1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/Constants.h" 16 #include "llvm/Function.h" 17 #include "llvm/InlineAsm.h" 18 #include "llvm/LLVMContext.h" 19 #include "llvm/Metadata.h" 20 #include "llvm/Module.h" 21 #include "llvm/Type.h" 22 #include "llvm/Value.h" 23 #include "llvm/Assembly/Writer.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/DebugInfo.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/LeakDetector.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/ADT/FoldingSet.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 /// AddRegOperandToRegInfo - Add this register operand to the specified 50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be 51 /// explicitly nulled out. 52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { 53 assert(isReg() && "Can only add reg operand to use lists"); 54 55 // If the reginfo pointer is null, just explicitly null out or next/prev 56 // pointers, to ensure they are not garbage. 57 if (RegInfo == 0) { 58 Contents.Reg.Prev = 0; 59 Contents.Reg.Next = 0; 60 return; 61 } 62 63 // Otherwise, add this operand to the head of the registers use/def list. 64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); 65 66 // For SSA values, we prefer to keep the definition at the start of the list. 67 // we do this by skipping over the definition if it is at the head of the 68 // list. 69 if (*Head && (*Head)->isDef()) 70 Head = &(*Head)->Contents.Reg.Next; 71 72 Contents.Reg.Next = *Head; 73 if (Contents.Reg.Next) { 74 assert(getReg() == Contents.Reg.Next->getReg() && 75 "Different regs on the same list!"); 76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; 77 } 78 79 Contents.Reg.Prev = Head; 80 *Head = this; 81 } 82 83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the 84 /// MachineRegisterInfo it is linked with. 85 void MachineOperand::RemoveRegOperandFromRegInfo() { 86 assert(isOnRegUseList() && "Reg operand is not on a use list"); 87 // Unlink this from the doubly linked list of operands. 88 MachineOperand *NextOp = Contents.Reg.Next; 89 *Contents.Reg.Prev = NextOp; 90 if (NextOp) { 91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); 92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev; 93 } 94 Contents.Reg.Prev = 0; 95 Contents.Reg.Next = 0; 96 } 97 98 void MachineOperand::setReg(unsigned Reg) { 99 if (getReg() == Reg) return; // No change. 100 101 // Otherwise, we have to change the register. If this operand is embedded 102 // into a machine function, we need to update the old and new register's 103 // use/def lists. 104 if (MachineInstr *MI = getParent()) 105 if (MachineBasicBlock *MBB = MI->getParent()) 106 if (MachineFunction *MF = MBB->getParent()) { 107 RemoveRegOperandFromRegInfo(); 108 SmallContents.RegNo = Reg; 109 AddRegOperandToRegInfo(&MF->getRegInfo()); 110 return; 111 } 112 113 // Otherwise, just change the register, no problem. :) 114 SmallContents.RegNo = Reg; 115 } 116 117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 118 const TargetRegisterInfo &TRI) { 119 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 120 if (SubIdx && getSubReg()) 121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 122 setReg(Reg); 123 if (SubIdx) 124 setSubReg(SubIdx); 125 } 126 127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 128 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 129 if (getSubReg()) { 130 Reg = TRI.getSubReg(Reg, getSubReg()); 131 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 132 // That won't happen in legal code. 133 setSubReg(0); 134 } 135 setReg(Reg); 136 } 137 138 /// ChangeToImmediate - Replace this operand with a new immediate operand of 139 /// the specified value. If an operand is known to be an immediate already, 140 /// the setImm method should be used. 141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 142 // If this operand is currently a register operand, and if this is in a 143 // function, deregister the operand from the register's use/def list. 144 if (isReg() && getParent() && getParent()->getParent() && 145 getParent()->getParent()->getParent()) 146 RemoveRegOperandFromRegInfo(); 147 148 OpKind = MO_Immediate; 149 Contents.ImmVal = ImmVal; 150 } 151 152 /// ChangeToRegister - Replace this operand with a new register operand of 153 /// the specified value. If an operand is known to be an register already, 154 /// the setReg method should be used. 155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 156 bool isKill, bool isDead, bool isUndef, 157 bool isDebug) { 158 // If this operand is already a register operand, use setReg to update the 159 // register's use/def lists. 160 if (isReg()) { 161 assert(!isEarlyClobber()); 162 setReg(Reg); 163 } else { 164 // Otherwise, change this to a register and set the reg#. 165 OpKind = MO_Register; 166 SmallContents.RegNo = Reg; 167 168 // If this operand is embedded in a function, add the operand to the 169 // register's use/def list. 170 if (MachineInstr *MI = getParent()) 171 if (MachineBasicBlock *MBB = MI->getParent()) 172 if (MachineFunction *MF = MBB->getParent()) 173 AddRegOperandToRegInfo(&MF->getRegInfo()); 174 } 175 176 IsDef = isDef; 177 IsImp = isImp; 178 IsKill = isKill; 179 IsDead = isDead; 180 IsUndef = isUndef; 181 IsEarlyClobber = false; 182 IsDebug = isDebug; 183 SubReg = 0; 184 } 185 186 /// isIdenticalTo - Return true if this operand is identical to the specified 187 /// operand. 188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 189 if (getType() != Other.getType() || 190 getTargetFlags() != Other.getTargetFlags()) 191 return false; 192 193 switch (getType()) { 194 default: llvm_unreachable("Unrecognized operand type"); 195 case MachineOperand::MO_Register: 196 return getReg() == Other.getReg() && isDef() == Other.isDef() && 197 getSubReg() == Other.getSubReg(); 198 case MachineOperand::MO_Immediate: 199 return getImm() == Other.getImm(); 200 case MachineOperand::MO_CImmediate: 201 return getCImm() == Other.getCImm(); 202 case MachineOperand::MO_FPImmediate: 203 return getFPImm() == Other.getFPImm(); 204 case MachineOperand::MO_MachineBasicBlock: 205 return getMBB() == Other.getMBB(); 206 case MachineOperand::MO_FrameIndex: 207 return getIndex() == Other.getIndex(); 208 case MachineOperand::MO_ConstantPoolIndex: 209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 210 case MachineOperand::MO_JumpTableIndex: 211 return getIndex() == Other.getIndex(); 212 case MachineOperand::MO_GlobalAddress: 213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 214 case MachineOperand::MO_ExternalSymbol: 215 return !strcmp(getSymbolName(), Other.getSymbolName()) && 216 getOffset() == Other.getOffset(); 217 case MachineOperand::MO_BlockAddress: 218 return getBlockAddress() == Other.getBlockAddress(); 219 case MachineOperand::MO_MCSymbol: 220 return getMCSymbol() == Other.getMCSymbol(); 221 case MachineOperand::MO_Metadata: 222 return getMetadata() == Other.getMetadata(); 223 } 224 } 225 226 /// print - Print the specified machine operand. 227 /// 228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 229 // If the instruction is embedded into a basic block, we can find the 230 // target info for the instruction. 