1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "AllocationOrder.h" 17 #include "InterferenceCache.h" 18 #include "LiveDebugVariables.h" 19 #include "LiveRangeEdit.h" 20 #include "RegAllocBase.h" 21 #include "Spiller.h" 22 #include "SpillPlacement.h" 23 #include "SplitKit.h" 24 #include "VirtRegMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Function.h" 28 #include "llvm/PassAnalysisSupport.h" 29 #include "llvm/CodeGen/CalcSpillWeights.h" 30 #include "llvm/CodeGen/EdgeBundles.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/Timer.h" 45 46 #include <queue> 47 48 using namespace llvm; 49 50 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 51 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 52 STATISTIC(NumEvicted, "Number of interferences evicted"); 53 54 static cl::opt<SplitEditor::ComplementSpillMode> 55 SplitSpillMode("split-spill-mode", cl::Hidden, 56 cl::desc("Spill mode for splitting live ranges"), 57 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 58 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 59 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 60 clEnumValEnd), 61 cl::init(SplitEditor::SM_Partition)); 62 63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 64 createGreedyRegisterAllocator); 65 66 namespace { 67 class RAGreedy : public MachineFunctionPass, 68 public RegAllocBase, 69 private LiveRangeEdit::Delegate { 70 71 // context 72 MachineFunction *MF; 73 74 // analyses 75 SlotIndexes *Indexes; 76 LiveStacks *LS; 77 MachineDominatorTree *DomTree; 78 MachineLoopInfo *Loops; 79 EdgeBundles *Bundles; 80 SpillPlacement *SpillPlacer; 81 LiveDebugVariables *DebugVars; 82 83 // state 84 std::auto_ptr<Spiller> SpillerInstance; 85 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 86 unsigned NextCascade; 87 88 // Live ranges pass through a number of stages as we try to allocate them. 89 // Some of the stages may also create new live ranges: 90 // 91 // - Region splitting. 92 // - Per-block splitting. 93 // - Local splitting. 94 // - Spilling. 95 // 96 // Ranges produced by one of the stages skip the previous stages when they are 97 // dequeued. This improves performance because we can skip interference checks 98 // that are unlikely to give any results. It also guarantees that the live 99 // range splitting algorithm terminates, something that is otherwise hard to 100 // ensure. 101 enum LiveRangeStage { 102 /// Newly created live range that has never been queued. 103 RS_New, 104 105 /// Only attempt assignment and eviction. Then requeue as RS_Split. 106 RS_Assign, 107 108 /// Attempt live range splitting if assignment is impossible. 109 RS_Split, 110 111 /// Attempt more aggressive live range splitting that is guaranteed to make 112 /// progress. This is used for split products that may not be making 113 /// progress. 114 RS_Split2, 115 116 /// Live range will be spilled. No more splitting will be attempted. 117 RS_Spill, 118 119 /// There is nothing more we can do to this live range. Abort compilation 120 /// if it can't be assigned. 121 RS_Done 122 }; 123 124 static const char *const StageName[]; 125 126 // RegInfo - Keep additional information about each live range. 127 struct RegInfo { 128 LiveRangeStage Stage; 129 130 // Cascade - Eviction loop prevention. See canEvictInterference(). 131 unsigned Cascade; 132 133 RegInfo() : Stage(RS_New), Cascade(0) {} 134 }; 135 136 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 137 138 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 139 return ExtraRegInfo[VirtReg.reg].Stage; 140 } 141 142 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 143 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 144 ExtraRegInfo[VirtReg.reg].Stage = Stage; 145 } 146 147 template<typename Iterator> 148 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 149 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 150 for (;Begin != End; ++Begin) { 151 unsigned Reg = (*Begin)->reg; 152 if (ExtraRegInfo[Reg].Stage == RS_New) 153 ExtraRegInfo[Reg].Stage = NewStage; 154 } 155 } 156 157 /// Cost of evicting interference. 158 struct EvictionCost { 159 unsigned BrokenHints; ///< Total number of broken hints. 160 float MaxWeight; ///< Maximum spill weight evicted. 161 162 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 163 164 bool operator<(const EvictionCost &O) const { 165 if (BrokenHints != O.BrokenHints) 166 return BrokenHints < O.BrokenHints; 167 return MaxWeight < O.MaxWeight; 168 } 169 }; 170 171 // splitting state. 172 std::auto_ptr<SplitAnalysis> SA; 173 std::auto_ptr<SplitEditor> SE; 174 175 /// Cached per-block interference maps 176 InterferenceCache IntfCache; 177 178 /// All basic blocks where the current register has uses. 179 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 180 181 /// Global live range splitting candidate info. 182 struct GlobalSplitCandidate { 183 // Register intended for assignment, or 0. 184 unsigned PhysReg; 185 186 // SplitKit interval index for this candidate. 187 unsigned IntvIdx; 188 189 // Interference for PhysReg. 190 InterferenceCache::Cursor Intf; 191 192 // Bundles where this candidate should be live. 193 BitVector LiveBundles; 194 SmallVector<unsigned, 8> ActiveBlocks; 195 196 void reset(InterferenceCache &Cache, unsigned Reg) { 197 PhysReg = Reg; 198 IntvIdx = 0; 199 Intf.setPhysReg(Cache, Reg); 200 LiveBundles.clear(); 201 ActiveBlocks.clear(); 202 } 203 204 // Set B[i] = C for every live bundle where B[i] was NoCand. 205 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 206 unsigned Count = 0; 207 for (int i = LiveBundles.find_first(); i >= 0; 208 i = LiveBundles.find_next(i)) 209 if (B[i] == NoCand) { 210 B[i] = C; 211 Count++; 212 } 213 return Count; 214 } 215 }; 216 217 /// Candidate info for for each PhysReg in AllocationOrder. 218 /// This vector never shrinks, but grows to the size of the largest register 219 /// class. 220 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 221 222 enum { NoCand = ~0u }; 223 224 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 225 /// NoCand which indicates the stack interval. 226 SmallVector<unsigned, 32> BundleCand; 227 228 public: 229 RAGreedy(); 230 231 /// Return the pass name. 232 virtual const char* getPassName() const { 233 return "Greedy Register Allocator"; 234 } 235 236 /// RAGreedy analysis usage. 237 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 238 virtual void releaseMemory(); 239 virtual Spiller &spiller() { return *SpillerInstance; } 240 virtual void enqueue(LiveInterval *LI); 241 virtual LiveInterval *dequeue(); 242 virtual unsigned selectOrSplit(LiveInterval&, 243 SmallVectorImpl<LiveInterval*>&); 244 245 /// Perform register allocation. 