Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RAGreedy function pass for register allocation in
     11 // optimized builds.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "AllocationOrder.h"
     17 #include "InterferenceCache.h"
     18 #include "LiveDebugVariables.h"
     19 #include "LiveRangeEdit.h"
     20 #include "RegAllocBase.h"
     21 #include "Spiller.h"
     22 #include "SpillPlacement.h"
     23 #include "SplitKit.h"
     24 #include "VirtRegMap.h"
     25 #include "llvm/ADT/Statistic.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/PassAnalysisSupport.h"
     29 #include "llvm/CodeGen/CalcSpillWeights.h"
     30 #include "llvm/CodeGen/EdgeBundles.h"
     31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     32 #include "llvm/CodeGen/LiveStackAnalysis.h"
     33 #include "llvm/CodeGen/MachineDominators.h"
     34 #include "llvm/CodeGen/MachineFunctionPass.h"
     35 #include "llvm/CodeGen/MachineLoopInfo.h"
     36 #include "llvm/CodeGen/MachineRegisterInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/CodeGen/RegAllocRegistry.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Support/Timer.h"
     45 
     46 #include <queue>
     47 
     48 using namespace llvm;
     49 
     50 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
     51 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
     52 STATISTIC(NumEvicted,      "Number of interferences evicted");
     53 
     54 static cl::opt<SplitEditor::ComplementSpillMode>
     55 SplitSpillMode("split-spill-mode", cl::Hidden,
     56   cl::desc("Spill mode for splitting live ranges"),
     57   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
     58              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
     59              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
     60              clEnumValEnd),
     61   cl::init(SplitEditor::SM_Partition));
     62 
     63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
     64                                        createGreedyRegisterAllocator);
     65 
     66 namespace {
     67 class RAGreedy : public MachineFunctionPass,
     68                  public RegAllocBase,
     69                  private LiveRangeEdit::Delegate {
     70 
     71   // context
     72   MachineFunction *MF;
     73 
     74   // analyses
     75   SlotIndexes *Indexes;
     76   LiveStacks *LS;
     77   MachineDominatorTree *DomTree;
     78   MachineLoopInfo *Loops;
     79   EdgeBundles *Bundles;
     80   SpillPlacement *SpillPlacer;
     81   LiveDebugVariables *DebugVars;
     82 
     83   // state
     84   std::auto_ptr<Spiller> SpillerInstance;
     85   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
     86   unsigned NextCascade;
     87 
     88   // Live ranges pass through a number of stages as we try to allocate them.
     89   // Some of the stages may also create new live ranges:
     90   //
     91   // - Region splitting.
     92   // - Per-block splitting.
     93   // - Local splitting.
     94   // - Spilling.
     95   //
     96   // Ranges produced by one of the stages skip the previous stages when they are
     97   // dequeued. This improves performance because we can skip interference checks
     98   // that are unlikely to give any results. It also guarantees that the live
     99   // range splitting algorithm terminates, something that is otherwise hard to
    100   // ensure.
    101   enum LiveRangeStage {
    102     /// Newly created live range that has never been queued.
    103     RS_New,
    104 
    105     /// Only attempt assignment and eviction. Then requeue as RS_Split.
    106     RS_Assign,
    107 
    108     /// Attempt live range splitting if assignment is impossible.
    109     RS_Split,
    110 
    111     /// Attempt more aggressive live range splitting that is guaranteed to make
    112     /// progress.  This is used for split products that may not be making
    113     /// progress.
    114     RS_Split2,
    115 
    116     /// Live range will be spilled.  No more splitting will be attempted.
    117     RS_Spill,
    118 
    119     /// There is nothing more we can do to this live range.  Abort compilation
    120     /// if it can't be assigned.
    121     RS_Done
    122   };
    123 
    124   static const char *const StageName[];
    125 
    126   // RegInfo - Keep additional information about each live range.
    127   struct RegInfo {
    128     LiveRangeStage Stage;
    129 
    130     // Cascade - Eviction loop prevention. See canEvictInterference().
    131     unsigned Cascade;
    132 
    133     RegInfo() : Stage(RS_New), Cascade(0) {}
    134   };
    135 
    136   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
    137 
    138   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    139     return ExtraRegInfo[VirtReg.reg].Stage;
    140   }
    141 
    142   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    143     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    144     ExtraRegInfo[VirtReg.reg].Stage = Stage;
    145   }
    146 
    147   template<typename Iterator>
    148   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    149     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    150     for (;Begin != End; ++Begin) {
    151       unsigned Reg = (*Begin)->reg;
    152       if (ExtraRegInfo[Reg].Stage == RS_New)
    153         ExtraRegInfo[Reg].Stage = NewStage;
    154     }
    155   }
    156 
    157   /// Cost of evicting interference.
    158   struct EvictionCost {
    159     unsigned BrokenHints; ///< Total number of broken hints.
    160     float MaxWeight;      ///< Maximum spill weight evicted.
    161 
    162     EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
    163 
    164     bool operator<(const EvictionCost &O) const {
    165       if (BrokenHints != O.BrokenHints)
    166         return BrokenHints < O.BrokenHints;
    167       return MaxWeight < O.MaxWeight;
    168     }
    169   };
    170 
    171   // splitting state.
    172   std::auto_ptr<SplitAnalysis> SA;
    173   std::auto_ptr<SplitEditor> SE;
    174 
    175   /// Cached per-block interference maps
    176   InterferenceCache IntfCache;
    177 
    178   /// All basic blocks where the current register has uses.
    179   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
    180 
    181   /// Global live range splitting candidate info.
    182   struct GlobalSplitCandidate {
    183     // Register intended for assignment, or 0.
    184     unsigned PhysReg;
    185 
    186     // SplitKit interval index for this candidate.
    187     unsigned IntvIdx;
    188 
    189     // Interference for PhysReg.
    190     InterferenceCache::Cursor Intf;
    191 
    192     // Bundles where this candidate should be live.
    193     BitVector LiveBundles;
    194     SmallVector<unsigned, 8> ActiveBlocks;
    195 
    196     void reset(InterferenceCache &Cache, unsigned Reg) {
    197       PhysReg = Reg;
    198       IntvIdx = 0;
    199       Intf.setPhysReg(Cache, Reg);
    200       LiveBundles.clear();
    201       ActiveBlocks.clear();
    202     }
    203 
    204     // Set B[i] = C for every live bundle where B[i] was NoCand.
    205     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
    206       unsigned Count = 0;
    207       for (int i = LiveBundles.find_first(); i >= 0;
    208            i = LiveBundles.find_next(i))
    209         if (B[i] == NoCand) {
    210           B[i] = C;
    211           Count++;
    212         }
    213       return Count;
    214     }
    215   };
    216 
    217   /// Candidate info for for each PhysReg in AllocationOrder.
    218   /// This vector never shrinks, but grows to the size of the largest register
    219   /// class.
    220   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
    221 
    222   enum { NoCand = ~0u };
    223 
    224   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
    225   /// NoCand which indicates the stack interval.
    226   SmallVector<unsigned, 32> BundleCand;
    227 
    228 public:
    229   RAGreedy();
    230 
    231   /// Return the pass name.
