Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGObjCRuntime.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/StmtVisitor.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Intrinsics.h"
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 //===----------------------------------------------------------------------===//
     28 //                        Aggregate Expression Emitter
     29 //===----------------------------------------------------------------------===//
     30 
     31 namespace  {
     32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     33   CodeGenFunction &CGF;
     34   CGBuilderTy &Builder;
     35   AggValueSlot Dest;
     36   bool IgnoreResult;
     37 
     38   /// We want to use 'dest' as the return slot except under two
     39   /// conditions:
     40   ///   - The destination slot requires garbage collection, so we
     41   ///     need to use the GC API.
     42   ///   - The destination slot is potentially aliased.
     43   bool shouldUseDestForReturnSlot() const {
     44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
     45   }
     46 
     47   ReturnValueSlot getReturnValueSlot() const {
     48     if (!shouldUseDestForReturnSlot())
     49       return ReturnValueSlot();
     50 
     51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
     52   }
     53 
     54   AggValueSlot EnsureSlot(QualType T) {
     55     if (!Dest.isIgnored()) return Dest;
     56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     57   }
     58 
     59 public:
     60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
     61                  bool ignore)
     62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
     63       IgnoreResult(ignore) {
     64   }
     65 
     66   //===--------------------------------------------------------------------===//
     67   //                               Utilities
     68   //===--------------------------------------------------------------------===//
     69 
     70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     71   /// represents a value lvalue, this method emits the address of the lvalue,
     72   /// then loads the result into DestPtr.
     73   void EmitAggLoadOfLValue(const Expr *E);
     74 
     75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
     77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
     78 
     79   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
     80 
     81   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
     82     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
     83       return AggValueSlot::NeedsGCBarriers;
     84     return AggValueSlot::DoesNotNeedGCBarriers;
     85   }
     86 
     87   bool TypeRequiresGCollection(QualType T);
     88 
     89   //===--------------------------------------------------------------------===//
     90   //                            Visitor Methods
     91   //===--------------------------------------------------------------------===//
     92 
     93   void VisitStmt(Stmt *S) {
     94     CGF.ErrorUnsupported(S, "aggregate expression");
     95   }
     96   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
     97   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
     98     Visit(GE->getResultExpr());
     99   }
    100   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
    101   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    102     return Visit(E->getReplacement());
    103   }
    104 
    105   // l-values.
    106   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
    107   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
    108   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
    109   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
    110   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
    111   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    112     EmitAggLoadOfLValue(E);
    113   }
    114   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
    115     EmitAggLoadOfLValue(E);
    116   }
    117   void VisitPredefinedExpr(const PredefinedExpr *E) {
    118     EmitAggLoadOfLValue(E);
    119   }
    120 
    121   // Operators.
    122   void VisitCastExpr(CastExpr *E);
    123   void VisitCallExpr(const CallExpr *E);
    124   void VisitStmtExpr(const StmtExpr *E);
    125   void VisitBinaryOperator(const BinaryOperator *BO);
    126   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    127   void VisitBinAssign(const BinaryOperator *E);
    128   void VisitBinComma(const BinaryOperator *E);
    129 
    130   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    131   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    132     EmitAggLoadOfLValue(E);
    133   }
    134   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
    135 
    136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    137   void VisitChooseExpr(const ChooseExpr *CE);
    138   void VisitInitListExpr(InitListExpr *E);
    139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    141     Visit(DAE->getExpr());
    142   }
    143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    145   void VisitExprWithCleanups(ExprWithCleanups *E);
    146   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    147   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    148   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    149   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    150 
    151   void VisitVAArgExpr(VAArgExpr *E);
    152 
    153   void EmitInitializationToLValue(Expr *E, LValue Address);
    154   void EmitNullInitializationToLValue(LValue Address);
    155   //  case Expr::ChooseExprClass:
    156   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    157   void VisitAtomicExpr(AtomicExpr *E) {
    158     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
    159   }
    160 };
    161 }  // end anonymous namespace.
    162 
    163 //===----------------------------------------------------------------------===//
    164 //                                Utilities
    165 //===----------------------------------------------------------------------===//
    166 
    167 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    168 /// represents a value lvalue, this method emits the address of the lvalue,
    169 /// then loads the result into DestPtr.
    170 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    171   LValue LV = CGF.EmitLValue(E);
    172   EmitFinalDestCopy(E, LV);
    173 }
    174 
    175 /// \brief True if the given aggregate type requires special GC API calls.
