore parentheses in subsequent checks
   7119   Expr *op = OrigOp->IgnoreParens();
   7120 
   7121   if (S.getLangOptions().C99) {
   7122     // Implement C99-only parts of addressof rules.
   7123     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   7124       if (uOp->getOpcode() == UO_Deref)
   7125         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   7126         // (assuming the deref expression is valid).
   7127         return uOp->getSubExpr()->getType();
   7128     }
   7129     // Technically, there should be a check for array subscript
   7130     // expressions here, but the result of one is always an lvalue anyway.
   7131   }
   7132   ValueDecl *dcl = getPrimaryDecl(op);
   7133   Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
   7134 
   7135   if (lval == Expr::LV_ClassTemporary) {
   7136     bool sfinae = S.isSFINAEContext();
   7137     S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
   7138                          : diag::ext_typecheck_addrof_class_temporary)
   7139       << op->getType() << op->getSourceRange();
   7140     if (sfinae)
   7141       return QualType();
   7142   } else if (isa<ObjCSelectorExpr>(op)) {
   7143     return S.Context.getPointerType(op->getType());
   7144   } else if (lval == Expr::LV_MemberFunction) {
   7145     // If it's an instance method, make a member pointer.
   7146     // The expression must have exactly the form &A::foo.
   7147 
   7148     // If the underlying expression isn't a decl ref, give up.
   7149     if (!isa<DeclRefExpr>(op)) {
   7150       S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   7151         << OrigOp->getSourceRange();
   7152       return QualType();
   7153     }
   7154     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   7155     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   7156 
   7157     // The id-expression was parenthesized.
   7158     if (OrigOp != DRE) {
   7159       S.Diag(OpLoc, diag::err_parens_pointer_member_function)
   7160         << OrigOp->getSourceRange();
   7161 
   7162     // The method was named without a qualifier.
   7163     } else if (!DRE->getQualifier()) {
   7164       S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   7165         << op->getSourceRange();
   7166     }
   7167 
   7168     return S.Context.getMemberPointerType(op->getType(),
   7169               S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
   7170   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   7171     // C99 6.5.3.2p1
   7172     // The operand must be either an l-value or a function designator
   7173     if (!op->getType()->isFunctionType()) {
   7174       // FIXME: emit more specific diag...
   7175       S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   7176         << op->getSourceRange();
   7177       return QualType();
   7178     }
   7179   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   7180     // The operand cannot be a bit-field
   7181     S.Diag(OpLoc, diag::err_typecheck_address_of)
   7182       << "bit-field" << op->getSourceRange();
   7183         return QualType();
   7184   } else if (op->getObjectKind() == OK_VectorComponent) {
   7185     // The operand cannot be an element of a vector
   7186     S.Diag(OpLoc, diag::err_typecheck_address_of)
   7187       << "vector element" << op->getSourceRange();
   7188     return QualType();
   7189   } else if (op->getObjectKind() == OK_ObjCProperty) {
   7190     // cannot take address of a property expression.
   7191     S.Diag(OpLoc, diag::err_typecheck_address_of)
   7192       << "property expression" << op->getSourceRange();
   7193     return QualType();
   7194   } else if (dcl) { // C99 6.5.3.2p1
   7195     // We have an lvalue with a decl. Make sure the decl is not declared
   7196     // with the register storage-class specifier.
   7197     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   7198       // in C++ it is not error to take address of a register
   7199       // variable (c++03 7.1.1P3)
   7200       if (vd->getStorageClass() == SC_Register &&
   7201           !S.getLangOptions().CPlusPlus) {
   7202         S.Diag(OpLoc, diag::err_typecheck_address_of)
   7203           << "register variable" << op->getSourceRange();
   7204         return QualType();
   7205       }
   7206     } else if (isa<FunctionTemplateDecl>(dcl)) {
   7207       return S.Context.OverloadTy;
   7208     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   7209       // Okay: we can take the address of a field.
   7210       // Could be a pointer to member, though, if there is an explicit
   7211       // scope qualifier for the class.
   7212       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   7213         DeclContext *Ctx = dcl->getDeclContext();
   7214         if (Ctx && Ctx->isRecord()) {
   7215           if (dcl->getType()->isReferenceType()) {
   7216             S.Diag(OpLoc,
   7217                    diag::err_cannot_form_pointer_to_member_of_reference_type)
   7218               << dcl->getDeclName() << dcl->getType();
   7219             return QualType();
   7220           }
   7221 
   7222           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   7223             Ctx = Ctx->getParent();
   7224           return S.Context.getMemberPointerType(op->getType(),
   7225                 S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   7226         }
   7227       }
   7228     } else if (!isa<FunctionDecl>(dcl))
   7229       assert(0 && "Unknown/unexpected decl type");
   7230   }
   7231 
   7232   if (lval == Expr::LV_IncompleteVoidType) {
   7233     // Taking the address of a void variable is technically illegal, but we
   7234     // allow it in cases which are otherwise valid.
   7235     // Example: "extern void x; void* y = &x;".
   7236     S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   7237   }
   7238 
   7239   // If the operand has type "type", the result has type "pointer to type".
   7240   if (op->getType()->isObjCObjectType())
   7241     return S.Context.getObjCObjectPointerType(op->getType());
   7242   return S.Context.getPointerType(op->getType());
   7243 }
   7244 
   7245 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   7246 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   7247                                         SourceLocation OpLoc) {
   7248   if (Op->isTypeDependent())
   7249     return S.Context.DependentTy;
   7250 
   7251   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   7252   if (ConvResult.isInvalid())
   7253     return QualType();
   7254   Op = ConvResult.take();
   7255   QualType OpTy = Op->getType();
   7256   QualType Result;
   7257 
   7258   if (isa<CXXReinterpretCastExpr>(Op)) {
   7259     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   7260     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   7261                                      Op->getSourceRange());
   7262   }
   7263 
   7264   // Note that per both C89 and C99, indirection is always legal, even if OpTy
   7265   // is an incomplete type or void.  It would be possible to warn about
   7266   // dereferencing a void pointer, but it's completely well-defined, and such a
   7267   // warning is unlikely to catch any mistakes.
   7268   if (const PointerType *PT = OpTy->getAs<PointerType>())
   7269     Result = PT->getPointeeType();
   7270   else if (const ObjCObjectPointerType *OPT =
   7271              OpTy->getAs<ObjCObjectPointerType>())
   7272     Result = OPT->getPointeeType();
   7273   else {
   7274     ExprResult PR = S.CheckPlaceholderExpr(Op);
   7275     if (PR.isInvalid()) return QualType();
   7276     if (PR.take() != Op)
   7277       return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
   7278   }
   7279 
   7280   if (Result.isNull()) {
   7281     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   7282       << OpTy << Op->getSourceRange();
   7283     return QualType();
   7284   }
   7285 
   7286   // Dereferences are usually l-values...
   7287   VK = VK_LValue;
   7288 
   7289   // ...except that certain expressions are never l-values in C.
   7290   if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
   7291     VK = VK_RValue;
   7292 
   7293   return Result;
   7294 }
   7295 
   7296 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
   7297   tok::TokenKind Kind) {
   7298   BinaryOperatorKind Opc;
   7299   switch (Kind) {
   7300   default: assert(0 && "Unknown binop!");
   7301   case tok::periodstar:           Opc = BO_PtrMemD; break;
   7302   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   7303   case tok::star:                 Opc = BO_Mul; break;
   7304   case tok::slash:                Opc = BO_Div; break;
   7305   case tok::percent:              Opc = BO_Rem; break;
   7306   case tok::plus:                 Opc = BO_Add; break;
   7307   case tok::minus:                Opc = BO_Sub; break;
   7308   case tok::lessless:             Opc = BO_Shl; break;
   7309   case tok::greatergreater:       Opc = BO_Shr; break;
   7310   case tok::lessequal:            Opc = BO_LE; break;
   7311   case tok::less:                 Opc = BO_LT; break;
   7312   case tok::greaterequal:         Opc = BO_GE; break;
   7313   case tok::greater:              Opc = BO_GT; break;
   7314   case tok::exclaimequal:         Opc = BO_NE; break;
   7315   case tok::equalequal:           Opc = BO_EQ; break;
   7316   case tok::amp:                  Opc = BO_And; break;
   7317   case tok::caret:                Opc = BO_Xor; break;
   7318   case tok::pipe:                 Opc = BO_Or; break;
   7319   case tok::ampamp:               Opc = BO_LAnd; break;
   7320   case tok::pipepipe:             Opc = BO_LOr; break;
   7321   case tok::equal:                Opc = BO_Assign; break;
   7322   case tok::starequal:            Opc = BO_MulAssign; break;
   7323   case tok::slashequal:           Opc = BO_DivAssign; break;
   7324   case tok::percentequal:         Opc = BO_RemAssign; break;
   7325   case tok::plusequal:            Opc = BO_AddAssign; break;
   7326   case tok::minusequal:           Opc = BO_SubAssign; break;
   7327   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   7328   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   7329   case tok::ampequal:             Opc = BO_AndAssign; break;
   7330   case tok::caretequal:           Opc = BO_XorAssign; break;
   7331   case tok::pipeequal:            Opc = BO_OrAssign; break;
   7332   case tok::comma:                Opc = BO_Comma; break;
   7333   }
   7334   return Opc;
   7335 }
   7336 
   7337 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   7338   tok::TokenKind Kind) {
   7339   UnaryOperatorKind Opc;
   7340   switch (Kind) {
   7341   default: assert(0 && "Unknown unary op!");
   7342   case tok::plusplus:     Opc = UO_PreInc; break;
   7343   case tok::minusminus:   Opc = UO_PreDec; break;
   7344   case tok::amp:          Opc = UO_AddrOf; break;
   7345   case tok::star:         Opc = UO_Deref; break;
   7346   case tok::plus:         Opc = UO_Plus; break;
   7347   case tok::minus:        Opc = UO_Minus; break;
   7348   case tok::tilde:        Opc = UO_Not; break;
   7349   case tok::exclaim:      Opc = UO_LNot; break;
   7350   case tok::kw___real:    Opc = UO_Real; break;
   7351   case tok::kw___imag:    Opc = UO_Imag; break;
   7352   case tok::kw___extension__: Opc = UO_Extension; break;
   7353   }
   7354   return Opc;
   7355 }
   7356 
   7357 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   7358 /// This warning is only emitted for builtin assignment operations. It is also
   7359 /// suppressed in the event of macro expansions.
   7360 static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
   7361                                    SourceLocation OpLoc) {
   7362   if (!S.ActiveTemplateInstantiations.empty())
   7363     return;
   7364   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   7365     return;
   7366   lhs = lhs->IgnoreParenImpCasts();
   7367   rhs = rhs->IgnoreParenImpCasts();
   7368   const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
   7369   const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
   7370   if (!LeftDeclRef || !RightDeclRef ||
   7371       LeftDeclRef->getLocation().isMacroID() ||
   7372       RightDeclRef->getLocation().isMacroID())
   7373     return;
   7374   const ValueDecl *LeftDecl =
   7375     cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
   7376   const ValueDecl *RightDecl =
   7377     cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
   7378   if (LeftDecl != RightDecl)
   7379     return;
   7380   if (LeftDecl->getType().isVolatileQualified())
   7381     return;
   7382   if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
   7383     if (RefTy->getPointeeType().isVolatileQualified())
   7384       return;
   7385 
   7386   S.Diag(OpLoc, diag::warn_self_assignment)
   7387       << LeftDeclRef->getType()
   7388       << lhs->getSourceRange() << rhs->getSourceRange();
   7389 }
   7390 
   7391 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   7392 /// operator @p Opc at location @c TokLoc. This routine only supports
   7393 /// built-in operations; ActOnBinOp handles overloaded operators.
