Home | History | Annotate | Download | only in CodeGen
      1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Methods common to all machine instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineInstr.h"
     15 #include "llvm/Constants.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/InlineAsm.h"
     18 #include "llvm/LLVMContext.h"
     19 #include "llvm/Metadata.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Type.h"
     22 #include "llvm/Value.h"
     23 #include "llvm/Assembly/Writer.h"
     24 #include "llvm/CodeGen/MachineConstantPool.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineMemOperand.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/MC/MCInstrDesc.h"
     31 #include "llvm/MC/MCSymbol.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetRegisterInfo.h"
     35 #include "llvm/Analysis/AliasAnalysis.h"
     36 #include "llvm/Analysis/DebugInfo.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/LeakDetector.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 using namespace llvm;
     44 
     45 //===----------------------------------------------------------------------===//
     46 // MachineOperand Implementation
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// AddRegOperandToRegInfo - Add this register operand to the specified
     50 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
     51 /// explicitly nulled out.
     52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
     53   assert(isReg() && "Can only add reg operand to use lists");
     54 
     55   // If the reginfo pointer is null, just explicitly null out or next/prev
     56   // pointers, to ensure they are not garbage.
     57   if (RegInfo == 0) {
     58     Contents.Reg.Prev = 0;
     59     Contents.Reg.Next = 0;
     60     return;
     61   }
     62 
     63   // Otherwise, add this operand to the head of the registers use/def list.
     64   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
     65 
     66   // For SSA values, we prefer to keep the definition at the start of the list.
     67   // we do this by skipping over the definition if it is at the head of the
     68   // list.
     69   if (*Head && (*Head)->isDef())
     70     Head = &(*Head)->Contents.Reg.Next;
     71 
     72   Contents.Reg.Next = *Head;
     73   if (Contents.Reg.Next) {
     74     assert(getReg() == Contents.Reg.Next->getReg() &&
     75            "Different regs on the same list!");
     76     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
     77   }
     78 
     79   Contents.Reg.Prev = Head;
     80   *Head = this;
     81 }
     82 
     83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
     84 /// MachineRegisterInfo it is linked with.
     85 void MachineOperand::RemoveRegOperandFromRegInfo() {
     86   assert(isOnRegUseList() && "Reg operand is not on a use list");
     87   // Unlink this from the doubly linked list of operands.
     88   MachineOperand *NextOp = Contents.Reg.Next;
     89   *Contents.Reg.Prev = NextOp;
     90   if (NextOp) {
     91     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
     92     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
     93   }
     94   Contents.Reg.Prev = 0;
     95   Contents.Reg.Next = 0;
     96 }
     97 
     98 void MachineOperand::setReg(unsigned Reg) {
     99   if (getReg() == Reg) return; // No change.
    100 
    101   // Otherwise, we have to change the register.  If this operand is embedded
    102   // into a machine function, we need to update the old and new register's
    103   // use/def lists.
    104   if (MachineInstr *MI = getParent())
    105     if (MachineBasicBlock *MBB = MI->getParent())
    106       if (MachineFunction *MF = MBB->getParent()) {
    107         RemoveRegOperandFromRegInfo();
    108         SmallContents.RegNo = Reg;
    109         AddRegOperandToRegInfo(&MF->getRegInfo());
    110         return;
    111       }
    112 
    113   // Otherwise, just change the register, no problem.  :)
    114   SmallContents.RegNo = Reg;
    115 }
    116 
    117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
    118                                   const TargetRegisterInfo &TRI) {
    119   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    120   if (SubIdx && getSubReg())
    121     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
    122   setReg(Reg);
    123   if (SubIdx)
    124     setSubReg(SubIdx);
    125 }
    126 
    127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
    128   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    129   if (getSubReg()) {
    130     Reg = TRI.getSubReg(Reg, getSubReg());
    131     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
    132     // That won't happen in legal code.
    133     setSubReg(0);
    134   }
    135   setReg(Reg);
    136 }
    137 
    138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
    139 /// the specified value.  If an operand is known to be an immediate already,
    140 /// the setImm method should be used.
    141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
    142   // If this operand is currently a register operand, and if this is in a
    143   // function, deregister the operand from the register's use/def list.
    144   if (isReg() && getParent() && getParent()->getParent() &&
    145       getParent()->getParent()->getParent())
    146     RemoveRegOperandFromRegInfo();
    147 
    148   OpKind = MO_Immediate;
    149   Contents.ImmVal = ImmVal;
    150 }
    151 
    152 /// ChangeToRegister - Replace this operand with a new register operand of
    153 /// the specified value.  If an operand is known to be an register already,
    154 /// the setReg method should be used.
    155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
    156                                       bool isKill, bool isDead, bool isUndef,
    157                                       bool isDebug) {
    158   // If this operand is already a register operand, use setReg to update the
    159   // register's use/def lists.
    160   if (isReg()) {
    161     assert(!isEarlyClobber());
    162     setReg(Reg);
    163   } else {
    164     // Otherwise, change this to a register and set the reg#.
    165     OpKind = MO_Register;
    166     SmallContents.RegNo = Reg;
    167 
    168     // If this operand is embedded in a function, add the operand to the
    169     // register's use/def list.
    170     if (MachineInstr *MI = getParent())
    171       if (MachineBasicBlock *MBB = MI->getParent())
    172         if (MachineFunction *MF = MBB->getParent())
    173           AddRegOperandToRegInfo(&MF->getRegInfo());
    174   }
    175 
    176   IsDef = isDef;
    177   IsImp = isImp;
    178   IsKill = isKill;
    179   IsDead = isDead;
    180   IsUndef = isUndef;
    181   IsEarlyClobber = false;
    182   IsDebug = isDebug;
    183   SubReg = 0;
    184 }
    185 
    186 /// isIdenticalTo - Return true if this operand is identical to the specified
    187 /// operand.
    188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
    189   if (getType() != Other.getType() ||
    190       getTargetFlags() != Other.getTargetFlags())
    191     return false;
    192 
    193   switch (getType()) {
    194   default: llvm_unreachable("Unrecognized operand type");
    195   case MachineOperand::MO_Register:
    196     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
    197            getSubReg() == Other.getSubReg();
    198   case MachineOperand::MO_Immediate:
    199     return getImm() == Other.getImm();
    200   case MachineOperand::MO_CImmediate:
    201     return getCImm() == Other.getCImm();
    202   case MachineOperand::MO_FPImmediate:
    203     return getFPImm() == Other.getFPImm();
    204   case MachineOperand::MO_MachineBasicBlock:
    205     return getMBB() == Other.getMBB();
    206   case MachineOperand::MO_FrameIndex:
    207     return getIndex() == Other.getIndex();
    208   case MachineOperand::MO_ConstantPoolIndex:
    209     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
    210   case MachineOperand::MO_JumpTableIndex:
    211     return getIndex() == Other.getIndex();
    212   case MachineOperand::MO_GlobalAddress:
    213     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
    214   case MachineOperand::MO_ExternalSymbol:
    215     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
    216            getOffset() == Other.getOffset();
    217   case MachineOperand::MO_BlockAddress:
    218     return getBlockAddress() == Other.getBlockAddress();
    219   case MachineOperand::MO_MCSymbol:
    220     return getMCSymbol() == Other.getMCSymbol();
    221   case MachineOperand::MO_Metadata:
    222     return getMetadata() == Other.getMetadata();
    223   }
    224 }
    225 
    226 /// print - Print the specified machine operand.
    227 ///
    228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
    229   // If the instruction is embedded into a basic block, we can find the
    230   // target info for the instruction.