    176 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    177   // Only record types have members that might require garbage collection.
    178   const RecordType *RecordTy = T->getAs<RecordType>();
    179   if (!RecordTy) return false;
    180 
    181   // Don't mess with non-trivial C++ types.
    182   RecordDecl *Record = RecordTy->getDecl();
    183   if (isa<CXXRecordDecl>(Record) &&
    184       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
    185        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    186     return false;
    187 
    188   // Check whether the type has an object member.
    189   return Record->hasObjectMember();
    190 }
    191 
    192 /// \brief Perform the final move to DestPtr if for some reason
    193 /// getReturnValueSlot() didn't use it directly.
    194 ///
    195 /// The idea is that you do something like this:
    196 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    197 ///   EmitMoveFromReturnSlot(E, Result);
    198 ///
    199 /// If nothing interferes, this will cause the result to be emitted
    200 /// directly into the return value slot.  Otherwise, a final move
    201 /// will be performed.
    202 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
    203   if (shouldUseDestForReturnSlot()) {
    204     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    205     // The possibility of undef rvalues complicates that a lot,
    206     // though, so we can't really assert.
    207     return;
    208   }
    209 
    210   // Otherwise, do a final copy,
    211   assert(Dest.getAddr() != Src.getAggregateAddr());
    212   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
    213 }
    214 
    215 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    216 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
    217   assert(Src.isAggregate() && "value must be aggregate value!");
    218 
    219   // If Dest is ignored, then we're evaluating an aggregate expression
    220   // in a context (like an expression statement) that doesn't care
    221   // about the result.  C says that an lvalue-to-rvalue conversion is
    222   // performed in these cases; C++ says that it is not.  In either
    223   // case, we don't actually need to do anything unless the value is
    224   // volatile.
    225   if (Dest.isIgnored()) {
    226     if (!Src.isVolatileQualified() ||
    227         CGF.CGM.getLangOptions().CPlusPlus ||
    228         (IgnoreResult && Ignore))
    229       return;
    230 
    231     // If the source is volatile, we must read from it; to do that, we need
    232     // some place to put it.
    233     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
    234   }
    235 
    236   if (Dest.requiresGCollection()) {
    237     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    238     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    239     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    240     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    241                                                       Dest.getAddr(),
    242                                                       Src.getAggregateAddr(),
    243                                                       SizeVal);
    244     return;
    245   }
    246   // If the result of the assignment is used, copy the LHS there also.
    247   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
    248   // from the source as well, as we can't eliminate it if either operand
    249   // is volatile, unless copy has volatile for both source and destination..
    250   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
    251                         Dest.isVolatile()|Src.isVolatileQualified());
    252 }
    253 
    254 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    255 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
    256   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
    257 
    258   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
    259                                             Src.isVolatileQualified()),
    260                     Ignore);
    261 }
    262 
    263 //===----------------------------------------------------------------------===//
    264 //                            Visitor Methods
    265 //===----------------------------------------------------------------------===//
    266 
    267 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    268   Visit(E->GetTemporaryExpr());
    269 }
    270 
    271 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    272   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
    273 }
    274 
    275 void
    276 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    277   if (E->getType().isPODType(CGF.getContext())) {
    278     // For a POD type, just emit a load of the lvalue + a copy, because our
    279     // compound literal might alias the destination.
    280     // FIXME: This is a band-aid; the real problem appears to be in our handling
    281     // of assignments, where we store directly into the LHS without checking
    282     // whether anything in the RHS aliases.
    283     EmitAggLoadOfLValue(E);
    284     return;
    285   }
    286 
    287   AggValueSlot Slot = EnsureSlot(E->getType());
    288   CGF.EmitAggExpr(E->getInitializer(), Slot);
    289 }
    290 
    291 
    292 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    293   switch (E->getCastKind()) {
    294   case CK_Dynamic: {
    295     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    296     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
    297     // FIXME: Do we also need to handle property references here?
