Home | History | Annotate | Download | only in JIT
      1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tool implements a just-in-time compiler for LLVM, allowing direct
     11 // execution of LLVM bitcode in an efficient manner.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "JIT.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Function.h"
     19 #include "llvm/GlobalVariable.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/ADT/SmallPtrSet.h"
     22 #include "llvm/CodeGen/JITCodeEmitter.h"
     23 #include "llvm/CodeGen/MachineCodeInfo.h"
     24 #include "llvm/ExecutionEngine/GenericValue.h"
     25 #include "llvm/ExecutionEngine/JITEventListener.h"
     26 #include "llvm/Target/TargetData.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/Target/TargetJITInfo.h"
     29 #include "llvm/Support/Dwarf.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/ManagedStatic.h"
     32 #include "llvm/Support/MutexGuard.h"
     33 #include "llvm/Support/DynamicLibrary.h"
     34 #include "llvm/Config/config.h"
     35 
     36 using namespace llvm;
     37 
     38 #ifdef __APPLE__
     39 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
     40 // of atexit). It passes the address of linker generated symbol __dso_handle
     41 // to the function.
     42 // This configuration change happened at version 5330.
     43 # include <AvailabilityMacros.h>
     44 # if defined(MAC_OS_X_VERSION_10_4) && \
     45      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
     46       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
     47        __APPLE_CC__ >= 5330))
     48 #  ifndef HAVE___DSO_HANDLE
     49 #   define HAVE___DSO_HANDLE 1
     50 #  endif
     51 # endif
     52 #endif
     53 
     54 #if HAVE___DSO_HANDLE
     55 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
     56 #endif
     57 
     58 namespace {
     59 
     60 static struct RegisterJIT {
     61   RegisterJIT() { JIT::Register(); }
     62 } JITRegistrator;
     63 
     64 }
     65 
     66 extern "C" void LLVMLinkInJIT() {
     67 }
     68 
     69 // Determine whether we can register EH tables.
     70 #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
     71      !defined(__USING_SJLJ_EXCEPTIONS__))
     72 #define HAVE_EHTABLE_SUPPORT 1
     73 #else
     74 #define HAVE_EHTABLE_SUPPORT 0
     75 #endif
     76 
     77 #if HAVE_EHTABLE_SUPPORT
     78 
     79 // libgcc defines the __register_frame function to dynamically register new
     80 // dwarf frames for exception handling. This functionality is not portable
     81 // across compilers and is only provided by GCC. We use the __register_frame
     82 // function here so that code generated by the JIT cooperates with the unwinding
     83 // runtime of libgcc. When JITting with exception handling enable, LLVM
     84 // generates dwarf frames and registers it to libgcc with __register_frame.
     85 //
     86 // The __register_frame function works with Linux.
     87 //
     88 // Unfortunately, this functionality seems to be in libgcc after the unwinding
     89 // library of libgcc for darwin was written. The code for darwin overwrites the
     90 // value updated by __register_frame with a value fetched with "keymgr".
     91 // "keymgr" is an obsolete functionality, which should be rewritten some day.
     92 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
     93 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
     94 // values of an opaque key, used by libgcc to find dwarf tables.
     95 
     96 extern "C" void __register_frame(void*);
     97 extern "C" void __deregister_frame(void*);
     98 
     99 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
    100 # define USE_KEYMGR 1
    101 #else
    102 # define USE_KEYMGR 0
    103 #endif
    104 
    105 #if USE_KEYMGR
    106 
    107 namespace {
    108 
    109 // LibgccObject - This is the structure defined in libgcc. There is no #include
    110 // provided for this structure, so we also define it here. libgcc calls it
    111 // "struct object". The structure is undocumented in libgcc.
    112 struct LibgccObject {
    113   void *unused1;
    114   void *unused2;
    115   void *unused3;
    116 
    117   /// frame - Pointer to the exception table.
    118   void *frame;
    119 
    120   /// encoding -  The encoding of the object?
