Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "CGCXXABI.h"
     17 #include "ABIInfo.h"
     18 #include "CodeGenFunction.h"
     19 #include "CodeGenModule.h"
     20 #include "clang/Basic/TargetInfo.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/Attributes.h"
     26 #include "llvm/Support/CallSite.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/InlineAsm.h"
     29 #include "llvm/Transforms/Utils/Local.h"
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 /***/
     34 
     35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     36   switch (CC) {
     37   default: return llvm::CallingConv::C;
     38   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     39   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     40   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     41   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     42   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     43   // TODO: add support for CC_X86Pascal to llvm
     44   }
     45 }
     46 
     47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     48 /// qualification.
     49 /// FIXME: address space qualification?
     50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     51   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     52   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     53 }
     54 
     55 /// Returns the canonical formal type of the given C++ method.
     56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     57   return MD->getType()->getCanonicalTypeUnqualified()
     58            .getAs<FunctionProtoType>();
     59 }
     60 
     61 /// Returns the "extra-canonicalized" return type, which discards
     62 /// qualifiers on the return type.  Codegen doesn't care about them,
     63 /// and it makes ABI code a little easier to be able to assume that
     64 /// all parameter and return types are top-level unqualified.
     65 static CanQualType GetReturnType(QualType RetTy) {
     66   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     67 }
     68 
     69 const CGFunctionInfo &
     70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
     71   return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
     72                          SmallVector<CanQualType, 16>(),
     73                          FTNP->getExtInfo());
     74 }
     75 
     76 /// \param Args - contains any initial parameters besides those
     77 ///   in the formal type
     78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
     79                                   SmallVectorImpl<CanQualType> &ArgTys,
     80                                              CanQual<FunctionProtoType> FTP) {
     81   // FIXME: Kill copy.
     82   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
     83     ArgTys.push_back(FTP->getArgType(i));
     84   CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
     85   return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
     86 }
     87 
     88 const CGFunctionInfo &
     89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
     90   SmallVector<CanQualType, 16> ArgTys;
     91   return ::getFunctionInfo(*this, ArgTys, FTP);
     92 }
     93 
     94 static CallingConv getCallingConventionForDecl(const Decl *D) {
     95   // Set the appropriate calling convention for the Function.
     96   if (D->hasAttr<StdCallAttr>())
     97     return CC_X86StdCall;
     98 
     99   if (D->hasAttr<FastCallAttr>())
    100     return CC_X86FastCall;
    101 
    102   if (D->hasAttr<ThisCallAttr>())
    103     return CC_X86ThisCall;
    104 
    105   if (D->hasAttr<PascalAttr>())
    106     return CC_X86Pascal;
    107 
    108   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    109     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    110 
    111   return CC_C;
    112 }
    113 
    114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
    115                                                  const FunctionProtoType *FTP) {
    116   SmallVector<CanQualType, 16> ArgTys;
    117 
    118   // Add the 'this' pointer.
    119   ArgTys.push_back(GetThisType(Context, RD));
    120 
    121   return ::getFunctionInfo(*this, ArgTys,
    122               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
    123 }
    124 
    125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
    126   SmallVector<CanQualType, 16> ArgTys;
    127 
    128   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
    129   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    130 
    131   // Add the 'this' pointer unless this is a static method.
    132   if (MD->isInstance())
    133     ArgTys.push_back(GetThisType(Context, MD->getParent()));
    134 
    135   return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
    136 }
    137 
    138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
    139                                                     CXXCtorType Type) {
    140   SmallVector<CanQualType, 16> ArgTys;
    141   ArgTys.push_back(GetThisType(Context, D->getParent()));
    142   CanQualType ResTy = Context.VoidTy;
    143 
    144   TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
    145 
    146   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    147 
    148   // Add the formal parameters.
    149   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    150     ArgTys.push_back(FTP->getArgType(i));
    151 
    152   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
    153 }
    154 
    155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
    156                                                     CXXDtorType Type) {
    157   SmallVector<CanQualType, 2> ArgTys;
    158   ArgTys.push_back(GetThisType(Context, D->getParent()));
    159   CanQualType ResTy = Context.VoidTy;
    160 
    161   TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
    162 
    163   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    164   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
    165 
    166   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
    167 }
    168 
    169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
    170   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    171     if (MD->isInstance())
    172       return getFunctionInfo(MD);
    173 
    174   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    175   assert(isa<FunctionType>(FTy));
    176   if (isa<FunctionNoProtoType>(FTy))
    177     return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
    178   assert(isa<FunctionProtoType>(FTy));
    179   return getFunctionInfo(FTy.getAs<FunctionProtoType>());
    180 }
    181 
    182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
    183   SmallVector<CanQualType, 16> ArgTys;
    184   ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
    185   ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    186   // FIXME: Kill copy?
    187   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
    188          e = MD->param_end(); i != e; ++i) {
    189     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
    190   }
    191 
    192   FunctionType::ExtInfo einfo;
    193   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
    194 
    195   if (getContext().getLangOptions().ObjCAutoRefCount &&
    196       MD->hasAttr<NSReturnsRetainedAttr>())
    197     einfo = einfo.withProducesResult(true);
    198 
    199   return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo);
    200 }
    201 
    202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
    203   // FIXME: Do we need to handle ObjCMethodDecl?
    204   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    205 
    206   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    207     return getFunctionInfo(CD, GD.getCtorType());
    208 
    209   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    210     return getFunctionInfo(DD, GD.getDtorType());
    211 
    212   return getFunctionInfo(FD);
    213 }
    214 
    215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
    216                                                     const CallArgList &Args,
    217                                             const FunctionType::ExtInfo &Info) {
    218   // FIXME: Kill copy.
    219   SmallVector<CanQualType, 16> ArgTys;
    220   for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
    221        i != e; ++i)
    222     ArgTys.push_back(Context.getCanonicalParamType(i->Ty));
    223   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
    224 }
    225 
    226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
    227                                                     const FunctionArgList &Args,
    228                                             const FunctionType::ExtInfo &Info) {
    229   // FIXME: Kill copy.
    230   SmallVector<CanQualType, 16> ArgTys;
    231   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    232        i != e; ++i)
    233     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
    234   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
    235 }
    236 
    237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() {
    238   SmallVector<CanQualType, 1> args;
    239   return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo());
    240 }
    241 
    242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
    243                            const SmallVectorImpl<CanQualType> &ArgTys,
    244                                             const FunctionType::ExtInfo &Info) {
    245 #ifndef NDEBUG
    246   for (SmallVectorImpl<CanQualType>::const_iterator
    247          I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
    248     assert(I->isCanonicalAsParam());
    249 #endif
    250 
    251   unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
    252 
    253   // Lookup or create unique function info.
    254   llvm::FoldingSetNodeID ID;
    255   CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end());
    256 
    257   void *InsertPos = 0;
    258   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
    259   if (FI)
    260     return *FI;
    261 
    262   // Construct the function info.
    263   FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(),
    264                           Info.getHasRegParm(), Info.getRegParm(), ResTy,
    265                           ArgTys.data(), ArgTys.size());
    266   FunctionInfos.InsertNode(FI, InsertPos);
    267 
    268   bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted;
    269   assert(Inserted && "Recursively being processed?");
    270 
    271   // Compute ABI information.
    272   getABIInfo().computeInfo(*FI);
    273 
    274   // Loop over all of the computed argument and return value info.  If any of
    275   // them are direct or extend without a specified coerce type, specify the
    276   // default now.
