Home | History | Annotate | Download | only in CodeGen
      1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ code generation targeting the Itanium C++ ABI.  The class
     11 // in this file generates structures that follow the Itanium C++ ABI, which is
     12 // documented at:
     13 //  http://www.codesourcery.com/public/cxx-abi/abi.html
     14 //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
     15 //
     16 // It also supports the closely-related ARM ABI, documented at:
     17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "CGCXXABI.h"
     22 #include "CGRecordLayout.h"
     23 #include "CodeGenFunction.h"
     24 #include "CodeGenModule.h"
     25 #include <clang/AST/Mangle.h>
     26 #include <clang/AST/Type.h>
     27 #include <llvm/Intrinsics.h>
     28 #include <llvm/Target/TargetData.h>
     29 #include <llvm/Value.h>
     30 
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 namespace {
     35 class ItaniumCXXABI : public CodeGen::CGCXXABI {
     36 private:
     37   llvm::IntegerType *PtrDiffTy;
     38 protected:
     39   bool IsARM;
     40 
     41   // It's a little silly for us to cache this.
     42   llvm::IntegerType *getPtrDiffTy() {
     43     if (!PtrDiffTy) {
     44       QualType T = getContext().getPointerDiffType();
     45       llvm::Type *Ty = CGM.getTypes().ConvertType(T);
     46       PtrDiffTy = cast<llvm::IntegerType>(Ty);
     47     }
     48     return PtrDiffTy;
     49   }
     50 
     51   bool NeedsArrayCookie(const CXXNewExpr *expr);
     52   bool NeedsArrayCookie(const CXXDeleteExpr *expr,
     53                         QualType elementType);
     54 
     55 public:
     56   ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
     57     CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
     58 
     59   bool isZeroInitializable(const MemberPointerType *MPT);
     60 
     61   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
     62 
     63   llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
     64                                                llvm::Value *&This,
     65                                                llvm::Value *MemFnPtr,
     66                                                const MemberPointerType *MPT);
     67 
     68   llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
     69                                             llvm::Value *Base,
     70                                             llvm::Value *MemPtr,
     71                                             const MemberPointerType *MPT);
     72 
     73   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
     74                                            const CastExpr *E,
     75                                            llvm::Value *Src);
     76 
     77   llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
     78                                               const CastExpr *E);
     79 
     80   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
     81 
     82   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
     83   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
     84                                         CharUnits offset);
     85 
     86   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
     87                                            llvm::Value *L,
     88                                            llvm::Value *R,
     89                                            const MemberPointerType *MPT,
     90                                            bool Inequality);
     91 
     92   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
     93                                           llvm::Value *Addr,
     94                                           const MemberPointerType *MPT);
     95 
     96   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
     97                                  CXXCtorType T,
     98                                  CanQualType &ResTy,
     99                                  SmallVectorImpl<CanQualType> &ArgTys);
    100 
    101   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    102                                 CXXDtorType T,
    103                                 CanQualType &ResTy,
    104                                 SmallVectorImpl<CanQualType> &ArgTys);
    105 
    106   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
    107                                    QualType &ResTy,
    108                                    FunctionArgList &Params);
    109 
    110   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
    111 
    112   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
    113   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    114                                      llvm::Value *NewPtr,
    115                                      llvm::Value *NumElements,
    116                                      const CXXNewExpr *expr,
    117                                      QualType ElementType);
    118   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
    119                        const CXXDeleteExpr *expr,
    120                        QualType ElementType, llvm::Value *&NumElements,
    121                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
    122 
    123   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
    124                        llvm::GlobalVariable *DeclPtr);
    125 };
    126 
    127 class ARMCXXABI : public ItaniumCXXABI {
    128 public:
    129   ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
    130 
    131   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    132                                  CXXCtorType T,
    133                                  CanQualType &ResTy,
    134                                  SmallVectorImpl<CanQualType> &ArgTys);
    135 
    136   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    137                                 CXXDtorType T,
    138                                 CanQualType &ResTy,
    139                                 SmallVectorImpl<CanQualType> &ArgTys);
    140 
    141   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
    142                                    QualType &ResTy,
    143                                    FunctionArgList &Params);
    144 
    145   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
    146 
    147   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
    148 
    149   CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
    150   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    151                                      llvm::Value *NewPtr,
    152                                      llvm::Value *NumElements,
    153                                      const CXXNewExpr *expr,
    154                                      QualType ElementType);
    155   void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
    156                        const CXXDeleteExpr *expr,
    157                        QualType ElementType, llvm::Value *&NumElements,
    158                        llvm::Value *&AllocPtr, CharUnits &CookieSize);
    159 
    160 private:
    161   /// \brief Returns true if the given instance method is one of the
    162   /// kinds that the ARM ABI says returns 'this'.
