Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Support/PatternMatch.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     22 /// returning the kind and providing the out parameter results if we
     23 /// successfully match.
     24 static SelectPatternFlavor
     25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     26   SelectInst *SI = dyn_cast<SelectInst>(V);
     27   if (SI == 0) return SPF_UNKNOWN;
     28 
     29   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     30   if (ICI == 0) return SPF_UNKNOWN;
     31 
     32   LHS = ICI->getOperand(0);
     33   RHS = ICI->getOperand(1);
     34 
     35   // (icmp X, Y) ? X : Y
     36   if (SI->getTrueValue() == ICI->getOperand(0) &&
     37       SI->getFalseValue() == ICI->getOperand(1)) {
     38     switch (ICI->getPredicate()) {
     39     default: return SPF_UNKNOWN; // Equality.
     40     case ICmpInst::ICMP_UGT:
     41     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     42     case ICmpInst::ICMP_SGT:
     43     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     44     case ICmpInst::ICMP_ULT:
     45     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     46     case ICmpInst::ICMP_SLT:
     47     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     48     }
     49   }
     50 
     51   // (icmp X, Y) ? Y : X
     52   if (SI->getTrueValue() == ICI->getOperand(1) &&
     53       SI->getFalseValue() == ICI->getOperand(0)) {
     54     switch (ICI->getPredicate()) {
     55       default: return SPF_UNKNOWN; // Equality.
     56       case ICmpInst::ICMP_UGT:
     57       case ICmpInst::ICMP_UGE: return SPF_UMIN;
     58       case ICmpInst::ICMP_SGT:
     59       case ICmpInst::ICMP_SGE: return SPF_SMIN;
     60       case ICmpInst::ICMP_ULT:
     61       case ICmpInst::ICMP_ULE: return SPF_UMAX;
     62       case ICmpInst::ICMP_SLT:
     63       case ICmpInst::ICMP_SLE: return SPF_SMAX;
     64     }
     65   }
     66 
     67   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     68 
     69   return SPF_UNKNOWN;
     70 }
     71 
     72 
     73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     74 ///   %C = or %A, %B
     75 ///   %D = select %cond, %C, %A
     76 /// into:
     77 ///   %C = select %cond, %B, 0
     78 ///   %D = or %A, %C
     79 ///
     80 /// Assuming that the specified instruction is an operand to the select, return
     81 /// a bitmask indicating which operands of this instruction are foldable if they
     82 /// equal the other incoming value of the select.
     83 ///
     84 static unsigned GetSelectFoldableOperands(Instruction *I) {
     85   switch (I->getOpcode()) {
     86   case Instruction::Add:
     87   case Instruction::Mul:
     88   case Instruction::And:
     89   case Instruction::Or:
     90   case Instruction::Xor:
     91     return 3;              // Can fold through either operand.
     92   case Instruction::Sub:   // Can only fold on the amount subtracted.
     93   case Instruction::Shl:   // Can only fold on the shift amount.
     94   case Instruction::LShr:
     95   case Instruction::AShr:
     96     return 1;
     97   default:
     98     return 0;              // Cannot fold
     99   }
    100 }
    101 
    102 /// GetSelectFoldableConstant - For the same transformation as the previous
    103 /// function, return the identity constant that goes into the select.
    104 static Constant *GetSelectFoldableConstant(Instruction *I) {
    105   switch (I->getOpcode()) {
    106   default: llvm_unreachable("This cannot happen!");
    107   case Instruction::Add:
    108   case Instruction::Sub:
    109   case Instruction::Or:
    110   case Instruction::Xor:
    111   case Instruction::Shl:
    112   case Instruction::LShr:
    113   case Instruction::AShr:
    114     return Constant::getNullValue(I->getType());
    115   case Instruction::And:
    116     return Constant::getAllOnesValue(I->getType());
    117   case Instruction::Mul:
    118     return ConstantInt::get(I->getType(), 1);
    119   }
    120 }
    121 
    122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    123 /// have the same opcode and only one use each.  Try to simplify this.
    124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    125                                           Instruction *FI) {
    126   if (TI->getNumOperands() == 1) {
    127     // If this is a non-volatile load or a cast from the same type,
    128     // merge.