    121   union {
    122     struct {
    123       unsigned long sorted : 1;
    124       unsigned long from_array : 1;
    125       unsigned long mixed_encoding : 1;
    126       unsigned long encoding : 8;
    127       unsigned long count : 21;
    128     } b;
    129     size_t i;
    130   } encoding;
    131 
    132   /// fde_end - libgcc defines this field only if some macro is defined. We
    133   /// include this field even if it may not there, to make libgcc happy.
    134   char *fde_end;
    135 
    136   /// next - At least we know it's a chained list!
    137   struct LibgccObject *next;
    138 };
    139 
    140 // "kemgr" stuff. Apparently, all frame tables are stored there.
    141 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
    142 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
    143 #define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
    144 
    145 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
    146 /// probably contains all dwarf tables that are loaded.
    147 struct LibgccObjectInfo {
    148 
    149   /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
    150   ///
    151   struct LibgccObject* seenObjects;
    152 
    153   /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
    154   ///
    155   struct LibgccObject* unseenObjects;
    156 
    157   unsigned unused[2];
    158 };
    159 
    160 /// darwin_register_frame - Since __register_frame does not work with darwin's
    161 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
    162 /// "Dwarf2 object list" key.
    163 void DarwinRegisterFrame(void* FrameBegin) {
    164   // Get the key.
    165   LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
    166     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
    167   assert(LOI && "This should be preallocated by the runtime");
    168 
    169   // Allocate a new LibgccObject to represent this frame. Deallocation of this
    170   // object may be impossible: since darwin code in libgcc was written after
    171   // the ability to dynamically register frames, things may crash if we
    172   // deallocate it.
    173   struct LibgccObject* ob = (struct LibgccObject*)
    174     malloc(sizeof(struct LibgccObject));
    175 
    176   // Do like libgcc for the values of the field.
    177   ob->unused1 = (void *)-1;
    178   ob->unused2 = 0;
    179   ob->unused3 = 0;
    180   ob->frame = FrameBegin;
    181   ob->encoding.i = 0;
    182   ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
    183 
    184   // Put the info on both places, as libgcc uses the first or the second
    185   // field. Note that we rely on having two pointers here. If fde_end was a
    186   // char, things would get complicated.
    187   ob->fde_end = (char*)LOI->unseenObjects;
    188   ob->next = LOI->unseenObjects;
    189 
    190   // Update the key's unseenObjects list.
    191   LOI->unseenObjects = ob;
    192 
    193   // Finally update the "key". Apparently, libgcc requires it.
    194   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
    195                                          LOI);
    196 
    197 }
    198 
    199 }
    200 #endif // __APPLE__
    201 #endif // HAVE_EHTABLE_SUPPORT
    202 
    203 /// createJIT - This is the factory method for creating a JIT for the current
    204 /// machine, it does not fall back to the interpreter.  This takes ownership
    205 /// of the module.
    206 ExecutionEngine *JIT::createJIT(Module *M,
    207                                 std::string *ErrorStr,
    208                                 JITMemoryManager *JMM,
    209                                 CodeGenOpt::Level OptLevel,
    210                                 bool GVsWithCode,
    211                                 TargetMachine *TM) {
    212   // Try to register the program as a source of symbols to resolve against.
    213   //
    214   // FIXME: Don't do this here.
    215   sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
    216 
    217   // If the target supports JIT code generation, create the JIT.
    218   if (TargetJITInfo *TJ = TM->getJITInfo()) {
    219     return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
    220   } else {
    221     if (ErrorStr)
    222       *ErrorStr = "target does not support JIT code generation";
    223     return 0;
    224   }
    225 }
    226 
    227 namespace {
    228 /// This class supports the global getPointerToNamedFunction(), which allows
    229 /// bugpoint or gdb users to search for a function by name without any context.