246 virtual bool runOnMachineFunction(MachineFunction &mf); 247 248 static char ID; 249 250 private: 251 void LRE_WillEraseInstruction(MachineInstr*); 252 bool LRE_CanEraseVirtReg(unsigned); 253 void LRE_WillShrinkVirtReg(unsigned); 254 void LRE_DidCloneVirtReg(unsigned, unsigned); 255 256 float calcSpillCost(); 257 bool addSplitConstraints(InterferenceCache::Cursor, float&); 258 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 259 void growRegion(GlobalSplitCandidate &Cand); 260 float calcGlobalSplitCost(GlobalSplitCandidate&); 261 bool calcCompactRegion(GlobalSplitCandidate&); 262 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 263 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 264 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 265 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 266 void evictInterference(LiveInterval&, unsigned, 267 SmallVectorImpl<LiveInterval*>&); 268 269 unsigned tryAssign(LiveInterval&, AllocationOrder&, 270 SmallVectorImpl<LiveInterval*>&); 271 unsigned tryEvict(LiveInterval&, AllocationOrder&, 272 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 273 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 274 SmallVectorImpl<LiveInterval*>&); 275 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 276 SmallVectorImpl<LiveInterval*>&); 277 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 278 SmallVectorImpl<LiveInterval*>&); 279 unsigned trySplit(LiveInterval&, AllocationOrder&, 280 SmallVectorImpl<LiveInterval*>&); 281 }; 282 } // end anonymous namespace 283 284 char RAGreedy::ID = 0; 285 286 #ifndef NDEBUG 287 const char *const RAGreedy::StageName[] = { 288 "RS_New", 289 "RS_Assign", 290 "RS_Split", 291 "RS_Split2", 292 "RS_Spill", 293 "RS_Done" 294 }; 295 #endif 296 297 // Hysteresis to use when comparing floats. 298 // This helps stabilize decisions based on float comparisons. 299 const float Hysteresis = 0.98f; 300 301 302 FunctionPass* llvm::createGreedyRegisterAllocator() { 303 return new RAGreedy(); 304 } 305 306 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 307 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 308 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 309 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 310 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 311 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 312 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 313 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 314 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 315 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 316 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 317 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 318 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 319 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 320 } 321 322 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 323 AU.setPreservesCFG(); 324 AU.addRequired<AliasAnalysis>(); 325 AU.addPreserved<AliasAnalysis>(); 326 AU.addRequired<LiveIntervals>(); 327 AU.addRequired<SlotIndexes>(); 328 AU.addPreserved<SlotIndexes>(); 329 AU.addRequired<LiveDebugVariables>(); 330 AU.addPreserved<LiveDebugVariables>(); 331 if (StrongPHIElim) 332 AU.addRequiredID(StrongPHIEliminationID); 333 AU.addRequiredTransitiveID(RegisterCoalescerPassID); 334 AU.addRequired<CalculateSpillWeights>(); 335 AU.addRequired<LiveStacks>(); 336 AU.addPreserved<LiveStacks>(); 337 AU.addRequired<MachineDominatorTree>(); 338 AU.addPreserved<MachineDominatorTree>(); 339 AU.addRequired<MachineLoopInfo>(); 340 AU.addPreserved<MachineLoopInfo>(); 341 AU.addRequired<VirtRegMap>(); 342 AU.addPreserved<VirtRegMap>(); 343 AU.addRequired<EdgeBundles>(); 344 AU.addRequired<SpillPlacement>(); 345 MachineFunctionPass::getAnalysisUsage(AU); 346 } 347 348 349 //===----------------------------------------------------------------------===// 350 // LiveRangeEdit delegate methods 351 //===----------------------------------------------------------------------===// 352 353 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) { 354 // LRE itself will remove from SlotIndexes and parent basic block. 355 VRM->RemoveMachineInstrFromMaps(MI); 356 } 357 358 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 359 if (unsigned PhysReg = VRM->getPhys(VirtReg)) { 360 unassign(LIS->getInterval(VirtReg), PhysReg); 361 return true; 362 } 363 // Unassigned virtreg is probably in the priority queue. 364 // RegAllocBase will erase it after dequeueing. 365 return false; 366 } 367 368 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 369 unsigned PhysReg = VRM->getPhys(VirtReg); 370 if (!PhysReg) 371 return; 372 373 // Register is assigned, put it back on the queue for reassignment. 374 LiveInterval &LI = LIS->getInterval(VirtReg); 375 unassign(LI, PhysReg); 376 enqueue(&LI); 377 } 378 379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 380 // Cloning a register we haven't even heard about yet? Just ignore it. 381 if (!ExtraRegInfo.inBounds(Old)) 382 return; 383 384 // LRE may clone a virtual register because dead code elimination causes it to 385 // be split into connected components. The new components are much smaller 386 // than the original, so they should get a new chance at being assigned. 387 // same stage as the parent. 388 ExtraRegInfo[Old].Stage = RS_Assign; 389 ExtraRegInfo.grow(New); 390 ExtraRegInfo[New] = ExtraRegInfo[Old]; 391 } 392 393 void RAGreedy::releaseMemory() { 394 SpillerInstance.reset(0); 395 ExtraRegInfo.clear(); 396 GlobalCand.clear(); 397 RegAllocBase::releaseMemory(); 398 } 399 400 void RAGreedy::enqueue(LiveInterval *LI) { 401 // Prioritize live ranges by size, assigning larger ranges first. 402 // The queue holds (size, reg) pairs. 403 const unsigned Size = LI->getSize(); 404 const unsigned Reg = LI->reg; 405 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 406 "Can only enqueue virtual registers"); 407 unsigned Prio; 408 409 ExtraRegInfo.grow(Reg); 410 if (ExtraRegInfo[Reg].Stage == RS_New) 411 ExtraRegInfo[Reg].Stage = RS_Assign; 412 413 if (ExtraRegInfo[Reg].Stage == RS_Split) { 414 // Unsplit ranges that couldn't be allocated immediately are deferred until 415 // everything else has been allocated. 416 Prio = Size; 417 } else { 418 // Everything is allocated in long->short order. Long ranges that don't fit 419 // should be spilled (or split) ASAP so they don't create interference. 420 Prio = (1u << 31) + Size; 421 422 // Boost ranges that have a physical register hint. 423 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) 424 Prio |= (1u << 30); 425 } 426 427 Queue.push(std::make_pair(Prio, Reg)); 428 } 429 430 LiveInterval *RAGreedy::dequeue() { 431 if (Queue.empty()) 432 return 0; 433 LiveInterval *LI = &LIS->getInterval(Queue.top().second); 434 Queue.pop(); 435 return LI; 436 } 437 438 439 //===----------------------------------------------------------------------===// 440 // Direct Assignment 441 //===----------------------------------------------------------------------===// 442 443 /// tryAssign - Try to assign VirtReg to an available register. 444 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 445 AllocationOrder &Order, 446 SmallVectorImpl<LiveInterval*> &NewVRegs) { 447 Order.rewind(); 448 unsigned PhysReg; 449 while ((PhysReg = Order.next())) 450 if (!checkPhysRegInterference(VirtReg, PhysReg)) 451 break; 452 if (!PhysReg || Order.isHint(PhysReg)) 453 return PhysReg; 454 455 // PhysReg is available, but there may be a better choice. 456 457 // If we missed a simple hint, try to cheaply evict interference from the 458 // preferred register. 