    129     if (TI->isCast()) {
    130       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
    131         return 0;
    132     } else {
    133       return 0;  // unknown unary op.
    134     }
    135 
    136     // Fold this by inserting a select from the input values.
    137     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    138                                          FI->getOperand(0), SI.getName()+".v");
    139     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    140                             TI->getType());
    141   }
    142 
    143   // Only handle binary operators here.
    144   if (!isa<BinaryOperator>(TI))
    145     return 0;
    146 
    147   // Figure out if the operations have any operands in common.
    148   Value *MatchOp, *OtherOpT, *OtherOpF;
    149   bool MatchIsOpZero;
    150   if (TI->getOperand(0) == FI->getOperand(0)) {
    151     MatchOp  = TI->getOperand(0);
    152     OtherOpT = TI->getOperand(1);
    153     OtherOpF = FI->getOperand(1);
    154     MatchIsOpZero = true;
    155   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    156     MatchOp  = TI->getOperand(1);
    157     OtherOpT = TI->getOperand(0);
    158     OtherOpF = FI->getOperand(0);
    159     MatchIsOpZero = false;
    160   } else if (!TI->isCommutative()) {
    161     return 0;
    162   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    163     MatchOp  = TI->getOperand(0);
    164     OtherOpT = TI->getOperand(1);
    165     OtherOpF = FI->getOperand(0);
    166     MatchIsOpZero = true;
    167   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    168     MatchOp  = TI->getOperand(1);
    169     OtherOpT = TI->getOperand(0);
    170     OtherOpF = FI->getOperand(1);
    171     MatchIsOpZero = true;
    172   } else {
    173     return 0;
    174   }
    175 
    176   // If we reach here, they do have operations in common.
    177   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    178                                        OtherOpF, SI.getName()+".v");
    179 
    180   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    181     if (MatchIsOpZero)
    182       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    183     else
    184       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    185   }
    186   llvm_unreachable("Shouldn't get here");
    187   return 0;
    188 }
    189 
    190 static bool isSelect01(Constant *C1, Constant *C2) {
    191   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    192   if (!C1I)
    193     return false;
    194   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    195   if (!C2I)
    196     return false;
    197   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    198     return false;
    199   return C1I->isOne() || C1I->isAllOnesValue() ||
    200          C2I->isOne() || C2I->isAllOnesValue();
    201 }
    202 
    203 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    204 /// facilitate further optimization.
    205 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    206                                             Value *FalseVal) {
    207   // See the comment above GetSelectFoldableOperands for a description of the
    208   // transformation we are doing here.
    209   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    210     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    211         !isa<Constant>(FalseVal)) {
    212       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    213         unsigned OpToFold = 0;
    214         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    215           OpToFold = 1;
    216         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    217           OpToFold = 2;
    218         }
    219 
    220         if (OpToFold) {
    221           Constant *C = GetSelectFoldableConstant(TVI);
    222           Value *OOp = TVI->getOperand(2-OpToFold);
    223           // Avoid creating select between 2 constants unless it's selecting
    224           // between 0, 1 and -1.
    225           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    226             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    227             NewSel->takeName(TVI);
    228             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    229             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    230                                                         FalseVal, NewSel);
    231             if (isa<PossiblyExactOperator>(BO))
    232               BO->setIsExact(TVI_BO->isExact());
    233             if (isa<OverflowingBinaryOperator>(BO)) {
    234               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    235               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    236             }
    237             return BO;
    238           }
    239         }
    240       }
    241     }
    242   }
    243 
    244   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    245     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    246         !isa<Constant>(TrueVal)) {
    247       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    248         unsigned OpToFold = 0;
    249         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    250           OpToFold = 1;
    251         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    252           OpToFold = 2;
    253         }
    254 
    255         if (OpToFold) {
    256           Constant *C = GetSelectFoldableConstant(FVI);
    257           Value *OOp = FVI->getOperand(2-OpToFold);
    258           // Avoid creating select between 2 constants unless it's selecting
    259           // between 0, 1 and -1.