    277   ABIArgInfo &RetInfo = FI->getReturnInfo();
    278   if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
    279     RetInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    280 
    281   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
    282        I != E; ++I)
    283     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
    284       I->info.setCoerceToType(ConvertType(I->type));
    285 
    286   bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased;
    287   assert(Erased && "Not in set?");
    288 
    289   return *FI;
    290 }
    291 
    292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
    293                                bool _NoReturn, bool returnsRetained,
    294                                bool _HasRegParm, unsigned _RegParm,
    295                                CanQualType ResTy,
    296                                const CanQualType *ArgTys,
    297                                unsigned NumArgTys)
    298   : CallingConvention(_CallingConvention),
    299     EffectiveCallingConvention(_CallingConvention),
    300     NoReturn(_NoReturn), ReturnsRetained(returnsRetained),
    301     HasRegParm(_HasRegParm), RegParm(_RegParm)
    302 {
    303   NumArgs = NumArgTys;
    304 
    305   // FIXME: Coallocate with the CGFunctionInfo object.
    306   Args = new ArgInfo[1 + NumArgTys];
    307   Args[0].type = ResTy;
    308   for (unsigned i = 0; i != NumArgTys; ++i)
    309     Args[1 + i].type = ArgTys[i];
    310 }
    311 
    312 /***/
    313 
    314 void CodeGenTypes::GetExpandedTypes(QualType type,
    315                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
    316   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
    317     uint64_t NumElts = AT->getSize().getZExtValue();
    318     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
    319       GetExpandedTypes(AT->getElementType(), expandedTypes);
    320   } else if (const RecordType *RT = type->getAsStructureType()) {
    321     const RecordDecl *RD = RT->getDecl();
    322     assert(!RD->hasFlexibleArrayMember() &&
    323            "Cannot expand structure with flexible array.");
    324     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    325          i != e; ++i) {
    326       const FieldDecl *FD = *i;
    327       assert(!FD->isBitField() &&
    328              "Cannot expand structure with bit-field members.");
    329       GetExpandedTypes(FD->getType(), expandedTypes);
    330     }
    331   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
    332     llvm::Type *EltTy = ConvertType(CT->getElementType());
    333     expandedTypes.push_back(EltTy);
    334     expandedTypes.push_back(EltTy);
    335   } else
    336     expandedTypes.push_back(ConvertType(type));
    337 }
    338 
    339 llvm::Function::arg_iterator
    340 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
    341                                     llvm::Function::arg_iterator AI) {
    342   assert(LV.isSimple() &&
    343          "Unexpected non-simple lvalue during struct expansion.");
    344   llvm::Value *Addr = LV.getAddress();
    345 
    346   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    347     unsigned NumElts = AT->getSize().getZExtValue();
    348     QualType EltTy = AT->getElementType();
    349     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
    350       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
    351       LValue LV = MakeAddrLValue(EltAddr, EltTy);
    352       AI = ExpandTypeFromArgs(EltTy, LV, AI);
    353     }
    354   } else if (const RecordType *RT = Ty->getAsStructureType()) {
    355     RecordDecl *RD = RT->getDecl();
    356     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    357          i != e; ++i) {
    358       FieldDecl *FD = *i;
    359       QualType FT = FD->getType();
    360 
    361       // FIXME: What are the right qualifiers here?
    362       LValue LV = EmitLValueForField(Addr, FD, 0);
    363       AI = ExpandTypeFromArgs(FT, LV, AI);
    364     }
    365   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    366     QualType EltTy = CT->getElementType();
    367     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
    368     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
    369     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 0, "imag");
    370     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
    371   } else {
    372     EmitStoreThroughLValue(RValue::get(AI), LV);
    373     ++AI;
    374   }
    375 
    376   return AI;
    377 }
    378 
    379 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    380 /// accessing some number of bytes out of it, try to gep into the struct to get
    381 /// at its inner goodness.  Dive as deep as possible without entering an element
    382 /// with an in-memory size smaller than DstSize.
    383 static llvm::Value *
    384 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
    385                                    llvm::StructType *SrcSTy,
    386                                    uint64_t DstSize, CodeGenFunction &CGF) {
    387   // We can't dive into a zero-element struct.
    388   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    389 
    390   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    391 
    392   // If the first elt is at least as large as what we're looking for, or if the
    393   // first element is the same size as the whole struct, we can enter it.
    394   uint64_t FirstEltSize =
    395     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
    396   if (FirstEltSize < DstSize &&
    397       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
    398     return SrcPtr;
    399 
    400   // GEP into the first element.
    401   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
    402 
    403   // If the first element is a struct, recurse.
    404   llvm::Type *SrcTy =
    405     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    406   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    407     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    408 
    409   return SrcPtr;
    410 }
    411 
    412 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    413 /// are either integers or pointers.  This does a truncation of the value if it
    414 /// is too large or a zero extension if it is too small.
    415 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    416                                              llvm::Type *Ty,
    417                                              CodeGenFunction &CGF) {
    418   if (Val->getType() == Ty)
    419     return Val;
    420 
    421   if (isa<llvm::PointerType>(Val->getType())) {
    422     // If this is Pointer->Pointer avoid conversion to and from int.
    423     if (isa<llvm::PointerType>(Ty))
    424       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    425 
    426     // Convert the pointer to an integer so we can play with its width.
    427     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    428   }
    429 
    430   llvm::Type *DestIntTy = Ty;
    431   if (isa<llvm::PointerType>(DestIntTy))
    432     DestIntTy = CGF.IntPtrTy;
    433 
    434   if (Val->getType() != DestIntTy)
    435     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    436 
    437   if (isa<llvm::PointerType>(Ty))
    438     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    439   return Val;
    440 }
    441 
    442 
    443 
    444 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    445 /// a pointer to an object of type \arg Ty.
    446 ///
    447 /// This safely handles the case when the src type is smaller than the
    448 /// destination type; in this situation the values of bits which not
    449 /// present in the src are undefined.
    450 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
    451                                       llvm::Type *Ty,
    452                                       CodeGenFunction &CGF) {
    453   llvm::Type *SrcTy =
    454     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    455 
    456   // If SrcTy and Ty are the same, just do a load.
    457   if (SrcTy == Ty)
    458     return CGF.Builder.CreateLoad(SrcPtr);
    459 
    460   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
    461 
    462   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    463     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    464     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    465   }
    466 
    467   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
    468 
    469   // If the source and destination are integer or pointer types, just do an
    470   // extension or truncation to the desired type.
    471   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    472       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    473     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
    474     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    475   }
    476 
    477   // If load is legal, just bitcast the src pointer.
    478   if (SrcSize >= DstSize) {
    479     // Generally SrcSize is never greater than DstSize, since this means we are
    480     // losing bits. However, this can happen in cases where the structure has
    481     // additional padding, for example due to a user specified alignment.
    482     //
    483     // FIXME: Assert that we aren't truncating non-padding bits when have access
    484     // to that information.
    485     llvm::Value *Casted =
    486       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    487     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    488     // FIXME: Use better alignment / avoid requiring aligned load.
    489     Load->setAlignment(1);
    490     return Load;
    491   }
    492 
    493   // Otherwise do coercion through memory. This is stupid, but
    494   // simple.
    495   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    496   llvm::Value *Casted =
    497     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
    498   llvm::StoreInst *Store =
    499     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
    500   // FIXME: Use better alignment / avoid requiring aligned store.
    501   Store->setAlignment(1);
    502   return CGF.Builder.CreateLoad(Tmp);
    503 }
    504 
    505 // Function to store a first-class aggregate into memory.  We prefer to
    506 // store the elements rather than the aggregate to be more friendly to
    507 // fast-isel.
    508 // FIXME: Do we need to recurse here?
    509 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
    510                           llvm::Value *DestPtr, bool DestIsVolatile,
    511                           bool LowAlignment) {
    512   // Prefer scalar stores to first-class aggregate stores.
    513   if (llvm::StructType *STy =
    514         dyn_cast<llvm::StructType>(Val->getType())) {
    515     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    516       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
    517       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
    518       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
    519                                                     DestIsVolatile);
    520       if (LowAlignment)
    521         SI->setAlignment(1);
    522     }
    523   } else {
    524     CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
    525   }
    526 }
    527 
    528 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
    529 /// where the source and destination may have different types.