    298     if (LV.isSimple())
    299       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    300     else
    301       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    302 
    303     if (!Dest.isIgnored())
    304       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    305     break;
    306   }
    307 
    308   case CK_ToUnion: {
    309     if (Dest.isIgnored()) break;
    310 
    311     // GCC union extension
    312     QualType Ty = E->getSubExpr()->getType();
    313     QualType PtrTy = CGF.getContext().getPointerType(Ty);
    314     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
    315                                                  CGF.ConvertType(PtrTy));
    316     EmitInitializationToLValue(E->getSubExpr(),
    317                                CGF.MakeAddrLValue(CastPtr, Ty));
    318     break;
    319   }
    320 
    321   case CK_DerivedToBase:
    322   case CK_BaseToDerived:
    323   case CK_UncheckedDerivedToBase: {
    324     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
    325                 "should have been unpacked before we got here");
    326   }
    327 
    328   case CK_GetObjCProperty: {
    329     LValue LV = CGF.EmitLValue(E->getSubExpr());
    330     assert(LV.isPropertyRef());
    331     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
    332     EmitMoveFromReturnSlot(E, RV);
    333     break;
    334   }
    335 
    336   case CK_LValueToRValue: // hope for downstream optimization
    337   case CK_NoOp:
    338   case CK_UserDefinedConversion:
    339   case CK_ConstructorConversion:
    340     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    341                                                    E->getType()) &&
    342            "Implicit cast types must be compatible");
    343     Visit(E->getSubExpr());
    344     break;
    345 
    346   case CK_LValueBitCast:
    347     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    348     break;
    349 
    350   case CK_Dependent:
    351   case CK_BitCast:
    352   case CK_ArrayToPointerDecay:
    353   case CK_FunctionToPointerDecay:
    354   case CK_NullToPointer:
    355   case CK_NullToMemberPointer:
    356   case CK_BaseToDerivedMemberPointer:
    357   case CK_DerivedToBaseMemberPointer:
    358   case CK_MemberPointerToBoolean:
    359   case CK_IntegralToPointer:
    360   case CK_PointerToIntegral:
    361   case CK_PointerToBoolean:
    362   case CK_ToVoid:
    363   case CK_VectorSplat:
    364   case CK_IntegralCast:
    365   case CK_IntegralToBoolean:
    366   case CK_IntegralToFloating:
    367   case CK_FloatingToIntegral:
    368   case CK_FloatingToBoolean:
    369   case CK_FloatingCast:
    370   case CK_CPointerToObjCPointerCast:
    371   case CK_BlockPointerToObjCPointerCast:
    372   case CK_AnyPointerToBlockPointerCast:
    373   case CK_ObjCObjectLValueCast:
    374   case CK_FloatingRealToComplex:
    375   case CK_FloatingComplexToReal:
    376   case CK_FloatingComplexToBoolean:
    377   case CK_FloatingComplexCast:
    378   case CK_FloatingComplexToIntegralComplex:
    379   case CK_IntegralRealToComplex:
    380   case CK_IntegralComplexToReal:
    381   case CK_IntegralComplexToBoolean:
    382   case CK_IntegralComplexCast:
    383   case CK_IntegralComplexToFloatingComplex:
    384   case CK_ARCProduceObject:
    385   case CK_ARCConsumeObject:
    386   case CK_ARCReclaimReturnedObject:
    387   case CK_ARCExtendBlockObject:
    388     llvm_unreachable("cast kind invalid for aggregate types");
    389   }
    390 }
    391 
    392 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    393   if (E->getCallReturnType()->isReferenceType()) {
    394     EmitAggLoadOfLValue(E);
    395     return;
    396   }
    397 
    398   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    399   EmitMoveFromReturnSlot(E, RV);
    400 }
    401 
    402 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    403   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    404   EmitMoveFromReturnSlot(E, RV);
    405 }
    406 
    407 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
    408   llvm_unreachable("direct property access not surrounded by "
    409                    "lvalue-to-rvalue cast");
    410 }
    411 
    412 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    413   CGF.EmitIgnoredExpr(E->getLHS());
    414   Visit(E->getRHS());
    415 }
    416 
    417 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    418   CodeGenFunction::StmtExprEvaluation eval(CGF);
    419   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    420 }
    421 
    422 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    423   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    424     VisitPointerToDataMemberBinaryOperator(E);
    425   else
    426     CGF.ErrorUnsupported(E, "aggregate binary expression");
    427 }
    428 
    429 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    430                                                     const BinaryOperator *E) {
    431   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    432   EmitFinalDestCopy(E, LV);
    433 }
    434 
    435 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    436   // For an assignment to work, the value on the right has
    437   // to be compatible with the value on the left.