   7394 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   7395                                     BinaryOperatorKind Opc,
   7396                                     Expr *lhsExpr, Expr *rhsExpr) {
   7397   ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
   7398   QualType ResultTy;     // Result type of the binary operator.
   7399   // The following two variables are used for compound assignment operators
   7400   QualType CompLHSTy;    // Type of LHS after promotions for computation
   7401   QualType CompResultTy; // Type of computation result
   7402   ExprValueKind VK = VK_RValue;
   7403   ExprObjectKind OK = OK_Ordinary;
   7404 
   7405   // Check if a 'foo<int>' involved in a binary op, identifies a single
   7406   // function unambiguously (i.e. an lvalue ala 13.4)
   7407   // But since an assignment can trigger target based overload, exclude it in
   7408   // our blind search. i.e:
   7409   // template<class T> void f(); template<class T, class U> void f(U);
   7410   // f<int> == 0;  // resolve f<int> blindly
   7411   // void (*p)(int); p = f<int>;  // resolve f<int> using target
   7412   if (Opc != BO_Assign) {
   7413     ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
   7414     if (!resolvedLHS.isUsable()) return ExprError();
   7415     lhs = move(resolvedLHS);
   7416 
   7417     ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
   7418     if (!resolvedRHS.isUsable()) return ExprError();
   7419     rhs = move(resolvedRHS);
   7420   }
   7421 
   7422   // The canonical way to check for a GNU null is with isNullPointerConstant,
   7423   // but we use a bit of a hack here for speed; this is a relatively
   7424   // hot path, and isNullPointerConstant is slow.
   7425   bool LeftNull = isa<GNUNullExpr>(lhs.get()->IgnoreParenImpCasts());
   7426   bool RightNull = isa<GNUNullExpr>(rhs.get()->IgnoreParenImpCasts());
   7427 
   7428   // Detect when a NULL constant is used improperly in an expression.  These
   7429   // are mainly cases where the null pointer is used as an integer instead
   7430   // of a pointer.
   7431   if (LeftNull || RightNull) {
   7432     // Avoid analyzing cases where the result will either be invalid (and
   7433     // diagnosed as such) or entirely valid and not something to warn about.
   7434     QualType LeftType = lhs.get()->getType();
   7435     QualType RightType = rhs.get()->getType();
   7436     if (!LeftType->isBlockPointerType() && !LeftType->isMemberPointerType() &&
   7437         !LeftType->isFunctionType() &&
   7438         !RightType->isBlockPointerType() &&
   7439         !RightType->isMemberPointerType() &&
   7440         !RightType->isFunctionType()) {
   7441       if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
   7442           Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
   7443           Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
   7444           Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
   7445           Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
   7446           Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign) {
   7447         // These are the operations that would not make sense with a null pointer
   7448         // no matter what the other expression is.
   7449         Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
   7450           << (LeftNull ? lhs.get()->getSourceRange() : SourceRange())
   7451           << (RightNull ? rhs.get()->getSourceRange() : SourceRange());
   7452       } else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
   7453                  Opc == BO_EQ || Opc == BO_NE) {
   7454         // These are the operations that would not make sense with a null pointer
   7455         // if the other expression the other expression is not a pointer.
   7456         if (LeftNull != RightNull &&
   7457             !LeftType->isAnyPointerType() &&
   7458             !LeftType->canDecayToPointerType() &&
   7459             !RightType->isAnyPointerType() &&
   7460             !RightType->canDecayToPointerType()) {
   7461           Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
   7462             << (LeftNull ? lhs.get()->getSourceRange()
   7463                          : rhs.get()->getSourceRange());
   7464         }
   7465       }
   7466     }
   7467   }
   7468 
   7469   switch (Opc) {
   7470   case BO_Assign:
   7471     ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
   7472     if (getLangOptions().CPlusPlus &&
   7473         lhs.get()->getObjectKind() != OK_ObjCProperty) {
   7474       VK = lhs.get()->getValueKind();
   7475       OK = lhs.get()->getObjectKind();
   7476     }
   7477     if (!ResultTy.isNull())
   7478       DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
   7479     break;
   7480   case BO_PtrMemD:
   7481   case BO_PtrMemI:
   7482     ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
   7483                                             Opc == BO_PtrMemI);
   7484     break;
   7485   case BO_Mul:
   7486   case BO_Div:
   7487     ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
   7488                                            Opc == BO_Div);
   7489     break;
   7490   case BO_Rem:
   7491     ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
   7492     break;
   7493   case BO_Add:
   7494     ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
   7495     break;
   7496   case BO_Sub:
   7497     ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
   7498     break;
   7499   case BO_Shl:
   7500   case BO_Shr:
   7501     ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
   7502     break;
   7503   case BO_LE:
   7504   case BO_LT:
   7505   case BO_GE:
   7506   case BO_GT:
   7507     ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
   7508     break;
   7509   case BO_EQ:
   7510   case BO_NE:
   7511     ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
   7512     break;
   7513   case BO_And:
   7514   case BO_Xor:
   7515   case BO_Or:
   7516     ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
   7517     break;
   7518   case BO_LAnd:
   7519   case BO_LOr:
   7520     ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
   7521     break;
   7522   case BO_MulAssign:
   7523   case BO_DivAssign:
   7524     CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
   7525                                                Opc == BO_DivAssign);
   7526     CompLHSTy = CompResultTy;
   7527     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7528       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7529     break;
   7530   case BO_RemAssign:
   7531     CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
   7532     CompLHSTy = CompResultTy;
   7533     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7534       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7535     break;
   7536   case BO_AddAssign:
   7537     CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
   7538     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7539       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7540     break;
   7541   case BO_SubAssign:
   7542     CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
   7543     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7544       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7545     break;
   7546   case BO_ShlAssign:
   7547   case BO_ShrAssign:
   7548     CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
   7549     CompLHSTy = CompResultTy;
   7550     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7551       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7552     break;
   7553   case BO_AndAssign:
   7554   case BO_XorAssign:
   7555   case BO_OrAssign:
   7556     CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
   7557     CompLHSTy = CompResultTy;
   7558     if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
   7559       ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
   7560     break;
   7561   case BO_Comma:
   7562     ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
   7563     if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
   7564       VK = rhs.get()->getValueKind();
   7565       OK = rhs.get()->getObjectKind();
   7566     }
   7567     break;
   7568   }
   7569   if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
   7570     return ExprError();
   7571   if (CompResultTy.isNull())
   7572     return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
   7573                                               ResultTy, VK, OK, OpLoc));
   7574   if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
   7575     VK = VK_LValue;
   7576     OK = lhs.get()->getObjectKind();
   7577   }
   7578   return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
   7579                                                     ResultTy, VK, OK, CompLHSTy,
   7580                                                     CompResultTy, OpLoc));
   7581 }
   7582 
   7583 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   7584 /// operators are mixed in a way that suggests that the programmer forgot that
   7585 /// comparison operators have higher precedence. The most typical example of
   7586 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   7587 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   7588                                       SourceLocation OpLoc,Expr *lhs,Expr *rhs){
   7589   typedef BinaryOperator BinOp;
   7590   BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
   7591                 rhsopc = static_cast<BinOp::Opcode>(-1);
   7592   if (BinOp *BO = dyn_cast<BinOp>(lhs))
   7593     lhsopc = BO->getOpcode();
   7594   if (BinOp *BO = dyn_cast<BinOp>(rhs))
   7595     rhsopc = BO->getOpcode();
   7596 
   7597   // Subs are not binary operators.
   7598   if (lhsopc == -1 && rhsopc == -1)
   7599     return;
   7600 
   7601   // Bitwise operations are sometimes used as eager logical ops.
   7602   // Don't diagnose this.
   7603   if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
   7604       (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
   7605     return;
   7606 
   7607   if (BinOp::isComparisonOp(lhsopc)) {
   7608     Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   7609         << SourceRange(lhs->getLocStart(), OpLoc)
   7610         << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc);
   7611     SuggestParentheses(Self, OpLoc,
   7612       Self.PDiag(diag::note_precedence_bitwise_silence)
   7613           << BinOp::getOpcodeStr(lhsopc),
   7614       lhs->getSourceRange());
   7615     SuggestParentheses(Self, OpLoc,
   7616       Self.PDiag(diag::note_precedence_bitwise_first)
   7617           << BinOp::getOpcodeStr(Opc),
   7618       SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
   7619   } else if (BinOp::isComparisonOp(rhsopc)) {
   7620     Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   7621         << SourceRange(OpLoc, rhs->getLocEnd())
   7622         << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc);
   7623     SuggestParentheses(Self, OpLoc,
   7624       Self.PDiag(diag::note_precedence_bitwise_silence)
   7625           << BinOp::getOpcodeStr(rhsopc),
   7626       rhs->getSourceRange());
   7627     SuggestParentheses(Self, OpLoc,
   7628       Self.PDiag(diag::note_precedence_bitwise_first)
   7629         << BinOp::getOpcodeStr(Opc),
   7630       SourceRange(lhs->getLocStart(),
   7631                   cast<BinOp>(rhs)->getLHS()->getLocStart()));
   7632   }
   7633 }
   7634 
   7635 /// \brief It accepts a '&' expr that is inside a '|' one.
   7636 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
   7637 /// in parentheses.
   7638 static void
   7639 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
   7640                                        BinaryOperator *Bop) {
   7641   assert(Bop->getOpcode() == BO_And);
   7642   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
   7643       << Bop->getSourceRange() << OpLoc;
   7644   SuggestParentheses(Self, Bop->getOperatorLoc(),
   7645     Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
   7646     Bop->getSourceRange());
   7647 }
   7648 
   7649 /// \brief It accepts a '&&' expr that is inside a '||' one.
   7650 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   7651 /// in parentheses.
   7652 static void
   7653 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   7654                                        BinaryOperator *Bop) {
   7655   assert(Bop->getOpcode() == BO_LAnd);
   7656   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   7657       << Bop->getSourceRange() << OpLoc;
   7658   SuggestParentheses(Self, Bop->getOperatorLoc(),
   7659     Self.PDiag(diag::note_logical_and_in_logical_or_silence),
   7660     Bop->getSourceRange());
   7661 }
   7662 
   7663 /// \brief Returns true if the given expression can be evaluated as a constant
   7664 /// 'true'.
   7665 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   7666   bool Res;
   7667   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   7668 }
   7669 
   7670 /// \brief Returns true if the given expression can be evaluated as a constant
   7671 /// 'false'.
   7672 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   7673   bool Res;
   7674   return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   7675 }
   7676 
   7677 /// \brief Look for '&&' in the left hand of a '||' expr.
   7678 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   7679                                              Expr *OrLHS, Expr *OrRHS) {
   7680   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
   7681     if (Bop->getOpcode() == BO_LAnd) {
   7682       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   7683       if (EvaluatesAsFalse(S, OrRHS))
   7684         return;
   7685       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   7686       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   7687         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   7688     } else if (Bop->getOpcode() == BO_LOr) {
   7689       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   7690         // If it's "a || b && 1 || c" we didn't warn earlier for
   7691         // "a || b && 1", but warn now.
   7692         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   7693           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   7694       }
   7695     }
   7696   }
   7697 }
   7698 
   7699 /// \brief Look for '&&' in the right hand of a '||' expr.
   7700 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   7701                                              Expr *OrLHS, Expr *OrRHS) {
   7702   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
   7703     if (Bop->getOpcode() == BO_LAnd) {
   7704       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   7705       if (EvaluatesAsFalse(S, OrLHS))
   7706         return;
   7707       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   7708       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   7709         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   7710     }
   7711   }
   7712 }
   7713 
   7714 /// \brief Look for '&' in the left or right hand of a '|' expr.
   7715 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
   7716                                              Expr *OrArg) {
   7717   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
   7718     if (Bop->getOpcode() == BO_And)
   7719       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
   7720   }
   7721 }
   7722 
   7723 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   7724 /// precedence.