    232   virtual const char* getPassName() const {
    233     return "Greedy Register Allocator";
    234   }
    235 
    236   /// RAGreedy analysis usage.
    237   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    238   virtual void releaseMemory();
    239   virtual Spiller &spiller() { return *SpillerInstance; }
    240   virtual void enqueue(LiveInterval *LI);
    241   virtual LiveInterval *dequeue();
    242   virtual unsigned selectOrSplit(LiveInterval&,
    243                                  SmallVectorImpl<LiveInterval*>&);
    244 
    245   /// Perform register allocation.
    246   virtual bool runOnMachineFunction(MachineFunction &mf);
    247 
    248   static char ID;
    249 
    250 private:
    251   void LRE_WillEraseInstruction(MachineInstr*);
    252   bool LRE_CanEraseVirtReg(unsigned);
    253   void LRE_WillShrinkVirtReg(unsigned);
    254   void LRE_DidCloneVirtReg(unsigned, unsigned);
    255 
    256   float calcSpillCost();
    257   bool addSplitConstraints(InterferenceCache::Cursor, float&);
    258   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
    259   void growRegion(GlobalSplitCandidate &Cand);
    260   float calcGlobalSplitCost(GlobalSplitCandidate&);
    261   bool calcCompactRegion(GlobalSplitCandidate&);
    262   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
    263   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
    264   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
    265   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
    266   void evictInterference(LiveInterval&, unsigned,
    267                          SmallVectorImpl<LiveInterval*>&);
    268 
    269   unsigned tryAssign(LiveInterval&, AllocationOrder&,
    270                      SmallVectorImpl<LiveInterval*>&);
    271   unsigned tryEvict(LiveInterval&, AllocationOrder&,
    272                     SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
    273   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
    274                           SmallVectorImpl<LiveInterval*>&);
    275   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
    276                          SmallVectorImpl<LiveInterval*>&);
    277   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    278     SmallVectorImpl<LiveInterval*>&);
    279   unsigned trySplit(LiveInterval&, AllocationOrder&,
    280                     SmallVectorImpl<LiveInterval*>&);
    281 };
    282 } // end anonymous namespace
    283 
    284 char RAGreedy::ID = 0;
    285 
    286 #ifndef NDEBUG
    287 const char *const RAGreedy::StageName[] = {
    288     "RS_New",
    289     "RS_Assign",
    290     "RS_Split",
    291     "RS_Split2",
    292     "RS_Spill",
    293     "RS_Done"
    294 };
    295 #endif
    296 
    297 // Hysteresis to use when comparing floats.
    298 // This helps stabilize decisions based on float comparisons.
    299 const float Hysteresis = 0.98f;
    300 
    301 
    302 FunctionPass* llvm::createGreedyRegisterAllocator() {
    303   return new RAGreedy();
    304 }
    305 
    306 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
    307   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    308   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    309   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    310   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    311   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
    312   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    313   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    314   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    315   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    316   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    317   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    318   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
    319   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
    320 }
    321 
    322 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
    323   AU.setPreservesCFG();
    324   AU.addRequired<AliasAnalysis>();
    325   AU.addPreserved<AliasAnalysis>();
    326   AU.addRequired<LiveIntervals>();
    327   AU.addRequired<SlotIndexes>();
    328   AU.addPreserved<SlotIndexes>();
    329   AU.addRequired<LiveDebugVariables>();
    330   AU.addPreserved<LiveDebugVariables>();
    331   if (StrongPHIElim)
    332     AU.addRequiredID(StrongPHIEliminationID);
    333   AU.addRequiredTransitiveID(RegisterCoalescerPassID);
    334   AU.addRequired<CalculateSpillWeights>();
    335   AU.addRequired<LiveStacks>();
    336   AU.addPreserved<LiveStacks>();
    337   AU.addRequired<MachineDominatorTree>();
    338   AU.addPreserved<MachineDominatorTree>();
    339   AU.addRequired<MachineLoopInfo>();
    340   AU.addPreserved<MachineLoopInfo>();
    341   AU.addRequired<VirtRegMap>();
    342   AU.addPreserved<VirtRegMap>();
    343   AU.addRequired<EdgeBundles>();
    344   AU.addRequired<SpillPlacement>();
    345   MachineFunctionPass::getAnalysisUsage(AU);
    346 }
    347 
    348 
    349 //===----------------------------------------------------------------------===//
    350 //                     LiveRangeEdit delegate methods
    351 //===----------------------------------------------------------------------===//
    352 
    353 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
    354   // LRE itself will remove from SlotIndexes and parent basic block.
    355   VRM->RemoveMachineInstrFromMaps(MI);
    356 }
    357 
    358 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
    359   if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
    360     unassign(LIS->getInterval(VirtReg), PhysReg);
    361     return true;
    362   }
    363   // Unassigned virtreg is probably in the priority queue.
    364   // RegAllocBase will erase it after dequeueing.
    365   return false;
    366 }
    367 
    368 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
    369   unsigned PhysReg = VRM->getPhys(VirtReg);
    370   if (!PhysReg)
    371     return;
    372 
    373   // Register is assigned, put it back on the queue for reassignment.
    374   LiveInterval &LI = LIS->getInterval(VirtReg);
    375   unassign(LI, PhysReg);
    376   enqueue(&LI);
    377 }
    378 
    379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
    380   // Cloning a register we haven't even heard about yet?  Just ignore it.
    381   if (!ExtraRegInfo.inBounds(Old))
    382     return;
    383 
    384   // LRE may clone a virtual register because dead code elimination causes it to
    385   // be split into connected components. The new components are much smaller
    386   // than the original, so they should get a new chance at being assigned.
    387   // same stage as the parent.
    388   ExtraRegInfo[Old].Stage = RS_Assign;
    389   ExtraRegInfo.grow(New);
    390   ExtraRegInfo[New] = ExtraRegInfo[Old];
    391 }
    392 
    393 void RAGreedy::releaseMemory() {
    394   SpillerInstance.reset(0);
    395   ExtraRegInfo.clear();
    396   GlobalCand.clear();
    397   RegAllocBase::releaseMemory();
    398 }
    399 
    400 void RAGreedy::enqueue(LiveInterval *LI) {
    401   // Prioritize live ranges by size, assigning larger ranges first.
    402   // The queue holds (size, reg) pairs.
    403   const unsigned Size = LI->getSize();
    404   const unsigned Reg = LI->reg;
    405   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    406          "Can only enqueue virtual registers");
    407   unsigned Prio;
    408 
    409   ExtraRegInfo.grow(Reg);
    410   if (ExtraRegInfo[Reg].Stage == RS_New)
    411     ExtraRegInfo[Reg].Stage = RS_Assign;
    412 
    413   if (ExtraRegInfo[Reg].Stage == RS_Split) {
    414     // Unsplit ranges that couldn't be allocated immediately are deferred until
    415     // everything else has been allocated.
    416     Prio = Size;
    417   } else {
    418     // Everything is allocated in long->short order. Long ranges that don't fit
    419     // should be spilled (or split) ASAP so they don't create interference.
