Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "gvn"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/GlobalVariable.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/ConstantFolding.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/Loads.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     30 #include "llvm/Analysis/PHITransAddr.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/Assembly/Writer.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/SSAUpdater.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/DepthFirstIterator.h"
     38 #include "llvm/ADT/SmallPtrSet.h"
     39 #include "llvm/ADT/Statistic.h"
     40 #include "llvm/Support/Allocator.h"
     41 #include "llvm/Support/CommandLine.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/IRBuilder.h"
     44 #include "llvm/Support/PatternMatch.h"
     45 using namespace llvm;
     46 using namespace PatternMatch;
     47 
     48 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     49 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     50 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     51 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     52 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     53 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     54 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     55 
     56 static cl::opt<bool> EnablePRE("enable-pre",
     57                                cl::init(true), cl::Hidden);
     58 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     59 
     60 //===----------------------------------------------------------------------===//
     61 //                         ValueTable Class
     62 //===----------------------------------------------------------------------===//
     63 
     64 /// This class holds the mapping between values and value numbers.  It is used
     65 /// as an efficient mechanism to determine the expression-wise equivalence of
     66 /// two values.
     67 namespace {
     68   struct Expression {
     69     uint32_t opcode;
     70     Type *type;
     71     SmallVector<uint32_t, 4> varargs;
     72 
     73     Expression(uint32_t o = ~2U) : opcode(o) { }
     74 
     75     bool operator==(const Expression &other) const {
     76       if (opcode != other.opcode)
     77         return false;
     78       if (opcode == ~0U || opcode == ~1U)
     79         return true;
     80       if (type != other.type)
     81         return false;
     82       if (varargs != other.varargs)
     83         return false;
     84       return true;
     85     }
     86   };
     87 
     88   class ValueTable {
     89     DenseMap<Value*, uint32_t> valueNumbering;
     90     DenseMap<Expression, uint32_t> expressionNumbering;
     91     AliasAnalysis *AA;
     92     MemoryDependenceAnalysis *MD;
     93     DominatorTree *DT;
     94 
     95     uint32_t nextValueNumber;
     96 
     97     Expression create_expression(Instruction* I);
     98     Expression create_extractvalue_expression(ExtractValueInst* EI);
     99     uint32_t lookup_or_add_call(CallInst* C);
    100   public:
    101     ValueTable() : nextValueNumber(1) { }
    102     uint32_t lookup_or_add(Value *V);
    103     uint32_t lookup(Value *V) const;
    104     void add(Value *V, uint32_t num);
    105     void clear();
    106     void erase(Value *v);
    107     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    108     AliasAnalysis *getAliasAnalysis() const { return AA; }
    109     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    110     void setDomTree(DominatorTree* D) { DT = D; }
    111     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    112     void verifyRemoved(const Value *) const;
    113   };
    114 }
    115 
    116 namespace llvm {
    117 template <> struct DenseMapInfo<Expression> {
    118   static inline Expression getEmptyKey() {
    119     return ~0U;
    120   }
    121 
    122   static inline Expression getTombstoneKey() {
    123     return ~1U;
    124   }
    125 
    126   static unsigned getHashValue(const Expression e) {
    127     unsigned hash = e.opcode;
    128 
    129     hash = ((unsigned)((uintptr_t)e.type >> 4) ^
    130             (unsigned)((uintptr_t)e.type >> 9));
    131 
    132     for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
    133          E = e.varargs.end(); I != E; ++I)
    134       hash = *I + hash * 37;
    135 
    136     return hash;
    137   }
    138   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    139     return LHS == RHS;
    140   }
    141 };
    142 
    143 }
    144 
    145 //===----------------------------------------------------------------------===//
    146 //                     ValueTable Internal Functions
    147 //===----------------------------------------------------------------------===//
    148 
    149 Expression ValueTable::create_expression(Instruction *I) {
    150   Expression e;
    151   e.type = I->getType();
    152   e.opcode = I->getOpcode();
    153   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    154        OI != OE; ++OI)
    155     e.varargs.push_back(lookup_or_add(*OI));
    156 
    157   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    158     e.opcode = (C->getOpcode() << 8) | C->getPredicate();
    159   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    160     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    161          II != IE; ++II)
    162       e.varargs.push_back(*II);
    163   }
    164 
    165   return e;
    166 }
    167 
    168 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    169   assert(EI != 0 && "Not an ExtractValueInst?");
    170   Expression e;
    171   e.type = EI->getType();
    172   e.opcode = 0;
    173 
    174   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    175   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    176     // EI might be an extract from one of our recognised intrinsics. If it
    177     // is we'll synthesize a semantically equivalent expression instead on
    178     // an extract value expression.
    179     switch (I->getIntrinsicID()) {
    180       case Intrinsic::sadd_with_overflow:
    181       case Intrinsic::uadd_with_overflow:
    182         e.opcode = Instruction::Add;
    183         break;
    184       case Intrinsic::ssub_with_overflow:
    185       case Intrinsic::usub_with_overflow:
    186         e.opcode = Instruction::Sub;
    187         break;
    188       case Intrinsic::smul_with_overflow:
    189       case Intrinsic::umul_with_overflow:
    190         e.opcode = Instruction::Mul;
    191         break;
    192       default:
    193         break;
    194     }
    195 
    196     if (e.opcode != 0) {
    197       // Intrinsic recognized. Grab its args to finish building the expression.
    198       assert(I->getNumArgOperands() == 2 &&
    199              "Expect two args for recognised intrinsics.");
    200       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    201       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    202       return e;
    203     }
    204   }
    205 
    206   // Not a recognised intrinsic. Fall back to producing an extract value
    207   // expression.
    208   e.opcode = EI->getOpcode();
    209   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    210        OI != OE; ++OI)
    211     e.varargs.push_back(lookup_or_add(*OI));
    212 
    213   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    214          II != IE; ++II)
    215     e.varargs.push_back(*II);
    216 
    217   return e;
    218 }
    219 
    220 //===----------------------------------------------------------------------===//
    221 //                     ValueTable External Functions
    222 //===----------------------------------------------------------------------===//
    223 
    224 /// add - Insert a value into the table with a specified value number.
    225 void ValueTable::add(Value *V, uint32_t num) {
    226   valueNumbering.insert(std::make_pair(V, num));
    227 }
    228 
    229 uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
    230   if (AA->doesNotAccessMemory(C)) {
    231     Expression exp = create_expression(C);
    232     uint32_t& e = expressionNumbering[exp];
    233     if (!e) e = nextValueNumber++;
    234     valueNumbering[C] = e;
    235     return e;
    236   } else if (AA->onlyReadsMemory(C)) {
    237     Expression exp = create_expression(C);
    238     uint32_t& e = expressionNumbering[exp];
    239     if (!e) {
    240       e = nextValueNumber++;
    241       valueNumbering[C] = e;
    242       return e;
    243     }
    244     if (!MD) {
    245       e = nextValueNumber++;
    246       valueNumbering[C] = e;
    247       return e;
    248     }
    249 
    250     MemDepResult local_dep = MD->getDependency(C);
    251 
    252     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    253       valueNumbering[C] =  nextValueNumber;
    254       return nextValueNumber++;
    255     }
    256 
    257     if (local_dep.isDef()) {
    258       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    259 
    260       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    261         valueNumbering[C] = nextValueNumber;
    262         return nextValueNumber++;
    263       }
    264 
    265       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    266         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    267         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    268         if (c_vn != cd_vn) {
    269           valueNumbering[C] = nextValueNumber;
    270           return nextValueNumber++;
    271         }
    272       }
    273 
    274       uint32_t v = lookup_or_add(local_cdep);
    275       valueNumbering[C] = v;
    276       return v;
    277     }
    278 
    279     // Non-local case.
    280     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    281       MD->getNonLocalCallDependency(CallSite(C));
    282     // FIXME: Move the checking logic to MemDep!
    283     CallInst* cdep = 0;
    284 
    285     // Check to see if we have a single dominating call instruction that is
    286     // identical to C.
    287     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    288       const NonLocalDepEntry *I = &deps[i];
    289       if (I->getResult().isNonLocal())
    290         continue;
    291 
    292       // We don't handle non-definitions.  If we already have a call, reject
    293       // instruction dependencies.
    294       if (!I->getResult().isDef() || cdep != 0) {
    295         cdep = 0;
    296         break;
    297       }
    298 
    299       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    300       // FIXME: All duplicated with non-local case.
    301       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    302         cdep = NonLocalDepCall;
    303         continue;
    304       }
    305 
    306       cdep = 0;
    307       break;
    308     }
    309 
    310     if (!cdep) {
    311       valueNumbering[C] = nextValueNumber;
    312       return nextValueNumber++;
    313     }
    314 
    315     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    316       valueNumbering[C] = nextValueNumber;
    317       return nextValueNumber++;
    318     }
    319     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    320       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    321       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    322       if (c_vn != cd_vn) {
    323         valueNumbering[C] = nextValueNumber;
    324         return nextValueNumber++;
    325       }
    326     }
    327 
    328     uint32_t v = lookup_or_add(cdep);
    329     valueNumbering[C] = v;
    330     return v;
    331 
    332   } else {
    333     valueNumbering[C] = nextValueNumber;
    334     return nextValueNumber++;
    335   }
    336 }
    337 
    338 /// lookup_or_add - Returns the value number for the specified value, assigning
    339 /// it a new number if it did not have one before.