231 if (!TM) 232 if (const MachineInstr *MI = getParent()) 233 if (const MachineBasicBlock *MBB = MI->getParent()) 234 if (const MachineFunction *MF = MBB->getParent()) 235 TM = &MF->getTarget(); 236 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 237 238 switch (getType()) { 239 case MachineOperand::MO_Register: 240 OS << PrintReg(getReg(), TRI, getSubReg()); 241 242 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 243 isEarlyClobber()) { 244 OS << '<'; 245 bool NeedComma = false; 246 if (isDef()) { 247 if (NeedComma) OS << ','; 248 if (isEarlyClobber()) 249 OS << "earlyclobber,"; 250 if (isImplicit()) 251 OS << "imp-"; 252 OS << "def"; 253 NeedComma = true; 254 } else if (isImplicit()) { 255 OS << "imp-use"; 256 NeedComma = true; 257 } 258 259 if (isKill() || isDead() || isUndef()) { 260 if (NeedComma) OS << ','; 261 if (isKill()) OS << "kill"; 262 if (isDead()) OS << "dead"; 263 if (isUndef()) { 264 if (isKill() || isDead()) 265 OS << ','; 266 OS << "undef"; 267 } 268 } 269 OS << '>'; 270 } 271 break; 272 case MachineOperand::MO_Immediate: 273 OS << getImm(); 274 break; 275 case MachineOperand::MO_CImmediate: 276 getCImm()->getValue().print(OS, false); 277 break; 278 case MachineOperand::MO_FPImmediate: 279 if (getFPImm()->getType()->isFloatTy()) 280 OS << getFPImm()->getValueAPF().convertToFloat(); 281 else 282 OS << getFPImm()->getValueAPF().convertToDouble(); 283 break; 284 case MachineOperand::MO_MachineBasicBlock: 285 OS << "<BB#" << getMBB()->getNumber() << ">"; 286 break; 287 case MachineOperand::MO_FrameIndex: 288 OS << "<fi#" << getIndex() << '>'; 289 break; 290 case MachineOperand::MO_ConstantPoolIndex: 291 OS << "<cp#" << getIndex(); 292 if (getOffset()) OS << "+" << getOffset(); 293 OS << '>'; 294 break; 295 case MachineOperand::MO_JumpTableIndex: 296 OS << "<jt#" << getIndex() << '>'; 297 break; 298 case MachineOperand::MO_GlobalAddress: 299 OS << "<ga:"; 300 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 301 if (getOffset()) OS << "+" << getOffset(); 302 OS << '>'; 303 break; 304 case MachineOperand::MO_ExternalSymbol: 305 OS << "<es:" << getSymbolName(); 306 if (getOffset()) OS << "+" << getOffset(); 307 OS << '>'; 308 break; 309 case MachineOperand::MO_BlockAddress: 310 OS << '<'; 311 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 312 OS << '>'; 313 break; 314 case MachineOperand::MO_Metadata: 315 OS << '<'; 316 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 317 OS << '>'; 318 break; 319 case MachineOperand::MO_MCSymbol: 320 OS << "<MCSym=" << *getMCSymbol() << '>'; 321 break; 322 default: 323 llvm_unreachable("Unrecognized operand type"); 324 } 325 326 if (unsigned TF = getTargetFlags()) 327 OS << "[TF=" << TF << ']'; 328 } 329 330 //===----------------------------------------------------------------------===// 331 // MachineMemOperand Implementation 332 //===----------------------------------------------------------------------===// 333 334 /// getAddrSpace - Return the LLVM IR address space number that this pointer 335 /// points into. 336 unsigned MachinePointerInfo::getAddrSpace() const { 337 if (V == 0) return 0; 338 return cast<PointerType>(V->getType())->getAddressSpace(); 339 } 340 341 /// getConstantPool - Return a MachinePointerInfo record that refers to the 342 /// constant pool. 343 MachinePointerInfo MachinePointerInfo::getConstantPool() { 344 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 345 } 346 347 /// getFixedStack - Return a MachinePointerInfo record that refers to the 348 /// the specified FrameIndex. 349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 350 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 351 } 352 353 MachinePointerInfo MachinePointerInfo::getJumpTable() { 354 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 355 } 356 357 MachinePointerInfo MachinePointerInfo::getGOT() { 358 return MachinePointerInfo(PseudoSourceValue::getGOT()); 359 } 360 361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 362 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 363 } 364 365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 366 uint64_t s, unsigned int a, 367 const MDNode *TBAAInfo) 368 : PtrInfo(ptrinfo), Size(s), 369 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 370 TBAAInfo(TBAAInfo) { 371 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 372 "invalid pointer value"); 373 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 374 assert((isLoad() || isStore()) && "Not a load/store!"); 375 } 376 377 /// Profile - Gather unique data for the object. 378 /// 379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 380 ID.AddInteger(getOffset()); 381 ID.AddInteger(Size); 382 ID.AddPointer(getValue()); 383 ID.AddInteger(Flags); 384 } 385 386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 387 // The Value and Offset may differ due to CSE. But the flags and size 388 // should be the same. 389 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 390 assert(MMO->getSize() == getSize() && "Size mismatch!"); 391 392 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 393 // Update the alignment value. 394 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 395 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 396 // Also update the base and offset, because the new alignment may 397 // not be applicable with the old ones. 398 PtrInfo = MMO->PtrInfo; 399 } 400 } 401 402 /// getAlignment - Return the minimum known alignment in bytes of the 403 /// actual memory reference. 404 uint64_t MachineMemOperand::getAlignment() const { 405 return MinAlign(getBaseAlignment(), getOffset()); 406 } 407 408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 409 assert((MMO.isLoad() || MMO.isStore()) && 410 "SV has to be a load, store or both."); 411 412 if (MMO.isVolatile()) 413 OS << "Volatile "; 414 415 if (MMO.isLoad()) 416 OS << "LD"; 417 if (MMO.isStore()) 418 OS << "ST"; 419 OS << MMO.getSize(); 420 421 // Print the address information. 422 OS << "["; 423 if (!MMO.getValue()) 424 OS << "<unknown>"; 425 else 426 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 427 428 // If the alignment of the memory reference itself differs from the alignment 429 // of the base pointer, print the base alignment explicitly, next to the base 430 // pointer. 431 if (MMO.getBaseAlignment() != MMO.getAlignment()) 432 OS << "(align=" << MMO.getBaseAlignment() << ")"; 433 434 if (MMO.getOffset() != 0) 435 OS << "+" << MMO.getOffset(); 436 OS << "]"; 437 438 // Print the alignment of the reference. 439 if (MMO.getBaseAlignment() != MMO.getAlignment() || 440 MMO.getBaseAlignment() != MMO.getSize()) 441 OS << "(align=" << MMO.getAlignment() << ")"; 442 443 // Print TBAA info. 444 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 445 OS << "(tbaa="; 446 if (TBAAInfo->getNumOperands() > 0) 447 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 448 else 449 OS << "<unknown>"; 450 OS << ")"; 451 } 452 453 // Print nontemporal info. 454 if (MMO.isNonTemporal()) 455 OS << "(nontemporal)"; 456 457 return OS; 458 } 459 460 //===----------------------------------------------------------------------===// 461 // MachineInstr Implementation 462 //===----------------------------------------------------------------------===// 463 464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with 465 /// MCID NULL and no operands. 