    438   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    439                                                  E->getRHS()->getType())
    440          && "Invalid assignment");
    441 
    442   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
    443     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
    444       if (VD->hasAttr<BlocksAttr>() &&
    445           E->getRHS()->HasSideEffects(CGF.getContext())) {
    446         // When __block variable on LHS, the RHS must be evaluated first
    447         // as it may change the 'forwarding' field via call to Block_copy.
    448         LValue RHS = CGF.EmitLValue(E->getRHS());
    449         LValue LHS = CGF.EmitLValue(E->getLHS());
    450         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    451                                        needsGC(E->getLHS()->getType()),
    452                                        AggValueSlot::IsAliased);
    453         EmitFinalDestCopy(E, RHS, true);
    454         return;
    455       }
    456 
    457   LValue LHS = CGF.EmitLValue(E->getLHS());
    458 
    459   // We have to special case property setters, otherwise we must have
    460   // a simple lvalue (no aggregates inside vectors, bitfields).
    461   if (LHS.isPropertyRef()) {
    462     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
    463     QualType ArgType = RE->getSetterArgType();
    464     RValue Src;
    465     if (ArgType->isReferenceType())
    466       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
    467     else {
    468       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
    469       CGF.EmitAggExpr(E->getRHS(), Slot);
    470       Src = Slot.asRValue();
    471     }
    472     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
    473   } else {
    474     // Codegen the RHS so that it stores directly into the LHS.
    475     AggValueSlot LHSSlot =
    476       AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    477                               needsGC(E->getLHS()->getType()),
    478                               AggValueSlot::IsAliased);
    479     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
    480     EmitFinalDestCopy(E, LHS, true);
    481   }
    482 }
    483 
    484 void AggExprEmitter::
    485 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    486   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    487   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    488   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    489 
    490   // Bind the common expression if necessary.
    491   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    492 
    493   CodeGenFunction::ConditionalEvaluation eval(CGF);
    494   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
    495 
    496   // Save whether the destination's lifetime is externally managed.
    497   bool isExternallyDestructed = Dest.isExternallyDestructed();
    498 
    499   eval.begin(CGF);
    500   CGF.EmitBlock(LHSBlock);
    501   Visit(E->getTrueExpr());
    502   eval.end(CGF);
    503 
    504   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    505   CGF.Builder.CreateBr(ContBlock);
    506 
    507   // If the result of an agg expression is unused, then the emission
    508   // of the LHS might need to create a destination slot.  That's fine
    509   // with us, and we can safely emit the RHS into the same slot, but
    510   // we shouldn't claim that it's already being destructed.
    511   Dest.setExternallyDestructed(isExternallyDestructed);
    512 
    513   eval.begin(CGF);
    514   CGF.EmitBlock(RHSBlock);
    515   Visit(E->getFalseExpr());
    516   eval.end(CGF);
    517 
    518   CGF.EmitBlock(ContBlock);
    519 }
    520 
    521 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    522   Visit(CE->getChosenSubExpr(CGF.getContext()));
    523 }
    524 
    525 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    526   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
    527   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
    528 
    529   if (!ArgPtr) {
    530     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    531     return;
    532   }
    533 
    534   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    535 }
    536 
    537 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    538   // Ensure that we have a slot, but if we already do, remember
    539   // whether it was externally destructed.
    540   bool wasExternallyDestructed = Dest.isExternallyDestructed();
    541   Dest = EnsureSlot(E->getType());
    542 
    543   // We're going to push a destructor if there isn't already one.
    544   Dest.setExternallyDestructed();
    545 
    546   Visit(E->getSubExpr());
    547 
    548   // Push that destructor we promised.
    549   if (!wasExternallyDestructed)
    550     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
    551 }
    552 
    553 void
    554 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    555   AggValueSlot Slot = EnsureSlot(E->getType());
    556   CGF.EmitCXXConstructExpr(E, Slot);
    557 }
    558 
    559 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
    560   CGF.EmitExprWithCleanups(E, Dest);
    561 }
    562 
    563 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    564   QualType T = E->getType();
    565   AggValueSlot Slot = EnsureSlot(T);
    566   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    567 }
    568 
    569 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    570   QualType T = E->getType();
    571   AggValueSlot Slot = EnsureSlot(T);
    572   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    573 }
    574 
    575 /// isSimpleZero - If emitting this value will obviously just cause a store of
    576 /// zero to memory, return true.  This can return false if uncertain, so it just
    577 /// handles simple cases.