    231   if (!TM)
    232     if (const MachineInstr *MI = getParent())
    233       if (const MachineBasicBlock *MBB = MI->getParent())
    234         if (const MachineFunction *MF = MBB->getParent())
    235           TM = &MF->getTarget();
    236   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
    237 
    238   switch (getType()) {
    239   case MachineOperand::MO_Register:
    240     OS << PrintReg(getReg(), TRI, getSubReg());
    241 
    242     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
    243         isEarlyClobber()) {
    244       OS << '<';
    245       bool NeedComma = false;
    246       if (isDef()) {
    247         if (NeedComma) OS << ',';
    248         if (isEarlyClobber())
    249           OS << "earlyclobber,";
    250         if (isImplicit())
    251           OS << "imp-";
    252         OS << "def";
    253         NeedComma = true;
    254       } else if (isImplicit()) {
    255           OS << "imp-use";
    256           NeedComma = true;
    257       }
    258 
    259       if (isKill() || isDead() || isUndef()) {
    260         if (NeedComma) OS << ',';
    261         if (isKill())  OS << "kill";
    262         if (isDead())  OS << "dead";
    263         if (isUndef()) {
    264           if (isKill() || isDead())
    265             OS << ',';
    266           OS << "undef";
    267         }
    268       }
    269       OS << '>';
    270     }
    271     break;
    272   case MachineOperand::MO_Immediate:
    273     OS << getImm();
    274     break;
    275   case MachineOperand::MO_CImmediate:
    276     getCImm()->getValue().print(OS, false);
    277     break;
    278   case MachineOperand::MO_FPImmediate:
    279     if (getFPImm()->getType()->isFloatTy())
    280       OS << getFPImm()->getValueAPF().convertToFloat();
    281     else
    282       OS << getFPImm()->getValueAPF().convertToDouble();
    283     break;
    284   case MachineOperand::MO_MachineBasicBlock:
    285     OS << "<BB#" << getMBB()->getNumber() << ">";
    286     break;
    287   case MachineOperand::MO_FrameIndex:
    288     OS << "<fi#" << getIndex() << '>';
    289     break;
    290   case MachineOperand::MO_ConstantPoolIndex:
    291     OS << "<cp#" << getIndex();
    292     if (getOffset()) OS << "+" << getOffset();
    293     OS << '>';
    294     break;
    295   case MachineOperand::MO_JumpTableIndex:
    296     OS << "<jt#" << getIndex() << '>';
    297     break;
    298   case MachineOperand::MO_GlobalAddress:
    299     OS << "<ga:";
    300     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
    301     if (getOffset()) OS << "+" << getOffset();
    302     OS << '>';
    303     break;
    304   case MachineOperand::MO_ExternalSymbol:
    305     OS << "<es:" << getSymbolName();
    306     if (getOffset()) OS << "+" << getOffset();
    307     OS << '>';
    308     break;
    309   case MachineOperand::MO_BlockAddress:
    310     OS << '<';
    311     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
    312     OS << '>';
    313     break;
    314   case MachineOperand::MO_Metadata:
    315     OS << '<';
    316     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
    317     OS << '>';
    318     break;
    319   case MachineOperand::MO_MCSymbol:
    320     OS << "<MCSym=" << *getMCSymbol() << '>';
    321     break;
    322   default:
    323     llvm_unreachable("Unrecognized operand type");
    324   }
    325 
    326   if (unsigned TF = getTargetFlags())
    327     OS << "[TF=" << TF << ']';
    328 }
    329 
    330 //===----------------------------------------------------------------------===//
    331 // MachineMemOperand Implementation
    332 //===----------------------------------------------------------------------===//
    333 
    334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
    335 /// points into.
    336 unsigned MachinePointerInfo::getAddrSpace() const {
    337   if (V == 0) return 0;
    338   return cast<PointerType>(V->getType())->getAddressSpace();
    339 }
    340 
    341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
    342 /// constant pool.
    343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
    344   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
    345 }
    346 
    347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
    348 /// the specified FrameIndex.
    349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
    350   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
    351 }
    352 
    353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
    354   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
    355 }
    356 
    357 MachinePointerInfo MachinePointerInfo::getGOT() {
    358   return MachinePointerInfo(PseudoSourceValue::getGOT());
    359 }
    360 
    361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
    362   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
    363 }
    364 
    365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
    366                                      uint64_t s, unsigned int a,
    367                                      const MDNode *TBAAInfo)
    368   : PtrInfo(ptrinfo), Size(s),
    369     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
    370     TBAAInfo(TBAAInfo) {
    371   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
    372          "invalid pointer value");
    373   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
    374   assert((isLoad() || isStore()) && "Not a load/store!");
    375 }
    376 
    377 /// Profile - Gather unique data for the object.
    378 ///
    379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
    380   ID.AddInteger(getOffset());
    381   ID.AddInteger(Size);
    382   ID.AddPointer(getValue());
    383   ID.AddInteger(Flags);
    384 }
    385 
    386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
    387   // The Value and Offset may differ due to CSE. But the flags and size
    388   // should be the same.
    389   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
    390   assert(MMO->getSize() == getSize() && "Size mismatch!");
    391 
    392   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
    393     // Update the alignment value.
    394     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
    395       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
    396     // Also update the base and offset, because the new alignment may
    397     // not be applicable with the old ones.
    398     PtrInfo = MMO->PtrInfo;
    399   }
    400 }
    401 
    402 /// getAlignment - Return the minimum known alignment in bytes of the
    403 /// actual memory reference.
    404 uint64_t MachineMemOperand::getAlignment() const {
    405   return MinAlign(getBaseAlignment(), getOffset());
    406 }
    407 
    408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
    409   assert((MMO.isLoad() || MMO.isStore()) &&
    410          "SV has to be a load, store or both.");
    411 
    412   if (MMO.isVolatile())
    413     OS << "Volatile ";
    414 
    415   if (MMO.isLoad())
    416     OS << "LD";
    417   if (MMO.isStore())
    418     OS << "ST";
    419   OS << MMO.getSize();
    420 
    421   // Print the address information.
    422   OS << "[";
    423   if (!MMO.getValue())
    424     OS << "<unknown>";
    425   else
    426     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
    427 
    428   // If the alignment of the memory reference itself differs from the alignment
    429   // of the base pointer, print the base alignment explicitly, next to the base
    430   // pointer.
    431   if (MMO.getBaseAlignment() != MMO.getAlignment())
    432     OS << "(align=" << MMO.getBaseAlignment() << ")";
    433 
    434   if (MMO.getOffset() != 0)
    435     OS << "+" << MMO.getOffset();
    436   OS << "]";
    437 
    438   // Print the alignment of the reference.
    439   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
    440       MMO.getBaseAlignment() != MMO.getSize())
    441     OS << "(align=" << MMO.getAlignment() << ")";
    442 
    443   // Print TBAA info.
    444   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
    445     OS << "(tbaa=";
    446     if (TBAAInfo->getNumOperands() > 0)
    447       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
    448     else
    449       OS << "<unknown>";
    450     OS << ")";
    451   }
    452 
    453   // Print nontemporal info.
    454   if (MMO.isNonTemporal())
    455     OS << "(nontemporal)";
    456 
    457   return OS;
    458 }
    459 
    460 //===----------------------------------------------------------------------===//
    461 // MachineInstr Implementation
    462 //===----------------------------------------------------------------------===//
    463 
    464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
    465 /// MCID NULL and no operands.
