Home | History | Annotate | Download | only in audioflinger
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <string.h>
     18 #include "AudioResamplerSinc.h"
     19 
     20 namespace android {
     21 // ----------------------------------------------------------------------------
     22 
     23 
     24 /*
     25  * These coeficients are computed with the "fir" utility found in
     26  * tools/resampler_tools
     27  * TODO: A good optimization would be to transpose this matrix, to take
     28  * better advantage of the data-cache.
     29  */
     30 const int32_t AudioResamplerSinc::mFirCoefsUp[] = {
     31         0x7fffffff, 0x7f15d078, 0x7c5e0da6, 0x77ecd867, 0x71e2e251, 0x6a6c304a, 0x61be7269, 0x58170412, 0x4db8ab05, 0x42e92ea6, 0x37eee214, 0x2d0e3bb1, 0x22879366, 0x18951e95, 0x0f693d0d, 0x072d2621,
     32         0x00000000, 0xf9f66655, 0xf51a5fd7, 0xf16bbd84, 0xeee0d9ac, 0xed67a922, 0xece70de6, 0xed405897, 0xee50e505, 0xeff3be30, 0xf203370f, 0xf45a6741, 0xf6d67d53, 0xf957db66, 0xfbc2f647, 0xfe00f2b9,
     33         0x00000000, 0x01b37218, 0x0313a0c6, 0x041d930d, 0x04d28057, 0x053731b0, 0x05534dff, 0x05309bfd, 0x04da440d, 0x045c1aee, 0x03c1fcdd, 0x03173ef5, 0x02663ae8, 0x01b7f736, 0x0113ec79, 0x007fe6a9,
     34         0x00000000, 0xff96b229, 0xff44f99f, 0xff0a86be, 0xfee5f803, 0xfed518fd, 0xfed521fd, 0xfee2f4fd, 0xfefb54f8, 0xff1b159b, 0xff3f4203, 0xff6539e0, 0xff8ac502, 0xffae1ddd, 0xffcdf3f9, 0xffe96798,
     35         0x00000000, 0x00119de6, 0x001e6b7e, 0x0026cb7a, 0x002b4830, 0x002c83d6, 0x002b2a82, 0x0027e67a, 0x002356f9, 0x001e098e, 0x001875e4, 0x0012fbbe, 0x000de2d1, 0x00095c10, 0x00058414, 0x00026636,
     36         0x00000000, 0xfffe44a9, 0xfffd206d, 0xfffc7b7f, 0xfffc3c8f, 0xfffc4ac2, 0xfffc8f2b, 0xfffcf5c4, 0xfffd6df3, 0xfffdeab2, 0xfffe6275, 0xfffececf, 0xffff2c07, 0xffff788c, 0xffffb471, 0xffffe0f2,
     37         0x00000000, 0x000013e6, 0x00001f03, 0x00002396, 0x00002399, 0x000020b6, 0x00001c3c, 0x00001722, 0x00001216, 0x00000d81, 0x0000099c, 0x0000067c, 0x00000419, 0x0000025f, 0x00000131, 0x00000070,
     38         0x00000000, 0xffffffc7, 0xffffffb3, 0xffffffb3, 0xffffffbe, 0xffffffcd, 0xffffffdb, 0xffffffe7, 0xfffffff0, 0xfffffff7, 0xfffffffb, 0xfffffffe, 0xffffffff, 0x00000000, 0x00000000, 0x00000000,
     39         0x00000000 // this one is needed for lerping the last coefficient
     40 };
     41 
     42 /*
     43  * These coefficients are optimized for 48KHz -> 44.1KHz (stop-band at 22.050KHz)
     44  * It's possible to use the above coefficient for any down-sampling
     45  * at the expense of a slower processing loop (we can interpolate
     46  * these coefficient from the above by "Stretching" them in time).
