1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements sparse conditional constant propagation and merging: 11 // 12 // Specifically, this: 13 // * Assumes values are constant unless proven otherwise 14 // * Assumes BasicBlocks are dead unless proven otherwise 15 // * Proves values to be constant, and replaces them with constants 16 // * Proves conditional branches to be unconditional 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "sccp" 21 #include "llvm/Transforms/Scalar.h" 22 #include "llvm/Transforms/IPO.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Target/TargetData.h" 31 #include "llvm/Support/CallSite.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/InstVisitor.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/PointerIntPair.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/STLExtras.h" 43 #include <algorithm> 44 #include <map> 45 using namespace llvm; 46 47 STATISTIC(NumInstRemoved, "Number of instructions removed"); 48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 49 50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 53 54 namespace { 55 /// LatticeVal class - This class represents the different lattice values that 56 /// an LLVM value may occupy. It is a simple class with value semantics. 57 /// 58 class LatticeVal { 59 enum LatticeValueTy { 60 /// undefined - This LLVM Value has no known value yet. 61 undefined, 62 63 /// constant - This LLVM Value has a specific constant value. 64 constant, 65 66 /// forcedconstant - This LLVM Value was thought to be undef until 67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 68 /// with another (different) constant, it goes to overdefined, instead of 69 /// asserting. 70 forcedconstant, 71 72 /// overdefined - This instruction is not known to be constant, and we know 73 /// it has a value. 74 overdefined 75 }; 76 77 /// Val: This stores the current lattice value along with the Constant* for 78 /// the constant if this is a 'constant' or 'forcedconstant' value. 79 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 80 81 LatticeValueTy getLatticeValue() const { 82 return Val.getInt(); 83 } 84 85 public: 86 LatticeVal() : Val(0, undefined) {} 87 88 bool isUndefined() const { return getLatticeValue() == undefined; } 89 bool isConstant() const { 90 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 91 } 92 bool isOverdefined() const { return getLatticeValue() == overdefined; } 93 94 Constant *getConstant() const { 95 assert(isConstant() && "Cannot get the constant of a non-constant!"); 96 return Val.getPointer(); 97 } 98 99 /// markOverdefined - Return true if this is a change in status. 100 bool markOverdefined() { 101 if (isOverdefined()) 102 return false; 103 104 Val.setInt(overdefined); 105 return true; 106 } 107 108 /// markConstant - Return true if this is a change in status. 109 bool markConstant(Constant *V) { 110 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 111 assert(getConstant() == V && "Marking constant with different value"); 112 return false; 113 } 114 115 if (isUndefined()) { 116 Val.setInt(constant); 117 assert(V && "Marking constant with NULL"); 118 Val.setPointer(V); 119 } else { 120 assert(getLatticeValue() == forcedconstant && 121 "Cannot move from overdefined to constant!"); 122 // Stay at forcedconstant if the constant is the same. 123 if (V == getConstant()) return false; 124 125 // Otherwise, we go to overdefined. Assumptions made based on the 126 // forced value are possibly wrong. Assuming this is another constant 127 // could expose a contradiction. 128 Val.setInt(overdefined); 129 } 130 return true; 131 } 132 133 /// getConstantInt - If this is a constant with a ConstantInt value, return it 134 /// otherwise return null. 135 ConstantInt *getConstantInt() const { 136 if (isConstant()) 137 return dyn_cast<ConstantInt>(getConstant()); 138 return 0; 139 } 140 141 void markForcedConstant(Constant *V) { 142 assert(isUndefined() && "Can't force a defined value!"); 143 Val.setInt(forcedconstant); 144 Val.setPointer(V); 145 } 146 }; 147 } // end anonymous namespace. 148 149 150 namespace { 151 152 //===----------------------------------------------------------------------===// 153 // 154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 155 /// Constant Propagation. 156 /// 157 class SCCPSolver : public InstVisitor<SCCPSolver> { 158 const TargetData *TD; 159 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 161 162 /// StructValueState - This maintains ValueState for values that have 163 /// StructType, for example for formal arguments, calls, insertelement, etc. 164 /// 165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 166 167 /// GlobalValue - If we are tracking any values for the contents of a global 168 /// variable, we keep a mapping from the constant accessor to the element of 169 /// the global, to the currently known value. If the value becomes 170 /// overdefined, it's entry is simply removed from this map. 171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 172 173 /// TrackedRetVals - If we are tracking arguments into and the return 174 /// value out of a function, it will have an entry in this map, indicating 175 /// what the known return value for the function is. 176 DenseMap<Function*, LatticeVal> TrackedRetVals; 177 178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 179 /// that return multiple values. 180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 181 182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 183 /// represented here for efficient lookup. 184 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 185 186 /// TrackingIncomingArguments - This is the set of functions for whose 187 /// arguments we make optimistic assumptions about and try to prove as 188 /// constants. 189 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 190 191 /// The reason for two worklists is that overdefined is the lowest state 192 /// on the lattice, and moving things to overdefined as fast as possible 193 /// makes SCCP converge much faster. 194 /// 195 /// By having a separate worklist, we accomplish this because everything 196 /// possibly overdefined will become overdefined at the soonest possible 197 /// point. 198 SmallVector<Value*, 64> OverdefinedInstWorkList; 199 SmallVector<Value*, 64> InstWorkList; 200 201 202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 203 204 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 205 /// overdefined, despite the fact that the PHI node is overdefined. 206 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 207 208 /// KnownFeasibleEdges - Entries in this set are edges which have already had 209 /// PHI nodes retriggered. 210 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 211 DenseSet<Edge> KnownFeasibleEdges; 212 public: 213 SCCPSolver(const TargetData *td) : TD(td) {} 214 215 /// MarkBlockExecutable - This method can be used by clients to mark all of 216 /// the blocks that are known to be intrinsically live in the processed unit. 217 /// 218 /// This returns true if the block was not considered live before. 219 bool MarkBlockExecutable(BasicBlock *BB) { 220 if (!BBExecutable.insert(BB)) return false; 221 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 222 BBWorkList.push_back(BB); // Add the block to the work list! 223 return true; 224 } 225 226 /// TrackValueOfGlobalVariable - Clients can use this method to 227 /// inform the SCCPSolver that it should track loads and stores to the 228 /// specified global variable if it can. This is only legal to call if 229 /// performing Interprocedural SCCP. 230 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 231 // We only track the contents of scalar globals. 232 if (GV->getType()->getElementType()->isSingleValueType()) { 233 LatticeVal &IV = TrackedGlobals[GV]; 234 if (!isa<UndefValue>(GV->getInitializer())) 235 IV.markConstant(GV->getInitializer()); 236 } 237 } 238 239 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 240 /// and out of the specified function (which cannot have its address taken), 241 /// this method must be called. 242 void AddTrackedFunction(Function *F) { 243 // Add an entry, F -> undef. 244 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 245 MRVFunctionsTracked.insert(F); 246 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 247 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 248 LatticeVal())); 249 } else 250 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 251 } 252 253 void AddArgumentTrackedFunction(Function *F) { 254 TrackingIncomingArguments.insert(F); 255 } 256 257 /// Solve - Solve for constants and executable blocks. 258 /// 259 void Solve(); 260 261 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 262 /// that branches on undef values cannot reach any of their successors. 263 /// However, this is not a safe assumption. After we solve dataflow, this 264 /// method should be use to handle this. If this returns true, the solver 265 /// should be rerun. 266 bool ResolvedUndefsIn(Function &F); 267 268 bool isBlockExecutable(BasicBlock *BB) const { 269 return BBExecutable.count(BB); 270 } 271 272 LatticeVal getLatticeValueFor(Value *V) const { 273 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 274 assert(I != ValueState.end() && "V is not in valuemap!"); 275 return I->second; 276 } 277 278 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { 279 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = 280 StructValueState.find(std::make_pair(V, i)); 281 assert(I != StructValueState.end() && "V is not in valuemap!"); 282 return I->second; 283 }*/ 284 285 /// getTrackedRetVals - Get the inferred return value map. 286 /// 287 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 288 return TrackedRetVals; 289 } 290 291 /// getTrackedGlobals - Get and return the set of inferred initializers for 292 /// global variables. 