Home | History | Annotate | Download | only in Scalar
      1 //===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines ObjC ARC optimizations. ARC stands for
     11 // Automatic Reference Counting and is a system for managing reference counts
     12 // for objects in Objective C.
     13 //
     14 // The optimizations performed include elimination of redundant, partially
     15 // redundant, and inconsequential reference count operations, elimination of
     16 // redundant weak pointer operations, pattern-matching and replacement of
     17 // low-level operations into higher-level operations, and numerous minor
     18 // simplifications.
     19 //
     20 // This file also defines a simple ARC-aware AliasAnalysis.
     21 //
     22 // WARNING: This file knows about certain library functions. It recognizes them
     23 // by name, and hardwires knowedge of their semantics.
     24 //
     25 // WARNING: This file knows about how certain Objective-C library functions are
     26 // used. Naive LLVM IR transformations which would otherwise be
     27 // behavior-preserving may break these assumptions.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 
     31 #define DEBUG_TYPE "objc-arc"
     32 #include "llvm/Function.h"
     33 #include "llvm/Intrinsics.h"
     34 #include "llvm/GlobalVariable.h"
     35 #include "llvm/DerivedTypes.h"
     36 #include "llvm/Module.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/Transforms/Utils/Local.h"
     39 #include "llvm/Support/CallSite.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/ADT/StringSwitch.h"
     42 #include "llvm/ADT/DenseMap.h"
     43 #include "llvm/ADT/STLExtras.h"
     44 using namespace llvm;
     45 
     46 // A handy option to enable/disable all optimizations in this file.
     47 static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
     48 
     49 //===----------------------------------------------------------------------===//
     50 // Misc. Utilities
     51 //===----------------------------------------------------------------------===//
     52 
     53 namespace {
     54   /// MapVector - An associative container with fast insertion-order
     55   /// (deterministic) iteration over its elements. Plus the special
     56   /// blot operation.
     57   template<class KeyT, class ValueT>
     58   class MapVector {
     59     /// Map - Map keys to indices in Vector.
     60     typedef DenseMap<KeyT, size_t> MapTy;
     61     MapTy Map;
     62 
     63     /// Vector - Keys and values.
     64     typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
     65     VectorTy Vector;
     66 
     67   public:
     68     typedef typename VectorTy::iterator iterator;
     69     typedef typename VectorTy::const_iterator const_iterator;
     70     iterator begin() { return Vector.begin(); }
     71     iterator end() { return Vector.end(); }
     72     const_iterator begin() const { return Vector.begin(); }
     73     const_iterator end() const { return Vector.end(); }
     74 
     75 #ifdef XDEBUG
     76     ~MapVector() {
     77       assert(Vector.size() >= Map.size()); // May differ due to blotting.
     78       for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
     79            I != E; ++I) {
     80         assert(I->second < Vector.size());
     81         assert(Vector[I->second].first == I->first);
     82       }
     83       for (typename VectorTy::const_iterator I = Vector.begin(),
     84            E = Vector.end(); I != E; ++I)
     85         assert(!I->first ||
     86                (Map.count(I->first) &&
     87                 Map[I->first] == size_t(I - Vector.begin())));
     88     }
     89 #endif
     90 
     91     ValueT &operator[](KeyT Arg) {
     92       std::pair<typename MapTy::iterator, bool> Pair =
     93         Map.insert(std::make_pair(Arg, size_t(0)));
     94       if (Pair.second) {
     95         Pair.first->second = Vector.size();
     96         Vector.push_back(std::make_pair(Arg, ValueT()));
     97         return Vector.back().second;
     98       }
     99       return Vector[Pair.first->second].second;
    100     }
    101 
    102     std::pair<iterator, bool>
    103     insert(const std::pair<KeyT, ValueT> &InsertPair) {
    104       std::pair<typename MapTy::iterator, bool> Pair =
    105         Map.insert(std::make_pair(InsertPair.first, size_t(0)));
    106       if (Pair.second) {
    107         Pair.first->second = Vector.size();
    108         Vector.push_back(InsertPair);
    109         return std::make_pair(llvm::prior(Vector.end()), true);
    110       }
    111       return std::make_pair(Vector.begin() + Pair.first->second, false);
    112     }
    113 
    114     const_iterator find(KeyT Key) const {
    115       typename MapTy::const_iterator It = Map.find(Key);
    116       if (It == Map.end()) return Vector.end();
    117       return Vector.begin() + It->second;
    118     }
    119 
    120     /// blot - This is similar to erase, but instead of removing the element
    121     /// from the vector, it just zeros out the key in the vector. This leaves
    122     /// iterators intact, but clients must be prepared for zeroed-out keys when
    123     /// iterating.
    124     void blot(KeyT Key) {
    125       typename MapTy::iterator It = Map.find(Key);
    126       if (It == Map.end()) return;
    127       Vector[It->second].first = KeyT();
    128       Map.erase(It);
    129     }
    130 
    131     void clear() {
    132       Map.clear();
    133       Vector.clear();
    134     }
    135   };
    136 }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // ARC Utilities.
    140 //===----------------------------------------------------------------------===//
    141 
    142 namespace {
    143   /// InstructionClass - A simple classification for instructions.
    144   enum InstructionClass {
    145     IC_Retain,              ///< objc_retain
    146     IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
    147     IC_RetainBlock,         ///< objc_retainBlock
    148     IC_Release,             ///< objc_release
    149     IC_Autorelease,         ///< objc_autorelease
    150     IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
    151     IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
    152     IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
    153     IC_NoopCast,            ///< objc_retainedObject, etc.
    154     IC_FusedRetainAutorelease, ///< objc_retainAutorelease
    155     IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
    156     IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
    157     IC_StoreWeak,           ///< objc_storeWeak (primitive)
    158     IC_InitWeak,            ///< objc_initWeak (derived)
    159     IC_LoadWeak,            ///< objc_loadWeak (derived)
    160     IC_MoveWeak,            ///< objc_moveWeak (derived)
    161     IC_CopyWeak,            ///< objc_copyWeak (derived)
    162     IC_DestroyWeak,         ///< objc_destroyWeak (derived)
    163     IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
    164     IC_Call,                ///< could call objc_release
    165     IC_User,                ///< could "use" a pointer
    166     IC_None                 ///< anything else
    167   };
    168 }
    169 
    170 /// IsPotentialUse - Test whether the given value is possible a
    171 /// reference-counted pointer.
    172 static bool IsPotentialUse(const Value *Op) {
    173   // Pointers to static or stack storage are not reference-counted pointers.
    174   if (isa<Constant>(Op) || isa<AllocaInst>(Op))
    175     return false;
    176   // Special arguments are not reference-counted.
    177   if (const Argument *Arg = dyn_cast<Argument>(Op))
    178     if (Arg->hasByValAttr() ||
    179         Arg->hasNestAttr() ||
    180         Arg->hasStructRetAttr())
    181       return false;
    182   // Only consider values with pointer types, and not function pointers.
    183   PointerType *Ty = dyn_cast<PointerType>(Op->getType());
    184   if (!Ty || isa<FunctionType>(Ty->getElementType()))
    185     return false;
    186   // Conservatively assume anything else is a potential use.
    187   return true;
    188 }
    189 
    190 /// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
    191 /// of construct CS is.
    192 static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
    193   for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
    194        I != E; ++I)
    195     if (IsPotentialUse(*I))
    196       return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
    197 
    198   return CS.onlyReadsMemory() ? IC_None : IC_Call;
    199 }
    200 
    201 /// GetFunctionClass - Determine if F is one of the special known Functions.
    202 /// If it isn't, return IC_CallOrUser.
    203 static InstructionClass GetFunctionClass(const Function *F) {
    204   Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
    205 
    206   // No arguments.
    207   if (AI == AE)
    208     return StringSwitch<InstructionClass>(F->getName())
    209       .Case("objc_autoreleasePoolPush",  IC_AutoreleasepoolPush)
    210       .Default(IC_CallOrUser);
    211 
    212   // One argument.
    213   const Argument *A0 = AI++;
    214   if (AI == AE)
    215     // Argument is a pointer.
    216     if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
    217       Type *ETy = PTy->getElementType();
    218       // Argument is i8*.
    219       if (ETy->isIntegerTy(8))
    220         return StringSwitch<InstructionClass>(F->getName())
    221           .Case("objc_retain",                IC_Retain)
    222           .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
    223           .Case("objc_retainBlock",           IC_RetainBlock)
    224           .Case("objc_release",               IC_Release)
    225           .Case("objc_autorelease",           IC_Autorelease)
    226           .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
    227           .Case("objc_autoreleasePoolPop",    IC_AutoreleasepoolPop)
    228           .Case("objc_retainedObject",        IC_NoopCast)
    229           .Case("objc_unretainedObject",      IC_NoopCast)
    230           .Case("objc_unretainedPointer",     IC_NoopCast)
    231           .Case("objc_retain_autorelease",    IC_FusedRetainAutorelease)
    232           .Case("objc_retainAutorelease",     IC_FusedRetainAutorelease)
    233           .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
    234           .Default(IC_CallOrUser);
    235 
    236       // Argument is i8**
    237       if (PointerType *Pte = dyn_cast<PointerType>(ETy))
    238         if (Pte->getElementType()->isIntegerTy(8))
    239           return StringSwitch<InstructionClass>(F->getName())
    240             .Case("objc_loadWeakRetained",      IC_LoadWeakRetained)
    241             .Case("objc_loadWeak",              IC_LoadWeak)
    242             .Case("objc_destroyWeak",           IC_DestroyWeak)
    243             .Default(IC_CallOrUser);
    244     }
    245 
    246   // Two arguments, first is i8**.
    247   const Argument *A1 = AI++;
    248   if (AI == AE)
    249     if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
    250       if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
    251         if (Pte->getElementType()->isIntegerTy(8))
    252           if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
    253             Type *ETy1 = PTy1->getElementType();
    254             // Second argument is i8*
    255             if (ETy1->isIntegerTy(8))
    256               return StringSwitch<InstructionClass>(F->getName())
    257                      .Case("objc_storeWeak",             IC_StoreWeak)
    258                      .Case("objc_initWeak",              IC_InitWeak)
    259                      .Default(IC_CallOrUser);
    260             // Second argument is i8**.
    261             if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
    262               if (Pte1->getElementType()->isIntegerTy(8))
    263                 return StringSwitch<InstructionClass>(F->getName())
    264                        .Case("objc_moveWeak",              IC_MoveWeak)
    265                        .Case("objc_copyWeak",              IC_CopyWeak)
    266                        .Default(IC_CallOrUser);
    267           }
    268 
    269   // Anything else.
    270   return IC_CallOrUser;
    271 }
    272 
    273 /// GetInstructionClass - Determine what kind of construct V is.
    274 static InstructionClass GetInstructionClass(const Value *V) {
    275   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    276     // Any instruction other than bitcast and gep with a pointer operand have a
    277     // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
    278     // to a subsequent use, rather than using it themselves, in this sense.
    279     // As a short cut, several other opcodes are known to have no pointer
    280     // operands of interest. And ret is never followed by a release, so it's
    281     // not interesting to examine.
    282     switch (I->getOpcode()) {
    283     case Instruction::Call: {
    284       const CallInst *CI = cast<CallInst>(I);
    285       // Check for calls to special functions.
    286       if (const Function *F = CI->getCalledFunction()) {
    287         InstructionClass Class = GetFunctionClass(F);
    288         if (Class != IC_CallOrUser)
    289           return Class;
    290 
    291         // None of the intrinsic functions do objc_release. For intrinsics, the
    292         // only question is whether or not they may be users.
    293         switch (F->getIntrinsicID()) {
    294         case 0: break;
    295         case Intrinsic::bswap: case Intrinsic::ctpop:
    296         case Intrinsic::ctlz: case Intrinsic::cttz:
    297         case Intrinsic::returnaddress: case Intrinsic::frameaddress:
    298         case Intrinsic::stacksave: case Intrinsic::stackrestore:
    299         case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
    300         // Don't let dbg info affect our results.
    301         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
    302           // Short cut: Some intrinsics obviously don't use ObjC pointers.
    303           return IC_None;
    304         default:
    305           for (Function::const_arg_iterator AI = F->arg_begin(),
    306                AE = F->arg_end(); AI != AE; ++AI)
    307             if (IsPotentialUse(AI))
    308               return IC_User;
    309           return IC_None;
    310         }
    311       }
    312       return GetCallSiteClass(CI);
    313     }
    314     case Instruction::Invoke:
    315       return GetCallSiteClass(cast<InvokeInst>(I));
    316     case Instruction::BitCast:
    317     case Instruction::GetElementPtr:
    318     case Instruction::Select: case Instruction::PHI:
    319     case Instruction::Ret: case Instruction::Br:
    320     case Instruction::Switch: case Instruction::IndirectBr:
    321     case Instruction::Alloca: case Instruction::VAArg:
    322     case Instruction::Add: case Instruction::FAdd:
    323     case Instruction::Sub: case Instruction::FSub:
    324     case Instruction::Mul: case Instruction::FMul:
    325     case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
    326     case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
    327     case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
    328     case Instruction::And: case Instruction::Or: case Instruction::Xor:
    329     case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
    330     case Instruction::IntToPtr: case Instruction::FCmp:
    331     case Instruction::FPTrunc: case Instruction::FPExt:
    332     case Instruction::FPToUI: case Instruction::FPToSI:
    333     case Instruction::UIToFP: case Instruction::SIToFP:
    334     case Instruction::InsertElement: case Instruction::ExtractElement:
    335     case Instruction::ShuffleVector:
    336     case Instruction::ExtractValue:
    337       break;
    338     case Instruction::ICmp:
    339       // Comparing a pointer with null, or any other constant, isn't an
    340       // interesting use, because we don't care what the pointer points to, or
    341       // about the values of any other dynamic reference-counted pointers.
    342       if (IsPotentialUse(I->getOperand(1)))
    343         return IC_User;
    344       break;
    345     default:
    346       // For anything else, check all the operands.
    347       // Note that this includes both operands of a Store: while the first
    348       // operand isn't actually being dereferenced, it is being stored to
    349       // memory where we can no longer track who might read it and dereference
    350       // it, so we have to consider it potentially used.
    351       for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
    352            OI != OE; ++OI)
    353         if (IsPotentialUse(*OI))
    354           return IC_User;
    355     }
    356   }
    357 
    358   // Otherwise, it's totally inert for ARC purposes.
    359   return IC_None;
    360 }
    361 
    362 /// GetBasicInstructionClass - Determine what kind of construct V is. This is
    363 /// similar to GetInstructionClass except that it only detects objc runtine
    364 /// calls. This allows it to be faster.
    365 static InstructionClass GetBasicInstructionClass(const Value *V) {
    366   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
    367     if (const Function *F = CI->getCalledFunction())
    368       return GetFunctionClass(F);
    369     // Otherwise, be conservative.
    370     return IC_CallOrUser;
    371   }
    372 
    373   // Otherwise, be conservative.
    374   return IC_User;
    375 }
    376 
    377 /// IsRetain - Test if the the given class is objc_retain or
    378 /// equivalent.
    379 static bool IsRetain(InstructionClass Class) {
    380   return Class == IC_Retain ||
    381          Class == IC_RetainRV;
    382 }
    383 
    384 /// IsAutorelease - Test if the the given class is objc_autorelease or
    385 /// equivalent.
    386 static bool IsAutorelease(InstructionClass Class) {
    387   return Class == IC_Autorelease ||
    388          Class == IC_AutoreleaseRV;
    389 }
    390 
    391 /// IsForwarding - Test if the given class represents instructions which return
    392 /// their argument verbatim.
    393 static bool IsForwarding(InstructionClass Class) {
    394   // objc_retainBlock technically doesn't always return its argument
    395   // verbatim, but it doesn't matter for our purposes here.
    396   return Class == IC_Retain ||
    397          Class == IC_RetainRV ||
    398          Class == IC_Autorelease ||
    399          Class == IC_AutoreleaseRV ||
    400          Class == IC_RetainBlock ||
    401          Class == IC_NoopCast;
    402 }
    403 
    404 /// IsNoopOnNull - Test if the given class represents instructions which do
    405 /// nothing if passed a null pointer.
    406 static bool IsNoopOnNull(InstructionClass Class) {
    407   return Class == IC_Retain ||
    408          Class == IC_RetainRV ||
    409          Class == IC_Release ||
    410          Class == IC_Autorelease ||
    411          Class == IC_AutoreleaseRV ||
    412          Class == IC_RetainBlock;
    413 }
    414 
    415 /// IsAlwaysTail - Test if the given class represents instructions which are
    416 /// always safe to mark with the "tail" keyword.
    417 static bool IsAlwaysTail(InstructionClass Class) {
    418   // IC_RetainBlock may be given a stack argument.
    419   return Class == IC_Retain ||
    420          Class == IC_RetainRV ||
    421          Class == IC_Autorelease ||
    422          Class == IC_AutoreleaseRV;
    423 }
    424 
    425 /// IsNoThrow - Test if the given class represents instructions which are always
    426 /// safe to mark with the nounwind attribute..
    427 static bool IsNoThrow(InstructionClass Class) {
    428   // objc_retainBlock is not nounwind because it calls user copy constructors
    429   // which could theoretically throw.
    430   return Class == IC_Retain ||
    431          Class == IC_RetainRV ||
    432          Class == IC_Release ||
    433          Class == IC_Autorelease ||
    434          Class == IC_AutoreleaseRV ||
    435          Class == IC_AutoreleasepoolPush ||
    436          Class == IC_AutoreleasepoolPop;
    437 }
    438 
    439 /// EraseInstruction - Erase the given instruction. ObjC calls return their
    440 /// argument verbatim, so if it's such a call and the return value has users,
    441 /// replace them with the argument value.
    442 static void EraseInstruction(Instruction *CI) {
    443   Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
    444 
    445   bool Unused = CI->use_empty();
    446 
    447   if (!Unused) {
    448     // Replace the return value with the argument.