    530 ///
    531 /// This safely handles the case when the src type is larger than the
    532 /// destination type; the upper bits of the src will be lost.
    533 static void CreateCoercedStore(llvm::Value *Src,
    534                                llvm::Value *DstPtr,
    535                                bool DstIsVolatile,
    536                                CodeGenFunction &CGF) {
    537   llvm::Type *SrcTy = Src->getType();
    538   llvm::Type *DstTy =
    539     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    540   if (SrcTy == DstTy) {
    541     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    542     return;
    543   }
    544 
    545   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
    546 
    547   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
    548     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
    549     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    550   }
    551 
    552   // If the source and destination are integer or pointer types, just do an
    553   // extension or truncation to the desired type.
    554   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
    555       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
    556     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
    557     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    558     return;
    559   }
    560 
    561   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
    562 
    563   // If store is legal, just bitcast the src pointer.
    564   if (SrcSize <= DstSize) {
    565     llvm::Value *Casted =
    566       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
    567     // FIXME: Use better alignment / avoid requiring aligned store.
    568     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
    569   } else {
    570     // Otherwise do coercion through memory. This is stupid, but
    571     // simple.
    572 
    573     // Generally SrcSize is never greater than DstSize, since this means we are
    574     // losing bits. However, this can happen in cases where the structure has
    575     // additional padding, for example due to a user specified alignment.
    576     //
    577     // FIXME: Assert that we aren't truncating non-padding bits when have access
    578     // to that information.
    579     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
    580     CGF.Builder.CreateStore(Src, Tmp);
    581     llvm::Value *Casted =
    582       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
    583     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    584     // FIXME: Use better alignment / avoid requiring aligned load.
    585     Load->setAlignment(1);
    586     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
    587   }
    588 }
    589 
    590 /***/
    591 
    592 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
    593   return FI.getReturnInfo().isIndirect();
    594 }
    595 
    596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
    597   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
    598     switch (BT->getKind()) {
    599     default:
    600       return false;
    601     case BuiltinType::Float:
    602       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
    603     case BuiltinType::Double:
    604       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
    605     case BuiltinType::LongDouble:
    606       return getContext().getTargetInfo().useObjCFPRetForRealType(
    607         TargetInfo::LongDouble);
    608     }
    609   }
    610 
    611   return false;
    612 }
    613 
    614 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
    615   const CGFunctionInfo &FI = getFunctionInfo(GD);
    616 
    617   // For definition purposes, don't consider a K&R function variadic.
    618   bool Variadic = false;
    619   if (const FunctionProtoType *FPT =
    620         cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
    621     Variadic = FPT->isVariadic();
    622 
    623   return GetFunctionType(FI, Variadic);
    624 }
    625 
    626 llvm::FunctionType *
    627 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) {
    628 
    629   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
    630   assert(Inserted && "Recursively being processed?");
    631 
    632   SmallVector<llvm::Type*, 8> argTypes;
    633   llvm::Type *resultType = 0;
    634 
    635   const ABIArgInfo &retAI = FI.getReturnInfo();
    636   switch (retAI.getKind()) {
    637   case ABIArgInfo::Expand:
    638     llvm_unreachable("Invalid ABI kind for return argument");
    639 
    640   case ABIArgInfo::Extend:
    641   case ABIArgInfo::Direct:
    642     resultType = retAI.getCoerceToType();
    643     break;
    644 
    645   case ABIArgInfo::Indirect: {
    646     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
    647     resultType = llvm::Type::getVoidTy(getLLVMContext());
    648 
    649     QualType ret = FI.getReturnType();
    650     llvm::Type *ty = ConvertType(ret);
    651     unsigned addressSpace = Context.getTargetAddressSpace(ret);
    652     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
    653     break;
    654   }
    655 
    656   case ABIArgInfo::Ignore:
    657     resultType = llvm::Type::getVoidTy(getLLVMContext());
    658     break;
    659   }
    660 
    661   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
    662          ie = FI.arg_end(); it != ie; ++it) {
    663     const ABIArgInfo &argAI = it->info;
    664 
    665     switch (argAI.getKind()) {
    666     case ABIArgInfo::Ignore:
    667       break;
    668 
    669     case ABIArgInfo::Indirect: {
    670       // indirect arguments are always on the stack, which is addr space #0.
    671       llvm::Type *LTy = ConvertTypeForMem(it->type);
    672       argTypes.push_back(LTy->getPointerTo());
    673       break;
    674     }
    675 
    676     case ABIArgInfo::Extend:
    677     case ABIArgInfo::Direct: {
    678       // If the coerce-to type is a first class aggregate, flatten it.  Either
    679       // way is semantically identical, but fast-isel and the optimizer
    680       // generally likes scalar values better than FCAs.
    681       llvm::Type *argType = argAI.getCoerceToType();
    682       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
    683         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
    684           argTypes.push_back(st->getElementType(i));
    685       } else {
    686         argTypes.push_back(argType);
    687       }
    688       break;
    689     }
    690 
    691     case ABIArgInfo::Expand:
    692       GetExpandedTypes(it->type, argTypes);
    693       break;
    694     }
    695   }
    696 
    697   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
    698   assert(Erased && "Not in set?");
    699 
    700   return llvm::FunctionType::get(resultType, argTypes, isVariadic);
    701 }
    702 
    703 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
    704   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    705   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    706 
    707   if (!isFuncTypeConvertible(FPT))
    708     return llvm::StructType::get(getLLVMContext());
    709 
    710   const CGFunctionInfo *Info;
    711   if (isa<CXXDestructorDecl>(MD))
    712     Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
    713   else
    714     Info = &getFunctionInfo(MD);
    715   return GetFunctionType(*Info, FPT->isVariadic());
    716 }
    717 
    718 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
    719                                            const Decl *TargetDecl,
    720                                            AttributeListType &PAL,
    721                                            unsigned &CallingConv) {
    722   unsigned FuncAttrs = 0;
    723   unsigned RetAttrs = 0;
    724 
    725   CallingConv = FI.getEffectiveCallingConvention();
    726 
    727   if (FI.isNoReturn())
    728     FuncAttrs |= llvm::Attribute::NoReturn;
    729 
    730   // FIXME: handle sseregparm someday...
    731   if (TargetDecl) {
    732     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
    733       FuncAttrs |= llvm::Attribute::ReturnsTwice;
    734     if (TargetDecl->hasAttr<NoThrowAttr>())
    735       FuncAttrs |= llvm::Attribute::NoUnwind;
    736     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
    737       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
    738       if (FPT && FPT->isNothrow(getContext()))
    739         FuncAttrs |= llvm::Attribute::NoUnwind;
    740     }
    741 
    742     if (TargetDecl->hasAttr<NoReturnAttr>())
    743       FuncAttrs |= llvm::Attribute::NoReturn;
    744 
    745     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
    746       FuncAttrs |= llvm::Attribute::ReturnsTwice;
    747 
    748     // 'const' and 'pure' attribute functions are also nounwind.