293 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 294 return TrackedGlobals; 295 } 296 297 void markOverdefined(Value *V) { 298 assert(!V->getType()->isStructTy() && "Should use other method"); 299 markOverdefined(ValueState[V], V); 300 } 301 302 /// markAnythingOverdefined - Mark the specified value overdefined. This 303 /// works with both scalars and structs. 304 void markAnythingOverdefined(Value *V) { 305 if (StructType *STy = dyn_cast<StructType>(V->getType())) 306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 307 markOverdefined(getStructValueState(V, i), V); 308 else 309 markOverdefined(V); 310 } 311 312 private: 313 // markConstant - Make a value be marked as "constant". If the value 314 // is not already a constant, add it to the instruction work list so that 315 // the users of the instruction are updated later. 316 // 317 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 318 if (!IV.markConstant(C)) return; 319 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 320 if (IV.isOverdefined()) 321 OverdefinedInstWorkList.push_back(V); 322 else 323 InstWorkList.push_back(V); 324 } 325 326 void markConstant(Value *V, Constant *C) { 327 assert(!V->getType()->isStructTy() && "Should use other method"); 328 markConstant(ValueState[V], V, C); 329 } 330 331 void markForcedConstant(Value *V, Constant *C) { 332 assert(!V->getType()->isStructTy() && "Should use other method"); 333 LatticeVal &IV = ValueState[V]; 334 IV.markForcedConstant(C); 335 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 336 if (IV.isOverdefined()) 337 OverdefinedInstWorkList.push_back(V); 338 else 339 InstWorkList.push_back(V); 340 } 341 342 343 // markOverdefined - Make a value be marked as "overdefined". If the 344 // value is not already overdefined, add it to the overdefined instruction 345 // work list so that the users of the instruction are updated later. 346 void markOverdefined(LatticeVal &IV, Value *V) { 347 if (!IV.markOverdefined()) return; 348 349 DEBUG(dbgs() << "markOverdefined: "; 350 if (Function *F = dyn_cast<Function>(V)) 351 dbgs() << "Function '" << F->getName() << "'\n"; 352 else 353 dbgs() << *V << '\n'); 354 // Only instructions go on the work list 355 OverdefinedInstWorkList.push_back(V); 356 } 357 358 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 359 if (IV.isOverdefined() || MergeWithV.isUndefined()) 360 return; // Noop. 361 if (MergeWithV.isOverdefined()) 362 markOverdefined(IV, V); 363 else if (IV.isUndefined()) 364 markConstant(IV, V, MergeWithV.getConstant()); 365 else if (IV.getConstant() != MergeWithV.getConstant()) 366 markOverdefined(IV, V); 367 } 368 369 void mergeInValue(Value *V, LatticeVal MergeWithV) { 370 assert(!V->getType()->isStructTy() && "Should use other method"); 371 mergeInValue(ValueState[V], V, MergeWithV); 372 } 373 374 375 /// getValueState - Return the LatticeVal object that corresponds to the 376 /// value. This function handles the case when the value hasn't been seen yet 377 /// by properly seeding constants etc. 378 LatticeVal &getValueState(Value *V) { 379 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 380 381 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 382 ValueState.insert(std::make_pair(V, LatticeVal())); 383 LatticeVal &LV = I.first->second; 384 385 if (!I.second) 386 return LV; // Common case, already in the map. 387 388 if (Constant *C = dyn_cast<Constant>(V)) { 389 // Undef values remain undefined. 390 if (!isa<UndefValue>(V)) 391 LV.markConstant(C); // Constants are constant 392 } 393 394 // All others are underdefined by default. 395 return LV; 396 } 397 398 /// getStructValueState - Return the LatticeVal object that corresponds to the 399 /// value/field pair. This function handles the case when the value hasn't 400 /// been seen yet by properly seeding constants etc. 401 LatticeVal &getStructValueState(Value *V, unsigned i) { 402 assert(V->getType()->isStructTy() && "Should use getValueState"); 403 assert(i < cast<StructType>(V->getType())->getNumElements() && 404 "Invalid element #"); 405 406 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 407 bool> I = StructValueState.insert( 408 std::make_pair(std::make_pair(V, i), LatticeVal())); 409 LatticeVal &LV = I.first->second; 410 411 if (!I.second) 412 return LV; // Common case, already in the map. 413 414 if (Constant *C = dyn_cast<Constant>(V)) { 415 if (isa<UndefValue>(C)) 416 ; // Undef values remain undefined. 417 else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) 418 LV.markConstant(CS->getOperand(i)); // Constants are constant. 419 else if (isa<ConstantAggregateZero>(C)) { 420 Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); 421 LV.markConstant(Constant::getNullValue(FieldTy)); 422 } else 423 LV.markOverdefined(); // Unknown sort of constant. 424 } 425 426 // All others are underdefined by default. 427 return LV; 428 } 429 430 431 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 432 /// work list if it is not already executable. 433 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 434 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 435 return; // This edge is already known to be executable! 436 437 if (!MarkBlockExecutable(Dest)) { 438 // If the destination is already executable, we just made an *edge* 439 // feasible that wasn't before. Revisit the PHI nodes in the block 440 // because they have potentially new operands. 441 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 442 << " -> " << Dest->getName() << "\n"); 443 444 PHINode *PN; 445 for (BasicBlock::iterator I = Dest->begin(); 446 (PN = dyn_cast<PHINode>(I)); ++I) 447 visitPHINode(*PN); 448 } 449 } 450 451 // getFeasibleSuccessors - Return a vector of booleans to indicate which 452 // successors are reachable from a given terminator instruction. 453 // 454 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 455 456 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 457 // block to the 'To' basic block is currently feasible. 458 // 459 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 460 461 // OperandChangedState - This method is invoked on all of the users of an 462 // instruction that was just changed state somehow. Based on this 463 // information, we need to update the specified user of this instruction. 464 // 465 void OperandChangedState(Instruction *I) { 466 if (BBExecutable.count(I->getParent())) // Inst is executable? 467 visit(*I); 468 } 469 470 /// RemoveFromOverdefinedPHIs - If I has any entries in the 471 /// UsersOfOverdefinedPHIs map for PN, remove them now. 472 void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { 473 if (UsersOfOverdefinedPHIs.empty()) return; 474 typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; 475 std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); 476 for (ItTy It = Range.first, E = Range.second; It != E;) { 477 if (It->second == I) 478 UsersOfOverdefinedPHIs.erase(It++); 479 else 480 ++It; 481 } 482 } 483 484 /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS 485 /// map for I and PN, but if one is there already, do not create another. 486 /// (Duplicate entries do not break anything directly, but can lead to 487 /// exponential growth of the table in rare cases.) 488 void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) { 489 typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; 490 std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); 491 for (ItTy J = Range.first, E = Range.second; J != E; ++J) 492 if (J->second == I) 493 return; 494 UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I)); 495 } 496 497 private: 498 friend class InstVisitor<SCCPSolver>; 499 500 // visit implementations - Something changed in this instruction. Either an 501 // operand made a transition, or the instruction is newly executable. Change 502 // the value type of I to reflect these changes if appropriate. 503 void visitPHINode(PHINode &I); 504 505 // Terminators 506 void visitReturnInst(ReturnInst &I); 507 void visitTerminatorInst(TerminatorInst &TI); 508 509 void visitCastInst(CastInst &I); 510 void visitSelectInst(SelectInst &I); 511 void visitBinaryOperator(Instruction &I); 512 void visitCmpInst(CmpInst &I); 513 void visitExtractElementInst(ExtractElementInst &I); 514 void visitInsertElementInst(InsertElementInst &I); 515 void visitShuffleVectorInst(ShuffleVectorInst &I); 516 void visitExtractValueInst(ExtractValueInst &EVI); 517 void visitInsertValueInst(InsertValueInst &IVI); 518 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 519 520 // Instructions that cannot be folded away. 521 void visitStoreInst (StoreInst &I); 522 void visitLoadInst (LoadInst &I); 523 void visitGetElementPtrInst(GetElementPtrInst &I); 524 void visitCallInst (CallInst &I) { 525 visitCallSite(&I); 526 } 527 void visitInvokeInst (InvokeInst &II) { 528 visitCallSite(&II); 529 visitTerminatorInst(II); 530 } 531 void visitCallSite (CallSite CS); 532 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 533 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 534 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 535 void visitFenceInst (FenceInst &I) { /*returns void*/ } 536 void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } 537 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 538 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 539 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 540 541 void visitInstruction(Instruction &I) { 542 // If a new instruction is added to LLVM that we don't handle. 