466 MachineInstr::MachineInstr() 467 : MCID(0), Flags(0), AsmPrinterFlags(0), 468 MemRefs(0), MemRefsEnd(0), 469 Parent(0) { 470 // Make sure that we get added to a machine basicblock 471 LeakDetector::addGarbageObject(this); 472 } 473 474 void MachineInstr::addImplicitDefUseOperands() { 475 if (MCID->ImplicitDefs) 476 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs) 477 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); 478 if (MCID->ImplicitUses) 479 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses) 480 addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); 481 } 482 483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 484 /// implicit operands. It reserves space for the number of operands specified by 485 /// the MCInstrDesc. 486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) 487 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 488 MemRefs(0), MemRefsEnd(0), Parent(0) { 489 unsigned NumImplicitOps = 0; 490 if (!NoImp) 491 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 492 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 493 if (!NoImp) 494 addImplicitDefUseOperands(); 495 // Make sure that we get added to a machine basicblock 496 LeakDetector::addGarbageObject(this); 497 } 498 499 /// MachineInstr ctor - As above, but with a DebugLoc. 500 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, 501 bool NoImp) 502 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 503 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 504 unsigned NumImplicitOps = 0; 505 if (!NoImp) 506 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 507 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 508 if (!NoImp) 509 addImplicitDefUseOperands(); 510 // Make sure that we get added to a machine basicblock 511 LeakDetector::addGarbageObject(this); 512 } 513 514 /// MachineInstr ctor - Work exactly the same as the ctor two above, except 515 /// that the MachineInstr is created and added to the end of the specified 516 /// basic block. 517 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) 518 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 519 MemRefs(0), MemRefsEnd(0), Parent(0) { 520 assert(MBB && "Cannot use inserting ctor with null basic block!"); 521 unsigned NumImplicitOps = 522 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 523 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 524 addImplicitDefUseOperands(); 525 // Make sure that we get added to a machine basicblock 526 LeakDetector::addGarbageObject(this); 527 MBB->push_back(this); // Add instruction to end of basic block! 528 } 529 530 /// MachineInstr ctor - As above, but with a DebugLoc. 531 /// 532 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, 533 const MCInstrDesc &tid) 534 : MCID(&tid), Flags(0), AsmPrinterFlags(0), 535 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) { 536 assert(MBB && "Cannot use inserting ctor with null basic block!"); 537 unsigned NumImplicitOps = 538 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); 539 Operands.reserve(NumImplicitOps + MCID->getNumOperands()); 540 addImplicitDefUseOperands(); 541 // Make sure that we get added to a machine basicblock 542 LeakDetector::addGarbageObject(this); 543 MBB->push_back(this); // Add instruction to end of basic block! 544 } 545 546 /// MachineInstr ctor - Copies MachineInstr arg exactly 547 /// 548 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 549 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), 550 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd), 551 Parent(0), debugLoc(MI.getDebugLoc()) { 552 Operands.reserve(MI.getNumOperands()); 553 554 // Add operands 555 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 556 addOperand(MI.getOperand(i)); 557 558 // Copy all the flags. 559 Flags = MI.Flags; 560 561 // Set parent to null. 562 Parent = 0; 563 564 LeakDetector::addGarbageObject(this); 565 } 566 567 MachineInstr::~MachineInstr() { 568 LeakDetector::removeGarbageObject(this); 569 #ifndef NDEBUG 570 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 571 assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); 572 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && 573 "Reg operand def/use list corrupted"); 574 } 575 #endif 576 } 577 578 /// getRegInfo - If this instruction is embedded into a MachineFunction, 579 /// return the MachineRegisterInfo object for the current function, otherwise 580 /// return null. 581 MachineRegisterInfo *MachineInstr::getRegInfo() { 582 if (MachineBasicBlock *MBB = getParent()) 583 return &MBB->getParent()->getRegInfo(); 584 return 0; 585 } 586 587 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 588 /// this instruction from their respective use lists. This requires that the 589 /// operands already be on their use lists. 590 void MachineInstr::RemoveRegOperandsFromUseLists() { 591 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 592 if (Operands[i].isReg()) 593 Operands[i].RemoveRegOperandFromRegInfo(); 594 } 595 } 596 597 /// AddRegOperandsToUseLists - Add all of the register operands in 598 /// this instruction from their respective use lists. This requires that the 599 /// operands not be on their use lists yet. 600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { 601 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 602 if (Operands[i].isReg()) 603 Operands[i].AddRegOperandToRegInfo(&RegInfo); 604 } 605 } 606 607 608 /// addOperand - Add the specified operand to the instruction. If it is an 609 /// implicit operand, it is added to the end of the operand list. If it is 610 /// an explicit operand it is added at the end of the explicit operand list 611 /// (before the first implicit operand). 612 void MachineInstr::addOperand(const MachineOperand &Op) { 613 assert(MCID && "Cannot add operands before providing an instr descriptor"); 614 bool isImpReg = Op.isReg() && Op.isImplicit(); 615 MachineRegisterInfo *RegInfo = getRegInfo(); 616 617 // If the Operands backing store is reallocated, all register operands must 618 // be removed and re-added to RegInfo. It is storing pointers to operands. 619 bool Reallocate = RegInfo && 620 !Operands.empty() && Operands.size() == Operands.capacity(); 621 622 // Find the insert location for the new operand. Implicit registers go at 623 // the end, everything goes before the implicit regs. 624 unsigned OpNo = Operands.size(); 625 626 // Remove all the implicit operands from RegInfo if they need to be shifted. 627 // FIXME: Allow mixed explicit and implicit operands on inline asm. 628 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 629 // implicit-defs, but they must not be moved around. See the FIXME in 630 // InstrEmitter.cpp. 631 if (!isImpReg && !isInlineAsm()) { 632 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 633 --OpNo; 634 if (RegInfo) 635 Operands[OpNo].RemoveRegOperandFromRegInfo(); 636 } 637 } 638 639 // OpNo now points as the desired insertion point. Unless this is a variadic 640 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 641 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && 642 "Trying to add an operand to a machine instr that is already done!"); 643 644 // All operands from OpNo have been removed from RegInfo. If the Operands 645 // backing store needs to be reallocated, we also need to remove any other 646 // register operands. 647 if (Reallocate) 648 for (unsigned i = 0; i != OpNo; ++i) 649 if (Operands[i].isReg()) 650 Operands[i].RemoveRegOperandFromRegInfo(); 651 652 // Insert the new operand at OpNo. 653 Operands.insert(Operands.begin() + OpNo, Op); 654 Operands[OpNo].ParentMI = this; 655 656 // The Operands backing store has now been reallocated, so we can re-add the 657 // operands before OpNo. 658 if (Reallocate) 659 for (unsigned i = 0; i != OpNo; ++i) 660 if (Operands[i].isReg()) 661 Operands[i].AddRegOperandToRegInfo(RegInfo); 662 663 // When adding a register operand, tell RegInfo about it. 664 if (Operands[OpNo].isReg()) { 665 // Add the new operand to RegInfo, even when RegInfo is NULL. 666 // This will initialize the linked list pointers. 