    466 MachineInstr::MachineInstr()
    467   : MCID(0), Flags(0), AsmPrinterFlags(0),
    468     MemRefs(0), MemRefsEnd(0),
    469     Parent(0) {
    470   // Make sure that we get added to a machine basicblock
    471   LeakDetector::addGarbageObject(this);
    472 }
    473 
    474 void MachineInstr::addImplicitDefUseOperands() {
    475   if (MCID->ImplicitDefs)
    476     for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
    477       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
    478   if (MCID->ImplicitUses)
    479     for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
    480       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
    481 }
    482 
    483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
    484 /// implicit operands. It reserves space for the number of operands specified by
    485 /// the MCInstrDesc.
    486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
    487   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    488     MemRefs(0), MemRefsEnd(0), Parent(0) {
    489   unsigned NumImplicitOps = 0;
    490   if (!NoImp)
    491     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    492   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    493   if (!NoImp)
    494     addImplicitDefUseOperands();
    495   // Make sure that we get added to a machine basicblock
    496   LeakDetector::addGarbageObject(this);
    497 }
    498 
    499 /// MachineInstr ctor - As above, but with a DebugLoc.
    500 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
    501                            bool NoImp)
    502   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    503     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
    504   unsigned NumImplicitOps = 0;
    505   if (!NoImp)
    506     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    507   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    508   if (!NoImp)
    509     addImplicitDefUseOperands();
    510   // Make sure that we get added to a machine basicblock
    511   LeakDetector::addGarbageObject(this);
    512 }
    513 
    514 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
    515 /// that the MachineInstr is created and added to the end of the specified
    516 /// basic block.
    517 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
    518   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    519     MemRefs(0), MemRefsEnd(0), Parent(0) {
    520   assert(MBB && "Cannot use inserting ctor with null basic block!");
    521   unsigned NumImplicitOps =
    522     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    523   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    524   addImplicitDefUseOperands();
    525   // Make sure that we get added to a machine basicblock
    526   LeakDetector::addGarbageObject(this);
    527   MBB->push_back(this);  // Add instruction to end of basic block!
    528 }
    529 
    530 /// MachineInstr ctor - As above, but with a DebugLoc.
    531 ///
    532 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
    533                            const MCInstrDesc &tid)
    534   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
    535     MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
    536   assert(MBB && "Cannot use inserting ctor with null basic block!");
    537   unsigned NumImplicitOps =
    538     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
    539   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
    540   addImplicitDefUseOperands();
    541   // Make sure that we get added to a machine basicblock
    542   LeakDetector::addGarbageObject(this);
    543   MBB->push_back(this);  // Add instruction to end of basic block!
    544 }
    545 
    546 /// MachineInstr ctor - Copies MachineInstr arg exactly
    547 ///
    548 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
    549   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
    550     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
    551     Parent(0), debugLoc(MI.getDebugLoc()) {
    552   Operands.reserve(MI.getNumOperands());
    553 
    554   // Add operands
    555   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
    556     addOperand(MI.getOperand(i));
    557 
    558   // Copy all the flags.
    559   Flags = MI.Flags;
    560 
    561   // Set parent to null.
    562   Parent = 0;
    563 
    564   LeakDetector::addGarbageObject(this);
    565 }
    566 
    567 MachineInstr::~MachineInstr() {
    568   LeakDetector::removeGarbageObject(this);
    569 #ifndef NDEBUG
    570   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    571     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
    572     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
    573            "Reg operand def/use list corrupted");
    574   }
    575 #endif
    576 }
    577 
    578 /// getRegInfo - If this instruction is embedded into a MachineFunction,
    579 /// return the MachineRegisterInfo object for the current function, otherwise
    580 /// return null.
    581 MachineRegisterInfo *MachineInstr::getRegInfo() {
    582   if (MachineBasicBlock *MBB = getParent())
    583     return &MBB->getParent()->getRegInfo();
    584   return 0;
    585 }
    586 
    587 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
    588 /// this instruction from their respective use lists.  This requires that the
    589 /// operands already be on their use lists.
    590 void MachineInstr::RemoveRegOperandsFromUseLists() {
    591   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    592     if (Operands[i].isReg())
    593       Operands[i].RemoveRegOperandFromRegInfo();
    594   }
    595 }
    596 
    597 /// AddRegOperandsToUseLists - Add all of the register operands in
    598 /// this instruction from their respective use lists.  This requires that the
    599 /// operands not be on their use lists yet.
    600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
    601   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    602     if (Operands[i].isReg())
    603       Operands[i].AddRegOperandToRegInfo(&RegInfo);
    604   }
    605 }
    606 
    607 
    608 /// addOperand - Add the specified operand to the instruction.  If it is an
    609 /// implicit operand, it is added to the end of the operand list.  If it is
    610 /// an explicit operand it is added at the end of the explicit operand list
    611 /// (before the first implicit operand).
    612 void MachineInstr::addOperand(const MachineOperand &Op) {
    613   assert(MCID && "Cannot add operands before providing an instr descriptor");
    614   bool isImpReg = Op.isReg() && Op.isImplicit();
    615   MachineRegisterInfo *RegInfo = getRegInfo();
    616 
    617   // If the Operands backing store is reallocated, all register operands must
    618   // be removed and re-added to RegInfo.  It is storing pointers to operands.
    619   bool Reallocate = RegInfo &&
    620     !Operands.empty() && Operands.size() == Operands.capacity();
    621 
    622   // Find the insert location for the new operand.  Implicit registers go at
    623   // the end, everything goes before the implicit regs.
    624   unsigned OpNo = Operands.size();
    625 
    626   // Remove all the implicit operands from RegInfo if they need to be shifted.
    627   // FIXME: Allow mixed explicit and implicit operands on inline asm.
    628   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
    629   // implicit-defs, but they must not be moved around.  See the FIXME in
    630   // InstrEmitter.cpp.
    631   if (!isImpReg && !isInlineAsm()) {
    632     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
    633       --OpNo;
    634       if (RegInfo)
    635         Operands[OpNo].RemoveRegOperandFromRegInfo();
    636     }
    637   }
    638 
    639   // OpNo now points as the desired insertion point.  Unless this is a variadic
    640   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
    641   assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
    642          "Trying to add an operand to a machine instr that is already done!");
    643 
    644   // All operands from OpNo have been removed from RegInfo.  If the Operands
    645   // backing store needs to be reallocated, we also need to remove any other
    646   // register operands.
    647   if (Reallocate)
    648     for (unsigned i = 0; i != OpNo; ++i)
    649       if (Operands[i].isReg())
    650         Operands[i].RemoveRegOperandFromRegInfo();
    651 
    652   // Insert the new operand at OpNo.
    653   Operands.insert(Operands.begin() + OpNo, Op);
    654   Operands[OpNo].ParentMI = this;
    655 
    656   // The Operands backing store has now been reallocated, so we can re-add the
    657   // operands before OpNo.
    658   if (Reallocate)
    659     for (unsigned i = 0; i != OpNo; ++i)
    660       if (Operands[i].isReg())
    661         Operands[i].AddRegOperandToRegInfo(RegInfo);
    662 
    663   // When adding a register operand, tell RegInfo about it.
    664   if (Operands[OpNo].isReg()) {
    665     // Add the new operand to RegInfo, even when RegInfo is NULL.
    666     // This will initialize the linked list pointers.
    667     Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
    668     // If the register operand is flagged as early, mark the operand as such.
    669     if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
    670       Operands[OpNo].setIsEarlyClobber(true);
    671   }
    672 
    673   // Re-add all the implicit ops.
    674   if (RegInfo) {
    675     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
    676       assert(Operands[i].isReg() && "Should only be an implicit reg!");
    677       Operands[i].AddRegOperandToRegInfo(RegInfo);
    678     }
    679   }
    680 }
    681 
    682 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    683 /// fewer operand than it started with.