    749     if (TargetDecl->hasAttr<ConstAttr>()) {
    750       FuncAttrs |= llvm::Attribute::ReadNone;
    751       FuncAttrs |= llvm::Attribute::NoUnwind;
    752     } else if (TargetDecl->hasAttr<PureAttr>()) {
    753       FuncAttrs |= llvm::Attribute::ReadOnly;
    754       FuncAttrs |= llvm::Attribute::NoUnwind;
    755     }
    756     if (TargetDecl->hasAttr<MallocAttr>())
    757       RetAttrs |= llvm::Attribute::NoAlias;
    758   }
    759 
    760   if (CodeGenOpts.OptimizeSize)
    761     FuncAttrs |= llvm::Attribute::OptimizeForSize;
    762   if (CodeGenOpts.DisableRedZone)
    763     FuncAttrs |= llvm::Attribute::NoRedZone;
    764   if (CodeGenOpts.NoImplicitFloat)
    765     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
    766 
    767   QualType RetTy = FI.getReturnType();
    768   unsigned Index = 1;
    769   const ABIArgInfo &RetAI = FI.getReturnInfo();
    770   switch (RetAI.getKind()) {
    771   case ABIArgInfo::Extend:
    772    if (RetTy->hasSignedIntegerRepresentation())
    773      RetAttrs |= llvm::Attribute::SExt;
    774    else if (RetTy->hasUnsignedIntegerRepresentation())
    775      RetAttrs |= llvm::Attribute::ZExt;
    776     break;
    777   case ABIArgInfo::Direct:
    778   case ABIArgInfo::Ignore:
    779     break;
    780 
    781   case ABIArgInfo::Indirect:
    782     PAL.push_back(llvm::AttributeWithIndex::get(Index,
    783                                                 llvm::Attribute::StructRet));
    784     ++Index;
    785     // sret disables readnone and readonly
    786     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
    787                    llvm::Attribute::ReadNone);
    788     break;
    789 
    790   case ABIArgInfo::Expand:
    791     llvm_unreachable("Invalid ABI kind for return argument");
    792   }
    793 
    794   if (RetAttrs)
    795     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
    796 
    797   // FIXME: RegParm should be reduced in case of global register variable.
    798   signed RegParm;
    799   if (FI.getHasRegParm())
    800     RegParm = FI.getRegParm();
    801   else
    802     RegParm = CodeGenOpts.NumRegisterParameters;
    803 
    804   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
    805   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
    806          ie = FI.arg_end(); it != ie; ++it) {
    807     QualType ParamType = it->type;
    808     const ABIArgInfo &AI = it->info;
    809     unsigned Attributes = 0;
    810 
    811     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
    812     // have the corresponding parameter variable.  It doesn't make
    813     // sense to do it here because parameters are so messed up.
    814     switch (AI.getKind()) {
    815     case ABIArgInfo::Extend:
    816       if (ParamType->isSignedIntegerOrEnumerationType())
    817         Attributes |= llvm::Attribute::SExt;
    818       else if (ParamType->isUnsignedIntegerOrEnumerationType())
    819         Attributes |= llvm::Attribute::ZExt;
    820       // FALL THROUGH
    821     case ABIArgInfo::Direct:
    822       if (RegParm > 0 &&
    823           (ParamType->isIntegerType() || ParamType->isPointerType())) {
    824         RegParm -=
    825         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
    826         if (RegParm >= 0)
    827           Attributes |= llvm::Attribute::InReg;
    828       }
    829       // FIXME: handle sseregparm someday...
    830 
    831       if (llvm::StructType *STy =
    832             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
    833         Index += STy->getNumElements()-1;  // 1 will be added below.
    834       break;
    835 
    836     case ABIArgInfo::Indirect:
    837       if (AI.getIndirectByVal())
    838         Attributes |= llvm::Attribute::ByVal;
    839 
    840       Attributes |=
    841         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
    842       // byval disables readnone and readonly.
    843       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
    844                      llvm::Attribute::ReadNone);
    845       break;
    846 
    847     case ABIArgInfo::Ignore:
    848       // Skip increment, no matching LLVM parameter.
    849       continue;
    850 
    851     case ABIArgInfo::Expand: {
    852       SmallVector<llvm::Type*, 8> types;
    853       // FIXME: This is rather inefficient. Do we ever actually need to do
    854       // anything here? The result should be just reconstructed on the other
    855       // side, so extension should be a non-issue.
    856       getTypes().GetExpandedTypes(ParamType, types);
    857       Index += types.size();
    858       continue;
    859     }
    860     }
    861 
    862     if (Attributes)
    863       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
    864     ++Index;
    865   }
    866   if (FuncAttrs)
    867     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
    868 }
    869 
    870 /// An argument came in as a promoted argument; demote it back to its
    871 /// declared type.
    872 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
    873                                          const VarDecl *var,
    874                                          llvm::Value *value) {
    875   llvm::Type *varType = CGF.ConvertType(var->getType());
    876 
    877   // This can happen with promotions that actually don't change the
    878   // underlying type, like the enum promotions.
    879   if (value->getType() == varType) return value;
    880 
    881   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
    882          && "unexpected promotion type");
    883 
    884   if (isa<llvm::IntegerType>(varType))
    885     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
    886 
    887   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
    888 }
    889 
    890 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
    891                                          llvm::Function *Fn,
    892                                          const FunctionArgList &Args) {
    893   // If this is an implicit-return-zero function, go ahead and
    894   // initialize the return value.  TODO: it might be nice to have
    895   // a more general mechanism for this that didn't require synthesized
    896   // return statements.
    897   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
    898     if (FD->hasImplicitReturnZero()) {
    899       QualType RetTy = FD->getResultType().getUnqualifiedType();
    900       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
    901       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
    902       Builder.CreateStore(Zero, ReturnValue);
    903     }
    904   }
    905 
    906   // FIXME: We no longer need the types from FunctionArgList; lift up and
    907   // simplify.
    908 
    909   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
    910   llvm::Function::arg_iterator AI = Fn->arg_begin();
    911 
    912   // Name the struct return argument.
    913   if (CGM.ReturnTypeUsesSRet(FI)) {
    914     AI->setName("agg.result");
    915     AI->addAttr(llvm::Attribute::NoAlias);
    916     ++AI;
    917   }
    918 
    919   assert(FI.arg_size() == Args.size() &&
    920          "Mismatch between function signature & arguments.");
    921   unsigned ArgNo = 1;
    922   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
    923   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    924        i != e; ++i, ++info_it, ++ArgNo) {
    925     const VarDecl *Arg = *i;
    926     QualType Ty = info_it->type;
    927     const ABIArgInfo &ArgI = info_it->info;
    928 
    929     bool isPromoted =
    930       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
    931 
    932     switch (ArgI.getKind()) {
    933     case ABIArgInfo::Indirect: {
    934       llvm::Value *V = AI;
    935 
    936       if (hasAggregateLLVMType(Ty)) {
    937         // Aggregates and complex variables are accessed by reference.  All we
    938         // need to do is realign the value, if requested
    939         if (ArgI.getIndirectRealign()) {
    940           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
    941 
    942           // Copy from the incoming argument pointer to the temporary with the
    943           // appropriate alignment.
    944           //
    945           // FIXME: We should have a common utility for generating an aggregate
    946           // copy.
    947           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
    948           CharUnits Size = getContext().getTypeSizeInChars(Ty);
    949           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
    950           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
    951           Builder.CreateMemCpy(Dst,
    952                                Src,
    953                                llvm::ConstantInt::get(IntPtrTy,
    954                                                       Size.getQuantity()),
    955                                ArgI.getIndirectAlign(),
    956                                false);
    957           V = AlignedTemp;
    958         }
    959       } else {
    960         // Load scalar value from indirect argument.
    961         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
    962         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
    963 
    964         if (isPromoted)
    965           V = emitArgumentDemotion(*this, Arg, V);
    966       }
    967       EmitParmDecl(*Arg, V, ArgNo);
    968       break;
    969     }
    970 
    971     case ABIArgInfo::Extend:
    972     case ABIArgInfo::Direct: {
    973       // If we have the trivial case, handle it with no muss and fuss.
    974       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
    975           ArgI.getCoerceToType() == ConvertType(Ty) &&
    976           ArgI.getDirectOffset() == 0) {
    977         assert(AI != Fn->arg_end() && "Argument mismatch!");
    978         llvm::Value *V = AI;
    979 
    980         if (Arg->getType().isRestrictQualified())
    981           AI->addAttr(llvm::Attribute::NoAlias);
    982 
    983         // Ensure the argument is the correct type.