667 Operands[OpNo].AddRegOperandToRegInfo(RegInfo); 668 // If the register operand is flagged as early, mark the operand as such. 669 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 670 Operands[OpNo].setIsEarlyClobber(true); 671 } 672 673 // Re-add all the implicit ops. 674 if (RegInfo) { 675 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { 676 assert(Operands[i].isReg() && "Should only be an implicit reg!"); 677 Operands[i].AddRegOperandToRegInfo(RegInfo); 678 } 679 } 680 } 681 682 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 683 /// fewer operand than it started with. 684 /// 685 void MachineInstr::RemoveOperand(unsigned OpNo) { 686 assert(OpNo < Operands.size() && "Invalid operand number"); 687 688 // Special case removing the last one. 689 if (OpNo == Operands.size()-1) { 690 // If needed, remove from the reg def/use list. 691 if (Operands.back().isReg() && Operands.back().isOnRegUseList()) 692 Operands.back().RemoveRegOperandFromRegInfo(); 693 694 Operands.pop_back(); 695 return; 696 } 697 698 // Otherwise, we are removing an interior operand. If we have reginfo to 699 // update, remove all operands that will be shifted down from their reg lists, 700 // move everything down, then re-add them. 701 MachineRegisterInfo *RegInfo = getRegInfo(); 702 if (RegInfo) { 703 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 704 if (Operands[i].isReg()) 705 Operands[i].RemoveRegOperandFromRegInfo(); 706 } 707 } 708 709 Operands.erase(Operands.begin()+OpNo); 710 711 if (RegInfo) { 712 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { 713 if (Operands[i].isReg()) 714 Operands[i].AddRegOperandToRegInfo(RegInfo); 715 } 716 } 717 } 718 719 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 720 /// This function should be used only occasionally. The setMemRefs function 721 /// is the primary method for setting up a MachineInstr's MemRefs list. 722 void MachineInstr::addMemOperand(MachineFunction &MF, 723 MachineMemOperand *MO) { 724 mmo_iterator OldMemRefs = MemRefs; 725 mmo_iterator OldMemRefsEnd = MemRefsEnd; 726 727 size_t NewNum = (MemRefsEnd - MemRefs) + 1; 728 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 729 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum; 730 731 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs); 732 NewMemRefs[NewNum - 1] = MO; 733 734 MemRefs = NewMemRefs; 735 MemRefsEnd = NewMemRefsEnd; 736 } 737 738 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 739 MICheckType Check) const { 740 // If opcodes or number of operands are not the same then the two 741 // instructions are obviously not identical. 742 if (Other->getOpcode() != getOpcode() || 743 Other->getNumOperands() != getNumOperands()) 744 return false; 745 746 // Check operands to make sure they match. 747 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 748 const MachineOperand &MO = getOperand(i); 749 const MachineOperand &OMO = Other->getOperand(i); 750 if (!MO.isReg()) { 751 if (!MO.isIdenticalTo(OMO)) 752 return false; 753 continue; 754 } 755 756 // Clients may or may not want to ignore defs when testing for equality. 757 // For example, machine CSE pass only cares about finding common 758 // subexpressions, so it's safe to ignore virtual register defs. 759 if (MO.isDef()) { 760 if (Check == IgnoreDefs) 761 continue; 762 else if (Check == IgnoreVRegDefs) { 763 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 764 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 765 if (MO.getReg() != OMO.getReg()) 766 return false; 767 } else { 768 if (!MO.isIdenticalTo(OMO)) 769 return false; 770 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 771 return false; 772 } 773 } else { 774 if (!MO.isIdenticalTo(OMO)) 775 return false; 776 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 777 return false; 778 } 779 } 780 // If DebugLoc does not match then two dbg.values are not identical. 781 if (isDebugValue()) 782 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 783 && getDebugLoc() != Other->getDebugLoc()) 784 return false; 785 return true; 786 } 787 788 /// removeFromParent - This method unlinks 'this' from the containing basic 789 /// block, and returns it, but does not delete it. 790 MachineInstr *MachineInstr::removeFromParent() { 791 assert(getParent() && "Not embedded in a basic block!"); 792 getParent()->remove(this); 793 return this; 794 } 795 796 797 /// eraseFromParent - This method unlinks 'this' from the containing basic 798 /// block, and deletes it. 799 void MachineInstr::eraseFromParent() { 800 assert(getParent() && "Not embedded in a basic block!"); 801 getParent()->erase(this); 802 } 803 804 805 /// getNumExplicitOperands - Returns the number of non-implicit operands. 806 /// 807 unsigned MachineInstr::getNumExplicitOperands() const { 808 unsigned NumOperands = MCID->getNumOperands(); 809 if (!MCID->isVariadic()) 810 return NumOperands; 811 812 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 813 const MachineOperand &MO = getOperand(i); 814 if (!MO.isReg() || !MO.isImplicit()) 815 NumOperands++; 816 } 817 return NumOperands; 818 } 819 820 bool MachineInstr::isStackAligningInlineAsm() const { 821 if (isInlineAsm()) { 822 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 823 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 824 return true; 825 } 826 return false; 827 } 828 829 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 830 unsigned *GroupNo) const { 831 assert(isInlineAsm() && "Expected an inline asm instruction"); 832 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 833 834 // Ignore queries about the initial operands. 835 if (OpIdx < InlineAsm::MIOp_FirstOperand) 836 return -1; 837 838 unsigned Group = 0; 839 unsigned NumOps; 840 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 841 i += NumOps) { 842 const MachineOperand &FlagMO = getOperand(i); 843 // If we reach the implicit register operands, stop looking. 844 if (!FlagMO.isImm()) 845 return -1; 846 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 847 if (i + NumOps > OpIdx) { 848 if (GroupNo) 849 *GroupNo = Group; 850 return i; 851 } 852 ++Group; 853 } 854 return -1; 855 } 856 857 const TargetRegisterClass* 858 MachineInstr::getRegClassConstraint(unsigned OpIdx, 859 const TargetInstrInfo *TII, 860 const TargetRegisterInfo *TRI) const { 861 // Most opcodes have fixed constraints in their MCInstrDesc. 862 if (!isInlineAsm()) 863 return TII->getRegClass(getDesc(), OpIdx, TRI); 864 865 if (!getOperand(OpIdx).isReg()) 866 return NULL; 867 868 // For tied uses on inline asm, get the constraint from the def. 869 unsigned DefIdx; 870 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 871 OpIdx = DefIdx; 872 873 // Inline asm stores register class constraints in the flag word. 874 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 875 if (FlagIdx < 0) 876 return NULL; 877 878 unsigned Flag = getOperand(FlagIdx).getImm(); 879 unsigned RCID; 880 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 881 return TRI->getRegClass(RCID); 882 883 // Assume that all registers in a memory operand are pointers. 