    449     assert(IsForwarding(GetBasicInstructionClass(CI)) &&
    450            "Can't delete non-forwarding instruction with users!");
    451     CI->replaceAllUsesWith(OldArg);
    452   }
    453 
    454   CI->eraseFromParent();
    455 
    456   if (Unused)
    457     RecursivelyDeleteTriviallyDeadInstructions(OldArg);
    458 }
    459 
    460 /// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
    461 /// also knows how to look through objc_retain and objc_autorelease calls, which
    462 /// we know to return their argument verbatim.
    463 static const Value *GetUnderlyingObjCPtr(const Value *V) {
    464   for (;;) {
    465     V = GetUnderlyingObject(V);
    466     if (!IsForwarding(GetBasicInstructionClass(V)))
    467       break;
    468     V = cast<CallInst>(V)->getArgOperand(0);
    469   }
    470 
    471   return V;
    472 }
    473 
    474 /// StripPointerCastsAndObjCCalls - This is a wrapper around
    475 /// Value::stripPointerCasts which also knows how to look through objc_retain
    476 /// and objc_autorelease calls, which we know to return their argument verbatim.
    477 static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
    478   for (;;) {
    479     V = V->stripPointerCasts();
    480     if (!IsForwarding(GetBasicInstructionClass(V)))
    481       break;
    482     V = cast<CallInst>(V)->getArgOperand(0);
    483   }
    484   return V;
    485 }
    486 
    487 /// StripPointerCastsAndObjCCalls - This is a wrapper around
    488 /// Value::stripPointerCasts which also knows how to look through objc_retain
    489 /// and objc_autorelease calls, which we know to return their argument verbatim.
    490 static Value *StripPointerCastsAndObjCCalls(Value *V) {
    491   for (;;) {
    492     V = V->stripPointerCasts();
    493     if (!IsForwarding(GetBasicInstructionClass(V)))
    494       break;
    495     V = cast<CallInst>(V)->getArgOperand(0);
    496   }
    497   return V;
    498 }
    499 
    500 /// GetObjCArg - Assuming the given instruction is one of the special calls such
    501 /// as objc_retain or objc_release, return the argument value, stripped of no-op
    502 /// casts and forwarding calls.
    503 static Value *GetObjCArg(Value *Inst) {
    504   return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
    505 }
    506 
    507 /// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
    508 /// isObjCIdentifiedObject, except that it uses special knowledge of
    509 /// ObjC conventions...
    510 static bool IsObjCIdentifiedObject(const Value *V) {
    511   // Assume that call results and arguments have their own "provenance".
    512   // Constants (including GlobalVariables) and Allocas are never
    513   // reference-counted.
    514   if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
    515       isa<Argument>(V) || isa<Constant>(V) ||
    516       isa<AllocaInst>(V))
    517     return true;
    518 
    519   if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
    520     const Value *Pointer =
    521       StripPointerCastsAndObjCCalls(LI->getPointerOperand());
    522     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
    523       // A constant pointer can't be pointing to an object on the heap. It may
    524       // be reference-counted, but it won't be deleted.
    525       if (GV->isConstant())
    526         return true;
    527       StringRef Name = GV->getName();
    528       // These special variables are known to hold values which are not
    529       // reference-counted pointers.
    530       if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
    531           Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
    532           Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
    533           Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
    534           Name.startswith("\01l_objc_msgSend_fixup_"))
    535         return true;
    536     }
    537   }
    538 
    539   return false;
    540 }
    541 
    542 /// FindSingleUseIdentifiedObject - This is similar to
    543 /// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
    544 /// with multiple uses.
    545 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
    546   if (Arg->hasOneUse()) {
    547     if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
    548       return FindSingleUseIdentifiedObject(BC->getOperand(0));
    549     if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
    550       if (GEP->hasAllZeroIndices())
    551         return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
    552     if (IsForwarding(GetBasicInstructionClass(Arg)))
    553       return FindSingleUseIdentifiedObject(
    554                cast<CallInst>(Arg)->getArgOperand(0));
    555     if (!IsObjCIdentifiedObject(Arg))
    556       return 0;
    557     return Arg;
    558   }
    559 
    560   // If we found an identifiable object but it has multiple uses, but they
    561   // are trivial uses, we can still consider this to be a single-use
    562   // value.
    563   if (IsObjCIdentifiedObject(Arg)) {
    564     for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
    565          UI != UE; ++UI) {
    566       const User *U = *UI;
    567       if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
    568          return 0;
    569     }
    570 
    571     return Arg;
    572   }
    573 
    574   return 0;
    575 }
    576 
    577 /// ModuleHasARC - Test if the given module looks interesting to run ARC
    578 /// optimization on.
    579 static bool ModuleHasARC(const Module &M) {
    580   return
    581     M.getNamedValue("objc_retain") ||
    582     M.getNamedValue("objc_release") ||
    583     M.getNamedValue("objc_autorelease") ||
    584     M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
    585     M.getNamedValue("objc_retainBlock") ||
    586     M.getNamedValue("objc_autoreleaseReturnValue") ||
    587     M.getNamedValue("objc_autoreleasePoolPush") ||
    588     M.getNamedValue("objc_loadWeakRetained") ||
    589     M.getNamedValue("objc_loadWeak") ||
    590     M.getNamedValue("objc_destroyWeak") ||
    591     M.getNamedValue("objc_storeWeak") ||
    592     M.getNamedValue("objc_initWeak") ||
    593     M.getNamedValue("objc_moveWeak") ||
    594     M.getNamedValue("objc_copyWeak") ||
    595     M.getNamedValue("objc_retainedObject") ||
    596     M.getNamedValue("objc_unretainedObject") ||
    597     M.getNamedValue("objc_unretainedPointer");
    598 }
    599 
    600 //===----------------------------------------------------------------------===//
    601 // ARC AliasAnalysis.
    602 //===----------------------------------------------------------------------===//
    603 
    604 #include "llvm/Pass.h"
    605 #include "llvm/Analysis/AliasAnalysis.h"
    606 #include "llvm/Analysis/Passes.h"
    607 
    608 namespace {
    609   /// ObjCARCAliasAnalysis - This is a simple alias analysis
    610   /// implementation that uses knowledge of ARC constructs to answer queries.
    611   ///
    612   /// TODO: This class could be generalized to know about other ObjC-specific
    613   /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
    614   /// even though their offsets are dynamic.
    615   class ObjCARCAliasAnalysis : public ImmutablePass,
    616                                public AliasAnalysis {
    617   public:
    618     static char ID; // Class identification, replacement for typeinfo
    619     ObjCARCAliasAnalysis() : ImmutablePass(ID) {
    620       initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
    621     }
    622 
    623   private:
    624     virtual void initializePass() {
    625       InitializeAliasAnalysis(this);
    626     }
    627 
    628     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    629     /// an analysis interface through multiple inheritance.  If needed, it
    630     /// should override this to adjust the this pointer as needed for the
    631     /// specified pass info.
    632     virtual void *getAdjustedAnalysisPointer(const void *PI) {
    633       if (PI == &AliasAnalysis::ID)
    634         return (AliasAnalysis*)this;
    635       return this;
    636     }
    637 
    638     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    639     virtual AliasResult alias(const Location &LocA, const Location &LocB);
    640     virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
    641     virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    642     virtual ModRefBehavior getModRefBehavior(const Function *F);
    643     virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    644                                        const Location &Loc);
    645     virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    646                                        ImmutableCallSite CS2);
    647   };
    648 }  // End of anonymous namespace
    649 
    650 // Register this pass...
    651 char ObjCARCAliasAnalysis::ID = 0;
    652 INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
    653                    "ObjC-ARC-Based Alias Analysis", false, true, false)
    654 
    655 ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
    656   return new ObjCARCAliasAnalysis();
    657 }
    658 
    659 void
    660 ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    661   AU.setPreservesAll();
    662   AliasAnalysis::getAnalysisUsage(AU);
    663 }
    664 
    665 AliasAnalysis::AliasResult
    666 ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
    667   if (!EnableARCOpts)
    668     return AliasAnalysis::alias(LocA, LocB);
    669 
    670   // First, strip off no-ops, including ObjC-specific no-ops, and try making a
    671   // precise alias query.
    672   const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
    673   const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
    674   AliasResult Result =
    675     AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
    676                          Location(SB, LocB.Size, LocB.TBAATag));
    677   if (Result != MayAlias)
    678     return Result;
    679 
    680   // If that failed, climb to the underlying object, including climbing through
    681   // ObjC-specific no-ops, and try making an imprecise alias query.
    682   const Value *UA = GetUnderlyingObjCPtr(SA);
    683   const Value *UB = GetUnderlyingObjCPtr(SB);
    684   if (UA != SA || UB != SB) {
    685     Result = AliasAnalysis::alias(Location(UA), Location(UB));
    686     // We can't use MustAlias or PartialAlias results here because
    687     // GetUnderlyingObjCPtr may return an offsetted pointer value.
    688     if (Result == NoAlias)
    689       return NoAlias;
    690   }
    691 
    692   // If that failed, fail. We don't need to chain here, since that's covered
    693   // by the earlier precise query.
    694   return MayAlias;
    695 }
    696 
    697 bool
    698 ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
    699                                              bool OrLocal) {
    700   if (!EnableARCOpts)
    701     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    702 
    703   // First, strip off no-ops, including ObjC-specific no-ops, and try making
    704   // a precise alias query.
    705   const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
    706   if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
    707                                             OrLocal))
    708     return true;
    709 
    710   // If that failed, climb to the underlying object, including climbing through
    711   // ObjC-specific no-ops, and try making an imprecise alias query.
    712   const Value *U = GetUnderlyingObjCPtr(S);
    713   if (U != S)
    714     return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
    715 
    716   // If that failed, fail. We don't need to chain here, since that's covered
    717   // by the earlier precise query.
    718   return false;
    719 }
    720 
    721 AliasAnalysis::ModRefBehavior
    722 ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    723   // We have nothing to do. Just chain to the next AliasAnalysis.
    724   return AliasAnalysis::getModRefBehavior(CS);
    725 }
    726 
    727 AliasAnalysis::ModRefBehavior
    728 ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
    729   if (!EnableARCOpts)
    730     return AliasAnalysis::getModRefBehavior(F);
    731 
    732   switch (GetFunctionClass(F)) {
    733   case IC_NoopCast:
    734     return DoesNotAccessMemory;
    735   default:
    736     break;
    737   }
    738 
    739   return AliasAnalysis::getModRefBehavior(F);
    740 }
    741 
    742 AliasAnalysis::ModRefResult
    743 ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
    744   if (!EnableARCOpts)
    745     return AliasAnalysis::getModRefInfo(CS, Loc);
    746 
    747   switch (GetBasicInstructionClass(CS.getInstruction())) {
    748   case IC_Retain:
    749   case IC_RetainRV:
    750   case IC_Autorelease:
    751   case IC_AutoreleaseRV:
    752   case IC_NoopCast:
    753   case IC_AutoreleasepoolPush:
    754   case IC_FusedRetainAutorelease:
    755   case IC_FusedRetainAutoreleaseRV:
    756     // These functions don't access any memory visible to the compiler.
    757     // Note that this doesn't include objc_retainBlock, becuase it updates
    758     // pointers when it copies block data.
    759     return NoModRef;
    760   default:
    761     break;
    762   }
    763 
    764   return AliasAnalysis::getModRefInfo(CS, Loc);
    765 }
    766 
    767 AliasAnalysis::ModRefResult
    768 ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
    769                                     ImmutableCallSite CS2) {
    770   // TODO: Theoretically we could check for dependencies between objc_* calls
    771   // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
    772   return AliasAnalysis::getModRefInfo(CS1, CS2);
    773 }
    774 
    775 //===----------------------------------------------------------------------===//
    776 // ARC expansion.
    777 //===----------------------------------------------------------------------===//
    778 
    779 #include "llvm/Support/InstIterator.h"
    780 #include "llvm/Transforms/Scalar.h"
    781 
    782 namespace {
    783   /// ObjCARCExpand - Early ARC transformations.
    784   class ObjCARCExpand : public FunctionPass {
    785     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    786     virtual bool doInitialization(Module &M);
    787     virtual bool runOnFunction(Function &F);
    788 
    789     /// Run - A flag indicating whether this optimization pass should run.
    790     bool Run;
    791 
    792   public:
    793     static char ID;
    794     ObjCARCExpand() : FunctionPass(ID) {
    795       initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
    796     }
    797   };
    798 }
    799 
    800 char ObjCARCExpand::ID = 0;
    801 INITIALIZE_PASS(ObjCARCExpand,
    802                 "objc-arc-expand", "ObjC ARC expansion", false, false)
    803 
    804 Pass *llvm::createObjCARCExpandPass() {
    805   return new ObjCARCExpand();
    806 }
    807 
    808 void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
    809   AU.setPreservesCFG();
    810 }
    811 
    812 bool ObjCARCExpand::doInitialization(Module &M) {
    813   Run = ModuleHasARC(M);
    814   return false;
    815 }
    816 
    817 bool ObjCARCExpand::runOnFunction(Function &F) {
    818   if (!EnableARCOpts)
    819     return false;
    820 
    821   // If nothing in the Module uses ARC, don't do anything.
    822   if (!Run)
    823     return false;
    824 
    825   bool Changed = false;
    826 
    827   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
    828     Instruction *Inst = &*I;
    829 
    830     switch (GetBasicInstructionClass(Inst)) {
    831     case IC_Retain:
    832     case IC_RetainRV:
    833     case IC_Autorelease:
    834     case IC_AutoreleaseRV:
    835     case IC_FusedRetainAutorelease:
    836     case IC_FusedRetainAutoreleaseRV:
    837       // These calls return their argument verbatim, as a low-level
    838       // optimization. However, this makes high-level optimizations
    839       // harder. Undo any uses of this optimization that the front-end
    840       // emitted here. We'll redo them in a later pass.
    841       Changed = true;
    842       Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
    843       break;
    844     default:
    845       break;
    846     }
    847   }
    848 
    849   return Changed;
    850 }
    851 
    852 //===----------------------------------------------------------------------===//
    853 // ARC optimization.
    854 //===----------------------------------------------------------------------===//
    855 
    856 // TODO: On code like this:
    857 //
    858 // objc_retain(%x)
    859 // stuff_that_cannot_release()
    860 // objc_autorelease(%x)
    861 // stuff_that_cannot_release()
    862 // objc_retain(%x)
    863 // stuff_that_cannot_release()
    864 // objc_autorelease(%x)
    865 //
    866 // The second retain and autorelease can be deleted.
    867 
    868 // TODO: It should be possible to delete
    869 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
    870 // pairs if nothing is actually autoreleased between them. Also, autorelease
    871 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
    872 // after inlining) can be turned into plain release calls.
    873 
    874 // TODO: Critical-edge splitting. If the optimial insertion point is
    875 // a critical edge, the current algorithm has to fail, because it doesn't
    876 // know how to split edges. It should be possible to make the optimizer
    877 // think in terms of edges, rather than blocks, and then split critical
    878 // edges on demand.
    879 
    880 // TODO: OptimizeSequences could generalized to be Interprocedural.
    881 
    882 // TODO: Recognize that a bunch of other objc runtime calls have
    883 // non-escaping arguments and non-releasing arguments, and may be
    884 // non-autoreleasing.
    885 
    886 // TODO: Sink autorelease calls as far as possible. Unfortunately we
    887 // usually can't sink them past other calls, which would be the main
    888 // case where it would be useful.
    889 
    890 // TODO: The pointer returned from objc_loadWeakRetained is retained.
    891 
    892 // TODO: Delete release+retain pairs (rare).
    893 
    894 #include "llvm/GlobalAlias.h"
    895 #include "llvm/Constants.h"
    896 #include "llvm/LLVMContext.h"
    897 #include "llvm/Support/ErrorHandling.h"
    898 #include "llvm/Support/CFG.h"
    899 #include "llvm/ADT/PostOrderIterator.h"
    900 #include "llvm/ADT/Statistic.h"
    901 
    902 STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
    903 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
    904 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
    905 STATISTIC(NumRets,        "Number of return value forwarding "
    906                           "retain+autoreleaes eliminated");
    907 STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
    908 STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
    909 
    910 namespace {
    911   /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
    912   /// uses many of the same techniques, except it uses special ObjC-specific
    913   /// reasoning about pointer relationships.
    914   class ProvenanceAnalysis {
    915     AliasAnalysis *AA;
    916 
    917     typedef std::pair<const Value *, const Value *> ValuePairTy;
    918     typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
    919     CachedResultsTy CachedResults;
    920 
    921     bool relatedCheck(const Value *A, const Value *B);
    922     bool relatedSelect(const SelectInst *A, const Value *B);
    923     bool relatedPHI(const PHINode *A, const Value *B);
    924 
    925     // Do not implement.
    926     void operator=(const ProvenanceAnalysis &);
    927     ProvenanceAnalysis(const ProvenanceAnalysis &);
    928 
    929   public:
    930     ProvenanceAnalysis() {}
    931 
    932     void setAA(AliasAnalysis *aa) { AA = aa; }
    933 
    934     AliasAnalysis *getAA() const { return AA; }
    935 
    936     bool related(const Value *A, const Value *B);
    937 
    938     void clear() {
    939       CachedResults.clear();
    940     }
    941   };
    942 }
    943 
    944 bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
    945   // If the values are Selects with the same condition, we can do a more precise
    946   // check: just check for relations between the values on corresponding arms.
    947   if (const SelectInst *SB = dyn_cast<SelectInst>(B))
    948     if (A->getCondition() == SB->getCondition()) {
    949       if (related(A->getTrueValue(), SB->getTrueValue()))
    950         return true;
    951       if (related(A->getFalseValue(), SB->getFalseValue()))
    952         return true;
    953       return false;
    954     }
    955 
    956   // Check both arms of the Select node individually.
    957   if (related(A->getTrueValue(), B))
    958     return true;
    959   if (related(A->getFalseValue(), B))
    960     return true;
    961 
    962   // The arms both checked out.
    963   return false;
    964 }
    965 
    966 bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
    967   // If the values are PHIs in the same block, we can do a more precise as well
    968   // as efficient check: just check for relations between the values on
    969   // corresponding edges.
    970   if (const PHINode *PNB = dyn_cast<PHINode>(B))
    971     if (PNB->getParent() == A->getParent()) {
    972       for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
    973         if (related(A->getIncomingValue(i),
    974                     PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
    975           return true;
    976       return false;
    977     }
    978 
    979   // Check each unique source of the PHI node against B.