    340 uint32_t ValueTable::lookup_or_add(Value *V) {
    341   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    342   if (VI != valueNumbering.end())
    343     return VI->second;
    344 
    345   if (!isa<Instruction>(V)) {
    346     valueNumbering[V] = nextValueNumber;
    347     return nextValueNumber++;
    348   }
    349 
    350   Instruction* I = cast<Instruction>(V);
    351   Expression exp;
    352   switch (I->getOpcode()) {
    353     case Instruction::Call:
    354       return lookup_or_add_call(cast<CallInst>(I));
    355     case Instruction::Add:
    356     case Instruction::FAdd:
    357     case Instruction::Sub:
    358     case Instruction::FSub:
    359     case Instruction::Mul:
    360     case Instruction::FMul:
    361     case Instruction::UDiv:
    362     case Instruction::SDiv:
    363     case Instruction::FDiv:
    364     case Instruction::URem:
    365     case Instruction::SRem:
    366     case Instruction::FRem:
    367     case Instruction::Shl:
    368     case Instruction::LShr:
    369     case Instruction::AShr:
    370     case Instruction::And:
    371     case Instruction::Or :
    372     case Instruction::Xor:
    373     case Instruction::ICmp:
    374     case Instruction::FCmp:
    375     case Instruction::Trunc:
    376     case Instruction::ZExt:
    377     case Instruction::SExt:
    378     case Instruction::FPToUI:
    379     case Instruction::FPToSI:
    380     case Instruction::UIToFP:
    381     case Instruction::SIToFP:
    382     case Instruction::FPTrunc:
    383     case Instruction::FPExt:
    384     case Instruction::PtrToInt:
    385     case Instruction::IntToPtr:
    386     case Instruction::BitCast:
    387     case Instruction::Select:
    388     case Instruction::ExtractElement:
    389     case Instruction::InsertElement:
    390     case Instruction::ShuffleVector:
    391     case Instruction::InsertValue:
    392     case Instruction::GetElementPtr:
    393       exp = create_expression(I);
    394       break;
    395     case Instruction::ExtractValue:
    396       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    397       break;
    398     default:
    399       valueNumbering[V] = nextValueNumber;
    400       return nextValueNumber++;
    401   }
    402 
    403   uint32_t& e = expressionNumbering[exp];
    404   if (!e) e = nextValueNumber++;
    405   valueNumbering[V] = e;
    406   return e;
    407 }
    408 
    409 /// lookup - Returns the value number of the specified value. Fails if
    410 /// the value has not yet been numbered.
    411 uint32_t ValueTable::lookup(Value *V) const {
    412   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    413   assert(VI != valueNumbering.end() && "Value not numbered?");
    414   return VI->second;
    415 }
    416 
    417 /// clear - Remove all entries from the ValueTable.
    418 void ValueTable::clear() {
    419   valueNumbering.clear();
    420   expressionNumbering.clear();
    421   nextValueNumber = 1;
    422 }
    423 
    424 /// erase - Remove a value from the value numbering.
    425 void ValueTable::erase(Value *V) {
    426   valueNumbering.erase(V);
    427 }
    428 
    429 /// verifyRemoved - Verify that the value is removed from all internal data
    430 /// structures.
    431 void ValueTable::verifyRemoved(const Value *V) const {
    432   for (DenseMap<Value*, uint32_t>::const_iterator
    433          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    434     assert(I->first != V && "Inst still occurs in value numbering map!");
    435   }
    436 }
    437 
    438 //===----------------------------------------------------------------------===//
    439 //                                GVN Pass
    440 //===----------------------------------------------------------------------===//
    441 
    442 namespace {
    443 
    444   class GVN : public FunctionPass {
    445     bool NoLoads;
    446     MemoryDependenceAnalysis *MD;
    447     DominatorTree *DT;
    448     const TargetData *TD;
    449 
    450     ValueTable VN;
    451 
    452     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
    453     /// have that value number.  Use findLeader to query it.
    454     struct LeaderTableEntry {
    455       Value *Val;
    456       BasicBlock *BB;
    457       LeaderTableEntry *Next;
    458     };
    459     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    460     BumpPtrAllocator TableAllocator;
    461 
    462     SmallVector<Instruction*, 8> InstrsToErase;
    463   public:
    464     static char ID; // Pass identification, replacement for typeid
    465     explicit GVN(bool noloads = false)
    466         : FunctionPass(ID), NoLoads(noloads), MD(0) {
    467       initializeGVNPass(*PassRegistry::getPassRegistry());
    468     }
    469 
    470     bool runOnFunction(Function &F);
    471 
    472     /// markInstructionForDeletion - This removes the specified instruction from
    473     /// our various maps and marks it for deletion.
    474     void markInstructionForDeletion(Instruction *I) {
    475       VN.erase(I);
    476       InstrsToErase.push_back(I);
    477     }
    478 
    479     const TargetData *getTargetData() const { return TD; }
    480     DominatorTree &getDominatorTree() const { return *DT; }
    481     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    482     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    483   private:
    484     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
    485     /// its value number.
    486     void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    487       LeaderTableEntry &Curr = LeaderTable[N];
    488       if (!Curr.Val) {
    489         Curr.Val = V;
    490         Curr.BB = BB;
    491         return;
    492       }
    493 
    494       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    495       Node->Val = V;
    496       Node->BB = BB;
    497       Node->Next = Curr.Next;
    498       Curr.Next = Node;
    499     }
    500 
    501     /// removeFromLeaderTable - Scan the list of values corresponding to a given
    502     /// value number, and remove the given value if encountered.
    503     void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    504       LeaderTableEntry* Prev = 0;
    505       LeaderTableEntry* Curr = &LeaderTable[N];
    506 
    507       while (Curr->Val != V || Curr->BB != BB) {
    508         Prev = Curr;
    509         Curr = Curr->Next;
    510       }
    511 
    512       if (Prev) {
    513         Prev->Next = Curr->Next;
    514       } else {
    515         if (!Curr->Next) {
    516           Curr->Val = 0;
    517           Curr->BB = 0;
    518         } else {
    519           LeaderTableEntry* Next = Curr->Next;
    520           Curr->Val = Next->Val;
    521           Curr->BB = Next->BB;
    522           Curr->Next = Next->Next;
    523         }
    524       }
    525     }
    526 
    527     // List of critical edges to be split between iterations.
    528     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    529 
    530     // This transformation requires dominator postdominator info
    531     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    532       AU.addRequired<DominatorTree>();
    533       if (!NoLoads)
    534         AU.addRequired<MemoryDependenceAnalysis>();
    535       AU.addRequired<AliasAnalysis>();
    536 
    537       AU.addPreserved<DominatorTree>();
    538       AU.addPreserved<AliasAnalysis>();
    539     }
    540 
    541 
    542     // Helper fuctions
    543     // FIXME: eliminate or document these better
    544     bool processLoad(LoadInst *L);
    545     bool processInstruction(Instruction *I);
    546     bool processNonLocalLoad(LoadInst *L);
    547     bool processBlock(BasicBlock *BB);
    548     void dump(DenseMap<uint32_t, Value*> &d);
    549     bool iterateOnFunction(Function &F);
    550     bool performPRE(Function &F);
    551     Value *findLeader(BasicBlock *BB, uint32_t num);
    552     void cleanupGlobalSets();
    553     void verifyRemoved(const Instruction *I) const;
    554     bool splitCriticalEdges();
    555     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
    556                                          BasicBlock *Root);
    557     bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
    558   };
    559 
    560   char GVN::ID = 0;
    561 }
    562 
    563 // createGVNPass - The public interface to this file...
    564 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    565   return new GVN(NoLoads);
    566 }
    567 
    568 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    569 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    570 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    571 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    572 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    573 
    574 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    575   errs() << "{\n";
    576   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    577        E = d.end(); I != E; ++I) {
    578       errs() << I->first << "\n";
    579       I->second->dump();
    580   }
    581   errs() << "}\n";
    582 }
    583 
    584 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
    585 /// we're analyzing is fully available in the specified block.  As we go, keep
    586 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    587 /// map is actually a tri-state map with the following values:
    588 ///   0) we know the block *is not* fully available.
    589 ///   1) we know the block *is* fully available.
    590 ///   2) we do not know whether the block is fully available or not, but we are
    591 ///      currently speculating that it will be.
    592 ///   3) we are speculating for this block and have used that to speculate for
    593 ///      other blocks.
    594 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    595                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
    596   // Optimistically assume that the block is fully available and check to see
    597   // if we already know about this block in one lookup.
    598   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    599     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    600 
    601   // If the entry already existed for this block, return the precomputed value.
    602   if (!IV.second) {
    603     // If this is a speculative "available" value, mark it as being used for
    604     // speculation of other blocks.
    605     if (IV.first->second == 2)
    606       IV.first->second = 3;
    607     return IV.first->second != 0;
    608   }
    609 
    610   // Otherwise, see if it is fully available in all predecessors.
    611   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    612 
    613   // If this block has no predecessors, it isn't live-in here.
    614   if (PI == PE)
    615     goto SpeculationFailure;
    616 
    617   for (; PI != PE; ++PI)
    618     // If the value isn't fully available in one of our predecessors, then it
    619     // isn't fully available in this block either.  Undo our previous
    620     // optimistic assumption and bail out.
    621     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
    622       goto SpeculationFailure;
    623 
    624   return true;
    625 
    626 // SpeculationFailure - If we get here, we found out that this is not, after
    627 // all, a fully-available block.  We have a problem if we speculated on this and
    628 // used the speculation to mark other blocks as available.
    629 SpeculationFailure:
    630   char &BBVal = FullyAvailableBlocks[BB];
    631 
    632   // If we didn't speculate on this, just return with it set to false.
    633   if (BBVal == 2) {
    634     BBVal = 0;
    635     return false;
    636   }
    637 
    638   // If we did speculate on this value, we could have blocks set to 1 that are
    639   // incorrect.  Walk the (transitive) successors of this block and mark them as
    640   // 0 if set to one.
    641   SmallVector<BasicBlock*, 32> BBWorklist;
    642   BBWorklist.push_back(BB);
    643 
    644   do {
    645     BasicBlock *Entry = BBWorklist.pop_back_val();
    646     // Note that this sets blocks to 0 (unavailable) if they happen to not
    647     // already be in FullyAvailableBlocks.  This is safe.
    648     char &EntryVal = FullyAvailableBlocks[Entry];
    649     if (EntryVal == 0) continue;  // Already unavailable.
    650 
    651     // Mark as unavailable.
    652     EntryVal = 0;
    653 
    654     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
    655       BBWorklist.push_back(*I);
    656   } while (!BBWorklist.empty());
    657 
    658   return false;
    659 }
    660 
    661 
    662 /// CanCoerceMustAliasedValueToLoad - Return true if
    663 /// CoerceAvailableValueToLoadType will succeed.