543 dbgs() << "SCCP: Don't know how to handle: " << I; 544 markAnythingOverdefined(&I); // Just in case 545 } 546 }; 547 548 } // end anonymous namespace 549 550 551 // getFeasibleSuccessors - Return a vector of booleans to indicate which 552 // successors are reachable from a given terminator instruction. 553 // 554 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 555 SmallVector<bool, 16> &Succs) { 556 Succs.resize(TI.getNumSuccessors()); 557 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 558 if (BI->isUnconditional()) { 559 Succs[0] = true; 560 return; 561 } 562 563 LatticeVal BCValue = getValueState(BI->getCondition()); 564 ConstantInt *CI = BCValue.getConstantInt(); 565 if (CI == 0) { 566 // Overdefined condition variables, and branches on unfoldable constant 567 // conditions, mean the branch could go either way. 568 if (!BCValue.isUndefined()) 569 Succs[0] = Succs[1] = true; 570 return; 571 } 572 573 // Constant condition variables mean the branch can only go a single way. 574 Succs[CI->isZero()] = true; 575 return; 576 } 577 578 if (isa<InvokeInst>(TI)) { 579 // Invoke instructions successors are always executable. 580 Succs[0] = Succs[1] = true; 581 return; 582 } 583 584 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 585 if (TI.getNumSuccessors() < 2) { 586 Succs[0] = true; 587 return; 588 } 589 LatticeVal SCValue = getValueState(SI->getCondition()); 590 ConstantInt *CI = SCValue.getConstantInt(); 591 592 if (CI == 0) { // Overdefined or undefined condition? 593 // All destinations are executable! 594 if (!SCValue.isUndefined()) 595 Succs.assign(TI.getNumSuccessors(), true); 596 return; 597 } 598 599 Succs[SI->findCaseValue(CI)] = true; 600 return; 601 } 602 603 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 604 if (isa<IndirectBrInst>(&TI)) { 605 // Just mark all destinations executable! 606 Succs.assign(TI.getNumSuccessors(), true); 607 return; 608 } 609 610 #ifndef NDEBUG 611 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 612 #endif 613 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 614 } 615 616 617 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 618 // block to the 'To' basic block is currently feasible. 619 // 620 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 621 assert(BBExecutable.count(To) && "Dest should always be alive!"); 622 623 // Make sure the source basic block is executable!! 624 if (!BBExecutable.count(From)) return false; 625 626 // Check to make sure this edge itself is actually feasible now. 627 TerminatorInst *TI = From->getTerminator(); 628 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 629 if (BI->isUnconditional()) 630 return true; 631 632 LatticeVal BCValue = getValueState(BI->getCondition()); 633 634 // Overdefined condition variables mean the branch could go either way, 635 // undef conditions mean that neither edge is feasible yet. 636 ConstantInt *CI = BCValue.getConstantInt(); 637 if (CI == 0) 638 return !BCValue.isUndefined(); 639 640 // Constant condition variables mean the branch can only go a single way. 641 return BI->getSuccessor(CI->isZero()) == To; 642 } 643 644 // Invoke instructions successors are always executable. 645 if (isa<InvokeInst>(TI)) 646 return true; 647 648 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 649 if (SI->getNumSuccessors() < 2) 650 return true; 651 652 LatticeVal SCValue = getValueState(SI->getCondition()); 653 ConstantInt *CI = SCValue.getConstantInt(); 654 655 if (CI == 0) 656 return !SCValue.isUndefined(); 657 658 // Make sure to skip the "default value" which isn't a value 659 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 660 if (SI->getSuccessorValue(i) == CI) // Found the taken branch. 661 return SI->getSuccessor(i) == To; 662 663 // If the constant value is not equal to any of the branches, we must 664 // execute default branch. 665 return SI->getDefaultDest() == To; 666 } 667 668 // Just mark all destinations executable! 669 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 670 if (isa<IndirectBrInst>(TI)) 671 return true; 672 673 #ifndef NDEBUG 674 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 675 #endif 676 llvm_unreachable(0); 677 } 678 679 // visit Implementations - Something changed in this instruction, either an 680 // operand made a transition, or the instruction is newly executable. Change 681 // the value type of I to reflect these changes if appropriate. This method 682 // makes sure to do the following actions: 683 // 684 // 1. If a phi node merges two constants in, and has conflicting value coming 685 // from different branches, or if the PHI node merges in an overdefined 686 // value, then the PHI node becomes overdefined. 687 // 2. If a phi node merges only constants in, and they all agree on value, the 688 // PHI node becomes a constant value equal to that. 689 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 690 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 691 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 692 // 6. If a conditional branch has a value that is constant, make the selected 693 // destination executable 694 // 7. If a conditional branch has a value that is overdefined, make all 695 // successors executable. 696 // 697 void SCCPSolver::visitPHINode(PHINode &PN) { 698 // If this PN returns a struct, just mark the result overdefined. 699 // TODO: We could do a lot better than this if code actually uses this. 700 if (PN.getType()->isStructTy()) 701 return markAnythingOverdefined(&PN); 702 703 if (getValueState(&PN).isOverdefined()) { 704 // There may be instructions using this PHI node that are not overdefined 705 // themselves. If so, make sure that they know that the PHI node operand 706 // changed. 707 typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; 708 std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN); 709 710 if (Range.first == Range.second) 711 return; 712 713 SmallVector<Instruction*, 16> Users; 714 for (ItTy I = Range.first, E = Range.second; I != E; ++I) 715 Users.push_back(I->second); 716 while (!Users.empty()) 717 visit(Users.pop_back_val()); 718 return; // Quick exit 719 } 720 721 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 722 // and slow us down a lot. Just mark them overdefined. 723 if (PN.getNumIncomingValues() > 64) 724 return markOverdefined(&PN); 725 726 // Look at all of the executable operands of the PHI node. If any of them 727 // are overdefined, the PHI becomes overdefined as well. If they are all 728 // constant, and they agree with each other, the PHI becomes the identical 729 // constant. If they are constant and don't agree, the PHI is overdefined. 730 // If there are no executable operands, the PHI remains undefined. 731 // 732 Constant *OperandVal = 0; 733 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 734 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 735 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 736 737 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 738 continue; 739 740 if (IV.isOverdefined()) // PHI node becomes overdefined! 741 return markOverdefined(&PN); 742 743 if (OperandVal == 0) { // Grab the first value. 744 OperandVal = IV.getConstant(); 745 continue; 746 } 747 748 // There is already a reachable operand. If we conflict with it, 749 // then the PHI node becomes overdefined. If we agree with it, we 750 // can continue on. 751 752 // Check to see if there are two different constants merging, if so, the PHI 753 // node is overdefined. 754 if (IV.getConstant() != OperandVal) 755 return markOverdefined(&PN); 756 } 757 758 // If we exited the loop, this means that the PHI node only has constant 759 // arguments that agree with each other(and OperandVal is the constant) or 760 // OperandVal is null because there are no defined incoming arguments. If 761 // this is the case, the PHI remains undefined. 762 // 763 if (OperandVal) 764 markConstant(&PN, OperandVal); // Acquire operand value 765 } 766 767 768 769 770 void SCCPSolver::visitReturnInst(ReturnInst &I) { 771 if (I.getNumOperands() == 0) return; // ret void 772 773 Function *F = I.getParent()->getParent(); 774 Value *ResultOp = I.getOperand(0); 775 776 // If we are tracking the return value of this function, merge it in. 777 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 778 DenseMap<Function*, LatticeVal>::iterator TFRVI = 779 TrackedRetVals.find(F); 780 if (TFRVI != TrackedRetVals.end()) { 781 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 782 return; 783 } 784 } 785 786 // Handle functions that return multiple values. 787 if (!TrackedMultipleRetVals.empty()) { 788 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 789 if (MRVFunctionsTracked.count(F)) 790 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 791 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 792 getStructValueState(ResultOp, i)); 793 794 } 795 } 796 797 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 798 SmallVector<bool, 16> SuccFeasible; 799 getFeasibleSuccessors(TI, SuccFeasible); 800 801 BasicBlock *BB = TI.getParent(); 802 803 // Mark all feasible successors executable. 