459 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 460 if (Order.isHint(Hint)) { 461 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 462 EvictionCost MaxCost(1); 463 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 464 evictInterference(VirtReg, Hint, NewVRegs); 465 return Hint; 466 } 467 } 468 469 // Try to evict interference from a cheaper alternative. 470 unsigned Cost = TRI->getCostPerUse(PhysReg); 471 472 // Most registers have 0 additional cost. 473 if (!Cost) 474 return PhysReg; 475 476 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 477 << '\n'); 478 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 479 return CheapReg ? CheapReg : PhysReg; 480 } 481 482 483 //===----------------------------------------------------------------------===// 484 // Interference eviction 485 //===----------------------------------------------------------------------===// 486 487 /// shouldEvict - determine if A should evict the assigned live range B. The 488 /// eviction policy defined by this function together with the allocation order 489 /// defined by enqueue() decides which registers ultimately end up being split 490 /// and spilled. 491 /// 492 /// Cascade numbers are used to prevent infinite loops if this function is a 493 /// cyclic relation. 494 /// 495 /// @param A The live range to be assigned. 496 /// @param IsHint True when A is about to be assigned to its preferred 497 /// register. 498 /// @param B The live range to be evicted. 499 /// @param BreaksHint True when B is already assigned to its preferred register. 500 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 501 LiveInterval &B, bool BreaksHint) { 502 bool CanSplit = getStage(B) < RS_Spill; 503 504 // Be fairly aggressive about following hints as long as the evictee can be 505 // split. 506 if (CanSplit && IsHint && !BreaksHint) 507 return true; 508 509 return A.weight > B.weight; 510 } 511 512 /// canEvictInterference - Return true if all interferences between VirtReg and 513 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 514 /// 515 /// @param VirtReg Live range that is about to be assigned. 516 /// @param PhysReg Desired register for assignment. 517 /// @prarm IsHint True when PhysReg is VirtReg's preferred register. 518 /// @param MaxCost Only look for cheaper candidates and update with new cost 519 /// when returning true. 520 /// @returns True when interference can be evicted cheaper than MaxCost. 521 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 522 bool IsHint, EvictionCost &MaxCost) { 523 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 524 // involved in an eviction before. If a cascade number was assigned, deny 525 // evicting anything with the same or a newer cascade number. This prevents 526 // infinite eviction loops. 527 // 528 // This works out so a register without a cascade number is allowed to evict 529 // anything, and it can be evicted by anything. 530 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 531 if (!Cascade) 532 Cascade = NextCascade; 533 534 EvictionCost Cost; 535 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 536 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 537 // If there is 10 or more interferences, chances are one is heavier. 538 if (Q.collectInterferingVRegs(10) >= 10) 539 return false; 540 541 // Check if any interfering live range is heavier than MaxWeight. 542 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 543 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 544 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) 545 return false; 546 // Never evict spill products. They cannot split or spill. 547 if (getStage(*Intf) == RS_Done) 548 return false; 549 // Once a live range becomes small enough, it is urgent that we find a 550 // register for it. This is indicated by an infinite spill weight. These 551 // urgent live ranges get to evict almost anything. 552 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); 553 // Only evict older cascades or live ranges without a cascade. 554 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 555 if (Cascade <= IntfCascade) { 556 if (!Urgent) 557 return false; 558 // We permit breaking cascades for urgent evictions. It should be the 559 // last resort, though, so make it really expensive. 560 Cost.BrokenHints += 10; 561 } 562 // Would this break a satisfied hint? 563 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 564 // Update eviction cost. 565 Cost.BrokenHints += BreaksHint; 566 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 567 // Abort if this would be too expensive. 568 if (!(Cost < MaxCost)) 569 return false; 570 // Finally, apply the eviction policy for non-urgent evictions. 571 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 572 return false; 573 } 574 } 575 MaxCost = Cost; 576 return true; 577 } 578 579 /// evictInterference - Evict any interferring registers that prevent VirtReg 580 /// from being assigned to Physreg. This assumes that canEvictInterference 581 /// returned true. 582 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 583 SmallVectorImpl<LiveInterval*> &NewVRegs) { 584 // Make sure that VirtReg has a cascade number, and assign that cascade 585 // number to every evicted register. These live ranges than then only be 586 // evicted by a newer cascade, preventing infinite loops. 587 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 588 if (!Cascade) 589 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 590 591 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 592 << " interference: Cascade " << Cascade << '\n'); 593 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 594 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 595 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 596 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { 597 LiveInterval *Intf = Q.interferingVRegs()[i]; 598 unassign(*Intf, VRM->getPhys(Intf->reg)); 599 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 600 VirtReg.isSpillable() < Intf->isSpillable()) && 601 "Cannot decrease cascade number, illegal eviction"); 602 ExtraRegInfo[Intf->reg].Cascade = Cascade; 603 ++NumEvicted; 604 NewVRegs.push_back(Intf); 605 } 606 } 607 } 608 609 /// tryEvict - Try to evict all interferences for a physreg. 610 /// @param VirtReg Currently unassigned virtual register. 611 /// @param Order Physregs to try. 612 /// @return Physreg to assign VirtReg, or 0. 613 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 614 AllocationOrder &Order, 615 SmallVectorImpl<LiveInterval*> &NewVRegs, 616 unsigned CostPerUseLimit) { 617 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 618 619 // Keep track of the cheapest interference seen so far. 620 EvictionCost BestCost(~0u); 621 unsigned BestPhys = 0; 622 623 // When we are just looking for a reduced cost per use, don't break any 624 // hints, and only evict smaller spill weights. 625 if (CostPerUseLimit < ~0u) { 626 BestCost.BrokenHints = 0; 627 BestCost.MaxWeight = VirtReg.weight; 628 } 629 630 Order.rewind(); 631 while (unsigned PhysReg = Order.next()) { 632 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 633 continue; 634 // The first use of a callee-saved register in a function has cost 1. 