    163   static bool HasThisReturn(GlobalDecl GD) {
    164     const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    165     return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
    166             (isa<CXXConstructorDecl>(MD)));
    167   }
    168 };
    169 }
    170 
    171 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
    172   return new ItaniumCXXABI(CGM);
    173 }
    174 
    175 CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
    176   return new ARMCXXABI(CGM);
    177 }
    178 
    179 llvm::Type *
    180 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
    181   if (MPT->isMemberDataPointer())
    182     return getPtrDiffTy();
    183   return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
    184 }
    185 
    186 /// In the Itanium and ARM ABIs, method pointers have the form:
    187 ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
    188 ///
    189 /// In the Itanium ABI:
    190 ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
    191 ///  - the this-adjustment is (memptr.adj)
    192 ///  - the virtual offset is (memptr.ptr - 1)
    193 ///
    194 /// In the ARM ABI:
    195 ///  - method pointers are virtual if (memptr.adj & 1) is nonzero
    196 ///  - the this-adjustment is (memptr.adj >> 1)
    197 ///  - the virtual offset is (memptr.ptr)
    198 /// ARM uses 'adj' for the virtual flag because Thumb functions
    199 /// may be only single-byte aligned.
    200 ///
    201 /// If the member is virtual, the adjusted 'this' pointer points
    202 /// to a vtable pointer from which the virtual offset is applied.
    203 ///
    204 /// If the member is non-virtual, memptr.ptr is the address of
    205 /// the function to call.
    206 llvm::Value *
    207 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
    208                                                llvm::Value *&This,
    209                                                llvm::Value *MemFnPtr,
    210                                                const MemberPointerType *MPT) {
    211   CGBuilderTy &Builder = CGF.Builder;
    212 
    213   const FunctionProtoType *FPT =
    214     MPT->getPointeeType()->getAs<FunctionProtoType>();
    215   const CXXRecordDecl *RD =
    216     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    217 
    218   llvm::FunctionType *FTy =
    219     CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
    220                                    FPT->isVariadic());
    221 
    222   llvm::IntegerType *ptrdiff = getPtrDiffTy();
    223   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
    224 
    225   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
    226   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
    227   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
    228 
    229   // Extract memptr.adj, which is in the second field.
    230   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
    231 
    232   // Compute the true adjustment.
    233   llvm::Value *Adj = RawAdj;
    234   if (IsARM)
    235     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
    236 
    237   // Apply the adjustment and cast back to the original struct type
    238   // for consistency.
    239   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
    240   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
    241   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
    242 
    243   // Load the function pointer.
    244   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
    245 
    246   // If the LSB in the function pointer is 1, the function pointer points to
    247   // a virtual function.
    248   llvm::Value *IsVirtual;
    249   if (IsARM)
    250     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
    251   else
    252     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
    253   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
    254   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
    255 
    256   // In the virtual path, the adjustment left 'This' pointing to the
    257   // vtable of the correct base subobject.  The "function pointer" is an
    258   // offset within the vtable (+1 for the virtual flag on non-ARM).
    259   CGF.EmitBlock(FnVirtual);
    260 
    261   // Cast the adjusted this to a pointer to vtable pointer and load.
    262   llvm::Type *VTableTy = Builder.getInt8PtrTy();
    263   llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
    264   VTable = Builder.CreateLoad(VTable, "memptr.vtable");
    265 
    266   // Apply the offset.
    267   llvm::Value *VTableOffset = FnAsInt;
    268   if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
    269   VTable = Builder.CreateGEP(VTable, VTableOffset);
    270 
    271   // Load the virtual function to call.
    272   VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
    273   llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
    274   CGF.EmitBranch(FnEnd);
    275 
    276   // In the non-virtual path, the function pointer is actually a
    277   // function pointer.
    278   CGF.EmitBlock(FnNonVirtual);
    279   llvm::Value *NonVirtualFn =
    280     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
    281 
    282   // We're done.
    283   CGF.EmitBlock(FnEnd);
    284   llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
    285   Callee->addIncoming(VirtualFn, FnVirtual);
    286   Callee->addIncoming(NonVirtualFn, FnNonVirtual);
    287   return Callee;
    288 }
    289 
    290 /// Compute an l-value by applying the given pointer-to-member to a
    291 /// base object.
    292 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
    293                                                          llvm::Value *Base,
    294                                                          llvm::Value *MemPtr,
    295                                            const MemberPointerType *MPT) {
    296   assert(MemPtr->getType() == getPtrDiffTy());
    297 
    298   CGBuilderTy &Builder = CGF.Builder;
    299 
    300   unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
    301 
    302   // Cast to char*.
    303   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
    304 
    305   // Apply the offset, which we assume is non-null.
    306   llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
    307 
    308   // Cast the address to the appropriate pointer type, adopting the
    309   // address space of the base pointer.
    310   llvm::Type *PType
    311     = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
    312   return Builder.CreateBitCast(Addr, PType);
    313 }
    314 
    315 /// Perform a derived-to-base or base-to-derived member pointer conversion.