    420     Prio = (1u << 31) + Size;
    421 
    422     // Boost ranges that have a physical register hint.
    423     if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
    424       Prio |= (1u << 30);
    425   }
    426 
    427   Queue.push(std::make_pair(Prio, Reg));
    428 }
    429 
    430 LiveInterval *RAGreedy::dequeue() {
    431   if (Queue.empty())
    432     return 0;
    433   LiveInterval *LI = &LIS->getInterval(Queue.top().second);
    434   Queue.pop();
    435   return LI;
    436 }
    437 
    438 
    439 //===----------------------------------------------------------------------===//
    440 //                            Direct Assignment
    441 //===----------------------------------------------------------------------===//
    442 
    443 /// tryAssign - Try to assign VirtReg to an available register.
    444 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
    445                              AllocationOrder &Order,
    446                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
    447   Order.rewind();
    448   unsigned PhysReg;
    449   while ((PhysReg = Order.next()))
    450     if (!checkPhysRegInterference(VirtReg, PhysReg))
    451       break;
    452   if (!PhysReg || Order.isHint(PhysReg))
    453     return PhysReg;
    454 
    455   // PhysReg is available, but there may be a better choice.
    456 
    457   // If we missed a simple hint, try to cheaply evict interference from the
    458   // preferred register.
    459   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    460     if (Order.isHint(Hint)) {
    461       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
    462       EvictionCost MaxCost(1);
    463       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
    464         evictInterference(VirtReg, Hint, NewVRegs);
    465         return Hint;
    466       }
    467     }
    468 
    469   // Try to evict interference from a cheaper alternative.
    470   unsigned Cost = TRI->getCostPerUse(PhysReg);
    471 
    472   // Most registers have 0 additional cost.
    473   if (!Cost)
    474     return PhysReg;
    475 
    476   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
    477                << '\n');
    478   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
    479   return CheapReg ? CheapReg : PhysReg;
    480 }
    481 
    482 
    483 //===----------------------------------------------------------------------===//
    484 //                         Interference eviction
    485 //===----------------------------------------------------------------------===//
    486 
    487 /// shouldEvict - determine if A should evict the assigned live range B. The
    488 /// eviction policy defined by this function together with the allocation order
    489 /// defined by enqueue() decides which registers ultimately end up being split
    490 /// and spilled.
    491 ///
    492 /// Cascade numbers are used to prevent infinite loops if this function is a
    493 /// cyclic relation.
    494 ///
    495 /// @param A          The live range to be assigned.
    496 /// @param IsHint     True when A is about to be assigned to its preferred
    497 ///                   register.
    498 /// @param B          The live range to be evicted.
    499 /// @param BreaksHint True when B is already assigned to its preferred register.
    500 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
    501                            LiveInterval &B, bool BreaksHint) {
    502   bool CanSplit = getStage(B) < RS_Spill;
    503 
    504   // Be fairly aggressive about following hints as long as the evictee can be
    505   // split.
    506   if (CanSplit && IsHint && !BreaksHint)
    507     return true;
    508 
    509   return A.weight > B.weight;
    510 }
    511 
    512 /// canEvictInterference - Return true if all interferences between VirtReg and
    513 /// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
    514 ///
    515 /// @param VirtReg Live range that is about to be assigned.
    516 /// @param PhysReg Desired register for assignment.
    517 /// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
    518 /// @param MaxCost Only look for cheaper candidates and update with new cost
    519 ///                when returning true.
    520 /// @returns True when interference can be evicted cheaper than MaxCost.
    521 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    522                                     bool IsHint, EvictionCost &MaxCost) {
    523   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
    524   // involved in an eviction before. If a cascade number was assigned, deny
    525   // evicting anything with the same or a newer cascade number. This prevents
    526   // infinite eviction loops.
    527   //
    528   // This works out so a register without a cascade number is allowed to evict
    529   // anything, and it can be evicted by anything.
    530   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    531   if (!Cascade)
    532     Cascade = NextCascade;
    533 
    534   EvictionCost Cost;
    535   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    536     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    537     // If there is 10 or more interferences, chances are one is heavier.
    538     if (Q.collectInterferingVRegs(10) >= 10)
    539       return false;
    540 
    541     // Check if any interfering live range is heavier than MaxWeight.
    542     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
    543       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
    544       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
    545         return false;
    546       // Never evict spill products. They cannot split or spill.
    547       if (getStage(*Intf) == RS_Done)
    548         return false;
    549       // Once a live range becomes small enough, it is urgent that we find a
    550       // register for it. This is indicated by an infinite spill weight. These
    551       // urgent live ranges get to evict almost anything.
    552       bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
    553       // Only evict older cascades or live ranges without a cascade.
    554       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
    555       if (Cascade <= IntfCascade) {
    556         if (!Urgent)
    557           return false;
    558         // We permit breaking cascades for urgent evictions. It should be the
    559         // last resort, though, so make it really expensive.
    560         Cost.BrokenHints += 10;
    561       }
    562       // Would this break a satisfied hint?
    563       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
    564       // Update eviction cost.
    565       Cost.BrokenHints += BreaksHint;
    566       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
    567       // Abort if this would be too expensive.
    568       if (!(Cost < MaxCost))
    569         return false;
    570       // Finally, apply the eviction policy for non-urgent evictions.
    571       if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
    572         return false;
    573     }
    574   }
    575   MaxCost = Cost;
    576   return true;
    577 }
    578 
    579 /// evictInterference - Evict any interferring registers that prevent VirtReg
    580 /// from being assigned to Physreg. This assumes that canEvictInterference
    581 /// returned true.
    582 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    583                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
    584   // Make sure that VirtReg has a cascade number, and assign that cascade
    585   // number to every evicted register. These live ranges than then only be
    586   // evicted by a newer cascade, preventing infinite loops.
    587   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    588   if (!Cascade)
    589     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
    590 
    591   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
    592                << " interference: Cascade " << Cascade << '\n');
    593   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
    594     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
    595     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    596     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
    597       LiveInterval *Intf = Q.interferingVRegs()[i];
    598       unassign(*Intf, VRM->getPhys(Intf->reg));
    599       assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
    600               VirtReg.isSpillable() < Intf->isSpillable()) &&
    601              "Cannot decrease cascade number, illegal eviction");
    602       ExtraRegInfo[Intf->reg].Cascade = Cascade;
    603       ++NumEvicted;
    604       NewVRegs.push_back(Intf);
    605     }
    606   }
    607 }
    608 
    609 /// tryEvict - Try to evict all interferences for a physreg.
    610 /// @param  VirtReg Currently unassigned virtual register.
    611 /// @param  Order   Physregs to try.
    612 /// @return         Physreg to assign VirtReg, or 0.
    613 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
    614                             AllocationOrder &Order,
    615                             SmallVectorImpl<LiveInterval*> &NewVRegs,
    616                             unsigned CostPerUseLimit) {
    617   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
    618 
    619   // Keep track of the cheapest interference seen so far.
    620   EvictionCost BestCost(~0u);
    621   unsigned BestPhys = 0;
    622 
    623   // When we are just looking for a reduced cost per use, don't break any
    624   // hints, and only evict smaller spill weights.