    664 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    665                                             Type *LoadTy,
    666                                             const TargetData &TD) {
    667   // If the loaded or stored value is an first class array or struct, don't try
    668   // to transform them.  We need to be able to bitcast to integer.
    669   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    670       StoredVal->getType()->isStructTy() ||
    671       StoredVal->getType()->isArrayTy())
    672     return false;
    673 
    674   // The store has to be at least as big as the load.
    675   if (TD.getTypeSizeInBits(StoredVal->getType()) <
    676         TD.getTypeSizeInBits(LoadTy))
    677     return false;
    678 
    679   return true;
    680 }
    681 
    682 
    683 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
    684 /// then a load from a must-aliased pointer of a different type, try to coerce
    685 /// the stored value.  LoadedTy is the type of the load we want to replace and
    686 /// InsertPt is the place to insert new instructions.
    687 ///
    688 /// If we can't do it, return null.
    689 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    690                                              Type *LoadedTy,
    691                                              Instruction *InsertPt,
    692                                              const TargetData &TD) {
    693   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
    694     return 0;
    695 
    696   // If this is already the right type, just return it.
    697   Type *StoredValTy = StoredVal->getType();
    698 
    699   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
    700   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
    701 
    702   // If the store and reload are the same size, we can always reuse it.
    703   if (StoreSize == LoadSize) {
    704     // Pointer to Pointer -> use bitcast.
    705     if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
    706       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    707 
    708     // Convert source pointers to integers, which can be bitcast.
    709     if (StoredValTy->isPointerTy()) {
    710       StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    711       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    712     }
    713 
    714     Type *TypeToCastTo = LoadedTy;
    715     if (TypeToCastTo->isPointerTy())
    716       TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
    717 
    718     if (StoredValTy != TypeToCastTo)
    719       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    720 
    721     // Cast to pointer if the load needs a pointer type.
    722     if (LoadedTy->isPointerTy())
    723       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    724 
    725     return StoredVal;
    726   }
    727 
    728   // If the loaded value is smaller than the available value, then we can
    729   // extract out a piece from it.  If the available value is too small, then we
    730   // can't do anything.
    731   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    732 
    733   // Convert source pointers to integers, which can be manipulated.
    734   if (StoredValTy->isPointerTy()) {
    735     StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    736     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    737   }
    738 
    739   // Convert vectors and fp to integer, which can be manipulated.
    740   if (!StoredValTy->isIntegerTy()) {
    741     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    742     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    743   }
    744 
    745   // If this is a big-endian system, we need to shift the value down to the low
    746   // bits so that a truncate will work.
    747   if (TD.isBigEndian()) {
    748     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    749     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    750   }
    751 
    752   // Truncate the integer to the right size now.
    753   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    754   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    755 
    756   if (LoadedTy == NewIntTy)
    757     return StoredVal;
    758 
    759   // If the result is a pointer, inttoptr.
    760   if (LoadedTy->isPointerTy())
    761     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    762 
    763   // Otherwise, bitcast.
    764   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    765 }
    766 
    767 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
    768 /// memdep query of a load that ends up being a clobbering memory write (store,
    769 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    770 /// by the load but we can't be sure because the pointers don't mustalias.
    771 ///
    772 /// Check this case to see if there is anything more we can do before we give
    773 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    774 /// value of the piece that feeds the load.
    775 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    776                                           Value *WritePtr,
    777                                           uint64_t WriteSizeInBits,
    778                                           const TargetData &TD) {
    779   // If the loaded or stored value is an first class array or struct, don't try
    780   // to transform them.  We need to be able to bitcast to integer.
    781   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    782     return -1;
    783 
    784   int64_t StoreOffset = 0, LoadOffset = 0;
    785   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
    786   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
    787   if (StoreBase != LoadBase)
    788     return -1;
    789 
    790   // If the load and store are to the exact same address, they should have been
    791   // a must alias.  AA must have gotten confused.
    792   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    793   // to a load from the base of the memset.
    794 #if 0
    795   if (LoadOffset == StoreOffset) {
    796     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    797     << "Base       = " << *StoreBase << "\n"
    798     << "Store Ptr  = " << *WritePtr << "\n"
    799     << "Store Offs = " << StoreOffset << "\n"
    800     << "Load Ptr   = " << *LoadPtr << "\n";
    801     abort();
    802   }
    803 #endif
    804 
    805   // If the load and store don't overlap at all, the store doesn't provide
    806   // anything to the load.  In this case, they really don't alias at all, AA
    807   // must have gotten confused.
    808   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
    809 
    810   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    811     return -1;
    812   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    813   LoadSize >>= 3;
    814 
    815 
    816   bool isAAFailure = false;
    817   if (StoreOffset < LoadOffset)
    818     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    819   else
    820     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    821 
    822   if (isAAFailure) {
    823 #if 0
    824     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    825     << "Base       = " << *StoreBase << "\n"
    826     << "Store Ptr  = " << *WritePtr << "\n"
    827     << "Store Offs = " << StoreOffset << "\n"
    828     << "Load Ptr   = " << *LoadPtr << "\n";
    829     abort();
    830 #endif
    831     return -1;
    832   }
    833 
    834   // If the Load isn't completely contained within the stored bits, we don't
    835   // have all the bits to feed it.  We could do something crazy in the future
    836   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    837   // valuable.
    838   if (StoreOffset > LoadOffset ||
    839       StoreOffset+StoreSize < LoadOffset+LoadSize)
    840     return -1;
    841 
    842   // Okay, we can do this transformation.  Return the number of bytes into the
    843   // store that the load is.
    844   return LoadOffset-StoreOffset;
    845 }
    846 
    847 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
    848 /// memdep query of a load that ends up being a clobbering store.
    849 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    850                                           StoreInst *DepSI,
    851                                           const TargetData &TD) {
    852   // Cannot handle reading from store of first-class aggregate yet.
    853   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    854       DepSI->getValueOperand()->getType()->isArrayTy())
    855     return -1;
    856 
    857   Value *StorePtr = DepSI->getPointerOperand();
    858   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    859   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    860                                         StorePtr, StoreSize, TD);
    861 }
    862 
    863 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
    864 /// memdep query of a load that ends up being clobbered by another load.  See if
    865 /// the other load can feed into the second load.
    866 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
    867                                          LoadInst *DepLI, const TargetData &TD){
    868   // Cannot handle reading from store of first-class aggregate yet.
    869   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    870     return -1;
    871 
    872   Value *DepPtr = DepLI->getPointerOperand();
    873   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
    874   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
    875   if (R != -1) return R;
    876 
    877   // If we have a load/load clobber an DepLI can be widened to cover this load,
    878   // then we should widen it!
    879   int64_t LoadOffs = 0;
    880   const Value *LoadBase =
    881     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
    882   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    883 
    884   unsigned Size = MemoryDependenceAnalysis::
    885     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
    886   if (Size == 0) return -1;
    887 
    888   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
    889 }
    890 
    891 
    892 
    893 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    894                                             MemIntrinsic *MI,
    895                                             const TargetData &TD) {
    896   // If the mem operation is a non-constant size, we can't handle it.
    897   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    898   if (SizeCst == 0) return -1;
    899   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
    900 
    901   // If this is memset, we just need to see if the offset is valid in the size
    902   // of the memset..
    903   if (MI->getIntrinsicID() == Intrinsic::memset)
    904     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    905                                           MemSizeInBits, TD);
    906 
    907   // If we have a memcpy/memmove, the only case we can handle is if this is a
    908   // copy from constant memory.  In that case, we can read directly from the
    909   // constant memory.
    910   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    911 
    912   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    913   if (Src == 0) return -1;
    914 
    915   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
    916   if (GV == 0 || !GV->isConstant()) return -1;
    917 
    918   // See if the access is within the bounds of the transfer.
    919   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    920                                               MI->getDest(), MemSizeInBits, TD);
    921   if (Offset == -1)
    922     return Offset;
    923 
    924   // Otherwise, see if we can constant fold a load from the constant with the
    925   // offset applied as appropriate.
    926   Src = ConstantExpr::getBitCast(Src,
    927                                  llvm::Type::getInt8PtrTy(Src->getContext()));
    928   Constant *OffsetCst =
    929     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    930   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
    931   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
    932   if (ConstantFoldLoadFromConstPtr(Src, &TD))
    933     return Offset;
    934   return -1;
    935 }
    936 
    937 
    938 /// GetStoreValueForLoad - This function is called when we have a
    939 /// memdep query of a load that ends up being a clobbering store.  This means
    940 /// that the store provides bits used by the load but we the pointers don't
    941 /// mustalias.  Check this case to see if there is anything more we can do
    942 /// before we give up.
    943 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
    944                                    Type *LoadTy,
    945                                    Instruction *InsertPt, const TargetData &TD){
    946   LLVMContext &Ctx = SrcVal->getType()->getContext();
    947 
    948   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
    949   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
    950 
    951   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
    952 
    953   // Compute which bits of the stored value are being used by the load.  Convert
    954   // to an integer type to start with.
    955   if (SrcVal->getType()->isPointerTy())
    956     SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
    957   if (!SrcVal->getType()->isIntegerTy())
    958     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
    959 
    960   // Shift the bits to the least significant depending on endianness.
    961   unsigned ShiftAmt;
    962   if (TD.isLittleEndian())
    963     ShiftAmt = Offset*8;
    964   else
    965     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
    966 
    967   if (ShiftAmt)
    968     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
    969 
    970   if (LoadSize != StoreSize)
    971     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
    972 
    973   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
    974 }
    975 
    976 /// GetStoreValueForLoad - This function is called when we have a
    977 /// memdep query of a load that ends up being a clobbering load.  This means
    978 /// that the load *may* provide bits used by the load but we can't be sure
    979 /// because the pointers don't mustalias.  Check this case to see if there is
    980 /// anything more we can do before we give up.
    981 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
    982                                   Type *LoadTy, Instruction *InsertPt,
    983                                   GVN &gvn) {
    984   const TargetData &TD = *gvn.getTargetData();
    985   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
    986   // widen SrcVal out to a larger load.