    984         if (V->getType() != ArgI.getCoerceToType())
    985           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
    986 
    987         if (isPromoted)
    988           V = emitArgumentDemotion(*this, Arg, V);
    989 
    990         EmitParmDecl(*Arg, V, ArgNo);
    991         break;
    992       }
    993 
    994       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
    995 
    996       // The alignment we need to use is the max of the requested alignment for
    997       // the argument plus the alignment required by our access code below.
    998       unsigned AlignmentToUse =
    999         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
   1000       AlignmentToUse = std::max(AlignmentToUse,
   1001                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
   1002 
   1003       Alloca->setAlignment(AlignmentToUse);
   1004       llvm::Value *V = Alloca;
   1005       llvm::Value *Ptr = V;    // Pointer to store into.
   1006 
   1007       // If the value is offset in memory, apply the offset now.
   1008       if (unsigned Offs = ArgI.getDirectOffset()) {
   1009         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
   1010         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
   1011         Ptr = Builder.CreateBitCast(Ptr,
   1012                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
   1013       }
   1014 
   1015       // If the coerce-to type is a first class aggregate, we flatten it and
   1016       // pass the elements. Either way is semantically identical, but fast-isel
   1017       // and the optimizer generally likes scalar values better than FCAs.
   1018       if (llvm::StructType *STy =
   1019             dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
   1020         Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   1021 
   1022         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1023           assert(AI != Fn->arg_end() && "Argument mismatch!");
   1024           AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1025           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
   1026           Builder.CreateStore(AI++, EltPtr);
   1027         }
   1028       } else {
   1029         // Simple case, just do a coerced store of the argument into the alloca.
   1030         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1031         AI->setName(Arg->getName() + ".coerce");
   1032         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
   1033       }
   1034 
   1035 
   1036       // Match to what EmitParmDecl is expecting for this type.
   1037       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
   1038         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
   1039         if (isPromoted)
   1040           V = emitArgumentDemotion(*this, Arg, V);
   1041       }
   1042       EmitParmDecl(*Arg, V, ArgNo);
   1043       continue;  // Skip ++AI increment, already done.
   1044     }
   1045 
   1046     case ABIArgInfo::Expand: {
   1047       // If this structure was expanded into multiple arguments then
   1048       // we need to create a temporary and reconstruct it from the
   1049       // arguments.
   1050       llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
   1051       llvm::Function::arg_iterator End =
   1052         ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
   1053       EmitParmDecl(*Arg, Temp, ArgNo);
   1054 
   1055       // Name the arguments used in expansion and increment AI.
   1056       unsigned Index = 0;
   1057       for (; AI != End; ++AI, ++Index)
   1058         AI->setName(Arg->getName() + "." + Twine(Index));
   1059       continue;
   1060     }
   1061 
   1062     case ABIArgInfo::Ignore:
   1063       // Initialize the local variable appropriately.
   1064       if (hasAggregateLLVMType(Ty))
   1065         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
   1066       else
   1067         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
   1068                      ArgNo);
   1069 
   1070       // Skip increment, no matching LLVM parameter.
   1071       continue;
   1072     }
   1073 
   1074     ++AI;
   1075   }
   1076   assert(AI == Fn->arg_end() && "Argument mismatch!");
   1077 }
   1078 
   1079 /// Try to emit a fused autorelease of a return result.
   1080 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   1081                                                     llvm::Value *result) {
   1082   // We must be immediately followed the cast.
   1083   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   1084   if (BB->empty()) return 0;
   1085   if (&BB->back() != result) return 0;
   1086 
   1087   llvm::Type *resultType = result->getType();
   1088 
   1089   // result is in a BasicBlock and is therefore an Instruction.
   1090   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   1091 
   1092   SmallVector<llvm::Instruction*,4> insnsToKill;
   1093 
   1094   // Look for:
   1095   //  %generator = bitcast %type1* %generator2 to %type2*
   1096   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   1097     // We would have emitted this as a constant if the operand weren't
   1098     // an Instruction.
   1099     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   1100 
   1101     // Require the generator to be immediately followed by the cast.
   1102     if (generator->getNextNode() != bitcast)
   1103       return 0;
   1104 
   1105     insnsToKill.push_back(bitcast);
   1106   }
   1107 
   1108   // Look for:
   1109   //   %generator = call i8* @objc_retain(i8* %originalResult)
   1110   // or
   1111   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   1112   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   1113   if (!call) return 0;
   1114 
   1115   bool doRetainAutorelease;
   1116 
   1117   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
   1118     doRetainAutorelease = true;
   1119   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
   1120                                           .objc_retainAutoreleasedReturnValue) {
   1121     doRetainAutorelease = false;
   1122 
   1123     // Look for an inline asm immediately preceding the call and kill it, too.
   1124     llvm::Instruction *prev = call->getPrevNode();
   1125     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
   1126       if (asmCall->getCalledValue()
   1127             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
   1128         insnsToKill.push_back(prev);
   1129   } else {
   1130     return 0;
   1131   }
   1132 
   1133   result = call->getArgOperand(0);
   1134   insnsToKill.push_back(call);
   1135 
   1136   // Keep killing bitcasts, for sanity.  Note that we no longer care
   1137   // about precise ordering as long as there's exactly one use.
   1138   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   1139     if (!bitcast->hasOneUse()) break;
   1140     insnsToKill.push_back(bitcast);
   1141     result = bitcast->getOperand(0);
   1142   }
   1143 
   1144   // Delete all the unnecessary instructions, from latest to earliest.
   1145   for (SmallVectorImpl<llvm::Instruction*>::iterator
   1146          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   1147     (*i)->eraseFromParent();
   1148 
   1149   // Do the fused retain/autorelease if we were asked to.
   1150   if (doRetainAutorelease)
   1151     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   1152 
   1153   // Cast back to the result type.
   1154   return CGF.Builder.CreateBitCast(result, resultType);
   1155 }
   1156 
   1157 /// Emit an ARC autorelease of the result of a function.
   1158 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   1159                                             llvm::Value *result) {
   1160   // At -O0, try to emit a fused retain/autorelease.
   1161   if (CGF.shouldUseFusedARCCalls())
   1162     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   1163       return fused;
   1164 
   1165   return CGF.EmitARCAutoreleaseReturnValue(result);
   1166 }
   1167 
   1168 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
   1169   // Functions with no result always return void.
   1170   if (ReturnValue == 0) {
   1171     Builder.CreateRetVoid();
   1172     return;
   1173   }
   1174 
   1175   llvm::DebugLoc RetDbgLoc;
   1176   llvm::Value *RV = 0;
   1177   QualType RetTy = FI.getReturnType();
   1178   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1179 
   1180   switch (RetAI.getKind()) {
   1181   case ABIArgInfo::Indirect: {
   1182     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   1183     if (RetTy->isAnyComplexType()) {
   1184       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
   1185       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
   1186     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
   1187       // Do nothing; aggregrates get evaluated directly into the destination.
   1188     } else {
   1189       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
   1190                         false, Alignment, RetTy);
   1191     }
   1192     break;
   1193   }
   1194 
   1195   case ABIArgInfo::Extend:
   1196   case ABIArgInfo::Direct:
   1197     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   1198         RetAI.getDirectOffset() == 0) {
   1199       // The internal return value temp always will have pointer-to-return-type
   1200       // type, just do a load.
   1201 
   1202       // If the instruction right before the insertion point is a store to the
   1203       // return value, we can elide the load, zap the store, and usually zap the
   1204       // alloca.
   1205       llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
   1206       llvm::StoreInst *SI = 0;
   1207       if (InsertBB->empty() ||
   1208           !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
   1209           SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
   1210         RV = Builder.CreateLoad(ReturnValue);
   1211       } else {
   1212         // Get the stored value and nuke the now-dead store.
   1213         RetDbgLoc = SI->getDebugLoc();
   1214         RV = SI->getValueOperand();
   1215         SI->eraseFromParent();
   1216 
   1217         // If that was the only use of the return value, nuke it as well now.