    684 ///
    685 void MachineInstr::RemoveOperand(unsigned OpNo) {
    686   assert(OpNo < Operands.size() && "Invalid operand number");
    687 
    688   // Special case removing the last one.
    689   if (OpNo == Operands.size()-1) {
    690     // If needed, remove from the reg def/use list.
    691     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
    692       Operands.back().RemoveRegOperandFromRegInfo();
    693 
    694     Operands.pop_back();
    695     return;
    696   }
    697 
    698   // Otherwise, we are removing an interior operand.  If we have reginfo to
    699   // update, remove all operands that will be shifted down from their reg lists,
    700   // move everything down, then re-add them.
    701   MachineRegisterInfo *RegInfo = getRegInfo();
    702   if (RegInfo) {
    703     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    704       if (Operands[i].isReg())
    705         Operands[i].RemoveRegOperandFromRegInfo();
    706     }
    707   }
    708 
    709   Operands.erase(Operands.begin()+OpNo);
    710 
    711   if (RegInfo) {
    712     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
    713       if (Operands[i].isReg())
    714         Operands[i].AddRegOperandToRegInfo(RegInfo);
    715     }
    716   }
    717 }
    718 
    719 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    720 /// This function should be used only occasionally. The setMemRefs function
    721 /// is the primary method for setting up a MachineInstr's MemRefs list.
    722 void MachineInstr::addMemOperand(MachineFunction &MF,
    723                                  MachineMemOperand *MO) {
    724   mmo_iterator OldMemRefs = MemRefs;
    725   mmo_iterator OldMemRefsEnd = MemRefsEnd;
    726 
    727   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
    728   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
    729   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
    730 
    731   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
    732   NewMemRefs[NewNum - 1] = MO;
    733 
    734   MemRefs = NewMemRefs;
    735   MemRefsEnd = NewMemRefsEnd;
    736 }
    737 
    738 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
    739                                  MICheckType Check) const {
    740   // If opcodes or number of operands are not the same then the two
    741   // instructions are obviously not identical.
    742   if (Other->getOpcode() != getOpcode() ||
    743       Other->getNumOperands() != getNumOperands())
    744     return false;
    745 
    746   // Check operands to make sure they match.
    747   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    748     const MachineOperand &MO = getOperand(i);
    749     const MachineOperand &OMO = Other->getOperand(i);
    750     if (!MO.isReg()) {
    751       if (!MO.isIdenticalTo(OMO))
    752         return false;
    753       continue;
    754     }
    755 
    756     // Clients may or may not want to ignore defs when testing for equality.
    757     // For example, machine CSE pass only cares about finding common
    758     // subexpressions, so it's safe to ignore virtual register defs.
    759     if (MO.isDef()) {
    760       if (Check == IgnoreDefs)
    761         continue;
    762       else if (Check == IgnoreVRegDefs) {
    763         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
    764             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
    765           if (MO.getReg() != OMO.getReg())
    766             return false;
    767       } else {
    768         if (!MO.isIdenticalTo(OMO))
    769           return false;
    770         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
    771           return false;
    772       }
    773     } else {
    774       if (!MO.isIdenticalTo(OMO))
    775         return false;
    776       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
    777         return false;
    778     }
    779   }
    780   // If DebugLoc does not match then two dbg.values are not identical.
    781   if (isDebugValue())
    782     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
    783         && getDebugLoc() != Other->getDebugLoc())
    784       return false;
    785   return true;
    786 }
    787 
    788 /// removeFromParent - This method unlinks 'this' from the containing basic
    789 /// block, and returns it, but does not delete it.
    790 MachineInstr *MachineInstr::removeFromParent() {
    791   assert(getParent() && "Not embedded in a basic block!");
    792   getParent()->remove(this);
    793   return this;
    794 }
    795 
    796 
    797 /// eraseFromParent - This method unlinks 'this' from the containing basic
    798 /// block, and deletes it.
    799 void MachineInstr::eraseFromParent() {
    800   assert(getParent() && "Not embedded in a basic block!");
    801   getParent()->erase(this);
    802 }
    803 
    804 
    805 /// getNumExplicitOperands - Returns the number of non-implicit operands.
    806 ///
    807 unsigned MachineInstr::getNumExplicitOperands() const {
    808   unsigned NumOperands = MCID->getNumOperands();
    809   if (!MCID->isVariadic())
    810     return NumOperands;
    811 
    812   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
    813     const MachineOperand &MO = getOperand(i);
    814     if (!MO.isReg() || !MO.isImplicit())
    815       NumOperands++;
    816   }
    817   return NumOperands;
    818 }
    819 
    820 bool MachineInstr::isStackAligningInlineAsm() const {
    821   if (isInlineAsm()) {
    822     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    823     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
    824       return true;
    825   }
    826   return false;
    827 }
    828 
    829 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
    830                                        unsigned *GroupNo) const {
    831   assert(isInlineAsm() && "Expected an inline asm instruction");
    832   assert(OpIdx < getNumOperands() && "OpIdx out of range");
    833 
    834   // Ignore queries about the initial operands.
    835   if (OpIdx < InlineAsm::MIOp_FirstOperand)
    836     return -1;
    837 
    838   unsigned Group = 0;
    839   unsigned NumOps;
    840   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
    841        i += NumOps) {
    842     const MachineOperand &FlagMO = getOperand(i);
    843     // If we reach the implicit register operands, stop looking.
    844     if (!FlagMO.isImm())
    845       return -1;
    846     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
    847     if (i + NumOps > OpIdx) {
    848       if (GroupNo)
    849         *GroupNo = Group;
    850       return i;
    851     }
    852     ++Group;
    853   }
    854   return -1;
    855 }
    856 
    857 const TargetRegisterClass*
    858 MachineInstr::getRegClassConstraint(unsigned OpIdx,
    859                                     const TargetInstrInfo *TII,
    860                                     const TargetRegisterInfo *TRI) const {
    861   // Most opcodes have fixed constraints in their MCInstrDesc.
    862   if (!isInlineAsm())
    863     return TII->getRegClass(getDesc(), OpIdx, TRI);
    864 
    865   if (!getOperand(OpIdx).isReg())
    866     return NULL;
    867 
    868   // For tied uses on inline asm, get the constraint from the def.
    869   unsigned DefIdx;
    870   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
    871     OpIdx = DefIdx;
    872 
    873   // Inline asm stores register class constraints in the flag word.
    874   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
    875   if (FlagIdx < 0)
    876     return NULL;
    877 
    878   unsigned Flag = getOperand(FlagIdx).getImm();
    879   unsigned RCID;
    880   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
    881     return TRI->getRegClass(RCID);
    882 
    883   // Assume that all registers in a memory operand are pointers.
    884   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
    885     return TRI->getPointerRegClass();
    886 
    887   return NULL;
    888 }
    889 
    890 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
    891 /// the specific register or -1 if it is not found. It further tightens
    892 /// the search criteria to a use that kills the register if isKill is true.
    893 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
    894                                           const TargetRegisterInfo *TRI) const {
    895   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    896     const MachineOperand &MO = getOperand(i);
    897     if (!MO.isReg() || !MO.isUse())
    898       continue;
    899     unsigned MOReg = MO.getReg();
    900     if (!MOReg)
    901       continue;
    902     if (MOReg == Reg ||
    903         (TRI &&
    904          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
    905          TargetRegisterInfo::isPhysicalRegister(Reg) &&
    906          TRI->isSubRegister(MOReg, Reg)))
    907       if (!isKill || MO.isKill())
    908         return i;
    909   }
    910   return -1;
    911 }
    912 
    913 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    914 /// indicating if this instruction reads or writes Reg. This also considers
    915 /// partial defines.