804 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 805 if (SuccFeasible[i]) 806 markEdgeExecutable(BB, TI.getSuccessor(i)); 807 } 808 809 void SCCPSolver::visitCastInst(CastInst &I) { 810 LatticeVal OpSt = getValueState(I.getOperand(0)); 811 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 812 markOverdefined(&I); 813 else if (OpSt.isConstant()) // Propagate constant value 814 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 815 OpSt.getConstant(), I.getType())); 816 } 817 818 819 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 820 // If this returns a struct, mark all elements over defined, we don't track 821 // structs in structs. 822 if (EVI.getType()->isStructTy()) 823 return markAnythingOverdefined(&EVI); 824 825 // If this is extracting from more than one level of struct, we don't know. 826 if (EVI.getNumIndices() != 1) 827 return markOverdefined(&EVI); 828 829 Value *AggVal = EVI.getAggregateOperand(); 830 if (AggVal->getType()->isStructTy()) { 831 unsigned i = *EVI.idx_begin(); 832 LatticeVal EltVal = getStructValueState(AggVal, i); 833 mergeInValue(getValueState(&EVI), &EVI, EltVal); 834 } else { 835 // Otherwise, must be extracting from an array. 836 return markOverdefined(&EVI); 837 } 838 } 839 840 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 841 StructType *STy = dyn_cast<StructType>(IVI.getType()); 842 if (STy == 0) 843 return markOverdefined(&IVI); 844 845 // If this has more than one index, we can't handle it, drive all results to 846 // undef. 847 if (IVI.getNumIndices() != 1) 848 return markAnythingOverdefined(&IVI); 849 850 Value *Aggr = IVI.getAggregateOperand(); 851 unsigned Idx = *IVI.idx_begin(); 852 853 // Compute the result based on what we're inserting. 854 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 855 // This passes through all values that aren't the inserted element. 856 if (i != Idx) { 857 LatticeVal EltVal = getStructValueState(Aggr, i); 858 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 859 continue; 860 } 861 862 Value *Val = IVI.getInsertedValueOperand(); 863 if (Val->getType()->isStructTy()) 864 // We don't track structs in structs. 865 markOverdefined(getStructValueState(&IVI, i), &IVI); 866 else { 867 LatticeVal InVal = getValueState(Val); 868 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 869 } 870 } 871 } 872 873 void SCCPSolver::visitSelectInst(SelectInst &I) { 874 // If this select returns a struct, just mark the result overdefined. 875 // TODO: We could do a lot better than this if code actually uses this. 876 if (I.getType()->isStructTy()) 877 return markAnythingOverdefined(&I); 878 879 LatticeVal CondValue = getValueState(I.getCondition()); 880 if (CondValue.isUndefined()) 881 return; 882 883 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 884 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 885 mergeInValue(&I, getValueState(OpVal)); 886 return; 887 } 888 889 // Otherwise, the condition is overdefined or a constant we can't evaluate. 890 // See if we can produce something better than overdefined based on the T/F 891 // value. 892 LatticeVal TVal = getValueState(I.getTrueValue()); 893 LatticeVal FVal = getValueState(I.getFalseValue()); 894 895 // select ?, C, C -> C. 896 if (TVal.isConstant() && FVal.isConstant() && 897 TVal.getConstant() == FVal.getConstant()) 898 return markConstant(&I, FVal.getConstant()); 899 900 if (TVal.isUndefined()) // select ?, undef, X -> X. 901 return mergeInValue(&I, FVal); 902 if (FVal.isUndefined()) // select ?, X, undef -> X. 903 return mergeInValue(&I, TVal); 904 markOverdefined(&I); 905 } 906 907 // Handle Binary Operators. 908 void SCCPSolver::visitBinaryOperator(Instruction &I) { 909 LatticeVal V1State = getValueState(I.getOperand(0)); 910 LatticeVal V2State = getValueState(I.getOperand(1)); 911 912 LatticeVal &IV = ValueState[&I]; 913 if (IV.isOverdefined()) return; 914 915 if (V1State.isConstant() && V2State.isConstant()) 916 return markConstant(IV, &I, 917 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 918 V2State.getConstant())); 919 920 // If something is undef, wait for it to resolve. 921 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 922 return; 923 924 // Otherwise, one of our operands is overdefined. Try to produce something 925 // better than overdefined with some tricks. 926 927 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 928 // operand is overdefined. 929 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 930 LatticeVal *NonOverdefVal = 0; 931 if (!V1State.isOverdefined()) 932 NonOverdefVal = &V1State; 933 else if (!V2State.isOverdefined()) 934 NonOverdefVal = &V2State; 935 936 if (NonOverdefVal) { 937 if (NonOverdefVal->isUndefined()) { 938 // Could annihilate value. 939 if (I.getOpcode() == Instruction::And) 940 markConstant(IV, &I, Constant::getNullValue(I.getType())); 941 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 942 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 943 else 944 markConstant(IV, &I, 945 Constant::getAllOnesValue(I.getType())); 946 return; 947 } 948 949 if (I.getOpcode() == Instruction::And) { 950 // X and 0 = 0 951 if (NonOverdefVal->getConstant()->isNullValue()) 952 return markConstant(IV, &I, NonOverdefVal->getConstant()); 953 } else { 954 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 955 if (CI->isAllOnesValue()) // X or -1 = -1 956 return markConstant(IV, &I, NonOverdefVal->getConstant()); 957 } 958 } 959 } 960 961 962 // If both operands are PHI nodes, it is possible that this instruction has 963 // a constant value, despite the fact that the PHI node doesn't. Check for 964 // this condition now. 965 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 966 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 967 if (PN1->getParent() == PN2->getParent()) { 968 // Since the two PHI nodes are in the same basic block, they must have 969 // entries for the same predecessors. Walk the predecessor list, and 970 // if all of the incoming values are constants, and the result of 971 // evaluating this expression with all incoming value pairs is the 972 // same, then this expression is a constant even though the PHI node 973 // is not a constant! 974 LatticeVal Result; 975 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 976 LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); 977 BasicBlock *InBlock = PN1->getIncomingBlock(i); 978 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 979 980 if (In1.isOverdefined() || In2.isOverdefined()) { 981 Result.markOverdefined(); 982 break; // Cannot fold this operation over the PHI nodes! 983 } 984 985 if (In1.isConstant() && In2.isConstant()) { 986 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 987 In2.getConstant()); 988 if (Result.isUndefined()) 989 Result.markConstant(V); 990 else if (Result.isConstant() && Result.getConstant() != V) { 991 Result.markOverdefined(); 992 break; 993 } 994 } 995 } 996 997 // If we found a constant value here, then we know the instruction is 998 // constant despite the fact that the PHI nodes are overdefined. 999 if (Result.isConstant()) { 1000 markConstant(IV, &I, Result.getConstant()); 1001 // Remember that this instruction is virtually using the PHI node 1002 // operands. 1003 InsertInOverdefinedPHIs(&I, PN1); 1004 InsertInOverdefinedPHIs(&I, PN2); 1005 return; 1006 } 1007 1008 if (Result.isUndefined()) 1009 return; 1010 1011 // Okay, this really is overdefined now. Since we might have 1012 // speculatively thought that this was not overdefined before, and 1013 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 1014 // make sure to clean out any entries that we put there, for 1015 // efficiency. 1016 RemoveFromOverdefinedPHIs(&I, PN1); 1017 RemoveFromOverdefinedPHIs(&I, PN2); 1018 } 1019 1020 markOverdefined(&I); 1021 } 1022 1023 // Handle ICmpInst instruction. 1024 void SCCPSolver::visitCmpInst(CmpInst &I) { 1025 LatticeVal V1State = getValueState(I.getOperand(0)); 1026 LatticeVal V2State = getValueState(I.getOperand(1)); 1027 1028 LatticeVal &IV = ValueState[&I]; 1029 if (IV.isOverdefined()) return; 1030 1031 if (V1State.isConstant() && V2State.isConstant()) 1032 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1033 V1State.getConstant(), 1034 V2State.getConstant())); 1035 1036 // If operands are still undefined, wait for it to resolve. 1037 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 1038 return; 1039 1040 // If something is overdefined, use some tricks to avoid ending up and over 1041 // defined if we can. 1042 1043 // If both operands are PHI nodes, it is possible that this instruction has 1044 // a constant value, despite the fact that the PHI node doesn't. Check for 1045 // this condition now. 1046 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 1047 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 1048 if (PN1->getParent() == PN2->getParent()) { 1049 // Since the two PHI nodes are in the same basic block, they must have 1050 // entries for the same predecessors. Walk the predecessor list, and 1051 // if all of the incoming values are constants, and the result of 1052 // evaluating this expression with all incoming value pairs is the 1053 // same, then this expression is a constant even though the PHI node 1054 // is not a constant! 