    316 ///
    317 /// Obligatory offset/adjustment diagram:
    318 ///         <-- offset -->          <-- adjustment -->
    319 ///   |--------------------------|----------------------|--------------------|
    320 ///   ^Derived address point     ^Base address point    ^Member address point
    321 ///
    322 /// So when converting a base member pointer to a derived member pointer,
    323 /// we add the offset to the adjustment because the address point has
    324 /// decreased;  and conversely, when converting a derived MP to a base MP
    325 /// we subtract the offset from the adjustment because the address point
    326 /// has increased.
    327 ///
    328 /// The standard forbids (at compile time) conversion to and from
    329 /// virtual bases, which is why we don't have to consider them here.
    330 ///
    331 /// The standard forbids (at run time) casting a derived MP to a base
    332 /// MP when the derived MP does not point to a member of the base.
    333 /// This is why -1 is a reasonable choice for null data member
    334 /// pointers.
    335 llvm::Value *
    336 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
    337                                            const CastExpr *E,
    338                                            llvm::Value *Src) {
    339   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
    340          E->getCastKind() == CK_BaseToDerivedMemberPointer);
    341 
    342   if (isa<llvm::Constant>(Src))
    343     return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
    344 
    345   CGBuilderTy &Builder = CGF.Builder;
    346 
    347   const MemberPointerType *SrcTy =
    348     E->getSubExpr()->getType()->getAs<MemberPointerType>();
    349   const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
    350 
    351   const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
    352   const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
    353 
    354   bool DerivedToBase =
    355     E->getCastKind() == CK_DerivedToBaseMemberPointer;
    356 
    357   const CXXRecordDecl *DerivedDecl;
    358   if (DerivedToBase)
    359     DerivedDecl = SrcDecl;
    360   else
    361     DerivedDecl = DestDecl;
    362 
    363   llvm::Constant *Adj =
    364     CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
    365                                          E->path_begin(),
    366                                          E->path_end());
    367   if (!Adj) return Src;
    368 
    369   // For member data pointers, this is just a matter of adding the
    370   // offset if the source is non-null.
    371   if (SrcTy->isMemberDataPointer()) {
    372     llvm::Value *Dst;
    373     if (DerivedToBase)
    374       Dst = Builder.CreateNSWSub(Src, Adj, "adj");
    375     else
    376       Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
    377 
    378     // Null check.
    379     llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
    380     llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
    381     return Builder.CreateSelect(IsNull, Src, Dst);
    382   }
    383 
    384   // The this-adjustment is left-shifted by 1 on ARM.
    385   if (IsARM) {
    386     uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
    387     Offset <<= 1;
    388     Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
    389   }
    390 
    391   llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
    392   llvm::Value *DstAdj;
    393   if (DerivedToBase)
    394     DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
    395   else
    396     DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
    397 
    398   return Builder.CreateInsertValue(Src, DstAdj, 1);
    399 }
    400 
    401 llvm::Constant *
    402 ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
    403                                            const CastExpr *E) {
    404   const MemberPointerType *SrcTy =
    405     E->getSubExpr()->getType()->getAs<MemberPointerType>();
    406   const MemberPointerType *DestTy =
    407     E->getType()->getAs<MemberPointerType>();
    408 
    409   bool DerivedToBase =
    410     E->getCastKind() == CK_DerivedToBaseMemberPointer;
    411 
    412   const CXXRecordDecl *DerivedDecl;
    413   if (DerivedToBase)
    414     DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
    415   else
    416     DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
    417 
    418   // Calculate the offset to the base class.
    419   llvm::Constant *Offset =
    420     CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
    421                                      E->path_begin(),
    422                                      E->path_end());
    423   // If there's no offset, we're done.
    424   if (!Offset) return C;
    425 
    426   // If the source is a member data pointer, we have to do a null
    427   // check and then add the offset.  In the common case, we can fold
    428   // away the offset.
    429   if (SrcTy->isMemberDataPointer()) {
    430     assert(C->getType() == getPtrDiffTy());
    431 
    432     // If it's a constant int, just create a new constant int.
    433     if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
    434       int64_t Src = CI->getSExtValue();
    435 
    436       // Null converts to null.
    437       if (Src == -1) return CI;
    438 
    439       // Otherwise, just add the offset.
    440       int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
    441       int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
    442       return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
    443     }
    444 
    445     // Otherwise, we have to form a constant select expression.
    446     llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
    447 
    448     llvm::Constant *IsNull =
    449       llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
    450 
    451     llvm::Constant *Dst;
    452     if (DerivedToBase)
    453       Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
    454     else
    455       Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
    456 
    457     return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
    458   }
    459 
    460   // The this-adjustment is left-shifted by 1 on ARM.