    260           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    261             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    262             NewSel->takeName(FVI);
    263             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    264             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    265                                                         TrueVal, NewSel);
    266             if (isa<PossiblyExactOperator>(BO))
    267               BO->setIsExact(FVI_BO->isExact());
    268             if (isa<OverflowingBinaryOperator>(BO)) {
    269               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    270               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    271             }
    272             return BO;
    273           }
    274         }
    275       }
    276     }
    277   }
    278 
    279   return 0;
    280 }
    281 
    282 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    283 /// replaced with RepOp.
    284 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    285                                      const TargetData *TD) {
    286   // Trivial replacement.
    287   if (V == Op)
    288     return RepOp;
    289 
    290   Instruction *I = dyn_cast<Instruction>(V);
    291   if (!I)
    292     return 0;
    293 
    294   // If this is a binary operator, try to simplify it with the replaced op.
    295   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    296     if (B->getOperand(0) == Op)
    297       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD);
    298     if (B->getOperand(1) == Op)
    299       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD);
    300   }
    301 
    302   // Same for CmpInsts.
    303   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    304     if (C->getOperand(0) == Op)
    305       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD);
    306     if (C->getOperand(1) == Op)
    307       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD);
    308   }
    309 
    310   // TODO: We could hand off more cases to instsimplify here.
    311 
    312   // If all operands are constant after substituting Op for RepOp then we can
    313   // constant fold the instruction.
    314   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    315     // Build a list of all constant operands.
    316     SmallVector<Constant*, 8> ConstOps;
    317     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    318       if (I->getOperand(i) == Op)
    319         ConstOps.push_back(CRepOp);
    320       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    321         ConstOps.push_back(COp);
    322       else
    323         break;
    324     }
    325 
    326     // All operands were constants, fold it.
    327     if (ConstOps.size() == I->getNumOperands()) {
    328       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    329         if (!LI->isVolatile())
    330           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
    331 
    332       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    333                                       ConstOps, TD);
    334     }
    335   }
    336 
    337   return 0;
    338 }
    339 
    340 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    341 /// ICmpInst as its first operand.
    342 ///
    343 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    344                                                    ICmpInst *ICI) {
    345   bool Changed = false;
    346   ICmpInst::Predicate Pred = ICI->getPredicate();
    347   Value *CmpLHS = ICI->getOperand(0);
    348   Value *CmpRHS = ICI->getOperand(1);
    349   Value *TrueVal = SI.getTrueValue();
    350   Value *FalseVal = SI.getFalseValue();
    351 
    352   // Check cases where the comparison is with a constant that
    353   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    354   // here, so make sure the select is the only user.
    355   if (ICI->hasOneUse())
    356     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    357       // X < MIN ? T : F  -->  F
    358       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    359           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    360         return ReplaceInstUsesWith(SI, FalseVal);
    361       // X > MAX ? T : F  -->  F
    362       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    363                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    364         return ReplaceInstUsesWith(SI, FalseVal);
    365       switch (Pred) {
    366       default: break;
    367       case ICmpInst::ICMP_ULT:
    368       case ICmpInst::ICMP_SLT:
    369       case ICmpInst::ICMP_UGT:
    370       case ICmpInst::ICMP_SGT: {
    371         // These transformations only work for selects over integers.
    372         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    373         if (!SelectTy)
    374           break;
    375 
    376         Constant *AdjustedRHS;
    377         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    378           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    379         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    380           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    381 
    382         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    383         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    384         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    385             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    386           ; // Nothing to do here. Values match without any sign/zero extension.
    387 
    388         // Types do not match. Instead of calculating this with mixed types
    389         // promote all to the larger type. This enables scalar evolution to
    390         // analyze this expression.