    625   if (CostPerUseLimit < ~0u) {
    626     BestCost.BrokenHints = 0;
    627     BestCost.MaxWeight = VirtReg.weight;
    628   }
    629 
    630   Order.rewind();
    631   while (unsigned PhysReg = Order.next()) {
    632     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
    633       continue;
    634     // The first use of a callee-saved register in a function has cost 1.
    635     // Don't start using a CSR when the CostPerUseLimit is low.
    636     if (CostPerUseLimit == 1)
    637      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
    638        if (!MRI->isPhysRegUsed(CSR)) {
    639          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
    640                       << PrintReg(CSR, TRI) << '\n');
    641          continue;
    642        }
    643 
    644     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
    645       continue;
    646 
    647     // Best so far.
    648     BestPhys = PhysReg;
    649 
    650     // Stop if the hint can be used.
    651     if (Order.isHint(PhysReg))
    652       break;
    653   }
    654 
    655   if (!BestPhys)
    656     return 0;
    657 
    658   evictInterference(VirtReg, BestPhys, NewVRegs);
    659   return BestPhys;
    660 }
    661 
    662 
    663 //===----------------------------------------------------------------------===//
    664 //                              Region Splitting
    665 //===----------------------------------------------------------------------===//
    666 
    667 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
    668 /// interference pattern in Physreg and its aliases. Add the constraints to
    669 /// SpillPlacement and return the static cost of this split in Cost, assuming
    670 /// that all preferences in SplitConstraints are met.
    671 /// Return false if there are no bundles with positive bias.
    672 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
    673                                    float &Cost) {
    674   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    675 
    676   // Reset interference dependent info.
    677   SplitConstraints.resize(UseBlocks.size());
    678   float StaticCost = 0;
    679   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    680     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    681     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    682 
    683     BC.Number = BI.MBB->getNumber();
    684     Intf.moveToBlock(BC.Number);
    685     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    686     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    687     BC.ChangesValue = BI.FirstDef;
    688 
    689     if (!Intf.hasInterference())
    690       continue;
    691 
    692     // Number of spill code instructions to insert.
    693     unsigned Ins = 0;
    694 
    695     // Interference for the live-in value.
    696     if (BI.LiveIn) {
    697       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
    698         BC.Entry = SpillPlacement::MustSpill, ++Ins;
    699       else if (Intf.first() < BI.FirstInstr)
    700         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
    701       else if (Intf.first() < BI.LastInstr)
    702         ++Ins;
    703     }
    704 
    705     // Interference for the live-out value.
    706     if (BI.LiveOut) {
    707       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
    708         BC.Exit = SpillPlacement::MustSpill, ++Ins;
    709       else if (Intf.last() > BI.LastInstr)
    710         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
    711       else if (Intf.last() > BI.FirstInstr)
    712         ++Ins;
    713     }
    714 
    715     // Accumulate the total frequency of inserted spill code.
    716     if (Ins)
    717       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    718   }
    719   Cost = StaticCost;
    720 
    721   // Add constraints for use-blocks. Note that these are the only constraints
    722   // that may add a positive bias, it is downhill from here.
    723   SpillPlacer->addConstraints(SplitConstraints);
    724   return SpillPlacer->scanActiveBundles();
    725 }
    726 
    727 
    728 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
    729 /// live-through blocks in Blocks.
    730 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
    731                                      ArrayRef<unsigned> Blocks) {
    732   const unsigned GroupSize = 8;
    733   SpillPlacement::BlockConstraint BCS[GroupSize];
    734   unsigned TBS[GroupSize];
    735   unsigned B = 0, T = 0;
    736 
    737   for (unsigned i = 0; i != Blocks.size(); ++i) {
    738     unsigned Number = Blocks[i];
    739     Intf.moveToBlock(Number);
    740 
    741     if (!Intf.hasInterference()) {
    742       assert(T < GroupSize && "Array overflow");
    743       TBS[T] = Number;
    744       if (++T == GroupSize) {
    745         SpillPlacer->addLinks(makeArrayRef(TBS, T));
    746         T = 0;
    747       }
    748       continue;
    749     }
    750 
    751     assert(B < GroupSize && "Array overflow");
    752     BCS[B].Number = Number;
    753 
    754     // Interference for the live-in value.
    755     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
    756       BCS[B].Entry = SpillPlacement::MustSpill;
    757     else
    758       BCS[B].Entry = SpillPlacement::PrefSpill;
    759 
    760     // Interference for the live-out value.
    761     if (Intf.last() >= SA->getLastSplitPoint(Number))
    762       BCS[B].Exit = SpillPlacement::MustSpill;
    763     else
    764       BCS[B].Exit = SpillPlacement::PrefSpill;
    765 
    766     if (++B == GroupSize) {
    767       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    768       SpillPlacer->addConstraints(Array);
    769       B = 0;
    770     }
    771   }
    772 
    773   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    774   SpillPlacer->addConstraints(Array);
    775   SpillPlacer->addLinks(makeArrayRef(TBS, T));
    776 }
    777 
    778 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
    779   // Keep track of through blocks that have not been added to SpillPlacer.
    780   BitVector Todo = SA->getThroughBlocks();
    781   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
    782   unsigned AddedTo = 0;
    783 #ifndef NDEBUG
    784   unsigned Visited = 0;
    785 #endif
    786 
    787   for (;;) {
    788     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    789     // Find new through blocks in the periphery of PrefRegBundles.
    790     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
    791       unsigned Bundle = NewBundles[i];
    792       // Look at all blocks connected to Bundle in the full graph.
    793       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
    794       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    795            I != E; ++I) {
    796         unsigned Block = *I;
    797         if (!Todo.test(Block))
    798           continue;
    799         Todo.reset(Block);
    800         // This is a new through block. Add it to SpillPlacer later.
    801         ActiveBlocks.push_back(Block);
    802 #ifndef NDEBUG
    803         ++Visited;
    804 #endif
    805       }
    806     }
    807     // Any new blocks to add?
    808     if (ActiveBlocks.size() == AddedTo)
    809       break;
    810 
    811     // Compute through constraints from the interference, or assume that all
    812     // through blocks prefer spilling when forming compact regions.
    813     ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
    814     if (Cand.PhysReg)
    815       addThroughConstraints(Cand.Intf, NewBlocks);
    816     else
    817       // Provide a strong negative bias on through blocks to prevent unwanted
    818       // liveness on loop backedges.
    819       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
    820     AddedTo = ActiveBlocks.size();
    821 
    822     // Perhaps iterating can enable more bundles?
    823     SpillPlacer->iterate();
    824   }
    825   DEBUG(dbgs() << ", v=" << Visited);
    826 }
    827 
    828 /// calcCompactRegion - Compute the set of edge bundles that should be live
    829 /// when splitting the current live range into compact regions.  Compact
    830 /// regions can be computed without looking at interference.  They are the
    831 /// regions formed by removing all the live-through blocks from the live range.
    832 ///
    833 /// Returns false if the current live range is already compact, or if the
    834 /// compact regions would form single block regions anyway.
    835 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
    836   // Without any through blocks, the live range is already compact.