    461   if (IsARM) {
    462     int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
    463     OffsetV <<= 1;
    464     Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
    465   }
    466 
    467   llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
    468 
    469   llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
    470   if (DerivedToBase)
    471     Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
    472   else
    473     Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
    474 
    475   return llvm::ConstantStruct::get(CS->getType(), Values);
    476 }
    477 
    478 
    479 llvm::Constant *
    480 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
    481   llvm::Type *ptrdiff_t = getPtrDiffTy();
    482 
    483   // Itanium C++ ABI 2.3:
    484   //   A NULL pointer is represented as -1.
    485   if (MPT->isMemberDataPointer())
    486     return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
    487 
    488   llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
    489   llvm::Constant *Values[2] = { Zero, Zero };
    490   return llvm::ConstantStruct::getAnon(Values);
    491 }
    492 
    493 llvm::Constant *
    494 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
    495                                      CharUnits offset) {
    496   // Itanium C++ ABI 2.3:
    497   //   A pointer to data member is an offset from the base address of
    498   //   the class object containing it, represented as a ptrdiff_t
    499   return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
    500 }
    501 
    502 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
    503   assert(MD->isInstance() && "Member function must not be static!");
    504   MD = MD->getCanonicalDecl();
    505 
    506   CodeGenTypes &Types = CGM.getTypes();
    507   llvm::Type *ptrdiff_t = getPtrDiffTy();
    508 
    509   // Get the function pointer (or index if this is a virtual function).
    510   llvm::Constant *MemPtr[2];
    511   if (MD->isVirtual()) {
    512     uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
    513 
    514     const ASTContext &Context = getContext();
    515     CharUnits PointerWidth =
    516       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    517     uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
    518 
    519     if (IsARM) {
    520       // ARM C++ ABI 3.2.1:
    521       //   This ABI specifies that adj contains twice the this
    522       //   adjustment, plus 1 if the member function is virtual. The
    523       //   least significant bit of adj then makes exactly the same
    524       //   discrimination as the least significant bit of ptr does for
    525       //   Itanium.
    526       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
    527       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
    528     } else {
    529       // Itanium C++ ABI 2.3:
    530       //   For a virtual function, [the pointer field] is 1 plus the
    531       //   virtual table offset (in bytes) of the function,
    532       //   represented as a ptrdiff_t.
    533       MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
    534       MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
    535     }
    536   } else {
    537     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
    538     llvm::Type *Ty;
    539     // Check whether the function has a computable LLVM signature.
    540     if (Types.isFuncTypeConvertible(FPT)) {
    541       // The function has a computable LLVM signature; use the correct type.
    542       Ty = Types.GetFunctionType(Types.getFunctionInfo(MD),
    543                                  FPT->isVariadic());
    544     } else {
    545       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
    546       // function type is incomplete.
    547       Ty = ptrdiff_t;
    548     }
    549     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
    550 
    551     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
    552     MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
    553   }
    554 
    555   return llvm::ConstantStruct::getAnon(MemPtr);
    556 }
    557 
    558 /// The comparison algorithm is pretty easy: the member pointers are
    559 /// the same if they're either bitwise identical *or* both null.
    560 ///
    561 /// ARM is different here only because null-ness is more complicated.
    562 llvm::Value *
    563 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
    564                                            llvm::Value *L,
    565                                            llvm::Value *R,
    566                                            const MemberPointerType *MPT,
    567                                            bool Inequality) {
    568   CGBuilderTy &Builder = CGF.Builder;
    569 
    570   llvm::ICmpInst::Predicate Eq;
    571   llvm::Instruction::BinaryOps And, Or;
    572   if (Inequality) {
    573     Eq = llvm::ICmpInst::ICMP_NE;
    574     And = llvm::Instruction::Or;
    575     Or = llvm::Instruction::And;
    576   } else {
    577     Eq = llvm::ICmpInst::ICMP_EQ;
    578     And = llvm::Instruction::And;
    579     Or = llvm::Instruction::Or;
    580   }
    581 
    582   // Member data pointers are easy because there's a unique null
    583   // value, so it just comes down to bitwise equality.
    584   if (MPT->isMemberDataPointer())
    585     return Builder.CreateICmp(Eq, L, R);
    586 
    587   // For member function pointers, the tautologies are more complex.
    588   // The Itanium tautology is:
    589   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
    590   // The ARM tautology is:
    591   //   (L == R) <==> (L.ptr == R.ptr &&
    592   //                  (L.adj == R.adj ||
    593   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
    594   // The inequality tautologies have exactly the same structure, except
    595   // applying De Morgan's laws.
    596 
    597   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
    598   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
    599 
    600   // This condition tests whether L.ptr == R.ptr.  This must always be
    601   // true for equality to hold.
    602   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
    603 
    604   // This condition, together with the assumption that L.ptr == R.ptr,
    605   // tests whether the pointers are both null.  ARM imposes an extra
    606   // condition.
    607   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
    608   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
    609 
    610   // This condition tests whether L.adj == R.adj.  If this isn't
    611   // true, the pointers are unequal unless they're both null.
    612   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
    613   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
    614   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
    615 
    616   // Null member function pointers on ARM clear the low bit of Adj,
    617   // so the zero condition has to check that neither low bit is set.