    391         else if (CmpRHS->getType()->getScalarSizeInBits()
    392                  < SelectTy->getBitWidth()) {
    393           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    394 
    395           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    396           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    397           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    398           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    399           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    400                 sextRHS == FalseVal) {
    401             CmpLHS = TrueVal;
    402             AdjustedRHS = sextRHS;
    403           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    404                      sextRHS == TrueVal) {
    405             CmpLHS = FalseVal;
    406             AdjustedRHS = sextRHS;
    407           } else if (ICI->isUnsigned()) {
    408             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    409             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    410             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    411             // zext + signed compare cannot be changed:
    412             //    0xff <s 0x00, but 0x00ff >s 0x0000
    413             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    414                 zextRHS == FalseVal) {
    415               CmpLHS = TrueVal;
    416               AdjustedRHS = zextRHS;
    417             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    418                        zextRHS == TrueVal) {
    419               CmpLHS = FalseVal;
    420               AdjustedRHS = zextRHS;
    421             } else
    422               break;
    423           } else
    424             break;
    425         } else
    426           break;
    427 
    428         Pred = ICmpInst::getSwappedPredicate(Pred);
    429         CmpRHS = AdjustedRHS;
    430         std::swap(FalseVal, TrueVal);
    431         ICI->setPredicate(Pred);
    432         ICI->setOperand(0, CmpLHS);
    433         ICI->setOperand(1, CmpRHS);
    434         SI.setOperand(1, TrueVal);
    435         SI.setOperand(2, FalseVal);
    436 
    437         // Move ICI instruction right before the select instruction. Otherwise
    438         // the sext/zext value may be defined after the ICI instruction uses it.
    439         ICI->moveBefore(&SI);
    440 
    441         Changed = true;
    442         break;
    443       }
    444       }
    445     }
    446 
    447   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    448   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    449   // FIXME: Type and constness constraints could be lifted, but we have to
    450   //        watch code size carefully. We should consider xor instead of
    451   //        sub/add when we decide to do that.
    452   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    453     if (TrueVal->getType() == Ty) {
    454       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    455         ConstantInt *C1 = NULL, *C2 = NULL;
    456         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    457           C1 = dyn_cast<ConstantInt>(TrueVal);
    458           C2 = dyn_cast<ConstantInt>(FalseVal);
    459         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    460           C1 = dyn_cast<ConstantInt>(FalseVal);
    461           C2 = dyn_cast<ConstantInt>(TrueVal);
    462         }
    463         if (C1 && C2) {
    464           // This shift results in either -1 or 0.
    465           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    466 
    467           // Check if we can express the operation with a single or.
    468           if (C2->isAllOnesValue())
    469             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    470 
    471           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    472           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    473         }
    474       }
    475     }
    476   }
    477 
    478   // If we have an equality comparison then we know the value in one of the
    479   // arms of the select. See if substituting this value into the arm and
    480   // simplifying the result yields the same value as the other arm.
    481   if (Pred == ICmpInst::ICMP_EQ) {
    482     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD) == TrueVal ||
    483         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD) == TrueVal)
    484       return ReplaceInstUsesWith(SI, FalseVal);
    485     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD) == FalseVal ||
    486         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD) == FalseVal)
    487       return ReplaceInstUsesWith(SI, FalseVal);
    488   } else if (Pred == ICmpInst::ICMP_NE) {
    489     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD) == FalseVal ||
    490         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD) == FalseVal)
    491       return ReplaceInstUsesWith(SI, TrueVal);
    492     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD) == TrueVal ||
    493         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD) == TrueVal)
    494       return ReplaceInstUsesWith(SI, TrueVal);
    495   }
    496 
    497   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    498 
    499   if (isa<Constant>(CmpRHS)) {
    500     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    501       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    502       SI.setOperand(1, CmpRHS);
    503       Changed = true;
    504     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    505       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    506       SI.setOperand(2, CmpRHS);
    507       Changed = true;
    508     }
    509   }
    510 
    511   return Changed ? &SI : 0;
    512 }
    513 
    514 
    515 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    516 /// PHI node (but the two may be in different blocks).  See if the true/false
    517 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    518 /// example, cases like this cannot be mapped:
    519 ///
    520 ///   X = phi [ C1, BB1], [C2, BB2]
    521 ///   Y = add
    522 ///   Z = select X, Y, 0
    523 ///
    524 /// because Y is not live in BB1/BB2.
    525 ///
    526 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    527                                                    const SelectInst &SI) {
    528   // If the value is a non-instruction value like a constant or argument, it
    529   // can always be mapped.