    916 std::pair<bool,bool>
    917 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
    918                                          SmallVectorImpl<unsigned> *Ops) const {
    919   bool PartDef = false; // Partial redefine.
    920   bool FullDef = false; // Full define.
    921   bool Use = false;
    922 
    923   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    924     const MachineOperand &MO = getOperand(i);
    925     if (!MO.isReg() || MO.getReg() != Reg)
    926       continue;
    927     if (Ops)
    928       Ops->push_back(i);
    929     if (MO.isUse())
    930       Use |= !MO.isUndef();
    931     else if (MO.getSubReg() && !MO.isUndef())
    932       // A partial <def,undef> doesn't count as reading the register.
    933       PartDef = true;
    934     else
    935       FullDef = true;
    936   }
    937   // A partial redefine uses Reg unless there is also a full define.
    938   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
    939 }
    940 
    941 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    942 /// the specified register or -1 if it is not found. If isDead is true, defs
    943 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
    944 /// also checks if there is a def of a super-register.
    945 int
    946 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
    947                                         const TargetRegisterInfo *TRI) const {
    948   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
    949   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    950     const MachineOperand &MO = getOperand(i);
    951     if (!MO.isReg() || !MO.isDef())
    952       continue;
    953     unsigned MOReg = MO.getReg();
    954     bool Found = (MOReg == Reg);
    955     if (!Found && TRI && isPhys &&
    956         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
    957       if (Overlap)
    958         Found = TRI->regsOverlap(MOReg, Reg);
    959       else
    960         Found = TRI->isSubRegister(MOReg, Reg);
    961     }
    962     if (Found && (!isDead || MO.isDead()))
    963       return i;
    964   }
    965   return -1;
    966 }
    967 
    968 /// findFirstPredOperandIdx() - Find the index of the first operand in the
    969 /// operand list that is used to represent the predicate. It returns -1 if
    970 /// none is found.
    971 int MachineInstr::findFirstPredOperandIdx() const {
    972   // Don't call MCID.findFirstPredOperandIdx() because this variant
    973   // is sometimes called on an instruction that's not yet complete, and
    974   // so the number of operands is less than the MCID indicates. In
    975   // particular, the PTX target does this.
    976   const MCInstrDesc &MCID = getDesc();
    977   if (MCID.isPredicable()) {
    978     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    979       if (MCID.OpInfo[i].isPredicate())
    980         return i;
    981   }
    982 
    983   return -1;
    984 }
    985 
    986 /// isRegTiedToUseOperand - Given the index of a register def operand,
    987 /// check if the register def is tied to a source operand, due to either
    988 /// two-address elimination or inline assembly constraints. Returns the
    989 /// first tied use operand index by reference is UseOpIdx is not null.
    990 bool MachineInstr::
    991 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
    992   if (isInlineAsm()) {
    993     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
    994     const MachineOperand &MO = getOperand(DefOpIdx);
    995     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
    996       return false;
    997     // Determine the actual operand index that corresponds to this index.
    998     unsigned DefNo = 0;
    999     int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
   1000     if (FlagIdx < 0)
   1001       return false;
   1002 
   1003     // Which part of the group is DefOpIdx?
   1004     unsigned DefPart = DefOpIdx - (FlagIdx + 1);
   1005 
   1006     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
   1007          i != e; ++i) {
   1008       const MachineOperand &FMO = getOperand(i);
   1009       if (!FMO.isImm())
   1010         continue;
   1011       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
   1012         continue;
   1013       unsigned Idx;
   1014       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
   1015           Idx == DefNo) {
   1016         if (UseOpIdx)
   1017           *UseOpIdx = (unsigned)i + 1 + DefPart;
   1018         return true;
   1019       }
   1020     }
   1021     return false;
   1022   }
   1023 
   1024   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
   1025   const MCInstrDesc &MCID = getDesc();
   1026   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
   1027     const MachineOperand &MO = getOperand(i);
   1028     if (MO.isReg() && MO.isUse() &&
   1029         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
   1030       if (UseOpIdx)
   1031         *UseOpIdx = (unsigned)i;
   1032       return true;
   1033     }
   1034   }
   1035   return false;
   1036 }
   1037 
   1038 /// isRegTiedToDefOperand - Return true if the operand of the specified index
   1039 /// is a register use and it is tied to an def operand. It also returns the def
   1040 /// operand index by reference.
   1041 bool MachineInstr::
   1042 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
   1043   if (isInlineAsm()) {
   1044     const MachineOperand &MO = getOperand(UseOpIdx);
   1045     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
   1046       return false;
   1047 
   1048     // Find the flag operand corresponding to UseOpIdx
   1049     int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
   1050     if (FlagIdx < 0)
   1051       return false;
   1052 
   1053     const MachineOperand &UFMO = getOperand(FlagIdx);
   1054     unsigned DefNo;
   1055     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
   1056       if (!DefOpIdx)
   1057         return true;
   1058 
   1059       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
   1060       // Remember to adjust the index. First operand is asm string, second is
   1061       // the HasSideEffects and AlignStack bits, then there is a flag for each.
   1062       while (DefNo) {
   1063         const MachineOperand &FMO = getOperand(DefIdx);
   1064         assert(FMO.isImm());
   1065         // Skip over this def.
   1066         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
   1067         --DefNo;
   1068       }
   1069       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
   1070       return true;
   1071     }
   1072     return false;
   1073   }
   1074 
   1075   const MCInstrDesc &MCID = getDesc();
   1076   if (UseOpIdx >= MCID.getNumOperands())
   1077     return false;
   1078   const MachineOperand &MO = getOperand(UseOpIdx);
   1079   if (!MO.isReg() || !MO.isUse())
   1080     return false;
   1081   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
   1082   if (DefIdx == -1)
   1083     return false;
   1084   if (DefOpIdx)
   1085     *DefOpIdx = (unsigned)DefIdx;
   1086   return true;
   1087 }
   1088 
   1089 /// clearKillInfo - Clears kill flags on all operands.
   1090 ///
   1091 void MachineInstr::clearKillInfo() {
   1092   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1093     MachineOperand &MO = getOperand(i);
   1094     if (MO.isReg() && MO.isUse())
   1095       MO.setIsKill(false);
   1096   }
   1097 }
   1098 
   1099 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
   1100 ///
   1101 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
   1102   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1103     const MachineOperand &MO = MI->getOperand(i);
   1104     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
   1105       continue;
   1106     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
   1107       MachineOperand &MOp = getOperand(j);
   1108       if (!MOp.isIdenticalTo(MO))
   1109         continue;
   1110       if (MO.isKill())
   1111         MOp.setIsKill();
   1112       else
   1113         MOp.setIsDead();
   1114       break;
   1115     }
   1116   }
   1117 }
   1118 
   1119 /// copyPredicates - Copies predicate operand(s) from MI.
   1120 void MachineInstr::copyPredicates(const MachineInstr *MI) {
   1121   const MCInstrDesc &MCID = MI->getDesc();
   1122   if (!MCID.isPredicable())
   1123     return;
   1124   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1125     if (MCID.OpInfo[i].isPredicate()) {
   1126       // Predicated operands must be last operands.