    980   SmallPtrSet<const Value *, 4> UniqueSrc;
    981   for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
    982     const Value *PV1 = A->getIncomingValue(i);
    983     if (UniqueSrc.insert(PV1) && related(PV1, B))
    984       return true;
    985   }
    986 
    987   // All of the arms checked out.
    988   return false;
    989 }
    990 
    991 /// isStoredObjCPointer - Test if the value of P, or any value covered by its
    992 /// provenance, is ever stored within the function (not counting callees).
    993 static bool isStoredObjCPointer(const Value *P) {
    994   SmallPtrSet<const Value *, 8> Visited;
    995   SmallVector<const Value *, 8> Worklist;
    996   Worklist.push_back(P);
    997   Visited.insert(P);
    998   do {
    999     P = Worklist.pop_back_val();
   1000     for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
   1001          UI != UE; ++UI) {
   1002       const User *Ur = *UI;
   1003       if (isa<StoreInst>(Ur)) {
   1004         if (UI.getOperandNo() == 0)
   1005           // The pointer is stored.
   1006           return true;
   1007         // The pointed is stored through.
   1008         continue;
   1009       }
   1010       if (isa<CallInst>(Ur))
   1011         // The pointer is passed as an argument, ignore this.
   1012         continue;
   1013       if (isa<PtrToIntInst>(P))
   1014         // Assume the worst.
   1015         return true;
   1016       if (Visited.insert(Ur))
   1017         Worklist.push_back(Ur);
   1018     }
   1019   } while (!Worklist.empty());
   1020 
   1021   // Everything checked out.
   1022   return false;
   1023 }
   1024 
   1025 bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
   1026   // Skip past provenance pass-throughs.
   1027   A = GetUnderlyingObjCPtr(A);
   1028   B = GetUnderlyingObjCPtr(B);
   1029 
   1030   // Quick check.
   1031   if (A == B)
   1032     return true;
   1033 
   1034   // Ask regular AliasAnalysis, for a first approximation.
   1035   switch (AA->alias(A, B)) {
   1036   case AliasAnalysis::NoAlias:
   1037     return false;
   1038   case AliasAnalysis::MustAlias:
   1039   case AliasAnalysis::PartialAlias:
   1040     return true;
   1041   case AliasAnalysis::MayAlias:
   1042     break;
   1043   }
   1044 
   1045   bool AIsIdentified = IsObjCIdentifiedObject(A);
   1046   bool BIsIdentified = IsObjCIdentifiedObject(B);
   1047 
   1048   // An ObjC-Identified object can't alias a load if it is never locally stored.
   1049   if (AIsIdentified) {
   1050     if (BIsIdentified) {
   1051       // If both pointers have provenance, they can be directly compared.
   1052       if (A != B)
   1053         return false;
   1054     } else {
   1055       if (isa<LoadInst>(B))
   1056         return isStoredObjCPointer(A);
   1057     }
   1058   } else {
   1059     if (BIsIdentified && isa<LoadInst>(A))
   1060       return isStoredObjCPointer(B);
   1061   }
   1062 
   1063    // Special handling for PHI and Select.
   1064   if (const PHINode *PN = dyn_cast<PHINode>(A))
   1065     return relatedPHI(PN, B);
   1066   if (const PHINode *PN = dyn_cast<PHINode>(B))
   1067     return relatedPHI(PN, A);
   1068   if (const SelectInst *S = dyn_cast<SelectInst>(A))
   1069     return relatedSelect(S, B);
   1070   if (const SelectInst *S = dyn_cast<SelectInst>(B))
   1071     return relatedSelect(S, A);
   1072 
   1073   // Conservative.
   1074   return true;
   1075 }
   1076 
   1077 bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
   1078   // Begin by inserting a conservative value into the map. If the insertion
   1079   // fails, we have the answer already. If it succeeds, leave it there until we
   1080   // compute the real answer to guard against recursive queries.
   1081   if (A > B) std::swap(A, B);
   1082   std::pair<CachedResultsTy::iterator, bool> Pair =
   1083     CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
   1084   if (!Pair.second)
   1085     return Pair.first->second;
   1086 
   1087   bool Result = relatedCheck(A, B);
   1088   CachedResults[ValuePairTy(A, B)] = Result;
   1089   return Result;
   1090 }
   1091 
   1092 namespace {
   1093   // Sequence - A sequence of states that a pointer may go through in which an
   1094   // objc_retain and objc_release are actually needed.
   1095   enum Sequence {
   1096     S_None,
   1097     S_Retain,         ///< objc_retain(x)
   1098     S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement
   1099     S_Use,            ///< any use of x
   1100     S_Stop,           ///< like S_Release, but code motion is stopped
   1101     S_Release,        ///< objc_release(x)
   1102     S_MovableRelease  ///< objc_release(x), !clang.imprecise_release
   1103   };
   1104 }
   1105 
   1106 static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
   1107   // The easy cases.
   1108   if (A == B)
   1109     return A;
   1110   if (A == S_None || B == S_None)
   1111     return S_None;
   1112 
   1113   if (A > B) std::swap(A, B);
   1114   if (TopDown) {
   1115     // Choose the side which is further along in the sequence.
   1116     if ((A == S_Retain || A == S_CanRelease) &&
   1117         (B == S_CanRelease || B == S_Use))
   1118       return B;
   1119   } else {
   1120     // Choose the side which is further along in the sequence.
   1121     if ((A == S_Use || A == S_CanRelease) &&
   1122         (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
   1123       return A;
   1124     // If both sides are releases, choose the more conservative one.
   1125     if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
   1126       return A;
   1127     if (A == S_Release && B == S_MovableRelease)
   1128       return A;
   1129   }
   1130 
   1131   return S_None;
   1132 }
   1133 
   1134 namespace {
   1135   /// RRInfo - Unidirectional information about either a
   1136   /// retain-decrement-use-release sequence or release-use-decrement-retain
   1137   /// reverese sequence.
   1138   struct RRInfo {
   1139     /// KnownSafe - After an objc_retain, the reference count of the referenced
   1140     /// object is known to be positive. Similarly, before an objc_release, the
   1141     /// reference count of the referenced object is known to be positive. If
   1142     /// there are retain-release pairs in code regions where the retain count
   1143     /// is known to be positive, they can be eliminated, regardless of any side
   1144     /// effects between them.
   1145     ///
   1146     /// Also, a retain+release pair nested within another retain+release
   1147     /// pair all on the known same pointer value can be eliminated, regardless
   1148     /// of any intervening side effects.
   1149     ///
   1150     /// KnownSafe is true when either of these conditions is satisfied.
   1151     bool KnownSafe;
   1152 
   1153     /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
   1154     /// opposed to objc_retain calls).
   1155     bool IsRetainBlock;
   1156 
   1157     /// CopyOnEscape - True if this the Calls are objc_retainBlock calls
   1158     /// which all have the !clang.arc.copy_on_escape metadata.
   1159     bool CopyOnEscape;
   1160 
   1161     /// IsTailCallRelease - True of the objc_release calls are all marked
   1162     /// with the "tail" keyword.
   1163     bool IsTailCallRelease;
   1164 
   1165     /// Partial - True of we've seen an opportunity for partial RR elimination,
   1166     /// such as pushing calls into a CFG triangle or into one side of a
   1167     /// CFG diamond.
   1168     bool Partial;
   1169 
   1170     /// ReleaseMetadata - If the Calls are objc_release calls and they all have
   1171     /// a clang.imprecise_release tag, this is the metadata tag.
   1172     MDNode *ReleaseMetadata;
   1173 
   1174     /// Calls - For a top-down sequence, the set of objc_retains or
   1175     /// objc_retainBlocks. For bottom-up, the set of objc_releases.
   1176     SmallPtrSet<Instruction *, 2> Calls;
   1177 
   1178     /// ReverseInsertPts - The set of optimal insert positions for
   1179     /// moving calls in the opposite sequence.
   1180     SmallPtrSet<Instruction *, 2> ReverseInsertPts;
   1181 
   1182     RRInfo() :
   1183       KnownSafe(false), IsRetainBlock(false), CopyOnEscape(false),
   1184       IsTailCallRelease(false), Partial(false),
   1185       ReleaseMetadata(0) {}
   1186 
   1187     void clear();
   1188   };
   1189 }
   1190 
   1191 void RRInfo::clear() {
   1192   KnownSafe = false;
   1193   IsRetainBlock = false;
   1194   CopyOnEscape = false;
   1195   IsTailCallRelease = false;
   1196   Partial = false;
   1197   ReleaseMetadata = 0;
   1198   Calls.clear();
   1199   ReverseInsertPts.clear();
   1200 }
   1201 
   1202 namespace {
   1203   /// PtrState - This class summarizes several per-pointer runtime properties
   1204   /// which are propogated through the flow graph.
   1205   class PtrState {
   1206     /// RefCount - The known minimum number of reference count increments.
   1207     unsigned RefCount;
   1208 
   1209     /// NestCount - The known minimum level of retain+release nesting.
   1210     unsigned NestCount;
   1211 
   1212     /// Seq - The current position in the sequence.
   1213     Sequence Seq;
   1214 
   1215   public:
   1216     /// RRI - Unidirectional information about the current sequence.
   1217     /// TODO: Encapsulate this better.
   1218     RRInfo RRI;
   1219 
   1220     PtrState() : RefCount(0), NestCount(0), Seq(S_None) {}
   1221 
   1222     void SetAtLeastOneRefCount()  {
   1223       if (RefCount == 0) RefCount = 1;
   1224     }
   1225 
   1226     void IncrementRefCount() {
   1227       if (RefCount != UINT_MAX) ++RefCount;
   1228     }
   1229 
   1230     void DecrementRefCount() {
   1231       if (RefCount != 0) --RefCount;
   1232     }
   1233 
   1234     bool IsKnownIncremented() const {
   1235       return RefCount > 0;
   1236     }
   1237 
   1238     void IncrementNestCount() {
   1239       if (NestCount != UINT_MAX) ++NestCount;
   1240     }
   1241 
   1242     void DecrementNestCount() {
   1243       if (NestCount != 0) --NestCount;
   1244     }
   1245 
   1246     bool IsKnownNested() const {
   1247       return NestCount > 0;
   1248     }
   1249 
   1250     void SetSeq(Sequence NewSeq) {
   1251       Seq = NewSeq;
   1252     }
   1253 
   1254     void SetSeqToRelease(MDNode *M) {
   1255       if (Seq == S_None || Seq == S_Use) {
   1256         Seq = M ? S_MovableRelease : S_Release;
   1257         RRI.ReleaseMetadata = M;
   1258       } else if (Seq != S_MovableRelease || RRI.ReleaseMetadata != M) {
   1259         Seq = S_Release;
   1260         RRI.ReleaseMetadata = 0;
   1261       }
   1262     }
   1263 
   1264     Sequence GetSeq() const {
   1265       return Seq;
   1266     }
   1267 
   1268     void ClearSequenceProgress() {
   1269       Seq = S_None;
   1270       RRI.clear();
   1271     }
   1272 
   1273     void Merge(const PtrState &Other, bool TopDown);
   1274   };
   1275 }
   1276 
   1277 void
   1278 PtrState::Merge(const PtrState &Other, bool TopDown) {
   1279   Seq = MergeSeqs(Seq, Other.Seq, TopDown);
   1280   RefCount = std::min(RefCount, Other.RefCount);
   1281   NestCount = std::min(NestCount, Other.NestCount);
   1282 
   1283   // We can't merge a plain objc_retain with an objc_retainBlock.
   1284   if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
   1285     Seq = S_None;
   1286 
   1287   // If we're not in a sequence (anymore), drop all associated state.
   1288   if (Seq == S_None) {
   1289     RRI.clear();
   1290   } else if (RRI.Partial || Other.RRI.Partial) {
   1291     // If we're doing a merge on a path that's previously seen a partial
   1292     // merge, conservatively drop the sequence, to avoid doing partial
   1293     // RR elimination. If the branch predicates for the two merge differ,
   1294     // mixing them is unsafe.
   1295     Seq = S_None;
   1296     RRI.clear();
   1297   } else {
   1298     // Conservatively merge the ReleaseMetadata information.
   1299     if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
   1300       RRI.ReleaseMetadata = 0;
   1301 
   1302     RRI.CopyOnEscape = RRI.CopyOnEscape && Other.RRI.CopyOnEscape;
   1303     RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
   1304     RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease;
   1305     RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
   1306 
   1307     // Merge the insert point sets. If there are any differences,
   1308     // that makes this a partial merge.
   1309     RRI.Partial = RRI.ReverseInsertPts.size() !=
   1310                   Other.RRI.ReverseInsertPts.size();
   1311     for (SmallPtrSet<Instruction *, 2>::const_iterator
   1312          I = Other.RRI.ReverseInsertPts.begin(),
   1313          E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
   1314       RRI.Partial |= RRI.ReverseInsertPts.insert(*I);
   1315   }
   1316 }
   1317 
   1318 namespace {
   1319   /// BBState - Per-BasicBlock state.
   1320   class BBState {
   1321     /// TopDownPathCount - The number of unique control paths from the entry
   1322     /// which can reach this block.
   1323     unsigned TopDownPathCount;
   1324 
   1325     /// BottomUpPathCount - The number of unique control paths to exits
   1326     /// from this block.
   1327     unsigned BottomUpPathCount;
   1328 
   1329     /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
   1330     typedef MapVector<const Value *, PtrState> MapTy;
   1331 
   1332     /// PerPtrTopDown - The top-down traversal uses this to record information
   1333     /// known about a pointer at the bottom of each block.
   1334     MapTy PerPtrTopDown;
   1335 
   1336     /// PerPtrBottomUp - The bottom-up traversal uses this to record information
   1337     /// known about a pointer at the top of each block.
   1338     MapTy PerPtrBottomUp;
   1339 
   1340   public:
   1341     BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
   1342 
   1343     typedef MapTy::iterator ptr_iterator;
   1344     typedef MapTy::const_iterator ptr_const_iterator;
   1345 
   1346     ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
   1347     ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
   1348     ptr_const_iterator top_down_ptr_begin() const {
   1349       return PerPtrTopDown.begin();
   1350     }
   1351     ptr_const_iterator top_down_ptr_end() const {
   1352       return PerPtrTopDown.end();
   1353     }
   1354 
   1355     ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
   1356     ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
   1357     ptr_const_iterator bottom_up_ptr_begin() const {
   1358       return PerPtrBottomUp.begin();
   1359     }
   1360     ptr_const_iterator bottom_up_ptr_end() const {
   1361       return PerPtrBottomUp.end();
   1362     }
   1363 
   1364     /// SetAsEntry - Mark this block as being an entry block, which has one
   1365     /// path from the entry by definition.
   1366     void SetAsEntry() { TopDownPathCount = 1; }
   1367 
   1368     /// SetAsExit - Mark this block as being an exit block, which has one
   1369     /// path to an exit by definition.
   1370     void SetAsExit()  { BottomUpPathCount = 1; }
   1371 
   1372     PtrState &getPtrTopDownState(const Value *Arg) {
   1373       return PerPtrTopDown[Arg];
   1374     }
   1375 
   1376     PtrState &getPtrBottomUpState(const Value *Arg) {
   1377       return PerPtrBottomUp[Arg];
   1378     }
   1379 
   1380     void clearBottomUpPointers() {
   1381       PerPtrBottomUp.clear();
   1382     }
   1383 
   1384     void clearTopDownPointers() {
   1385       PerPtrTopDown.clear();
   1386     }
   1387 
   1388     void InitFromPred(const BBState &Other);
   1389     void InitFromSucc(const BBState &Other);
   1390     void MergePred(const BBState &Other);
   1391     void MergeSucc(const BBState &Other);
   1392 
   1393     /// GetAllPathCount - Return the number of possible unique paths from an
   1394     /// entry to an exit which pass through this block. This is only valid
   1395     /// after both the top-down and bottom-up traversals are complete.
   1396     unsigned GetAllPathCount() const {
   1397       return TopDownPathCount * BottomUpPathCount;
   1398     }
   1399 
   1400     /// IsVisitedTopDown - Test whether the block for this BBState has been
   1401     /// visited by the top-down portion of the algorithm.
   1402     bool isVisitedTopDown() const {
   1403       return TopDownPathCount != 0;
   1404     }
   1405   };
   1406 }
   1407 
   1408 void BBState::InitFromPred(const BBState &Other) {
   1409   PerPtrTopDown = Other.PerPtrTopDown;
   1410   TopDownPathCount = Other.TopDownPathCount;
   1411 }
   1412 
   1413 void BBState::InitFromSucc(const BBState &Other) {
   1414   PerPtrBottomUp = Other.PerPtrBottomUp;
   1415   BottomUpPathCount = Other.BottomUpPathCount;
   1416 }
   1417 
   1418 /// MergePred - The top-down traversal uses this to merge information about
   1419 /// predecessors to form the initial state for a new block.
   1420 void BBState::MergePred(const BBState &Other) {
   1421   // Other.TopDownPathCount can be 0, in which case it is either dead or a
   1422   // loop backedge. Loop backedges are special.
   1423   TopDownPathCount += Other.TopDownPathCount;
   1424 
   1425   // For each entry in the other set, if our set has an entry with the same key,
   1426   // merge the entries. Otherwise, copy the entry and merge it with an empty
   1427   // entry.
   1428   for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
   1429        ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
   1430     std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
   1431     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
   1432                              /*TopDown=*/true);
   1433   }
   1434 
   1435   // For each entry in our set, if the other set doesn't have an entry with the
   1436   // same key, force it to merge with an empty entry.
   1437   for (ptr_iterator MI = top_down_ptr_begin(),
   1438        ME = top_down_ptr_end(); MI != ME; ++MI)
   1439     if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
   1440       MI->second.Merge(PtrState(), /*TopDown=*/true);
   1441 }
   1442 
   1443 /// MergeSucc - The bottom-up traversal uses this to merge information about
   1444 /// successors to form the initial state for a new block.
   1445 void BBState::MergeSucc(const BBState &Other) {
   1446   // Other.BottomUpPathCount can be 0, in which case it is either dead or a
   1447   // loop backedge. Loop backedges are special.