    530   const Instruction *I = dyn_cast<Instruction>(V);
    531   if (I == 0) return true;
    532 
    533   // If V is a PHI node defined in the same block as the condition PHI, we can
    534   // map the arguments.
    535   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    536 
    537   if (const PHINode *VP = dyn_cast<PHINode>(I))
    538     if (VP->getParent() == CondPHI->getParent())
    539       return true;
    540 
    541   // Otherwise, if the PHI and select are defined in the same block and if V is
    542   // defined in a different block, then we can transform it.
    543   if (SI.getParent() == CondPHI->getParent() &&
    544       I->getParent() != CondPHI->getParent())
    545     return true;
    546 
    547   // Otherwise we have a 'hard' case and we can't tell without doing more
    548   // detailed dominator based analysis, punt.
    549   return false;
    550 }
    551 
    552 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    553 ///   SPF2(SPF1(A, B), C)
    554 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    555                                         SelectPatternFlavor SPF1,
    556                                         Value *A, Value *B,
    557                                         Instruction &Outer,
    558                                         SelectPatternFlavor SPF2, Value *C) {
    559   if (C == A || C == B) {
    560     // MAX(MAX(A, B), B) -> MAX(A, B)
    561     // MIN(MIN(a, b), a) -> MIN(a, b)
    562     if (SPF1 == SPF2)
    563       return ReplaceInstUsesWith(Outer, Inner);
    564 
    565     // MAX(MIN(a, b), a) -> a
    566     // MIN(MAX(a, b), a) -> a
    567     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    568         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    569         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    570         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    571       return ReplaceInstUsesWith(Outer, C);
    572   }
    573 
    574   // TODO: MIN(MIN(A, 23), 97)
    575   return 0;
    576 }
    577 
    578 
    579 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    580 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    581 /// with the non-constant value and a power of two we can turn the select
    582 /// into a shift on the result of the 'and'.
    583 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    584                                 ConstantInt *FalseVal,
    585                                 InstCombiner::BuilderTy *Builder) {
    586   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    587   if (!IC || !IC->isEquality())
    588     return 0;
    589 
    590   if (!match(IC->getOperand(1), m_Zero()))
    591     return 0;
    592 
    593   ConstantInt *AndRHS;
    594   Value *LHS = IC->getOperand(0);
    595   if (LHS->getType() != SI.getType() ||
    596       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    597     return 0;
    598 
    599   // If both select arms are non-zero see if we have a select of the form
    600   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    601   // for 'x ? 2^n : 0' and fix the thing up at the end.
    602   ConstantInt *Offset = 0;
    603   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    604     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    605       Offset = FalseVal;
    606     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    607       Offset = TrueVal;
    608     else
    609       return 0;
    610 
    611     // Adjust TrueVal and FalseVal to the offset.
    612     TrueVal = ConstantInt::get(Builder->getContext(),
    613                                TrueVal->getValue() - Offset->getValue());
    614     FalseVal = ConstantInt::get(Builder->getContext(),
    615                                 FalseVal->getValue() - Offset->getValue());
    616   }
    617 
    618   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    619   if (!AndRHS->getValue().isPowerOf2() ||
    620       (!TrueVal->getValue().isPowerOf2() &&
    621        !FalseVal->getValue().isPowerOf2()))
    622     return 0;
    623 
    624   // Determine which shift is needed to transform result of the 'and' into the
    625   // desired result.
    626   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    627   unsigned ValZeros = ValC->getValue().logBase2();
    628   unsigned AndZeros = AndRHS->getValue().logBase2();
    629 
    630   Value *V = LHS;
    631   if (ValZeros > AndZeros)
    632     V = Builder->CreateShl(V, ValZeros - AndZeros);
    633   else if (ValZeros < AndZeros)
    634     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    635 
    636   // Okay, now we know that everything is set up, we just don't know whether we
    637   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    638   bool ShouldNotVal = !TrueVal->isZero();
    639   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    640   if (ShouldNotVal)
    641     V = Builder->CreateXor(V, ValC);
    642 
    643   // Apply an offset if needed.