     47  */
     48 const int32_t AudioResamplerSinc::mFirCoefsDown[] = {
     49         0x7fffffff, 0x7f55e46d, 0x7d5b4c60, 0x7a1b4b98, 0x75a7fb14, 0x7019f0bd, 0x698f875a, 0x622bfd59, 0x5a167256, 0x5178cc54, 0x487e8e6c, 0x3f53aae8, 0x36235ad4, 0x2d17047b, 0x245539ab, 0x1c00d540,
     50         0x14383e57, 0x0d14d5ca, 0x06aa910b, 0x0107c38b, 0xfc351654, 0xf835abae, 0xf5076b45, 0xf2a37202, 0xf0fe9faa, 0xf00a3bbd, 0xefb4aa81, 0xefea2b05, 0xf0959716, 0xf1a11e83, 0xf2f6f7a0, 0xf481fff4,
     51         0xf62e48ce, 0xf7e98ca5, 0xf9a38b4c, 0xfb4e4bfa, 0xfcde456f, 0xfe4a6d30, 0xff8c2fdf, 0x009f5555, 0x0181d393, 0x0233940f, 0x02b62f06, 0x030ca07d, 0x033afa62, 0x03461725, 0x03334f83, 0x030835fa,
     52         0x02ca59cc, 0x027f12d1, 0x022b570d, 0x01d39a49, 0x017bb78f, 0x0126e414, 0x00d7aaaf, 0x008feec7, 0x0050f584, 0x001b73e3, 0xffefa063, 0xffcd46ed, 0xffb3ddcd, 0xffa29aaa, 0xff988691, 0xff949066,
     53         0xff959d24, 0xff9a959e, 0xffa27195, 0xffac4011, 0xffb72d2b, 0xffc28569, 0xffcdb706, 0xffd85171, 0xffe20364, 0xffea97e9, 0xfff1f2b2, 0xfff80c06, 0xfffcec92, 0x0000a955, 0x00035fd8, 0x000532cf,
     54         0x00064735, 0x0006c1f9, 0x0006c62d, 0x000673ba, 0x0005e68f, 0x00053630, 0x000475a3, 0x0003b397, 0x0002fac1, 0x00025257, 0x0001be9e, 0x0001417a, 0x0000dafd, 0x000089eb, 0x00004c28, 0x00001f1d,
     55         0x00000000, 0xffffec10, 0xffffe0be, 0xffffdbc5, 0xffffdb39, 0xffffdd8b, 0xffffe182, 0xffffe638, 0xffffeb0a, 0xffffef8f, 0xfffff38b, 0xfffff6e3, 0xfffff993, 0xfffffba6, 0xfffffd30, 0xfffffe4a,
     56         0xffffff09, 0xffffff85, 0xffffffd1, 0xfffffffb, 0x0000000f, 0x00000016, 0x00000015, 0x00000012, 0x0000000d, 0x00000009, 0x00000006, 0x00000003, 0x00000002, 0x00000001, 0x00000000, 0x00000000,
     57         0x00000000 // this one is needed for lerping the last coefficient
     58 };
     59 
     60 // ----------------------------------------------------------------------------
     61 
     62 static inline
     63 int32_t mulRL(int left, int32_t in, uint32_t vRL)
     64 {
     65 #if defined(__arm__) && !defined(__thumb__)
     66     int32_t out;
     67     if (left) {
     68         asm( "smultb %[out], %[in], %[vRL] \n"
     69              : [out]"=r"(out)
     70              : [in]"%r"(in), [vRL]"r"(vRL)
     71              : );
     72     } else {
     73         asm( "smultt %[out], %[in], %[vRL] \n"
     74              : [out]"=r"(out)
     75              : [in]"%r"(in), [vRL]"r"(vRL)
     76              : );
     77     }
     78     return out;
     79 #else
     80     if (left) {
     81         return int16_t(in>>16) * int16_t(vRL&0xFFFF);
     82     } else {
     83         return int16_t(in>>16) * int16_t(vRL>>16);
     84     }
     85 #endif
     86 }
     87 
     88 static inline
     89 int32_t mulAdd(int16_t in, int32_t v, int32_t a)
     90 {
     91 #if defined(__arm__) && !defined(__thumb__)
     92     int32_t out;
     93     asm( "smlawb %[out], %[v], %[in], %[a] \n"
     94          : [out]"=r"(out)
     95          : [in]"%r"(in), [v]"r"(v), [a]"r"(a)
     96          : );
     97     return out;
     98 #else
     99     return a + in * (v>>16);
    100     // improved precision
    101     // return a + in * (v>>16) + ((in * (v & 0xffff)) >> 16);
    102 #endif
    103 }
    104 
    105 static inline
    106 int32_t mulAddRL(int left, uint32_t inRL, int32_t v, int32_t a)
    107 {
    108 #if defined(__arm__) && !defined(__thumb__)
    109     int32_t out;
    110     if (left) {
    111         asm( "smlawb %[out], %[v], %[inRL], %[a] \n"
    112              : [out]"=r"(out)
    113              : [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
    114              : );
    115     } else {
    116         asm( "smlawt %[out], %[v], %[inRL], %[a] \n"
    117              : [out]"=r"(out)
    118              : [inRL]"%r"(inRL), [v]"r"(v), [a]"r"(a)
    119              : );
    120     }
    121     return out;
    122 #else
    123     if (left) {
    124         return a + (int16_t(inRL&0xFFFF) * (v>>16));
    125         //improved precision
    126         // return a + (int16_t(inRL&0xFFFF) * (v>>16)) + ((int16_t(inRL&0xFFFF) * (v & 0xffff)) >> 16);
    127     } else {
    128         return a + (int16_t(inRL>>16) * (v>>16));
    129     }
    130 #endif
    131 }
    132 
    133 // ----------------------------------------------------------------------------
    134 
    135 AudioResamplerSinc::AudioResamplerSinc(int bitDepth,
    136         int inChannelCount, int32_t sampleRate)
    137     : AudioResampler(bitDepth, inChannelCount, sampleRate),
    138     mState(0)
    139 {
    140     /*
    141      * Layout of the state buffer for 32 tap:
    142      *