    230 class JitPool {
    231   SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
    232   mutable sys::Mutex Lock;
    233 public:
    234   void Add(JIT *jit) {
    235     MutexGuard guard(Lock);
    236     JITs.insert(jit);
    237   }
    238   void Remove(JIT *jit) {
    239     MutexGuard guard(Lock);
    240     JITs.erase(jit);
    241   }
    242   void *getPointerToNamedFunction(const char *Name) const {
    243     MutexGuard guard(Lock);
    244     assert(JITs.size() != 0 && "No Jit registered");
    245     //search function in every instance of JIT
    246     for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
    247            end = JITs.end();
    248          Jit != end; ++Jit) {
    249       if (Function *F = (*Jit)->FindFunctionNamed(Name))
    250         return (*Jit)->getPointerToFunction(F);
    251     }
    252     // The function is not available : fallback on the first created (will
    253     // search in symbol of the current program/library)
    254     return (*JITs.begin())->getPointerToNamedFunction(Name);
    255   }
    256 };
    257 ManagedStatic<JitPool> AllJits;
    258 }
    259 extern "C" {
    260   // getPointerToNamedFunction - This function is used as a global wrapper to
    261   // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
    262   // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
    263   // need to resolve function(s) that are being mis-codegenerated, so we need to
    264   // resolve their addresses at runtime, and this is the way to do it.
    265   void *getPointerToNamedFunction(const char *Name) {
    266     return AllJits->getPointerToNamedFunction(Name);
    267   }
    268 }
    269 
    270 JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
    271          JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
    272   : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
    273     isAlreadyCodeGenerating(false) {
    274   setTargetData(TM.getTargetData());
    275 
    276   jitstate = new JITState(M);
    277 
    278   // Initialize JCE
    279   JCE = createEmitter(*this, JMM, TM);
    280 
    281   // Register in global list of all JITs.
    282   AllJits->Add(this);
    283 
    284   // Add target data
    285   MutexGuard locked(lock);
    286   FunctionPassManager &PM = jitstate->getPM(locked);
    287   PM.add(new TargetData(*TM.getTargetData()));
    288 
    289   // Turn the machine code intermediate representation into bytes in memory that
    290   // may be executed.
    291   if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
    292     report_fatal_error("Target does not support machine code emission!");
    293   }
    294 
    295   // Register routine for informing unwinding runtime about new EH frames
    296 #if HAVE_EHTABLE_SUPPORT
    297 #if USE_KEYMGR
    298   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
    299     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
    300 
    301   // The key is created on demand, and libgcc creates it the first time an
    302   // exception occurs. Since we need the key to register frames, we create
    303   // it now.
    304   if (!LOI)
    305     LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
    306   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
    307   InstallExceptionTableRegister(DarwinRegisterFrame);
    308   // Not sure about how to deregister on Darwin.
    309 #else
    310   InstallExceptionTableRegister(__register_frame);
    311   InstallExceptionTableDeregister(__deregister_frame);
    312 #endif // __APPLE__
    313 #endif // HAVE_EHTABLE_SUPPORT
    314 
    315   // Initialize passes.
    316   PM.doInitialization();
    317 }
    318 
    319 JIT::~JIT() {
    320   // Unregister all exception tables registered by this JIT.
    321   DeregisterAllTables();
    322   // Cleanup.
    323   AllJits->Remove(this);
    324   delete jitstate;
    325   delete JCE;
    326   delete &TM;
    327 }
    328 
    329 /// addModule - Add a new Module to the JIT.  If we previously removed the last
    330 /// Module, we need re-initialize jitstate with a valid Module.
    331 void JIT::addModule(Module *M) {
    332   MutexGuard locked(lock);
    333 
    334   if (Modules.empty()) {
    335     assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
    336 
    337     jitstate = new JITState(M);
    338 
    339     FunctionPassManager &PM = jitstate->getPM(locked);
    340     PM.add(new TargetData(*TM.getTargetData()));
    341 
    342     // Turn the machine code intermediate representation into bytes in memory
    343     // that may be executed.
    344     if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
    345       report_fatal_error("Target does not support machine code emission!");
    346     }
    347 
    348     // Initialize passes.
    349     PM.doInitialization();
    350   }
    351 
    352   ExecutionEngine::addModule(M);
    353 }
    354 
    355 /// removeModule - If we are removing the last Module, invalidate the jitstate
    356 /// since the PassManager it contains references a released Module.