884 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 885 return TRI->getPointerRegClass(); 886 887 return NULL; 888 } 889 890 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 891 /// the specific register or -1 if it is not found. It further tightens 892 /// the search criteria to a use that kills the register if isKill is true. 893 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 894 const TargetRegisterInfo *TRI) const { 895 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 896 const MachineOperand &MO = getOperand(i); 897 if (!MO.isReg() || !MO.isUse()) 898 continue; 899 unsigned MOReg = MO.getReg(); 900 if (!MOReg) 901 continue; 902 if (MOReg == Reg || 903 (TRI && 904 TargetRegisterInfo::isPhysicalRegister(MOReg) && 905 TargetRegisterInfo::isPhysicalRegister(Reg) && 906 TRI->isSubRegister(MOReg, Reg))) 907 if (!isKill || MO.isKill()) 908 return i; 909 } 910 return -1; 911 } 912 913 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 914 /// indicating if this instruction reads or writes Reg. This also considers 915 /// partial defines. 916 std::pair<bool,bool> 917 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 918 SmallVectorImpl<unsigned> *Ops) const { 919 bool PartDef = false; // Partial redefine. 920 bool FullDef = false; // Full define. 921 bool Use = false; 922 923 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 924 const MachineOperand &MO = getOperand(i); 925 if (!MO.isReg() || MO.getReg() != Reg) 926 continue; 927 if (Ops) 928 Ops->push_back(i); 929 if (MO.isUse()) 930 Use |= !MO.isUndef(); 931 else if (MO.getSubReg() && !MO.isUndef()) 932 // A partial <def,undef> doesn't count as reading the register. 933 PartDef = true; 934 else 935 FullDef = true; 936 } 937 // A partial redefine uses Reg unless there is also a full define. 938 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 939 } 940 941 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 942 /// the specified register or -1 if it is not found. If isDead is true, defs 943 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 944 /// also checks if there is a def of a super-register. 945 int 946 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 947 const TargetRegisterInfo *TRI) const { 948 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 949 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 950 const MachineOperand &MO = getOperand(i); 951 if (!MO.isReg() || !MO.isDef()) 952 continue; 953 unsigned MOReg = MO.getReg(); 954 bool Found = (MOReg == Reg); 955 if (!Found && TRI && isPhys && 956 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 957 if (Overlap) 958 Found = TRI->regsOverlap(MOReg, Reg); 959 else 960 Found = TRI->isSubRegister(MOReg, Reg); 961 } 962 if (Found && (!isDead || MO.isDead())) 963 return i; 964 } 965 return -1; 966 } 967 968 /// findFirstPredOperandIdx() - Find the index of the first operand in the 969 /// operand list that is used to represent the predicate. It returns -1 if 970 /// none is found. 971 int MachineInstr::findFirstPredOperandIdx() const { 972 // Don't call MCID.findFirstPredOperandIdx() because this variant 973 // is sometimes called on an instruction that's not yet complete, and 974 // so the number of operands is less than the MCID indicates. In 975 // particular, the PTX target does this. 976 const MCInstrDesc &MCID = getDesc(); 977 if (MCID.isPredicable()) { 978 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 979 if (MCID.OpInfo[i].isPredicate()) 980 return i; 981 } 982 983 return -1; 984 } 985 986 /// isRegTiedToUseOperand - Given the index of a register def operand, 987 /// check if the register def is tied to a source operand, due to either 988 /// two-address elimination or inline assembly constraints. Returns the 989 /// first tied use operand index by reference is UseOpIdx is not null. 990 bool MachineInstr:: 991 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { 992 if (isInlineAsm()) { 993 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); 994 const MachineOperand &MO = getOperand(DefOpIdx); 995 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 996 return false; 997 // Determine the actual operand index that corresponds to this index. 998 unsigned DefNo = 0; 999 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); 1000 if (FlagIdx < 0) 1001 return false; 1002 1003 // Which part of the group is DefOpIdx? 1004 unsigned DefPart = DefOpIdx - (FlagIdx + 1); 1005 1006 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); 1007 i != e; ++i) { 1008 const MachineOperand &FMO = getOperand(i); 1009 if (!FMO.isImm()) 1010 continue; 1011 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) 1012 continue; 1013 unsigned Idx; 1014 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && 1015 Idx == DefNo) { 1016 if (UseOpIdx) 1017 *UseOpIdx = (unsigned)i + 1 + DefPart; 1018 return true; 1019 } 1020 } 1021 return false; 1022 } 1023 1024 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); 1025 const MCInstrDesc &MCID = getDesc(); 1026 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 1027 const MachineOperand &MO = getOperand(i); 1028 if (MO.isReg() && MO.isUse() && 1029 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { 1030 if (UseOpIdx) 1031 *UseOpIdx = (unsigned)i; 1032 return true; 1033 } 1034 } 1035 return false; 1036 } 1037 1038 /// isRegTiedToDefOperand - Return true if the operand of the specified index 1039 /// is a register use and it is tied to an def operand. It also returns the def 1040 /// operand index by reference. 1041 bool MachineInstr:: 1042 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { 1043 if (isInlineAsm()) { 1044 const MachineOperand &MO = getOperand(UseOpIdx); 1045 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 1046 return false; 1047 1048 // Find the flag operand corresponding to UseOpIdx 1049 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); 1050 if (FlagIdx < 0) 1051 return false; 1052 1053 const MachineOperand &UFMO = getOperand(FlagIdx); 1054 unsigned DefNo; 1055 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { 1056 if (!DefOpIdx) 1057 return true; 1058 1059 unsigned DefIdx = InlineAsm::MIOp_FirstOperand; 1060 // Remember to adjust the index. First operand is asm string, second is 1061 // the HasSideEffects and AlignStack bits, then there is a flag for each. 1062 while (DefNo) { 1063 const MachineOperand &FMO = getOperand(DefIdx); 1064 assert(FMO.isImm()); 1065 // Skip over this def. 1066 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; 1067 --DefNo; 1068 } 1069 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 const MCInstrDesc &MCID = getDesc(); 1076 if (UseOpIdx >= MCID.getNumOperands()) 1077 return false; 1078 const MachineOperand &MO = getOperand(UseOpIdx); 1079 if (!MO.isReg() || !MO.isUse()) 1080 return false; 1081 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); 1082 if (DefIdx == -1) 1083 return false; 1084 if (DefOpIdx) 1085 *DefOpIdx = (unsigned)DefIdx; 1086 return true; 1087 } 1088 1089 /// clearKillInfo - Clears kill flags on all operands. 