    837   if (!SA->getNumThroughBlocks())
    838     return false;
    839 
    840   // Compact regions don't correspond to any physreg.
    841   Cand.reset(IntfCache, 0);
    842 
    843   DEBUG(dbgs() << "Compact region bundles");
    844 
    845   // Use the spill placer to determine the live bundles. GrowRegion pretends
    846   // that all the through blocks have interference when PhysReg is unset.
    847   SpillPlacer->prepare(Cand.LiveBundles);
    848 
    849   // The static split cost will be zero since Cand.Intf reports no interference.
    850   float Cost;
    851   if (!addSplitConstraints(Cand.Intf, Cost)) {
    852     DEBUG(dbgs() << ", none.\n");
    853     return false;
    854   }
    855 
    856   growRegion(Cand);
    857   SpillPlacer->finish();
    858 
    859   if (!Cand.LiveBundles.any()) {
    860     DEBUG(dbgs() << ", none.\n");
    861     return false;
    862   }
    863 
    864   DEBUG({
    865     for (int i = Cand.LiveBundles.find_first(); i>=0;
    866          i = Cand.LiveBundles.find_next(i))
    867     dbgs() << " EB#" << i;
    868     dbgs() << ".\n";
    869   });
    870   return true;
    871 }
    872 
    873 /// calcSpillCost - Compute how expensive it would be to split the live range in
    874 /// SA around all use blocks instead of forming bundle regions.
    875 float RAGreedy::calcSpillCost() {
    876   float Cost = 0;
    877   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    878   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    879     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    880     unsigned Number = BI.MBB->getNumber();
    881     // We normally only need one spill instruction - a load or a store.
    882     Cost += SpillPlacer->getBlockFrequency(Number);
    883 
    884     // Unless the value is redefined in the block.
    885     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
    886       Cost += SpillPlacer->getBlockFrequency(Number);
    887   }
    888   return Cost;
    889 }
    890 
    891 /// calcGlobalSplitCost - Return the global split cost of following the split
    892 /// pattern in LiveBundles. This cost should be added to the local cost of the
    893 /// interference pattern in SplitConstraints.
    894 ///
    895 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
    896   float GlobalCost = 0;
    897   const BitVector &LiveBundles = Cand.LiveBundles;
    898   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    899   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    900     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    901     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    902     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    903     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    904     unsigned Ins = 0;
    905 
    906     if (BI.LiveIn)
    907       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    908     if (BI.LiveOut)
    909       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    910     if (Ins)
    911       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    912   }
    913 
    914   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    915     unsigned Number = Cand.ActiveBlocks[i];
    916     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    917     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    918     if (!RegIn && !RegOut)
    919       continue;
    920     if (RegIn && RegOut) {
    921       // We need double spill code if this block has interference.
    922       Cand.Intf.moveToBlock(Number);
    923       if (Cand.Intf.hasInterference())
    924         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
    925       continue;
    926     }
    927     // live-in / stack-out or stack-in live-out.
    928     GlobalCost += SpillPlacer->getBlockFrequency(Number);
    929   }
    930   return GlobalCost;
    931 }
    932 
    933 /// splitAroundRegion - Split the current live range around the regions
    934 /// determined by BundleCand and GlobalCand.
    935 ///
    936 /// Before calling this function, GlobalCand and BundleCand must be initialized
    937 /// so each bundle is assigned to a valid candidate, or NoCand for the
    938 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
    939 /// objects must be initialized for the current live range, and intervals
    940 /// created for the used candidates.
    941 ///
    942 /// @param LREdit    The LiveRangeEdit object handling the current split.
    943 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
    944 ///                  must appear in this list.
    945 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
    946                                  ArrayRef<unsigned> UsedCands) {
    947   // These are the intervals created for new global ranges. We may create more
    948   // intervals for local ranges.
    949   const unsigned NumGlobalIntvs = LREdit.size();
    950   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
    951   assert(NumGlobalIntvs && "No global intervals configured");
    952 
    953   // Isolate even single instructions when dealing with a proper sub-class.
    954   // That guarantees register class inflation for the stack interval because it
    955   // is all copies.
    956   unsigned Reg = SA->getParent().reg;
    957   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
    958 
    959   // First handle all the blocks with uses.
    960   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    961   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    962     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    963     unsigned Number = BI.MBB->getNumber();
    964     unsigned IntvIn = 0, IntvOut = 0;
    965     SlotIndex IntfIn, IntfOut;
    966     if (BI.LiveIn) {
    967       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
    968       if (CandIn != NoCand) {
    969         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
    970         IntvIn = Cand.IntvIdx;
    971         Cand.Intf.moveToBlock(Number);
    972         IntfIn = Cand.Intf.first();
    973       }
    974     }
    975     if (BI.LiveOut) {
    976       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
    977       if (CandOut != NoCand) {
    978         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
    979         IntvOut = Cand.IntvIdx;
    980         Cand.Intf.moveToBlock(Number);
    981         IntfOut = Cand.Intf.last();
    982       }
    983     }
    984 
    985     // Create separate intervals for isolated blocks with multiple uses.
    986     if (!IntvIn && !IntvOut) {
    987       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
    988       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
    989         SE->splitSingleBlock(BI);
    990       continue;
    991     }
    992 
    993     if (IntvIn && IntvOut)
    994       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
    995     else if (IntvIn)
    996       SE->splitRegInBlock(BI, IntvIn, IntfIn);
    997     else
    998       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
    999   }
   1000 
   1001   // Handle live-through blocks. The relevant live-through blocks are stored in
   1002   // the ActiveBlocks list with each candidate. We need to filter out
   1003   // duplicates.
   1004   BitVector Todo = SA->getThroughBlocks();
   1005   for (unsigned c = 0; c != UsedCands.size(); ++c) {
   1006     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
   1007     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
   1008       unsigned Number = Blocks[i];
   1009       if (!Todo.test(Number))
   1010         continue;
   1011       Todo.reset(Number);
   1012 
   1013       unsigned IntvIn = 0, IntvOut = 0;
   1014       SlotIndex IntfIn, IntfOut;
   1015 
   1016       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
   1017       if (CandIn != NoCand) {
   1018         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
   1019         IntvIn = Cand.IntvIdx;
   1020         Cand.Intf.moveToBlock(Number);
   1021         IntfIn = Cand.Intf.first();
   1022       }
   1023 
   1024       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1025       if (CandOut != NoCand) {
   1026         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1027         IntvOut = Cand.IntvIdx;
   1028         Cand.Intf.moveToBlock(Number);
   1029         IntfOut = Cand.Intf.last();
   1030       }
   1031       if (!IntvIn && !IntvOut)
   1032         continue;
   1033       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1034     }
   1035   }
   1036 
   1037   ++NumGlobalSplits;
   1038 
   1039   SmallVector<unsigned, 8> IntvMap;
   1040   SE->finish(&IntvMap);
   1041   DebugVars->splitRegister(Reg, LREdit.regs());
   1042 
   1043   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1044   unsigned OrigBlocks = SA->getNumLiveBlocks();
   1045 
   1046   // Sort out the new intervals created by splitting. We get four kinds:
   1047   // - Remainder intervals should not be split again.