   1448   BottomUpPathCount += Other.BottomUpPathCount;
   1449 
   1450   // For each entry in the other set, if our set has an entry with the
   1451   // same key, merge the entries. Otherwise, copy the entry and merge
   1452   // it with an empty entry.
   1453   for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
   1454        ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
   1455     std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
   1456     Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
   1457                              /*TopDown=*/false);
   1458   }
   1459 
   1460   // For each entry in our set, if the other set doesn't have an entry
   1461   // with the same key, force it to merge with an empty entry.
   1462   for (ptr_iterator MI = bottom_up_ptr_begin(),
   1463        ME = bottom_up_ptr_end(); MI != ME; ++MI)
   1464     if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
   1465       MI->second.Merge(PtrState(), /*TopDown=*/false);
   1466 }
   1467 
   1468 namespace {
   1469   /// ObjCARCOpt - The main ARC optimization pass.
   1470   class ObjCARCOpt : public FunctionPass {
   1471     bool Changed;
   1472     ProvenanceAnalysis PA;
   1473 
   1474     /// Run - A flag indicating whether this optimization pass should run.
   1475     bool Run;
   1476 
   1477     /// RetainRVCallee, etc. - Declarations for ObjC runtime
   1478     /// functions, for use in creating calls to them. These are initialized
   1479     /// lazily to avoid cluttering up the Module with unused declarations.
   1480     Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
   1481              *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
   1482 
   1483     /// UsedInThisFunciton - Flags which determine whether each of the
   1484     /// interesting runtine functions is in fact used in the current function.
   1485     unsigned UsedInThisFunction;
   1486 
   1487     /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
   1488     /// metadata.
   1489     unsigned ImpreciseReleaseMDKind;
   1490 
   1491     /// CopyOnEscape - The Metadata Kind for clang.arc.copy_on_escape
   1492     /// metadata.
   1493     unsigned CopyOnEscapeMDKind;
   1494 
   1495     Constant *getRetainRVCallee(Module *M);
   1496     Constant *getAutoreleaseRVCallee(Module *M);
   1497     Constant *getReleaseCallee(Module *M);
   1498     Constant *getRetainCallee(Module *M);
   1499     Constant *getRetainBlockCallee(Module *M);
   1500     Constant *getAutoreleaseCallee(Module *M);
   1501 
   1502     void OptimizeRetainCall(Function &F, Instruction *Retain);
   1503     bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
   1504     void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
   1505     void OptimizeIndividualCalls(Function &F);
   1506 
   1507     void CheckForCFGHazards(const BasicBlock *BB,
   1508                             DenseMap<const BasicBlock *, BBState> &BBStates,
   1509                             BBState &MyStates) const;
   1510     bool VisitBottomUp(BasicBlock *BB,
   1511                        DenseMap<const BasicBlock *, BBState> &BBStates,
   1512                        MapVector<Value *, RRInfo> &Retains);
   1513     bool VisitTopDown(BasicBlock *BB,
   1514                       DenseMap<const BasicBlock *, BBState> &BBStates,
   1515                       DenseMap<Value *, RRInfo> &Releases);
   1516     bool Visit(Function &F,
   1517                DenseMap<const BasicBlock *, BBState> &BBStates,
   1518                MapVector<Value *, RRInfo> &Retains,
   1519                DenseMap<Value *, RRInfo> &Releases);
   1520 
   1521     void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
   1522                    MapVector<Value *, RRInfo> &Retains,
   1523                    DenseMap<Value *, RRInfo> &Releases,
   1524                    SmallVectorImpl<Instruction *> &DeadInsts,
   1525                    Module *M);
   1526 
   1527     bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
   1528                               MapVector<Value *, RRInfo> &Retains,
   1529                               DenseMap<Value *, RRInfo> &Releases,
   1530                               Module *M);
   1531 
   1532     void OptimizeWeakCalls(Function &F);
   1533 
   1534     bool OptimizeSequences(Function &F);
   1535 
   1536     void OptimizeReturns(Function &F);
   1537 
   1538     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
   1539     virtual bool doInitialization(Module &M);
   1540     virtual bool runOnFunction(Function &F);
   1541     virtual void releaseMemory();
   1542 
   1543   public:
   1544     static char ID;
   1545     ObjCARCOpt() : FunctionPass(ID) {
   1546       initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
   1547     }
   1548   };
   1549 }
   1550 
   1551 char ObjCARCOpt::ID = 0;
   1552 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
   1553                       "objc-arc", "ObjC ARC optimization", false, false)
   1554 INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
   1555 INITIALIZE_PASS_END(ObjCARCOpt,
   1556                     "objc-arc", "ObjC ARC optimization", false, false)
   1557 
   1558 Pass *llvm::createObjCARCOptPass() {
   1559   return new ObjCARCOpt();
   1560 }
   1561 
   1562 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
   1563   AU.addRequired<ObjCARCAliasAnalysis>();
   1564   AU.addRequired<AliasAnalysis>();
   1565   // ARC optimization doesn't currently split critical edges.
   1566   AU.setPreservesCFG();
   1567 }
   1568 
   1569 Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
   1570   if (!RetainRVCallee) {
   1571     LLVMContext &C = M->getContext();
   1572     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   1573     std::vector<Type *> Params;
   1574     Params.push_back(I8X);
   1575     FunctionType *FTy =
   1576       FunctionType::get(I8X, Params, /*isVarArg=*/false);
   1577     AttrListPtr Attributes;
   1578     Attributes.addAttr(~0u, Attribute::NoUnwind);
   1579     RetainRVCallee =
   1580       M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
   1581                              Attributes);
   1582   }
   1583   return RetainRVCallee;
   1584 }
   1585 
   1586 Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
   1587   if (!AutoreleaseRVCallee) {
   1588     LLVMContext &C = M->getContext();
   1589     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   1590     std::vector<Type *> Params;
   1591     Params.push_back(I8X);
   1592     FunctionType *FTy =
   1593       FunctionType::get(I8X, Params, /*isVarArg=*/false);
   1594     AttrListPtr Attributes;
   1595     Attributes.addAttr(~0u, Attribute::NoUnwind);
   1596     AutoreleaseRVCallee =
   1597       M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
   1598                              Attributes);
   1599   }
   1600   return AutoreleaseRVCallee;
   1601 }
   1602 
   1603 Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
   1604   if (!ReleaseCallee) {
   1605     LLVMContext &C = M->getContext();
   1606     std::vector<Type *> Params;
   1607     Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
   1608     AttrListPtr Attributes;
   1609     Attributes.addAttr(~0u, Attribute::NoUnwind);
   1610     ReleaseCallee =
   1611       M->getOrInsertFunction(
   1612         "objc_release",
   1613         FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
   1614         Attributes);
   1615   }
   1616   return ReleaseCallee;
   1617 }
   1618 
   1619 Constant *ObjCARCOpt::getRetainCallee(Module *M) {
   1620   if (!RetainCallee) {
   1621     LLVMContext &C = M->getContext();
   1622     std::vector<Type *> Params;
   1623     Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
   1624     AttrListPtr Attributes;
   1625     Attributes.addAttr(~0u, Attribute::NoUnwind);
   1626     RetainCallee =
   1627       M->getOrInsertFunction(
   1628         "objc_retain",
   1629         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
   1630         Attributes);
   1631   }
   1632   return RetainCallee;
   1633 }
   1634 
   1635 Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
   1636   if (!RetainBlockCallee) {
   1637     LLVMContext &C = M->getContext();
   1638     std::vector<Type *> Params;
   1639     Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
   1640     AttrListPtr Attributes;
   1641     // objc_retainBlock is not nounwind because it calls user copy constructors
   1642     // which could theoretically throw.
   1643     RetainBlockCallee =
   1644       M->getOrInsertFunction(
   1645         "objc_retainBlock",
   1646         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
   1647         Attributes);
   1648   }
   1649   return RetainBlockCallee;
   1650 }
   1651 
   1652 Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
   1653   if (!AutoreleaseCallee) {
   1654     LLVMContext &C = M->getContext();
   1655     std::vector<Type *> Params;
   1656     Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
   1657     AttrListPtr Attributes;
   1658     Attributes.addAttr(~0u, Attribute::NoUnwind);
   1659     AutoreleaseCallee =
   1660       M->getOrInsertFunction(
   1661         "objc_autorelease",
   1662         FunctionType::get(Params[0], Params, /*isVarArg=*/false),
   1663         Attributes);
   1664   }
   1665   return AutoreleaseCallee;
   1666 }
   1667 
   1668 /// CanAlterRefCount - Test whether the given instruction can result in a
   1669 /// reference count modification (positive or negative) for the pointer's
   1670 /// object.
   1671 static bool
   1672 CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
   1673                  ProvenanceAnalysis &PA, InstructionClass Class) {
   1674   switch (Class) {
   1675   case IC_Autorelease:
   1676   case IC_AutoreleaseRV:
   1677   case IC_User:
   1678     // These operations never directly modify a reference count.
   1679     return false;
   1680   default: break;
   1681   }
   1682 
   1683   ImmutableCallSite CS = static_cast<const Value *>(Inst);
   1684   assert(CS && "Only calls can alter reference counts!");
   1685 
   1686   // See if AliasAnalysis can help us with the call.
   1687   AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
   1688   if (AliasAnalysis::onlyReadsMemory(MRB))
   1689     return false;
   1690   if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
   1691     for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   1692          I != E; ++I) {
   1693       const Value *Op = *I;
   1694       if (IsPotentialUse(Op) && PA.related(Ptr, Op))
   1695         return true;
   1696     }
   1697     return false;
   1698   }
   1699 
   1700   // Assume the worst.
   1701   return true;
   1702 }
   1703 
   1704 /// CanUse - Test whether the given instruction can "use" the given pointer's
   1705 /// object in a way that requires the reference count to be positive.
   1706 static bool
   1707 CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
   1708        InstructionClass Class) {
   1709   // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
   1710   if (Class == IC_Call)
   1711     return false;
   1712 
   1713   // Consider various instructions which may have pointer arguments which are
   1714   // not "uses".
   1715   if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
   1716     // Comparing a pointer with null, or any other constant, isn't really a use,
   1717     // because we don't care what the pointer points to, or about the values
   1718     // of any other dynamic reference-counted pointers.
   1719     if (!IsPotentialUse(ICI->getOperand(1)))
   1720       return false;
   1721   } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
   1722     // For calls, just check the arguments (and not the callee operand).
   1723     for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
   1724          OE = CS.arg_end(); OI != OE; ++OI) {
   1725       const Value *Op = *OI;
   1726       if (IsPotentialUse(Op) && PA.related(Ptr, Op))
   1727         return true;
   1728     }
   1729     return false;
   1730   } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
   1731     // Special-case stores, because we don't care about the stored value, just
   1732     // the store address.
   1733     const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
   1734     // If we can't tell what the underlying object was, assume there is a
   1735     // dependence.
   1736     return IsPotentialUse(Op) && PA.related(Op, Ptr);
   1737   }
   1738 
   1739   // Check each operand for a match.
   1740   for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
   1741        OI != OE; ++OI) {
   1742     const Value *Op = *OI;
   1743     if (IsPotentialUse(Op) && PA.related(Ptr, Op))
   1744       return true;
   1745   }
   1746   return false;
   1747 }
   1748 
   1749 /// CanInterruptRV - Test whether the given instruction can autorelease
   1750 /// any pointer or cause an autoreleasepool pop.
   1751 static bool
   1752 CanInterruptRV(InstructionClass Class) {
   1753   switch (Class) {
   1754   case IC_AutoreleasepoolPop:
   1755   case IC_CallOrUser:
   1756   case IC_Call:
   1757   case IC_Autorelease:
   1758   case IC_AutoreleaseRV:
   1759   case IC_FusedRetainAutorelease:
   1760   case IC_FusedRetainAutoreleaseRV:
   1761     return true;
   1762   default:
   1763     return false;
   1764   }
   1765 }
   1766 
   1767 namespace {
   1768   /// DependenceKind - There are several kinds of dependence-like concepts in
   1769   /// use here.
   1770   enum DependenceKind {
   1771     NeedsPositiveRetainCount,
   1772     CanChangeRetainCount,
   1773     RetainAutoreleaseDep,       ///< Blocks objc_retainAutorelease.
   1774     RetainAutoreleaseRVDep,     ///< Blocks objc_retainAutoreleaseReturnValue.
   1775     RetainRVDep                 ///< Blocks objc_retainAutoreleasedReturnValue.
   1776   };
   1777 }
   1778 
   1779 /// Depends - Test if there can be dependencies on Inst through Arg. This
   1780 /// function only tests dependencies relevant for removing pairs of calls.
   1781 static bool
   1782 Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
   1783         ProvenanceAnalysis &PA) {
   1784   // If we've reached the definition of Arg, stop.
   1785   if (Inst == Arg)
   1786     return true;
   1787 
   1788   switch (Flavor) {
   1789   case NeedsPositiveRetainCount: {
   1790     InstructionClass Class = GetInstructionClass(Inst);
   1791     switch (Class) {
   1792     case IC_AutoreleasepoolPop:
   1793     case IC_AutoreleasepoolPush:
   1794     case IC_None:
   1795       return false;
   1796     default:
   1797       return CanUse(Inst, Arg, PA, Class);
   1798     }
   1799   }
   1800 
   1801   case CanChangeRetainCount: {
   1802     InstructionClass Class = GetInstructionClass(Inst);
   1803     switch (Class) {
   1804     case IC_AutoreleasepoolPop:
   1805       // Conservatively assume this can decrement any count.
   1806       return true;
   1807     case IC_AutoreleasepoolPush:
   1808     case IC_None:
   1809       return false;
   1810     default:
   1811       return CanAlterRefCount(Inst, Arg, PA, Class);
   1812     }
   1813   }
   1814 
   1815   case RetainAutoreleaseDep:
   1816     switch (GetBasicInstructionClass(Inst)) {
   1817     case IC_AutoreleasepoolPop:
   1818       // Don't merge an objc_autorelease with an objc_retain inside a different
   1819       // autoreleasepool scope.
   1820       return true;
   1821     case IC_Retain:
   1822     case IC_RetainRV:
   1823       // Check for a retain of the same pointer for merging.
   1824       return GetObjCArg(Inst) == Arg;
   1825     default:
   1826       // Nothing else matters for objc_retainAutorelease formation.
   1827       return false;
   1828     }
   1829     break;
   1830 
   1831   case RetainAutoreleaseRVDep: {
   1832     InstructionClass Class = GetBasicInstructionClass(Inst);
   1833     switch (Class) {
   1834     case IC_Retain:
   1835     case IC_RetainRV:
   1836       // Check for a retain of the same pointer for merging.
   1837       return GetObjCArg(Inst) == Arg;
   1838     default:
   1839       // Anything that can autorelease interrupts
   1840       // retainAutoreleaseReturnValue formation.
   1841       return CanInterruptRV(Class);
   1842     }
   1843     break;
   1844   }
   1845 
   1846   case RetainRVDep:
   1847     return CanInterruptRV(GetBasicInstructionClass(Inst));
   1848   }
   1849 
   1850   llvm_unreachable("Invalid dependence flavor");
   1851   return true;
   1852 }
   1853 
   1854 /// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
   1855 /// find local and non-local dependencies on Arg.
   1856 /// TODO: Cache results?
   1857 static void
   1858 FindDependencies(DependenceKind Flavor,
   1859                  const Value *Arg,
   1860                  BasicBlock *StartBB, Instruction *StartInst,
   1861                  SmallPtrSet<Instruction *, 4> &DependingInstructions,
   1862                  SmallPtrSet<const BasicBlock *, 4> &Visited,
   1863                  ProvenanceAnalysis &PA) {
   1864   BasicBlock::iterator StartPos = StartInst;
   1865 
   1866   SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
   1867   Worklist.push_back(std::make_pair(StartBB, StartPos));
   1868   do {
   1869     std::pair<BasicBlock *, BasicBlock::iterator> Pair =
   1870       Worklist.pop_back_val();
   1871     BasicBlock *LocalStartBB = Pair.first;
   1872     BasicBlock::iterator LocalStartPos = Pair.second;
   1873     BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
   1874     for (;;) {
   1875       if (LocalStartPos == StartBBBegin) {
   1876         pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
   1877         if (PI == PE)
   1878           // If we've reached the function entry, produce a null dependence.
   1879           DependingInstructions.insert(0);
   1880         else
   1881           // Add the predecessors to the worklist.
   1882           do {
   1883             BasicBlock *PredBB = *PI;
   1884             if (Visited.insert(PredBB))
   1885               Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
   1886           } while (++PI != PE);
   1887         break;
   1888       }
   1889 
   1890       Instruction *Inst = --LocalStartPos;
   1891       if (Depends(Flavor, Inst, Arg, PA)) {
   1892         DependingInstructions.insert(Inst);
   1893         break;
   1894       }
   1895     }
   1896   } while (!Worklist.empty());
   1897 
   1898   // Determine whether the original StartBB post-dominates all of the blocks we
   1899   // visited. If not, insert a sentinal indicating that most optimizations are
   1900   // not safe.
   1901   for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
   1902        E = Visited.end(); I != E; ++I) {
   1903     const BasicBlock *BB = *I;
   1904     if (BB == StartBB)
   1905       continue;
   1906     const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
   1907     for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
   1908       const BasicBlock *Succ = *SI;
   1909       if (Succ != StartBB && !Visited.count(Succ)) {
   1910         DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
   1911         return;
   1912       }
   1913     }
   1914   }
   1915 }
   1916 
   1917 static bool isNullOrUndef(const Value *V) {
   1918   return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
   1919 }
   1920 
   1921 static bool isNoopInstruction(const Instruction *I) {
   1922   return isa<BitCastInst>(I) ||
   1923          (isa<GetElementPtrInst>(I) &&
   1924           cast<GetElementPtrInst>(I)->hasAllZeroIndices());
   1925 }
   1926 
   1927 /// OptimizeRetainCall - Turn objc_retain into
   1928 /// objc_retainAutoreleasedReturnValue if the operand is a return value.