635 // Don't start using a CSR when the CostPerUseLimit is low. 636 if (CostPerUseLimit == 1) 637 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 638 if (!MRI->isPhysRegUsed(CSR)) { 639 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 640 << PrintReg(CSR, TRI) << '\n'); 641 continue; 642 } 643 644 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 645 continue; 646 647 // Best so far. 648 BestPhys = PhysReg; 649 650 // Stop if the hint can be used. 651 if (Order.isHint(PhysReg)) 652 break; 653 } 654 655 if (!BestPhys) 656 return 0; 657 658 evictInterference(VirtReg, BestPhys, NewVRegs); 659 return BestPhys; 660 } 661 662 663 //===----------------------------------------------------------------------===// 664 // Region Splitting 665 //===----------------------------------------------------------------------===// 666 667 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 668 /// interference pattern in Physreg and its aliases. Add the constraints to 669 /// SpillPlacement and return the static cost of this split in Cost, assuming 670 /// that all preferences in SplitConstraints are met. 671 /// Return false if there are no bundles with positive bias. 672 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 673 float &Cost) { 674 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 675 676 // Reset interference dependent info. 677 SplitConstraints.resize(UseBlocks.size()); 678 float StaticCost = 0; 679 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 680 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 681 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 682 683 BC.Number = BI.MBB->getNumber(); 684 Intf.moveToBlock(BC.Number); 685 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 686 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 687 BC.ChangesValue = BI.FirstDef; 688 689 if (!Intf.hasInterference()) 690 continue; 691 692 // Number of spill code instructions to insert. 693 unsigned Ins = 0; 694 695 // Interference for the live-in value. 696 if (BI.LiveIn) { 697 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 698 BC.Entry = SpillPlacement::MustSpill, ++Ins; 699 else if (Intf.first() < BI.FirstInstr) 700 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 701 else if (Intf.first() < BI.LastInstr) 702 ++Ins; 703 } 704 705 // Interference for the live-out value. 706 if (BI.LiveOut) { 707 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 708 BC.Exit = SpillPlacement::MustSpill, ++Ins; 709 else if (Intf.last() > BI.LastInstr) 710 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 711 else if (Intf.last() > BI.FirstInstr) 712 ++Ins; 713 } 714 715 // Accumulate the total frequency of inserted spill code. 716 if (Ins) 717 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 718 } 719 Cost = StaticCost; 720 721 // Add constraints for use-blocks. Note that these are the only constraints 722 // that may add a positive bias, it is downhill from here. 723 SpillPlacer->addConstraints(SplitConstraints); 724 return SpillPlacer->scanActiveBundles(); 725 } 726 727 728 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 729 /// live-through blocks in Blocks. 730 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 731 ArrayRef<unsigned> Blocks) { 732 const unsigned GroupSize = 8; 733 SpillPlacement::BlockConstraint BCS[GroupSize]; 734 unsigned TBS[GroupSize]; 735 unsigned B = 0, T = 0; 736 737 for (unsigned i = 0; i != Blocks.size(); ++i) { 738 unsigned Number = Blocks[i]; 739 Intf.moveToBlock(Number); 740 741 if (!Intf.hasInterference()) { 742 assert(T < GroupSize && "Array overflow"); 743 TBS[T] = Number; 744 if (++T == GroupSize) { 745 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 746 T = 0; 747 } 748 continue; 749 } 750 751 assert(B < GroupSize && "Array overflow"); 752 BCS[B].Number = Number; 753 754 // Interference for the live-in value. 755 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 756 BCS[B].Entry = SpillPlacement::MustSpill; 757 else 758 BCS[B].Entry = SpillPlacement::PrefSpill; 759 760 // Interference for the live-out value. 761 if (Intf.last() >= SA->getLastSplitPoint(Number)) 762 BCS[B].Exit = SpillPlacement::MustSpill; 763 else 764 BCS[B].Exit = SpillPlacement::PrefSpill; 765 766 if (++B == GroupSize) { 767 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 768 SpillPlacer->addConstraints(Array); 769 B = 0; 770 } 771 } 772 773 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 774 SpillPlacer->addConstraints(Array); 775 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 776 } 777 778 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 779 // Keep track of through blocks that have not been added to SpillPlacer. 780 BitVector Todo = SA->getThroughBlocks(); 781 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 782 unsigned AddedTo = 0; 783 #ifndef NDEBUG 784 unsigned Visited = 0; 785 #endif 786 787 for (;;) { 788 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 789 // Find new through blocks in the periphery of PrefRegBundles. 790 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 791 unsigned Bundle = NewBundles[i]; 792 // Look at all blocks connected to Bundle in the full graph. 793 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 794 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 795 I != E; ++I) { 796 unsigned Block = *I; 797 if (!Todo.test(Block)) 798 continue; 799 Todo.reset(Block); 800 // This is a new through block. Add it to SpillPlacer later. 801 ActiveBlocks.push_back(Block); 802 #ifndef NDEBUG 803 ++Visited; 804 #endif 805 } 806 } 807 // Any new blocks to add? 808 if (ActiveBlocks.size() == AddedTo) 809 break; 810 811 // Compute through constraints from the interference, or assume that all 812 // through blocks prefer spilling when forming compact regions. 813 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 814 if (Cand.PhysReg) 815 addThroughConstraints(Cand.Intf, NewBlocks); 816 else 817 // Provide a strong negative bias on through blocks to prevent unwanted 818 // liveness on loop backedges. 819 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 820 AddedTo = ActiveBlocks.size(); 821 822 // Perhaps iterating can enable more bundles? 823 SpillPlacer->iterate(); 824 } 825 DEBUG(dbgs() << ", v=" << Visited); 826 } 827 828 /// calcCompactRegion - Compute the set of edge bundles that should be live 829 /// when splitting the current live range into compact regions. Compact 830 /// regions can be computed without looking at interference. They are the 831 /// regions formed by removing all the live-through blocks from the live range. 832 /// 833 /// Returns false if the current live range is already compact, or if the 834 /// compact regions would form single block regions anyway. 835 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 836 // Without any through blocks, the live range is already compact. 837 if (!SA->getNumThroughBlocks()) 838 return false; 839 840 // Compact regions don't correspond to any physreg. 841 Cand.reset(IntfCache, 0); 842 843 DEBUG(dbgs() << "Compact region bundles"); 844 845 // Use the spill placer to determine the live bundles. GrowRegion pretends 846 // that all the through blocks have interference when PhysReg is unset. 847 SpillPlacer->prepare(Cand.LiveBundles); 848 849 // The static split cost will be zero since Cand.Intf reports no interference. 850 float Cost; 851 if (!addSplitConstraints(Cand.Intf, Cost)) { 852 DEBUG(dbgs() << ", none.