    987   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
    988   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    989   if (Offset+LoadSize > SrcValSize) {
    990     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
    991     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
    992     // If we have a load/load clobber an DepLI can be widened to cover this
    993     // load, then we should widen it to the next power of 2 size big enough!
    994     unsigned NewLoadSize = Offset+LoadSize;
    995     if (!isPowerOf2_32(NewLoadSize))
    996       NewLoadSize = NextPowerOf2(NewLoadSize);
    997 
    998     Value *PtrVal = SrcVal->getPointerOperand();
    999 
   1000     // Insert the new load after the old load.  This ensures that subsequent
   1001     // memdep queries will find the new load.  We can't easily remove the old
   1002     // load completely because it is already in the value numbering table.
   1003     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1004     Type *DestPTy =
   1005       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1006     DestPTy = PointerType::get(DestPTy,
   1007                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
   1008     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1009     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1010     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1011     NewLoad->takeName(SrcVal);
   1012     NewLoad->setAlignment(SrcVal->getAlignment());
   1013 
   1014     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1015     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1016 
   1017     // Replace uses of the original load with the wider load.  On a big endian
   1018     // system, we need to shift down to get the relevant bits.
   1019     Value *RV = NewLoad;
   1020     if (TD.isBigEndian())
   1021       RV = Builder.CreateLShr(RV,
   1022                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1023     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1024     SrcVal->replaceAllUsesWith(RV);
   1025 
   1026     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1027     // because the load is already memoized into the leader map table that GVN
   1028     // tracks.  It is potentially possible to remove the load from the table,
   1029     // but then there all of the operations based on it would need to be
   1030     // rehashed.  Just leave the dead load around.
   1031     gvn.getMemDep().removeInstruction(SrcVal);
   1032     SrcVal = NewLoad;
   1033   }
   1034 
   1035   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
   1036 }
   1037 
   1038 
   1039 /// GetMemInstValueForLoad - This function is called when we have a
   1040 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1041 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1042                                      Type *LoadTy, Instruction *InsertPt,
   1043                                      const TargetData &TD){
   1044   LLVMContext &Ctx = LoadTy->getContext();
   1045   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
   1046 
   1047   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1048 
   1049   // We know that this method is only called when the mem transfer fully
   1050   // provides the bits for the load.
   1051   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1052     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1053     // independently of what the offset is.
   1054     Value *Val = MSI->getValue();
   1055     if (LoadSize != 1)
   1056       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1057 
   1058     Value *OneElt = Val;
   1059 
   1060     // Splat the value out to the right number of bits.
   1061     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1062       // If we can double the number of bytes set, do it.
   1063       if (NumBytesSet*2 <= LoadSize) {
   1064         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1065         Val = Builder.CreateOr(Val, ShVal);
   1066         NumBytesSet <<= 1;
   1067         continue;
   1068       }
   1069 
   1070       // Otherwise insert one byte at a time.
   1071       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1072       Val = Builder.CreateOr(OneElt, ShVal);
   1073       ++NumBytesSet;
   1074     }
   1075 
   1076     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
   1077   }
   1078 
   1079   // Otherwise, this is a memcpy/memmove from a constant global.
   1080   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1081   Constant *Src = cast<Constant>(MTI->getSource());
   1082 
   1083   // Otherwise, see if we can constant fold a load from the constant with the
   1084   // offset applied as appropriate.
   1085   Src = ConstantExpr::getBitCast(Src,
   1086                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1087   Constant *OffsetCst =
   1088   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1089   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   1090   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1091   return ConstantFoldLoadFromConstPtr(Src, &TD);
   1092 }
   1093 
   1094 namespace {
   1095 
   1096 struct AvailableValueInBlock {
   1097   /// BB - The basic block in question.
   1098   BasicBlock *BB;
   1099   enum ValType {
   1100     SimpleVal,  // A simple offsetted value that is accessed.
   1101     LoadVal,    // A value produced by a load.
   1102     MemIntrin   // A memory intrinsic which is loaded from.
   1103   };
   1104 
   1105   /// V - The value that is live out of the block.
   1106   PointerIntPair<Value *, 2, ValType> Val;
   1107 
   1108   /// Offset - The byte offset in Val that is interesting for the load query.
   1109   unsigned Offset;
   1110 
   1111   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
   1112                                    unsigned Offset = 0) {
   1113     AvailableValueInBlock Res;
   1114     Res.BB = BB;
   1115     Res.Val.setPointer(V);
   1116     Res.Val.setInt(SimpleVal);
   1117     Res.Offset = Offset;
   1118     return Res;
   1119   }
   1120 
   1121   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
   1122                                      unsigned Offset = 0) {
   1123     AvailableValueInBlock Res;
   1124     Res.BB = BB;
   1125     Res.Val.setPointer(MI);
   1126     Res.Val.setInt(MemIntrin);
   1127     Res.Offset = Offset;
   1128     return Res;
   1129   }
   1130 
   1131   static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
   1132                                        unsigned Offset = 0) {
   1133     AvailableValueInBlock Res;
   1134     Res.BB = BB;
   1135     Res.Val.setPointer(LI);
   1136     Res.Val.setInt(LoadVal);
   1137     Res.Offset = Offset;
   1138     return Res;
   1139   }
   1140 
   1141   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
   1142   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
   1143   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
   1144 
   1145   Value *getSimpleValue() const {
   1146     assert(isSimpleValue() && "Wrong accessor");
   1147     return Val.getPointer();
   1148   }
   1149 
   1150   LoadInst *getCoercedLoadValue() const {
   1151     assert(isCoercedLoadValue() && "Wrong accessor");
   1152     return cast<LoadInst>(Val.getPointer());
   1153   }
   1154 
   1155   MemIntrinsic *getMemIntrinValue() const {
   1156     assert(isMemIntrinValue() && "Wrong accessor");
   1157     return cast<MemIntrinsic>(Val.getPointer());
   1158   }
   1159 
   1160   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
   1161   /// defined here to the specified type.  This handles various coercion cases.
   1162   Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
   1163     Value *Res;
   1164     if (isSimpleValue()) {
   1165       Res = getSimpleValue();
   1166       if (Res->getType() != LoadTy) {
   1167         const TargetData *TD = gvn.getTargetData();
   1168         assert(TD && "Need target data to handle type mismatch case");
   1169         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
   1170                                    *TD);
   1171 
   1172         DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1173                      << *getSimpleValue() << '\n'
   1174                      << *Res << '\n' << "\n\n\n");
   1175       }
   1176     } else if (isCoercedLoadValue()) {
   1177       LoadInst *Load = getCoercedLoadValue();
   1178       if (Load->getType() == LoadTy && Offset == 0) {
   1179         Res = Load;
   1180       } else {
   1181         Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1182                                   gvn);
   1183 
   1184         DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1185                      << *getCoercedLoadValue() << '\n'
   1186                      << *Res << '\n' << "\n\n\n");
   1187       }
   1188     } else {
   1189       const TargetData *TD = gvn.getTargetData();
   1190       assert(TD && "Need target data to handle type mismatch case");
   1191       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
   1192                                    LoadTy, BB->getTerminator(), *TD);
   1193       DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1194                    << "  " << *getMemIntrinValue() << '\n'
   1195                    << *Res << '\n' << "\n\n\n");
   1196     }
   1197     return Res;
   1198   }
   1199 };
   1200 
   1201 } // end anonymous namespace
   1202 
   1203 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
   1204 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1205 /// that should be used at LI's definition site.
   1206 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1207                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1208                                      GVN &gvn) {
   1209   // Check for the fully redundant, dominating load case.  In this case, we can
   1210   // just use the dominating value directly.
   1211   if (ValuesPerBlock.size() == 1 &&
   1212       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1213                                                LI->getParent()))
   1214     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
   1215 
   1216   // Otherwise, we have to construct SSA form.
   1217   SmallVector<PHINode*, 8> NewPHIs;
   1218   SSAUpdater SSAUpdate(&NewPHIs);
   1219   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1220 
   1221   Type *LoadTy = LI->getType();
   1222 
   1223   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1224     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1225     BasicBlock *BB = AV.BB;
   1226 
   1227     if (SSAUpdate.HasValueForBlock(BB))
   1228       continue;
   1229 
   1230     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
   1231   }
   1232 
   1233   // Perform PHI construction.
   1234   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1235 
   1236   // If new PHI nodes were created, notify alias analysis.
   1237   if (V->getType()->isPointerTy()) {
   1238     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1239 
   1240     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1241       AA->copyValue(LI, NewPHIs[i]);
   1242 
   1243     // Now that we've copied information to the new PHIs, scan through
   1244     // them again and inform alias analysis that we've added potentially
   1245     // escaping uses to any values that are operands to these PHIs.
   1246     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1247       PHINode *P = NewPHIs[i];
   1248       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1249         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1250         AA->addEscapingUse(P->getOperandUse(jj));
   1251       }
   1252     }
   1253   }
   1254 
   1255   return V;
   1256 }
   1257 
   1258 static bool isLifetimeStart(const Instruction *Inst) {
   1259   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1260     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1261   return false;
   1262 }
   1263 
   1264 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
   1265 /// non-local by performing PHI construction.
   1266 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1267   // Find the non-local dependencies of the load.
   1268   SmallVector<NonLocalDepResult, 64> Deps;
   1269   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
   1270   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
   1271   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
   1272   //             << Deps.size() << *LI << '\n');
   1273 
   1274   // If we had to process more than one hundred blocks to find the
   1275   // dependencies, this load isn't worth worrying about.  Optimizing
   1276   // it will be too expensive.
   1277   if (Deps.size() > 100)
   1278     return false;
   1279 
   1280   // If we had a phi translation failure, we'll have a single entry which is a
   1281   // clobber in the current block.  Reject this early.
   1282   if (Deps.size() == 1
   1283       && !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber())
   1284   {
   1285     DEBUG(
   1286       dbgs() << "GVN: non-local load ";
   1287       WriteAsOperand(dbgs(), LI);
   1288       dbgs() << " has unknown dependencies\n";
   1289     );
   1290     return false;
   1291   }
   1292 
   1293   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1294   // where we have a value available in repl, also keep track of whether we see
   1295   // dependencies that produce an unknown value for the load (such as a call
   1296   // that could potentially clobber the load).