   1048   // - Candidate intervals can be assigned to Cand.PhysReg.
   1049   // - Block-local splits are candidates for local splitting.
   1050   // - DCE leftovers should go back on the queue.
   1051   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1052     LiveInterval &Reg = *LREdit.get(i);
   1053 
   1054     // Ignore old intervals from DCE.
   1055     if (getStage(Reg) != RS_New)
   1056       continue;
   1057 
   1058     // Remainder interval. Don't try splitting again, spill if it doesn't
   1059     // allocate.
   1060     if (IntvMap[i] == 0) {
   1061       setStage(Reg, RS_Spill);
   1062       continue;
   1063     }
   1064 
   1065     // Global intervals. Allow repeated splitting as long as the number of live
   1066     // blocks is strictly decreasing.
   1067     if (IntvMap[i] < NumGlobalIntvs) {
   1068       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
   1069         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
   1070                      << " blocks as original.\n");
   1071         // Don't allow repeated splitting as a safe guard against looping.
   1072         setStage(Reg, RS_Split2);
   1073       }
   1074       continue;
   1075     }
   1076 
   1077     // Other intervals are treated as new. This includes local intervals created
   1078     // for blocks with multiple uses, and anything created by DCE.
   1079   }
   1080 
   1081   if (VerifyEnabled)
   1082     MF->verify(this, "After splitting live range around region");
   1083 }
   1084 
   1085 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1086                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1087   unsigned NumCands = 0;
   1088   unsigned BestCand = NoCand;
   1089   float BestCost;
   1090   SmallVector<unsigned, 8> UsedCands;
   1091 
   1092   // Check if we can split this live range around a compact region.
   1093   bool HasCompact = calcCompactRegion(GlobalCand.front());
   1094   if (HasCompact) {
   1095     // Yes, keep GlobalCand[0] as the compact region candidate.
   1096     NumCands = 1;
   1097     BestCost = HUGE_VALF;
   1098   } else {
   1099     // No benefit from the compact region, our fallback will be per-block
   1100     // splitting. Make sure we find a solution that is cheaper than spilling.
   1101     BestCost = Hysteresis * calcSpillCost();
   1102     DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
   1103   }
   1104 
   1105   Order.rewind();
   1106   while (unsigned PhysReg = Order.next()) {
   1107     // Discard bad candidates before we run out of interference cache cursors.
   1108     // This will only affect register classes with a lot of registers (>32).
   1109     if (NumCands == IntfCache.getMaxCursors()) {
   1110       unsigned WorstCount = ~0u;
   1111       unsigned Worst = 0;
   1112       for (unsigned i = 0; i != NumCands; ++i) {
   1113         if (i == BestCand || !GlobalCand[i].PhysReg)
   1114           continue;
   1115         unsigned Count = GlobalCand[i].LiveBundles.count();
   1116         if (Count < WorstCount)
   1117           Worst = i, WorstCount = Count;
   1118       }
   1119       --NumCands;
   1120       GlobalCand[Worst] = GlobalCand[NumCands];
   1121     }
   1122 
   1123     if (GlobalCand.size() <= NumCands)
   1124       GlobalCand.resize(NumCands+1);
   1125     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
   1126     Cand.reset(IntfCache, PhysReg);
   1127 
   1128     SpillPlacer->prepare(Cand.LiveBundles);
   1129     float Cost;
   1130     if (!addSplitConstraints(Cand.Intf, Cost)) {
   1131       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
   1132       continue;
   1133     }
   1134     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
   1135     if (Cost >= BestCost) {
   1136       DEBUG({
   1137         if (BestCand == NoCand)
   1138           dbgs() << " worse than no bundles\n";
   1139         else
   1140           dbgs() << " worse than "
   1141                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
   1142       });
   1143       continue;
   1144     }
   1145     growRegion(Cand);
   1146 
   1147     SpillPlacer->finish();
   1148 
   1149     // No live bundles, defer to splitSingleBlocks().
   1150     if (!Cand.LiveBundles.any()) {
   1151       DEBUG(dbgs() << " no bundles.\n");
   1152       continue;
   1153     }
   1154 
   1155     Cost += calcGlobalSplitCost(Cand);
   1156     DEBUG({
   1157       dbgs() << ", total = " << Cost << " with bundles";
   1158       for (int i = Cand.LiveBundles.find_first(); i>=0;
   1159            i = Cand.LiveBundles.find_next(i))
   1160         dbgs() << " EB#" << i;
   1161       dbgs() << ".\n";
   1162     });
   1163     if (Cost < BestCost) {
   1164       BestCand = NumCands;
   1165       BestCost = Hysteresis * Cost; // Prevent rounding effects.
   1166     }
   1167     ++NumCands;
   1168   }
   1169 
   1170   // No solutions found, fall back to single block splitting.
   1171   if (!HasCompact && BestCand == NoCand)
   1172     return 0;
   1173 
   1174   // Prepare split editor.
   1175   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
   1176   SE->reset(LREdit, SplitSpillMode);
   1177 
   1178   // Assign all edge bundles to the preferred candidate, or NoCand.
   1179   BundleCand.assign(Bundles->getNumBundles(), NoCand);
   1180 
   1181   // Assign bundles for the best candidate region.
   1182   if (BestCand != NoCand) {
   1183     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
   1184     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
   1185       UsedCands.push_back(BestCand);
   1186       Cand.IntvIdx = SE->openIntv();
   1187       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
   1188                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
   1189       (void)B;
   1190     }
   1191   }
   1192 
   1193   // Assign bundles for the compact region.
   1194   if (HasCompact) {
   1195     GlobalSplitCandidate &Cand = GlobalCand.front();
   1196     assert(!Cand.PhysReg && "Compact region has no physreg");
   1197     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
   1198       UsedCands.push_back(0);
   1199       Cand.IntvIdx = SE->openIntv();
   1200       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
   1201                    << Cand.IntvIdx << ".\n");
   1202       (void)B;
   1203     }
   1204   }
   1205 
   1206   splitAroundRegion(LREdit, UsedCands);
   1207   return 0;
   1208 }
   1209 
   1210 
   1211 //===----------------------------------------------------------------------===//
   1212 //                            Per-Block Splitting
   1213 //===----------------------------------------------------------------------===//
   1214 
   1215 /// tryBlockSplit - Split a global live range around every block with uses. This
   1216 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
   1217 /// they don't allocate.
   1218 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1219                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1220   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
   1221   unsigned Reg = VirtReg.reg;
   1222   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
   1223   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
   1224   SE->reset(LREdit, SplitSpillMode);
   1225   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1226   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1227     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1228     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1229       SE->splitSingleBlock(BI);
   1230   }
   1231   // No blocks were split.
   1232   if (LREdit.empty())
   1233     return 0;
   1234 
   1235   // We did split for some blocks.
   1236   SmallVector<unsigned, 8> IntvMap;
   1237   SE->finish(&IntvMap);
   1238 
   1239   // Tell LiveDebugVariables about the new ranges.
   1240   DebugVars->splitRegister(Reg, LREdit.regs());
   1241 
   1242   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1243 
   1244   // Sort out the new intervals created by splitting. The remainder interval
   1245   // goes straight to spilling, the new local ranges get to stay RS_New.