   1218         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
   1219           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
   1220           ReturnValue = 0;
   1221         }
   1222       }
   1223     } else {
   1224       llvm::Value *V = ReturnValue;
   1225       // If the value is offset in memory, apply the offset now.
   1226       if (unsigned Offs = RetAI.getDirectOffset()) {
   1227         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
   1228         V = Builder.CreateConstGEP1_32(V, Offs);
   1229         V = Builder.CreateBitCast(V,
   1230                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   1231       }
   1232 
   1233       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   1234     }
   1235 
   1236     // In ARC, end functions that return a retainable type with a call
   1237     // to objc_autoreleaseReturnValue.
   1238     if (AutoreleaseResult) {
   1239       assert(getLangOptions().ObjCAutoRefCount &&
   1240              !FI.isReturnsRetained() &&
   1241              RetTy->isObjCRetainableType());
   1242       RV = emitAutoreleaseOfResult(*this, RV);
   1243     }
   1244 
   1245     break;
   1246 
   1247   case ABIArgInfo::Ignore:
   1248     break;
   1249 
   1250   case ABIArgInfo::Expand:
   1251     llvm_unreachable("Invalid ABI kind for return argument");
   1252   }
   1253 
   1254   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
   1255   if (!RetDbgLoc.isUnknown())
   1256     Ret->setDebugLoc(RetDbgLoc);
   1257 }
   1258 
   1259 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   1260                                           const VarDecl *param) {
   1261   // StartFunction converted the ABI-lowered parameter(s) into a
   1262   // local alloca.  We need to turn that into an r-value suitable
   1263   // for EmitCall.
   1264   llvm::Value *local = GetAddrOfLocalVar(param);
   1265 
   1266   QualType type = param->getType();
   1267 
   1268   // For the most part, we just need to load the alloca, except:
   1269   // 1) aggregate r-values are actually pointers to temporaries, and
   1270   // 2) references to aggregates are pointers directly to the aggregate.
   1271   // I don't know why references to non-aggregates are different here.
   1272   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   1273     if (hasAggregateLLVMType(ref->getPointeeType()))
   1274       return args.add(RValue::getAggregate(local), type);
   1275 
   1276     // Locals which are references to scalars are represented
   1277     // with allocas holding the pointer.
   1278     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   1279   }
   1280 
   1281   if (type->isAnyComplexType()) {
   1282     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
   1283     return args.add(RValue::getComplex(complex), type);
   1284   }
   1285 
   1286   if (hasAggregateLLVMType(type))
   1287     return args.add(RValue::getAggregate(local), type);
   1288 
   1289   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
   1290   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
   1291   return args.add(RValue::get(value), type);
   1292 }
   1293 
   1294 static bool isProvablyNull(llvm::Value *addr) {
   1295   return isa<llvm::ConstantPointerNull>(addr);
   1296 }
   1297 
   1298 static bool isProvablyNonNull(llvm::Value *addr) {
   1299   return isa<llvm::AllocaInst>(addr);
   1300 }
   1301 
   1302 /// Emit the actual writing-back of a writeback.
   1303 static void emitWriteback(CodeGenFunction &CGF,
   1304                           const CallArgList::Writeback &writeback) {
   1305   llvm::Value *srcAddr = writeback.Address;
   1306   assert(!isProvablyNull(srcAddr) &&
   1307          "shouldn't have writeback for provably null argument");
   1308 
   1309   llvm::BasicBlock *contBB = 0;
   1310 
   1311   // If the argument wasn't provably non-null, we need to null check
   1312   // before doing the store.
   1313   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1314   if (!provablyNonNull) {
   1315     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   1316     contBB = CGF.createBasicBlock("icr.done");
   1317 
   1318     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1319     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   1320     CGF.EmitBlock(writebackBB);
   1321   }
   1322 
   1323   // Load the value to writeback.
   1324   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   1325 
   1326   // Cast it back, in case we're writing an id to a Foo* or something.
   1327   value = CGF.Builder.CreateBitCast(value,
   1328                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
   1329                             "icr.writeback-cast");
   1330 
   1331   // Perform the writeback.
   1332   QualType srcAddrType = writeback.AddressType;
   1333   CGF.EmitStoreThroughLValue(RValue::get(value),
   1334                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
   1335 
   1336   // Jump to the continuation block.
   1337   if (!provablyNonNull)
   1338     CGF.EmitBlock(contBB);
   1339 }
   1340 
   1341 static void emitWritebacks(CodeGenFunction &CGF,
   1342                            const CallArgList &args) {
   1343   for (CallArgList::writeback_iterator
   1344          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
   1345     emitWriteback(CGF, *i);
   1346 }
   1347 
   1348 /// Emit an argument that's being passed call-by-writeback.  That is,
   1349 /// we are passing the address of
   1350 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   1351                              const ObjCIndirectCopyRestoreExpr *CRE) {
   1352   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
   1353 
   1354   // The dest and src types don't necessarily match in LLVM terms
   1355   // because of the crazy ObjC compatibility rules.
   1356 
   1357   llvm::PointerType *destType =
   1358     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   1359 
   1360   // If the address is a constant null, just pass the appropriate null.
   1361   if (isProvablyNull(srcAddr)) {
   1362     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   1363              CRE->getType());
   1364     return;
   1365   }
   1366 
   1367   QualType srcAddrType =
   1368     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   1369 
   1370   // Create the temporary.
   1371   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
   1372                                            "icr.temp");
   1373 
   1374   // Zero-initialize it if we're not doing a copy-initialization.
   1375   bool shouldCopy = CRE->shouldCopy();
   1376   if (!shouldCopy) {
   1377     llvm::Value *null =
   1378       llvm::ConstantPointerNull::get(
   1379         cast<llvm::PointerType>(destType->getElementType()));
   1380     CGF.Builder.CreateStore(null, temp);
   1381   }
   1382 
   1383   llvm::BasicBlock *contBB = 0;
   1384 
   1385   // If the address is *not* known to be non-null, we need to switch.
   1386   llvm::Value *finalArgument;
   1387 
   1388   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1389   if (provablyNonNull) {
   1390     finalArgument = temp;
   1391   } else {
   1392     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1393 
   1394     finalArgument = CGF.Builder.CreateSelect(isNull,
   1395                                    llvm::ConstantPointerNull::get(destType),
   1396                                              temp, "icr.argument");
   1397 
   1398     // If we need to copy, then the load has to be conditional, which
   1399     // means we need control flow.
   1400     if (shouldCopy) {
   1401       contBB = CGF.createBasicBlock("icr.cont");
   1402       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   1403       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   1404       CGF.EmitBlock(copyBB);
   1405     }
   1406   }
   1407 
   1408   // Perform a copy if necessary.
   1409   if (shouldCopy) {
   1410     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
   1411     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
   1412     assert(srcRV.isScalar());
   1413 
   1414     llvm::Value *src = srcRV.getScalarVal();
   1415     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   1416                                     "icr.cast");
   1417 
   1418     // Use an ordinary store, not a store-to-lvalue.
   1419     CGF.Builder.CreateStore(src, temp);
   1420   }
   1421 
   1422   // Finish the control flow if we needed it.
   1423   if (shouldCopy && !provablyNonNull)
   1424     CGF.EmitBlock(contBB);
   1425 
   1426   args.addWriteback(srcAddr, srcAddrType, temp);
   1427   args.add(RValue::get(finalArgument), CRE->getType());
   1428 }
   1429 
   1430 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   1431                                   QualType type) {
   1432   if (const ObjCIndirectCopyRestoreExpr *CRE
   1433         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   1434     assert(getContext().getLangOptions().ObjCAutoRefCount);
   1435     assert(getContext().hasSameType(E->getType(), type));
   1436     return emitWritebackArg(*this, args, CRE);
   1437   }
   1438 
   1439   assert(type->isReferenceType() == E->isGLValue() &&
   1440          "reference binding to unmaterialized r-value!");
   1441 
   1442   if (E->isGLValue()) {
   1443     assert(E->getObjectKind() == OK_Ordinary);
   1444     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
   1445                     type);
   1446   }
   1447 
   1448   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
   1449       isa<ImplicitCastExpr>(E) &&
   1450       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   1451     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   1452     assert(L.isSimple());
   1453     args.add(RValue::getAggregate(L.getAddress(), L.isVolatileQualified()),
   1454              type, /*NeedsCopy*/true);
   1455     return;
   1456   }
   1457 
   1458   args.add(EmitAnyExprToTemp(E), type);
   1459 }
   1460 
   1461 /// Emits a call or invoke instruction to the given function, depending
   1462 /// on the current state of the EH stack.