    357 bool JIT::removeModule(Module *M) {
    358   bool result = ExecutionEngine::removeModule(M);
    359 
    360   MutexGuard locked(lock);
    361 
    362   if (jitstate->getModule() == M) {
    363     delete jitstate;
    364     jitstate = 0;
    365   }
    366 
    367   if (!jitstate && !Modules.empty()) {
    368     jitstate = new JITState(Modules[0]);
    369 
    370     FunctionPassManager &PM = jitstate->getPM(locked);
    371     PM.add(new TargetData(*TM.getTargetData()));
    372 
    373     // Turn the machine code intermediate representation into bytes in memory
    374     // that may be executed.
    375     if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
    376       report_fatal_error("Target does not support machine code emission!");
    377     }
    378 
    379     // Initialize passes.
    380     PM.doInitialization();
    381   }
    382   return result;
    383 }
    384 
    385 /// run - Start execution with the specified function and arguments.
    386 ///
    387 GenericValue JIT::runFunction(Function *F,
    388                               const std::vector<GenericValue> &ArgValues) {
    389   assert(F && "Function *F was null at entry to run()");
    390 
    391   void *FPtr = getPointerToFunction(F);
    392   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
    393   FunctionType *FTy = F->getFunctionType();
    394   Type *RetTy = FTy->getReturnType();
    395 
    396   assert((FTy->getNumParams() == ArgValues.size() ||
    397           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
    398          "Wrong number of arguments passed into function!");
    399   assert(FTy->getNumParams() == ArgValues.size() &&
    400          "This doesn't support passing arguments through varargs (yet)!");
    401 
    402   // Handle some common cases first.  These cases correspond to common `main'
    403   // prototypes.
    404   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
    405     switch (ArgValues.size()) {
    406     case 3:
    407       if (FTy->getParamType(0)->isIntegerTy(32) &&
    408           FTy->getParamType(1)->isPointerTy() &&
    409           FTy->getParamType(2)->isPointerTy()) {
    410         int (*PF)(int, char **, const char **) =
    411           (int(*)(int, char **, const char **))(intptr_t)FPtr;
    412 
    413         // Call the function.
    414         GenericValue rv;
    415         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    416                                  (char **)GVTOP(ArgValues[1]),
    417                                  (const char **)GVTOP(ArgValues[2])));
    418         return rv;
    419       }
    420       break;
    421     case 2:
    422       if (FTy->getParamType(0)->isIntegerTy(32) &&
    423           FTy->getParamType(1)->isPointerTy()) {
    424         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
    425 
    426         // Call the function.
    427         GenericValue rv;
    428         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    429                                  (char **)GVTOP(ArgValues[1])));
    430         return rv;
    431       }
    432       break;
    433     case 1:
    434       if (FTy->getNumParams() == 1 &&
    435           FTy->getParamType(0)->isIntegerTy(32)) {
    436         GenericValue rv;
    437         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
    438         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
    439         return rv;
    440       }
    441       break;
    442     }
    443   }
    444 
    445   // Handle cases where no arguments are passed first.
    446   if (ArgValues.empty()) {
    447     GenericValue rv;
    448     switch (RetTy->getTypeID()) {
    449     default: llvm_unreachable("Unknown return type for function call!");
    450     case Type::IntegerTyID: {
    451       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
    452       if (BitWidth == 1)
    453         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
    454       else if (BitWidth <= 8)
    455         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
    456       else if (BitWidth <= 16)
    457         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
    458       else if (BitWidth <= 32)
    459         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
    460       else if (BitWidth <= 64)
    461         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
    462       else
    463         llvm_unreachable("Integer types > 64 bits not supported");
    464       return rv;
    465     }
    466     case Type::VoidTyID:
    467       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
    468       return rv;
    469     case Type::FloatTyID:
    470       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
    471       return rv;
    472     case Type::DoubleTyID:
    473       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
    474       return rv;
    475     case Type::X86_FP80TyID:
    476     case Type::FP128TyID:
    477     case Type::PPC_FP128TyID:
    478       llvm_unreachable("long double not supported yet");
    479       return rv;
    480     case Type::PointerTyID:
    481       return PTOGV(((void*(*)())(intptr_t)FPtr)());
    482     }
    483   }
    484 
    485   // Okay, this is not one of our quick and easy cases.  Because we don't have a
    486   // full FFI, we have to codegen a nullary stub function that just calls the
    487   // function we are interested in, passing in constants for all of the
    488   // arguments.  Make this function and return.