\n"); 853 return false; 854 } 855 856 growRegion(Cand); 857 SpillPlacer->finish(); 858 859 if (!Cand.LiveBundles.any()) { 860 DEBUG(dbgs() << ", none.\n"); 861 return false; 862 } 863 864 DEBUG({ 865 for (int i = Cand.LiveBundles.find_first(); i>=0; 866 i = Cand.LiveBundles.find_next(i)) 867 dbgs() << " EB#" << i; 868 dbgs() << ".\n"; 869 }); 870 return true; 871 } 872 873 /// calcSpillCost - Compute how expensive it would be to split the live range in 874 /// SA around all use blocks instead of forming bundle regions. 875 float RAGreedy::calcSpillCost() { 876 float Cost = 0; 877 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 878 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 879 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 880 unsigned Number = BI.MBB->getNumber(); 881 // We normally only need one spill instruction - a load or a store. 882 Cost += SpillPlacer->getBlockFrequency(Number); 883 884 // Unless the value is redefined in the block. 885 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 886 Cost += SpillPlacer->getBlockFrequency(Number); 887 } 888 return Cost; 889 } 890 891 /// calcGlobalSplitCost - Return the global split cost of following the split 892 /// pattern in LiveBundles. This cost should be added to the local cost of the 893 /// interference pattern in SplitConstraints. 894 /// 895 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 896 float GlobalCost = 0; 897 const BitVector &LiveBundles = Cand.LiveBundles; 898 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 899 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 900 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 901 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 902 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 903 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 904 unsigned Ins = 0; 905 906 if (BI.LiveIn) 907 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 908 if (BI.LiveOut) 909 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 910 if (Ins) 911 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 912 } 913 914 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 915 unsigned Number = Cand.ActiveBlocks[i]; 916 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 917 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 918 if (!RegIn && !RegOut) 919 continue; 920 if (RegIn && RegOut) { 921 // We need double spill code if this block has interference. 922 Cand.Intf.moveToBlock(Number); 923 if (Cand.Intf.hasInterference()) 924 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); 925 continue; 926 } 927 // live-in / stack-out or stack-in live-out. 928 GlobalCost += SpillPlacer->getBlockFrequency(Number); 929 } 930 return GlobalCost; 931 } 932 933 /// splitAroundRegion - Split the current live range around the regions 934 /// determined by BundleCand and GlobalCand. 935 /// 936 /// Before calling this function, GlobalCand and BundleCand must be initialized 937 /// so each bundle is assigned to a valid candidate, or NoCand for the 938 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 939 /// objects must be initialized for the current live range, and intervals 940 /// created for the used candidates. 941 /// 942 /// @param LREdit The LiveRangeEdit object handling the current split. 943 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 944 /// must appear in this list. 945 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 946 ArrayRef<unsigned> UsedCands) { 947 // These are the intervals created for new global ranges. We may create more 948 // intervals for local ranges. 949 const unsigned NumGlobalIntvs = LREdit.size(); 950 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 951 assert(NumGlobalIntvs && "No global intervals configured"); 952 953 // Isolate even single instructions when dealing with a proper sub-class. 954 // That guarantees register class inflation for the stack interval because it 955 // is all copies. 956 unsigned Reg = SA->getParent().reg; 957 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 958 959 // First handle all the blocks with uses. 960 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 961 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 962 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 963 unsigned Number = BI.MBB->getNumber(); 964 unsigned IntvIn = 0, IntvOut = 0; 965 SlotIndex IntfIn, IntfOut; 966 if (BI.LiveIn) { 967 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 968 if (CandIn != NoCand) { 969 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 970 IntvIn = Cand.IntvIdx; 971 Cand.Intf.moveToBlock(Number); 972 IntfIn = Cand.Intf.first(); 973 } 974 } 975 if (BI.LiveOut) { 976 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 977 if (CandOut != NoCand) { 978 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 979 IntvOut = Cand.IntvIdx; 980 Cand.Intf.moveToBlock(Number); 981 IntfOut = Cand.Intf.last(); 982 } 983 } 984 985 // Create separate intervals for isolated blocks with multiple uses. 986 if (!IntvIn && !IntvOut) { 987 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 988 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 989 SE->splitSingleBlock(BI); 990 continue; 991 } 992 993 if (IntvIn && IntvOut) 994 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 995 else if (IntvIn) 996 SE->splitRegInBlock(BI, IntvIn, IntfIn); 997 else 998 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 999 } 1000 1001 // Handle live-through blocks. The relevant live-through blocks are stored in 1002 // the ActiveBlocks list with each candidate. We need to filter out 1003 // duplicates. 1004 BitVector Todo = SA->getThroughBlocks(); 1005 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1006 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1007 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1008 unsigned Number = Blocks[i]; 1009 if (!Todo.test(Number)) 1010 continue; 1011 Todo.reset(Number); 1012 1013 unsigned IntvIn = 0, IntvOut = 0; 1014 SlotIndex IntfIn, IntfOut; 1015 1016 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1017 if (CandIn != NoCand) { 1018 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1019 IntvIn = Cand.IntvIdx; 1020 Cand.Intf.moveToBlock(Number); 1021 IntfIn = Cand.Intf.first(); 1022 } 1023 1024 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1025 if (CandOut != NoCand) { 1026 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1027 IntvOut = Cand.IntvIdx; 1028 Cand.Intf.moveToBlock(Number); 1029 IntfOut = Cand.Intf.last(); 1030 } 1031 if (!IntvIn && !IntvOut) 1032 continue; 1033 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1034 } 1035 } 1036 1037 ++NumGlobalSplits; 1038 1039 SmallVector<unsigned, 8> IntvMap; 1040 SE->finish(&IntvMap); 1041 DebugVars->splitRegister(Reg, LREdit.regs()); 1042 1043 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1044 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1045 1046 // Sort out the new intervals created by splitting. We get four kinds: 1047 // - Remainder intervals should not be split again. 1048 // - Candidate intervals can be assigned to Cand.PhysReg. 1049 // - Block-local splits are candidates for local splitting. 1050 // - DCE leftovers should go back on the queue. 