   1463 llvm::CallSite
   1464 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   1465                                   ArrayRef<llvm::Value *> Args,
   1466                                   const Twine &Name) {
   1467   llvm::BasicBlock *InvokeDest = getInvokeDest();
   1468   if (!InvokeDest)
   1469     return Builder.CreateCall(Callee, Args, Name);
   1470 
   1471   llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   1472   llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
   1473                                                   Args, Name);
   1474   EmitBlock(ContBB);
   1475   return Invoke;
   1476 }
   1477 
   1478 llvm::CallSite
   1479 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   1480                                   const Twine &Name) {
   1481   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
   1482 }
   1483 
   1484 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
   1485                             llvm::FunctionType *FTy) {
   1486   if (ArgNo < FTy->getNumParams())
   1487     assert(Elt->getType() == FTy->getParamType(ArgNo));
   1488   else
   1489     assert(FTy->isVarArg());
   1490   ++ArgNo;
   1491 }
   1492 
   1493 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
   1494                                        SmallVector<llvm::Value*,16> &Args,
   1495                                        llvm::FunctionType *IRFuncTy) {
   1496   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   1497     unsigned NumElts = AT->getSize().getZExtValue();
   1498     QualType EltTy = AT->getElementType();
   1499     llvm::Value *Addr = RV.getAggregateAddr();
   1500     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
   1501       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
   1502       LValue LV = MakeAddrLValue(EltAddr, EltTy);
   1503       RValue EltRV;
   1504       if (CodeGenFunction::hasAggregateLLVMType(EltTy))
   1505         EltRV = RValue::getAggregate(LV.getAddress());
   1506       else
   1507         EltRV = EmitLoadOfLValue(LV);
   1508       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
   1509     }
   1510   } else if (const RecordType *RT = Ty->getAsStructureType()) {
   1511     RecordDecl *RD = RT->getDecl();
   1512     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
   1513     llvm::Value *Addr = RV.getAggregateAddr();
   1514     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1515          i != e; ++i) {
   1516       FieldDecl *FD = *i;
   1517       QualType FT = FD->getType();
   1518 
   1519       // FIXME: What are the right qualifiers here?
   1520       LValue LV = EmitLValueForField(Addr, FD, 0);
   1521       RValue FldRV;
   1522       if (CodeGenFunction::hasAggregateLLVMType(FT))
   1523         FldRV = RValue::getAggregate(LV.getAddress());
   1524       else
   1525         FldRV = EmitLoadOfLValue(LV);
   1526       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
   1527     }
   1528   } else if (isa<ComplexType>(Ty)) {
   1529     ComplexPairTy CV = RV.getComplexVal();
   1530     Args.push_back(CV.first);
   1531     Args.push_back(CV.second);
   1532   } else {
   1533     assert(RV.isScalar() &&
   1534            "Unexpected non-scalar rvalue during struct expansion.");
   1535 
   1536     // Insert a bitcast as needed.
   1537     llvm::Value *V = RV.getScalarVal();
   1538     if (Args.size() < IRFuncTy->getNumParams() &&
   1539         V->getType() != IRFuncTy->getParamType(Args.size()))
   1540       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
   1541 
   1542     Args.push_back(V);
   1543   }
   1544 }
   1545 
   1546 
   1547 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   1548                                  llvm::Value *Callee,
   1549                                  ReturnValueSlot ReturnValue,
   1550                                  const CallArgList &CallArgs,
   1551                                  const Decl *TargetDecl,
   1552                                  llvm::Instruction **callOrInvoke) {
   1553   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   1554   SmallVector<llvm::Value*, 16> Args;
   1555 
   1556   // Handle struct-return functions by passing a pointer to the
   1557   // location that we would like to return into.
   1558   QualType RetTy = CallInfo.getReturnType();
   1559   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   1560 
   1561   // IRArgNo - Keep track of the argument number in the callee we're looking at.
   1562   unsigned IRArgNo = 0;
   1563   llvm::FunctionType *IRFuncTy =
   1564     cast<llvm::FunctionType>(
   1565                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   1566 
   1567   // If the call returns a temporary with struct return, create a temporary
   1568   // alloca to hold the result, unless one is given to us.
   1569   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
   1570     llvm::Value *Value = ReturnValue.getValue();
   1571     if (!Value)
   1572       Value = CreateMemTemp(RetTy);
   1573     Args.push_back(Value);
   1574     checkArgMatches(Value, IRArgNo, IRFuncTy);
   1575   }
   1576 
   1577   assert(CallInfo.arg_size() == CallArgs.size() &&
   1578          "Mismatch between function signature & arguments.");
   1579   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   1580   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   1581        I != E; ++I, ++info_it) {
   1582     const ABIArgInfo &ArgInfo = info_it->info;
   1583     RValue RV = I->RV;
   1584 
   1585     unsigned TypeAlign =
   1586       getContext().getTypeAlignInChars(I->Ty).getQuantity();
   1587     switch (ArgInfo.getKind()) {
   1588     case ABIArgInfo::Indirect: {
   1589       if (RV.isScalar() || RV.isComplex()) {
   1590         // Make a temporary alloca to pass the argument.
   1591         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   1592         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
   1593           AI->setAlignment(ArgInfo.getIndirectAlign());
   1594         Args.push_back(AI);
   1595 
   1596         if (RV.isScalar())
   1597           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
   1598                             TypeAlign, I->Ty);
   1599         else
   1600           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
   1601 
   1602         // Validate argument match.
   1603         checkArgMatches(AI, IRArgNo, IRFuncTy);
   1604       } else {
   1605         // We want to avoid creating an unnecessary temporary+copy here;
   1606         // however, we need one in two cases:
   1607         // 1. If the argument is not byval, and we are required to copy the
   1608         //    source.  (This case doesn't occur on any common architecture.)
   1609         // 2. If the argument is byval, RV is not sufficiently aligned, and
   1610         //    we cannot force it to be sufficiently aligned.
   1611         llvm::Value *Addr = RV.getAggregateAddr();
   1612         unsigned Align = ArgInfo.getIndirectAlign();
   1613         const llvm::TargetData *TD = &CGM.getTargetData();
   1614         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   1615             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
   1616              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
   1617           // Create an aligned temporary, and copy to it.
   1618           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   1619           if (Align > AI->getAlignment())
   1620             AI->setAlignment(Align);
   1621           Args.push_back(AI);
   1622           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   1623 
   1624           // Validate argument match.
   1625           checkArgMatches(AI, IRArgNo, IRFuncTy);
   1626         } else {
   1627           // Skip the extra memcpy call.
   1628           Args.push_back(Addr);
   1629 
   1630           // Validate argument match.
   1631           checkArgMatches(Addr, IRArgNo, IRFuncTy);
   1632         }
   1633       }
   1634       break;
   1635     }
   1636 
   1637     case ABIArgInfo::Ignore:
   1638       break;
   1639 
   1640     case ABIArgInfo::Extend:
   1641     case ABIArgInfo::Direct: {
   1642       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   1643           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   1644           ArgInfo.getDirectOffset() == 0) {
   1645         llvm::Value *V;
   1646         if (RV.isScalar())
   1647           V = RV.getScalarVal();
   1648         else
   1649           V = Builder.CreateLoad(RV.getAggregateAddr());
   1650 
   1651         // If the argument doesn't match, perform a bitcast to coerce it.  This
   1652         // can happen due to trivial type mismatches.