    489 
    490   // First, create the function.
    491   FunctionType *STy=FunctionType::get(RetTy, false);
    492   Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
    493                                     F->getParent());
    494 
    495   // Insert a basic block.
    496   BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
    497 
    498   // Convert all of the GenericValue arguments over to constants.  Note that we
    499   // currently don't support varargs.
    500   SmallVector<Value*, 8> Args;
    501   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
    502     Constant *C = 0;
    503     Type *ArgTy = FTy->getParamType(i);
    504     const GenericValue &AV = ArgValues[i];
    505     switch (ArgTy->getTypeID()) {
    506     default: llvm_unreachable("Unknown argument type for function call!");
    507     case Type::IntegerTyID:
    508         C = ConstantInt::get(F->getContext(), AV.IntVal);
    509         break;
    510     case Type::FloatTyID:
    511         C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
    512         break;
    513     case Type::DoubleTyID:
    514         C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
    515         break;
    516     case Type::PPC_FP128TyID:
    517     case Type::X86_FP80TyID:
    518     case Type::FP128TyID:
    519         C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
    520         break;
    521     case Type::PointerTyID:
    522       void *ArgPtr = GVTOP(AV);
    523       if (sizeof(void*) == 4)
    524         C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
    525                              (int)(intptr_t)ArgPtr);
    526       else
    527         C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
    528                              (intptr_t)ArgPtr);
    529       // Cast the integer to pointer
    530       C = ConstantExpr::getIntToPtr(C, ArgTy);
    531       break;
    532     }
    533     Args.push_back(C);
    534   }
    535 
    536   CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
    537   TheCall->setCallingConv(F->getCallingConv());
    538   TheCall->setTailCall();
    539   if (!TheCall->getType()->isVoidTy())
    540     // Return result of the call.
    541     ReturnInst::Create(F->getContext(), TheCall, StubBB);
    542   else
    543     ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
    544 
    545   // Finally, call our nullary stub function.
    546   GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
    547   // Erase it, since no other function can have a reference to it.
    548   Stub->eraseFromParent();
    549   // And return the result.
    550   return Result;
    551 }
    552 
    553 void JIT::RegisterJITEventListener(JITEventListener *L) {
    554   if (L == NULL)
    555     return;
    556   MutexGuard locked(lock);
    557   EventListeners.push_back(L);
    558 }
    559 void JIT::UnregisterJITEventListener(JITEventListener *L) {
    560   if (L == NULL)
    561     return;
    562   MutexGuard locked(lock);
    563   std::vector<JITEventListener*>::reverse_iterator I=
    564       std::find(EventListeners.rbegin(), EventListeners.rend(), L);
    565   if (I != EventListeners.rend()) {
    566     std::swap(*I, EventListeners.back());
    567     EventListeners.pop_back();
    568   }
    569 }
    570 void JIT::NotifyFunctionEmitted(
    571     const Function &F,
    572     void *Code, size_t Size,
    573     const JITEvent_EmittedFunctionDetails &Details) {
    574   MutexGuard locked(lock);
    575   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
    576     EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
    577   }
    578 }
    579 
    580 void JIT::NotifyFreeingMachineCode(void *OldPtr) {
    581   MutexGuard locked(lock);
    582   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
    583     EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
    584   }
    585 }
    586 
    587 /// runJITOnFunction - Run the FunctionPassManager full of
    588 /// just-in-time compilation passes on F, hopefully filling in
    589 /// GlobalAddress[F] with the address of F's machine code.