    143      * "present" sample            beginning of 2nd buffer
    144      *                 v                v
    145      *  0              01               2              23              3
    146      *  0              F0               0              F0              F
    147      * [pppppppppppppppInnnnnnnnnnnnnnnnpppppppppppppppInnnnnnnnnnnnnnnn]
    148      *                 ^               ^ head
    149      *
    150      * p = past samples, convoluted with the (p)ositive side of sinc()
    151      * n = future samples, convoluted with the (n)egative side of sinc()
    152      * r = extra space for implementing the ring buffer
    153      *
    154      */
    155 
    156     const size_t numCoefs = 2*halfNumCoefs;
    157     const size_t stateSize = numCoefs * inChannelCount * 2;
    158     mState = new int16_t[stateSize];
    159     memset(mState, 0, sizeof(int16_t)*stateSize);
    160     mImpulse = mState + (halfNumCoefs-1)*inChannelCount;
    161     mRingFull = mImpulse + (numCoefs+1)*inChannelCount;
    162 }
    163 
    164 AudioResamplerSinc::~AudioResamplerSinc()
    165 {
    166     delete [] mState;
    167 }
    168 
    169 void AudioResamplerSinc::init() {
    170 }
    171 
    172 void AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
    173             AudioBufferProvider* provider)
    174 {
    175     mFirCoefs = (mInSampleRate <= mSampleRate) ? mFirCoefsUp : mFirCoefsDown;
    176 
    177     // select the appropriate resampler
    178     switch (mChannelCount) {
    179     case 1:
    180         resample<1>(out, outFrameCount, provider);
    181         break;
    182     case 2:
    183         resample<2>(out, outFrameCount, provider);
    184         break;
    185     }
    186 }
    187 
    188 
    189 template<int CHANNELS>
    190 void AudioResamplerSinc::resample(int32_t* out, size_t outFrameCount,
    191         AudioBufferProvider* provider)
    192 {
    193     int16_t* impulse = mImpulse;
    194     uint32_t vRL = mVolumeRL;
    195     size_t inputIndex = mInputIndex;
    196     uint32_t phaseFraction = mPhaseFraction;
    197     uint32_t phaseIncrement = mPhaseIncrement;
    198     size_t outputIndex = 0;
    199     size_t outputSampleCount = outFrameCount * 2;
    200     size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
    201 
    202     AudioBufferProvider::Buffer& buffer(mBuffer);
    203     while (outputIndex < outputSampleCount) {
    204         // buffer is empty, fetch a new one
    205         while (buffer.frameCount == 0) {
    206             buffer.frameCount = inFrameCount;
    207             provider->getNextBuffer(&buffer);
    208             if (buffer.raw == NULL) {
    209                 goto resample_exit;
    210             }
    211             const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
    212             if (phaseIndex == 1) {
    213                 // read one frame
    214                 read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
    215             } else if (phaseIndex == 2) {
    216                 // read 2 frames
    217                 read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
    218                 inputIndex++;
    219                 if (inputIndex >= mBuffer.frameCount) {
    220                     inputIndex -= mBuffer.frameCount;
    221                     provider->releaseBuffer(&buffer);
    222                 } else {
    223                     read<CHANNELS>(impulse, phaseFraction, buffer.i16, inputIndex);
    224                 }
    225            }
    226         }
    227         int16_t *in = buffer.i16;
    228         const size_t frameCount = buffer.frameCount;
    229 
    230         // Always read-in the first samples from the input buffer
    231         int16_t* head = impulse + halfNumCoefs*CHANNELS;
    232         head[0] = in[inputIndex*CHANNELS + 0];
    233         if (CHANNELS == 2)
    234             head[1] = in[inputIndex*CHANNELS + 1];
    235 
    236         // handle boundary case
    237         int32_t l, r;
    238         while (outputIndex < outputSampleCount) {
    239             filterCoefficient<CHANNELS>(l, r, phaseFraction, impulse);
    240             out[outputIndex++] += 2 * mulRL(1, l, vRL);
    241             out[outputIndex++] += 2 * mulRL(0, r, vRL);
    242 
    243             phaseFraction += phaseIncrement;
    244             const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
    245             if (phaseIndex == 1) {
    246                 inputIndex++;
    247                 if (inputIndex >= frameCount)
    248                     break;  // need a new buffer