1055 LatticeVal Result; 1056 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 1057 LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); 1058 BasicBlock *InBlock = PN1->getIncomingBlock(i); 1059 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 1060 1061 if (In1.isOverdefined() || In2.isOverdefined()) { 1062 Result.markOverdefined(); 1063 break; // Cannot fold this operation over the PHI nodes! 1064 } 1065 1066 if (In1.isConstant() && In2.isConstant()) { 1067 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 1068 In1.getConstant(), 1069 In2.getConstant()); 1070 if (Result.isUndefined()) 1071 Result.markConstant(V); 1072 else if (Result.isConstant() && Result.getConstant() != V) { 1073 Result.markOverdefined(); 1074 break; 1075 } 1076 } 1077 } 1078 1079 // If we found a constant value here, then we know the instruction is 1080 // constant despite the fact that the PHI nodes are overdefined. 1081 if (Result.isConstant()) { 1082 markConstant(&I, Result.getConstant()); 1083 // Remember that this instruction is virtually using the PHI node 1084 // operands. 1085 InsertInOverdefinedPHIs(&I, PN1); 1086 InsertInOverdefinedPHIs(&I, PN2); 1087 return; 1088 } 1089 1090 if (Result.isUndefined()) 1091 return; 1092 1093 // Okay, this really is overdefined now. Since we might have 1094 // speculatively thought that this was not overdefined before, and 1095 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 1096 // make sure to clean out any entries that we put there, for 1097 // efficiency. 1098 RemoveFromOverdefinedPHIs(&I, PN1); 1099 RemoveFromOverdefinedPHIs(&I, PN2); 1100 } 1101 1102 markOverdefined(&I); 1103 } 1104 1105 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1106 // TODO : SCCP does not handle vectors properly. 1107 return markOverdefined(&I); 1108 1109 #if 0 1110 LatticeVal &ValState = getValueState(I.getOperand(0)); 1111 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1112 1113 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1114 markOverdefined(&I); 1115 else if(ValState.isConstant() && IdxState.isConstant()) 1116 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1117 IdxState.getConstant())); 1118 #endif 1119 } 1120 1121 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1122 // TODO : SCCP does not handle vectors properly. 1123 return markOverdefined(&I); 1124 #if 0 1125 LatticeVal &ValState = getValueState(I.getOperand(0)); 1126 LatticeVal &EltState = getValueState(I.getOperand(1)); 1127 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1128 1129 if (ValState.isOverdefined() || EltState.isOverdefined() || 1130 IdxState.isOverdefined()) 1131 markOverdefined(&I); 1132 else if(ValState.isConstant() && EltState.isConstant() && 1133 IdxState.isConstant()) 1134 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1135 EltState.getConstant(), 1136 IdxState.getConstant())); 1137 else if (ValState.isUndefined() && EltState.isConstant() && 1138 IdxState.isConstant()) 1139 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1140 EltState.getConstant(), 1141 IdxState.getConstant())); 1142 #endif 1143 } 1144 1145 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1146 // TODO : SCCP does not handle vectors properly. 1147 return markOverdefined(&I); 1148 #if 0 1149 LatticeVal &V1State = getValueState(I.getOperand(0)); 1150 LatticeVal &V2State = getValueState(I.getOperand(1)); 1151 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1152 1153 if (MaskState.isUndefined() || 1154 (V1State.isUndefined() && V2State.isUndefined())) 1155 return; // Undefined output if mask or both inputs undefined. 1156 1157 if (V1State.isOverdefined() || V2State.isOverdefined() || 1158 MaskState.isOverdefined()) { 1159 markOverdefined(&I); 1160 } else { 1161 // A mix of constant/undef inputs. 1162 Constant *V1 = V1State.isConstant() ? 1163 V1State.getConstant() : UndefValue::get(I.getType()); 1164 Constant *V2 = V2State.isConstant() ? 1165 V2State.getConstant() : UndefValue::get(I.getType()); 1166 Constant *Mask = MaskState.isConstant() ? 1167 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1168 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1169 } 1170 #endif 1171 } 1172 1173 // Handle getelementptr instructions. If all operands are constants then we 1174 // can turn this into a getelementptr ConstantExpr. 1175 // 1176 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1177 if (ValueState[&I].isOverdefined()) return; 1178 1179 SmallVector<Constant*, 8> Operands; 1180 Operands.reserve(I.getNumOperands()); 1181 1182 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1183 LatticeVal State = getValueState(I.getOperand(i)); 1184 if (State.isUndefined()) 1185 return; // Operands are not resolved yet. 1186 1187 if (State.isOverdefined()) 1188 return markOverdefined(&I); 1189 1190 assert(State.isConstant() && "Unknown state!"); 1191 Operands.push_back(State.getConstant()); 1192 } 1193 1194 Constant *Ptr = Operands[0]; 1195 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); 1196 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); 1197 } 1198 1199 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1200 // If this store is of a struct, ignore it. 1201 if (SI.getOperand(0)->getType()->isStructTy()) 1202 return; 1203 1204 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1205 return; 1206 1207 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1208 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1209 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1210 1211 // Get the value we are storing into the global, then merge it. 1212 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1213 if (I->second.isOverdefined()) 1214 TrackedGlobals.erase(I); // No need to keep tracking this! 1215 } 1216 1217 1218 // Handle load instructions. If the operand is a constant pointer to a constant 1219 // global, we can replace the load with the loaded constant value! 1220 void SCCPSolver::visitLoadInst(LoadInst &I) { 1221 // If this load is of a struct, just mark the result overdefined. 1222 if (I.getType()->isStructTy()) 1223 return markAnythingOverdefined(&I); 1224 1225 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1226 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1227 1228 LatticeVal &IV = ValueState[&I]; 1229 if (IV.isOverdefined()) return; 1230 1231 if (!PtrVal.isConstant() || I.isVolatile()) 1232 return markOverdefined(IV, &I); 1233 1234 Constant *Ptr = PtrVal.getConstant(); 1235 1236 // load null -> null 1237 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1238 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1239 1240 // Transform load (constant global) into the value loaded. 1241 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1242 if (!TrackedGlobals.empty()) { 1243 // If we are tracking this global, merge in the known value for it. 1244 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1245 TrackedGlobals.find(GV); 1246 if (It != TrackedGlobals.end()) { 1247 mergeInValue(IV, &I, It->second); 1248 return; 1249 } 1250 } 1251 } 1252 1253 // Transform load from a constant into a constant if possible. 1254 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1255 return markConstant(IV, &I, C); 1256 1257 // Otherwise we cannot say for certain what value this load will produce. 1258 // Bail out. 1259 markOverdefined(IV, &I); 1260 } 1261 1262 void SCCPSolver::visitCallSite(CallSite CS) { 1263 Function *F = CS.getCalledFunction(); 1264 Instruction *I = CS.getInstruction(); 1265 1266 // The common case is that we aren't tracking the callee, either because we 1267 // are not doing interprocedural analysis or the callee is indirect, or is 1268 // external. Handle these cases first. 1269 if (F == 0 || F->isDeclaration()) { 1270 CallOverdefined: 1271 // Void return and not tracking callee, just bail. 1272 if (I->getType()->isVoidTy()) return; 1273 1274 // Otherwise, if we have a single return value case, and if the function is 1275 // a declaration, maybe we can constant fold it. 1276 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1277 canConstantFoldCallTo(F)) { 1278 1279 SmallVector<Constant*, 8> Operands; 1280 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1281 AI != E; ++AI) { 1282 LatticeVal State = getValueState(*AI); 1283 1284 if (State.isUndefined()) 1285 return; // Operands are not resolved yet. 1286 if (State.isOverdefined()) 1287 return markOverdefined(I); 1288 assert(State.isConstant() && "Unknown state!"); 1289 Operands.push_back(State.getConstant()); 1290 } 1291 1292 // If we can constant fold this, mark the result of the call as a 1293 // constant. 1294 if (Constant *C = ConstantFoldCall(F, Operands)) 1295 return markConstant(I, C); 1296 } 1297 1298 // Otherwise, we don't know anything about this call, mark it overdefined. 1299 return markAnythingOverdefined(I); 1300 } 1301 1302 // If this is a local function that doesn't have its address taken, mark its 1303 // entry block executable and merge in the actual arguments to the call into 1304 // the formal arguments of the function. 1305 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1306 MarkBlockExecutable(F->begin()); 1307 1308 // Propagate information from this call site into the callee. 1309 CallSite::arg_iterator CAI = CS.arg_begin(); 1310 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1311 AI != E; ++AI, ++CAI) { 1312 // If this argument is byval, and if the function is not readonly, there 1313 // will be an implicit copy formed of the input aggregate. 