    590 ///
    591 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
    592   MutexGuard locked(lock);
    593 
    594   class MCIListener : public JITEventListener {
    595     MachineCodeInfo *const MCI;
    596    public:
    597     MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
    598     virtual void NotifyFunctionEmitted(const Function &,
    599                                        void *Code, size_t Size,
    600                                        const EmittedFunctionDetails &) {
    601       MCI->setAddress(Code);
    602       MCI->setSize(Size);
    603     }
    604   };
    605   MCIListener MCIL(MCI);
    606   if (MCI)
    607     RegisterJITEventListener(&MCIL);
    608 
    609   runJITOnFunctionUnlocked(F, locked);
    610 
    611   if (MCI)
    612     UnregisterJITEventListener(&MCIL);
    613 }
    614 
    615 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
    616   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
    617 
    618   jitTheFunction(F, locked);
    619 
    620   // If the function referred to another function that had not yet been
    621   // read from bitcode, and we are jitting non-lazily, emit it now.
    622   while (!jitstate->getPendingFunctions(locked).empty()) {
    623     Function *PF = jitstate->getPendingFunctions(locked).back();
    624     jitstate->getPendingFunctions(locked).pop_back();
    625 
    626     assert(!PF->hasAvailableExternallyLinkage() &&
    627            "Externally-defined function should not be in pending list.");
    628 
    629     jitTheFunction(PF, locked);
    630 
    631     // Now that the function has been jitted, ask the JITEmitter to rewrite
    632     // the stub with real address of the function.
    633     updateFunctionStub(PF);
    634   }
    635 }
    636 
    637 void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
    638   isAlreadyCodeGenerating = true;
    639   jitstate->getPM(locked).run(*F);
    640   isAlreadyCodeGenerating = false;
    641 
    642   // clear basic block addresses after this function is done
    643   getBasicBlockAddressMap(locked).clear();
    644 }
    645 
    646 /// getPointerToFunction - This method is used to get the address of the
    647 /// specified function, compiling it if necessary.
    648 ///
    649 void *JIT::getPointerToFunction(Function *F) {
    650 
    651   if (void *Addr = getPointerToGlobalIfAvailable(F))
    652     return Addr;   // Check if function already code gen'd
    653 
    654   MutexGuard locked(lock);
    655 
    656   // Now that this thread owns the lock, make sure we read in the function if it
    657   // exists in this Module.
    658   std::string ErrorMsg;
    659   if (F->Materialize(&ErrorMsg)) {
    660     report_fatal_error("Error reading function '" + F->getName()+
    661                       "' from bitcode file: " + ErrorMsg);
    662   }
    663 
    664   // ... and check if another thread has already code gen'd the function.
    665   if (void *Addr = getPointerToGlobalIfAvailable(F))
    666     return Addr;
    667 
    668   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
    669     bool AbortOnFailure = !F->hasExternalWeakLinkage();
    670     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
    671     addGlobalMapping(F, Addr);
    672     return Addr;
    673   }
    674 
    675   runJITOnFunctionUnlocked(F, locked);
    676 
    677   void *Addr = getPointerToGlobalIfAvailable(F);
    678   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
    679   return Addr;
    680 }
    681 
    682 void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
    683   MutexGuard locked(lock);
    684 
    685   BasicBlockAddressMapTy::iterator I =
    686     getBasicBlockAddressMap(locked).find(BB);
    687   if (I == getBasicBlockAddressMap(locked).end()) {
    688     getBasicBlockAddressMap(locked)[BB] = Addr;
    689   } else {
    690     // ignore repeats: some BBs can be split into few MBBs?
    691   }
    692 }
    693 
    694 void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
    695   MutexGuard locked(lock);
    696   getBasicBlockAddressMap(locked).erase(BB);
    697 }
    698 
    699 void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
    700   // make sure it's function is compiled by JIT
    701   (void)getPointerToFunction(BB->getParent());
    702 
    703   // resolve basic block address
    704   MutexGuard locked(lock);
    705 
    706   BasicBlockAddressMapTy::iterator I =
    707     getBasicBlockAddressMap(locked).find(BB);
    708   if (I != getBasicBlockAddressMap(locked).end()) {
    709     return I->second;
    710   } else {
    711     assert(0 && "JIT does not have BB address for address-of-label, was"
    712            " it eliminated by optimizer?");
    713     return 0;
    714   }
    715 }
    716 
    717 /// getOrEmitGlobalVariable - Return the address of the specified global
    718 /// variable, possibly emitting it to memory if needed.  This is used by the
    719 /// Emitter.