   1297   SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
   1298   SmallVector<BasicBlock*, 16> UnavailableBlocks;
   1299 
   1300   for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
   1301     BasicBlock *DepBB = Deps[i].getBB();
   1302     MemDepResult DepInfo = Deps[i].getResult();
   1303 
   1304     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1305       UnavailableBlocks.push_back(DepBB);
   1306       continue;
   1307     }
   1308 
   1309     if (DepInfo.isClobber()) {
   1310       // The address being loaded in this non-local block may not be the same as
   1311       // the pointer operand of the load if PHI translation occurs.  Make sure
   1312       // to consider the right address.
   1313       Value *Address = Deps[i].getAddress();
   1314 
   1315       // If the dependence is to a store that writes to a superset of the bits
   1316       // read by the load, we can extract the bits we need for the load from the
   1317       // stored value.
   1318       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1319         if (TD && Address) {
   1320           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
   1321                                                       DepSI, *TD);
   1322           if (Offset != -1) {
   1323             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1324                                                        DepSI->getValueOperand(),
   1325                                                                 Offset));
   1326             continue;
   1327           }
   1328         }
   1329       }
   1330 
   1331       // Check to see if we have something like this:
   1332       //    load i32* P
   1333       //    load i8* (P+1)
   1334       // if we have this, replace the later with an extraction from the former.
   1335       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1336         // If this is a clobber and L is the first instruction in its block, then
   1337         // we have the first instruction in the entry block.
   1338         if (DepLI != LI && Address && TD) {
   1339           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
   1340                                                      LI->getPointerOperand(),
   1341                                                      DepLI, *TD);
   1342 
   1343           if (Offset != -1) {
   1344             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1345                                                                     Offset));
   1346             continue;
   1347           }
   1348         }
   1349       }
   1350 
   1351       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1352       // forward a value on from it.
   1353       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1354         if (TD && Address) {
   1355           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1356                                                         DepMI, *TD);
   1357           if (Offset != -1) {
   1358             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1359                                                                   Offset));
   1360             continue;
   1361           }
   1362         }
   1363       }
   1364 
   1365       UnavailableBlocks.push_back(DepBB);
   1366       continue;
   1367     }
   1368 
   1369     // DepInfo.isDef() here
   1370 
   1371     Instruction *DepInst = DepInfo.getInst();
   1372 
   1373     // Loading the allocation -> undef.
   1374     if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
   1375         // Loading immediately after lifetime begin -> undef.
   1376         isLifetimeStart(DepInst)) {
   1377       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1378                                              UndefValue::get(LI->getType())));
   1379       continue;
   1380     }
   1381 
   1382     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1383       // Reject loads and stores that are to the same address but are of
   1384       // different types if we have to.
   1385       if (S->getValueOperand()->getType() != LI->getType()) {
   1386         // If the stored value is larger or equal to the loaded value, we can
   1387         // reuse it.
   1388         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1389                                                         LI->getType(), *TD)) {
   1390           UnavailableBlocks.push_back(DepBB);
   1391           continue;
   1392         }
   1393       }
   1394 
   1395       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1396                                                          S->getValueOperand()));
   1397       continue;
   1398     }
   1399 
   1400     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1401       // If the types mismatch and we can't handle it, reject reuse of the load.
   1402       if (LD->getType() != LI->getType()) {
   1403         // If the stored value is larger or equal to the loaded value, we can
   1404         // reuse it.
   1405         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
   1406           UnavailableBlocks.push_back(DepBB);
   1407           continue;
   1408         }
   1409       }
   1410       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1411       continue;
   1412     }
   1413 
   1414     UnavailableBlocks.push_back(DepBB);
   1415     continue;
   1416   }
   1417 
   1418   // If we have no predecessors that produce a known value for this load, exit
   1419   // early.
   1420   if (ValuesPerBlock.empty()) return false;
   1421 
   1422   // If all of the instructions we depend on produce a known value for this
   1423   // load, then it is fully redundant and we can use PHI insertion to compute
   1424   // its value.  Insert PHIs and remove the fully redundant value now.
   1425   if (UnavailableBlocks.empty()) {
   1426     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1427 
   1428     // Perform PHI construction.
   1429     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1430     LI->replaceAllUsesWith(V);
   1431 
   1432     if (isa<PHINode>(V))
   1433       V->takeName(LI);
   1434     if (V->getType()->isPointerTy())
   1435       MD->invalidateCachedPointerInfo(V);
   1436     markInstructionForDeletion(LI);
   1437     ++NumGVNLoad;
   1438     return true;
   1439   }
   1440 
   1441   if (!EnablePRE || !EnableLoadPRE)
   1442     return false;
   1443 
   1444   // Okay, we have *some* definitions of the value.  This means that the value
   1445   // is available in some of our (transitive) predecessors.  Lets think about
   1446   // doing PRE of this load.  This will involve inserting a new load into the
   1447   // predecessor when it's not available.  We could do this in general, but
   1448   // prefer to not increase code size.  As such, we only do this when we know
   1449   // that we only have to insert *one* load (which means we're basically moving
   1450   // the load, not inserting a new one).
   1451 
   1452   SmallPtrSet<BasicBlock *, 4> Blockers;
   1453   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1454     Blockers.insert(UnavailableBlocks[i]);
   1455 
   1456   // Let's find the first basic block with more than one predecessor.  Walk
   1457   // backwards through predecessors if needed.
   1458   BasicBlock *LoadBB = LI->getParent();
   1459   BasicBlock *TmpBB = LoadBB;
   1460 
   1461   bool isSinglePred = false;
   1462   bool allSingleSucc = true;
   1463   while (TmpBB->getSinglePredecessor()) {
   1464     isSinglePred = true;
   1465     TmpBB = TmpBB->getSinglePredecessor();
   1466     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1467       return false;
   1468     if (Blockers.count(TmpBB))
   1469       return false;
   1470 
   1471     // If any of these blocks has more than one successor (i.e. if the edge we
   1472     // just traversed was critical), then there are other paths through this
   1473     // block along which the load may not be anticipated.  Hoisting the load
   1474     // above this block would be adding the load to execution paths along
   1475     // which it was not previously executed.
   1476     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1477       return false;
   1478   }
   1479 
   1480   assert(TmpBB);
   1481   LoadBB = TmpBB;
   1482 
   1483   // FIXME: It is extremely unclear what this loop is doing, other than
   1484   // artificially restricting loadpre.
   1485   if (isSinglePred) {
   1486     bool isHot = false;
   1487     for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1488       const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1489       if (AV.isSimpleValue())
   1490         // "Hot" Instruction is in some loop (because it dominates its dep.
   1491         // instruction).
   1492         if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
   1493           if (DT->dominates(LI, I)) {
   1494             isHot = true;
   1495             break;
   1496           }
   1497     }
   1498 
   1499     // We are interested only in "hot" instructions. We don't want to do any
   1500     // mis-optimizations here.
   1501     if (!isHot)
   1502       return false;
   1503   }
   1504 
   1505   // Check to see how many predecessors have the loaded value fully
   1506   // available.
   1507   DenseMap<BasicBlock*, Value*> PredLoads;
   1508   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1509   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1510     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1511   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1512     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1513 
   1514   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
   1515   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1516        PI != E; ++PI) {
   1517     BasicBlock *Pred = *PI;
   1518     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
   1519       continue;
   1520     }
   1521     PredLoads[Pred] = 0;
   1522 
   1523     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1524       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1525         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1526               << Pred->getName() << "': " << *LI << '\n');
   1527         return false;
   1528       }
   1529 
   1530       if (LoadBB->isLandingPad()) {
   1531         DEBUG(dbgs()
   1532               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
   1533               << Pred->getName() << "': " << *LI << '\n');
   1534         return false;
   1535       }
   1536 
   1537       unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
   1538       NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
   1539     }
   1540   }
   1541 
   1542   if (!NeedToSplit.empty()) {
   1543     toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
   1544     return false;
   1545   }
   1546 
   1547   // Decide whether PRE is profitable for this load.
   1548   unsigned NumUnavailablePreds = PredLoads.size();
   1549   assert(NumUnavailablePreds != 0 &&
   1550          "Fully available value should be eliminated above!");
   1551 
   1552   // If this load is unavailable in multiple predecessors, reject it.
   1553   // FIXME: If we could restructure the CFG, we could make a common pred with
   1554   // all the preds that don't have an available LI and insert a new load into
   1555   // that one block.
   1556   if (NumUnavailablePreds != 1)
   1557       return false;
   1558 
   1559   // Check if the load can safely be moved to all the unavailable predecessors.
   1560   bool CanDoPRE = true;
   1561   SmallVector<Instruction*, 8> NewInsts;
   1562   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1563          E = PredLoads.end(); I != E; ++I) {
   1564     BasicBlock *UnavailablePred = I->first;
   1565 
   1566     // Do PHI translation to get its value in the predecessor if necessary.  The
   1567     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1568 
   1569     // If all preds have a single successor, then we know it is safe to insert
   1570     // the load on the pred (?!?), so we can insert code to materialize the
   1571     // pointer if it is not available.
   1572     PHITransAddr Address(LI->getPointerOperand(), TD);
   1573     Value *LoadPtr = 0;
   1574     if (allSingleSucc) {
   1575       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1576                                                   *DT, NewInsts);
   1577     } else {
   1578       Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
   1579       LoadPtr = Address.getAddr();
   1580     }
   1581 
   1582     // If we couldn't find or insert a computation of this phi translated value,
   1583     // we fail PRE.
   1584     if (LoadPtr == 0) {
   1585       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1586             << *LI->getPointerOperand() << "\n");
   1587       CanDoPRE = false;
   1588       break;
   1589     }
   1590 
   1591     // Make sure it is valid to move this load here.  We have to watch out for:
   1592     //  @1 = getelementptr (i8* p, ...
   1593     //  test p and branch if == 0
   1594     //  load @1
   1595     // It is valid to have the getelementptr before the test, even if p can
   1596     // be 0, as getelementptr only does address arithmetic.