   7725 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   7726                                     SourceLocation OpLoc, Expr *lhs, Expr *rhs){
   7727   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   7728   if (BinaryOperator::isBitwiseOp(Opc))
   7729     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
   7730 
   7731   // Diagnose "arg1 & arg2 | arg3"
   7732   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   7733     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
   7734     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
   7735   }
   7736 
   7737   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   7738   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   7739   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   7740     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
   7741     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
   7742   }
   7743 }
   7744 
   7745 // Binary Operators.  'Tok' is the token for the operator.
   7746 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   7747                             tok::TokenKind Kind,
   7748                             Expr *lhs, Expr *rhs) {
   7749   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   7750   assert((lhs != 0) && "ActOnBinOp(): missing left expression");
   7751   assert((rhs != 0) && "ActOnBinOp(): missing right expression");
   7752 
   7753   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   7754   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
   7755 
   7756   return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
   7757 }
   7758 
   7759 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   7760                             BinaryOperatorKind Opc,
   7761                             Expr *lhs, Expr *rhs) {
   7762   if (getLangOptions().CPlusPlus) {
   7763     bool UseBuiltinOperator;
   7764 
   7765     if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
   7766       UseBuiltinOperator = false;
   7767     } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
   7768       UseBuiltinOperator = true;
   7769     } else {
   7770       UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
   7771                            !rhs->getType()->isOverloadableType();
   7772     }
   7773 
   7774     if (!UseBuiltinOperator) {
   7775       // Find all of the overloaded operators visible from this
   7776       // point. We perform both an operator-name lookup from the local
   7777       // scope and an argument-dependent lookup based on the types of
   7778       // the arguments.
   7779       UnresolvedSet<16> Functions;
   7780       OverloadedOperatorKind OverOp
   7781         = BinaryOperator::getOverloadedOperator(Opc);
   7782       if (S && OverOp != OO_None)
   7783         LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
   7784                                      Functions);
   7785 
   7786       // Build the (potentially-overloaded, potentially-dependent)
   7787       // binary operation.
   7788       return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
   7789     }
   7790   }
   7791 
   7792   // Build a built-in binary operation.
   7793   return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
   7794 }
   7795 
   7796 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   7797                                       UnaryOperatorKind Opc,
   7798                                       Expr *InputExpr) {
   7799   ExprResult Input = Owned(InputExpr);
   7800   ExprValueKind VK = VK_RValue;
   7801   ExprObjectKind OK = OK_Ordinary;
   7802   QualType resultType;
   7803   switch (Opc) {
   7804   case UO_PreInc:
   7805   case UO_PreDec:
   7806   case UO_PostInc:
   7807   case UO_PostDec:
   7808     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
   7809                                                 Opc == UO_PreInc ||
   7810                                                 Opc == UO_PostInc,
   7811                                                 Opc == UO_PreInc ||
   7812                                                 Opc == UO_PreDec);
   7813     break;
   7814   case UO_AddrOf:
   7815     resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
   7816     break;
   7817   case UO_Deref: {
   7818     ExprResult resolved = CheckPlaceholderExpr(Input.get());
   7819     if (!resolved.isUsable()) return ExprError();
   7820     Input = move(resolved);
   7821     Input = DefaultFunctionArrayLvalueConversion(Input.take());
   7822     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   7823     break;
   7824   }
   7825   case UO_Plus:
   7826   case UO_Minus:
   7827     Input = UsualUnaryConversions(Input.take());
   7828     if (Input.isInvalid()) return ExprError();
   7829     resultType = Input.get()->getType();
   7830     if (resultType->isDependentType())
   7831       break;
   7832     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
   7833         resultType->isVectorType())
   7834       break;
   7835     else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
   7836              resultType->isEnumeralType())
   7837       break;
   7838     else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
   7839              Opc == UO_Plus &&
   7840              resultType->isPointerType())
   7841       break;
   7842     else if (resultType->isPlaceholderType()) {
   7843       Input = CheckPlaceholderExpr(Input.take());
   7844       if (Input.isInvalid()) return ExprError();
   7845       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
   7846     }
   7847 
   7848     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   7849       << resultType << Input.get()->getSourceRange());
   7850 
   7851   case UO_Not: // bitwise complement
   7852     Input = UsualUnaryConversions(Input.take());
   7853     if (Input.isInvalid()) return ExprError();
   7854     resultType = Input.get()->getType();
   7855     if (resultType->isDependentType())
   7856       break;
   7857     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   7858     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   7859       // C99 does not support '~' for complex conjugation.
   7860       Diag(OpLoc, diag::ext_integer_complement_complex)
   7861         << resultType << Input.get()->getSourceRange();
   7862     else if (resultType->hasIntegerRepresentation())
   7863       break;
   7864     else if (resultType->isPlaceholderType()) {
   7865       Input = CheckPlaceholderExpr(Input.take());
   7866       if (Input.isInvalid()) return ExprError();
   7867       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
   7868     } else {
   7869       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   7870         << resultType << Input.get()->getSourceRange());
   7871     }
   7872     break;
   7873 
   7874   case UO_LNot: // logical negation
   7875     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   7876     Input = DefaultFunctionArrayLvalueConversion(Input.take());
   7877     if (Input.isInvalid()) return ExprError();
   7878     resultType = Input.get()->getType();
   7879     if (resultType->isDependentType())
   7880       break;
   7881     if (resultType->isScalarType()) {
   7882       // C99 6.5.3.3p1: ok, fallthrough;
   7883       if (Context.getLangOptions().CPlusPlus) {
   7884         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   7885         // operand contextually converted to bool.
   7886         Input = ImpCastExprToType(Input.take(), Context.BoolTy,
   7887                                   ScalarTypeToBooleanCastKind(resultType));
   7888       }
   7889     } else if (resultType->isPlaceholderType()) {
   7890       Input = CheckPlaceholderExpr(Input.take());
   7891       if (Input.isInvalid()) return ExprError();
   7892       return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
   7893     } else {
   7894       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   7895         << resultType << Input.get()->getSourceRange());
   7896     }
   7897 
   7898     // LNot always has type int. C99 6.5.3.3p5.
   7899     // In C++, it's bool. C++ 5.3.1p8
   7900     resultType = Context.getLogicalOperationType();
   7901     break;
   7902   case UO_Real:
   7903   case UO_Imag:
   7904     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   7905     // _Real and _Imag map ordinary l-values into ordinary l-values.
   7906     if (Input.isInvalid()) return ExprError();
   7907     if (Input.get()->getValueKind() != VK_RValue &&
   7908         Input.get()->getObjectKind() == OK_Ordinary)
   7909       VK = Input.get()->getValueKind();
   7910     break;
   7911   case UO_Extension:
   7912     resultType = Input.get()->getType();
   7913     VK = Input.get()->getValueKind();
   7914     OK = Input.get()->getObjectKind();
   7915     break;
   7916   }
   7917   if (resultType.isNull() || Input.isInvalid())
   7918     return ExprError();
   7919 
   7920   return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
   7921                                            VK, OK, OpLoc));
   7922 }
   7923 
   7924 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   7925                               UnaryOperatorKind Opc,
   7926                               Expr *Input) {
   7927   if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
   7928       UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
   7929     // Find all of the overloaded operators visible from this
   7930     // point. We perform both an operator-name lookup from the local
   7931     // scope and an argument-dependent lookup based on the types of
   7932     // the arguments.
   7933     UnresolvedSet<16> Functions;
   7934     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   7935     if (S && OverOp != OO_None)
   7936       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   7937                                    Functions);
   7938 
   7939     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   7940   }
   7941 
   7942   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   7943 }
   7944 
   7945 // Unary Operators.  'Tok' is the token for the operator.
   7946 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   7947                               tok::TokenKind Op, Expr *Input) {
   7948   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   7949 }
   7950 
   7951 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   7952 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   7953                                 LabelDecl *TheDecl) {
   7954   TheDecl->setUsed();
   7955   // Create the AST node.  The address of a label always has type 'void*'.
   7956   return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   7957                                        Context.getPointerType(Context.VoidTy)));
   7958 }
   7959 
   7960 /// Given the last statement in a statement-expression, check whether
   7961 /// the result is a producing expression (like a call to an
   7962 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   7963 /// release out of the full-expression.  Otherwise, return null.
   7964 /// Cannot fail.
   7965 static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
   7966   // Should always be wrapped with one of these.
   7967   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
   7968   if (!cleanups) return 0;
   7969 
   7970   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   7971   if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
   7972     return 0;
   7973 
   7974   // Splice out the cast.  This shouldn't modify any interesting
   7975   // features of the statement.
   7976   Expr *producer = cast->getSubExpr();
   7977   assert(producer->getType() == cast->getType());
   7978   assert(producer->getValueKind() == cast->getValueKind());
   7979   cleanups->setSubExpr(producer);
   7980   return cleanups;
   7981 }
   7982 
   7983 ExprResult
   7984 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   7985                     SourceLocation RPLoc) { // "({..})"
   7986   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   7987   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   7988 
   7989   bool isFileScope
   7990     = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
   7991   if (isFileScope)
   7992     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
   7993 
   7994   // FIXME: there are a variety of strange constraints to enforce here, for
   7995   // example, it is not possible to goto into a stmt expression apparently.
   7996   // More semantic analysis is needed.
   7997 
   7998   // If there are sub stmts in the compound stmt, take the type of the last one
   7999   // as the type of the stmtexpr.
   8000   QualType Ty = Context.VoidTy;
   8001   bool StmtExprMayBindToTemp = false;
   8002   if (!Compound->body_empty()) {
   8003     Stmt *LastStmt = Compound->body_back();
   8004     LabelStmt *LastLabelStmt = 0;
   8005     // If LastStmt is a label, skip down through into the body.
   8006     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   8007       LastLabelStmt = Label;
   8008       LastStmt = Label->getSubStmt();
   8009     }
   8010 
   8011     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   8012       // Do function/array conversion on the last expression, but not
   8013       // lvalue-to-rvalue.  However, initialize an unqualified type.
   8014       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   8015       if (LastExpr.isInvalid())
   8016         return ExprError();
   8017       Ty = LastExpr.get()->getType().getUnqualifiedType();
   8018 
   8019       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   8020         // In ARC, if the final expression ends in a consume, splice
   8021         // the consume out and bind it later.  In the alternate case
   8022         // (when dealing with a retainable type), the result
   8023         // initialization will create a produce.  In both cases the
   8024         // result will be +1, and we'll need to balance that out with
   8025         // a bind.
   8026         if (Expr *rebuiltLastStmt
   8027               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   8028           LastExpr = rebuiltLastStmt;
   8029         } else {
   8030           LastExpr = PerformCopyInitialization(
   8031                             InitializedEntity::InitializeResult(LPLoc,
   8032                                                                 Ty,
   8033                                                                 false),
   8034                                                    SourceLocation(),
   8035                                                LastExpr);
   8036         }
   8037 
   8038         if (LastExpr.isInvalid())
   8039           return ExprError();
   8040         if (LastExpr.get() != 0) {
   8041           if (!LastLabelStmt)
   8042             Compound->setLastStmt(LastExpr.take());
   8043           else
   8044             LastLabelStmt->setSubStmt(LastExpr.take());
   8045           StmtExprMayBindToTemp = true;
   8046         }
   8047       }
   8048     }
   8049   }
   8050 
   8051   // FIXME: Check that expression type is complete/non-abstract; statement
   8052   // expressions are not lvalues.
   8053   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   8054   if (StmtExprMayBindToTemp)
   8055     return MaybeBindToTemporary(ResStmtExpr);
   8056   return Owned(ResStmtExpr);
   8057 }
   8058 
   8059 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   8060                                       TypeSourceInfo *TInfo,
   8061                                       OffsetOfComponent *CompPtr,
   8062                                       unsigned NumComponents,
   8063                                       SourceLocation RParenLoc) {
   8064   QualType ArgTy = TInfo->getType();
   8065   bool Dependent = ArgTy->isDependentType();
   8066   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   8067 
   8068   // We must have at least one component that refers to the type, and the first
   8069   // one is known to be a field designator.  Verify that the ArgTy represents
   8070   // a struct/union/class.