   1246   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1247     LiveInterval &LI = *LREdit.get(i);
   1248     if (getStage(LI) == RS_New && IntvMap[i] == 0)
   1249       setStage(LI, RS_Spill);
   1250   }
   1251 
   1252   if (VerifyEnabled)
   1253     MF->verify(this, "After splitting live range around basic blocks");
   1254   return 0;
   1255 }
   1256 
   1257 //===----------------------------------------------------------------------===//
   1258 //                             Local Splitting
   1259 //===----------------------------------------------------------------------===//
   1260 
   1261 
   1262 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
   1263 /// in order to use PhysReg between two entries in SA->UseSlots.
   1264 ///
   1265 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
   1266 ///
   1267 void RAGreedy::calcGapWeights(unsigned PhysReg,
   1268                               SmallVectorImpl<float> &GapWeight) {
   1269   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1270   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1271   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
   1272   const unsigned NumGaps = Uses.size()-1;
   1273 
   1274   // Start and end points for the interference check.
   1275   SlotIndex StartIdx =
   1276     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
   1277   SlotIndex StopIdx =
   1278     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
   1279 
   1280   GapWeight.assign(NumGaps, 0.0f);
   1281 
   1282   // Add interference from each overlapping register.
   1283   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
   1284     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
   1285            .checkInterference())
   1286       continue;
   1287 
   1288     // We know that VirtReg is a continuous interval from FirstInstr to
   1289     // LastInstr, so we don't need InterferenceQuery.
   1290     //
   1291     // Interference that overlaps an instruction is counted in both gaps
   1292     // surrounding the instruction. The exception is interference before
   1293     // StartIdx and after StopIdx.
   1294     //
   1295     LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
   1296     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
   1297       // Skip the gaps before IntI.
   1298       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
   1299         if (++Gap == NumGaps)
   1300           break;
   1301       if (Gap == NumGaps)
   1302         break;
   1303 
   1304       // Update the gaps covered by IntI.
   1305       const float weight = IntI.value()->weight;
   1306       for (; Gap != NumGaps; ++Gap) {
   1307         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
   1308         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
   1309           break;
   1310       }
   1311       if (Gap == NumGaps)
   1312         break;
   1313     }
   1314   }
   1315 }
   1316 
   1317 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
   1318 /// basic block.
   1319 ///
   1320 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1321                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1322   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1323   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1324 
   1325   // Note that it is possible to have an interval that is live-in or live-out
   1326   // while only covering a single block - A phi-def can use undef values from
   1327   // predecessors, and the block could be a single-block loop.
   1328   // We don't bother doing anything clever about such a case, we simply assume
   1329   // that the interval is continuous from FirstInstr to LastInstr. We should
   1330   // make sure that we don't do anything illegal to such an interval, though.
   1331 
   1332   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
   1333   if (Uses.size() <= 2)
   1334     return 0;
   1335   const unsigned NumGaps = Uses.size()-1;
   1336 
   1337   DEBUG({
   1338     dbgs() << "tryLocalSplit: ";
   1339     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
   1340       dbgs() << ' ' << SA->UseSlots[i];
   1341     dbgs() << '\n';
   1342   });
   1343 
   1344   // Since we allow local split results to be split again, there is a risk of
   1345   // creating infinite loops. It is tempting to require that the new live
   1346   // ranges have less instructions than the original. That would guarantee
   1347   // convergence, but it is too strict. A live range with 3 instructions can be
   1348   // split 2+3 (including the COPY), and we want to allow that.
   1349   //
   1350   // Instead we use these rules:
   1351   //
   1352   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
   1353   //    noop split, of course).
   1354   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
   1355   //    the new ranges must have fewer instructions than before the split.
   1356   // 3. New ranges with the same number of instructions are marked RS_Split2,
   1357   //    smaller ranges are marked RS_New.
   1358   //
   1359   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
   1360   // excessive splitting and infinite loops.
   1361   //
   1362   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
   1363 
   1364   // Best split candidate.
   1365   unsigned BestBefore = NumGaps;
   1366   unsigned BestAfter = 0;
   1367   float BestDiff = 0;
   1368 
   1369   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
   1370   SmallVector<float, 8> GapWeight;
   1371 
   1372   Order.rewind();
   1373   while (unsigned PhysReg = Order.next()) {
   1374     // Keep track of the largest spill weight that would need to be evicted in
   1375     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
   1376     calcGapWeights(PhysReg, GapWeight);
   1377 
   1378     // Try to find the best sequence of gaps to close.
   1379     // The new spill weight must be larger than any gap interference.
   1380 
   1381     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
   1382     unsigned SplitBefore = 0, SplitAfter = 1;
   1383 
   1384     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
   1385     // It is the spill weight that needs to be evicted.
   1386     float MaxGap = GapWeight[0];
   1387 
   1388     for (;;) {
   1389       // Live before/after split?
   1390       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
   1391       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
   1392 
   1393       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
   1394                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
   1395                    << " i=" << MaxGap);
   1396 
   1397       // Stop before the interval gets so big we wouldn't be making progress.
   1398       if (!LiveBefore && !LiveAfter) {
   1399         DEBUG(dbgs() << " all\n");
   1400         break;
   1401       }
   1402       // Should the interval be extended or shrunk?
   1403       bool Shrink = true;
   1404 
   1405       // How many gaps would the new range have?
   1406       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
   1407 
   1408       // Legally, without causing looping?
   1409       bool Legal = !ProgressRequired || NewGaps < NumGaps;
   1410 
   1411       if (Legal && MaxGap < HUGE_VALF) {
   1412         // Estimate the new spill weight. Each instruction reads or writes the
   1413         // register. Conservatively assume there are no read-modify-write
   1414         // instructions.
   1415         //
   1416         // Try to guess the size of the new interval.
   1417         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
   1418                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
   1419                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
   1420         // Would this split be possible to allocate?
   1421         // Never allocate all gaps, we wouldn't be making progress.
   1422         DEBUG(dbgs() << " w=" << EstWeight);
   1423         if (EstWeight * Hysteresis >= MaxGap) {
   1424           Shrink = false;
   1425           float Diff = EstWeight - MaxGap;
   1426           if (Diff > BestDiff) {
   1427             DEBUG(dbgs() << " (best)");
   1428             BestDiff = Hysteresis * Diff;
   1429             BestBefore = SplitBefore;
   1430             BestAfter = SplitAfter;
   1431           }
   1432         }
   1433       }
   1434 
   1435       // Try to shrink.
   1436       if (Shrink) {
   1437         if (++SplitBefore < SplitAfter) {
   1438           DEBUG(dbgs() << " shrink\n");
   1439           // Recompute the max when necessary.
   1440           if (GapWeight[SplitBefore - 1] >= MaxGap) {
   1441             MaxGap = GapWeight[SplitBefore];
   1442             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
   1443               MaxGap = std::max(MaxGap, GapWeight[i]);
   1444           }
   1445           continue;
   1446         }
   1447         MaxGap = 0;
   1448       }
   1449 
   1450       // Try to extend the interval.