    578 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
    579   E = E->IgnoreParens();
    580 
    581   // 0
    582   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    583     return IL->getValue() == 0;
    584   // +0.0
    585   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    586     return FL->getValue().isPosZero();
    587   // int()
    588   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
    589       CGF.getTypes().isZeroInitializable(E->getType()))
    590     return true;
    591   // (int*)0 - Null pointer expressions.
    592   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    593     return ICE->getCastKind() == CK_NullToPointer;
    594   // '\0'
    595   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    596     return CL->getValue() == 0;
    597 
    598   // Otherwise, hard case: conservatively return false.
    599   return false;
    600 }
    601 
    602 
    603 void
    604 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
    605   QualType type = LV.getType();
    606   // FIXME: Ignore result?
    607   // FIXME: Are initializers affected by volatile?
    608   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    609     // Storing "i32 0" to a zero'd memory location is a noop.
    610   } else if (isa<ImplicitValueInitExpr>(E)) {
    611     EmitNullInitializationToLValue(LV);
    612   } else if (type->isReferenceType()) {
    613     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    614     CGF.EmitStoreThroughLValue(RV, LV);
    615   } else if (type->isAnyComplexType()) {
    616     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
    617   } else if (CGF.hasAggregateLLVMType(type)) {
    618     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
    619                                                AggValueSlot::IsDestructed,
    620                                       AggValueSlot::DoesNotNeedGCBarriers,
    621                                                AggValueSlot::IsNotAliased,
    622                                                Dest.isZeroed()));
    623   } else if (LV.isSimple()) {
    624     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
    625   } else {
    626     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
    627   }
    628 }
    629 
    630 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
    631   QualType type = lv.getType();
    632 
    633   // If the destination slot is already zeroed out before the aggregate is
    634   // copied into it, we don't have to emit any zeros here.
    635   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
    636     return;
    637 
    638   if (!CGF.hasAggregateLLVMType(type)) {
    639     // For non-aggregates, we can store zero
    640     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
    641     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
    642   } else {
    643     // There's a potential optimization opportunity in combining
    644     // memsets; that would be easy for arrays, but relatively
    645     // difficult for structures with the current code.
    646     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
    647   }
    648 }
    649 
    650 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
    651 #if 0
    652   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
    653   // (Length of globals? Chunks of zeroed-out space?).
    654   //
    655   // If we can, prefer a copy from a global; this is a lot less code for long
    656   // globals, and it's easier for the current optimizers to analyze.
    657   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    658     llvm::GlobalVariable* GV =
    659     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
    660                              llvm::GlobalValue::InternalLinkage, C, "");
    661     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    662     return;
    663   }
    664 #endif
    665   if (E->hadArrayRangeDesignator())
    666     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    667 
    668   llvm::Value *DestPtr = Dest.getAddr();
    669 
    670   // Handle initialization of an array.
    671   if (E->getType()->isArrayType()) {
    672     llvm::PointerType *APType =
    673       cast<llvm::PointerType>(DestPtr->getType());
    674     llvm::ArrayType *AType =
    675       cast<llvm::ArrayType>(APType->getElementType());
    676 
    677     uint64_t NumInitElements = E->getNumInits();
    678 
    679     if (E->getNumInits() > 0) {
    680       QualType T1 = E->getType();
    681       QualType T2 = E->getInit(0)->getType();
    682       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
    683         EmitAggLoadOfLValue(E->getInit(0));
    684         return;
    685       }
    686     }
    687 
    688     uint64_t NumArrayElements = AType->getNumElements();
    689     assert(NumInitElements <= NumArrayElements);
    690 
    691     QualType elementType = E->getType().getCanonicalType();
    692     elementType = CGF.getContext().getQualifiedType(
    693                     cast<ArrayType>(elementType)->getElementType(),
    694                     elementType.getQualifiers() + Dest.getQualifiers());
    695 
    696     // DestPtr is an array*.  Construct an elementType* by drilling
    697     // down a level.
    698     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    699     llvm::Value *indices[] = { zero, zero };
    700     llvm::Value *begin =
    701       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
    702 
    703     // Exception safety requires us to destroy all the
    704     // already-constructed members if an initializer throws.
    705     // For that, we'll need an EH cleanup.