   8071   if (!Dependent && !ArgTy->isRecordType())
   8072     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   8073                        << ArgTy << TypeRange);
   8074 
   8075   // Type must be complete per C99 7.17p3 because a declaring a variable
   8076   // with an incomplete type would be ill-formed.
   8077   if (!Dependent
   8078       && RequireCompleteType(BuiltinLoc, ArgTy,
   8079                              PDiag(diag::err_offsetof_incomplete_type)
   8080                                << TypeRange))
   8081     return ExprError();
   8082 
   8083   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   8084   // GCC extension, diagnose them.
   8085   // FIXME: This diagnostic isn't actually visible because the location is in
   8086   // a system header!
   8087   if (NumComponents != 1)
   8088     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   8089       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
   8090 
   8091   bool DidWarnAboutNonPOD = false;
   8092   QualType CurrentType = ArgTy;
   8093   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
   8094   llvm::SmallVector<OffsetOfNode, 4> Comps;
   8095   llvm::SmallVector<Expr*, 4> Exprs;
   8096   for (unsigned i = 0; i != NumComponents; ++i) {
   8097     const OffsetOfComponent &OC = CompPtr[i];
   8098     if (OC.isBrackets) {
   8099       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   8100       if (!CurrentType->isDependentType()) {
   8101         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   8102         if(!AT)
   8103           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   8104                            << CurrentType);
   8105         CurrentType = AT->getElementType();
   8106       } else
   8107         CurrentType = Context.DependentTy;
   8108 
   8109       // The expression must be an integral expression.
   8110       // FIXME: An integral constant expression?
   8111       Expr *Idx = static_cast<Expr*>(OC.U.E);
   8112       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   8113           !Idx->getType()->isIntegerType())
   8114         return ExprError(Diag(Idx->getLocStart(),
   8115                               diag::err_typecheck_subscript_not_integer)
   8116                          << Idx->getSourceRange());
   8117 
   8118       // Record this array index.
   8119       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   8120       Exprs.push_back(Idx);
   8121       continue;
   8122     }
   8123 
   8124     // Offset of a field.
   8125     if (CurrentType->isDependentType()) {
   8126       // We have the offset of a field, but we can't look into the dependent
   8127       // type. Just record the identifier of the field.
   8128       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   8129       CurrentType = Context.DependentTy;
   8130       continue;
   8131     }
   8132 
   8133     // We need to have a complete type to look into.
   8134     if (RequireCompleteType(OC.LocStart, CurrentType,
   8135                             diag::err_offsetof_incomplete_type))
   8136       return ExprError();
   8137 
   8138     // Look for the designated field.
   8139     const RecordType *RC = CurrentType->getAs<RecordType>();
   8140     if (!RC)
   8141       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   8142                        << CurrentType);
   8143     RecordDecl *RD = RC->getDecl();
   8144 
   8145     // C++ [lib.support.types]p5:
   8146     //   The macro offsetof accepts a restricted set of type arguments in this
   8147     //   International Standard. type shall be a POD structure or a POD union
   8148     //   (clause 9).
   8149     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   8150       if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
   8151           DiagRuntimeBehavior(BuiltinLoc, 0,
   8152                               PDiag(diag::warn_offsetof_non_pod_type)
   8153                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
   8154                               << CurrentType))
   8155         DidWarnAboutNonPOD = true;
   8156     }
   8157 
   8158     // Look for the field.
   8159     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   8160     LookupQualifiedName(R, RD);
   8161     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   8162     IndirectFieldDecl *IndirectMemberDecl = 0;
   8163     if (!MemberDecl) {
   8164       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   8165         MemberDecl = IndirectMemberDecl->getAnonField();
   8166     }
   8167 
   8168     if (!MemberDecl)
   8169       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   8170                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   8171                                                               OC.LocEnd));
   8172 
   8173     // C99 7.17p3:
   8174     //   (If the specified member is a bit-field, the behavior is undefined.)
   8175     //
   8176     // We diagnose this as an error.
   8177     if (MemberDecl->getBitWidth()) {
   8178       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   8179         << MemberDecl->getDeclName()
   8180         << SourceRange(BuiltinLoc, RParenLoc);
   8181       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   8182       return ExprError();
   8183     }
   8184 
   8185     RecordDecl *Parent = MemberDecl->getParent();
   8186     if (IndirectMemberDecl)
   8187       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   8188 
   8189     // If the member was found in a base class, introduce OffsetOfNodes for
   8190     // the base class indirections.
   8191     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   8192                        /*DetectVirtual=*/false);
   8193     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
   8194       CXXBasePath &Path = Paths.front();
   8195       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
   8196            B != BEnd; ++B)
   8197         Comps.push_back(OffsetOfNode(B->Base));
   8198     }
   8199 
   8200     if (IndirectMemberDecl) {
   8201       for (IndirectFieldDecl::chain_iterator FI =
   8202            IndirectMemberDecl->chain_begin(),
   8203            FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
   8204         assert(isa<FieldDecl>(*FI));
   8205         Comps.push_back(OffsetOfNode(OC.LocStart,
   8206                                      cast<FieldDecl>(*FI), OC.LocEnd));
   8207       }
   8208     } else
   8209       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   8210 
   8211     CurrentType = MemberDecl->getType().getNonReferenceType();
   8212   }
   8213 
   8214   return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
   8215                                     TInfo, Comps.data(), Comps.size(),
   8216                                     Exprs.data(), Exprs.size(), RParenLoc));
   8217 }
   8218 
   8219 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   8220                                       SourceLocation BuiltinLoc,
   8221                                       SourceLocation TypeLoc,
   8222                                       ParsedType argty,
   8223                                       OffsetOfComponent *CompPtr,
   8224                                       unsigned NumComponents,
   8225                                       SourceLocation RPLoc) {
   8226 
   8227   TypeSourceInfo *ArgTInfo;
   8228   QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
   8229   if (ArgTy.isNull())
   8230     return ExprError();
   8231 
   8232   if (!ArgTInfo)
   8233     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   8234 
   8235   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
   8236                               RPLoc);
   8237 }
   8238 
   8239 
   8240 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   8241                                  Expr *CondExpr,
   8242                                  Expr *LHSExpr, Expr *RHSExpr,
   8243                                  SourceLocation RPLoc) {
   8244   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   8245 
   8246   ExprValueKind VK = VK_RValue;
   8247   ExprObjectKind OK = OK_Ordinary;
   8248   QualType resType;
   8249   bool ValueDependent = false;
   8250   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   8251     resType = Context.DependentTy;
   8252     ValueDependent = true;
   8253   } else {
   8254     // The conditional expression is required to be a constant expression.
   8255     llvm::APSInt condEval(32);
   8256     SourceLocation ExpLoc;
   8257     if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
   8258       return ExprError(Diag(ExpLoc,
   8259                        diag::err_typecheck_choose_expr_requires_constant)
   8260         << CondExpr->getSourceRange());
   8261 
   8262     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   8263     Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
   8264 
   8265     resType = ActiveExpr->getType();
   8266     ValueDependent = ActiveExpr->isValueDependent();
   8267     VK = ActiveExpr->getValueKind();
   8268     OK = ActiveExpr->getObjectKind();
   8269   }
   8270 
   8271   return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
   8272                                         resType, VK, OK, RPLoc,
   8273                                         resType->isDependentType(),
   8274                                         ValueDependent));
   8275 }
   8276 
   8277 //===----------------------------------------------------------------------===//
   8278 // Clang Extensions.
   8279 //===----------------------------------------------------------------------===//
   8280 
   8281 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   8282 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
   8283   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   8284   PushBlockScope(BlockScope, Block);
   8285   CurContext->addDecl(Block);
   8286   if (BlockScope)
   8287     PushDeclContext(BlockScope, Block);
   8288   else
   8289     CurContext = Block;
   8290 }
   8291 
   8292 void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
   8293   assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
   8294   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   8295   BlockScopeInfo *CurBlock = getCurBlock();
   8296 
   8297   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   8298   QualType T = Sig->getType();
   8299 
   8300   // GetTypeForDeclarator always produces a function type for a block
   8301   // literal signature.  Furthermore, it is always a FunctionProtoType
   8302   // unless the function was written with a typedef.
   8303   assert(T->isFunctionType() &&
   8304          "GetTypeForDeclarator made a non-function block signature");
   8305 
   8306   // Look for an explicit signature in that function type.
   8307   FunctionProtoTypeLoc ExplicitSignature;
   8308 
   8309   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   8310   if (isa<FunctionProtoTypeLoc>(tmp)) {
   8311     ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
   8312 
   8313     // Check whether that explicit signature was synthesized by
   8314     // GetTypeForDeclarator.  If so, don't save that as part of the
   8315     // written signature.
   8316     if (ExplicitSignature.getLocalRangeBegin() ==
   8317         ExplicitSignature.getLocalRangeEnd()) {
   8318       // This would be much cheaper if we stored TypeLocs instead of
   8319       // TypeSourceInfos.
   8320       TypeLoc Result = ExplicitSignature.getResultLoc();
   8321       unsigned Size = Result.getFullDataSize();
   8322       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   8323       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   8324 
   8325       ExplicitSignature = FunctionProtoTypeLoc();
   8326     }
   8327   }
   8328 
   8329   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   8330   CurBlock->FunctionType = T;
   8331 
   8332   const FunctionType *Fn = T->getAs<FunctionType>();
   8333   QualType RetTy = Fn->getResultType();
   8334   bool isVariadic =
   8335     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   8336 
   8337   CurBlock->TheDecl->setIsVariadic(isVariadic);
   8338 
   8339   // Don't allow returning a objc interface by value.
   8340   if (RetTy->isObjCObjectType()) {
   8341     Diag(ParamInfo.getSourceRange().getBegin(),
   8342          diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
   8343     return;
   8344   }
   8345 
   8346   // Context.DependentTy is used as a placeholder for a missing block
   8347   // return type.  TODO:  what should we do with declarators like:
   8348   //   ^ * { ... }
   8349   // If the answer is "apply template argument deduction"....
   8350   if (RetTy != Context.DependentTy)
   8351     CurBlock->ReturnType = RetTy;
   8352 
   8353   // Push block parameters from the declarator if we had them.
   8354   llvm::SmallVector<ParmVarDecl*, 8> Params;
   8355   if (ExplicitSignature) {
   8356     for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
   8357       ParmVarDecl *Param = ExplicitSignature.getArg(I);
   8358       if (Param->getIdentifier() == 0 &&
   8359           !Param->isImplicit() &&
   8360           !Param->isInvalidDecl() &&
   8361           !getLangOptions().CPlusPlus)
   8362         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   8363       Params.push_back(Param);
   8364     }
   8365 
   8366   // Fake up parameter variables if we have a typedef, like
   8367   //   ^ fntype { ... }
   8368   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   8369     for (FunctionProtoType::arg_type_iterator
   8370            I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
   8371       ParmVarDecl *Param =
   8372         BuildParmVarDeclForTypedef(CurBlock->TheDecl,
   8373                                    ParamInfo.getSourceRange().getBegin(),
   8374                                    *I);
   8375       Params.push_back(Param);
   8376     }
   8377   }
   8378 
   8379   // Set the parameters on the block decl.
   8380   if (!Params.empty()) {
   8381     CurBlock->TheDecl->setParams(Params.data(), Params.size());
   8382     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
   8383                              CurBlock->TheDecl->param_end(),
   8384                              /*CheckParameterNames=*/false);
   8385   }
   8386 
   8387   // Finally we can process decl attributes.
   8388   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   8389 
   8390   if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
   8391     Diag(ParamInfo.getAttributes()->getLoc(),
   8392          diag::warn_attribute_sentinel_not_variadic) << 1;
   8393     // FIXME: remove the attribute.