    249                 read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
    250             } else if(phaseIndex == 2) {    // maximum value
    251                 inputIndex++;
    252                 if (inputIndex >= frameCount)
    253                     break;  // 0 frame available, 2 frames needed
    254                 // read first frame
    255                 read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
    256                 inputIndex++;
    257                 if (inputIndex >= frameCount)
    258                     break;  // 0 frame available, 1 frame needed
    259                 // read second frame
    260                 read<CHANNELS>(impulse, phaseFraction, in, inputIndex);
    261             }
    262         }
    263 
    264         // if done with buffer, save samples
    265         if (inputIndex >= frameCount) {
    266             inputIndex -= frameCount;
    267             provider->releaseBuffer(&buffer);
    268         }
    269     }
    270 
    271 resample_exit:
    272     mImpulse = impulse;
    273     mInputIndex = inputIndex;
    274     mPhaseFraction = phaseFraction;
    275 }
    276 
    277 template<int CHANNELS>
    278 /***
    279 * read()
    280 *
    281 * This function reads only one frame from input buffer and writes it in
    282 * state buffer
    283 *
    284 **/
    285 void AudioResamplerSinc::read(
    286         int16_t*& impulse, uint32_t& phaseFraction,
    287         int16_t const* in, size_t inputIndex)
    288 {
    289     const uint32_t phaseIndex = phaseFraction >> kNumPhaseBits;
    290     impulse += CHANNELS;
    291     phaseFraction -= 1LU<<kNumPhaseBits;
    292     if (impulse >= mRingFull) {
    293         const size_t stateSize = (halfNumCoefs*2)*CHANNELS;
    294         memcpy(mState, mState+stateSize, sizeof(int16_t)*stateSize);
    295         impulse -= stateSize;
    296     }
    297     int16_t* head = impulse + halfNumCoefs*CHANNELS;
    298     head[0] = in[inputIndex*CHANNELS + 0];
    299     if (CHANNELS == 2)
    300         head[1] = in[inputIndex*CHANNELS + 1];
    301 }
    302 
    303 template<int CHANNELS>
    304 void AudioResamplerSinc::filterCoefficient(
    305         int32_t& l, int32_t& r, uint32_t phase, int16_t const *samples)
    306 {
    307     // compute the index of the coefficient on the positive side and
    308     // negative side
    309     uint32_t indexP = (phase & cMask) >> cShift;
    310     uint16_t lerpP  = (phase & pMask) >> pShift;
    311     uint32_t indexN = (-phase & cMask) >> cShift;
    312     uint16_t lerpN  = (-phase & pMask) >> pShift;
    313     if ((indexP == 0) && (lerpP == 0)) {
    314         indexN = cMask >> cShift;
    315         lerpN = pMask >> pShift;
    316     }
    317 
    318     l = 0;
    319     r = 0;
    320     int32_t const* coefs = mFirCoefs;
    321     int16_t const *sP = samples;
    322     int16_t const *sN = samples+CHANNELS;
    323     for (unsigned int i=0 ; i<halfNumCoefs/4 ; i++) {
    324         interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
    325         interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
    326         sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
    327         interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
    328         interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
    329         sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
    330         interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
    331         interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
    332         sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
    333         interpolate<CHANNELS>(l, r, coefs+indexP, lerpP, sP);
    334         interpolate<CHANNELS>(l, r, coefs+indexN, lerpN, sN);
    335         sP -= CHANNELS; sN += CHANNELS; coefs += 1<<coefsBits;
    336     }
    337 }
    338 
    339 template<int CHANNELS>
    340 void AudioResamplerSinc::interpolate(
    341         int32_t& l, int32_t& r,
    342         int32_t const* coefs, int16_t lerp, int16_t const* samples)
    343 {
    344     int32_t c0 = coefs[0];
    345     int32_t c1 = coefs[1];
    346     int32_t sinc = mulAdd(lerp, (c1-c0)<<1, c0);
    347     if (CHANNELS == 2) {
    348         uint32_t rl = *reinterpret_cast<uint32_t const*>(samples);
    349         l = mulAddRL(1, rl, sinc, l);
    350         r = mulAddRL(0, rl, sinc, r);
    351     } else {
    352         r = l = mulAdd(samples[0], sinc, l);
    353     }
    354 }
    355 
    356 // ----------------------------------------------------------------------------
    357 }; // namespace android
    358 
    359