    706     QualType::DestructionKind dtorKind = elementType.isDestructedType();
    707     llvm::AllocaInst *endOfInit = 0;
    708     EHScopeStack::stable_iterator cleanup;
    709     if (CGF.needsEHCleanup(dtorKind)) {
    710       // In principle we could tell the cleanup where we are more
    711       // directly, but the control flow can get so varied here that it
    712       // would actually be quite complex.  Therefore we go through an
    713       // alloca.
    714       endOfInit = CGF.CreateTempAlloca(begin->getType(),
    715                                        "arrayinit.endOfInit");
    716       Builder.CreateStore(begin, endOfInit);
    717       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    718                                            CGF.getDestroyer(dtorKind));
    719       cleanup = CGF.EHStack.stable_begin();
    720 
    721     // Otherwise, remember that we didn't need a cleanup.
    722     } else {
    723       dtorKind = QualType::DK_none;
    724     }
    725 
    726     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    727 
    728     // The 'current element to initialize'.  The invariants on this
    729     // variable are complicated.  Essentially, after each iteration of
    730     // the loop, it points to the last initialized element, except
    731     // that it points to the beginning of the array before any
    732     // elements have been initialized.
    733     llvm::Value *element = begin;
    734 
    735     // Emit the explicit initializers.
    736     for (uint64_t i = 0; i != NumInitElements; ++i) {
    737       // Advance to the next element.
    738       if (i > 0) {
    739         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    740 
    741         // Tell the cleanup that it needs to destroy up to this
    742         // element.  TODO: some of these stores can be trivially
    743         // observed to be unnecessary.
    744         if (endOfInit) Builder.CreateStore(element, endOfInit);
    745       }
    746 
    747       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
    748       EmitInitializationToLValue(E->getInit(i), elementLV);
    749     }
    750 
    751     // Check whether there's a non-trivial array-fill expression.
    752     // Note that this will be a CXXConstructExpr even if the element
    753     // type is an array (or array of array, etc.) of class type.
    754     Expr *filler = E->getArrayFiller();
    755     bool hasTrivialFiller = true;
    756     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    757       assert(cons->getConstructor()->isDefaultConstructor());
    758       hasTrivialFiller = cons->getConstructor()->isTrivial();
    759     }
    760 
    761     // Any remaining elements need to be zero-initialized, possibly
    762     // using the filler expression.  We can skip this if the we're
    763     // emitting to zeroed memory.
    764     if (NumInitElements != NumArrayElements &&
    765         !(Dest.isZeroed() && hasTrivialFiller &&
    766           CGF.getTypes().isZeroInitializable(elementType))) {
    767 
    768       // Use an actual loop.  This is basically
    769       //   do { *array++ = filler; } while (array != end);
    770 
    771       // Advance to the start of the rest of the array.
    772       if (NumInitElements) {
    773         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    774         if (endOfInit) Builder.CreateStore(element, endOfInit);
    775       }
    776 
    777       // Compute the end of the array.
    778       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    779                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    780                                                    "arrayinit.end");
    781 
    782       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    783       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    784 
    785       // Jump into the body.
    786       CGF.EmitBlock(bodyBB);
    787       llvm::PHINode *currentElement =
    788         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    789       currentElement->addIncoming(element, entryBB);
    790 
    791       // Emit the actual filler expression.
    792       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    793       if (filler)
    794         EmitInitializationToLValue(filler, elementLV);
    795       else
    796         EmitNullInitializationToLValue(elementLV);
    797 
    798       // Move on to the next element.
    799       llvm::Value *nextElement =
    800         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    801 
    802       // Tell the EH cleanup that we finished with the last element.
    803       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
    804 
    805       // Leave the loop if we're done.
    806       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    807                                                "arrayinit.done");
    808       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    809       Builder.CreateCondBr(done, endBB, bodyBB);
    810       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    811 
    812       CGF.EmitBlock(endBB);
    813     }
    814 
    815     // Leave the partial-array cleanup if we entered one.
    816     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup);
    817 
    818     return;
    819   }
    820 
    821   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
    822 
    823   // Do struct initialization; this code just sets each individual member
    824   // to the approprate value.  This makes bitfield support automatic;
    825   // the disadvantage is that the generated code is more difficult for
    826   // the optimizer, especially with bitfields.
    827   unsigned NumInitElements = E->getNumInits();
    828   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
    829 
    830   if (record->isUnion()) {
    831     // Only initialize one field of a union. The field itself is
    832     // specified by the initializer list.