    644   if (Offset)
    645     V = Builder->CreateAdd(V, Offset);
    646   return V;
    647 }
    648 
    649 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    650   Value *CondVal = SI.getCondition();
    651   Value *TrueVal = SI.getTrueValue();
    652   Value *FalseVal = SI.getFalseValue();
    653 
    654   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    655     return ReplaceInstUsesWith(SI, V);
    656 
    657   if (SI.getType()->isIntegerTy(1)) {
    658     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    659       if (C->getZExtValue()) {
    660         // Change: A = select B, true, C --> A = or B, C
    661         return BinaryOperator::CreateOr(CondVal, FalseVal);
    662       }
    663       // Change: A = select B, false, C --> A = and !B, C
    664       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    665       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    666     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    667       if (C->getZExtValue() == false) {
    668         // Change: A = select B, C, false --> A = and B, C
    669         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    670       }
    671       // Change: A = select B, C, true --> A = or !B, C
    672       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    673       return BinaryOperator::CreateOr(NotCond, TrueVal);
    674     }
    675 
    676     // select a, b, a  -> a&b
    677     // select a, a, b  -> a|b
    678     if (CondVal == TrueVal)
    679       return BinaryOperator::CreateOr(CondVal, FalseVal);
    680     else if (CondVal == FalseVal)
    681       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    682   }
    683 
    684   // Selecting between two integer constants?
    685   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    686     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    687       // select C, 1, 0 -> zext C to int
    688       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    689         return new ZExtInst(CondVal, SI.getType());
    690 
    691       // select C, -1, 0 -> sext C to int
    692       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    693         return new SExtInst(CondVal, SI.getType());
    694 
    695       // select C, 0, 1 -> zext !C to int
    696       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    697         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    698         return new ZExtInst(NotCond, SI.getType());
    699       }
    700 
    701       // select C, 0, -1 -> sext !C to int
    702       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    703         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    704         return new SExtInst(NotCond, SI.getType());
    705       }
    706 
    707       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    708         return ReplaceInstUsesWith(SI, V);
    709     }
    710 
    711   // See if we are selecting two values based on a comparison of the two values.
    712   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    713     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    714       // Transform (X == Y) ? X : Y  -> Y
    715       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    716         // This is not safe in general for floating point:
    717         // consider X== -0, Y== +0.
    718         // It becomes safe if either operand is a nonzero constant.
    719         ConstantFP *CFPt, *CFPf;
    720         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    721               !CFPt->getValueAPF().isZero()) ||
    722             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    723              !CFPf->getValueAPF().isZero()))
    724         return ReplaceInstUsesWith(SI, FalseVal);
    725       }
    726       // Transform (X une Y) ? X : Y  -> X
    727       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    728         // This is not safe in general for floating point:
    729         // consider X== -0, Y== +0.
    730         // It becomes safe if either operand is a nonzero constant.
    731         ConstantFP *CFPt, *CFPf;
    732         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    733               !CFPt->getValueAPF().isZero()) ||
    734             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    735              !CFPf->getValueAPF().isZero()))
    736         return ReplaceInstUsesWith(SI, TrueVal);
    737       }
    738       // NOTE: if we wanted to, this is where to detect MIN/MAX
    739 
    740     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    741       // Transform (X == Y) ? Y : X  -> X
    742       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    743         // This is not safe in general for floating point:
    744         // consider X== -0, Y== +0.
    745         // It becomes safe if either operand is a nonzero constant.
    746         ConstantFP *CFPt, *CFPf;
    747         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    748               !CFPt->getValueAPF().isZero()) ||
    749             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    750              !CFPf->getValueAPF().isZero()))
    751           return ReplaceInstUsesWith(SI, FalseVal);
    752       }
    753       // Transform (X une Y) ? Y : X  -> Y
    754       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    755         // This is not safe in general for floating point:
    756         // consider X== -0, Y== +0.
    757         // It becomes safe if either operand is a nonzero constant.
    758         ConstantFP *CFPt, *CFPf;
    759         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    760               !CFPt->getValueAPF().isZero()) ||
    761             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    762              !CFPf->getValueAPF().isZero()))
    763           return ReplaceInstUsesWith(SI, TrueVal);
    764       }
    765       // NOTE: if we wanted to, this is where to detect MIN/MAX
    766     }
    767     // NOTE: if we wanted to, this is where to detect ABS
    768   }
    769 
    770   // See if we are selecting two values based on a comparison of the two values.