   1451       if (SplitAfter >= NumGaps) {
   1452         DEBUG(dbgs() << " end\n");
   1453         break;
   1454       }
   1455 
   1456       DEBUG(dbgs() << " extend\n");
   1457       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
   1458     }
   1459   }
   1460 
   1461   // Didn't find any candidates?
   1462   if (BestBefore == NumGaps)
   1463     return 0;
   1464 
   1465   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
   1466                << '-' << Uses[BestAfter] << ", " << BestDiff
   1467                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
   1468 
   1469   LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
   1470   SE->reset(LREdit);
   1471 
   1472   SE->openIntv();
   1473   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
   1474   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
   1475   SE->useIntv(SegStart, SegStop);
   1476   SmallVector<unsigned, 8> IntvMap;
   1477   SE->finish(&IntvMap);
   1478   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
   1479 
   1480   // If the new range has the same number of instructions as before, mark it as
   1481   // RS_Split2 so the next split will be forced to make progress. Otherwise,
   1482   // leave the new intervals as RS_New so they can compete.
   1483   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
   1484   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
   1485   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
   1486   if (NewGaps >= NumGaps) {
   1487     DEBUG(dbgs() << "Tagging non-progress ranges: ");
   1488     assert(!ProgressRequired && "Didn't make progress when it was required.");
   1489     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
   1490       if (IntvMap[i] == 1) {
   1491         setStage(*LREdit.get(i), RS_Split2);
   1492         DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
   1493       }
   1494     DEBUG(dbgs() << '\n');
   1495   }
   1496   ++NumLocalSplits;
   1497 
   1498   return 0;
   1499 }
   1500 
   1501 //===----------------------------------------------------------------------===//
   1502 //                          Live Range Splitting
   1503 //===----------------------------------------------------------------------===//
   1504 
   1505 /// trySplit - Try to split VirtReg or one of its interferences, making it
   1506 /// assignable.
   1507 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
   1508 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1509                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
   1510   // Ranges must be Split2 or less.
   1511   if (getStage(VirtReg) >= RS_Spill)
   1512     return 0;
   1513 
   1514   // Local intervals are handled separately.
   1515   if (LIS->intervalIsInOneMBB(VirtReg)) {
   1516     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
   1517     SA->analyze(&VirtReg);
   1518     return tryLocalSplit(VirtReg, Order, NewVRegs);
   1519   }
   1520 
   1521   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
   1522 
   1523   SA->analyze(&VirtReg);
   1524 
   1525   // FIXME: SplitAnalysis may repair broken live ranges coming from the
   1526   // coalescer. That may cause the range to become allocatable which means that
   1527   // tryRegionSplit won't be making progress. This check should be replaced with
   1528   // an assertion when the coalescer is fixed.
   1529   if (SA->didRepairRange()) {
   1530     // VirtReg has changed, so all cached queries are invalid.
   1531     invalidateVirtRegs();
   1532     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1533       return PhysReg;
   1534   }
   1535 
   1536   // First try to split around a region spanning multiple blocks. RS_Split2
   1537   // ranges already made dubious progress with region splitting, so they go
   1538   // straight to single block splitting.
   1539   if (getStage(VirtReg) < RS_Split2) {
   1540     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
   1541     if (PhysReg || !NewVRegs.empty())
   1542       return PhysReg;
   1543   }
   1544 
   1545   // Then isolate blocks.
   1546   return tryBlockSplit(VirtReg, Order, NewVRegs);
   1547 }
   1548 
   1549 
   1550 //===----------------------------------------------------------------------===//
   1551 //                            Main Entry Point
   1552 //===----------------------------------------------------------------------===//
   1553 
   1554 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
   1555                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1556   // First try assigning a free register.
   1557   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
   1558   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1559     return PhysReg;
   1560 
   1561   LiveRangeStage Stage = getStage(VirtReg);
   1562   DEBUG(dbgs() << StageName[Stage]
   1563                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
   1564 
   1565   // Try to evict a less worthy live range, but only for ranges from the primary
   1566   // queue. The RS_Split ranges already failed to do this, and they should not
   1567   // get a second chance until they have been split.
   1568   if (Stage != RS_Split)
   1569     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
   1570       return PhysReg;
   1571 
   1572   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
   1573 
   1574   // The first time we see a live range, don't try to split or spill.
   1575   // Wait until the second time, when all smaller ranges have been allocated.
   1576   // This gives a better picture of the interference to split around.
   1577   if (Stage < RS_Split) {
   1578     setStage(VirtReg, RS_Split);
   1579     DEBUG(dbgs() << "wait for second round\n");
   1580     NewVRegs.push_back(&VirtReg);
   1581     return 0;
   1582   }
   1583 
   1584   // If we couldn't allocate a register from spilling, there is probably some
   1585   // invalid inline assembly. The base class wil report it.
   1586   if (Stage >= RS_Done || !VirtReg.isSpillable())
   1587     return ~0u;
   1588 
   1589   // Try splitting VirtReg or interferences.
   1590   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
   1591   if (PhysReg || !NewVRegs.empty())
   1592     return PhysReg;
   1593 
   1594   // Finally spill VirtReg itself.
   1595   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
   1596   LiveRangeEdit LRE(VirtReg, NewVRegs, this);
   1597   spiller().spill(LRE);
   1598   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
   1599 
   1600   if (VerifyEnabled)
   1601     MF->verify(this, "After spilling");
   1602 
   1603   // The live virtual register requesting allocation was spilled, so tell
   1604   // the caller not to allocate anything during this round.
   1605   return 0;
   1606 }
   1607 
   1608 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
   1609   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
   1610                << "********** Function: "
   1611                << ((Value*)mf.getFunction())->getName() << '\n');
   1612 
   1613   MF = &mf;
   1614   if (VerifyEnabled)
   1615     MF->verify(this, "Before greedy register allocator");
   1616 
   1617   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
   1618   Indexes = &getAnalysis<SlotIndexes>();
   1619   DomTree = &getAnalysis<MachineDominatorTree>();
   1620   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
   1621   Loops = &getAnalysis<MachineLoopInfo>();
   1622   Bundles = &getAnalysis<EdgeBundles>();
   1623   SpillPlacer = &getAnalysis<SpillPlacement>();
   1624   DebugVars = &getAnalysis<LiveDebugVariables>();
   1625 
   1626   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
   1627   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
   1628   ExtraRegInfo.clear();
   1629   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1630   NextCascade = 1;
   1631   IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
   1632   GlobalCand.resize(32);  // This will grow as needed.
   1633 
   1634   allocatePhysRegs();
   1635   addMBBLiveIns(MF);
   1636   LIS->addKillFlags();
   1637 
   1638   // Run rewriter
   1639   {
   1640     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
   1641     VRM->rewrite(Indexes);
   1642   }
   1643 
   1644   // Write out new DBG_VALUE instructions.
   1645   {
   1646     NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled);
   1647     DebugVars->emitDebugValues(VRM);
   1648   }
   1649 
   1650   // The pass output is in VirtRegMap. Release all the transient data.
   1651   releaseMemory();
   1652 
   1653   return true;
   1654 }
   1655