   1929 void
   1930 ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
   1931   CallSite CS(GetObjCArg(Retain));
   1932   Instruction *Call = CS.getInstruction();
   1933   if (!Call) return;
   1934   if (Call->getParent() != Retain->getParent()) return;
   1935 
   1936   // Check that the call is next to the retain.
   1937   BasicBlock::iterator I = Call;
   1938   ++I;
   1939   while (isNoopInstruction(I)) ++I;
   1940   if (&*I != Retain)
   1941     return;
   1942 
   1943   // Turn it to an objc_retainAutoreleasedReturnValue..
   1944   Changed = true;
   1945   ++NumPeeps;
   1946   cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
   1947 }
   1948 
   1949 /// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
   1950 /// objc_retain if the operand is not a return value.  Or, if it can be
   1951 /// paired with an objc_autoreleaseReturnValue, delete the pair and
   1952 /// return true.
   1953 bool
   1954 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
   1955   // Check for the argument being from an immediately preceding call.
   1956   Value *Arg = GetObjCArg(RetainRV);
   1957   CallSite CS(Arg);
   1958   if (Instruction *Call = CS.getInstruction())
   1959     if (Call->getParent() == RetainRV->getParent()) {
   1960       BasicBlock::iterator I = Call;
   1961       ++I;
   1962       while (isNoopInstruction(I)) ++I;
   1963       if (&*I == RetainRV)
   1964         return false;
   1965     }
   1966 
   1967   // Check for being preceded by an objc_autoreleaseReturnValue on the same
   1968   // pointer. In this case, we can delete the pair.
   1969   BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
   1970   if (I != Begin) {
   1971     do --I; while (I != Begin && isNoopInstruction(I));
   1972     if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
   1973         GetObjCArg(I) == Arg) {
   1974       Changed = true;
   1975       ++NumPeeps;
   1976       EraseInstruction(I);
   1977       EraseInstruction(RetainRV);
   1978       return true;
   1979     }
   1980   }
   1981 
   1982   // Turn it to a plain objc_retain.
   1983   Changed = true;
   1984   ++NumPeeps;
   1985   cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
   1986   return false;
   1987 }
   1988 
   1989 /// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
   1990 /// objc_autorelease if the result is not used as a return value.
   1991 void
   1992 ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
   1993   // Check for a return of the pointer value.
   1994   const Value *Ptr = GetObjCArg(AutoreleaseRV);
   1995   SmallVector<const Value *, 2> Users;
   1996   Users.push_back(Ptr);
   1997   do {
   1998     Ptr = Users.pop_back_val();
   1999     for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
   2000          UI != UE; ++UI) {
   2001       const User *I = *UI;
   2002       if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
   2003         return;
   2004       if (isa<BitCastInst>(I))
   2005         Users.push_back(I);
   2006     }
   2007   } while (!Users.empty());
   2008 
   2009   Changed = true;
   2010   ++NumPeeps;
   2011   cast<CallInst>(AutoreleaseRV)->
   2012     setCalledFunction(getAutoreleaseCallee(F.getParent()));
   2013 }
   2014 
   2015 /// OptimizeIndividualCalls - Visit each call, one at a time, and make
   2016 /// simplifications without doing any additional analysis.
   2017 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
   2018   // Reset all the flags in preparation for recomputing them.
   2019   UsedInThisFunction = 0;
   2020 
   2021   // Visit all objc_* calls in F.
   2022   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   2023     Instruction *Inst = &*I++;
   2024     InstructionClass Class = GetBasicInstructionClass(Inst);
   2025 
   2026     switch (Class) {
   2027     default: break;
   2028 
   2029     // Delete no-op casts. These function calls have special semantics, but
   2030     // the semantics are entirely implemented via lowering in the front-end,
   2031     // so by the time they reach the optimizer, they are just no-op calls
   2032     // which return their argument.
   2033     //
   2034     // There are gray areas here, as the ability to cast reference-counted
   2035     // pointers to raw void* and back allows code to break ARC assumptions,
   2036     // however these are currently considered to be unimportant.
   2037     case IC_NoopCast:
   2038       Changed = true;
   2039       ++NumNoops;
   2040       EraseInstruction(Inst);
   2041       continue;
   2042 
   2043     // If the pointer-to-weak-pointer is null, it's undefined behavior.
   2044     case IC_StoreWeak:
   2045     case IC_LoadWeak:
   2046     case IC_LoadWeakRetained:
   2047     case IC_InitWeak:
   2048     case IC_DestroyWeak: {
   2049       CallInst *CI = cast<CallInst>(Inst);
   2050       if (isNullOrUndef(CI->getArgOperand(0))) {
   2051         Type *Ty = CI->getArgOperand(0)->getType();
   2052         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
   2053                       Constant::getNullValue(Ty),
   2054                       CI);
   2055         CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
   2056         CI->eraseFromParent();
   2057         continue;
   2058       }
   2059       break;
   2060     }
   2061     case IC_CopyWeak:
   2062     case IC_MoveWeak: {
   2063       CallInst *CI = cast<CallInst>(Inst);
   2064       if (isNullOrUndef(CI->getArgOperand(0)) ||
   2065           isNullOrUndef(CI->getArgOperand(1))) {
   2066         Type *Ty = CI->getArgOperand(0)->getType();
   2067         new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
   2068                       Constant::getNullValue(Ty),
   2069                       CI);
   2070         CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
   2071         CI->eraseFromParent();
   2072         continue;
   2073       }
   2074       break;
   2075     }
   2076     case IC_Retain:
   2077       OptimizeRetainCall(F, Inst);
   2078       break;
   2079     case IC_RetainRV:
   2080       if (OptimizeRetainRVCall(F, Inst))
   2081         continue;
   2082       break;
   2083     case IC_AutoreleaseRV:
   2084       OptimizeAutoreleaseRVCall(F, Inst);
   2085       break;
   2086     }
   2087 
   2088     // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
   2089     if (IsAutorelease(Class) && Inst->use_empty()) {
   2090       CallInst *Call = cast<CallInst>(Inst);
   2091       const Value *Arg = Call->getArgOperand(0);
   2092       Arg = FindSingleUseIdentifiedObject(Arg);
   2093       if (Arg) {
   2094         Changed = true;
   2095         ++NumAutoreleases;
   2096 
   2097         // Create the declaration lazily.
   2098         LLVMContext &C = Inst->getContext();
   2099         CallInst *NewCall =
   2100           CallInst::Create(getReleaseCallee(F.getParent()),
   2101                            Call->getArgOperand(0), "", Call);
   2102         NewCall->setMetadata(ImpreciseReleaseMDKind,
   2103                              MDNode::get(C, ArrayRef<Value *>()));
   2104         EraseInstruction(Call);
   2105         Inst = NewCall;
   2106         Class = IC_Release;
   2107       }
   2108     }
   2109 
   2110     // For functions which can never be passed stack arguments, add
   2111     // a tail keyword.
   2112     if (IsAlwaysTail(Class)) {
   2113       Changed = true;
   2114       cast<CallInst>(Inst)->setTailCall();
   2115     }
   2116 
   2117     // Set nounwind as needed.
   2118     if (IsNoThrow(Class)) {
   2119       Changed = true;
   2120       cast<CallInst>(Inst)->setDoesNotThrow();
   2121     }
   2122 
   2123     if (!IsNoopOnNull(Class)) {
   2124       UsedInThisFunction |= 1 << Class;
   2125       continue;
   2126     }
   2127 
   2128     const Value *Arg = GetObjCArg(Inst);
   2129 
   2130     // ARC calls with null are no-ops. Delete them.
   2131     if (isNullOrUndef(Arg)) {
   2132       Changed = true;
   2133       ++NumNoops;
   2134       EraseInstruction(Inst);
   2135       continue;
   2136     }
   2137 
   2138     // Keep track of which of retain, release, autorelease, and retain_block
   2139     // are actually present in this function.
   2140     UsedInThisFunction |= 1 << Class;
   2141 
   2142     // If Arg is a PHI, and one or more incoming values to the
   2143     // PHI are null, and the call is control-equivalent to the PHI, and there
   2144     // are no relevant side effects between the PHI and the call, the call
   2145     // could be pushed up to just those paths with non-null incoming values.
   2146     // For now, don't bother splitting critical edges for this.
   2147     SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
   2148     Worklist.push_back(std::make_pair(Inst, Arg));
   2149     do {
   2150       std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
   2151       Inst = Pair.first;
   2152       Arg = Pair.second;
   2153 
   2154       const PHINode *PN = dyn_cast<PHINode>(Arg);
   2155       if (!PN) continue;
   2156 
   2157       // Determine if the PHI has any null operands, or any incoming
   2158       // critical edges.
   2159       bool HasNull = false;
   2160       bool HasCriticalEdges = false;
   2161       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2162         Value *Incoming =
   2163           StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
   2164         if (isNullOrUndef(Incoming))
   2165           HasNull = true;
   2166         else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
   2167                    .getNumSuccessors() != 1) {
   2168           HasCriticalEdges = true;
   2169           break;
   2170         }
   2171       }
   2172       // If we have null operands and no critical edges, optimize.
   2173       if (!HasCriticalEdges && HasNull) {
   2174         SmallPtrSet<Instruction *, 4> DependingInstructions;
   2175         SmallPtrSet<const BasicBlock *, 4> Visited;
   2176 
   2177         // Check that there is nothing that cares about the reference
   2178         // count between the call and the phi.
   2179         FindDependencies(NeedsPositiveRetainCount, Arg,
   2180                          Inst->getParent(), Inst,
   2181                          DependingInstructions, Visited, PA);
   2182         if (DependingInstructions.size() == 1 &&
   2183             *DependingInstructions.begin() == PN) {
   2184           Changed = true;
   2185           ++NumPartialNoops;
   2186           // Clone the call into each predecessor that has a non-null value.
   2187           CallInst *CInst = cast<CallInst>(Inst);
   2188           Type *ParamTy = CInst->getArgOperand(0)->getType();
   2189           for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2190             Value *Incoming =
   2191               StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
   2192             if (!isNullOrUndef(Incoming)) {
   2193               CallInst *Clone = cast<CallInst>(CInst->clone());
   2194               Value *Op = PN->getIncomingValue(i);
   2195               Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
   2196               if (Op->getType() != ParamTy)
   2197                 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
   2198               Clone->setArgOperand(0, Op);
   2199               Clone->insertBefore(InsertPos);
   2200               Worklist.push_back(std::make_pair(Clone, Incoming));
   2201             }
   2202           }
   2203           // Erase the original call.
   2204           EraseInstruction(CInst);
   2205           continue;
   2206         }
   2207       }
   2208     } while (!Worklist.empty());
   2209   }
   2210 }
   2211 
   2212 /// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
   2213 /// control flow, or other CFG structures where moving code across the edge
   2214 /// would result in it being executed more.
   2215 void
   2216 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
   2217                                DenseMap<const BasicBlock *, BBState> &BBStates,
   2218                                BBState &MyStates) const {
   2219   // If any top-down local-use or possible-dec has a succ which is earlier in
   2220   // the sequence, forget it.
   2221   for (BBState::ptr_const_iterator I = MyStates.top_down_ptr_begin(),
   2222        E = MyStates.top_down_ptr_end(); I != E; ++I)
   2223     switch (I->second.GetSeq()) {
   2224     default: break;
   2225     case S_Use: {
   2226       const Value *Arg = I->first;
   2227       const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
   2228       bool SomeSuccHasSame = false;
   2229       bool AllSuccsHaveSame = true;
   2230       PtrState &S = MyStates.getPtrTopDownState(Arg);
   2231       for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
   2232         PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg);
   2233         switch (SuccS.GetSeq()) {
   2234         case S_None:
   2235         case S_CanRelease: {
   2236           if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
   2237             S.ClearSequenceProgress();
   2238           continue;
   2239         }
   2240         case S_Use:
   2241           SomeSuccHasSame = true;
   2242           break;
   2243         case S_Stop:
   2244         case S_Release:
   2245         case S_MovableRelease:
   2246           if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
   2247             AllSuccsHaveSame = false;
   2248           break;
   2249         case S_Retain:
   2250           llvm_unreachable("bottom-up pointer in retain state!");
   2251         }
   2252       }
   2253       // If the state at the other end of any of the successor edges
   2254       // matches the current state, require all edges to match. This
   2255       // guards against loops in the middle of a sequence.
   2256       if (SomeSuccHasSame && !AllSuccsHaveSame)
   2257         S.ClearSequenceProgress();
   2258     }
   2259     case S_CanRelease: {
   2260       const Value *Arg = I->first;
   2261       const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
   2262       bool SomeSuccHasSame = false;
   2263       bool AllSuccsHaveSame = true;
   2264       PtrState &S = MyStates.getPtrTopDownState(Arg);
   2265       for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
   2266         PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg);
   2267         switch (SuccS.GetSeq()) {
   2268         case S_None: {
   2269           if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
   2270             S.ClearSequenceProgress();
   2271           continue;
   2272         }
   2273         case S_CanRelease:
   2274           SomeSuccHasSame = true;
   2275           break;
   2276         case S_Stop:
   2277         case S_Release:
   2278         case S_MovableRelease:
   2279         case S_Use:
   2280           if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
   2281             AllSuccsHaveSame = false;
   2282           break;
   2283         case S_Retain:
   2284           llvm_unreachable("bottom-up pointer in retain state!");
   2285         }
   2286       }
   2287       // If the state at the other end of any of the successor edges
   2288       // matches the current state, require all edges to match. This
   2289       // guards against loops in the middle of a sequence.
   2290       if (SomeSuccHasSame && !AllSuccsHaveSame)
   2291         S.ClearSequenceProgress();
   2292     }
   2293     }
   2294 }
   2295 
   2296 bool
   2297 ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
   2298                           DenseMap<const BasicBlock *, BBState> &BBStates,
   2299                           MapVector<Value *, RRInfo> &Retains) {
   2300   bool NestingDetected = false;
   2301   BBState &MyStates = BBStates[BB];
   2302 
   2303   // Merge the states from each successor to compute the initial state
   2304   // for the current block.
   2305   const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
   2306   succ_const_iterator SI(TI), SE(TI, false);
   2307   if (SI == SE)
   2308     MyStates.SetAsExit();
   2309   else
   2310     do {
   2311       const BasicBlock *Succ = *SI++;
   2312       if (Succ == BB)
   2313         continue;
   2314       DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
   2315       // If we haven't seen this node yet, then we've found a CFG cycle.
   2316       // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
   2317       if (I == BBStates.end())
   2318         continue;
   2319       MyStates.InitFromSucc(I->second);
   2320       while (SI != SE) {
   2321         Succ = *SI++;
   2322         if (Succ != BB) {
   2323           I = BBStates.find(Succ);
   2324           if (I != BBStates.end())
   2325             MyStates.MergeSucc(I->second);
   2326         }
   2327       }
   2328       break;
   2329     } while (SI != SE);
   2330 
   2331   // Visit all the instructions, bottom-up.
   2332   for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
   2333     Instruction *Inst = llvm::prior(I);
   2334     InstructionClass Class = GetInstructionClass(Inst);
   2335     const Value *Arg = 0;
   2336 
   2337     switch (Class) {
   2338     case IC_Release: {
   2339       Arg = GetObjCArg(Inst);
   2340 
   2341       PtrState &S = MyStates.getPtrBottomUpState(Arg);
   2342 
   2343       // If we see two releases in a row on the same pointer. If so, make
   2344       // a note, and we'll cicle back to revisit it after we've
   2345       // hopefully eliminated the second release, which may allow us to
   2346       // eliminate the first release too.
   2347       // Theoretically we could implement removal of nested retain+release
   2348       // pairs by making PtrState hold a stack of states, but this is
   2349       // simple and avoids adding overhead for the non-nested case.
   2350       if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
   2351         NestingDetected = true;
   2352 
   2353       S.SetSeqToRelease(Inst->getMetadata(ImpreciseReleaseMDKind));
   2354       S.RRI.clear();
   2355       S.RRI.KnownSafe = S.IsKnownNested() || S.IsKnownIncremented();
   2356       S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
   2357       S.RRI.Calls.insert(Inst);
   2358 
   2359       S.IncrementRefCount();
   2360       S.IncrementNestCount();
   2361       break;
   2362     }
   2363     case IC_RetainBlock:
   2364     case IC_Retain:
   2365     case IC_RetainRV: {
   2366       Arg = GetObjCArg(Inst);
   2367 
   2368       PtrState &S = MyStates.getPtrBottomUpState(Arg);
   2369       S.DecrementRefCount();
   2370       S.SetAtLeastOneRefCount();
   2371       S.DecrementNestCount();
   2372 
   2373       // An non-copy-on-escape objc_retainBlock call with just a use still
   2374       // needs to be kept, because it may be copying a block from the stack
   2375       // to the heap.
   2376       if (Class == IC_RetainBlock &&
   2377           !Inst->getMetadata(CopyOnEscapeMDKind) &&
   2378           S.GetSeq() == S_Use)
   2379         S.SetSeq(S_CanRelease);
   2380 
   2381       switch (S.GetSeq()) {
   2382       case S_Stop:
   2383       case S_Release:
   2384       case S_MovableRelease:
   2385       case S_Use:
   2386         S.RRI.ReverseInsertPts.clear();
   2387         // FALL THROUGH
   2388       case S_CanRelease:
   2389         // Don't do retain+release tracking for IC_RetainRV, because it's
   2390         // better to let it remain as the first instruction after a call.
   2391         if (Class != IC_RetainRV) {
   2392           S.RRI.IsRetainBlock = Class == IC_RetainBlock;
   2393           if (S.RRI.IsRetainBlock)
   2394             S.RRI.CopyOnEscape = !!Inst->getMetadata(CopyOnEscapeMDKind);
   2395           Retains[Inst] = S.RRI;
   2396         }
   2397         S.ClearSequenceProgress();
   2398         break;
   2399       case S_None:
   2400         break;
   2401       case S_Retain:
   2402         llvm_unreachable("bottom-up pointer in retain state!");
   2403       }
   2404       continue;
   2405     }
   2406     case IC_AutoreleasepoolPop:
   2407       // Conservatively, clear MyStates for all known pointers.
   2408       MyStates.clearBottomUpPointers();
   2409       continue;
   2410     case IC_AutoreleasepoolPush:
   2411     case IC_None:
   2412       // These are irrelevant.