   1597     // If we are not pushing the value through any multiple-successor blocks
   1598     // we do not have this case.  Otherwise, check that the load is safe to
   1599     // put anywhere; this can be improved, but should be conservatively safe.
   1600     if (!allSingleSucc &&
   1601         // FIXME: REEVALUTE THIS.
   1602         !isSafeToLoadUnconditionally(LoadPtr,
   1603                                      UnavailablePred->getTerminator(),
   1604                                      LI->getAlignment(), TD)) {
   1605       CanDoPRE = false;
   1606       break;
   1607     }
   1608 
   1609     I->second = LoadPtr;
   1610   }
   1611 
   1612   if (!CanDoPRE) {
   1613     while (!NewInsts.empty()) {
   1614       Instruction *I = NewInsts.pop_back_val();
   1615       if (MD) MD->removeInstruction(I);
   1616       I->eraseFromParent();
   1617     }
   1618     return false;
   1619   }
   1620 
   1621   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1622   // and using PHI construction to get the value in the other predecessors, do
   1623   // it.
   1624   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1625   DEBUG(if (!NewInsts.empty())
   1626           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1627                  << *NewInsts.back() << '\n');
   1628 
   1629   // Assign value numbers to the new instructions.
   1630   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1631     // FIXME: We really _ought_ to insert these value numbers into their
   1632     // parent's availability map.  However, in doing so, we risk getting into
   1633     // ordering issues.  If a block hasn't been processed yet, we would be
   1634     // marking a value as AVAIL-IN, which isn't what we intend.
   1635     VN.lookup_or_add(NewInsts[i]);
   1636   }
   1637 
   1638   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1639          E = PredLoads.end(); I != E; ++I) {
   1640     BasicBlock *UnavailablePred = I->first;
   1641     Value *LoadPtr = I->second;
   1642 
   1643     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1644                                         LI->getAlignment(),
   1645                                         UnavailablePred->getTerminator());
   1646 
   1647     // Transfer the old load's TBAA tag to the new load.
   1648     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
   1649       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1650 
   1651     // Transfer DebugLoc.
   1652     NewLoad->setDebugLoc(LI->getDebugLoc());
   1653 
   1654     // Add the newly created load.
   1655     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1656                                                         NewLoad));
   1657     MD->invalidateCachedPointerInfo(LoadPtr);
   1658     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1659   }
   1660 
   1661   // Perform PHI construction.
   1662   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1663   LI->replaceAllUsesWith(V);
   1664   if (isa<PHINode>(V))
   1665     V->takeName(LI);
   1666   if (V->getType()->isPointerTy())
   1667     MD->invalidateCachedPointerInfo(V);
   1668   markInstructionForDeletion(LI);
   1669   ++NumPRELoad;
   1670   return true;
   1671 }
   1672 
   1673 /// processLoad - Attempt to eliminate a load, first by eliminating it
   1674 /// locally, and then attempting non-local elimination if that fails.
   1675 bool GVN::processLoad(LoadInst *L) {
   1676   if (!MD)
   1677     return false;
   1678 
   1679   if (!L->isSimple())
   1680     return false;
   1681 
   1682   if (L->use_empty()) {
   1683     markInstructionForDeletion(L);
   1684     return true;
   1685   }
   1686 
   1687   // ... to a pointer that has been loaded from before...
   1688   MemDepResult Dep = MD->getDependency(L);
   1689 
   1690   // If we have a clobber and target data is around, see if this is a clobber
   1691   // that we can fix up through code synthesis.
   1692   if (Dep.isClobber() && TD) {
   1693     // Check to see if we have something like this:
   1694     //   store i32 123, i32* %P
   1695     //   %A = bitcast i32* %P to i8*
   1696     //   %B = gep i8* %A, i32 1
   1697     //   %C = load i8* %B
   1698     //
   1699     // We could do that by recognizing if the clobber instructions are obviously
   1700     // a common base + constant offset, and if the previous store (or memset)
   1701     // completely covers this load.  This sort of thing can happen in bitfield
   1702     // access code.
   1703     Value *AvailVal = 0;
   1704     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1705       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
   1706                                                   L->getPointerOperand(),
   1707                                                   DepSI, *TD);
   1708       if (Offset != -1)
   1709         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1710                                         L->getType(), L, *TD);
   1711     }
   1712 
   1713     // Check to see if we have something like this:
   1714     //    load i32* P
   1715     //    load i8* (P+1)
   1716     // if we have this, replace the later with an extraction from the former.
   1717     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1718       // If this is a clobber and L is the first instruction in its block, then
   1719       // we have the first instruction in the entry block.
   1720       if (DepLI == L)
   1721         return false;
   1722 
   1723       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
   1724                                                  L->getPointerOperand(),
   1725                                                  DepLI, *TD);
   1726       if (Offset != -1)
   1727         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1728     }
   1729 
   1730     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1731     // a value on from it.
   1732     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1733       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
   1734                                                     L->getPointerOperand(),
   1735                                                     DepMI, *TD);
   1736       if (Offset != -1)
   1737         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
   1738     }
   1739 
   1740     if (AvailVal) {
   1741       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1742             << *AvailVal << '\n' << *L << "\n\n\n");
   1743 
   1744       // Replace the load!
   1745       L->replaceAllUsesWith(AvailVal);
   1746       if (AvailVal->getType()->isPointerTy())
   1747         MD->invalidateCachedPointerInfo(AvailVal);
   1748       markInstructionForDeletion(L);
   1749       ++NumGVNLoad;
   1750       return true;
   1751     }
   1752   }
   1753 
   1754   // If the value isn't available, don't do anything!
   1755   if (Dep.isClobber()) {
   1756     DEBUG(
   1757       // fast print dep, using operator<< on instruction is too slow.
   1758       dbgs() << "GVN: load ";
   1759       WriteAsOperand(dbgs(), L);
   1760       Instruction *I = Dep.getInst();
   1761       dbgs() << " is clobbered by " << *I << '\n';
   1762     );
   1763     return false;
   1764   }
   1765 
   1766   // If it is defined in another block, try harder.
   1767   if (Dep.isNonLocal())
   1768     return processNonLocalLoad(L);
   1769 
   1770   if (!Dep.isDef()) {
   1771     DEBUG(
   1772       // fast print dep, using operator<< on instruction is too slow.
   1773       dbgs() << "GVN: load ";
   1774       WriteAsOperand(dbgs(), L);
   1775       dbgs() << " has unknown dependence\n";
   1776     );
   1777     return false;
   1778   }
   1779 
   1780   Instruction *DepInst = Dep.getInst();
   1781   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1782     Value *StoredVal = DepSI->getValueOperand();
   1783 
   1784     // The store and load are to a must-aliased pointer, but they may not
   1785     // actually have the same type.  See if we know how to reuse the stored
   1786     // value (depending on its type).
   1787     if (StoredVal->getType() != L->getType()) {
   1788       if (TD) {
   1789         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
   1790                                                    L, *TD);
   1791         if (StoredVal == 0)
   1792           return false;
   1793 
   1794         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1795                      << '\n' << *L << "\n\n\n");
   1796       }
   1797       else
   1798         return false;
   1799     }
   1800 
   1801     // Remove it!
   1802     L->replaceAllUsesWith(StoredVal);
   1803     if (StoredVal->getType()->isPointerTy())
   1804       MD->invalidateCachedPointerInfo(StoredVal);
   1805     markInstructionForDeletion(L);
   1806     ++NumGVNLoad;
   1807     return true;
   1808   }
   1809 
   1810   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1811     Value *AvailableVal = DepLI;
   1812 
   1813     // The loads are of a must-aliased pointer, but they may not actually have
   1814     // the same type.  See if we know how to reuse the previously loaded value
   1815     // (depending on its type).
   1816     if (DepLI->getType() != L->getType()) {
   1817       if (TD) {
   1818         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
   1819                                                       L, *TD);
   1820         if (AvailableVal == 0)
   1821           return false;
   1822 
   1823         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1824                      << "\n" << *L << "\n\n\n");
   1825       }
   1826       else
   1827         return false;
   1828     }
   1829 
   1830     // Remove it!
   1831     L->replaceAllUsesWith(AvailableVal);
   1832     if (DepLI->getType()->isPointerTy())
   1833       MD->invalidateCachedPointerInfo(DepLI);
   1834     markInstructionForDeletion(L);
   1835     ++NumGVNLoad;
   1836     return true;
   1837   }
   1838 
   1839   // If this load really doesn't depend on anything, then we must be loading an
   1840   // undef value.  This can happen when loading for a fresh allocation with no
   1841   // intervening stores, for example.
   1842   if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
   1843     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1844     markInstructionForDeletion(L);
   1845     ++NumGVNLoad;
   1846     return true;
   1847   }
   1848 
   1849   // If this load occurs either right after a lifetime begin,
   1850   // then the loaded value is undefined.
   1851   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1852     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1853       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1854       markInstructionForDeletion(L);
   1855       ++NumGVNLoad;
   1856       return true;
   1857     }
   1858   }
   1859 
   1860   return false;
   1861 }
   1862 
   1863 // findLeader - In order to find a leader for a given value number at a
   1864 // specific basic block, we first obtain the list of all Values for that number,
   1865 // and then scan the list to find one whose block dominates the block in
   1866 // question.  This is fast because dominator tree queries consist of only
   1867 // a few comparisons of DFS numbers.
   1868 Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
   1869   LeaderTableEntry Vals = LeaderTable[num];
   1870   if (!Vals.Val) return 0;
   1871 
   1872   Value *Val = 0;
   1873   if (DT->dominates(Vals.BB, BB)) {
   1874     Val = Vals.Val;
   1875     if (isa<Constant>(Val)) return Val;
   1876   }
   1877 
   1878   LeaderTableEntry* Next = Vals.Next;
   1879   while (Next) {
   1880     if (DT->dominates(Next->BB, BB)) {
   1881       if (isa<Constant>(Next->Val)) return Next->Val;
   1882       if (!Val) Val = Next->Val;
   1883     }
   1884 
   1885     Next = Next->Next;
   1886   }
   1887 
   1888   return Val;
   1889 }
   1890 
   1891 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
   1892 /// use is dominated by the given basic block.  Returns the number of uses that
   1893 /// were replaced.