   8394   }
   8395 
   8396   // Put the parameter variables in scope.  We can bail out immediately
   8397   // if we don't have any.
   8398   if (Params.empty())
   8399     return;
   8400 
   8401   for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
   8402          E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
   8403     (*AI)->setOwningFunction(CurBlock->TheDecl);
   8404 
   8405     // If this has an identifier, add it to the scope stack.
   8406     if ((*AI)->getIdentifier()) {
   8407       CheckShadow(CurBlock->TheScope, *AI);
   8408 
   8409       PushOnScopeChains(*AI, CurBlock->TheScope);
   8410     }
   8411   }
   8412 }
   8413 
   8414 /// ActOnBlockError - If there is an error parsing a block, this callback
   8415 /// is invoked to pop the information about the block from the action impl.
   8416 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   8417   // Pop off CurBlock, handle nested blocks.
   8418   PopDeclContext();
   8419   PopFunctionOrBlockScope();
   8420 }
   8421 
   8422 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   8423 /// literal was successfully completed.  ^(int x){...}
   8424 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   8425                                     Stmt *Body, Scope *CurScope) {
   8426   // If blocks are disabled, emit an error.
   8427   if (!LangOpts.Blocks)
   8428     Diag(CaretLoc, diag::err_blocks_disable);
   8429 
   8430   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   8431 
   8432   PopDeclContext();
   8433 
   8434   QualType RetTy = Context.VoidTy;
   8435   if (!BSI->ReturnType.isNull())
   8436     RetTy = BSI->ReturnType;
   8437 
   8438   bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
   8439   QualType BlockTy;
   8440 
   8441   // Set the captured variables on the block.
   8442   BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
   8443                             BSI->CapturesCXXThis);
   8444 
   8445   // If the user wrote a function type in some form, try to use that.
   8446   if (!BSI->FunctionType.isNull()) {
   8447     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   8448 
   8449     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   8450     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   8451 
   8452     // Turn protoless block types into nullary block types.
   8453     if (isa<FunctionNoProtoType>(FTy)) {
   8454       FunctionProtoType::ExtProtoInfo EPI;
   8455       EPI.ExtInfo = Ext;
   8456       BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
   8457 
   8458     // Otherwise, if we don't need to change anything about the function type,
   8459     // preserve its sugar structure.
   8460     } else if (FTy->getResultType() == RetTy &&
   8461                (!NoReturn || FTy->getNoReturnAttr())) {
   8462       BlockTy = BSI->FunctionType;
   8463 
   8464     // Otherwise, make the minimal modifications to the function type.
   8465     } else {
   8466       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   8467       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   8468       EPI.TypeQuals = 0; // FIXME: silently?
   8469       EPI.ExtInfo = Ext;
   8470       BlockTy = Context.getFunctionType(RetTy,
   8471                                         FPT->arg_type_begin(),
   8472                                         FPT->getNumArgs(),
   8473                                         EPI);
   8474     }
   8475 
   8476   // If we don't have a function type, just build one from nothing.
   8477   } else {
   8478     FunctionProtoType::ExtProtoInfo EPI;
   8479     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   8480     BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
   8481   }
   8482 
   8483   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
   8484                            BSI->TheDecl->param_end());
   8485   BlockTy = Context.getBlockPointerType(BlockTy);
   8486 
   8487   // If needed, diagnose invalid gotos and switches in the block.
   8488   if (getCurFunction()->NeedsScopeChecking() &&
   8489       !hasAnyUnrecoverableErrorsInThisFunction())
   8490     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   8491 
   8492   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   8493 
   8494   for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
   8495        ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
   8496     const VarDecl *variable = ci->getVariable();
   8497     QualType T = variable->getType();
   8498     QualType::DestructionKind destructKind = T.isDestructedType();
   8499     if (destructKind != QualType::DK_none)
   8500       getCurFunction()->setHasBranchProtectedScope();
   8501   }
   8502 
   8503   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   8504   const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
   8505   PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
   8506 
   8507   return Owned(Result);
   8508 }
   8509 
   8510 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
   8511                                         Expr *expr, ParsedType type,
   8512                                         SourceLocation RPLoc) {
   8513   TypeSourceInfo *TInfo;
   8514   GetTypeFromParser(type, &TInfo);
   8515   return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
   8516 }
   8517 
   8518 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   8519                                 Expr *E, TypeSourceInfo *TInfo,
   8520                                 SourceLocation RPLoc) {
   8521   Expr *OrigExpr = E;
   8522 
   8523   // Get the va_list type
   8524   QualType VaListType = Context.getBuiltinVaListType();
   8525   if (VaListType->isArrayType()) {
   8526     // Deal with implicit array decay; for example, on x86-64,
   8527     // va_list is an array, but it's supposed to decay to
   8528     // a pointer for va_arg.
   8529     VaListType = Context.getArrayDecayedType(VaListType);
   8530     // Make sure the input expression also decays appropriately.
   8531     ExprResult Result = UsualUnaryConversions(E);
   8532     if (Result.isInvalid())
   8533       return ExprError();
   8534     E = Result.take();
   8535   } else {
   8536     // Otherwise, the va_list argument must be an l-value because
   8537     // it is modified by va_arg.
   8538     if (!E->isTypeDependent() &&
   8539         CheckForModifiableLvalue(E, BuiltinLoc, *this))
   8540       return ExprError();
   8541   }
   8542 
   8543   if (!E->isTypeDependent() &&
   8544       !Context.hasSameType(VaListType, E->getType())) {
   8545     return ExprError(Diag(E->getLocStart(),
   8546                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   8547       << OrigExpr->getType() << E->getSourceRange());
   8548   }
   8549 
   8550   if (!TInfo->getType()->isDependentType()) {
   8551     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   8552           PDiag(diag::err_second_parameter_to_va_arg_incomplete)
   8553           << TInfo->getTypeLoc().getSourceRange()))
   8554       return ExprError();
   8555 
   8556     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   8557           TInfo->getType(),
   8558           PDiag(diag::err_second_parameter_to_va_arg_abstract)
   8559           << TInfo->getTypeLoc().getSourceRange()))
   8560       return ExprError();
   8561 
   8562     if (!TInfo->getType().isPODType(Context))
   8563       Diag(TInfo->getTypeLoc().getBeginLoc(),
   8564           diag::warn_second_parameter_to_va_arg_not_pod)
   8565         << TInfo->getType()
   8566         << TInfo->getTypeLoc().getSourceRange();
   8567 
   8568     // Check for va_arg where arguments of the given type will be promoted
   8569     // (i.e. this va_arg is guaranteed to have undefined behavior).
   8570     QualType PromoteType;
   8571     if (TInfo->getType()->isPromotableIntegerType()) {
   8572       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   8573       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   8574         PromoteType = QualType();
   8575     }
   8576     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   8577       PromoteType = Context.DoubleTy;
   8578     if (!PromoteType.isNull())
   8579       Diag(TInfo->getTypeLoc().getBeginLoc(),
   8580           diag::warn_second_parameter_to_va_arg_never_compatible)
   8581         << TInfo->getType()
   8582         << PromoteType
   8583         << TInfo->getTypeLoc().getSourceRange();
   8584   }
   8585 
   8586   QualType T = TInfo->getType().getNonLValueExprType(Context);
   8587   return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
   8588 }
   8589 
   8590 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   8591   // The type of __null will be int or long, depending on the size of
   8592   // pointers on the target.
   8593   QualType Ty;
   8594   unsigned pw = Context.Target.getPointerWidth(0);
   8595   if (pw == Context.Target.getIntWidth())
   8596     Ty = Context.IntTy;
   8597   else if (pw == Context.Target.getLongWidth())
   8598     Ty = Context.LongTy;
   8599   else if (pw == Context.Target.getLongLongWidth())
   8600     Ty = Context.LongLongTy;
   8601   else {
   8602     assert(!"I don't know size of pointer!");
   8603     Ty = Context.IntTy;
   8604   }
   8605 
   8606   return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
   8607 }
   8608 
   8609 static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
   8610                                            Expr *SrcExpr, FixItHint &Hint) {
   8611   if (!SemaRef.getLangOptions().ObjC1)
   8612     return;
   8613 
   8614   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   8615   if (!PT)
   8616     return;
   8617 
   8618   // Check if the destination is of type 'id'.
   8619   if (!PT->isObjCIdType()) {
   8620     // Check if the destination is the 'NSString' interface.
   8621     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   8622     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   8623       return;
   8624   }
   8625 
   8626   // Strip off any parens and casts.
   8627   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
   8628   if (!SL || SL->isWide())
   8629     return;
   8630 
   8631   Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
   8632 }
   8633 
   8634 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   8635                                     SourceLocation Loc,
   8636                                     QualType DstType, QualType SrcType,
   8637                                     Expr *SrcExpr, AssignmentAction Action,
   8638                                     bool *Complained) {
   8639   if (Complained)
   8640     *Complained = false;
   8641 
   8642   // Decode the result (notice that AST's are still created for extensions).
   8643   bool CheckInferredResultType = false;
   8644   bool isInvalid = false;
   8645   unsigned DiagKind;
   8646   FixItHint Hint;
   8647 
   8648   switch (ConvTy) {
   8649   default: assert(0 && "Unknown conversion type");
   8650   case Compatible: return false;
   8651   case PointerToInt:
   8652     DiagKind = diag::ext_typecheck_convert_pointer_int;
   8653     break;
   8654   case IntToPointer:
   8655     DiagKind = diag::ext_typecheck_convert_int_pointer;
   8656     break;
   8657   case IncompatiblePointer:
   8658     MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
   8659     DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
   8660     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   8661       SrcType->isObjCObjectPointerType();
   8662     break;
   8663   case IncompatiblePointerSign:
   8664     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   8665     break;
   8666   case FunctionVoidPointer:
   8667     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   8668     break;
   8669   case IncompatiblePointerDiscardsQualifiers: {
   8670     // Perform array-to-pointer decay if necessary.
   8671     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   8672 
   8673     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   8674     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   8675     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   8676       DiagKind = diag::err_typecheck_incompatible_address_space;
   8677       break;
   8678 
   8679 
   8680     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   8681       DiagKind = diag::err_typecheck_incompatible_ownership;
   8682       break;
   8683     }
   8684 
   8685     llvm_unreachable("unknown error case for discarding qualifiers!");
   8686     // fallthrough
   8687   }
   8688   case CompatiblePointerDiscardsQualifiers:
   8689     // If the qualifiers lost were because we were applying the
   8690     // (deprecated) C++ conversion from a string literal to a char*
   8691     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   8692     // Ideally, this check would be performed in
   8693     // checkPointerTypesForAssignment. However, that would require a
   8694     // bit of refactoring (so that the second argument is an
   8695     // expression, rather than a type), which should be done as part
   8696     // of a larger effort to fix checkPointerTypesForAssignment for
   8697     // C++ semantics.
   8698     if (getLangOptions().CPlusPlus &&
   8699         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   8700       return false;
   8701     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   8702     break;
   8703   case IncompatibleNestedPointerQualifiers:
   8704     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   8705     break;
   8706   case IntToBlockPointer:
   8707     DiagKind = diag::err_int_to_block_pointer;
   8708     break;
   8709   case IncompatibleBlockPointer:
   8710     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   8711     break;
   8712   case IncompatibleObjCQualifiedId:
   8713     // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
   8714     // it can give a more specific diagnostic.
   8715     DiagKind = diag::warn_incompatible_qualified_id;
   8716     break;
   8717   case IncompatibleVectors:
   8718     DiagKind = diag::warn_incompatible_vectors;
   8719     break;
   8720   case IncompatibleObjCWeakRef:
   8721     DiagKind = diag::err_arc_weak_unavailable_assign;
   8722     break;
   8723   case Incompatible:
   8724     DiagKind = diag::err_typecheck_convert_incompatible;
   8725     isInvalid = true;
   8726     break;
   8727   }
   8728 
   8729   QualType FirstType, SecondType;
   8730   switch (Action) {
   8731   case AA_Assigning:
   8732   case AA_Initializing:
   8733     // The destination type comes first.