   1127       addOperand(MI->getOperand(i));
   1128     }
   1129   }
   1130 }
   1131 
   1132 void MachineInstr::substituteRegister(unsigned FromReg,
   1133                                       unsigned ToReg,
   1134                                       unsigned SubIdx,
   1135                                       const TargetRegisterInfo &RegInfo) {
   1136   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
   1137     if (SubIdx)
   1138       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
   1139     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1140       MachineOperand &MO = getOperand(i);
   1141       if (!MO.isReg() || MO.getReg() != FromReg)
   1142         continue;
   1143       MO.substPhysReg(ToReg, RegInfo);
   1144     }
   1145   } else {
   1146     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1147       MachineOperand &MO = getOperand(i);
   1148       if (!MO.isReg() || MO.getReg() != FromReg)
   1149         continue;
   1150       MO.substVirtReg(ToReg, SubIdx, RegInfo);
   1151     }
   1152   }
   1153 }
   1154 
   1155 /// isSafeToMove - Return true if it is safe to move this instruction. If
   1156 /// SawStore is set to true, it means that there is a store (or call) between
   1157 /// the instruction's location and its intended destination.
   1158 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
   1159                                 AliasAnalysis *AA,
   1160                                 bool &SawStore) const {
   1161   // Ignore stuff that we obviously can't move.
   1162   if (MCID->mayStore() || MCID->isCall()) {
   1163     SawStore = true;
   1164     return false;
   1165   }
   1166 
   1167   if (isLabel() || isDebugValue() ||
   1168       MCID->isTerminator() || hasUnmodeledSideEffects())
   1169     return false;
   1170 
   1171   // See if this instruction does a load.  If so, we have to guarantee that the
   1172   // loaded value doesn't change between the load and the its intended
   1173   // destination. The check for isInvariantLoad gives the targe the chance to
   1174   // classify the load as always returning a constant, e.g. a constant pool
   1175   // load.
   1176   if (MCID->mayLoad() && !isInvariantLoad(AA))
   1177     // Otherwise, this is a real load.  If there is a store between the load and
   1178     // end of block, or if the load is volatile, we can't move it.
   1179     return !SawStore && !hasVolatileMemoryRef();
   1180 
   1181   return true;
   1182 }
   1183 
   1184 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
   1185 /// instruction which defined the specified register instead of copying it.
   1186 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
   1187                                  AliasAnalysis *AA,
   1188                                  unsigned DstReg) const {
   1189   bool SawStore = false;
   1190   if (!TII->isTriviallyReMaterializable(this, AA) ||
   1191       !isSafeToMove(TII, AA, SawStore))
   1192     return false;
   1193   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1194     const MachineOperand &MO = getOperand(i);
   1195     if (!MO.isReg())
   1196       continue;
   1197     // FIXME: For now, do not remat any instruction with register operands.
   1198     // Later on, we can loosen the restriction is the register operands have
   1199     // not been modified between the def and use. Note, this is different from
   1200     // MachineSink because the code is no longer in two-address form (at least
   1201     // partially).
   1202     if (MO.isUse())
   1203       return false;
   1204     else if (!MO.isDead() && MO.getReg() != DstReg)
   1205       return false;
   1206   }
   1207   return true;
   1208 }
   1209 
   1210 /// hasVolatileMemoryRef - Return true if this instruction may have a
   1211 /// volatile memory reference, or if the information describing the
   1212 /// memory reference is not available. Return false if it is known to
   1213 /// have no volatile memory references.
   1214 bool MachineInstr::hasVolatileMemoryRef() const {
   1215   // An instruction known never to access memory won't have a volatile access.
   1216   if (!MCID->mayStore() &&
   1217       !MCID->mayLoad() &&
   1218       !MCID->isCall() &&
   1219       !hasUnmodeledSideEffects())
   1220     return false;
   1221 
   1222   // Otherwise, if the instruction has no memory reference information,
   1223   // conservatively assume it wasn't preserved.
   1224   if (memoperands_empty())
   1225     return true;
   1226 
   1227   // Check the memory reference information for volatile references.
   1228   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
   1229     if ((*I)->isVolatile())
   1230       return true;
   1231 
   1232   return false;
   1233 }
   1234 
   1235 /// isInvariantLoad - Return true if this instruction is loading from a
   1236 /// location whose value is invariant across the function.  For example,
   1237 /// loading a value from the constant pool or from the argument area
   1238 /// of a function if it does not change.  This should only return true of
   1239 /// *all* loads the instruction does are invariant (if it does multiple loads).
   1240 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
   1241   // If the instruction doesn't load at all, it isn't an invariant load.
   1242   if (!MCID->mayLoad())
   1243     return false;
   1244 
   1245   // If the instruction has lost its memoperands, conservatively assume that
   1246   // it may not be an invariant load.
   1247   if (memoperands_empty())
   1248     return false;
   1249 
   1250   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
   1251 
   1252   for (mmo_iterator I = memoperands_begin(),
   1253        E = memoperands_end(); I != E; ++I) {
   1254     if ((*I)->isVolatile()) return false;
   1255     if ((*I)->isStore()) return false;
   1256 
   1257     if (const Value *V = (*I)->getValue()) {
   1258       // A load from a constant PseudoSourceValue is invariant.
   1259       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
   1260         if (PSV->isConstant(MFI))
   1261           continue;
   1262       // If we have an AliasAnalysis, ask it whether the memory is constant.
   1263       if (AA && AA->pointsToConstantMemory(
   1264                       AliasAnalysis::Location(V, (*I)->getSize(),
   1265                                               (*I)->getTBAAInfo())))
   1266         continue;
   1267     }
   1268 
   1269     // Otherwise assume conservatively.
   1270     return false;
   1271   }
   1272 
   1273   // Everything checks out.
   1274   return true;
   1275 }
   1276 
   1277 /// isConstantValuePHI - If the specified instruction is a PHI that always
   1278 /// merges together the same virtual register, return the register, otherwise
   1279 /// return 0.
   1280 unsigned MachineInstr::isConstantValuePHI() const {
   1281   if (!isPHI())
   1282     return 0;
   1283   assert(getNumOperands() >= 3 &&
   1284          "It's illegal to have a PHI without source operands");
   1285 
   1286   unsigned Reg = getOperand(1).getReg();
   1287   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
   1288     if (getOperand(i).getReg() != Reg)
   1289       return 0;
   1290   return Reg;
   1291 }
   1292 
   1293 bool MachineInstr::hasUnmodeledSideEffects() const {
   1294   if (getDesc().hasUnmodeledSideEffects())
   1295     return true;
   1296   if (isInlineAsm()) {
   1297     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1298     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1299       return true;
   1300   }
   1301 
   1302   return false;
   1303 }
   1304 
   1305 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1306 ///
   1307 bool MachineInstr::allDefsAreDead() const {
   1308   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
   1309     const MachineOperand &MO = getOperand(i);
   1310     if (!MO.isReg() || MO.isUse())
   1311       continue;
   1312     if (!MO.isDead())
   1313       return false;
   1314   }
   1315   return true;
   1316 }
   1317 
   1318 /// copyImplicitOps - Copy implicit register operands from specified
   1319 /// instruction to this instruction.
   1320 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
   1321   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
   1322        i != e; ++i) {
   1323     const MachineOperand &MO = MI->getOperand(i);
   1324     if (MO.isReg() && MO.isImplicit())
   1325       addOperand(MO);
   1326   }
   1327 }
   1328 
   1329 void MachineInstr::dump() const {
   1330   dbgs() << "  " << *this;
   1331 }
   1332 
   1333 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
   1334                          raw_ostream &CommentOS) {
   1335   const LLVMContext &Ctx = MF->getFunction()->getContext();
   1336   if (!DL.isUnknown()) {          // Print source line info.
   1337     DIScope Scope(DL.getScope(Ctx));
   1338     // Omit the directory, because it's likely to be long and uninteresting.