   1894 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
   1895                                           BasicBlock *Root) {
   1896   unsigned Count = 0;
   1897   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   1898        UI != UE; ) {
   1899     Instruction *User = cast<Instruction>(*UI);
   1900     unsigned OpNum = UI.getOperandNo();
   1901     ++UI;
   1902 
   1903     if (DT->dominates(Root, User->getParent())) {
   1904       User->setOperand(OpNum, To);
   1905       ++Count;
   1906     }
   1907   }
   1908   return Count;
   1909 }
   1910 
   1911 /// propagateEquality - The given values are known to be equal in every block
   1912 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   1913 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   1914 bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
   1915   if (LHS == RHS) return false;
   1916   assert(LHS->getType() == RHS->getType() && "Equal but types differ!");
   1917 
   1918   // Don't try to propagate equalities between constants.
   1919   if (isa<Constant>(LHS) && isa<Constant>(RHS))
   1920     return false;
   1921 
   1922   // Make sure that any constants are on the right-hand side.  In general the
   1923   // best results are obtained by placing the longest lived value on the RHS.
   1924   if (isa<Constant>(LHS))
   1925     std::swap(LHS, RHS);
   1926 
   1927   // If neither term is constant then bail out.  This is not for correctness,
   1928   // it's just that the non-constant case is much less useful: it occurs just
   1929   // as often as the constant case but handling it hardly ever results in an
   1930   // improvement.
   1931   if (!isa<Constant>(RHS))
   1932     return false;
   1933 
   1934   // If value numbering later deduces that an instruction in the scope is equal
   1935   // to 'LHS' then ensure it will be turned into 'RHS'.
   1936   addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);
   1937 
   1938   // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   1939   // LHS always has at least one use that is not dominated by Root, this will
   1940   // never do anything if LHS has only one use.
   1941   bool Changed = false;
   1942   if (!LHS->hasOneUse()) {
   1943     unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
   1944     Changed |= NumReplacements > 0;
   1945     NumGVNEqProp += NumReplacements;
   1946   }
   1947 
   1948   // Now try to deduce additional equalities from this one.  For example, if the
   1949   // known equality was "(A != B)" == "false" then it follows that A and B are
   1950   // equal in the scope.  Only boolean equalities with an explicit true or false
   1951   // RHS are currently supported.
   1952   if (!RHS->getType()->isIntegerTy(1))
   1953     // Not a boolean equality - bail out.
   1954     return Changed;
   1955   ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   1956   if (!CI)
   1957     // RHS neither 'true' nor 'false' - bail out.
   1958     return Changed;
   1959   // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   1960   bool isKnownTrue = CI->isAllOnesValue();
   1961   bool isKnownFalse = !isKnownTrue;
   1962 
   1963   // If "A && B" is known true then both A and B are known true.  If "A || B"
   1964   // is known false then both A and B are known false.
   1965   Value *A, *B;
   1966   if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   1967       (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   1968     Changed |= propagateEquality(A, RHS, Root);
   1969     Changed |= propagateEquality(B, RHS, Root);
   1970     return Changed;
   1971   }
   1972 
   1973   // If we are propagating an equality like "(A == B)" == "true" then also
   1974   // propagate the equality A == B.
   1975   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
   1976     // Only equality comparisons are supported.
   1977     if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   1978         (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) {
   1979       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   1980       Changed |= propagateEquality(Op0, Op1, Root);
   1981     }
   1982     return Changed;
   1983   }
   1984 
   1985   return Changed;
   1986 }
   1987 
   1988 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
   1989 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   1990 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   1991 static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
   1992                                        DominatorTree *DT) {
   1993   // First off, there must not be more than one edge from Src to Dst, there
   1994   // should be exactly one.  So keep track of the number of times Src occurs
   1995   // as a predecessor of Dst and fail if it's more than once.  Secondly, any
   1996   // other predecessors of Dst should be dominated by Dst (see logic below).
   1997   bool SawEdgeFromSrc = false;
   1998   for (pred_iterator PI = pred_begin(Dst), PE = pred_end(Dst); PI != PE; ++PI) {
   1999     BasicBlock *Pred = *PI;
   2000     if (Pred == Src) {
   2001       // An edge from Src to Dst.
   2002       if (SawEdgeFromSrc)
   2003         // There are multiple edges from Src to Dst - fail.
   2004         return false;
   2005       SawEdgeFromSrc = true;
   2006       continue;
   2007     }
   2008     // If the predecessor is not dominated by Dst, then it must be possible to
   2009     // reach it either without passing through Src (and thus not via the edge)
   2010     // or by passing through Src but taking a different edge out of Src.  Either
   2011     // way it is possible to reach Dst without passing via the edge, so fail.
   2012     if (!DT->dominates(Dst, *PI))
   2013       return false;
   2014   }
   2015   assert(SawEdgeFromSrc && "No edge between these basic blocks!");
   2016 
   2017   // Every path from the entry block to Dst must at some point pass to Dst from
   2018   // a predecessor that is not dominated by Dst.  This predecessor can only be
   2019   // Src, since all others are dominated by Dst.  As there is only one edge from
   2020   // Src to Dst, the path passes by this edge.
   2021   return true;
   2022 }
   2023 
   2024 /// processInstruction - When calculating availability, handle an instruction
   2025 /// by inserting it into the appropriate sets
   2026 bool GVN::processInstruction(Instruction *I) {
   2027   // Ignore dbg info intrinsics.
   2028   if (isa<DbgInfoIntrinsic>(I))
   2029     return false;
   2030 
   2031   // If the instruction can be easily simplified then do so now in preference
   2032   // to value numbering it.  Value numbering often exposes redundancies, for
   2033   // example if it determines that %y is equal to %x then the instruction
   2034   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2035   if (Value *V = SimplifyInstruction(I, TD, DT)) {
   2036     I->replaceAllUsesWith(V);
   2037     if (MD && V->getType()->isPointerTy())
   2038       MD->invalidateCachedPointerInfo(V);
   2039     markInstructionForDeletion(I);
   2040     ++NumGVNSimpl;
   2041     return true;
   2042   }
   2043 
   2044   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2045     if (processLoad(LI))
   2046       return true;
   2047 
   2048     unsigned Num = VN.lookup_or_add(LI);
   2049     addToLeaderTable(Num, LI, LI->getParent());
   2050     return false;
   2051   }
   2052 
   2053   // For conditional branches, we can perform simple conditional propagation on
   2054   // the condition value itself.
   2055   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2056     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
   2057       return false;
   2058 
   2059     Value *BranchCond = BI->getCondition();
   2060 
   2061     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2062     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2063     BasicBlock *Parent = BI->getParent();
   2064     bool Changed = false;
   2065 
   2066     if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
   2067       Changed |= propagateEquality(BranchCond,
   2068                                    ConstantInt::getTrue(TrueSucc->getContext()),
   2069                                    TrueSucc);
   2070 
   2071     if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
   2072       Changed |= propagateEquality(BranchCond,
   2073                                    ConstantInt::getFalse(FalseSucc->getContext()),
   2074                                    FalseSucc);
   2075 
   2076     return Changed;
   2077   }
   2078 
   2079   // For switches, propagate the case values into the case destinations.
   2080   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2081     Value *SwitchCond = SI->getCondition();
   2082     BasicBlock *Parent = SI->getParent();
   2083     bool Changed = false;
   2084     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
   2085       BasicBlock *Dst = SI->getSuccessor(i);
   2086       if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
   2087         Changed |= propagateEquality(SwitchCond, SI->getCaseValue(i), Dst);
   2088     }
   2089     return Changed;
   2090   }
   2091 
   2092   // Instructions with void type don't return a value, so there's
   2093   // no point in trying to find redudancies in them.
   2094   if (I->getType()->isVoidTy()) return false;
   2095 
   2096   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2097   unsigned Num = VN.lookup_or_add(I);
   2098 
   2099   // Allocations are always uniquely numbered, so we can save time and memory
   2100   // by fast failing them.
   2101   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2102     addToLeaderTable(Num, I, I->getParent());
   2103     return false;
   2104   }
   2105 
   2106   // If the number we were assigned was a brand new VN, then we don't
   2107   // need to do a lookup to see if the number already exists
   2108   // somewhere in the domtree: it can't!
   2109   if (Num == NextNum) {
   2110     addToLeaderTable(Num, I, I->getParent());
   2111     return false;
   2112   }
   2113 
   2114   // Perform fast-path value-number based elimination of values inherited from
   2115   // dominators.
   2116   Value *repl = findLeader(I->getParent(), Num);
   2117   if (repl == 0) {
   2118     // Failure, just remember this instance for future use.
   2119     addToLeaderTable(Num, I, I->getParent());
   2120     return false;
   2121   }
   2122 
   2123   // Remove it!
   2124   I->replaceAllUsesWith(repl);
   2125   if (MD && repl->getType()->isPointerTy())
   2126     MD->invalidateCachedPointerInfo(repl);
   2127   markInstructionForDeletion(I);
   2128   return true;
   2129 }
   2130 
   2131 /// runOnFunction - This is the main transformation entry point for a function.
   2132 bool GVN::runOnFunction(Function& F) {
   2133   if (!NoLoads)
   2134     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2135   DT = &getAnalysis<DominatorTree>();
   2136   TD = getAnalysisIfAvailable<TargetData>();
   2137   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   2138   VN.setMemDep(MD);
   2139   VN.setDomTree(DT);
   2140 
   2141   bool Changed = false;
   2142   bool ShouldContinue = true;
   2143 
   2144   // Merge unconditional branches, allowing PRE to catch more
   2145   // optimization opportunities.