1051 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1052 LiveInterval &Reg = *LREdit.get(i); 1053 1054 // Ignore old intervals from DCE. 1055 if (getStage(Reg) != RS_New) 1056 continue; 1057 1058 // Remainder interval. Don't try splitting again, spill if it doesn't 1059 // allocate. 1060 if (IntvMap[i] == 0) { 1061 setStage(Reg, RS_Spill); 1062 continue; 1063 } 1064 1065 // Global intervals. Allow repeated splitting as long as the number of live 1066 // blocks is strictly decreasing. 1067 if (IntvMap[i] < NumGlobalIntvs) { 1068 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1069 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1070 << " blocks as original.\n"); 1071 // Don't allow repeated splitting as a safe guard against looping. 1072 setStage(Reg, RS_Split2); 1073 } 1074 continue; 1075 } 1076 1077 // Other intervals are treated as new. This includes local intervals created 1078 // for blocks with multiple uses, and anything created by DCE. 1079 } 1080 1081 if (VerifyEnabled) 1082 MF->verify(this, "After splitting live range around region"); 1083 } 1084 1085 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1086 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1087 unsigned NumCands = 0; 1088 unsigned BestCand = NoCand; 1089 float BestCost; 1090 SmallVector<unsigned, 8> UsedCands; 1091 1092 // Check if we can split this live range around a compact region. 1093 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1094 if (HasCompact) { 1095 // Yes, keep GlobalCand[0] as the compact region candidate. 1096 NumCands = 1; 1097 BestCost = HUGE_VALF; 1098 } else { 1099 // No benefit from the compact region, our fallback will be per-block 1100 // splitting. Make sure we find a solution that is cheaper than spilling. 1101 BestCost = Hysteresis * calcSpillCost(); 1102 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1103 } 1104 1105 Order.rewind(); 1106 while (unsigned PhysReg = Order.next()) { 1107 // Discard bad candidates before we run out of interference cache cursors. 1108 // This will only affect register classes with a lot of registers (>32). 1109 if (NumCands == IntfCache.getMaxCursors()) { 1110 unsigned WorstCount = ~0u; 1111 unsigned Worst = 0; 1112 for (unsigned i = 0; i != NumCands; ++i) { 1113 if (i == BestCand || !GlobalCand[i].PhysReg) 1114 continue; 1115 unsigned Count = GlobalCand[i].LiveBundles.count(); 1116 if (Count < WorstCount) 1117 Worst = i, WorstCount = Count; 1118 } 1119 --NumCands; 1120 GlobalCand[Worst] = GlobalCand[NumCands]; 1121 } 1122 1123 if (GlobalCand.size() <= NumCands) 1124 GlobalCand.resize(NumCands+1); 1125 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1126 Cand.reset(IntfCache, PhysReg); 1127 1128 SpillPlacer->prepare(Cand.LiveBundles); 1129 float Cost; 1130 if (!addSplitConstraints(Cand.Intf, Cost)) { 1131 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1132 continue; 1133 } 1134 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1135 if (Cost >= BestCost) { 1136 DEBUG({ 1137 if (BestCand == NoCand) 1138 dbgs() << " worse than no bundles\n"; 1139 else 1140 dbgs() << " worse than " 1141 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1142 }); 1143 continue; 1144 } 1145 growRegion(Cand); 1146 1147 SpillPlacer->finish(); 1148 1149 // No live bundles, defer to splitSingleBlocks(). 1150 if (!Cand.LiveBundles.any()) { 1151 DEBUG(dbgs() << " no bundles.\n"); 1152 continue; 1153 } 1154 1155 Cost += calcGlobalSplitCost(Cand); 1156 DEBUG({ 1157 dbgs() << ", total = " << Cost << " with bundles"; 1158 for (int i = Cand.LiveBundles.find_first(); i>=0; 1159 i = Cand.LiveBundles.find_next(i)) 1160 dbgs() << " EB#" << i; 1161 dbgs() << ".\n"; 1162 }); 1163 if (Cost < BestCost) { 1164 BestCand = NumCands; 1165 BestCost = Hysteresis * Cost; // Prevent rounding effects. 1166 } 1167 ++NumCands; 1168 } 1169 1170 // No solutions found, fall back to single block splitting. 1171 if (!HasCompact && BestCand == NoCand) 1172 return 0; 1173 1174 // Prepare split editor. 1175 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1176 SE->reset(LREdit, SplitSpillMode); 1177 1178 // Assign all edge bundles to the preferred candidate, or NoCand. 1179 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1180 1181 // Assign bundles for the best candidate region. 1182 if (BestCand != NoCand) { 1183 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1184 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1185 UsedCands.push_back(BestCand); 1186 Cand.IntvIdx = SE->openIntv(); 1187 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1188 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1189 (void)B; 1190 } 1191 } 1192 1193 // Assign bundles for the compact region. 1194 if (HasCompact) { 1195 GlobalSplitCandidate &Cand = GlobalCand.front(); 1196 assert(!Cand.PhysReg && "Compact region has no physreg"); 1197 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1198 UsedCands.push_back(0); 1199 Cand.IntvIdx = SE->openIntv(); 1200 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1201 << Cand.IntvIdx << ".\n"); 1202 (void)B; 1203 } 1204 } 1205 1206 splitAroundRegion(LREdit, UsedCands); 1207 return 0; 1208 } 1209 1210 1211 //===----------------------------------------------------------------------===// 1212 // Per-Block Splitting 1213 //===----------------------------------------------------------------------===// 1214 1215 /// tryBlockSplit - Split a global live range around every block with uses. This 1216 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1217 /// they don't allocate. 1218 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1219 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1220 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1221 unsigned Reg = VirtReg.reg; 1222 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1223 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1224 SE->reset(LREdit, SplitSpillMode); 1225 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1226 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1227 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1228 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1229 SE->splitSingleBlock(BI); 1230 } 1231 // No blocks were split. 1232 if (LREdit.empty()) 1233 return 0; 1234 1235 // We did split for some blocks. 1236 SmallVector<unsigned, 8> IntvMap; 1237 SE->finish(&IntvMap); 1238 1239 // Tell LiveDebugVariables about the new ranges. 1240 DebugVars->splitRegister(Reg, LREdit.regs()); 1241 1242 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1243 1244 // Sort out the new intervals created by splitting. The remainder interval 1245 // goes straight to spilling, the new local ranges get to stay RS_New. 1246 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1247 LiveInterval &LI = *LREdit.get(i); 1248 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1249 setStage(LI, RS_Spill); 1250 } 1251 1252 if (VerifyEnabled) 1253 MF->verify(this, "After splitting live range around basic blocks"); 1254 return 0; 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // Local Splitting 1259 //===----------------------------------------------------------------------===// 1260 1261 1262 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1263 /// in order to use PhysReg between two entries in SA->UseSlots. 