1314 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1315 markOverdefined(AI); 1316 continue; 1317 } 1318 1319 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1320 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1321 LatticeVal CallArg = getStructValueState(*CAI, i); 1322 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1323 } 1324 } else { 1325 mergeInValue(AI, getValueState(*CAI)); 1326 } 1327 } 1328 } 1329 1330 // If this is a single/zero retval case, see if we're tracking the function. 1331 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1332 if (!MRVFunctionsTracked.count(F)) 1333 goto CallOverdefined; // Not tracking this callee. 1334 1335 // If we are tracking this callee, propagate the result of the function 1336 // into this call site. 1337 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1338 mergeInValue(getStructValueState(I, i), I, 1339 TrackedMultipleRetVals[std::make_pair(F, i)]); 1340 } else { 1341 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1342 if (TFRVI == TrackedRetVals.end()) 1343 goto CallOverdefined; // Not tracking this callee. 1344 1345 // If so, propagate the return value of the callee into this call result. 1346 mergeInValue(I, TFRVI->second); 1347 } 1348 } 1349 1350 void SCCPSolver::Solve() { 1351 // Process the work lists until they are empty! 1352 while (!BBWorkList.empty() || !InstWorkList.empty() || 1353 !OverdefinedInstWorkList.empty()) { 1354 // Process the overdefined instruction's work list first, which drives other 1355 // things to overdefined more quickly. 1356 while (!OverdefinedInstWorkList.empty()) { 1357 Value *I = OverdefinedInstWorkList.pop_back_val(); 1358 1359 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1360 1361 // "I" got into the work list because it either made the transition from 1362 // bottom to constant 1363 // 1364 // Anything on this worklist that is overdefined need not be visited 1365 // since all of its users will have already been marked as overdefined 1366 // Update all of the users of this instruction's value. 1367 // 1368 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1369 UI != E; ++UI) 1370 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1371 OperandChangedState(I); 1372 } 1373 1374 // Process the instruction work list. 1375 while (!InstWorkList.empty()) { 1376 Value *I = InstWorkList.pop_back_val(); 1377 1378 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1379 1380 // "I" got into the work list because it made the transition from undef to 1381 // constant. 1382 // 1383 // Anything on this worklist that is overdefined need not be visited 1384 // since all of its users will have already been marked as overdefined. 1385 // Update all of the users of this instruction's value. 1386 // 1387 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1388 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1389 UI != E; ++UI) 1390 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1391 OperandChangedState(I); 1392 } 1393 1394 // Process the basic block work list. 1395 while (!BBWorkList.empty()) { 1396 BasicBlock *BB = BBWorkList.back(); 1397 BBWorkList.pop_back(); 1398 1399 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1400 1401 // Notify all instructions in this basic block that they are newly 1402 // executable. 1403 visit(BB); 1404 } 1405 } 1406 } 1407 1408 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1409 /// that branches on undef values cannot reach any of their successors. 1410 /// However, this is not a safe assumption. After we solve dataflow, this 1411 /// method should be use to handle this. If this returns true, the solver 1412 /// should be rerun. 1413 /// 1414 /// This method handles this by finding an unresolved branch and marking it one 1415 /// of the edges from the block as being feasible, even though the condition 1416 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1417 /// CFG and only slightly pessimizes the analysis results (by marking one, 1418 /// potentially infeasible, edge feasible). This cannot usefully modify the 1419 /// constraints on the condition of the branch, as that would impact other users 1420 /// of the value. 1421 /// 1422 /// This scan also checks for values that use undefs, whose results are actually 1423 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1424 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1425 /// even if X isn't defined. 1426 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1427 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1428 if (!BBExecutable.count(BB)) 1429 continue; 1430 1431 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1432 // Look for instructions which produce undef values. 1433 if (I->getType()->isVoidTy()) continue; 1434 1435 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1436 // Only a few things that can be structs matter for undef. 1437 1438 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1439 if (CallSite CS = CallSite(I)) 1440 if (Function *F = CS.getCalledFunction()) 1441 if (MRVFunctionsTracked.count(F)) 1442 continue; 1443 1444 // extractvalue and insertvalue don't need to be marked; they are 1445 // tracked as precisely as their operands. 1446 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1447 continue; 1448 1449 // Send the results of everything else to overdefined. We could be 1450 // more precise than this but it isn't worth bothering. 1451 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1452 LatticeVal &LV = getStructValueState(I, i); 1453 if (LV.isUndefined()) 1454 markOverdefined(LV, I); 1455 } 1456 continue; 1457 } 1458 1459 LatticeVal &LV = getValueState(I); 1460 if (!LV.isUndefined()) continue; 1461 1462 // extractvalue is safe; check here because the argument is a struct. 1463 if (isa<ExtractValueInst>(I)) 1464 continue; 1465 1466 // Compute the operand LatticeVals, for convenience below. 1467 // Anything taking a struct is conservatively assumed to require 1468 // overdefined markings. 1469 if (I->getOperand(0)->getType()->isStructTy()) { 1470 markOverdefined(I); 1471 return true; 1472 } 1473 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1474 LatticeVal Op1LV; 1475 if (I->getNumOperands() == 2) { 1476 if (I->getOperand(1)->getType()->isStructTy()) { 1477 markOverdefined(I); 1478 return true; 1479 } 1480 1481 Op1LV = getValueState(I->getOperand(1)); 1482 } 1483 // If this is an instructions whose result is defined even if the input is 1484 // not fully defined, propagate the information. 1485 Type *ITy = I->getType(); 1486 switch (I->getOpcode()) { 1487 case Instruction::Add: 1488 case Instruction::Sub: 1489 case Instruction::Trunc: 1490 case Instruction::FPTrunc: 1491 case Instruction::BitCast: 1492 break; // Any undef -> undef 1493 case Instruction::FSub: 1494 case Instruction::FAdd: 1495 case Instruction::FMul: 1496 case Instruction::FDiv: 1497 case Instruction::FRem: 1498 // Floating-point binary operation: be conservative. 1499 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1500 markForcedConstant(I, Constant::getNullValue(ITy)); 1501 else 1502 markOverdefined(I); 1503 return true; 1504 case Instruction::ZExt: 1505 case Instruction::SExt: 1506 case Instruction::FPToUI: 1507 case Instruction::FPToSI: 1508 case Instruction::FPExt: 1509 case Instruction::PtrToInt: 1510 case Instruction::IntToPtr: 1511 case Instruction::SIToFP: 1512 case Instruction::UIToFP: 1513 // undef -> 0; some outputs are impossible 1514 markForcedConstant(I, Constant::getNullValue(ITy)); 1515 return true; 1516 case Instruction::Mul: 1517 case Instruction::And: 1518 // Both operands undef -> undef 1519 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1520 break; 1521 // undef * X -> 0. X could be zero. 1522 // undef & X -> 0. X could be zero. 1523 markForcedConstant(I, Constant::getNullValue(ITy)); 1524 return true; 1525 1526 case Instruction::Or: 1527 // Both operands undef -> undef 1528 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1529 break; 1530 // undef | X -> -1. X could be -1. 1531 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1532 return true; 1533 1534 case Instruction::Xor: 1535 // undef ^ undef -> 0; strictly speaking, this is not strictly 1536 // necessary, but we try to be nice to people who expect this 1537 // behavior in simple cases 1538 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1539 markForcedConstant(I, Constant::getNullValue(ITy)); 1540 return true; 1541 } 1542 // undef ^ X -> undef 1543 break; 1544 1545 case Instruction::SDiv: 1546 case Instruction::UDiv: 1547 case Instruction::SRem: 1548 case Instruction::URem: 1549 // X / undef -> undef. No change. 1550 // X % undef -> undef. No change. 1551 if (Op1LV.isUndefined()) break; 1552 1553 // undef / X -> 0. X could be maxint. 1554 // undef % X -> 0. X could be 1. 1555 markForcedConstant(I, Constant::getNullValue(ITy)); 1556 return true; 1557 1558 case Instruction::AShr: 1559 // X >>a undef -> undef. 1560 if (Op1LV.isUndefined()) break; 1561 1562 // undef >>a X -> all ones 1563 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1564 return true; 1565 case Instruction::LShr: 1566 case Instruction::Shl: 1567 // X << undef -> undef. 1568 // X >> undef -> undef. 