    771   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    772     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    773       return Result;
    774 
    775   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    776     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    777       if (TI->hasOneUse() && FI->hasOneUse()) {
    778         Instruction *AddOp = 0, *SubOp = 0;
    779 
    780         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    781         if (TI->getOpcode() == FI->getOpcode())
    782           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    783             return IV;
    784 
    785         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    786         // even legal for FP.
    787         if ((TI->getOpcode() == Instruction::Sub &&
    788              FI->getOpcode() == Instruction::Add) ||
    789             (TI->getOpcode() == Instruction::FSub &&
    790              FI->getOpcode() == Instruction::FAdd)) {
    791           AddOp = FI; SubOp = TI;
    792         } else if ((FI->getOpcode() == Instruction::Sub &&
    793                     TI->getOpcode() == Instruction::Add) ||
    794                    (FI->getOpcode() == Instruction::FSub &&
    795                     TI->getOpcode() == Instruction::FAdd)) {
    796           AddOp = TI; SubOp = FI;
    797         }
    798 
    799         if (AddOp) {
    800           Value *OtherAddOp = 0;
    801           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    802             OtherAddOp = AddOp->getOperand(1);
    803           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    804             OtherAddOp = AddOp->getOperand(0);
    805           }
    806 
    807           if (OtherAddOp) {
    808             // So at this point we know we have (Y -> OtherAddOp):
    809             //        select C, (add X, Y), (sub X, Z)
    810             Value *NegVal;  // Compute -Z
    811             if (SI.getType()->isFPOrFPVectorTy()) {
    812               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    813             } else {
    814               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
    815             }
    816 
    817             Value *NewTrueOp = OtherAddOp;
    818             Value *NewFalseOp = NegVal;
    819             if (AddOp != TI)
    820               std::swap(NewTrueOp, NewFalseOp);
    821             Value *NewSel =
    822               Builder->CreateSelect(CondVal, NewTrueOp,
    823                                     NewFalseOp, SI.getName() + ".p");
    824 
    825             if (SI.getType()->isFPOrFPVectorTy())
    826               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    827             else
    828               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    829           }
    830         }
    831       }
    832 
    833   // See if we can fold the select into one of our operands.
    834   if (SI.getType()->isIntegerTy()) {
    835     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
    836       return FoldI;
    837 
    838     // MAX(MAX(a, b), a) -> MAX(a, b)
    839     // MIN(MIN(a, b), a) -> MIN(a, b)
    840     // MAX(MIN(a, b), a) -> a
    841     // MIN(MAX(a, b), a) -> a
    842     Value *LHS, *RHS, *LHS2, *RHS2;
    843     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
    844       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
    845         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
    846                                           SI, SPF, RHS))
    847           return R;
    848       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
    849         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
    850                                           SI, SPF, LHS))
    851           return R;
    852     }
    853 
    854     // TODO.
    855     // ABS(-X) -> ABS(X)
    856     // ABS(ABS(X)) -> ABS(X)
    857   }
    858 
    859   // See if we can fold the select into a phi node if the condition is a select.
    860   if (isa<PHINode>(SI.getCondition()))
    861     // The true/false values have to be live in the PHI predecessor's blocks.
    862     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
    863         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
    864       if (Instruction *NV = FoldOpIntoPhi(SI))
    865         return NV;
    866 
    867   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    868     if (TrueSI->getCondition() == CondVal) {
    869       SI.setOperand(1, TrueSI->getTrueValue());
    870       return &SI;
    871     }
    872   }
    873   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    874     if (FalseSI->getCondition() == CondVal) {
    875       SI.setOperand(2, FalseSI->getFalseValue());
    876       return &SI;
    877     }
    878   }
    879 
    880   if (BinaryOperator::isNot(CondVal)) {
    881     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    882     SI.setOperand(1, FalseVal);
    883     SI.setOperand(2, TrueVal);
    884     return &SI;
    885   }
    886 
    887   return 0;
    888 }
    889