   2413       continue;
   2414     default:
   2415       break;
   2416     }
   2417 
   2418     // Consider any other possible effects of this instruction on each
   2419     // pointer being tracked.
   2420     for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
   2421          ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
   2422       const Value *Ptr = MI->first;
   2423       if (Ptr == Arg)
   2424         continue; // Handled above.
   2425       PtrState &S = MI->second;
   2426       Sequence Seq = S.GetSeq();
   2427 
   2428       // Check for possible releases.
   2429       if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
   2430         S.DecrementRefCount();
   2431         switch (Seq) {
   2432         case S_Use:
   2433           S.SetSeq(S_CanRelease);
   2434           continue;
   2435         case S_CanRelease:
   2436         case S_Release:
   2437         case S_MovableRelease:
   2438         case S_Stop:
   2439         case S_None:
   2440           break;
   2441         case S_Retain:
   2442           llvm_unreachable("bottom-up pointer in retain state!");
   2443         }
   2444       }
   2445 
   2446       // Check for possible direct uses.
   2447       switch (Seq) {
   2448       case S_Release:
   2449       case S_MovableRelease:
   2450         if (CanUse(Inst, Ptr, PA, Class)) {
   2451           assert(S.RRI.ReverseInsertPts.empty());
   2452           S.RRI.ReverseInsertPts.insert(Inst);
   2453           S.SetSeq(S_Use);
   2454         } else if (Seq == S_Release &&
   2455                    (Class == IC_User || Class == IC_CallOrUser)) {
   2456           // Non-movable releases depend on any possible objc pointer use.
   2457           S.SetSeq(S_Stop);
   2458           assert(S.RRI.ReverseInsertPts.empty());
   2459           S.RRI.ReverseInsertPts.insert(Inst);
   2460         }
   2461         break;
   2462       case S_Stop:
   2463         if (CanUse(Inst, Ptr, PA, Class))
   2464           S.SetSeq(S_Use);
   2465         break;
   2466       case S_CanRelease:
   2467       case S_Use:
   2468       case S_None:
   2469         break;
   2470       case S_Retain:
   2471         llvm_unreachable("bottom-up pointer in retain state!");
   2472       }
   2473     }
   2474   }
   2475 
   2476   return NestingDetected;
   2477 }
   2478 
   2479 bool
   2480 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
   2481                          DenseMap<const BasicBlock *, BBState> &BBStates,
   2482                          DenseMap<Value *, RRInfo> &Releases) {
   2483   bool NestingDetected = false;
   2484   BBState &MyStates = BBStates[BB];
   2485 
   2486   // Merge the states from each predecessor to compute the initial state
   2487   // for the current block.
   2488   const_pred_iterator PI(BB), PE(BB, false);
   2489   if (PI == PE)
   2490     MyStates.SetAsEntry();
   2491   else
   2492     do {
   2493       const BasicBlock *Pred = *PI++;
   2494       if (Pred == BB)
   2495         continue;
   2496       DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
   2497       assert(I != BBStates.end());
   2498       // If we haven't seen this node yet, then we've found a CFG cycle.
   2499       // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
   2500       if (!I->second.isVisitedTopDown())
   2501         continue;
   2502       MyStates.InitFromPred(I->second);
   2503       while (PI != PE) {
   2504         Pred = *PI++;
   2505         if (Pred != BB) {
   2506           I = BBStates.find(Pred);
   2507           assert(I != BBStates.end());
   2508           if (I->second.isVisitedTopDown())
   2509             MyStates.MergePred(I->second);
   2510         }
   2511       }
   2512       break;
   2513     } while (PI != PE);
   2514 
   2515   // Visit all the instructions, top-down.
   2516   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   2517     Instruction *Inst = I;
   2518     InstructionClass Class = GetInstructionClass(Inst);
   2519     const Value *Arg = 0;
   2520 
   2521     switch (Class) {
   2522     case IC_RetainBlock:
   2523     case IC_Retain:
   2524     case IC_RetainRV: {
   2525       Arg = GetObjCArg(Inst);
   2526 
   2527       PtrState &S = MyStates.getPtrTopDownState(Arg);
   2528 
   2529       // Don't do retain+release tracking for IC_RetainRV, because it's
   2530       // better to let it remain as the first instruction after a call.
   2531       if (Class != IC_RetainRV) {
   2532         // If we see two retains in a row on the same pointer. If so, make
   2533         // a note, and we'll cicle back to revisit it after we've
   2534         // hopefully eliminated the second retain, which may allow us to
   2535         // eliminate the first retain too.
   2536         // Theoretically we could implement removal of nested retain+release
   2537         // pairs by making PtrState hold a stack of states, but this is
   2538         // simple and avoids adding overhead for the non-nested case.
   2539         if (S.GetSeq() == S_Retain)
   2540           NestingDetected = true;
   2541 
   2542         S.SetSeq(S_Retain);
   2543         S.RRI.clear();
   2544         S.RRI.IsRetainBlock = Class == IC_RetainBlock;
   2545         if (S.RRI.IsRetainBlock)
   2546           S.RRI.CopyOnEscape = !!Inst->getMetadata(CopyOnEscapeMDKind);
   2547         // Don't check S.IsKnownIncremented() here because it's not
   2548         // sufficient.
   2549         S.RRI.KnownSafe = S.IsKnownNested();
   2550         S.RRI.Calls.insert(Inst);
   2551       }
   2552 
   2553       S.SetAtLeastOneRefCount();
   2554       S.IncrementRefCount();
   2555       S.IncrementNestCount();
   2556       continue;
   2557     }
   2558     case IC_Release: {
   2559       Arg = GetObjCArg(Inst);
   2560 
   2561       PtrState &S = MyStates.getPtrTopDownState(Arg);
   2562       S.DecrementRefCount();
   2563       S.DecrementNestCount();
   2564 
   2565       switch (S.GetSeq()) {
   2566       case S_Retain:
   2567       case S_CanRelease:
   2568         S.RRI.ReverseInsertPts.clear();
   2569         // FALL THROUGH
   2570       case S_Use:
   2571         S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
   2572         S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
   2573         Releases[Inst] = S.RRI;
   2574         S.ClearSequenceProgress();
   2575         break;
   2576       case S_None:
   2577         break;
   2578       case S_Stop:
   2579       case S_Release:
   2580       case S_MovableRelease:
   2581         llvm_unreachable("top-down pointer in release state!");
   2582       }
   2583       break;
   2584     }
   2585     case IC_AutoreleasepoolPop:
   2586       // Conservatively, clear MyStates for all known pointers.
   2587       MyStates.clearTopDownPointers();
   2588       continue;
   2589     case IC_AutoreleasepoolPush:
   2590     case IC_None:
   2591       // These are irrelevant.
   2592       continue;
   2593     default:
   2594       break;
   2595     }
   2596 
   2597     // Consider any other possible effects of this instruction on each
   2598     // pointer being tracked.
   2599     for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
   2600          ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
   2601       const Value *Ptr = MI->first;
   2602       if (Ptr == Arg)
   2603         continue; // Handled above.
   2604       PtrState &S = MI->second;
   2605       Sequence Seq = S.GetSeq();
   2606 
   2607       // Check for possible releases.
   2608       if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
   2609         S.DecrementRefCount();
   2610         switch (Seq) {
   2611         case S_Retain:
   2612           S.SetSeq(S_CanRelease);
   2613           assert(S.RRI.ReverseInsertPts.empty());
   2614           S.RRI.ReverseInsertPts.insert(Inst);
   2615 
   2616           // One call can't cause a transition from S_Retain to S_CanRelease
   2617           // and S_CanRelease to S_Use. If we've made the first transition,
   2618           // we're done.
   2619           continue;
   2620         case S_Use:
   2621         case S_CanRelease:
   2622         case S_None:
   2623           break;
   2624         case S_Stop:
   2625         case S_Release:
   2626         case S_MovableRelease:
   2627           llvm_unreachable("top-down pointer in release state!");
   2628         }
   2629       }
   2630 
   2631       // Check for possible direct uses.
   2632       switch (Seq) {
   2633       case S_CanRelease:
   2634         if (CanUse(Inst, Ptr, PA, Class))
   2635           S.SetSeq(S_Use);
   2636         break;
   2637       case S_Retain:
   2638         // A non-copy-on-scape objc_retainBlock call may be responsible for
   2639         // copying the block data from the stack to the heap. Model this by
   2640         // moving it straight from S_Retain to S_Use.
   2641         if (S.RRI.IsRetainBlock &&
   2642             !S.RRI.CopyOnEscape &&
   2643             CanUse(Inst, Ptr, PA, Class)) {
   2644           assert(S.RRI.ReverseInsertPts.empty());
   2645           S.RRI.ReverseInsertPts.insert(Inst);
   2646           S.SetSeq(S_Use);
   2647         }
   2648         break;
   2649       case S_Use:
   2650       case S_None:
   2651         break;
   2652       case S_Stop:
   2653       case S_Release:
   2654       case S_MovableRelease:
   2655         llvm_unreachable("top-down pointer in release state!");
   2656       }
   2657     }
   2658   }
   2659 
   2660   CheckForCFGHazards(BB, BBStates, MyStates);
   2661   return NestingDetected;
   2662 }
   2663 
   2664 // Visit - Visit the function both top-down and bottom-up.
   2665 bool
   2666 ObjCARCOpt::Visit(Function &F,
   2667                   DenseMap<const BasicBlock *, BBState> &BBStates,
   2668                   MapVector<Value *, RRInfo> &Retains,
   2669                   DenseMap<Value *, RRInfo> &Releases) {
   2670   // Use reverse-postorder on the reverse CFG for bottom-up, because we
   2671   // magically know that loops will be well behaved, i.e. they won't repeatedly
   2672   // call retain on a single pointer without doing a release. We can't use
   2673   // ReversePostOrderTraversal here because we want to walk up from each
   2674   // function exit point.
   2675   SmallPtrSet<BasicBlock *, 16> Visited;
   2676   SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> Stack;
   2677   SmallVector<BasicBlock *, 16> Order;
   2678   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   2679     BasicBlock *BB = I;
   2680     if (BB->getTerminator()->getNumSuccessors() == 0)
   2681       Stack.push_back(std::make_pair(BB, pred_begin(BB)));
   2682   }
   2683   while (!Stack.empty()) {
   2684     pred_iterator End = pred_end(Stack.back().first);
   2685     while (Stack.back().second != End) {
   2686       BasicBlock *BB = *Stack.back().second++;
   2687       if (Visited.insert(BB))
   2688         Stack.push_back(std::make_pair(BB, pred_begin(BB)));
   2689     }
   2690     Order.push_back(Stack.pop_back_val().first);
   2691   }
   2692   bool BottomUpNestingDetected = false;
   2693   for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
   2694          Order.rbegin(), E = Order.rend(); I != E; ++I) {
   2695     BasicBlock *BB = *I;
   2696     BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
   2697   }
   2698 
   2699   // Use regular reverse-postorder for top-down.
   2700   bool TopDownNestingDetected = false;
   2701   typedef ReversePostOrderTraversal<Function *> RPOTType;
   2702   RPOTType RPOT(&F);
   2703   for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
   2704     BasicBlock *BB = *I;
   2705     TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
   2706   }
   2707 
   2708   return TopDownNestingDetected && BottomUpNestingDetected;
   2709 }
   2710 
   2711 /// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
   2712 void ObjCARCOpt::MoveCalls(Value *Arg,
   2713                            RRInfo &RetainsToMove,
   2714                            RRInfo &ReleasesToMove,
   2715                            MapVector<Value *, RRInfo> &Retains,
   2716                            DenseMap<Value *, RRInfo> &Releases,
   2717                            SmallVectorImpl<Instruction *> &DeadInsts,
   2718                            Module *M) {
   2719   Type *ArgTy = Arg->getType();
   2720   Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
   2721 
   2722   // Insert the new retain and release calls.
   2723   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2724        PI = ReleasesToMove.ReverseInsertPts.begin(),
   2725        PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
   2726     Instruction *InsertPt = *PI;
   2727     Value *MyArg = ArgTy == ParamTy ? Arg :
   2728                    new BitCastInst(Arg, ParamTy, "", InsertPt);
   2729     CallInst *Call =
   2730       CallInst::Create(RetainsToMove.IsRetainBlock ?
   2731                          getRetainBlockCallee(M) : getRetainCallee(M),
   2732                        MyArg, "", InsertPt);
   2733     Call->setDoesNotThrow();
   2734     if (RetainsToMove.CopyOnEscape)
   2735       Call->setMetadata(CopyOnEscapeMDKind,
   2736                         MDNode::get(M->getContext(), ArrayRef<Value *>()));
   2737     if (!RetainsToMove.IsRetainBlock)
   2738       Call->setTailCall();
   2739   }
   2740   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2741        PI = RetainsToMove.ReverseInsertPts.begin(),
   2742        PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
   2743     Instruction *LastUse = *PI;
   2744     Instruction *InsertPts[] = { 0, 0, 0 };
   2745     if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) {
   2746       // We can't insert code immediately after an invoke instruction, so
   2747       // insert code at the beginning of both successor blocks instead.
   2748       // The invoke's return value isn't available in the unwind block,
   2749       // but our releases will never depend on it, because they must be
   2750       // paired with retains from before the invoke.
   2751       InsertPts[0] = II->getNormalDest()->getFirstInsertionPt();
   2752       InsertPts[1] = II->getUnwindDest()->getFirstInsertionPt();
   2753     } else {
   2754       // Insert code immediately after the last use.
   2755       InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse));
   2756     }
   2757 
   2758     for (Instruction **I = InsertPts; *I; ++I) {
   2759       Instruction *InsertPt = *I;
   2760       Value *MyArg = ArgTy == ParamTy ? Arg :
   2761                      new BitCastInst(Arg, ParamTy, "", InsertPt);
   2762       CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
   2763                                         "", InsertPt);
   2764       // Attach a clang.imprecise_release metadata tag, if appropriate.
   2765       if (MDNode *M = ReleasesToMove.ReleaseMetadata)
   2766         Call->setMetadata(ImpreciseReleaseMDKind, M);
   2767       Call->setDoesNotThrow();
   2768       if (ReleasesToMove.IsTailCallRelease)
   2769         Call->setTailCall();
   2770     }
   2771   }
   2772 
   2773   // Delete the original retain and release calls.
   2774   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2775        AI = RetainsToMove.Calls.begin(),
   2776        AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
   2777     Instruction *OrigRetain = *AI;
   2778     Retains.blot(OrigRetain);
   2779     DeadInsts.push_back(OrigRetain);
   2780   }
   2781   for (SmallPtrSet<Instruction *, 2>::const_iterator
   2782        AI = ReleasesToMove.Calls.begin(),
   2783        AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
   2784     Instruction *OrigRelease = *AI;
   2785     Releases.erase(OrigRelease);
   2786     DeadInsts.push_back(OrigRelease);
   2787   }
   2788 }
   2789 
   2790 bool
   2791 ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
   2792                                    &BBStates,
   2793                                  MapVector<Value *, RRInfo> &Retains,
   2794                                  DenseMap<Value *, RRInfo> &Releases,
   2795                                  Module *M) {
   2796   bool AnyPairsCompletelyEliminated = false;
   2797   RRInfo RetainsToMove;
   2798   RRInfo ReleasesToMove;
   2799   SmallVector<Instruction *, 4> NewRetains;
   2800   SmallVector<Instruction *, 4> NewReleases;
   2801   SmallVector<Instruction *, 8> DeadInsts;
   2802 
   2803   for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
   2804        E = Retains.end(); I != E; ++I) {
   2805     Value *V = I->first;
   2806     if (!V) continue; // blotted
   2807 
   2808     Instruction *Retain = cast<Instruction>(V);
   2809     Value *Arg = GetObjCArg(Retain);
   2810 
   2811     // If the object being released is in static storage, we know it's
   2812     // not being managed by ObjC reference counting, so we can delete pairs
   2813     // regardless of what possible decrements or uses lie between them.
   2814     bool KnownSafe = isa<Constant>(Arg);
   2815 
   2816     // Same for stack storage, unless this is a non-copy-on-escape
   2817     // objc_retainBlock call, which is responsible for copying the block data
   2818     // from the stack to the heap.
   2819     if ((!I->second.IsRetainBlock || I->second.CopyOnEscape) &&
   2820         isa<AllocaInst>(Arg))
   2821       KnownSafe = true;
   2822 
   2823     // A constant pointer can't be pointing to an object on the heap. It may
   2824     // be reference-counted, but it won't be deleted.
   2825     if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
   2826       if (const GlobalVariable *GV =
   2827             dyn_cast<GlobalVariable>(
   2828               StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
   2829         if (GV->isConstant())
   2830           KnownSafe = true;
   2831 
   2832     // If a pair happens in a region where it is known that the reference count
   2833     // is already incremented, we can similarly ignore possible decrements.
   2834     bool KnownSafeTD = true, KnownSafeBU = true;
   2835 
   2836     // Connect the dots between the top-down-collected RetainsToMove and
   2837     // bottom-up-collected ReleasesToMove to form sets of related calls.
   2838     // This is an iterative process so that we connect multiple releases
   2839     // to multiple retains if needed.
   2840     unsigned OldDelta = 0;
   2841     unsigned NewDelta = 0;
   2842     unsigned OldCount = 0;
   2843     unsigned NewCount = 0;
   2844     bool FirstRelease = true;
   2845     bool FirstRetain = true;
   2846     NewRetains.push_back(Retain);
   2847     for (;;) {
   2848       for (SmallVectorImpl<Instruction *>::const_iterator
   2849            NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
   2850         Instruction *NewRetain = *NI;
   2851         MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
   2852         assert(It != Retains.end());
   2853         const RRInfo &NewRetainRRI = It->second;
   2854         KnownSafeTD &= NewRetainRRI.KnownSafe;
   2855         for (SmallPtrSet<Instruction *, 2>::const_iterator
   2856              LI = NewRetainRRI.Calls.begin(),
   2857              LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
   2858           Instruction *NewRetainRelease = *LI;
   2859           DenseMap<Value *, RRInfo>::const_iterator Jt =
   2860             Releases.find(NewRetainRelease);
   2861           if (Jt == Releases.end())
   2862             goto next_retain;
   2863           const RRInfo &NewRetainReleaseRRI = Jt->second;
   2864           assert(NewRetainReleaseRRI.Calls.count(NewRetain));
   2865           if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
   2866             OldDelta -=
   2867               BBStates[NewRetainRelease->getParent()].GetAllPathCount();
   2868 
   2869             // Merge the ReleaseMetadata and IsTailCallRelease values.