   8734     FirstType = DstType;
   8735     SecondType = SrcType;
   8736     break;
   8737 
   8738   case AA_Returning:
   8739   case AA_Passing:
   8740   case AA_Converting:
   8741   case AA_Sending:
   8742   case AA_Casting:
   8743     // The source type comes first.
   8744     FirstType = SrcType;
   8745     SecondType = DstType;
   8746     break;
   8747   }
   8748 
   8749   Diag(Loc, DiagKind) << FirstType << SecondType << Action
   8750     << SrcExpr->getSourceRange() << Hint;
   8751   if (CheckInferredResultType)
   8752     EmitRelatedResultTypeNote(SrcExpr);
   8753 
   8754   if (Complained)
   8755     *Complained = true;
   8756   return isInvalid;
   8757 }
   8758 
   8759 bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
   8760   llvm::APSInt ICEResult;
   8761   if (E->isIntegerConstantExpr(ICEResult, Context)) {
   8762     if (Result)
   8763       *Result = ICEResult;
   8764     return false;
   8765   }
   8766 
   8767   Expr::EvalResult EvalResult;
   8768 
   8769   if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
   8770       EvalResult.HasSideEffects) {
   8771     Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
   8772 
   8773     if (EvalResult.Diag) {
   8774       // We only show the note if it's not the usual "invalid subexpression"
   8775       // or if it's actually in a subexpression.
   8776       if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
   8777           E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
   8778         Diag(EvalResult.DiagLoc, EvalResult.Diag);
   8779     }
   8780 
   8781     return true;
   8782   }
   8783 
   8784   Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
   8785     E->getSourceRange();
   8786 
   8787   if (EvalResult.Diag &&
   8788       Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
   8789           != Diagnostic::Ignored)
   8790     Diag(EvalResult.DiagLoc, EvalResult.Diag);
   8791 
   8792   if (Result)
   8793     *Result = EvalResult.Val.getInt();
   8794   return false;
   8795 }
   8796 
   8797 void
   8798 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
   8799   ExprEvalContexts.push_back(
   8800              ExpressionEvaluationContextRecord(NewContext,
   8801                                                ExprTemporaries.size(),
   8802                                                ExprNeedsCleanups));
   8803   ExprNeedsCleanups = false;
   8804 }
   8805 
   8806 void
   8807 Sema::PopExpressionEvaluationContext() {
   8808   // Pop the current expression evaluation context off the stack.
   8809   ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
   8810   ExprEvalContexts.pop_back();
   8811 
   8812   if (Rec.Context == PotentiallyPotentiallyEvaluated) {
   8813     if (Rec.PotentiallyReferenced) {
   8814       // Mark any remaining declarations in the current position of the stack
   8815       // as "referenced". If they were not meant to be referenced, semantic
   8816       // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
   8817       for (PotentiallyReferencedDecls::iterator
   8818              I = Rec.PotentiallyReferenced->begin(),
   8819              IEnd = Rec.PotentiallyReferenced->end();
   8820            I != IEnd; ++I)
   8821         MarkDeclarationReferenced(I->first, I->second);
   8822     }
   8823 
   8824     if (Rec.PotentiallyDiagnosed) {
   8825       // Emit any pending diagnostics.
   8826       for (PotentiallyEmittedDiagnostics::iterator
   8827                 I = Rec.PotentiallyDiagnosed->begin(),
   8828              IEnd = Rec.PotentiallyDiagnosed->end();
   8829            I != IEnd; ++I)
   8830         Diag(I->first, I->second);
   8831     }
   8832   }
   8833 
   8834   // When are coming out of an unevaluated context, clear out any
   8835   // temporaries that we may have created as part of the evaluation of
   8836   // the expression in that context: they aren't relevant because they
   8837   // will never be constructed.
   8838   if (Rec.Context == Unevaluated) {
   8839     ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
   8840                           ExprTemporaries.end());
   8841     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
   8842 
   8843   // Otherwise, merge the contexts together.
   8844   } else {
   8845     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
   8846   }
   8847 
   8848   // Destroy the popped expression evaluation record.
   8849   Rec.Destroy();
   8850 }
   8851 
   8852 void Sema::DiscardCleanupsInEvaluationContext() {
   8853   ExprTemporaries.erase(
   8854               ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
   8855               ExprTemporaries.end());
   8856   ExprNeedsCleanups = false;
   8857 }
   8858 
   8859 /// \brief Note that the given declaration was referenced in the source code.
   8860 ///
   8861 /// This routine should be invoke whenever a given declaration is referenced
   8862 /// in the source code, and where that reference occurred. If this declaration
   8863 /// reference means that the the declaration is used (C++ [basic.def.odr]p2,
   8864 /// C99 6.9p3), then the declaration will be marked as used.
   8865 ///
   8866 /// \param Loc the location where the declaration was referenced.
   8867 ///
   8868 /// \param D the declaration that has been referenced by the source code.
   8869 void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
   8870   assert(D && "No declaration?");
   8871 
   8872   D->setReferenced();
   8873 
   8874   if (D->isUsed(false))
   8875     return;
   8876 
   8877   // Mark a parameter or variable declaration "used", regardless of whether we're in a
   8878   // template or not. The reason for this is that unevaluated expressions
   8879   // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
   8880   // -Wunused-parameters)
   8881   if (isa<ParmVarDecl>(D) ||
   8882       (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
   8883     D->setUsed();
   8884     return;
   8885   }
   8886 
   8887   if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
   8888     return;
   8889 
   8890   // Do not mark anything as "used" within a dependent context; wait for
   8891   // an instantiation.
   8892   if (CurContext->isDependentContext())
   8893     return;
   8894 
   8895   switch (ExprEvalContexts.back().Context) {
   8896     case Unevaluated:
   8897       // We are in an expression that is not potentially evaluated; do nothing.
   8898       return;
   8899 
   8900     case PotentiallyEvaluated:
   8901       // We are in a potentially-evaluated expression, so this declaration is
   8902       // "used"; handle this below.
   8903       break;
   8904 
   8905     case PotentiallyPotentiallyEvaluated:
   8906       // We are in an expression that may be potentially evaluated; queue this
   8907       // declaration reference until we know whether the expression is
   8908       // potentially evaluated.
   8909       ExprEvalContexts.back().addReferencedDecl(Loc, D);
   8910       return;
   8911 
   8912     case PotentiallyEvaluatedIfUsed:
   8913       // Referenced declarations will only be used if the construct in the
   8914       // containing expression is used.
   8915       return;
   8916   }
   8917 
   8918   // Note that this declaration has been used.
   8919   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
   8920     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) {
   8921       if (Constructor->isTrivial())
   8922         return;
   8923       if (!Constructor->isUsed(false))
   8924         DefineImplicitDefaultConstructor(Loc, Constructor);
   8925     } else if (Constructor->isDefaulted() &&
   8926                Constructor->isCopyConstructor()) {
   8927       if (!Constructor->isUsed(false))
   8928         DefineImplicitCopyConstructor(Loc, Constructor);
   8929     }
   8930 
   8931     MarkVTableUsed(Loc, Constructor->getParent());
   8932   } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
   8933     if (Destructor->isDefaulted() && !Destructor->isUsed(false))
   8934       DefineImplicitDestructor(Loc, Destructor);
   8935     if (Destructor->isVirtual())
   8936       MarkVTableUsed(Loc, Destructor->getParent());
   8937   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
   8938     if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
   8939         MethodDecl->getOverloadedOperator() == OO_Equal) {
   8940       if (!MethodDecl->isUsed(false))
   8941         DefineImplicitCopyAssignment(Loc, MethodDecl);
   8942     } else if (MethodDecl->isVirtual())
   8943       MarkVTableUsed(Loc, MethodDecl->getParent());
   8944   }
   8945   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
   8946     // Recursive functions should be marked when used from another function.
   8947     if (CurContext == Function) return;
   8948 
   8949     // Implicit instantiation of function templates and member functions of
   8950     // class templates.
   8951     if (Function->isImplicitlyInstantiable()) {
   8952       bool AlreadyInstantiated = false;
   8953       if (FunctionTemplateSpecializationInfo *SpecInfo
   8954                                 = Function->getTemplateSpecializationInfo()) {
   8955         if (SpecInfo->getPointOfInstantiation().isInvalid())
   8956           SpecInfo->setPointOfInstantiation(Loc);
   8957         else if (SpecInfo->getTemplateSpecializationKind()
   8958                    == TSK_ImplicitInstantiation)
   8959           AlreadyInstantiated = true;
   8960       } else if (MemberSpecializationInfo *MSInfo
   8961                                   = Function->getMemberSpecializationInfo()) {
   8962         if (MSInfo->getPointOfInstantiation().isInvalid())
   8963           MSInfo->setPointOfInstantiation(Loc);
   8964         else if (MSInfo->getTemplateSpecializationKind()
   8965                    == TSK_ImplicitInstantiation)
   8966           AlreadyInstantiated = true;
   8967       }
   8968 
   8969       if (!AlreadyInstantiated) {
   8970         if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
   8971             cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
   8972           PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
   8973                                                                       Loc));
   8974         else
   8975           PendingInstantiations.push_back(std::make_pair(Function, Loc));
   8976       }
   8977     } else {
   8978       // Walk redefinitions, as some of them may be instantiable.
   8979       for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
   8980            e(Function->redecls_end()); i != e; ++i) {
   8981         if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   8982           MarkDeclarationReferenced(Loc, *i);
   8983       }
   8984     }
   8985 
   8986     // Keep track of used but undefined functions.
   8987     if (!Function->isPure() && !Function->hasBody() &&
   8988         Function->getLinkage() != ExternalLinkage) {
   8989       SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
   8990       if (old.isInvalid()) old = Loc;
   8991     }
   8992 
   8993     Function->setUsed(true);
   8994     return;
   8995   }
   8996 
   8997   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   8998     // Implicit instantiation of static data members of class templates.
   8999     if (Var->isStaticDataMember() &&
   9000         Var->getInstantiatedFromStaticDataMember()) {
   9001       MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
   9002       assert(MSInfo && "Missing member specialization information?");
   9003       if (MSInfo->getPointOfInstantiation().isInvalid() &&
   9004           MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
   9005         MSInfo->setPointOfInstantiation(Loc);
   9006         // This is a modification of an existing AST node. Notify listeners.
   9007         if (ASTMutationListener *L = getASTMutationListener())
   9008           L->StaticDataMemberInstantiated(Var);
   9009         PendingInstantiations.push_back(std::make_pair(Var, Loc));
   9010       }
   9011     }
   9012 
   9013     // Keep track of used but undefined variables.  We make a hole in
   9014     // the warning for static const data members with in-line
   9015     // initializers.
   9016     if (Var->hasDefinition() == VarDecl::DeclarationOnly
   9017         && Var->getLinkage() != ExternalLinkage
   9018         && !(Var->isStaticDataMember() && Var->hasInit())) {
   9019       SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
   9020       if (old.isInvalid()) old = Loc;
   9021     }
   9022 
   9023     D->setUsed(true);
   9024     return;
   9025   }
   9026 }
   9027 
   9028 namespace {
   9029   // Mark all of the declarations referenced
   9030   // FIXME: Not fully implemented yet! We need to have a better understanding
   9031   // of when we're entering
   9032   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   9033     Sema &S;
   9034     SourceLocation Loc;
   9035 
   9036   public:
   9037     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   9038 
   9039     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   9040 
   9041     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   9042     bool TraverseRecordType(RecordType *T);
   9043   };
   9044 }
   9045 
   9046 bool MarkReferencedDecls::TraverseTemplateArgument(
   9047   const TemplateArgument &Arg) {
   9048   if (Arg.getKind() == TemplateArgument::Declaration) {
   9049     S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
   9050   }
   9051 
   9052   return Inherited::TraverseTemplateArgument(Arg);
   9053 }
   9054 
   9055 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   9056   if (ClassTemplateSpecializationDecl *Spec
   9057                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   9058     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   9059     return TraverseTemplateArguments(Args.data(), Args.size());
   9060   }
   9061 
   9062   return true;
   9063 }
   9064 
   9065 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   9066   MarkReferencedDecls Marker(*this, Loc);
   9067   Marker.TraverseType(Context.getCanonicalType(T));
   9068 }
   9069 
   9070 namespace {
   9071   /// \brief Helper class that marks all of the declarations referenced by
   9072   /// potentially-evaluated subexpressions as "referenced".