    618   if (IsARM) {
    619     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
    620 
    621     // Compute (l.adj | r.adj) & 1 and test it against zero.
    622     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
    623     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
    624     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
    625                                                       "cmp.or.adj");
    626     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
    627   }
    628 
    629   // Tie together all our conditions.
    630   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
    631   Result = Builder.CreateBinOp(And, PtrEq, Result,
    632                                Inequality ? "memptr.ne" : "memptr.eq");
    633   return Result;
    634 }
    635 
    636 llvm::Value *
    637 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
    638                                           llvm::Value *MemPtr,
    639                                           const MemberPointerType *MPT) {
    640   CGBuilderTy &Builder = CGF.Builder;
    641 
    642   /// For member data pointers, this is just a check against -1.
    643   if (MPT->isMemberDataPointer()) {
    644     assert(MemPtr->getType() == getPtrDiffTy());
    645     llvm::Value *NegativeOne =
    646       llvm::Constant::getAllOnesValue(MemPtr->getType());
    647     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
    648   }
    649 
    650   // In Itanium, a member function pointer is not null if 'ptr' is not null.
    651   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
    652 
    653   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
    654   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
    655 
    656   // On ARM, a member function pointer is also non-null if the low bit of 'adj'
    657   // (the virtual bit) is set.
    658   if (IsARM) {
    659     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
    660     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
    661     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
    662     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
    663                                                   "memptr.isvirtual");
    664     Result = Builder.CreateOr(Result, IsVirtual);
    665   }
    666 
    667   return Result;
    668 }
    669 
    670 /// The Itanium ABI requires non-zero initialization only for data
    671 /// member pointers, for which '0' is a valid offset.
    672 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
    673   return MPT->getPointeeType()->isFunctionType();
    674 }
    675 
    676 /// The generic ABI passes 'this', plus a VTT if it's initializing a
    677 /// base subobject.
    678 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    679                                               CXXCtorType Type,
    680                                               CanQualType &ResTy,
    681                                 SmallVectorImpl<CanQualType> &ArgTys) {
    682   ASTContext &Context = getContext();
    683 
    684   // 'this' is already there.
    685 
    686   // Check if we need to add a VTT parameter (which has type void **).
    687   if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
    688     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    689 }
    690 
    691 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
    692 void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    693                                           CXXCtorType Type,
    694                                           CanQualType &ResTy,
    695                                 SmallVectorImpl<CanQualType> &ArgTys) {
    696   ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
    697   ResTy = ArgTys[0];
    698 }
    699 
    700 /// The generic ABI passes 'this', plus a VTT if it's destroying a
    701 /// base subobject.
    702 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    703                                              CXXDtorType Type,
    704                                              CanQualType &ResTy,
    705                                 SmallVectorImpl<CanQualType> &ArgTys) {
    706   ASTContext &Context = getContext();
    707 
    708   // 'this' is already there.
    709 
    710   // Check if we need to add a VTT parameter (which has type void **).
    711   if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
    712     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    713 }
    714 
    715 /// The ARM ABI does the same as the Itanium ABI, but returns 'this'
    716 /// for non-deleting destructors.
    717 void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    718                                          CXXDtorType Type,
    719                                          CanQualType &ResTy,
    720                                 SmallVectorImpl<CanQualType> &ArgTys) {
    721   ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
    722 
    723   if (Type != Dtor_Deleting)
    724     ResTy = ArgTys[0];
    725 }
    726 
    727 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
    728                                                 QualType &ResTy,
    729                                                 FunctionArgList &Params) {
    730   /// Create the 'this' variable.
    731   BuildThisParam(CGF, Params);
    732 
    733   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
    734   assert(MD->isInstance());
    735 
    736   // Check if we need a VTT parameter as well.
    737   if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
    738     ASTContext &Context = getContext();
    739 
    740     // FIXME: avoid the fake decl
    741     QualType T = Context.getPointerType(Context.VoidPtrTy);
    742     ImplicitParamDecl *VTTDecl
    743       = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
    744                                   &Context.Idents.get("vtt"), T);
    745     Params.push_back(VTTDecl);
    746     getVTTDecl(CGF) = VTTDecl;
    747   }
    748 }
    749 
    750 void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
    751                                             QualType &ResTy,
    752                                             FunctionArgList &Params) {
    753   ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
    754 
    755   // Return 'this' from certain constructors and destructors.
    756   if (HasThisReturn(CGF.CurGD))
    757     ResTy = Params[0]->getType();
    758 }
    759 
    760 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
    761   /// Initialize the 'this' slot.
    762   EmitThisParam(CGF);
    763 
    764   /// Initialize the 'vtt' slot if needed.
    765   if (getVTTDecl(CGF)) {
    766     getVTTValue(CGF)
    767       = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
    768                                "vtt");
    769   }
    770 }
    771 
    772 void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
    773   ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
    774 
    775   /// Initialize the return slot to 'this' at the start of the
    776   /// function.