   2870             if (FirstRelease) {
   2871               ReleasesToMove.ReleaseMetadata =
   2872                 NewRetainReleaseRRI.ReleaseMetadata;
   2873               ReleasesToMove.IsTailCallRelease =
   2874                 NewRetainReleaseRRI.IsTailCallRelease;
   2875               FirstRelease = false;
   2876             } else {
   2877               if (ReleasesToMove.ReleaseMetadata !=
   2878                     NewRetainReleaseRRI.ReleaseMetadata)
   2879                 ReleasesToMove.ReleaseMetadata = 0;
   2880               if (ReleasesToMove.IsTailCallRelease !=
   2881                     NewRetainReleaseRRI.IsTailCallRelease)
   2882                 ReleasesToMove.IsTailCallRelease = false;
   2883             }
   2884 
   2885             // Collect the optimal insertion points.
   2886             if (!KnownSafe)
   2887               for (SmallPtrSet<Instruction *, 2>::const_iterator
   2888                    RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
   2889                    RE = NewRetainReleaseRRI.ReverseInsertPts.end();
   2890                    RI != RE; ++RI) {
   2891                 Instruction *RIP = *RI;
   2892                 if (ReleasesToMove.ReverseInsertPts.insert(RIP))
   2893                   NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
   2894               }
   2895             NewReleases.push_back(NewRetainRelease);
   2896           }
   2897         }
   2898       }
   2899       NewRetains.clear();
   2900       if (NewReleases.empty()) break;
   2901 
   2902       // Back the other way.
   2903       for (SmallVectorImpl<Instruction *>::const_iterator
   2904            NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
   2905         Instruction *NewRelease = *NI;
   2906         DenseMap<Value *, RRInfo>::const_iterator It =
   2907           Releases.find(NewRelease);
   2908         assert(It != Releases.end());
   2909         const RRInfo &NewReleaseRRI = It->second;
   2910         KnownSafeBU &= NewReleaseRRI.KnownSafe;
   2911         for (SmallPtrSet<Instruction *, 2>::const_iterator
   2912              LI = NewReleaseRRI.Calls.begin(),
   2913              LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
   2914           Instruction *NewReleaseRetain = *LI;
   2915           MapVector<Value *, RRInfo>::const_iterator Jt =
   2916             Retains.find(NewReleaseRetain);
   2917           if (Jt == Retains.end())
   2918             goto next_retain;
   2919           const RRInfo &NewReleaseRetainRRI = Jt->second;
   2920           assert(NewReleaseRetainRRI.Calls.count(NewRelease));
   2921           if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
   2922             unsigned PathCount =
   2923               BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
   2924             OldDelta += PathCount;
   2925             OldCount += PathCount;
   2926 
   2927             // Merge the IsRetainBlock values.
   2928             if (FirstRetain) {
   2929               RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
   2930               RetainsToMove.CopyOnEscape = NewReleaseRetainRRI.CopyOnEscape;
   2931               FirstRetain = false;
   2932             } else if (ReleasesToMove.IsRetainBlock !=
   2933                        NewReleaseRetainRRI.IsRetainBlock)
   2934               // It's not possible to merge the sequences if one uses
   2935               // objc_retain and the other uses objc_retainBlock.
   2936               goto next_retain;
   2937 
   2938             // Merge the CopyOnEscape values.
   2939             RetainsToMove.CopyOnEscape &= NewReleaseRetainRRI.CopyOnEscape;
   2940 
   2941             // Collect the optimal insertion points.
   2942             if (!KnownSafe)
   2943               for (SmallPtrSet<Instruction *, 2>::const_iterator
   2944                    RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
   2945                    RE = NewReleaseRetainRRI.ReverseInsertPts.end();
   2946                    RI != RE; ++RI) {
   2947                 Instruction *RIP = *RI;
   2948                 if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
   2949                   PathCount = BBStates[RIP->getParent()].GetAllPathCount();
   2950                   NewDelta += PathCount;
   2951                   NewCount += PathCount;
   2952                 }
   2953               }
   2954             NewRetains.push_back(NewReleaseRetain);
   2955           }
   2956         }
   2957       }
   2958       NewReleases.clear();
   2959       if (NewRetains.empty()) break;
   2960     }
   2961 
   2962     // If the pointer is known incremented or nested, we can safely delete the
   2963     // pair regardless of what's between them.
   2964     if (KnownSafeTD || KnownSafeBU) {
   2965       RetainsToMove.ReverseInsertPts.clear();
   2966       ReleasesToMove.ReverseInsertPts.clear();
   2967       NewCount = 0;
   2968     } else {
   2969       // Determine whether the new insertion points we computed preserve the
   2970       // balance of retain and release calls through the program.
   2971       // TODO: If the fully aggressive solution isn't valid, try to find a
   2972       // less aggressive solution which is.
   2973       if (NewDelta != 0)
   2974         goto next_retain;
   2975     }
   2976 
   2977     // Determine whether the original call points are balanced in the retain and
   2978     // release calls through the program. If not, conservatively don't touch
   2979     // them.
   2980     // TODO: It's theoretically possible to do code motion in this case, as
   2981     // long as the existing imbalances are maintained.
   2982     if (OldDelta != 0)
   2983       goto next_retain;
   2984 
   2985     // Ok, everything checks out and we're all set. Let's move some code!
   2986     Changed = true;
   2987     AnyPairsCompletelyEliminated = NewCount == 0;
   2988     NumRRs += OldCount - NewCount;
   2989     MoveCalls(Arg, RetainsToMove, ReleasesToMove,
   2990               Retains, Releases, DeadInsts, M);
   2991 
   2992   next_retain:
   2993     NewReleases.clear();
   2994     NewRetains.clear();
   2995     RetainsToMove.clear();
   2996     ReleasesToMove.clear();
   2997   }
   2998 
   2999   // Now that we're done moving everything, we can delete the newly dead
   3000   // instructions, as we no longer need them as insert points.
   3001   while (!DeadInsts.empty())
   3002     EraseInstruction(DeadInsts.pop_back_val());
   3003 
   3004   return AnyPairsCompletelyEliminated;
   3005 }
   3006 
   3007 /// OptimizeWeakCalls - Weak pointer optimizations.
   3008 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
   3009   // First, do memdep-style RLE and S2L optimizations. We can't use memdep
   3010   // itself because it uses AliasAnalysis and we need to do provenance
   3011   // queries instead.
   3012   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   3013     Instruction *Inst = &*I++;
   3014     InstructionClass Class = GetBasicInstructionClass(Inst);
   3015     if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
   3016       continue;
   3017 
   3018     // Delete objc_loadWeak calls with no users.
   3019     if (Class == IC_LoadWeak && Inst->use_empty()) {
   3020       Inst->eraseFromParent();
   3021       continue;
   3022     }
   3023 
   3024     // TODO: For now, just look for an earlier available version of this value
   3025     // within the same block. Theoretically, we could do memdep-style non-local
   3026     // analysis too, but that would want caching. A better approach would be to
   3027     // use the technique that EarlyCSE uses.
   3028     inst_iterator Current = llvm::prior(I);
   3029     BasicBlock *CurrentBB = Current.getBasicBlockIterator();
   3030     for (BasicBlock::iterator B = CurrentBB->begin(),
   3031                               J = Current.getInstructionIterator();
   3032          J != B; --J) {
   3033       Instruction *EarlierInst = &*llvm::prior(J);
   3034       InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
   3035       switch (EarlierClass) {
   3036       case IC_LoadWeak:
   3037       case IC_LoadWeakRetained: {
   3038         // If this is loading from the same pointer, replace this load's value
   3039         // with that one.
   3040         CallInst *Call = cast<CallInst>(Inst);
   3041         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
   3042         Value *Arg = Call->getArgOperand(0);
   3043         Value *EarlierArg = EarlierCall->getArgOperand(0);
   3044         switch (PA.getAA()->alias(Arg, EarlierArg)) {
   3045         case AliasAnalysis::MustAlias:
   3046           Changed = true;
   3047           // If the load has a builtin retain, insert a plain retain for it.
   3048           if (Class == IC_LoadWeakRetained) {
   3049             CallInst *CI =
   3050               CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
   3051                                "", Call);
   3052             CI->setTailCall();
   3053           }
   3054           // Zap the fully redundant load.
   3055           Call->replaceAllUsesWith(EarlierCall);
   3056           Call->eraseFromParent();
   3057           goto clobbered;
   3058         case AliasAnalysis::MayAlias:
   3059         case AliasAnalysis::PartialAlias:
   3060           goto clobbered;
   3061         case AliasAnalysis::NoAlias:
   3062           break;
   3063         }
   3064         break;
   3065       }
   3066       case IC_StoreWeak:
   3067       case IC_InitWeak: {
   3068         // If this is storing to the same pointer and has the same size etc.
   3069         // replace this load's value with the stored value.
   3070         CallInst *Call = cast<CallInst>(Inst);
   3071         CallInst *EarlierCall = cast<CallInst>(EarlierInst);
   3072         Value *Arg = Call->getArgOperand(0);
   3073         Value *EarlierArg = EarlierCall->getArgOperand(0);
   3074         switch (PA.getAA()->alias(Arg, EarlierArg)) {
   3075         case AliasAnalysis::MustAlias:
   3076           Changed = true;
   3077           // If the load has a builtin retain, insert a plain retain for it.
   3078           if (Class == IC_LoadWeakRetained) {
   3079             CallInst *CI =
   3080               CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
   3081                                "", Call);
   3082             CI->setTailCall();
   3083           }
   3084           // Zap the fully redundant load.
   3085           Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
   3086           Call->eraseFromParent();
   3087           goto clobbered;
   3088         case AliasAnalysis::MayAlias:
   3089         case AliasAnalysis::PartialAlias:
   3090           goto clobbered;
   3091         case AliasAnalysis::NoAlias:
   3092           break;
   3093         }
   3094         break;
   3095       }
   3096       case IC_MoveWeak:
   3097       case IC_CopyWeak:
   3098         // TOOD: Grab the copied value.
   3099         goto clobbered;
   3100       case IC_AutoreleasepoolPush:
   3101       case IC_None:
   3102       case IC_User:
   3103         // Weak pointers are only modified through the weak entry points
   3104         // (and arbitrary calls, which could call the weak entry points).
   3105         break;
   3106       default:
   3107         // Anything else could modify the weak pointer.
   3108         goto clobbered;
   3109       }
   3110     }
   3111   clobbered:;
   3112   }
   3113 
   3114   // Then, for each destroyWeak with an alloca operand, check to see if
   3115   // the alloca and all its users can be zapped.
   3116   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   3117     Instruction *Inst = &*I++;
   3118     InstructionClass Class = GetBasicInstructionClass(Inst);
   3119     if (Class != IC_DestroyWeak)
   3120       continue;
   3121 
   3122     CallInst *Call = cast<CallInst>(Inst);
   3123     Value *Arg = Call->getArgOperand(0);
   3124     if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
   3125       for (Value::use_iterator UI = Alloca->use_begin(),
   3126            UE = Alloca->use_end(); UI != UE; ++UI) {
   3127         Instruction *UserInst = cast<Instruction>(*UI);
   3128         switch (GetBasicInstructionClass(UserInst)) {
   3129         case IC_InitWeak:
   3130         case IC_StoreWeak:
   3131         case IC_DestroyWeak:
   3132           continue;
   3133         default:
   3134           goto done;
   3135         }
   3136       }
   3137       Changed = true;
   3138       for (Value::use_iterator UI = Alloca->use_begin(),
   3139            UE = Alloca->use_end(); UI != UE; ) {
   3140         CallInst *UserInst = cast<CallInst>(*UI++);
   3141         if (!UserInst->use_empty())
   3142           UserInst->replaceAllUsesWith(UserInst->getOperand(1));
   3143         UserInst->eraseFromParent();
   3144       }
   3145       Alloca->eraseFromParent();
   3146     done:;
   3147     }
   3148   }
   3149 }
   3150 
   3151 /// OptimizeSequences - Identify program paths which execute sequences of
   3152 /// retains and releases which can be eliminated.
   3153 bool ObjCARCOpt::OptimizeSequences(Function &F) {
   3154   /// Releases, Retains - These are used to store the results of the main flow
   3155   /// analysis. These use Value* as the key instead of Instruction* so that the
   3156   /// map stays valid when we get around to rewriting code and calls get
   3157   /// replaced by arguments.
   3158   DenseMap<Value *, RRInfo> Releases;
   3159   MapVector<Value *, RRInfo> Retains;
   3160 
   3161   /// BBStates, This is used during the traversal of the function to track the
   3162   /// states for each identified object at each block.
   3163   DenseMap<const BasicBlock *, BBState> BBStates;
   3164 
   3165   // Analyze the CFG of the function, and all instructions.
   3166   bool NestingDetected = Visit(F, BBStates, Retains, Releases);
   3167 
   3168   // Transform.
   3169   return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
   3170          NestingDetected;
   3171 }
   3172 
   3173 /// OptimizeReturns - Look for this pattern:
   3174 ///
   3175 ///    %call = call i8* @something(...)
   3176 ///    %2 = call i8* @objc_retain(i8* %call)
   3177 ///    %3 = call i8* @objc_autorelease(i8* %2)
   3178 ///    ret i8* %3
   3179 ///
   3180 /// And delete the retain and autorelease.
   3181 ///
   3182 /// Otherwise if it's just this:
   3183 ///
   3184 ///    %3 = call i8* @objc_autorelease(i8* %2)
   3185 ///    ret i8* %3
   3186 ///
   3187 /// convert the autorelease to autoreleaseRV.
   3188 void ObjCARCOpt::OptimizeReturns(Function &F) {
   3189   if (!F.getReturnType()->isPointerTy())
   3190     return;
   3191 
   3192   SmallPtrSet<Instruction *, 4> DependingInstructions;
   3193   SmallPtrSet<const BasicBlock *, 4> Visited;
   3194   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
   3195     BasicBlock *BB = FI;
   3196     ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
   3197     if (!Ret) continue;
   3198 
   3199     const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
   3200     FindDependencies(NeedsPositiveRetainCount, Arg,
   3201                      BB, Ret, DependingInstructions, Visited, PA);
   3202     if (DependingInstructions.size() != 1)
   3203       goto next_block;
   3204 
   3205     {
   3206       CallInst *Autorelease =
   3207         dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
   3208       if (!Autorelease)
   3209         goto next_block;
   3210       InstructionClass AutoreleaseClass =
   3211         GetBasicInstructionClass(Autorelease);
   3212       if (!IsAutorelease(AutoreleaseClass))
   3213         goto next_block;
   3214       if (GetObjCArg(Autorelease) != Arg)
   3215         goto next_block;
   3216 
   3217       DependingInstructions.clear();
   3218       Visited.clear();
   3219 
   3220       // Check that there is nothing that can affect the reference
   3221       // count between the autorelease and the retain.
   3222       FindDependencies(CanChangeRetainCount, Arg,
   3223                        BB, Autorelease, DependingInstructions, Visited, PA);
   3224       if (DependingInstructions.size() != 1)
   3225         goto next_block;
   3226 
   3227       {
   3228         CallInst *Retain =
   3229           dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
   3230 
   3231         // Check that we found a retain with the same argument.
   3232         if (!Retain ||
   3233             !IsRetain(GetBasicInstructionClass(Retain)) ||
   3234             GetObjCArg(Retain) != Arg)
   3235           goto next_block;
   3236 
   3237         DependingInstructions.clear();
   3238         Visited.clear();
   3239 
   3240         // Convert the autorelease to an autoreleaseRV, since it's
   3241         // returning the value.
   3242         if (AutoreleaseClass == IC_Autorelease) {
   3243           Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
   3244           AutoreleaseClass = IC_AutoreleaseRV;
   3245         }
   3246 
   3247         // Check that there is nothing that can affect the reference
   3248         // count between the retain and the call.
   3249         // Note that Retain need not be in BB.
   3250         FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
   3251                          DependingInstructions, Visited, PA);
   3252         if (DependingInstructions.size() != 1)
   3253           goto next_block;
   3254 
   3255         {
   3256           CallInst *Call =
   3257             dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
   3258 
   3259           // Check that the pointer is the return value of the call.
   3260           if (!Call || Arg != Call)
   3261             goto next_block;
   3262 
   3263           // Check that the call is a regular call.
   3264           InstructionClass Class = GetBasicInstructionClass(Call);
   3265           if (Class != IC_CallOrUser && Class != IC_Call)
   3266             goto next_block;
   3267 
   3268           // If so, we can zap the retain and autorelease.
   3269           Changed = true;
   3270           ++NumRets;
   3271           EraseInstruction(Retain);
   3272           EraseInstruction(Autorelease);
   3273         }
   3274       }
   3275     }
   3276 
   3277   next_block:
   3278     DependingInstructions.clear();
   3279     Visited.clear();
   3280   }
   3281 }
   3282 
   3283 bool ObjCARCOpt::doInitialization(Module &M) {
   3284   if (!EnableARCOpts)
   3285     return false;
   3286 
   3287   Run = ModuleHasARC(M);
   3288   if (!Run)
   3289     return false;
   3290 
   3291   // Identify the imprecise release metadata kind.
   3292   ImpreciseReleaseMDKind =
   3293     M.getContext().getMDKindID("clang.imprecise_release");
   3294   CopyOnEscapeMDKind =
   3295     M.getContext().getMDKindID("clang.arc.copy_on_escape");
   3296 
   3297   // Intuitively, objc_retain and others are nocapture, however in practice
   3298   // they are not, because they return their argument value. And objc_release
   3299   // calls finalizers.
   3300 
   3301   // These are initialized lazily.