1090 /// 1091 void MachineInstr::clearKillInfo() { 1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1093 MachineOperand &MO = getOperand(i); 1094 if (MO.isReg() && MO.isUse()) 1095 MO.setIsKill(false); 1096 } 1097 } 1098 1099 /// copyKillDeadInfo - Copies kill / dead operand properties from MI. 1100 /// 1101 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { 1102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1103 const MachineOperand &MO = MI->getOperand(i); 1104 if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) 1105 continue; 1106 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { 1107 MachineOperand &MOp = getOperand(j); 1108 if (!MOp.isIdenticalTo(MO)) 1109 continue; 1110 if (MO.isKill()) 1111 MOp.setIsKill(); 1112 else 1113 MOp.setIsDead(); 1114 break; 1115 } 1116 } 1117 } 1118 1119 /// copyPredicates - Copies predicate operand(s) from MI. 1120 void MachineInstr::copyPredicates(const MachineInstr *MI) { 1121 const MCInstrDesc &MCID = MI->getDesc(); 1122 if (!MCID.isPredicable()) 1123 return; 1124 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1125 if (MCID.OpInfo[i].isPredicate()) { 1126 // Predicated operands must be last operands. 1127 addOperand(MI->getOperand(i)); 1128 } 1129 } 1130 } 1131 1132 void MachineInstr::substituteRegister(unsigned FromReg, 1133 unsigned ToReg, 1134 unsigned SubIdx, 1135 const TargetRegisterInfo &RegInfo) { 1136 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1137 if (SubIdx) 1138 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1140 MachineOperand &MO = getOperand(i); 1141 if (!MO.isReg() || MO.getReg() != FromReg) 1142 continue; 1143 MO.substPhysReg(ToReg, RegInfo); 1144 } 1145 } else { 1146 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1147 MachineOperand &MO = getOperand(i); 1148 if (!MO.isReg() || MO.getReg() != FromReg) 1149 continue; 1150 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1151 } 1152 } 1153 } 1154 1155 /// isSafeToMove - Return true if it is safe to move this instruction. If 1156 /// SawStore is set to true, it means that there is a store (or call) between 1157 /// the instruction's location and its intended destination. 1158 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1159 AliasAnalysis *AA, 1160 bool &SawStore) const { 1161 // Ignore stuff that we obviously can't move. 1162 if (MCID->mayStore() || MCID->isCall()) { 1163 SawStore = true; 1164 return false; 1165 } 1166 1167 if (isLabel() || isDebugValue() || 1168 MCID->isTerminator() || hasUnmodeledSideEffects()) 1169 return false; 1170 1171 // See if this instruction does a load. If so, we have to guarantee that the 1172 // loaded value doesn't change between the load and the its intended 1173 // destination. The check for isInvariantLoad gives the targe the chance to 1174 // classify the load as always returning a constant, e.g. a constant pool 1175 // load. 1176 if (MCID->mayLoad() && !isInvariantLoad(AA)) 1177 // Otherwise, this is a real load. If there is a store between the load and 1178 // end of block, or if the load is volatile, we can't move it. 1179 return !SawStore && !hasVolatileMemoryRef(); 1180 1181 return true; 1182 } 1183 1184 /// isSafeToReMat - Return true if it's safe to rematerialize the specified 1185 /// instruction which defined the specified register instead of copying it. 1186 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, 1187 AliasAnalysis *AA, 1188 unsigned DstReg) const { 1189 bool SawStore = false; 1190 if (!TII->isTriviallyReMaterializable(this, AA) || 1191 !isSafeToMove(TII, AA, SawStore)) 1192 return false; 1193 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1194 const MachineOperand &MO = getOperand(i); 1195 if (!MO.isReg()) 1196 continue; 1197 // FIXME: For now, do not remat any instruction with register operands. 1198 // Later on, we can loosen the restriction is the register operands have 1199 // not been modified between the def and use. Note, this is different from 1200 // MachineSink because the code is no longer in two-address form (at least 1201 // partially). 1202 if (MO.isUse()) 1203 return false; 1204 else if (!MO.isDead() && MO.getReg() != DstReg) 1205 return false; 1206 } 1207 return true; 1208 } 1209 1210 /// hasVolatileMemoryRef - Return true if this instruction may have a 1211 /// volatile memory reference, or if the information describing the 1212 /// memory reference is not available. Return false if it is known to 1213 /// have no volatile memory references. 1214 bool MachineInstr::hasVolatileMemoryRef() const { 1215 // An instruction known never to access memory won't have a volatile access. 1216 if (!MCID->mayStore() && 1217 !MCID->mayLoad() && 1218 !MCID->isCall() && 1219 !hasUnmodeledSideEffects()) 1220 return false; 1221 1222 // Otherwise, if the instruction has no memory reference information, 1223 // conservatively assume it wasn't preserved. 1224 if (memoperands_empty()) 1225 return true; 1226 1227 // Check the memory reference information for volatile references. 1228 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1229 if ((*I)->isVolatile()) 1230 return true; 1231 1232 return false; 1233 } 1234 1235 /// isInvariantLoad - Return true if this instruction is loading from a 1236 /// location whose value is invariant across the function. For example, 1237 /// loading a value from the constant pool or from the argument area 1238 /// of a function if it does not change. This should only return true of 1239 /// *all* loads the instruction does are invariant (if it does multiple loads). 1240 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1241 // If the instruction doesn't load at all, it isn't an invariant load. 1242 if (!MCID->mayLoad()) 1243 return false; 1244 1245 // If the instruction has lost its memoperands, conservatively assume that 1246 // it may not be an invariant load. 1247 if (memoperands_empty()) 1248 return false; 1249 1250 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1251 1252 for (mmo_iterator I = memoperands_begin(), 1253 E = memoperands_end(); I != E; ++I) { 1254 if ((*I)->isVolatile()) return false; 1255 if ((*I)->isStore()) return false; 1256 1257 if (const Value *V = (*I)->getValue()) { 1258 // A load from a constant PseudoSourceValue is invariant. 1259 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1260 if (PSV->isConstant(MFI)) 1261 continue; 1262 // If we have an AliasAnalysis, ask it whether the memory is constant. 1263 if (AA && AA->pointsToConstantMemory( 1264 AliasAnalysis::Location(V, (*I)->getSize(), 1265 (*I)->getTBAAInfo()))) 1266 continue; 1267 } 1268 1269 // Otherwise assume conservatively. 1270 return false; 1271 } 1272 1273 // Everything checks out. 1274 return true; 1275 } 1276 1277 /// isConstantValuePHI - If the specified instruction is a PHI that always 1278 /// merges together the same virtual register, return the register, otherwise 1279 /// return 0. 1280 unsigned MachineInstr::isConstantValuePHI() const { 1281 if (!isPHI()) 1282 return 0; 1283 assert(getNumOperands() >= 3 && 1284 "It's illegal to have a PHI without source operands"); 1285 1286 unsigned Reg = getOperand(1).getReg(); 1287 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1288 if (getOperand(i).getReg() != Reg) 1289 return 0; 1290 return Reg; 1291 } 1292 1293 bool MachineInstr::hasUnmodeledSideEffects() const { 1294 if (getDesc().hasUnmodeledSideEffects()) 1295 return true; 1296 if (isInlineAsm()) { 1297 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1298 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1299 return true; 1300 } 1301 1302 return false; 1303 } 1304 1305 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1306 /// 1307 bool MachineInstr::allDefsAreDead() const { 1308 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1309 const MachineOperand &MO = getOperand(i); 1310 if (!MO.isReg() || MO.isUse()) 1311 continue; 1312 if (!MO.isDead()) 1313 return false; 1314 } 1315 return true; 1316 } 1317 1318 /// copyImplicitOps - Copy implicit register operands from specified 1319 /// instruction to this instruction. 