   1339     if (Scope.Verify())
   1340       CommentOS << Scope.getFilename();
   1341     else
   1342       CommentOS << "<unknown>";
   1343     CommentOS << ':' << DL.getLine();
   1344     if (DL.getCol() != 0)
   1345       CommentOS << ':' << DL.getCol();
   1346     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
   1347     if (!InlinedAtDL.isUnknown()) {
   1348       CommentOS << " @[ ";
   1349       printDebugLoc(InlinedAtDL, MF, CommentOS);
   1350       CommentOS << " ]";
   1351     }
   1352   }
   1353 }
   1354 
   1355 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
   1356   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
   1357   const MachineFunction *MF = 0;
   1358   const MachineRegisterInfo *MRI = 0;
   1359   if (const MachineBasicBlock *MBB = getParent()) {
   1360     MF = MBB->getParent();
   1361     if (!TM && MF)
   1362       TM = &MF->getTarget();
   1363     if (MF)
   1364       MRI = &MF->getRegInfo();
   1365   }
   1366 
   1367   // Save a list of virtual registers.
   1368   SmallVector<unsigned, 8> VirtRegs;
   1369 
   1370   // Print explicitly defined operands on the left of an assignment syntax.
   1371   unsigned StartOp = 0, e = getNumOperands();
   1372   for (; StartOp < e && getOperand(StartOp).isReg() &&
   1373          getOperand(StartOp).isDef() &&
   1374          !getOperand(StartOp).isImplicit();
   1375        ++StartOp) {
   1376     if (StartOp != 0) OS << ", ";
   1377     getOperand(StartOp).print(OS, TM);
   1378     unsigned Reg = getOperand(StartOp).getReg();
   1379     if (TargetRegisterInfo::isVirtualRegister(Reg))
   1380       VirtRegs.push_back(Reg);
   1381   }
   1382 
   1383   if (StartOp != 0)
   1384     OS << " = ";
   1385 
   1386   // Print the opcode name.
   1387   OS << getDesc().getName();
   1388 
   1389   // Print the rest of the operands.
   1390   bool OmittedAnyCallClobbers = false;
   1391   bool FirstOp = true;
   1392   unsigned AsmDescOp = ~0u;
   1393   unsigned AsmOpCount = 0;
   1394 
   1395   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
   1396     // Print asm string.
   1397     OS << " ";
   1398     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
   1399 
   1400     // Print HasSideEffects, IsAlignStack
   1401     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
   1402     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
   1403       OS << " [sideeffect]";
   1404     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
   1405       OS << " [alignstack]";
   1406 
   1407     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
   1408     FirstOp = false;
   1409   }
   1410 
   1411 
   1412   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
   1413     const MachineOperand &MO = getOperand(i);
   1414 
   1415     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1416       VirtRegs.push_back(MO.getReg());
   1417 
   1418     // Omit call-clobbered registers which aren't used anywhere. This makes
   1419     // call instructions much less noisy on targets where calls clobber lots
   1420     // of registers. Don't rely on MO.isDead() because we may be called before
   1421     // LiveVariables is run, or we may be looking at a non-allocatable reg.
   1422     if (MF && getDesc().isCall() &&
   1423         MO.isReg() && MO.isImplicit() && MO.isDef()) {
   1424       unsigned Reg = MO.getReg();
   1425       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1426         const MachineRegisterInfo &MRI = MF->getRegInfo();
   1427         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
   1428           bool HasAliasLive = false;
   1429           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
   1430                unsigned AliasReg = *Alias; ++Alias)
   1431             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
   1432               HasAliasLive = true;
   1433               break;
   1434             }
   1435           if (!HasAliasLive) {
   1436             OmittedAnyCallClobbers = true;
   1437             continue;
   1438           }
   1439         }
   1440       }
   1441     }
   1442 
   1443     if (FirstOp) FirstOp = false; else OS << ",";
   1444     OS << " ";
   1445     if (i < getDesc().NumOperands) {
   1446       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
   1447       if (MCOI.isPredicate())
   1448         OS << "pred:";
   1449       if (MCOI.isOptionalDef())
   1450         OS << "opt:";
   1451     }
   1452     if (isDebugValue() && MO.isMetadata()) {
   1453       // Pretty print DBG_VALUE instructions.
   1454       const MDNode *MD = MO.getMetadata();
   1455       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
   1456         OS << "!\"" << MDS->getString() << '\"';
   1457       else
   1458         MO.print(OS, TM);
   1459     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
   1460       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
   1461     } else if (i == AsmDescOp && MO.isImm()) {
   1462       // Pretty print the inline asm operand descriptor.
   1463       OS << '$' << AsmOpCount++;
   1464       unsigned Flag = MO.getImm();
   1465       switch (InlineAsm::getKind(Flag)) {
   1466       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
   1467       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
   1468       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
   1469       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
   1470       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
   1471       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
   1472       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
   1473       }
   1474 
   1475       unsigned RCID = 0;
   1476       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
   1477         if (TM)
   1478           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
   1479         else
   1480           OS << ":RC" << RCID;
   1481       }
   1482 
   1483       unsigned TiedTo = 0;
   1484       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
   1485         OS << " tiedto:$" << TiedTo;
   1486 
   1487       OS << ']';
   1488 
   1489       // Compute the index of the next operand descriptor.
   1490       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
   1491     } else
   1492       MO.print(OS, TM);
   1493   }
   1494 
   1495   // Briefly indicate whether any call clobbers were omitted.
   1496   if (OmittedAnyCallClobbers) {
   1497     if (!FirstOp) OS << ",";
   1498     OS << " ...";
   1499   }
   1500 
   1501   bool HaveSemi = false;
   1502   if (Flags) {
   1503     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1504     OS << " flags: ";
   1505 
   1506     if (Flags & FrameSetup)
   1507       OS << "FrameSetup";
   1508   }
   1509 
   1510   if (!memoperands_empty()) {
   1511     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1512 
   1513     OS << " mem:";
   1514     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
   1515          i != e; ++i) {
   1516       OS << **i;
   1517       if (llvm::next(i) != e)
   1518         OS << " ";
   1519     }
   1520   }
   1521 
   1522   // Print the regclass of any virtual registers encountered.
   1523   if (MRI && !VirtRegs.empty()) {
   1524     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1525     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
   1526       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
   1527       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
   1528       for (unsigned j = i+1; j != VirtRegs.size();) {
   1529         if (MRI->getRegClass(VirtRegs[j]) != RC) {
   1530           ++j;
   1531           continue;
   1532         }
   1533         if (VirtRegs[i] != VirtRegs[j])
   1534           OS << "," << PrintReg(VirtRegs[j]);
   1535         VirtRegs.erase(VirtRegs.begin()+j);
   1536       }
   1537     }
   1538   }
   1539 
   1540   // Print debug location information.
   1541   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
   1542     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1543     DIVariable DV(getOperand(e - 1).getMetadata());
   1544     OS << " line no:" <<  DV.getLineNumber();
   1545     if (MDNode *InlinedAt = DV.getInlinedAt()) {
   1546       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
   1547       if (!InlinedAtDL.isUnknown()) {
   1548         OS << " inlined @[ ";
   1549         printDebugLoc(InlinedAtDL, MF, OS);
   1550         OS << " ]";
   1551       }
   1552     }
   1553   } else if (!debugLoc.isUnknown() && MF) {
   1554     if (!HaveSemi) OS << ";"; HaveSemi = true;
   1555     OS << " dbg:";
   1556     printDebugLoc(debugLoc, MF, OS);
   1557   }
   1558 
   1559   OS << '\n';
   1560 }
   1561 
   1562 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
   1563                                      const TargetRegisterInfo *RegInfo,
   1564                                      bool AddIfNotFound) {
   1565   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1566   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1567   bool Found = false;
   1568   SmallVector<unsigned,4> DeadOps;
   1569   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1570     MachineOperand &MO = getOperand(i);
   1571     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
   1572       continue;
   1573     unsigned Reg = MO.getReg();
   1574     if (!Reg)
   1575       continue;
   1576 
   1577     if (Reg == IncomingReg) {
   1578       if (!Found) {
   1579         if (MO.isKill())
   1580           // The register is already marked kill.