1569 if (Op1LV.isUndefined()) break; 1570 1571 // undef << X -> 0 1572 // undef >> X -> 0 1573 markForcedConstant(I, Constant::getNullValue(ITy)); 1574 return true; 1575 case Instruction::Select: 1576 Op1LV = getValueState(I->getOperand(1)); 1577 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1578 if (Op0LV.isUndefined()) { 1579 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1580 Op1LV = getValueState(I->getOperand(2)); 1581 } else if (Op1LV.isUndefined()) { 1582 // c ? undef : undef -> undef. No change. 1583 Op1LV = getValueState(I->getOperand(2)); 1584 if (Op1LV.isUndefined()) 1585 break; 1586 // Otherwise, c ? undef : x -> x. 1587 } else { 1588 // Leave Op1LV as Operand(1)'s LatticeValue. 1589 } 1590 1591 if (Op1LV.isConstant()) 1592 markForcedConstant(I, Op1LV.getConstant()); 1593 else 1594 markOverdefined(I); 1595 return true; 1596 case Instruction::Load: 1597 // A load here means one of two things: a load of undef from a global, 1598 // a load from an unknown pointer. Either way, having it return undef 1599 // is okay. 1600 break; 1601 case Instruction::ICmp: 1602 // X == undef -> undef. Other comparisons get more complicated. 1603 if (cast<ICmpInst>(I)->isEquality()) 1604 break; 1605 markOverdefined(I); 1606 return true; 1607 case Instruction::Call: 1608 case Instruction::Invoke: { 1609 // There are two reasons a call can have an undef result 1610 // 1. It could be tracked. 1611 // 2. It could be constant-foldable. 1612 // Because of the way we solve return values, tracked calls must 1613 // never be marked overdefined in ResolvedUndefsIn. 1614 if (Function *F = CallSite(I).getCalledFunction()) 1615 if (TrackedRetVals.count(F)) 1616 break; 1617 1618 // If the call is constant-foldable, we mark it overdefined because 1619 // we do not know what return values are valid. 1620 markOverdefined(I); 1621 return true; 1622 } 1623 default: 1624 // If we don't know what should happen here, conservatively mark it 1625 // overdefined. 1626 markOverdefined(I); 1627 return true; 1628 } 1629 } 1630 1631 // Check to see if we have a branch or switch on an undefined value. If so 1632 // we force the branch to go one way or the other to make the successor 1633 // values live. It doesn't really matter which way we force it. 1634 TerminatorInst *TI = BB->getTerminator(); 1635 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1636 if (!BI->isConditional()) continue; 1637 if (!getValueState(BI->getCondition()).isUndefined()) 1638 continue; 1639 1640 // If the input to SCCP is actually branch on undef, fix the undef to 1641 // false. 1642 if (isa<UndefValue>(BI->getCondition())) { 1643 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1644 markEdgeExecutable(BB, TI->getSuccessor(1)); 1645 return true; 1646 } 1647 1648 // Otherwise, it is a branch on a symbolic value which is currently 1649 // considered to be undef. Handle this by forcing the input value to the 1650 // branch to false. 1651 markForcedConstant(BI->getCondition(), 1652 ConstantInt::getFalse(TI->getContext())); 1653 return true; 1654 } 1655 1656 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1657 if (SI->getNumSuccessors() < 2) // no cases 1658 continue; 1659 if (!getValueState(SI->getCondition()).isUndefined()) 1660 continue; 1661 1662 // If the input to SCCP is actually switch on undef, fix the undef to 1663 // the first constant. 1664 if (isa<UndefValue>(SI->getCondition())) { 1665 SI->setCondition(SI->getCaseValue(1)); 1666 markEdgeExecutable(BB, TI->getSuccessor(1)); 1667 return true; 1668 } 1669 1670 markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); 1671 return true; 1672 } 1673 } 1674 1675 return false; 1676 } 1677 1678 1679 namespace { 1680 //===--------------------------------------------------------------------===// 1681 // 1682 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1683 /// Sparse Conditional Constant Propagator. 1684 /// 1685 struct SCCP : public FunctionPass { 1686 static char ID; // Pass identification, replacement for typeid 1687 SCCP() : FunctionPass(ID) { 1688 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1689 } 1690 1691 // runOnFunction - Run the Sparse Conditional Constant Propagation 1692 // algorithm, and return true if the function was modified. 1693 // 1694 bool runOnFunction(Function &F); 1695 }; 1696 } // end anonymous namespace 1697 1698 char SCCP::ID = 0; 1699 INITIALIZE_PASS(SCCP, "sccp", 1700 "Sparse Conditional Constant Propagation", false, false) 1701 1702 // createSCCPPass - This is the public interface to this file. 1703 FunctionPass *llvm::createSCCPPass() { 1704 return new SCCP(); 1705 } 1706 1707 static void DeleteInstructionInBlock(BasicBlock *BB) { 1708 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1709 ++NumDeadBlocks; 1710 1711 // Check to see if there are non-terminating instructions to delete. 1712 if (isa<TerminatorInst>(BB->begin())) 1713 return; 1714 1715 // Delete the instructions backwards, as it has a reduced likelihood of having 1716 // to update as many def-use and use-def chains. 1717 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1718 while (EndInst != BB->begin()) { 1719 // Delete the next to last instruction. 1720 BasicBlock::iterator I = EndInst; 1721 Instruction *Inst = --I; 1722 if (!Inst->use_empty()) 1723 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1724 if (isa<LandingPadInst>(Inst)) { 1725 EndInst = Inst; 1726 continue; 1727 } 1728 BB->getInstList().erase(Inst); 1729 ++NumInstRemoved; 1730 } 1731 } 1732 1733 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1734 // and return true if the function was modified. 1735 // 1736 bool SCCP::runOnFunction(Function &F) { 1737 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1738 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); 1739 1740 // Mark the first block of the function as being executable. 1741 Solver.MarkBlockExecutable(F.begin()); 1742 1743 // Mark all arguments to the function as being overdefined. 1744 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1745 Solver.markAnythingOverdefined(AI); 1746 1747 // Solve for constants. 1748 bool ResolvedUndefs = true; 1749 while (ResolvedUndefs) { 1750 Solver.Solve(); 1751 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1752 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1753 } 1754 1755 bool MadeChanges = false; 1756 1757 // If we decided that there are basic blocks that are dead in this function, 1758 // delete their contents now. Note that we cannot actually delete the blocks, 1759 // as we cannot modify the CFG of the function. 1760 1761 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1762 if (!Solver.isBlockExecutable(BB)) { 1763 DeleteInstructionInBlock(BB); 1764 MadeChanges = true; 1765 continue; 1766 } 1767 1768 // Iterate over all of the instructions in a function, replacing them with 1769 // constants if we have found them to be of constant values. 1770 // 1771 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1772 Instruction *Inst = BI++; 1773 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1774 continue; 1775 1776 // TODO: Reconstruct structs from their elements. 1777 if (Inst->getType()->isStructTy()) 1778 continue; 1779 1780 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1781 if (IV.isOverdefined()) 1782 continue; 1783 1784 Constant *Const = IV.isConstant() 1785 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1786 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1787 1788 // Replaces all of the uses of a variable with uses of the constant. 1789 Inst->replaceAllUsesWith(Const); 1790 1791 // Delete the instruction. 1792 Inst->eraseFromParent(); 1793 1794 // Hey, we just changed something! 1795 MadeChanges = true; 1796 ++NumInstRemoved; 1797 } 1798 } 1799 1800 return MadeChanges; 1801 } 1802 1803 namespace { 1804 //===--------------------------------------------------------------------===// 1805 // 1806 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1807 /// Constant Propagation. 1808 /// 1809 struct IPSCCP : public ModulePass { 1810 static char ID; 1811 IPSCCP() : ModulePass(ID) { 1812 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1813 } 1814 bool runOnModule(Module &M); 1815 }; 1816 } // end anonymous namespace 1817 1818 char IPSCCP::ID = 0; 1819 INITIALIZE_PASS(IPSCCP, "ipsccp", 1820 "Interprocedural Sparse Conditional Constant Propagation", 1821 false, false) 1822 1823 // createIPSCCPPass - This is the public interface to this file. 1824 ModulePass *llvm::createIPSCCPPass() { 1825 return new IPSCCP(); 1826 } 1827 1828 1829 static bool AddressIsTaken(const GlobalValue *GV) { 1830 // Delete any dead constantexpr klingons. 1831 GV->removeDeadConstantUsers(); 1832 1833 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1834 UI != E; ++UI) { 1835 const User *U = *UI; 1836 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 1837 if (SI->getOperand(0) == GV || SI->isVolatile()) 1838 return true; // Storing addr of GV. 1839 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { 1840 // Make sure we are calling the function, not passing the address. 1841 ImmutableCallSite CS(cast<Instruction>(U)); 1842 if (!CS.isCallee(UI)) 1843 return true; 1844 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1845 if (LI->isVolatile()) 1846 return true; 1847 } else if (isa<BlockAddress>(U)) { 1848 // blockaddress doesn't take the address of the function, it takes addr 1849 // of label. 