1320 void MachineInstr::copyImplicitOps(const MachineInstr *MI) { 1321 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1322 i != e; ++i) { 1323 const MachineOperand &MO = MI->getOperand(i); 1324 if (MO.isReg() && MO.isImplicit()) 1325 addOperand(MO); 1326 } 1327 } 1328 1329 void MachineInstr::dump() const { 1330 dbgs() << " " << *this; 1331 } 1332 1333 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1334 raw_ostream &CommentOS) { 1335 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1336 if (!DL.isUnknown()) { // Print source line info. 1337 DIScope Scope(DL.getScope(Ctx)); 1338 // Omit the directory, because it's likely to be long and uninteresting. 1339 if (Scope.Verify()) 1340 CommentOS << Scope.getFilename(); 1341 else 1342 CommentOS << "<unknown>"; 1343 CommentOS << ':' << DL.getLine(); 1344 if (DL.getCol() != 0) 1345 CommentOS << ':' << DL.getCol(); 1346 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1347 if (!InlinedAtDL.isUnknown()) { 1348 CommentOS << " @[ "; 1349 printDebugLoc(InlinedAtDL, MF, CommentOS); 1350 CommentOS << " ]"; 1351 } 1352 } 1353 } 1354 1355 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { 1356 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1357 const MachineFunction *MF = 0; 1358 const MachineRegisterInfo *MRI = 0; 1359 if (const MachineBasicBlock *MBB = getParent()) { 1360 MF = MBB->getParent(); 1361 if (!TM && MF) 1362 TM = &MF->getTarget(); 1363 if (MF) 1364 MRI = &MF->getRegInfo(); 1365 } 1366 1367 // Save a list of virtual registers. 1368 SmallVector<unsigned, 8> VirtRegs; 1369 1370 // Print explicitly defined operands on the left of an assignment syntax. 1371 unsigned StartOp = 0, e = getNumOperands(); 1372 for (; StartOp < e && getOperand(StartOp).isReg() && 1373 getOperand(StartOp).isDef() && 1374 !getOperand(StartOp).isImplicit(); 1375 ++StartOp) { 1376 if (StartOp != 0) OS << ", "; 1377 getOperand(StartOp).print(OS, TM); 1378 unsigned Reg = getOperand(StartOp).getReg(); 1379 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1380 VirtRegs.push_back(Reg); 1381 } 1382 1383 if (StartOp != 0) 1384 OS << " = "; 1385 1386 // Print the opcode name. 1387 OS << getDesc().getName(); 1388 1389 // Print the rest of the operands. 1390 bool OmittedAnyCallClobbers = false; 1391 bool FirstOp = true; 1392 unsigned AsmDescOp = ~0u; 1393 unsigned AsmOpCount = 0; 1394 1395 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1396 // Print asm string. 1397 OS << " "; 1398 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1399 1400 // Print HasSideEffects, IsAlignStack 1401 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1402 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1403 OS << " [sideeffect]"; 1404 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1405 OS << " [alignstack]"; 1406 1407 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1408 FirstOp = false; 1409 } 1410 1411 1412 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1413 const MachineOperand &MO = getOperand(i); 1414 1415 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1416 VirtRegs.push_back(MO.getReg()); 1417 1418 // Omit call-clobbered registers which aren't used anywhere. This makes 1419 // call instructions much less noisy on targets where calls clobber lots 1420 // of registers. Don't rely on MO.isDead() because we may be called before 1421 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1422 if (MF && getDesc().isCall() && 1423 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1424 unsigned Reg = MO.getReg(); 1425 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1426 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1427 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { 1428 bool HasAliasLive = false; 1429 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg); 1430 unsigned AliasReg = *Alias; ++Alias) 1431 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { 1432 HasAliasLive = true; 1433 break; 1434 } 1435 if (!HasAliasLive) { 1436 OmittedAnyCallClobbers = true; 1437 continue; 1438 } 1439 } 1440 } 1441 } 1442 1443 if (FirstOp) FirstOp = false; else OS << ","; 1444 OS << " "; 1445 if (i < getDesc().NumOperands) { 1446 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1447 if (MCOI.isPredicate()) 1448 OS << "pred:"; 1449 if (MCOI.isOptionalDef()) 1450 OS << "opt:"; 1451 } 1452 if (isDebugValue() && MO.isMetadata()) { 1453 // Pretty print DBG_VALUE instructions. 1454 const MDNode *MD = MO.getMetadata(); 1455 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1456 OS << "!\"" << MDS->getString() << '\"'; 1457 else 1458 MO.print(OS, TM); 1459 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1460 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1461 } else if (i == AsmDescOp && MO.isImm()) { 1462 // Pretty print the inline asm operand descriptor. 1463 OS << '$' << AsmOpCount++; 1464 unsigned Flag = MO.getImm(); 1465 switch (InlineAsm::getKind(Flag)) { 1466 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1467 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1468 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1469 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1470 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1471 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1472 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1473 } 1474 1475 unsigned RCID = 0; 1476 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1477 if (TM) 1478 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1479 else 1480 OS << ":RC" << RCID; 1481 } 1482 1483 unsigned TiedTo = 0; 1484 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1485 OS << " tiedto:$" << TiedTo; 1486 1487 OS << ']'; 1488 1489 // Compute the index of the next operand descriptor. 1490 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1491 } else 1492 MO.print(OS, TM); 1493 } 1494 1495 // Briefly indicate whether any call clobbers were omitted. 1496 if (OmittedAnyCallClobbers) { 1497 if (!FirstOp) OS << ","; 1498 OS << " ..."; 1499 } 1500 1501 bool HaveSemi = false; 1502 if (Flags) { 1503 if (!HaveSemi) OS << ";"; HaveSemi = true; 1504 OS << " flags: "; 1505 1506 if (Flags & FrameSetup) 1507 OS << "FrameSetup"; 1508 } 1509 1510 if (!memoperands_empty()) { 1511 if (!HaveSemi) OS << ";"; HaveSemi = true; 1512 1513 OS << " mem:"; 1514 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1515 i != e; ++i) { 1516 OS << **i; 1517 if (llvm::next(i) != e) 1518 OS << " "; 1519 } 1520 } 1521 1522 // Print the regclass of any virtual registers encountered. 1523 if (MRI && !VirtRegs.empty()) { 1524 if (!HaveSemi) OS << ";"; HaveSemi = true; 1525 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1526 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1527 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1528 for (unsigned j = i+1; j != VirtRegs.size();) { 1529 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1530 ++j; 1531 continue; 1532 } 1533 if (VirtRegs[i] != VirtRegs[j]) 1534 OS << "," << PrintReg(VirtRegs[j]); 1535 VirtRegs.erase(VirtRegs.begin()+j); 1536 } 1537 } 1538 } 1539 1540 // Print debug location information. 