   2146   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2147     BasicBlock *BB = FI++;
   2148 
   2149     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
   2150     if (removedBlock) ++NumGVNBlocks;
   2151 
   2152     Changed |= removedBlock;
   2153   }
   2154 
   2155   unsigned Iteration = 0;
   2156   while (ShouldContinue) {
   2157     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2158     ShouldContinue = iterateOnFunction(F);
   2159     if (splitCriticalEdges())
   2160       ShouldContinue = true;
   2161     Changed |= ShouldContinue;
   2162     ++Iteration;
   2163   }
   2164 
   2165   if (EnablePRE) {
   2166     bool PREChanged = true;
   2167     while (PREChanged) {
   2168       PREChanged = performPRE(F);
   2169       Changed |= PREChanged;
   2170     }
   2171   }
   2172   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2173   // computations into blocks where they become fully redundant.  Note that
   2174   // we can't do this until PRE's critical edge splitting updates memdep.
   2175   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2176 
   2177   cleanupGlobalSets();
   2178 
   2179   return Changed;
   2180 }
   2181 
   2182 
   2183 bool GVN::processBlock(BasicBlock *BB) {
   2184   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2185   // (and incrementing BI before processing an instruction).
   2186   assert(InstrsToErase.empty() &&
   2187          "We expect InstrsToErase to be empty across iterations");
   2188   bool ChangedFunction = false;
   2189 
   2190   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2191        BI != BE;) {
   2192     ChangedFunction |= processInstruction(BI);
   2193     if (InstrsToErase.empty()) {
   2194       ++BI;
   2195       continue;
   2196     }
   2197 
   2198     // If we need some instructions deleted, do it now.
   2199     NumGVNInstr += InstrsToErase.size();
   2200 
   2201     // Avoid iterator invalidation.
   2202     bool AtStart = BI == BB->begin();
   2203     if (!AtStart)
   2204       --BI;
   2205 
   2206     for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
   2207          E = InstrsToErase.end(); I != E; ++I) {
   2208       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2209       if (MD) MD->removeInstruction(*I);
   2210       (*I)->eraseFromParent();
   2211       DEBUG(verifyRemoved(*I));
   2212     }
   2213     InstrsToErase.clear();
   2214 
   2215     if (AtStart)
   2216       BI = BB->begin();
   2217     else
   2218       ++BI;
   2219   }
   2220 
   2221   return ChangedFunction;
   2222 }
   2223 
   2224 /// performPRE - Perform a purely local form of PRE that looks for diamond
   2225 /// control flow patterns and attempts to perform simple PRE at the join point.
   2226 bool GVN::performPRE(Function &F) {
   2227   bool Changed = false;
   2228   DenseMap<BasicBlock*, Value*> predMap;
   2229   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
   2230        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
   2231     BasicBlock *CurrentBlock = *DI;
   2232 
   2233     // Nothing to PRE in the entry block.
   2234     if (CurrentBlock == &F.getEntryBlock()) continue;
   2235 
   2236     // Don't perform PRE on a landing pad.
   2237     if (CurrentBlock->isLandingPad()) continue;
   2238 
   2239     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2240          BE = CurrentBlock->end(); BI != BE; ) {
   2241       Instruction *CurInst = BI++;
   2242 
   2243       if (isa<AllocaInst>(CurInst) ||
   2244           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
   2245           CurInst->getType()->isVoidTy() ||
   2246           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2247           isa<DbgInfoIntrinsic>(CurInst))
   2248         continue;
   2249 
   2250       // We don't currently value number ANY inline asm calls.
   2251       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2252         if (CallI->isInlineAsm())
   2253           continue;
   2254 
   2255       uint32_t ValNo = VN.lookup(CurInst);
   2256 
   2257       // Look for the predecessors for PRE opportunities.  We're
   2258       // only trying to solve the basic diamond case, where
   2259       // a value is computed in the successor and one predecessor,
   2260       // but not the other.  We also explicitly disallow cases
   2261       // where the successor is its own predecessor, because they're
   2262       // more complicated to get right.
   2263       unsigned NumWith = 0;
   2264       unsigned NumWithout = 0;
   2265       BasicBlock *PREPred = 0;
   2266       predMap.clear();
   2267 
   2268       for (pred_iterator PI = pred_begin(CurrentBlock),
   2269            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
   2270         BasicBlock *P = *PI;
   2271         // We're not interested in PRE where the block is its
   2272         // own predecessor, or in blocks with predecessors
   2273         // that are not reachable.
   2274         if (P == CurrentBlock) {
   2275           NumWithout = 2;
   2276           break;
   2277         } else if (!DT->dominates(&F.getEntryBlock(), P))  {
   2278           NumWithout = 2;
   2279           break;
   2280         }
   2281 
   2282         Value* predV = findLeader(P, ValNo);
   2283         if (predV == 0) {
   2284           PREPred = P;
   2285           ++NumWithout;
   2286         } else if (predV == CurInst) {
   2287           NumWithout = 2;
   2288         } else {
   2289           predMap[P] = predV;
   2290           ++NumWith;
   2291         }
   2292       }
   2293 
   2294       // Don't do PRE when it might increase code size, i.e. when
   2295       // we would need to insert instructions in more than one pred.
   2296       if (NumWithout != 1 || NumWith == 0)
   2297         continue;
   2298 
   2299       // Don't do PRE across indirect branch.
   2300       if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2301         continue;
   2302 
   2303       // We can't do PRE safely on a critical edge, so instead we schedule
   2304       // the edge to be split and perform the PRE the next time we iterate
   2305       // on the function.
   2306       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2307       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2308         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2309         continue;
   2310       }
   2311 
   2312       // Instantiate the expression in the predecessor that lacked it.
   2313       // Because we are going top-down through the block, all value numbers
   2314       // will be available in the predecessor by the time we need them.  Any
   2315       // that weren't originally present will have been instantiated earlier
   2316       // in this loop.
   2317       Instruction *PREInstr = CurInst->clone();
   2318       bool success = true;
   2319       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
   2320         Value *Op = PREInstr->getOperand(i);
   2321         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2322           continue;
   2323 
   2324         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
   2325           PREInstr->setOperand(i, V);
   2326         } else {
   2327           success = false;
   2328           break;
   2329         }
   2330       }
   2331 
   2332       // Fail out if we encounter an operand that is not available in
   2333       // the PRE predecessor.  This is typically because of loads which
   2334       // are not value numbered precisely.
   2335       if (!success) {
   2336         delete PREInstr;
   2337         DEBUG(verifyRemoved(PREInstr));
   2338         continue;
   2339       }
   2340 
   2341       PREInstr->insertBefore(PREPred->getTerminator());
   2342       PREInstr->setName(CurInst->getName() + ".pre");
   2343       PREInstr->setDebugLoc(CurInst->getDebugLoc());
   2344       predMap[PREPred] = PREInstr;
   2345       VN.add(PREInstr, ValNo);
   2346       ++NumGVNPRE;
   2347 
   2348       // Update the availability map to include the new instruction.
   2349       addToLeaderTable(ValNo, PREInstr, PREPred);
   2350 
   2351       // Create a PHI to make the value available in this block.
   2352       pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
   2353       PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
   2354                                      CurInst->getName() + ".pre-phi",
   2355                                      CurrentBlock->begin());
   2356       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2357         BasicBlock *P = *PI;
   2358         Phi->addIncoming(predMap[P], P);
   2359       }
   2360 
   2361       VN.add(Phi, ValNo);
   2362       addToLeaderTable(ValNo, Phi, CurrentBlock);
   2363       Phi->setDebugLoc(CurInst->getDebugLoc());
   2364       CurInst->replaceAllUsesWith(Phi);
   2365       if (Phi->getType()->isPointerTy()) {
   2366         // Because we have added a PHI-use of the pointer value, it has now
   2367         // "escaped" from alias analysis' perspective.  We need to inform
   2368         // AA of this.
   2369         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
   2370              ++ii) {
   2371           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2372           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2373         }
   2374 
   2375         if (MD)
   2376           MD->invalidateCachedPointerInfo(Phi);
   2377       }
   2378       VN.erase(CurInst);
   2379       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2380 
   2381       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2382       if (MD) MD->removeInstruction(CurInst);
   2383       CurInst->eraseFromParent();
   2384       DEBUG(verifyRemoved(CurInst));
   2385       Changed = true;
   2386     }
   2387   }
   2388 
   2389   if (splitCriticalEdges())
   2390     Changed = true;
   2391 
   2392   return Changed;
   2393 }
   2394 
   2395 /// splitCriticalEdges - Split critical edges found during the previous
   2396 /// iteration that may enable further optimization.
   2397 bool GVN::splitCriticalEdges() {
   2398   if (toSplit.empty())
   2399     return false;
   2400   do {
   2401     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2402     SplitCriticalEdge(Edge.first, Edge.second, this);
   2403   } while (!toSplit.empty());
   2404   if (MD) MD->invalidateCachedPredecessors();
   2405   return true;
   2406 }
   2407 
   2408 /// iterateOnFunction - Executes one iteration of GVN
   2409 bool GVN::iterateOnFunction(Function &F) {
   2410   cleanupGlobalSets();
   2411 
   2412   // Top-down walk of the dominator tree
   2413   bool Changed = false;
   2414 #if 0
   2415   // Needed for value numbering with phi construction to work.
   2416   ReversePostOrderTraversal<Function*> RPOT(&F);
   2417   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
   2418        RE = RPOT.end(); RI != RE; ++RI)
   2419     Changed |= processBlock(*RI);
   2420 #else
   2421   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
   2422        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
   2423     Changed |= processBlock(DI->getBlock());
   2424 #endif
   2425 
   2426   return Changed;
   2427 }
   2428 
   2429 void GVN::cleanupGlobalSets() {
   2430   VN.clear();
   2431   LeaderTable.clear();
   2432   TableAllocator.Reset();
   2433 }
   2434 
   2435 /// verifyRemoved - Verify that the specified instruction does not occur in our
   2436 /// internal data structures.
   2437 void GVN::verifyRemoved(const Instruction *Inst) const {
   2438   VN.verifyRemoved(Inst);
   2439 
   2440   // Walk through the value number scope to make sure the instruction isn't
   2441   // ferreted away in it.
   2442   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2443        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2444     const LeaderTableEntry *Node = &I->second;
   2445     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2446 
   2447     while (Node->Next) {
   2448       Node = Node->Next;
   2449       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2450     }
   2451   }
   2452 }
   2453