    720 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
    721   MutexGuard locked(lock);
    722 
    723   void *Ptr = getPointerToGlobalIfAvailable(GV);
    724   if (Ptr) return Ptr;
    725 
    726   // If the global is external, just remember the address.
    727   if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
    728 #if HAVE___DSO_HANDLE
    729     if (GV->getName() == "__dso_handle")
    730       return (void*)&__dso_handle;
    731 #endif
    732     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
    733     if (Ptr == 0) {
    734       report_fatal_error("Could not resolve external global address: "
    735                         +GV->getName());
    736     }
    737     addGlobalMapping(GV, Ptr);
    738   } else {
    739     // If the global hasn't been emitted to memory yet, allocate space and
    740     // emit it into memory.
    741     Ptr = getMemoryForGV(GV);
    742     addGlobalMapping(GV, Ptr);
    743     EmitGlobalVariable(GV);  // Initialize the variable.
    744   }
    745   return Ptr;
    746 }
    747 
    748 /// recompileAndRelinkFunction - This method is used to force a function
    749 /// which has already been compiled, to be compiled again, possibly
    750 /// after it has been modified. Then the entry to the old copy is overwritten
    751 /// with a branch to the new copy. If there was no old copy, this acts
    752 /// just like JIT::getPointerToFunction().
    753 ///
    754 void *JIT::recompileAndRelinkFunction(Function *F) {
    755   void *OldAddr = getPointerToGlobalIfAvailable(F);
    756 
    757   // If it's not already compiled there is no reason to patch it up.
    758   if (OldAddr == 0) { return getPointerToFunction(F); }
    759 
    760   // Delete the old function mapping.
    761   addGlobalMapping(F, 0);
    762 
    763   // Recodegen the function
    764   runJITOnFunction(F);
    765 
    766   // Update state, forward the old function to the new function.
    767   void *Addr = getPointerToGlobalIfAvailable(F);
    768   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
    769   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
    770   return Addr;
    771 }
    772 
    773 /// getMemoryForGV - This method abstracts memory allocation of global
    774 /// variable so that the JIT can allocate thread local variables depending
    775 /// on the target.
    776 ///
    777 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
    778   char *Ptr;
    779 
    780   // GlobalVariable's which are not "constant" will cause trouble in a server
    781   // situation. It's returned in the same block of memory as code which may
    782   // not be writable.
    783   if (isGVCompilationDisabled() && !GV->isConstant()) {
    784     report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
    785   }
    786 
    787   // Some applications require globals and code to live together, so they may
    788   // be allocated into the same buffer, but in general globals are allocated
    789   // through the memory manager which puts them near the code but not in the
    790   // same buffer.
    791   Type *GlobalType = GV->getType()->getElementType();
    792   size_t S = getTargetData()->getTypeAllocSize(GlobalType);
    793   size_t A = getTargetData()->getPreferredAlignment(GV);
    794   if (GV->isThreadLocal()) {
    795     MutexGuard locked(lock);
    796     Ptr = TJI.allocateThreadLocalMemory(S);
    797   } else if (TJI.allocateSeparateGVMemory()) {
    798     if (A <= 8) {
    799       Ptr = (char*)malloc(S);
    800     } else {
    801       // Allocate S+A bytes of memory, then use an aligned pointer within that
    802       // space.
    803       Ptr = (char*)malloc(S+A);
    804       unsigned MisAligned = ((intptr_t)Ptr & (A-1));
    805       Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
    806     }
    807   } else if (AllocateGVsWithCode) {
    808     Ptr = (char*)JCE->allocateSpace(S, A);
    809   } else {
    810     Ptr = (char*)JCE->allocateGlobal(S, A);
    811   }
    812   return Ptr;
    813 }
    814 
    815 void JIT::addPendingFunction(Function *F) {
    816   MutexGuard locked(lock);
    817   jitstate->getPendingFunctions(locked).push_back(F);
    818 }
    819 
    820 
    821 JITEventListener::~JITEventListener() {}
    822