   9073   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   9074     Sema &S;
   9075 
   9076   public:
   9077     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   9078 
   9079     explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
   9080 
   9081     void VisitDeclRefExpr(DeclRefExpr *E) {
   9082       S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
   9083     }
   9084 
   9085     void VisitMemberExpr(MemberExpr *E) {
   9086       S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
   9087       Inherited::VisitMemberExpr(E);
   9088     }
   9089 
   9090     void VisitCXXNewExpr(CXXNewExpr *E) {
   9091       if (E->getConstructor())
   9092         S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
   9093       if (E->getOperatorNew())
   9094         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
   9095       if (E->getOperatorDelete())
   9096         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
   9097       Inherited::VisitCXXNewExpr(E);
   9098     }
   9099 
   9100     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   9101       if (E->getOperatorDelete())
   9102         S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
   9103       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   9104       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   9105         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   9106         S.MarkDeclarationReferenced(E->getLocStart(),
   9107                                     S.LookupDestructor(Record));
   9108       }
   9109 
   9110       Inherited::VisitCXXDeleteExpr(E);
   9111     }
   9112 
   9113     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   9114       S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
   9115       Inherited::VisitCXXConstructExpr(E);
   9116     }
   9117 
   9118     void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
   9119       S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
   9120     }
   9121 
   9122     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   9123       Visit(E->getExpr());
   9124     }
   9125   };
   9126 }
   9127 
   9128 /// \brief Mark any declarations that appear within this expression or any
   9129 /// potentially-evaluated subexpressions as "referenced".
   9130 void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
   9131   EvaluatedExprMarker(*this).Visit(E);
   9132 }
   9133 
   9134 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   9135 /// of the program being compiled.
   9136 ///
   9137 /// This routine emits the given diagnostic when the code currently being
   9138 /// type-checked is "potentially evaluated", meaning that there is a
   9139 /// possibility that the code will actually be executable. Code in sizeof()
   9140 /// expressions, code used only during overload resolution, etc., are not
   9141 /// potentially evaluated. This routine will suppress such diagnostics or,
   9142 /// in the absolutely nutty case of potentially potentially evaluated
   9143 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   9144 /// later.
   9145 ///
   9146 /// This routine should be used for all diagnostics that describe the run-time
   9147 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   9148 /// Failure to do so will likely result in spurious diagnostics or failures
   9149 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   9150 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
   9151                                const PartialDiagnostic &PD) {
   9152   switch (ExprEvalContexts.back().Context) {
   9153   case Unevaluated:
   9154     // The argument will never be evaluated, so don't complain.
   9155     break;
   9156 
   9157   case PotentiallyEvaluated:
   9158   case PotentiallyEvaluatedIfUsed:
   9159     if (stmt && getCurFunctionOrMethodDecl()) {
   9160       FunctionScopes.back()->PossiblyUnreachableDiags.
   9161         push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
   9162     }
   9163     else
   9164       Diag(Loc, PD);
   9165 
   9166     return true;
   9167 
   9168   case PotentiallyPotentiallyEvaluated:
   9169     ExprEvalContexts.back().addDiagnostic(Loc, PD);
   9170     break;
   9171   }
   9172 
   9173   return false;
   9174 }
   9175 
   9176 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   9177                                CallExpr *CE, FunctionDecl *FD) {
   9178   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   9179     return false;
   9180 
   9181   PartialDiagnostic Note =
   9182     FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
   9183     << FD->getDeclName() : PDiag();
   9184   SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
   9185 
   9186   if (RequireCompleteType(Loc, ReturnType,
   9187                           FD ?
   9188                           PDiag(diag::err_call_function_incomplete_return)
   9189                             << CE->getSourceRange() << FD->getDeclName() :
   9190                           PDiag(diag::err_call_incomplete_return)
   9191                             << CE->getSourceRange(),
   9192                           std::make_pair(NoteLoc, Note)))
   9193     return true;
   9194 
   9195   return false;
   9196 }
   9197 
   9198 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   9199 // will prevent this condition from triggering, which is what we want.
   9200 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   9201   SourceLocation Loc;
   9202 
   9203   unsigned diagnostic = diag::warn_condition_is_assignment;
   9204   bool IsOrAssign = false;
   9205 
   9206   if (isa<BinaryOperator>(E)) {
   9207     BinaryOperator *Op = cast<BinaryOperator>(E);
   9208     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   9209       return;
   9210 
   9211     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   9212 
   9213     // Greylist some idioms by putting them into a warning subcategory.
   9214     if (ObjCMessageExpr *ME
   9215           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   9216       Selector Sel = ME->getSelector();
   9217 
   9218       // self = [<foo> init...]
   9219       if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
   9220         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   9221 
   9222       // <foo> = [<bar> nextObject]
   9223       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   9224         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   9225     }
   9226 
   9227     Loc = Op->getOperatorLoc();
   9228   } else if (isa<CXXOperatorCallExpr>(E)) {
   9229     CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
   9230     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   9231       return;
   9232 
   9233     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   9234     Loc = Op->getOperatorLoc();
   9235   } else {
   9236     // Not an assignment.
   9237     return;
   9238   }
   9239 
   9240   Diag(Loc, diagnostic) << E->getSourceRange();
   9241 
   9242   SourceLocation Open = E->getSourceRange().getBegin();
   9243   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
   9244   Diag(Loc, diag::note_condition_assign_silence)
   9245         << FixItHint::CreateInsertion(Open, "(")
   9246         << FixItHint::CreateInsertion(Close, ")");
   9247 
   9248   if (IsOrAssign)
   9249     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   9250       << FixItHint::CreateReplacement(Loc, "!=");
   9251   else
   9252     Diag(Loc, diag::note_condition_assign_to_comparison)
   9253       << FixItHint::CreateReplacement(Loc, "==");
   9254 }
   9255 
   9256 /// \brief Redundant parentheses over an equality comparison can indicate
   9257 /// that the user intended an assignment used as condition.
   9258 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
   9259   // Don't warn if the parens came from a macro.
   9260   SourceLocation parenLoc = parenE->getLocStart();
   9261   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   9262     return;
   9263   // Don't warn for dependent expressions.
   9264   if (parenE->isTypeDependent())
   9265     return;
   9266 
   9267   Expr *E = parenE->IgnoreParens();
   9268 
   9269   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   9270     if (opE->getOpcode() == BO_EQ &&
   9271         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   9272                                                            == Expr::MLV_Valid) {
   9273       SourceLocation Loc = opE->getOperatorLoc();
   9274 
   9275       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   9276       Diag(Loc, diag::note_equality_comparison_silence)
   9277         << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
   9278         << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
   9279       Diag(Loc, diag::note_equality_comparison_to_assign)
   9280         << FixItHint::CreateReplacement(Loc, "=");
   9281     }
   9282 }
   9283 
   9284 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
   9285   DiagnoseAssignmentAsCondition(E);
   9286   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   9287     DiagnoseEqualityWithExtraParens(parenE);
   9288 
   9289   ExprResult result = CheckPlaceholderExpr(E);
   9290   if (result.isInvalid()) return ExprError();
   9291   E = result.take();
   9292 
   9293   if (!E->isTypeDependent()) {
   9294     if (getLangOptions().CPlusPlus)
   9295       return CheckCXXBooleanCondition(E); // C++ 6.4p4
   9296 
   9297     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   9298     if (ERes.isInvalid())
   9299       return ExprError();
   9300     E = ERes.take();
   9301 
   9302     QualType T = E->getType();
   9303     if (!T->isScalarType()) { // C99 6.8.4.1p1
   9304       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   9305         << T << E->getSourceRange();
   9306       return ExprError();
   9307     }
   9308   }
   9309 
   9310   return Owned(E);
   9311 }
   9312 
   9313 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
   9314                                        Expr *Sub) {
   9315   if (!Sub)
   9316     return ExprError();
   9317 
   9318   return CheckBooleanCondition(Sub, Loc);
   9319 }
   9320 
   9321 namespace {
   9322   /// A visitor for rebuilding a call to an __unknown_any expression
   9323   /// to have an appropriate type.
   9324   struct RebuildUnknownAnyFunction
   9325     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   9326 
   9327     Sema &S;
   9328 
   9329     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   9330 
   9331     ExprResult VisitStmt(Stmt *S) {
   9332       llvm_unreachable("unexpected statement!");
   9333       return ExprError();
   9334     }
   9335 
   9336     ExprResult VisitExpr(Expr *expr) {
   9337       S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
   9338         << expr->getSourceRange();
   9339       return ExprError();
   9340     }
   9341 
   9342     /// Rebuild an expression which simply semantically wraps another
   9343     /// expression which it shares the type and value kind of.
   9344     template <class T> ExprResult rebuildSugarExpr(T *expr) {
   9345       ExprResult subResult = Visit(expr->getSubExpr());
   9346       if (subResult.isInvalid()) return ExprError();
   9347 
   9348       Expr *subExpr = subResult.take();
   9349       expr->setSubExpr(subExpr);
   9350       expr->setType(subExpr->getType());
   9351       expr->setValueKind(subExpr->getValueKind());
   9352       assert(expr->getObjectKind() == OK_Ordinary);
   9353       return expr;
   9354     }
   9355 
   9356     ExprResult VisitParenExpr(ParenExpr *paren) {
   9357       return rebuildSugarExpr(paren);
   9358     }
   9359 
   9360     ExprResult VisitUnaryExtension(UnaryOperator *op) {
   9361       return rebuildSugarExpr(op);
   9362     }
   9363 
   9364     ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
   9365       ExprResult subResult = Visit(op->getSubExpr());
   9366       if (subResult.isInvalid()) return ExprError();
   9367 
   9368       Expr *subExpr = subResult.take();
   9369       op->setSubExpr(subExpr);
   9370       op->setType(S.Context.getPointerType(subExpr->getType()));
   9371       assert(op->getValueKind() == VK_RValue);
   9372       assert(op->getObjectKind() == OK_Ordinary);
   9373       return op;
   9374     }
   9375 
   9376     ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
   9377       if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
   9378 
   9379       expr->setType(decl->getType());
   9380 
   9381       assert(expr->getValueKind() == VK_RValue);
   9382       if (S.getLangOptions().CPlusPlus &&
   9383           !(isa<CXXMethodDecl>(decl) &&
   9384             cast<CXXMethodDecl>(decl)->isInstance()))
   9385         expr->setValueKind(VK_LValue);
   9386 
   9387       return expr;
   9388     }
   9389 
   9390     ExprResult VisitMemberExpr(MemberExpr *mem) {
   9391       return resolveDecl(mem, mem->getMemberDecl());
   9392     }
   9393 
   9394     ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
   9395       return resolveDecl(ref, ref->getDecl());
   9396     }
   9397   };
   9398 }
   9399 
   9400 /// Given a function expression of unknown-any type, try to rebuild it
   9401 /// to have a function type.
   9402 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
   9403   ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
   9404   if (result.isInvalid()) return ExprError();
   9405   return S.DefaultFunctionArrayConversion(result.take());
   9406 }
   9407 
   9408 namespace {
   9409   /// A visitor for rebuilding an expression of type __unknown_anytype
   9410   /// into one which resolves the type directly on the referring
   9411   /// expression.  Strict preservation of the original source
   9412   /// structure is not a goal.