   1581           return true;
   1582         if (isPhysReg && isRegTiedToDefOperand(i))
   1583           // Two-address uses of physregs must not be marked kill.
   1584           return true;
   1585         MO.setIsKill();
   1586         Found = true;
   1587       }
   1588     } else if (hasAliases && MO.isKill() &&
   1589                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1590       // A super-register kill already exists.
   1591       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1592         return true;
   1593       if (RegInfo->isSubRegister(IncomingReg, Reg))
   1594         DeadOps.push_back(i);
   1595     }
   1596   }
   1597 
   1598   // Trim unneeded kill operands.
   1599   while (!DeadOps.empty()) {
   1600     unsigned OpIdx = DeadOps.back();
   1601     if (getOperand(OpIdx).isImplicit())
   1602       RemoveOperand(OpIdx);
   1603     else
   1604       getOperand(OpIdx).setIsKill(false);
   1605     DeadOps.pop_back();
   1606   }
   1607 
   1608   // If not found, this means an alias of one of the operands is killed. Add a
   1609   // new implicit operand if required.
   1610   if (!Found && AddIfNotFound) {
   1611     addOperand(MachineOperand::CreateReg(IncomingReg,
   1612                                          false /*IsDef*/,
   1613                                          true  /*IsImp*/,
   1614                                          true  /*IsKill*/));
   1615     return true;
   1616   }
   1617   return Found;
   1618 }
   1619 
   1620 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
   1621                                    const TargetRegisterInfo *RegInfo,
   1622                                    bool AddIfNotFound) {
   1623   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
   1624   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
   1625   bool Found = false;
   1626   SmallVector<unsigned,4> DeadOps;
   1627   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1628     MachineOperand &MO = getOperand(i);
   1629     if (!MO.isReg() || !MO.isDef())
   1630       continue;
   1631     unsigned Reg = MO.getReg();
   1632     if (!Reg)
   1633       continue;
   1634 
   1635     if (Reg == IncomingReg) {
   1636       MO.setIsDead();
   1637       Found = true;
   1638     } else if (hasAliases && MO.isDead() &&
   1639                TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1640       // There exists a super-register that's marked dead.
   1641       if (RegInfo->isSuperRegister(IncomingReg, Reg))
   1642         return true;
   1643       if (RegInfo->getSubRegisters(IncomingReg) &&
   1644           RegInfo->getSuperRegisters(Reg) &&
   1645           RegInfo->isSubRegister(IncomingReg, Reg))
   1646         DeadOps.push_back(i);
   1647     }
   1648   }
   1649 
   1650   // Trim unneeded dead operands.
   1651   while (!DeadOps.empty()) {
   1652     unsigned OpIdx = DeadOps.back();
   1653     if (getOperand(OpIdx).isImplicit())
   1654       RemoveOperand(OpIdx);
   1655     else
   1656       getOperand(OpIdx).setIsDead(false);
   1657     DeadOps.pop_back();
   1658   }
   1659 
   1660   // If not found, this means an alias of one of the operands is dead. Add a
   1661   // new implicit operand if required.
   1662   if (Found || !AddIfNotFound)
   1663     return Found;
   1664 
   1665   addOperand(MachineOperand::CreateReg(IncomingReg,
   1666                                        true  /*IsDef*/,
   1667                                        true  /*IsImp*/,
   1668                                        false /*IsKill*/,
   1669                                        true  /*IsDead*/));
   1670   return true;
   1671 }
   1672 
   1673 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
   1674                                       const TargetRegisterInfo *RegInfo) {
   1675   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
   1676     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
   1677     if (MO)
   1678       return;
   1679   } else {
   1680     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1681       const MachineOperand &MO = getOperand(i);
   1682       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
   1683           MO.getSubReg() == 0)
   1684         return;
   1685     }
   1686   }
   1687   addOperand(MachineOperand::CreateReg(IncomingReg,
   1688                                        true  /*IsDef*/,
   1689                                        true  /*IsImp*/));
   1690 }
   1691 
   1692 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
   1693                                          const TargetRegisterInfo &TRI) {
   1694   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   1695     MachineOperand &MO = getOperand(i);
   1696     if (!MO.isReg() || !MO.isDef()) continue;
   1697     unsigned Reg = MO.getReg();
   1698     if (Reg == 0) continue;
   1699     bool Dead = true;
   1700     for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
   1701          E = UsedRegs.end(); I != E; ++I)
   1702       if (TRI.regsOverlap(*I, Reg)) {
   1703         Dead = false;
   1704         break;
   1705       }
   1706     // If there are no uses, including partial uses, the def is dead.
   1707     if (Dead) MO.setIsDead();
   1708   }
   1709 }
   1710 
   1711 unsigned
   1712 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
   1713   unsigned Hash = MI->getOpcode() * 37;
   1714   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1715     const MachineOperand &MO = MI->getOperand(i);
   1716     uint64_t Key = (uint64_t)MO.getType() << 32;
   1717     switch (MO.getType()) {
   1718     default: break;
   1719     case MachineOperand::MO_Register:
   1720       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
   1721         continue;  // Skip virtual register defs.
   1722       Key |= MO.getReg();
   1723       break;
   1724     case MachineOperand::MO_Immediate:
   1725       Key |= MO.getImm();
   1726       break;
   1727     case MachineOperand::MO_FrameIndex:
   1728     case MachineOperand::MO_ConstantPoolIndex:
   1729     case MachineOperand::MO_JumpTableIndex:
   1730       Key |= MO.getIndex();
   1731       break;
   1732     case MachineOperand::MO_MachineBasicBlock:
   1733       Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
   1734       break;
   1735     case MachineOperand::MO_GlobalAddress:
   1736       Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
   1737       break;
   1738     case MachineOperand::MO_BlockAddress:
   1739       Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
   1740       break;
   1741     case MachineOperand::MO_MCSymbol:
   1742       Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
   1743       break;
   1744     }
   1745     Key += ~(Key << 32);
   1746     Key ^= (Key >> 22);
   1747     Key += ~(Key << 13);
   1748     Key ^= (Key >> 8);
   1749     Key += (Key << 3);
   1750     Key ^= (Key >> 15);
   1751     Key += ~(Key << 27);
   1752     Key ^= (Key >> 31);
   1753     Hash = (unsigned)Key + Hash * 37;
   1754   }
   1755   return Hash;
   1756 }
   1757 
   1758 void MachineInstr::emitError(StringRef Msg) const {
   1759   // Find the source location cookie.
   1760   unsigned LocCookie = 0;
   1761   const MDNode *LocMD = 0;
   1762   for (unsigned i = getNumOperands(); i != 0; --i) {
   1763     if (getOperand(i-1).isMetadata() &&
   1764         (LocMD = getOperand(i-1).getMetadata()) &&
   1765         LocMD->getNumOperands() != 0) {
   1766       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
   1767         LocCookie = CI->getZExtValue();
   1768         break;
   1769       }
   1770     }
   1771   }
   1772 
   1773   if (const MachineBasicBlock *MBB = getParent())
   1774     if (const MachineFunction *MF = MBB->getParent())
   1775       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
   1776   report_fatal_error(Msg);
   1777 }
   1778