1850 } else { 1851 return true; 1852 } 1853 } 1854 return false; 1855 } 1856 1857 bool IPSCCP::runOnModule(Module &M) { 1858 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); 1859 1860 // AddressTakenFunctions - This set keeps track of the address-taken functions 1861 // that are in the input. As IPSCCP runs through and simplifies code, 1862 // functions that were address taken can end up losing their 1863 // address-taken-ness. Because of this, we keep track of their addresses from 1864 // the first pass so we can use them for the later simplification pass. 1865 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1866 1867 // Loop over all functions, marking arguments to those with their addresses 1868 // taken or that are external as overdefined. 1869 // 1870 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1871 if (F->isDeclaration()) 1872 continue; 1873 1874 // If this is a strong or ODR definition of this function, then we can 1875 // propagate information about its result into callsites of it. 1876 if (!F->mayBeOverridden()) 1877 Solver.AddTrackedFunction(F); 1878 1879 // If this function only has direct calls that we can see, we can track its 1880 // arguments and return value aggressively, and can assume it is not called 1881 // unless we see evidence to the contrary. 1882 if (F->hasLocalLinkage()) { 1883 if (AddressIsTaken(F)) 1884 AddressTakenFunctions.insert(F); 1885 else { 1886 Solver.AddArgumentTrackedFunction(F); 1887 continue; 1888 } 1889 } 1890 1891 // Assume the function is called. 1892 Solver.MarkBlockExecutable(F->begin()); 1893 1894 // Assume nothing about the incoming arguments. 1895 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1896 AI != E; ++AI) 1897 Solver.markAnythingOverdefined(AI); 1898 } 1899 1900 // Loop over global variables. We inform the solver about any internal global 1901 // variables that do not have their 'addresses taken'. If they don't have 1902 // their addresses taken, we can propagate constants through them. 1903 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1904 G != E; ++G) 1905 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1906 Solver.TrackValueOfGlobalVariable(G); 1907 1908 // Solve for constants. 1909 bool ResolvedUndefs = true; 1910 while (ResolvedUndefs) { 1911 Solver.Solve(); 1912 1913 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1914 ResolvedUndefs = false; 1915 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1916 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1917 } 1918 1919 bool MadeChanges = false; 1920 1921 // Iterate over all of the instructions in the module, replacing them with 1922 // constants if we have found them to be of constant values. 1923 // 1924 SmallVector<BasicBlock*, 512> BlocksToErase; 1925 1926 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1927 if (Solver.isBlockExecutable(F->begin())) { 1928 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1929 AI != E; ++AI) { 1930 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1931 1932 // TODO: Could use getStructLatticeValueFor to find out if the entire 1933 // result is a constant and replace it entirely if so. 1934 1935 LatticeVal IV = Solver.getLatticeValueFor(AI); 1936 if (IV.isOverdefined()) continue; 1937 1938 Constant *CST = IV.isConstant() ? 1939 IV.getConstant() : UndefValue::get(AI->getType()); 1940 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1941 1942 // Replaces all of the uses of a variable with uses of the 1943 // constant. 1944 AI->replaceAllUsesWith(CST); 1945 ++IPNumArgsElimed; 1946 } 1947 } 1948 1949 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1950 if (!Solver.isBlockExecutable(BB)) { 1951 DeleteInstructionInBlock(BB); 1952 MadeChanges = true; 1953 1954 TerminatorInst *TI = BB->getTerminator(); 1955 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1956 BasicBlock *Succ = TI->getSuccessor(i); 1957 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1958 TI->getSuccessor(i)->removePredecessor(BB); 1959 } 1960 if (!TI->use_empty()) 1961 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1962 TI->eraseFromParent(); 1963 1964 if (&*BB != &F->front()) 1965 BlocksToErase.push_back(BB); 1966 else 1967 new UnreachableInst(M.getContext(), BB); 1968 continue; 1969 } 1970 1971 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1972 Instruction *Inst = BI++; 1973 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1974 continue; 1975 1976 // TODO: Could use getStructLatticeValueFor to find out if the entire 1977 // result is a constant and replace it entirely if so. 1978 1979 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1980 if (IV.isOverdefined()) 1981 continue; 1982 1983 Constant *Const = IV.isConstant() 1984 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1985 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1986 1987 // Replaces all of the uses of a variable with uses of the 1988 // constant. 1989 Inst->replaceAllUsesWith(Const); 1990 1991 // Delete the instruction. 1992 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1993 Inst->eraseFromParent(); 1994 1995 // Hey, we just changed something! 1996 MadeChanges = true; 1997 ++IPNumInstRemoved; 1998 } 1999 } 2000 2001 // Now that all instructions in the function are constant folded, erase dead 2002 // blocks, because we can now use ConstantFoldTerminator to get rid of 2003 // in-edges. 2004 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 2005 // If there are any PHI nodes in this successor, drop entries for BB now. 2006 BasicBlock *DeadBB = BlocksToErase[i]; 2007 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 2008 UI != UE; ) { 2009 // Grab the user and then increment the iterator early, as the user 2010 // will be deleted. Step past all adjacent uses from the same user. 2011 Instruction *I = dyn_cast<Instruction>(*UI); 2012 do { ++UI; } while (UI != UE && *UI == I); 2013 2014 // Ignore blockaddress users; BasicBlock's dtor will handle them. 2015 if (!I) continue; 2016 2017 bool Folded = ConstantFoldTerminator(I->getParent()); 2018 if (!Folded) { 2019 // The constant folder may not have been able to fold the terminator 2020 // if this is a branch or switch on undef. Fold it manually as a 2021 // branch to the first successor. 2022 #ifndef NDEBUG 2023 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2024 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 2025 "Branch should be foldable!"); 2026 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2027 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 2028 } else { 2029 llvm_unreachable("Didn't fold away reference to block!"); 2030 } 2031 #endif 2032 2033 // Make this an uncond branch to the first successor. 2034 TerminatorInst *TI = I->getParent()->getTerminator(); 2035 BranchInst::Create(TI->getSuccessor(0), TI); 2036 2037 // Remove entries in successor phi nodes to remove edges. 2038 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 2039 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 2040 2041 // Remove the old terminator. 2042 TI->eraseFromParent(); 2043 } 2044 } 2045 2046 // Finally, delete the basic block. 2047 F->getBasicBlockList().erase(DeadBB); 2048 } 2049 BlocksToErase.clear(); 2050 } 2051 2052 // If we inferred constant or undef return values for a function, we replaced 2053 // all call uses with the inferred value. This means we don't need to bother 2054 // actually returning anything from the function. Replace all return 2055 // instructions with return undef. 2056 // 2057 // Do this in two stages: first identify the functions we should process, then 2058 // actually zap their returns. This is important because we can only do this 2059 // if the address of the function isn't taken. In cases where a return is the 2060 // last use of a function, the order of processing functions would affect 2061 // whether other functions are optimizable. 2062 SmallVector<ReturnInst*, 8> ReturnsToZap; 2063 2064 // TODO: Process multiple value ret instructions also. 2065 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 2066 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 2067 E = RV.end(); I != E; ++I) { 2068 Function *F = I->first; 2069 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 2070 continue; 2071 2072 // We can only do this if we know that nothing else can call the function. 2073 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 2074 continue; 2075 2076 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 2077 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 2078 if (!isa<UndefValue>(RI->getOperand(0))) 2079 ReturnsToZap.push_back(RI); 2080 } 2081 2082 // Zap all returns which we've identified as zap to change. 2083 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 2084 Function *F = ReturnsToZap[i]->getParent()->getParent(); 2085 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 2086 } 2087 2088 // If we inferred constant or undef values for globals variables, we can delete 2089 // the global and any stores that remain to it. 2090 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 2091 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 2092 E = TG.end(); I != E; ++I) { 2093 GlobalVariable *GV = I->first; 2094 assert(!I->second.isOverdefined() && 2095 "Overdefined values should have been taken out of the map!"); 2096 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 2097 while (!GV->use_empty()) { 2098 StoreInst *SI = cast<StoreInst>(GV->use_back()); 2099 SI->eraseFromParent(); 2100 } 2101 M.getGlobalList().erase(GV); 2102 ++IPNumGlobalConst; 2103 } 2104 2105 return MadeChanges; 2106 } 2107