    777   if (HasThisReturn(CGF.CurGD))
    778     CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
    779 }
    780 
    781 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
    782                                     RValue RV, QualType ResultType) {
    783   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
    784     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
    785 
    786   // Destructor thunks in the ARM ABI have indeterminate results.
    787   llvm::Type *T =
    788     cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
    789   RValue Undef = RValue::get(llvm::UndefValue::get(T));
    790   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
    791 }
    792 
    793 /************************** Array allocation cookies **************************/
    794 
    795 bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
    796   // If the class's usual deallocation function takes two arguments,
    797   // it needs a cookie.
    798   if (expr->doesUsualArrayDeleteWantSize())
    799     return true;
    800 
    801   // Automatic Reference Counting:
    802   //   We need an array cookie for pointers with strong or weak lifetime.
    803   QualType AllocatedType = expr->getAllocatedType();
    804   if (getContext().getLangOptions().ObjCAutoRefCount &&
    805       AllocatedType->isObjCLifetimeType()) {
    806     switch (AllocatedType.getObjCLifetime()) {
    807     case Qualifiers::OCL_None:
    808     case Qualifiers::OCL_ExplicitNone:
    809     case Qualifiers::OCL_Autoreleasing:
    810       return false;
    811 
    812     case Qualifiers::OCL_Strong:
    813     case Qualifiers::OCL_Weak:
    814       return true;
    815     }
    816   }
    817 
    818   // Otherwise, if the class has a non-trivial destructor, it always
    819   // needs a cookie.
    820   const CXXRecordDecl *record =
    821     AllocatedType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
    822   return (record && !record->hasTrivialDestructor());
    823 }
    824 
    825 bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
    826                                      QualType elementType) {
    827   // If the class's usual deallocation function takes two arguments,
    828   // it needs a cookie.
    829   if (expr->doesUsualArrayDeleteWantSize())
    830     return true;
    831 
    832   return elementType.isDestructedType();
    833 }
    834 
    835 CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
    836   if (!NeedsArrayCookie(expr))
    837     return CharUnits::Zero();
    838 
    839   // Padding is the maximum of sizeof(size_t) and alignof(elementType)
    840   ASTContext &Ctx = getContext();
    841   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
    842                   Ctx.getTypeAlignInChars(expr->getAllocatedType()));
    843 }
    844 
    845 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
    846                                                   llvm::Value *NewPtr,
    847                                                   llvm::Value *NumElements,
    848                                                   const CXXNewExpr *expr,
    849                                                   QualType ElementType) {
    850   assert(NeedsArrayCookie(expr));
    851 
    852   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
    853 
    854   ASTContext &Ctx = getContext();
    855   QualType SizeTy = Ctx.getSizeType();
    856   CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
    857 
    858   // The size of the cookie.
    859   CharUnits CookieSize =
    860     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
    861 
    862   // Compute an offset to the cookie.
    863   llvm::Value *CookiePtr = NewPtr;
    864   CharUnits CookieOffset = CookieSize - SizeSize;
    865   if (!CookieOffset.isZero())
    866     CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
    867                                                  CookieOffset.getQuantity());
    868 
    869   // Write the number of elements into the appropriate slot.
    870   llvm::Value *NumElementsPtr
    871     = CGF.Builder.CreateBitCast(CookiePtr,
    872                                 CGF.ConvertType(SizeTy)->getPointerTo(AS));
    873   CGF.Builder.CreateStore(NumElements, NumElementsPtr);
    874 
    875   // Finally, compute a pointer to the actual data buffer by skipping
    876   // over the cookie completely.
    877   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
    878                                                 CookieSize.getQuantity());
    879 }
    880 
    881 void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
    882                                     llvm::Value *Ptr,
    883                                     const CXXDeleteExpr *expr,
    884                                     QualType ElementType,
    885                                     llvm::Value *&NumElements,
    886                                     llvm::Value *&AllocPtr,
    887                                     CharUnits &CookieSize) {
    888   // Derive a char* in the same address space as the pointer.
    889   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
    890   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
    891 
    892   // If we don't need an array cookie, bail out early.
    893   if (!NeedsArrayCookie(expr, ElementType)) {
    894     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    895     NumElements = 0;
    896     CookieSize = CharUnits::Zero();
    897     return;
    898   }
    899 
    900   QualType SizeTy = getContext().getSizeType();
    901   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
    902   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
    903 
    904   CookieSize
    905     = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
    906 
    907   CharUnits NumElementsOffset = CookieSize - SizeSize;
    908 
    909   // Compute the allocated pointer.