   9413   struct RebuildUnknownAnyExpr
   9414     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   9415 
   9416     Sema &S;
   9417 
   9418     /// The current destination type.
   9419     QualType DestType;
   9420 
   9421     RebuildUnknownAnyExpr(Sema &S, QualType castType)
   9422       : S(S), DestType(castType) {}
   9423 
   9424     ExprResult VisitStmt(Stmt *S) {
   9425       llvm_unreachable("unexpected statement!");
   9426       return ExprError();
   9427     }
   9428 
   9429     ExprResult VisitExpr(Expr *expr) {
   9430       S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   9431         << expr->getSourceRange();
   9432       return ExprError();
   9433     }
   9434 
   9435     ExprResult VisitCallExpr(CallExpr *call);
   9436     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
   9437 
   9438     /// Rebuild an expression which simply semantically wraps another
   9439     /// expression which it shares the type and value kind of.
   9440     template <class T> ExprResult rebuildSugarExpr(T *expr) {
   9441       ExprResult subResult = Visit(expr->getSubExpr());
   9442       if (subResult.isInvalid()) return ExprError();
   9443       Expr *subExpr = subResult.take();
   9444       expr->setSubExpr(subExpr);
   9445       expr->setType(subExpr->getType());
   9446       expr->setValueKind(subExpr->getValueKind());
   9447       assert(expr->getObjectKind() == OK_Ordinary);
   9448       return expr;
   9449     }
   9450 
   9451     ExprResult VisitParenExpr(ParenExpr *paren) {
   9452       return rebuildSugarExpr(paren);
   9453     }
   9454 
   9455     ExprResult VisitUnaryExtension(UnaryOperator *op) {
   9456       return rebuildSugarExpr(op);
   9457     }
   9458 
   9459     ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
   9460       const PointerType *ptr = DestType->getAs<PointerType>();
   9461       if (!ptr) {
   9462         S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
   9463           << op->getSourceRange();
   9464         return ExprError();
   9465       }
   9466       assert(op->getValueKind() == VK_RValue);
   9467       assert(op->getObjectKind() == OK_Ordinary);
   9468       op->setType(DestType);
   9469 
   9470       // Build the sub-expression as if it were an object of the pointee type.
   9471       DestType = ptr->getPointeeType();
   9472       ExprResult subResult = Visit(op->getSubExpr());
   9473       if (subResult.isInvalid()) return ExprError();
   9474       op->setSubExpr(subResult.take());
   9475       return op;
   9476     }
   9477 
   9478     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
   9479 
   9480     ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
   9481 
   9482     ExprResult VisitMemberExpr(MemberExpr *mem) {
   9483       return resolveDecl(mem, mem->getMemberDecl());
   9484     }
   9485 
   9486     ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
   9487       return resolveDecl(ref, ref->getDecl());
   9488     }
   9489   };
   9490 }
   9491 
   9492 /// Rebuilds a call expression which yielded __unknown_anytype.
   9493 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
   9494   Expr *callee = call->getCallee();
   9495 
   9496   enum FnKind {
   9497     FK_MemberFunction,
   9498     FK_FunctionPointer,
   9499     FK_BlockPointer
   9500   };
   9501 
   9502   FnKind kind;
   9503   QualType type = callee->getType();
   9504   if (type == S.Context.BoundMemberTy) {
   9505     assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
   9506     kind = FK_MemberFunction;
   9507     type = Expr::findBoundMemberType(callee);
   9508   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   9509     type = ptr->getPointeeType();
   9510     kind = FK_FunctionPointer;
   9511   } else {
   9512     type = type->castAs<BlockPointerType>()->getPointeeType();
   9513     kind = FK_BlockPointer;
   9514   }
   9515   const FunctionType *fnType = type->castAs<FunctionType>();
   9516 
   9517   // Verify that this is a legal result type of a function.
   9518   if (DestType->isArrayType() || DestType->isFunctionType()) {
   9519     unsigned diagID = diag::err_func_returning_array_function;
   9520     if (kind == FK_BlockPointer)
   9521       diagID = diag::err_block_returning_array_function;
   9522 
   9523     S.Diag(call->getExprLoc(), diagID)
   9524       << DestType->isFunctionType() << DestType;
   9525     return ExprError();
   9526   }
   9527 
   9528   // Otherwise, go ahead and set DestType as the call's result.
   9529   call->setType(DestType.getNonLValueExprType(S.Context));
   9530   call->setValueKind(Expr::getValueKindForType(DestType));
   9531   assert(call->getObjectKind() == OK_Ordinary);
   9532 
   9533   // Rebuild the function type, replacing the result type with DestType.
   9534   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
   9535     DestType = S.Context.getFunctionType(DestType,
   9536                                          proto->arg_type_begin(),
   9537                                          proto->getNumArgs(),
   9538                                          proto->getExtProtoInfo());
   9539   else
   9540     DestType = S.Context.getFunctionNoProtoType(DestType,
   9541                                                 fnType->getExtInfo());
   9542 
   9543   // Rebuild the appropriate pointer-to-function type.
   9544   switch (kind) {
   9545   case FK_MemberFunction:
   9546     // Nothing to do.
   9547     break;
   9548 
   9549   case FK_FunctionPointer:
   9550     DestType = S.Context.getPointerType(DestType);
   9551     break;
   9552 
   9553   case FK_BlockPointer:
   9554     DestType = S.Context.getBlockPointerType(DestType);
   9555     break;
   9556   }
   9557 
   9558   // Finally, we can recurse.
   9559   ExprResult calleeResult = Visit(callee);
   9560   if (!calleeResult.isUsable()) return ExprError();
   9561   call->setCallee(calleeResult.take());
   9562 
   9563   // Bind a temporary if necessary.
   9564   return S.MaybeBindToTemporary(call);
   9565 }
   9566 
   9567 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
   9568   // Verify that this is a legal result type of a call.
   9569   if (DestType->isArrayType() || DestType->isFunctionType()) {
   9570     S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
   9571       << DestType->isFunctionType() << DestType;
   9572     return ExprError();
   9573   }
   9574 
   9575   // Rewrite the method result type if available.
   9576   if (ObjCMethodDecl *method = msg->getMethodDecl()) {
   9577     assert(method->getResultType() == S.Context.UnknownAnyTy);
   9578     method->setResultType(DestType);
   9579   }
   9580 
   9581   // Change the type of the message.
   9582   msg->setType(DestType.getNonReferenceType());
   9583   msg->setValueKind(Expr::getValueKindForType(DestType));
   9584 
   9585   return S.MaybeBindToTemporary(msg);
   9586 }
   9587 
   9588 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
   9589   // The only case we should ever see here is a function-to-pointer decay.
   9590   assert(ice->getCastKind() == CK_FunctionToPointerDecay);
   9591   assert(ice->getValueKind() == VK_RValue);
   9592   assert(ice->getObjectKind() == OK_Ordinary);
   9593 
   9594   ice->setType(DestType);
   9595 
   9596   // Rebuild the sub-expression as the pointee (function) type.
   9597   DestType = DestType->castAs<PointerType>()->getPointeeType();
   9598 
   9599   ExprResult result = Visit(ice->getSubExpr());
   9600   if (!result.isUsable()) return ExprError();
   9601 
   9602   ice->setSubExpr(result.take());
   9603   return S.Owned(ice);
   9604 }
   9605 
   9606 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
   9607   ExprValueKind valueKind = VK_LValue;
   9608   QualType type = DestType;
   9609 
   9610   // We know how to make this work for certain kinds of decls:
   9611 
   9612   //  - functions
   9613   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
   9614     // This is true because FunctionDecls must always have function
   9615     // type, so we can't be resolving the entire thing at once.
   9616     assert(type->isFunctionType());
   9617 
   9618     if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
   9619       if (method->isInstance()) {
   9620         valueKind = VK_RValue;
   9621         type = S.Context.BoundMemberTy;
   9622       }
   9623 
   9624     // Function references aren't l-values in C.
   9625     if (!S.getLangOptions().CPlusPlus)
   9626       valueKind = VK_RValue;
   9627 
   9628   //  - variables
   9629   } else if (isa<VarDecl>(decl)) {
   9630     if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
   9631       type = refTy->getPointeeType();
   9632     } else if (type->isFunctionType()) {
   9633       S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
   9634         << decl << expr->getSourceRange();
   9635       return ExprError();
   9636     }
   9637 
   9638   //  - nothing else
   9639   } else {
   9640     S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   9641       << decl << expr->getSourceRange();
   9642     return ExprError();
   9643   }
   9644 
   9645   decl->setType(DestType);
   9646   expr->setType(type);
   9647   expr->setValueKind(valueKind);
   9648   return S.Owned(expr);
   9649 }
   9650 
   9651 /// Check a cast of an unknown-any type.  We intentionally only
   9652 /// trigger this for C-style casts.
   9653 ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
   9654                                      Expr *castExpr, CastKind &castKind,
   9655                                      ExprValueKind &VK, CXXCastPath &path) {
   9656   // Rewrite the casted expression from scratch.
   9657   ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
   9658   if (!result.isUsable()) return ExprError();
   9659 
   9660   castExpr = result.take();
   9661   VK = castExpr->getValueKind();
   9662   castKind = CK_NoOp;
   9663 
   9664   return castExpr;
   9665 }
   9666 
   9667 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
   9668   Expr *orig = e;
   9669   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   9670   while (true) {
   9671     e = e->IgnoreParenImpCasts();
   9672     if (CallExpr *call = dyn_cast<CallExpr>(e)) {
   9673       e = call->getCallee();
   9674       diagID = diag::err_uncasted_call_of_unknown_any;
   9675     } else {
   9676       break;
   9677     }
   9678   }
   9679 
   9680   SourceLocation loc;
   9681   NamedDecl *d;
   9682   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
   9683     loc = ref->getLocation();
   9684     d = ref->getDecl();
   9685   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
   9686     loc = mem->getMemberLoc();
   9687     d = mem->getMemberDecl();
   9688   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
   9689     diagID = diag::err_uncasted_call_of_unknown_any;
   9690     loc = msg->getSelectorLoc();
   9691     d = msg->getMethodDecl();
   9692     assert(d && "unknown method returning __unknown_any?");
   9693   } else {
   9694     S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   9695       << e->getSourceRange();
   9696     return ExprError();
   9697   }
   9698 
   9699   S.Diag(loc, diagID) << d << orig->getSourceRange();
   9700 
   9701   // Never recoverable.
   9702   return ExprError();
   9703 }
   9704 
   9705 /// Check for operands with placeholder types and complain if found.
   9706 /// Returns true if there was an error and no recovery was possible.
   9707 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   9708   // Placeholder types are always *exactly* the appropriate builtin type.
   9709   QualType type = E->getType();
   9710 
   9711   // Overloaded expressions.
   9712   if (type == Context.OverloadTy)
   9713     return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
   9714                                                            E->getSourceRange(),
   9715                                                              QualType(),
   9716                                                    diag::err_ovl_unresolvable);
   9717 
   9718   // Bound member functions.
   9719   if (type == Context.BoundMemberTy) {
   9720     Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
   9721       << E->getSourceRange();
   9722     return ExprError();
   9723   }
   9724 
   9725   // Expressions of unknown type.
   9726   if (type == Context.UnknownAnyTy)
   9727     return diagnoseUnknownAnyExpr(*this, E);
   9728 
   9729   assert(!type->isPlaceholderType());
   9730   return Owned(E);
   9731 }
   9732 
   9733 bool Sema::CheckCaseExpression(Expr *expr) {
   9734   if (expr->isTypeDependent())
   9735     return true;
   9736   if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
   9737     return expr->getType()->isIntegralOrEnumerationType();
   9738   return false;
   9739 }
   9740