    833     if (!E->getInitializedFieldInUnion()) {
    834       // Empty union; we have nothing to do.
    835 
    836 #ifndef NDEBUG
    837       // Make sure that it's really an empty and not a failure of
    838       // semantic analysis.
    839       for (RecordDecl::field_iterator Field = record->field_begin(),
    840                                    FieldEnd = record->field_end();
    841            Field != FieldEnd; ++Field)
    842         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
    843 #endif
    844       return;
    845     }
    846 
    847     // FIXME: volatility
    848     FieldDecl *Field = E->getInitializedFieldInUnion();
    849 
    850     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
    851     if (NumInitElements) {
    852       // Store the initializer into the field
    853       EmitInitializationToLValue(E->getInit(0), FieldLoc);
    854     } else {
    855       // Default-initialize to null.
    856       EmitNullInitializationToLValue(FieldLoc);
    857     }
    858 
    859     return;
    860   }
    861 
    862   // We'll need to enter cleanup scopes in case any of the member
    863   // initializers throw an exception.
    864   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
    865 
    866   // Here we iterate over the fields; this makes it simpler to both
    867   // default-initialize fields and skip over unnamed fields.
    868   unsigned curInitIndex = 0;
    869   for (RecordDecl::field_iterator field = record->field_begin(),
    870                                fieldEnd = record->field_end();
    871        field != fieldEnd; ++field) {
    872     // We're done once we hit the flexible array member.
    873     if (field->getType()->isIncompleteArrayType())
    874       break;
    875 
    876     // Always skip anonymous bitfields.
    877     if (field->isUnnamedBitfield())
    878       continue;
    879 
    880     // We're done if we reach the end of the explicit initializers, we
    881     // have a zeroed object, and the rest of the fields are
    882     // zero-initializable.
    883     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
    884         CGF.getTypes().isZeroInitializable(E->getType()))
    885       break;
    886 
    887     // FIXME: volatility
    888     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
    889     // We never generate write-barries for initialized fields.
    890     LV.setNonGC(true);
    891 
    892     if (curInitIndex < NumInitElements) {
    893       // Store the initializer into the field.
    894       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
    895     } else {
    896       // We're out of initalizers; default-initialize to null
    897       EmitNullInitializationToLValue(LV);
    898     }
    899 
    900     // Push a destructor if necessary.
    901     // FIXME: if we have an array of structures, all explicitly
    902     // initialized, we can end up pushing a linear number of cleanups.
    903     bool pushedCleanup = false;
    904     if (QualType::DestructionKind dtorKind
    905           = field->getType().isDestructedType()) {
    906       assert(LV.isSimple());
    907       if (CGF.needsEHCleanup(dtorKind)) {
    908         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
    909                         CGF.getDestroyer(dtorKind), false);
    910         cleanups.push_back(CGF.EHStack.stable_begin());
    911         pushedCleanup = true;
    912       }
    913     }
    914 
    915     // If the GEP didn't get used because of a dead zero init or something
    916     // else, clean it up for -O0 builds and general tidiness.
    917     if (!pushedCleanup && LV.isSimple())
    918       if (llvm::GetElementPtrInst *GEP =
    919             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
    920         if (GEP->use_empty())
    921           GEP->eraseFromParent();
    922   }
    923 
    924   // Deactivate all the partial cleanups in reverse order, which
    925   // generally means popping them.
    926   for (unsigned i = cleanups.size(); i != 0; --i)
    927     CGF.DeactivateCleanupBlock(cleanups[i-1]);
    928 }
    929 
    930 //===----------------------------------------------------------------------===//
    931 //                        Entry Points into this File
    932 //===----------------------------------------------------------------------===//
    933 
    934 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
    935 /// non-zero bytes that will be stored when outputting the initializer for the
    936 /// specified initializer expression.
    937 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
    938   E = E->IgnoreParens();
    939 
    940   // 0 and 0.0 won't require any non-zero stores!
    941   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
    942 
    943   // If this is an initlist expr, sum up the size of sizes of the (present)
    944   // elements.  If this is something weird, assume the whole thing is non-zero.
    945   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
    946   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
    947     return CGF.getContext().getTypeSizeInChars(E->getType());
    948 
    949   // InitListExprs for structs have to be handled carefully.  If there are
    950   // reference members, we need to consider the size of the reference, not the
    951   // referencee.  InitListExprs for unions and arrays can't have references.