1541 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1542 if (!HaveSemi) OS << ";"; HaveSemi = true; 1543 DIVariable DV(getOperand(e - 1).getMetadata()); 1544 OS << " line no:" << DV.getLineNumber(); 1545 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1546 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1547 if (!InlinedAtDL.isUnknown()) { 1548 OS << " inlined @[ "; 1549 printDebugLoc(InlinedAtDL, MF, OS); 1550 OS << " ]"; 1551 } 1552 } 1553 } else if (!debugLoc.isUnknown() && MF) { 1554 if (!HaveSemi) OS << ";"; HaveSemi = true; 1555 OS << " dbg:"; 1556 printDebugLoc(debugLoc, MF, OS); 1557 } 1558 1559 OS << '\n'; 1560 } 1561 1562 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1563 const TargetRegisterInfo *RegInfo, 1564 bool AddIfNotFound) { 1565 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1566 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1567 bool Found = false; 1568 SmallVector<unsigned,4> DeadOps; 1569 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1570 MachineOperand &MO = getOperand(i); 1571 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1572 continue; 1573 unsigned Reg = MO.getReg(); 1574 if (!Reg) 1575 continue; 1576 1577 if (Reg == IncomingReg) { 1578 if (!Found) { 1579 if (MO.isKill()) 1580 // The register is already marked kill. 1581 return true; 1582 if (isPhysReg && isRegTiedToDefOperand(i)) 1583 // Two-address uses of physregs must not be marked kill. 1584 return true; 1585 MO.setIsKill(); 1586 Found = true; 1587 } 1588 } else if (hasAliases && MO.isKill() && 1589 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1590 // A super-register kill already exists. 1591 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1592 return true; 1593 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1594 DeadOps.push_back(i); 1595 } 1596 } 1597 1598 // Trim unneeded kill operands. 1599 while (!DeadOps.empty()) { 1600 unsigned OpIdx = DeadOps.back(); 1601 if (getOperand(OpIdx).isImplicit()) 1602 RemoveOperand(OpIdx); 1603 else 1604 getOperand(OpIdx).setIsKill(false); 1605 DeadOps.pop_back(); 1606 } 1607 1608 // If not found, this means an alias of one of the operands is killed. Add a 1609 // new implicit operand if required. 1610 if (!Found && AddIfNotFound) { 1611 addOperand(MachineOperand::CreateReg(IncomingReg, 1612 false /*IsDef*/, 1613 true /*IsImp*/, 1614 true /*IsKill*/)); 1615 return true; 1616 } 1617 return Found; 1618 } 1619 1620 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1621 const TargetRegisterInfo *RegInfo, 1622 bool AddIfNotFound) { 1623 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1624 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); 1625 bool Found = false; 1626 SmallVector<unsigned,4> DeadOps; 1627 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1628 MachineOperand &MO = getOperand(i); 1629 if (!MO.isReg() || !MO.isDef()) 1630 continue; 1631 unsigned Reg = MO.getReg(); 1632 if (!Reg) 1633 continue; 1634 1635 if (Reg == IncomingReg) { 1636 MO.setIsDead(); 1637 Found = true; 1638 } else if (hasAliases && MO.isDead() && 1639 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1640 // There exists a super-register that's marked dead. 1641 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1642 return true; 1643 if (RegInfo->getSubRegisters(IncomingReg) && 1644 RegInfo->getSuperRegisters(Reg) && 1645 RegInfo->isSubRegister(IncomingReg, Reg)) 1646 DeadOps.push_back(i); 1647 } 1648 } 1649 1650 // Trim unneeded dead operands. 1651 while (!DeadOps.empty()) { 1652 unsigned OpIdx = DeadOps.back(); 1653 if (getOperand(OpIdx).isImplicit()) 1654 RemoveOperand(OpIdx); 1655 else 1656 getOperand(OpIdx).setIsDead(false); 1657 DeadOps.pop_back(); 1658 } 1659 1660 // If not found, this means an alias of one of the operands is dead. Add a 1661 // new implicit operand if required. 1662 if (Found || !AddIfNotFound) 1663 return Found; 1664 1665 addOperand(MachineOperand::CreateReg(IncomingReg, 1666 true /*IsDef*/, 1667 true /*IsImp*/, 1668 false /*IsKill*/, 1669 true /*IsDead*/)); 1670 return true; 1671 } 1672 1673 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1674 const TargetRegisterInfo *RegInfo) { 1675 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1676 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1677 if (MO) 1678 return; 1679 } else { 1680 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1681 const MachineOperand &MO = getOperand(i); 1682 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1683 MO.getSubReg() == 0) 1684 return; 1685 } 1686 } 1687 addOperand(MachineOperand::CreateReg(IncomingReg, 1688 true /*IsDef*/, 1689 true /*IsImp*/)); 1690 } 1691 1692 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs, 1693 const TargetRegisterInfo &TRI) { 1694 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1695 MachineOperand &MO = getOperand(i); 1696 if (!MO.isReg() || !MO.isDef()) continue; 1697 unsigned Reg = MO.getReg(); 1698 if (Reg == 0) continue; 1699 bool Dead = true; 1700 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(), 1701 E = UsedRegs.end(); I != E; ++I) 1702 if (TRI.regsOverlap(*I, Reg)) { 1703 Dead = false; 1704 break; 1705 } 1706 // If there are no uses, including partial uses, the def is dead. 1707 if (Dead) MO.setIsDead(); 1708 } 1709 } 1710 1711 unsigned 1712 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1713 unsigned Hash = MI->getOpcode() * 37; 1714 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1715 const MachineOperand &MO = MI->getOperand(i); 1716 uint64_t Key = (uint64_t)MO.getType() << 32; 1717 switch (MO.getType()) { 1718 default: break; 1719 case MachineOperand::MO_Register: 1720 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1721 continue; // Skip virtual register defs. 1722 Key |= MO.getReg(); 1723 break; 1724 case MachineOperand::MO_Immediate: 1725 Key |= MO.getImm(); 1726 break; 1727 case MachineOperand::MO_FrameIndex: 1728 case MachineOperand::MO_ConstantPoolIndex: 1729 case MachineOperand::MO_JumpTableIndex: 1730 Key |= MO.getIndex(); 1731 break; 1732 case MachineOperand::MO_MachineBasicBlock: 1733 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB()); 1734 break; 1735 case MachineOperand::MO_GlobalAddress: 1736 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal()); 1737 break; 1738 case MachineOperand::MO_BlockAddress: 1739 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress()); 1740 break; 1741 case MachineOperand::MO_MCSymbol: 1742 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol()); 1743 break; 1744 } 1745 Key += ~(Key << 32); 1746 Key ^= (Key >> 22); 1747 Key += ~(Key << 13); 1748 Key ^= (Key >> 8); 1749 Key += (Key << 3); 1750 Key ^= (Key >> 15); 1751 Key += ~(Key << 27); 1752 Key ^= (Key >> 31); 1753 Hash = (unsigned)Key + Hash * 37; 1754 } 1755 return Hash; 1756 } 1757 1758 void MachineInstr::emitError(StringRef Msg) const { 1759 // Find the source location cookie. 1760 unsigned LocCookie = 0; 1761 const MDNode *LocMD = 0; 1762 for (unsigned i = getNumOperands(); i != 0; --i) { 1763 if (getOperand(i-1).isMetadata() && 1764 (LocMD = getOperand(i-1).getMetadata()) && 1765 LocMD->getNumOperands() != 0) { 1766 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1767 LocCookie = CI->getZExtValue(); 1768 break; 1769 } 1770 } 1771 } 1772 1773 if (const MachineBasicBlock *MBB = getParent()) 1774 if (const MachineFunction *MF = MBB->getParent()) 1775 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1776 report_fatal_error(Msg); 1777 } 1778