1264 /// 1265 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1266 /// 1267 void RAGreedy::calcGapWeights(unsigned PhysReg, 1268 SmallVectorImpl<float> &GapWeight) { 1269 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1270 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1271 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; 1272 const unsigned NumGaps = Uses.size()-1; 1273 1274 // Start and end points for the interference check. 1275 SlotIndex StartIdx = 1276 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1277 SlotIndex StopIdx = 1278 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1279 1280 GapWeight.assign(NumGaps, 0.0f); 1281 1282 // Add interference from each overlapping register. 1283 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { 1284 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) 1285 .checkInterference()) 1286 continue; 1287 1288 // We know that VirtReg is a continuous interval from FirstInstr to 1289 // LastInstr, so we don't need InterferenceQuery. 1290 // 1291 // Interference that overlaps an instruction is counted in both gaps 1292 // surrounding the instruction. The exception is interference before 1293 // StartIdx and after StopIdx. 1294 // 1295 LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx); 1296 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1297 // Skip the gaps before IntI. 1298 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1299 if (++Gap == NumGaps) 1300 break; 1301 if (Gap == NumGaps) 1302 break; 1303 1304 // Update the gaps covered by IntI. 1305 const float weight = IntI.value()->weight; 1306 for (; Gap != NumGaps; ++Gap) { 1307 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1308 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1309 break; 1310 } 1311 if (Gap == NumGaps) 1312 break; 1313 } 1314 } 1315 } 1316 1317 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1318 /// basic block. 1319 /// 1320 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1321 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1322 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1323 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1324 1325 // Note that it is possible to have an interval that is live-in or live-out 1326 // while only covering a single block - A phi-def can use undef values from 1327 // predecessors, and the block could be a single-block loop. 1328 // We don't bother doing anything clever about such a case, we simply assume 1329 // that the interval is continuous from FirstInstr to LastInstr. We should 1330 // make sure that we don't do anything illegal to such an interval, though. 1331 1332 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; 1333 if (Uses.size() <= 2) 1334 return 0; 1335 const unsigned NumGaps = Uses.size()-1; 1336 1337 DEBUG({ 1338 dbgs() << "tryLocalSplit: "; 1339 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1340 dbgs() << ' ' << SA->UseSlots[i]; 1341 dbgs() << '\n'; 1342 }); 1343 1344 // Since we allow local split results to be split again, there is a risk of 1345 // creating infinite loops. It is tempting to require that the new live 1346 // ranges have less instructions than the original. That would guarantee 1347 // convergence, but it is too strict. A live range with 3 instructions can be 1348 // split 2+3 (including the COPY), and we want to allow that. 1349 // 1350 // Instead we use these rules: 1351 // 1352 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1353 // noop split, of course). 1354 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1355 // the new ranges must have fewer instructions than before the split. 1356 // 3. New ranges with the same number of instructions are marked RS_Split2, 1357 // smaller ranges are marked RS_New. 1358 // 1359 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1360 // excessive splitting and infinite loops. 1361 // 1362 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1363 1364 // Best split candidate. 1365 unsigned BestBefore = NumGaps; 1366 unsigned BestAfter = 0; 1367 float BestDiff = 0; 1368 1369 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); 1370 SmallVector<float, 8> GapWeight; 1371 1372 Order.rewind(); 1373 while (unsigned PhysReg = Order.next()) { 1374 // Keep track of the largest spill weight that would need to be evicted in 1375 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1376 calcGapWeights(PhysReg, GapWeight); 1377 1378 // Try to find the best sequence of gaps to close. 1379 // The new spill weight must be larger than any gap interference. 1380 1381 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1382 unsigned SplitBefore = 0, SplitAfter = 1; 1383 1384 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1385 // It is the spill weight that needs to be evicted. 1386 float MaxGap = GapWeight[0]; 1387 1388 for (;;) { 1389 // Live before/after split? 1390 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1391 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1392 1393 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1394 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1395 << " i=" << MaxGap); 1396 1397 // Stop before the interval gets so big we wouldn't be making progress. 1398 if (!LiveBefore && !LiveAfter) { 1399 DEBUG(dbgs() << " all\n"); 1400 break; 1401 } 1402 // Should the interval be extended or shrunk? 1403 bool Shrink = true; 1404 1405 // How many gaps would the new range have? 1406 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1407 1408 // Legally, without causing looping? 1409 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1410 1411 if (Legal && MaxGap < HUGE_VALF) { 1412 // Estimate the new spill weight. Each instruction reads or writes the 1413 // register. Conservatively assume there are no read-modify-write 1414 // instructions. 1415 // 1416 // Try to guess the size of the new interval. 1417 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1418 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1419 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1420 // Would this split be possible to allocate? 1421 // Never allocate all gaps, we wouldn't be making progress. 1422 DEBUG(dbgs() << " w=" << EstWeight); 1423 if (EstWeight * Hysteresis >= MaxGap) { 1424 Shrink = false; 1425 float Diff = EstWeight - MaxGap; 1426 if (Diff > BestDiff) { 1427 DEBUG(dbgs() << " (best)"); 1428 BestDiff = Hysteresis * Diff; 1429 BestBefore = SplitBefore; 1430 BestAfter = SplitAfter; 1431 } 1432 } 1433 } 1434 1435 // Try to shrink. 1436 if (Shrink) { 1437 if (++SplitBefore < SplitAfter) { 1438 DEBUG(dbgs() << " shrink\n"); 1439 // Recompute the max when necessary. 1440 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1441 MaxGap = GapWeight[SplitBefore]; 1442 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1443 MaxGap = std::max(MaxGap, GapWeight[i]); 1444 } 1445 continue; 1446 } 1447 MaxGap = 0; 1448 } 1449 1450 // Try to extend the interval. 1451 if (SplitAfter >= NumGaps) { 1452 DEBUG(dbgs() << " end\n"); 1453 break; 1454 } 1455 1456 DEBUG(dbgs() << " extend\n"); 1457 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1458 } 1459 } 1460 1461 // Didn't find any candidates? 