    910   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    911   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
    912                                                     -CookieSize.getQuantity());
    913 
    914   llvm::Value *NumElementsPtr = AllocPtr;
    915   if (!NumElementsOffset.isZero())
    916     NumElementsPtr =
    917       CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
    918                                              NumElementsOffset.getQuantity());
    919   NumElementsPtr =
    920     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
    921   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
    922 }
    923 
    924 CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
    925   if (!NeedsArrayCookie(expr))
    926     return CharUnits::Zero();
    927 
    928   // On ARM, the cookie is always:
    929   //   struct array_cookie {
    930   //     std::size_t element_size; // element_size != 0
    931   //     std::size_t element_count;
    932   //   };
    933   // TODO: what should we do if the allocated type actually wants
    934   // greater alignment?
    935   return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
    936 }
    937 
    938 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
    939                                               llvm::Value *NewPtr,
    940                                               llvm::Value *NumElements,
    941                                               const CXXNewExpr *expr,
    942                                               QualType ElementType) {
    943   assert(NeedsArrayCookie(expr));
    944 
    945   // NewPtr is a char*.
    946 
    947   unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
    948 
    949   ASTContext &Ctx = getContext();
    950   CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
    951   llvm::IntegerType *SizeTy =
    952     cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
    953 
    954   // The cookie is always at the start of the buffer.
    955   llvm::Value *CookiePtr = NewPtr;
    956 
    957   // The first element is the element size.
    958   CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
    959   llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
    960                           Ctx.getTypeSizeInChars(ElementType).getQuantity());
    961   CGF.Builder.CreateStore(ElementSize, CookiePtr);
    962 
    963   // The second element is the element count.
    964   CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
    965   CGF.Builder.CreateStore(NumElements, CookiePtr);
    966 
    967   // Finally, compute a pointer to the actual data buffer by skipping
    968   // over the cookie completely.
    969   CharUnits CookieSize = 2 * SizeSize;
    970   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
    971                                                 CookieSize.getQuantity());
    972 }
    973 
    974 void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
    975                                 llvm::Value *Ptr,
    976                                 const CXXDeleteExpr *expr,
    977                                 QualType ElementType,
    978                                 llvm::Value *&NumElements,
    979                                 llvm::Value *&AllocPtr,
    980                                 CharUnits &CookieSize) {
    981   // Derive a char* in the same address space as the pointer.
    982   unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
    983   llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
    984 
    985   // If we don't need an array cookie, bail out early.
    986   if (!NeedsArrayCookie(expr, ElementType)) {
    987     AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
    988     NumElements = 0;
    989     CookieSize = CharUnits::Zero();
    990     return;
    991   }
    992 
    993   QualType SizeTy = getContext().getSizeType();
    994   CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
    995   llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
    996 
    997   // The cookie size is always 2 * sizeof(size_t).
    998   CookieSize = 2 * SizeSize;
    999 
   1000   // The allocated pointer is the input ptr, minus that amount.
   1001   AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
   1002   AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
   1003                                                -CookieSize.getQuantity());
   1004 
   1005   // The number of elements is at offset sizeof(size_t) relative to that.
   1006   llvm::Value *NumElementsPtr
   1007     = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
   1008                                              SizeSize.getQuantity());
   1009   NumElementsPtr =
   1010     CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
   1011   NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
   1012 }
   1013 
   1014 /*********************** Static local initialization **************************/
   1015 
   1016 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
   1017                                          llvm::PointerType *GuardPtrTy) {
   1018   // int __cxa_guard_acquire(__guard *guard_object);
   1019   llvm::FunctionType *FTy =
   1020     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
   1021                             GuardPtrTy, /*isVarArg=*/false);
   1022 
   1023   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
   1024 }
   1025 
   1026 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
   1027                                          llvm::PointerType *GuardPtrTy) {
   1028   // void __cxa_guard_release(__guard *guard_object);
   1029   llvm::FunctionType *FTy =
   1030     llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
   1031                             GuardPtrTy, /*isVarArg=*/false);
   1032 
   1033   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
   1034 }
   1035 
   1036 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
   1037                                        llvm::PointerType *GuardPtrTy) {
   1038   // void __cxa_guard_abort(__guard *guard_object);
   1039   llvm::FunctionType *FTy =
   1040     llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
   1041                             GuardPtrTy, /*isVarArg=*/false);
   1042 
   1043   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
   1044 }
   1045 
   1046 namespace {
   1047   struct CallGuardAbort : EHScopeStack::Cleanup {
   1048     llvm::GlobalVariable *Guard;
   1049     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
   1050 
   1051     void Emit(CodeGenFunction &CGF, Flags flags) {
   1052       CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
   1053         ->setDoesNotThrow();
   1054     }
   1055   };
   1056 }
   1057 
   1058 /// The ARM code here follows the Itanium code closely enough that we
   1059 /// just special-case it at particular places.
   1060 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
   1061                                     const VarDecl &D,
   1062                                     llvm::GlobalVariable *GV) {
   1063   CGBuilderTy &Builder = CGF.Builder;
   1064 
   1065   // We only need to use thread-safe statics for local variables;
   1066   // global initialization is always single-threaded.