   1653         if (IRArgNo < IRFuncTy->getNumParams() &&
   1654             V->getType() != IRFuncTy->getParamType(IRArgNo))
   1655           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
   1656         Args.push_back(V);
   1657 
   1658         checkArgMatches(V, IRArgNo, IRFuncTy);
   1659         break;
   1660       }
   1661 
   1662       // FIXME: Avoid the conversion through memory if possible.
   1663       llvm::Value *SrcPtr;
   1664       if (RV.isScalar()) {
   1665         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   1666         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
   1667       } else if (RV.isComplex()) {
   1668         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   1669         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
   1670       } else
   1671         SrcPtr = RV.getAggregateAddr();
   1672 
   1673       // If the value is offset in memory, apply the offset now.
   1674       if (unsigned Offs = ArgInfo.getDirectOffset()) {
   1675         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
   1676         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
   1677         SrcPtr = Builder.CreateBitCast(SrcPtr,
   1678                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
   1679 
   1680       }
   1681 
   1682       // If the coerce-to type is a first class aggregate, we flatten it and
   1683       // pass the elements. Either way is semantically identical, but fast-isel
   1684       // and the optimizer generally likes scalar values better than FCAs.
   1685       if (llvm::StructType *STy =
   1686             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
   1687         SrcPtr = Builder.CreateBitCast(SrcPtr,
   1688                                        llvm::PointerType::getUnqual(STy));
   1689         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1690           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
   1691           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
   1692           // We don't know what we're loading from.
   1693           LI->setAlignment(1);
   1694           Args.push_back(LI);
   1695 
   1696           // Validate argument match.
   1697           checkArgMatches(LI, IRArgNo, IRFuncTy);
   1698         }
   1699       } else {
   1700         // In the simple case, just pass the coerced loaded value.
   1701         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
   1702                                          *this));
   1703 
   1704         // Validate argument match.
   1705         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
   1706       }
   1707 
   1708       break;
   1709     }
   1710 
   1711     case ABIArgInfo::Expand:
   1712       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
   1713       IRArgNo = Args.size();
   1714       break;
   1715     }
   1716   }
   1717 
   1718   // If the callee is a bitcast of a function to a varargs pointer to function
   1719   // type, check to see if we can remove the bitcast.  This handles some cases
   1720   // with unprototyped functions.
   1721   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   1722     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   1723       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   1724       llvm::FunctionType *CurFT =
   1725         cast<llvm::FunctionType>(CurPT->getElementType());
   1726       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   1727 
   1728       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   1729           ActualFT->getReturnType() == CurFT->getReturnType() &&
   1730           ActualFT->getNumParams() == CurFT->getNumParams() &&
   1731           ActualFT->getNumParams() == Args.size() &&
   1732           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   1733         bool ArgsMatch = true;
   1734         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   1735           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   1736             ArgsMatch = false;
   1737             break;
   1738           }
   1739 
   1740         // Strip the cast if we can get away with it.  This is a nice cleanup,
   1741         // but also allows us to inline the function at -O0 if it is marked
   1742         // always_inline.
   1743         if (ArgsMatch)
   1744           Callee = CalleeF;
   1745       }
   1746     }
   1747 
   1748   unsigned CallingConv;
   1749   CodeGen::AttributeListType AttributeList;
   1750   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
   1751   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
   1752                                                    AttributeList.end());
   1753 
   1754   llvm::BasicBlock *InvokeDest = 0;
   1755   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
   1756     InvokeDest = getInvokeDest();
   1757 
   1758   llvm::CallSite CS;
   1759   if (!InvokeDest) {
   1760     CS = Builder.CreateCall(Callee, Args);
   1761   } else {
   1762     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   1763     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
   1764     EmitBlock(Cont);
   1765   }
   1766   if (callOrInvoke)
   1767     *callOrInvoke = CS.getInstruction();
   1768 
   1769   CS.setAttributes(Attrs);
   1770   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   1771 
   1772   // If the call doesn't return, finish the basic block and clear the
   1773   // insertion point; this allows the rest of IRgen to discard
   1774   // unreachable code.
   1775   if (CS.doesNotReturn()) {
   1776     Builder.CreateUnreachable();
   1777     Builder.ClearInsertionPoint();
   1778 
   1779     // FIXME: For now, emit a dummy basic block because expr emitters in
   1780     // generally are not ready to handle emitting expressions at unreachable
   1781     // points.
   1782     EnsureInsertPoint();
   1783 
   1784     // Return a reasonable RValue.
   1785     return GetUndefRValue(RetTy);
   1786   }
   1787 
   1788   llvm::Instruction *CI = CS.getInstruction();
   1789   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   1790     CI->setName("call");
   1791 
   1792   // Emit any writebacks immediately.  Arguably this should happen
   1793   // after any return-value munging.
   1794   if (CallArgs.hasWritebacks())
   1795     emitWritebacks(*this, CallArgs);
   1796 
   1797   switch (RetAI.getKind()) {
   1798   case ABIArgInfo::Indirect: {
   1799     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   1800     if (RetTy->isAnyComplexType())
   1801       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
   1802     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
   1803       return RValue::getAggregate(Args[0]);
   1804     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
   1805   }
   1806 
   1807   case ABIArgInfo::Ignore:
   1808     // If we are ignoring an argument that had a result, make sure to
   1809     // construct the appropriate return value for our caller.
   1810     return GetUndefRValue(RetTy);
   1811 
   1812   case ABIArgInfo::Extend:
   1813   case ABIArgInfo::Direct: {
   1814     llvm::Type *RetIRTy = ConvertType(RetTy);
   1815     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   1816       if (RetTy->isAnyComplexType()) {
   1817         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   1818         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   1819         return RValue::getComplex(std::make_pair(Real, Imag));
   1820       }
   1821       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
   1822         llvm::Value *DestPtr = ReturnValue.getValue();
   1823         bool DestIsVolatile = ReturnValue.isVolatile();
   1824 
   1825         if (!DestPtr) {
   1826           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   1827           DestIsVolatile = false;
   1828         }
   1829         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
   1830         return RValue::getAggregate(DestPtr);
   1831       }
   1832 
   1833       // If the argument doesn't match, perform a bitcast to coerce it.  This
   1834       // can happen due to trivial type mismatches.
   1835       llvm::Value *V = CI;
   1836       if (V->getType() != RetIRTy)
   1837         V = Builder.CreateBitCast(V, RetIRTy);
   1838       return RValue::get(V);
   1839     }
   1840 
   1841     llvm::Value *DestPtr = ReturnValue.getValue();
   1842     bool DestIsVolatile = ReturnValue.isVolatile();
   1843 
   1844     if (!DestPtr) {
   1845       DestPtr = CreateMemTemp(RetTy, "coerce");
   1846       DestIsVolatile = false;
   1847     }
   1848 
   1849     // If the value is offset in memory, apply the offset now.
   1850     llvm::Value *StorePtr = DestPtr;
   1851     if (unsigned Offs = RetAI.getDirectOffset()) {
   1852       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
   1853       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
   1854       StorePtr = Builder.CreateBitCast(StorePtr,
   1855                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   1856     }
   1857     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   1858 
   1859     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   1860     if (RetTy->isAnyComplexType())
   1861       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
   1862     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
   1863       return RValue::getAggregate(DestPtr);
   1864     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
   1865   }
   1866 
   1867   case ABIArgInfo::Expand:
   1868     llvm_unreachable("Invalid ABI kind for return argument");
   1869   }
   1870 
   1871   llvm_unreachable("Unhandled ABIArgInfo::Kind");
   1872 }
   1873 
   1874 /* VarArg handling */
   1875 
   1876 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
   1877   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
   1878 }
   1879