1462 if (BestBefore == NumGaps) 1463 return 0; 1464 1465 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1466 << '-' << Uses[BestAfter] << ", " << BestDiff 1467 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1468 1469 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1470 SE->reset(LREdit); 1471 1472 SE->openIntv(); 1473 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1474 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1475 SE->useIntv(SegStart, SegStop); 1476 SmallVector<unsigned, 8> IntvMap; 1477 SE->finish(&IntvMap); 1478 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1479 1480 // If the new range has the same number of instructions as before, mark it as 1481 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1482 // leave the new intervals as RS_New so they can compete. 1483 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1484 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1485 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1486 if (NewGaps >= NumGaps) { 1487 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1488 assert(!ProgressRequired && "Didn't make progress when it was required."); 1489 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1490 if (IntvMap[i] == 1) { 1491 setStage(*LREdit.get(i), RS_Split2); 1492 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1493 } 1494 DEBUG(dbgs() << '\n'); 1495 } 1496 ++NumLocalSplits; 1497 1498 return 0; 1499 } 1500 1501 //===----------------------------------------------------------------------===// 1502 // Live Range Splitting 1503 //===----------------------------------------------------------------------===// 1504 1505 /// trySplit - Try to split VirtReg or one of its interferences, making it 1506 /// assignable. 1507 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1508 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1509 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1510 // Ranges must be Split2 or less. 1511 if (getStage(VirtReg) >= RS_Spill) 1512 return 0; 1513 1514 // Local intervals are handled separately. 1515 if (LIS->intervalIsInOneMBB(VirtReg)) { 1516 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1517 SA->analyze(&VirtReg); 1518 return tryLocalSplit(VirtReg, Order, NewVRegs); 1519 } 1520 1521 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1522 1523 SA->analyze(&VirtReg); 1524 1525 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1526 // coalescer. That may cause the range to become allocatable which means that 1527 // tryRegionSplit won't be making progress. This check should be replaced with 1528 // an assertion when the coalescer is fixed. 1529 if (SA->didRepairRange()) { 1530 // VirtReg has changed, so all cached queries are invalid. 1531 invalidateVirtRegs(); 1532 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1533 return PhysReg; 1534 } 1535 1536 // First try to split around a region spanning multiple blocks. RS_Split2 1537 // ranges already made dubious progress with region splitting, so they go 1538 // straight to single block splitting. 1539 if (getStage(VirtReg) < RS_Split2) { 1540 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1541 if (PhysReg || !NewVRegs.empty()) 1542 return PhysReg; 1543 } 1544 1545 // Then isolate blocks. 1546 return tryBlockSplit(VirtReg, Order, NewVRegs); 1547 } 1548 1549 1550 //===----------------------------------------------------------------------===// 1551 // Main Entry Point 1552 //===----------------------------------------------------------------------===// 1553 1554 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1555 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1556 // First try assigning a free register. 1557 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1558 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1559 return PhysReg; 1560 1561 LiveRangeStage Stage = getStage(VirtReg); 1562 DEBUG(dbgs() << StageName[Stage] 1563 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1564 1565 // Try to evict a less worthy live range, but only for ranges from the primary 1566 // queue. The RS_Split ranges already failed to do this, and they should not 1567 // get a second chance until they have been split. 1568 if (Stage != RS_Split) 1569 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1570 return PhysReg; 1571 1572 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1573 1574 // The first time we see a live range, don't try to split or spill. 1575 // Wait until the second time, when all smaller ranges have been allocated. 1576 // This gives a better picture of the interference to split around. 1577 if (Stage < RS_Split) { 1578 setStage(VirtReg, RS_Split); 1579 DEBUG(dbgs() << "wait for second round\n"); 1580 NewVRegs.push_back(&VirtReg); 1581 return 0; 1582 } 1583 1584 // If we couldn't allocate a register from spilling, there is probably some 1585 // invalid inline assembly. The base class wil report it. 1586 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1587 return ~0u; 1588 1589 // Try splitting VirtReg or interferences. 1590 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1591 if (PhysReg || !NewVRegs.empty()) 1592 return PhysReg; 1593 1594 // Finally spill VirtReg itself. 1595 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1596 LiveRangeEdit LRE(VirtReg, NewVRegs, this); 1597 spiller().spill(LRE); 1598 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1599 1600 if (VerifyEnabled) 1601 MF->verify(this, "After spilling"); 1602 1603 // The live virtual register requesting allocation was spilled, so tell 1604 // the caller not to allocate anything during this round. 1605 return 0; 1606 } 1607 1608 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1609 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1610 << "********** Function: " 1611 << ((Value*)mf.getFunction())->getName() << '\n'); 1612 1613 MF = &mf; 1614 if (VerifyEnabled) 1615 MF->verify(this, "Before greedy register allocator"); 1616 1617 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 1618 Indexes = &getAnalysis<SlotIndexes>(); 1619 DomTree = &getAnalysis<MachineDominatorTree>(); 1620 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1621 Loops = &getAnalysis<MachineLoopInfo>(); 1622 Bundles = &getAnalysis<EdgeBundles>(); 1623 SpillPlacer = &getAnalysis<SpillPlacement>(); 1624 DebugVars = &getAnalysis<LiveDebugVariables>(); 1625 1626 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1627 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); 1628 ExtraRegInfo.clear(); 1629 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1630 NextCascade = 1; 1631 IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI); 1632 GlobalCand.resize(32); // This will grow as needed. 1633 1634 allocatePhysRegs(); 1635 addMBBLiveIns(MF); 1636 LIS->addKillFlags(); 1637 1638 // Run rewriter 1639 { 1640 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); 1641 VRM->rewrite(Indexes); 1642 } 1643 1644 // Write out new DBG_VALUE instructions. 1645 { 1646 NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled); 1647 DebugVars->emitDebugValues(VRM); 1648 } 1649 1650 // The pass output is in VirtRegMap. Release all the transient data. 1651 releaseMemory(); 1652 1653 return true; 1654 } 1655