   3302   RetainRVCallee = 0;
   3303   AutoreleaseRVCallee = 0;
   3304   ReleaseCallee = 0;
   3305   RetainCallee = 0;
   3306   RetainBlockCallee = 0;
   3307   AutoreleaseCallee = 0;
   3308 
   3309   return false;
   3310 }
   3311 
   3312 bool ObjCARCOpt::runOnFunction(Function &F) {
   3313   if (!EnableARCOpts)
   3314     return false;
   3315 
   3316   // If nothing in the Module uses ARC, don't do anything.
   3317   if (!Run)
   3318     return false;
   3319 
   3320   Changed = false;
   3321 
   3322   PA.setAA(&getAnalysis<AliasAnalysis>());
   3323 
   3324   // This pass performs several distinct transformations. As a compile-time aid
   3325   // when compiling code that isn't ObjC, skip these if the relevant ObjC
   3326   // library functions aren't declared.
   3327 
   3328   // Preliminary optimizations. This also computs UsedInThisFunction.
   3329   OptimizeIndividualCalls(F);
   3330 
   3331   // Optimizations for weak pointers.
   3332   if (UsedInThisFunction & ((1 << IC_LoadWeak) |
   3333                             (1 << IC_LoadWeakRetained) |
   3334                             (1 << IC_StoreWeak) |
   3335                             (1 << IC_InitWeak) |
   3336                             (1 << IC_CopyWeak) |
   3337                             (1 << IC_MoveWeak) |
   3338                             (1 << IC_DestroyWeak)))
   3339     OptimizeWeakCalls(F);
   3340 
   3341   // Optimizations for retain+release pairs.
   3342   if (UsedInThisFunction & ((1 << IC_Retain) |
   3343                             (1 << IC_RetainRV) |
   3344                             (1 << IC_RetainBlock)))
   3345     if (UsedInThisFunction & (1 << IC_Release))
   3346       // Run OptimizeSequences until it either stops making changes or
   3347       // no retain+release pair nesting is detected.
   3348       while (OptimizeSequences(F)) {}
   3349 
   3350   // Optimizations if objc_autorelease is used.
   3351   if (UsedInThisFunction &
   3352       ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV)))
   3353     OptimizeReturns(F);
   3354 
   3355   return Changed;
   3356 }
   3357 
   3358 void ObjCARCOpt::releaseMemory() {
   3359   PA.clear();
   3360 }
   3361 
   3362 //===----------------------------------------------------------------------===//
   3363 // ARC contraction.
   3364 //===----------------------------------------------------------------------===//
   3365 
   3366 // TODO: ObjCARCContract could insert PHI nodes when uses aren't
   3367 // dominated by single calls.
   3368 
   3369 #include "llvm/Operator.h"
   3370 #include "llvm/InlineAsm.h"
   3371 #include "llvm/Analysis/Dominators.h"
   3372 
   3373 STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
   3374 
   3375 namespace {
   3376   /// ObjCARCContract - Late ARC optimizations.  These change the IR in a way
   3377   /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
   3378   class ObjCARCContract : public FunctionPass {
   3379     bool Changed;
   3380     AliasAnalysis *AA;
   3381     DominatorTree *DT;
   3382     ProvenanceAnalysis PA;
   3383 
   3384     /// Run - A flag indicating whether this optimization pass should run.
   3385     bool Run;
   3386 
   3387     /// StoreStrongCallee, etc. - Declarations for ObjC runtime
   3388     /// functions, for use in creating calls to them. These are initialized
   3389     /// lazily to avoid cluttering up the Module with unused declarations.
   3390     Constant *StoreStrongCallee,
   3391              *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
   3392 
   3393     /// RetainRVMarker - The inline asm string to insert between calls and
   3394     /// RetainRV calls to make the optimization work on targets which need it.
   3395     const MDString *RetainRVMarker;
   3396 
   3397     Constant *getStoreStrongCallee(Module *M);
   3398     Constant *getRetainAutoreleaseCallee(Module *M);
   3399     Constant *getRetainAutoreleaseRVCallee(Module *M);
   3400 
   3401     bool ContractAutorelease(Function &F, Instruction *Autorelease,
   3402                              InstructionClass Class,
   3403                              SmallPtrSet<Instruction *, 4>
   3404                                &DependingInstructions,
   3405                              SmallPtrSet<const BasicBlock *, 4>
   3406                                &Visited);
   3407 
   3408     void ContractRelease(Instruction *Release,
   3409                          inst_iterator &Iter);
   3410 
   3411     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
   3412     virtual bool doInitialization(Module &M);
   3413     virtual bool runOnFunction(Function &F);
   3414 
   3415   public:
   3416     static char ID;
   3417     ObjCARCContract() : FunctionPass(ID) {
   3418       initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
   3419     }
   3420   };
   3421 }
   3422 
   3423 char ObjCARCContract::ID = 0;
   3424 INITIALIZE_PASS_BEGIN(ObjCARCContract,
   3425                       "objc-arc-contract", "ObjC ARC contraction", false, false)
   3426 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   3427 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
   3428 INITIALIZE_PASS_END(ObjCARCContract,
   3429                     "objc-arc-contract", "ObjC ARC contraction", false, false)
   3430 
   3431 Pass *llvm::createObjCARCContractPass() {
   3432   return new ObjCARCContract();
   3433 }
   3434 
   3435 void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
   3436   AU.addRequired<AliasAnalysis>();
   3437   AU.addRequired<DominatorTree>();
   3438   AU.setPreservesCFG();
   3439 }
   3440 
   3441 Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
   3442   if (!StoreStrongCallee) {
   3443     LLVMContext &C = M->getContext();
   3444     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   3445     Type *I8XX = PointerType::getUnqual(I8X);
   3446     std::vector<Type *> Params;
   3447     Params.push_back(I8XX);
   3448     Params.push_back(I8X);
   3449 
   3450     AttrListPtr Attributes;
   3451     Attributes.addAttr(~0u, Attribute::NoUnwind);
   3452     Attributes.addAttr(1, Attribute::NoCapture);
   3453 
   3454     StoreStrongCallee =
   3455       M->getOrInsertFunction(
   3456         "objc_storeStrong",
   3457         FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
   3458         Attributes);
   3459   }
   3460   return StoreStrongCallee;
   3461 }
   3462 
   3463 Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
   3464   if (!RetainAutoreleaseCallee) {
   3465     LLVMContext &C = M->getContext();
   3466     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   3467     std::vector<Type *> Params;
   3468     Params.push_back(I8X);
   3469     FunctionType *FTy =
   3470       FunctionType::get(I8X, Params, /*isVarArg=*/false);
   3471     AttrListPtr Attributes;
   3472     Attributes.addAttr(~0u, Attribute::NoUnwind);
   3473     RetainAutoreleaseCallee =
   3474       M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
   3475   }
   3476   return RetainAutoreleaseCallee;
   3477 }
   3478 
   3479 Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
   3480   if (!RetainAutoreleaseRVCallee) {
   3481     LLVMContext &C = M->getContext();
   3482     Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   3483     std::vector<Type *> Params;
   3484     Params.push_back(I8X);
   3485     FunctionType *FTy =
   3486       FunctionType::get(I8X, Params, /*isVarArg=*/false);
   3487     AttrListPtr Attributes;
   3488     Attributes.addAttr(~0u, Attribute::NoUnwind);
   3489     RetainAutoreleaseRVCallee =
   3490       M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
   3491                              Attributes);
   3492   }
   3493   return RetainAutoreleaseRVCallee;
   3494 }
   3495 
   3496 /// ContractAutorelease - Merge an autorelease with a retain into a fused
   3497 /// call.
   3498 bool
   3499 ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
   3500                                      InstructionClass Class,
   3501                                      SmallPtrSet<Instruction *, 4>
   3502                                        &DependingInstructions,
   3503                                      SmallPtrSet<const BasicBlock *, 4>
   3504                                        &Visited) {
   3505   const Value *Arg = GetObjCArg(Autorelease);
   3506 
   3507   // Check that there are no instructions between the retain and the autorelease
   3508   // (such as an autorelease_pop) which may change the count.
   3509   CallInst *Retain = 0;
   3510   if (Class == IC_AutoreleaseRV)
   3511     FindDependencies(RetainAutoreleaseRVDep, Arg,
   3512                      Autorelease->getParent(), Autorelease,
   3513                      DependingInstructions, Visited, PA);
   3514   else
   3515     FindDependencies(RetainAutoreleaseDep, Arg,
   3516                      Autorelease->getParent(), Autorelease,
   3517                      DependingInstructions, Visited, PA);
   3518 
   3519   Visited.clear();
   3520   if (DependingInstructions.size() != 1) {
   3521     DependingInstructions.clear();
   3522     return false;
   3523   }
   3524 
   3525   Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
   3526   DependingInstructions.clear();
   3527 
   3528   if (!Retain ||
   3529       GetBasicInstructionClass(Retain) != IC_Retain ||
   3530       GetObjCArg(Retain) != Arg)
   3531     return false;
   3532 
   3533   Changed = true;
   3534   ++NumPeeps;
   3535 
   3536   if (Class == IC_AutoreleaseRV)
   3537     Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
   3538   else
   3539     Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
   3540 
   3541   EraseInstruction(Autorelease);
   3542   return true;
   3543 }
   3544 
   3545 /// ContractRelease - Attempt to merge an objc_release with a store, load, and
   3546 /// objc_retain to form an objc_storeStrong. This can be a little tricky because
   3547 /// the instructions don't always appear in order, and there may be unrelated
   3548 /// intervening instructions.
   3549 void ObjCARCContract::ContractRelease(Instruction *Release,
   3550                                       inst_iterator &Iter) {
   3551   LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
   3552   if (!Load || !Load->isSimple()) return;
   3553 
   3554   // For now, require everything to be in one basic block.
   3555   BasicBlock *BB = Release->getParent();
   3556   if (Load->getParent() != BB) return;
   3557 
   3558   // Walk down to find the store.
   3559   BasicBlock::iterator I = Load, End = BB->end();
   3560   ++I;
   3561   AliasAnalysis::Location Loc = AA->getLocation(Load);
   3562   while (I != End &&
   3563          (&*I == Release ||
   3564           IsRetain(GetBasicInstructionClass(I)) ||
   3565           !(AA->getModRefInfo(I, Loc) & AliasAnalysis::Mod)))
   3566     ++I;
   3567   StoreInst *Store = dyn_cast<StoreInst>(I);
   3568   if (!Store || !Store->isSimple()) return;
   3569   if (Store->getPointerOperand() != Loc.Ptr) return;
   3570 
   3571   Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
   3572 
   3573   // Walk up to find the retain.
   3574   I = Store;
   3575   BasicBlock::iterator Begin = BB->begin();
   3576   while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
   3577     --I;
   3578   Instruction *Retain = I;
   3579   if (GetBasicInstructionClass(Retain) != IC_Retain) return;
   3580   if (GetObjCArg(Retain) != New) return;
   3581 
   3582   Changed = true;
   3583   ++NumStoreStrongs;
   3584 
   3585   LLVMContext &C = Release->getContext();
   3586   Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
   3587   Type *I8XX = PointerType::getUnqual(I8X);
   3588 
   3589   Value *Args[] = { Load->getPointerOperand(), New };
   3590   if (Args[0]->getType() != I8XX)
   3591     Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
   3592   if (Args[1]->getType() != I8X)
   3593     Args[1] = new BitCastInst(Args[1], I8X, "", Store);
   3594   CallInst *StoreStrong =
   3595     CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
   3596                      Args, "", Store);
   3597   StoreStrong->setDoesNotThrow();
   3598   StoreStrong->setDebugLoc(Store->getDebugLoc());
   3599 
   3600   if (&*Iter == Store) ++Iter;
   3601   Store->eraseFromParent();
   3602   Release->eraseFromParent();
   3603   EraseInstruction(Retain);
   3604   if (Load->use_empty())
   3605     Load->eraseFromParent();
   3606 }
   3607 
   3608 bool ObjCARCContract::doInitialization(Module &M) {
   3609   Run = ModuleHasARC(M);
   3610   if (!Run)
   3611     return false;
   3612 
   3613   // These are initialized lazily.
   3614   StoreStrongCallee = 0;
   3615   RetainAutoreleaseCallee = 0;
   3616   RetainAutoreleaseRVCallee = 0;
   3617 
   3618   // Initialize RetainRVMarker.
   3619   RetainRVMarker = 0;
   3620   if (NamedMDNode *NMD =
   3621         M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
   3622     if (NMD->getNumOperands() == 1) {
   3623       const MDNode *N = NMD->getOperand(0);
   3624       if (N->getNumOperands() == 1)
   3625         if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
   3626           RetainRVMarker = S;
   3627     }
   3628 
   3629   return false;
   3630 }
   3631 
   3632 bool ObjCARCContract::runOnFunction(Function &F) {
   3633   if (!EnableARCOpts)
   3634     return false;
   3635 
   3636   // If nothing in the Module uses ARC, don't do anything.
   3637   if (!Run)
   3638     return false;
   3639 
   3640   Changed = false;
   3641   AA = &getAnalysis<AliasAnalysis>();
   3642   DT = &getAnalysis<DominatorTree>();
   3643 
   3644   PA.setAA(&getAnalysis<AliasAnalysis>());
   3645 
   3646   // For ObjC library calls which return their argument, replace uses of the
   3647   // argument with uses of the call return value, if it dominates the use. This
   3648   // reduces register pressure.
   3649   SmallPtrSet<Instruction *, 4> DependingInstructions;
   3650   SmallPtrSet<const BasicBlock *, 4> Visited;
   3651   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
   3652     Instruction *Inst = &*I++;
   3653 
   3654     // Only these library routines return their argument. In particular,
   3655     // objc_retainBlock does not necessarily return its argument.
   3656     InstructionClass Class = GetBasicInstructionClass(Inst);
   3657     switch (Class) {
   3658     case IC_Retain:
   3659     case IC_FusedRetainAutorelease:
   3660     case IC_FusedRetainAutoreleaseRV:
   3661       break;
   3662     case IC_Autorelease:
   3663     case IC_AutoreleaseRV:
   3664       if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
   3665         continue;
   3666       break;
   3667     case IC_RetainRV: {
   3668       // If we're compiling for a target which needs a special inline-asm
   3669       // marker to do the retainAutoreleasedReturnValue optimization,
   3670       // insert it now.
   3671       if (!RetainRVMarker)
   3672         break;
   3673       BasicBlock::iterator BBI = Inst;
   3674       --BBI;
   3675       while (isNoopInstruction(BBI)) --BBI;
   3676       if (&*BBI == GetObjCArg(Inst)) {
   3677         InlineAsm *IA =
   3678           InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
   3679                                            /*isVarArg=*/false),
   3680                          RetainRVMarker->getString(),
   3681                          /*Constraints=*/"", /*hasSideEffects=*/true);
   3682         CallInst::Create(IA, "", Inst);
   3683       }
   3684       break;
   3685     }
   3686     case IC_InitWeak: {
   3687       // objc_initWeak(p, null) => *p = null
   3688       CallInst *CI = cast<CallInst>(Inst);
   3689       if (isNullOrUndef(CI->getArgOperand(1))) {
   3690         Value *Null =
   3691           ConstantPointerNull::get(cast<PointerType>(CI->getType()));
   3692         Changed = true;
   3693         new StoreInst(Null, CI->getArgOperand(0), CI);
   3694         CI->replaceAllUsesWith(Null);
   3695         CI->eraseFromParent();
   3696       }
   3697       continue;
   3698     }
   3699     case IC_Release:
   3700       ContractRelease(Inst, I);
   3701       continue;
   3702     default:
   3703       continue;
   3704     }
   3705 
   3706     // Don't use GetObjCArg because we don't want to look through bitcasts
   3707     // and such; to do the replacement, the argument must have type i8*.
   3708     const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
   3709     for (;;) {
   3710       // If we're compiling bugpointed code, don't get in trouble.
   3711       if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
   3712         break;
   3713       // Look through the uses of the pointer.
   3714       for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
   3715            UI != UE; ) {
   3716         Use &U = UI.getUse();
   3717         unsigned OperandNo = UI.getOperandNo();
   3718         ++UI; // Increment UI now, because we may unlink its element.
   3719         if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser()))
   3720           if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
   3721             Changed = true;
   3722             Instruction *Replacement = Inst;
   3723             Type *UseTy = U.get()->getType();
   3724             if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
   3725               // For PHI nodes, insert the bitcast in the predecessor block.
   3726               unsigned ValNo =
   3727                 PHINode::getIncomingValueNumForOperand(OperandNo);
   3728               BasicBlock *BB =
   3729                 PHI->getIncomingBlock(ValNo);
   3730               if (Replacement->getType() != UseTy)
   3731                 Replacement = new BitCastInst(Replacement, UseTy, "",
   3732                                               &BB->back());
   3733               for (unsigned i = 0, e = PHI->getNumIncomingValues();
   3734                    i != e; ++i)
   3735                 if (PHI->getIncomingBlock(i) == BB) {
   3736                   // Keep the UI iterator valid.
   3737                   if (&PHI->getOperandUse(
   3738                         PHINode::getOperandNumForIncomingValue(i)) ==
   3739                         &UI.getUse())
   3740                     ++UI;
   3741                   PHI->setIncomingValue(i, Replacement);
   3742                 }
   3743             } else {
   3744               if (Replacement->getType() != UseTy)
   3745                 Replacement = new BitCastInst(Replacement, UseTy, "", UserInst);
   3746               U.set(Replacement);
   3747             }
   3748           }
   3749       }
   3750 
   3751       // If Arg is a no-op casted pointer, strip one level of casts and
   3752       // iterate.
   3753       if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
   3754         Arg = BI->getOperand(0);
   3755       else if (isa<GEPOperator>(Arg) &&
   3756                cast<GEPOperator>(Arg)->hasAllZeroIndices())
   3757         Arg = cast<GEPOperator>(Arg)->getPointerOperand();
   3758       else if (isa<GlobalAlias>(Arg) &&
   3759                !cast<GlobalAlias>(Arg)->mayBeOverridden())
   3760         Arg = cast<GlobalAlias>(Arg)->getAliasee();
   3761       else
   3762         break;
   3763     }
   3764   }
   3765 
   3766   return Changed;
   3767 }
   3768