   1067   bool threadsafe =
   1068     (getContext().getLangOptions().ThreadsafeStatics && D.isLocalVarDecl());
   1069 
   1070   llvm::IntegerType *GuardTy;
   1071 
   1072   // If we have a global variable with internal linkage and thread-safe statics
   1073   // are disabled, we can just let the guard variable be of type i8.
   1074   bool useInt8GuardVariable = !threadsafe && GV->hasInternalLinkage();
   1075   if (useInt8GuardVariable) {
   1076     GuardTy = CGF.Int8Ty;
   1077   } else {
   1078     // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
   1079     GuardTy = (IsARM ? CGF.Int32Ty : CGF.Int64Ty);
   1080   }
   1081   llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
   1082 
   1083   // Create the guard variable.
   1084   llvm::SmallString<256> GuardVName;
   1085   llvm::raw_svector_ostream Out(GuardVName);
   1086   getMangleContext().mangleItaniumGuardVariable(&D, Out);
   1087   Out.flush();
   1088 
   1089   // Just absorb linkage and visibility from the variable.
   1090   llvm::GlobalVariable *GuardVariable =
   1091     new llvm::GlobalVariable(CGM.getModule(), GuardTy,
   1092                              false, GV->getLinkage(),
   1093                              llvm::ConstantInt::get(GuardTy, 0),
   1094                              GuardVName.str());
   1095   GuardVariable->setVisibility(GV->getVisibility());
   1096 
   1097   // Test whether the variable has completed initialization.
   1098   llvm::Value *IsInitialized;
   1099 
   1100   // ARM C++ ABI 3.2.3.1:
   1101   //   To support the potential use of initialization guard variables
   1102   //   as semaphores that are the target of ARM SWP and LDREX/STREX
   1103   //   synchronizing instructions we define a static initialization
   1104   //   guard variable to be a 4-byte aligned, 4- byte word with the
   1105   //   following inline access protocol.
   1106   //     #define INITIALIZED 1
   1107   //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
   1108   //       if (__cxa_guard_acquire(&obj_guard))
   1109   //         ...
   1110   //     }
   1111   if (IsARM && !useInt8GuardVariable) {
   1112     llvm::Value *V = Builder.CreateLoad(GuardVariable);
   1113     V = Builder.CreateAnd(V, Builder.getInt32(1));
   1114     IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
   1115 
   1116   // Itanium C++ ABI 3.3.2:
   1117   //   The following is pseudo-code showing how these functions can be used:
   1118   //     if (obj_guard.first_byte == 0) {
   1119   //       if ( __cxa_guard_acquire (&obj_guard) ) {
   1120   //         try {
   1121   //           ... initialize the object ...;
   1122   //         } catch (...) {
   1123   //            __cxa_guard_abort (&obj_guard);
   1124   //            throw;
   1125   //         }
   1126   //         ... queue object destructor with __cxa_atexit() ...;
   1127   //         __cxa_guard_release (&obj_guard);
   1128   //       }
   1129   //     }
   1130   } else {
   1131     // Load the first byte of the guard variable.
   1132     llvm::Type *PtrTy = Builder.getInt8PtrTy();
   1133     llvm::LoadInst *LI =
   1134       Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy));
   1135     LI->setAlignment(1);
   1136 
   1137     // Itanium ABI:
   1138     //   An implementation supporting thread-safety on multiprocessor
   1139     //   systems must also guarantee that references to the initialized
   1140     //   object do not occur before the load of the initialization flag.
   1141     //
   1142     // In LLVM, we do this by marking the load Acquire.
   1143     if (threadsafe)
   1144       LI->setAtomic(llvm::Acquire);
   1145 
   1146     IsInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
   1147   }
   1148 
   1149   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
   1150   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   1151 
   1152   // Check if the first byte of the guard variable is zero.
   1153   Builder.CreateCondBr(IsInitialized, InitCheckBlock, EndBlock);
   1154 
   1155   CGF.EmitBlock(InitCheckBlock);
   1156 
   1157   // Variables used when coping with thread-safe statics and exceptions.
   1158   if (threadsafe) {
   1159     // Call __cxa_guard_acquire.
   1160     llvm::Value *V
   1161       = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
   1162 
   1163     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   1164 
   1165     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
   1166                          InitBlock, EndBlock);
   1167 
   1168     // Call __cxa_guard_abort along the exceptional edge.
   1169     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
   1170 
   1171     CGF.EmitBlock(InitBlock);
   1172   }
   1173 
   1174   // Emit the initializer and add a global destructor if appropriate.
   1175   CGF.EmitCXXGlobalVarDeclInit(D, GV);
   1176 
   1177   if (threadsafe) {
   1178     // Pop the guard-abort cleanup if we pushed one.
   1179     CGF.PopCleanupBlock();
   1180 
   1181     // Call __cxa_guard_release.  This cannot throw.
   1182     Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
   1183   } else {
   1184     Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
   1185   }
   1186 
   1187   CGF.EmitBlock(EndBlock);
   1188 }
   1189