    952   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    953     if (!RT->isUnionType()) {
    954       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
    955       CharUnits NumNonZeroBytes = CharUnits::Zero();
    956 
    957       unsigned ILEElement = 0;
    958       for (RecordDecl::field_iterator Field = SD->field_begin(),
    959            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
    960         // We're done once we hit the flexible array member or run out of
    961         // InitListExpr elements.
    962         if (Field->getType()->isIncompleteArrayType() ||
    963             ILEElement == ILE->getNumInits())
    964           break;
    965         if (Field->isUnnamedBitfield())
    966           continue;
    967 
    968         const Expr *E = ILE->getInit(ILEElement++);
    969 
    970         // Reference values are always non-null and have the width of a pointer.
    971         if (Field->getType()->isReferenceType())
    972           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
    973               CGF.getContext().getTargetInfo().getPointerWidth(0));
    974         else
    975           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
    976       }
    977 
    978       return NumNonZeroBytes;
    979     }
    980   }
    981 
    982 
    983   CharUnits NumNonZeroBytes = CharUnits::Zero();
    984   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
    985     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
    986   return NumNonZeroBytes;
    987 }
    988 
    989 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
    990 /// zeros in it, emit a memset and avoid storing the individual zeros.
    991 ///
    992 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
    993                                      CodeGenFunction &CGF) {
    994   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
    995   // volatile stores.
    996   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
    997 
    998   // C++ objects with a user-declared constructor don't need zero'ing.
    999   if (CGF.getContext().getLangOptions().CPlusPlus)
   1000     if (const RecordType *RT = CGF.getContext()
   1001                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
   1002       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1003       if (RD->hasUserDeclaredConstructor())
   1004         return;
   1005     }
   1006 
   1007   // If the type is 16-bytes or smaller, prefer individual stores over memset.
   1008   std::pair<CharUnits, CharUnits> TypeInfo =
   1009     CGF.getContext().getTypeInfoInChars(E->getType());
   1010   if (TypeInfo.first <= CharUnits::fromQuantity(16))
   1011     return;
   1012 
   1013   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
   1014   // we prefer to emit memset + individual stores for the rest.
   1015   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
   1016   if (NumNonZeroBytes*4 > TypeInfo.first)
   1017     return;
   1018 
   1019   // Okay, it seems like a good idea to use an initial memset, emit the call.
   1020   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
   1021   CharUnits Align = TypeInfo.second;
   1022 
   1023   llvm::Value *Loc = Slot.getAddr();
   1024   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
   1025 
   1026   Loc = CGF.Builder.CreateBitCast(Loc, BP);
   1027   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
   1028                            Align.getQuantity(), false);
   1029 
   1030   // Tell the AggExprEmitter that the slot is known zero.
   1031   Slot.setZeroed();
   1032 }
   1033 
   1034 
   1035 
   1036 
   1037 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1038 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1039 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1040 /// true, DestPtr cannot be 0.
   1041 ///
   1042 /// \param IsInitializer - true if this evaluation is initializing an
   1043 /// object whose lifetime is already being managed.
   1044 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
   1045                                   bool IgnoreResult) {
   1046   assert(E && hasAggregateLLVMType(E->getType()) &&
   1047          "Invalid aggregate expression to emit");
   1048   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
   1049          "slot has bits but no address");
   1050 
   1051   // Optimize the slot if possible.
   1052   CheckAggExprForMemSetUse(Slot, E, *this);
   1053 
   1054   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
   1055 }
   1056 
   1057 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1058   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
   1059   llvm::Value *Temp = CreateMemTemp(E->getType());
   1060   LValue LV = MakeAddrLValue(Temp, E->getType());
   1061   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
   1062                                          AggValueSlot::DoesNotNeedGCBarriers,
   1063                                          AggValueSlot::IsNotAliased));
   1064   return LV;
   1065 }
   1066 
   1067 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
   1068                                         llvm::Value *SrcPtr, QualType Ty,
   1069                                         bool isVolatile) {
   1070   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1071 
   1072   if (getContext().getLangOptions().CPlusPlus) {
   1073     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1074       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1075       assert((Record->hasTrivialCopyConstructor() ||
   1076               Record->hasTrivialCopyAssignment() ||
   1077               Record->hasTrivialMoveConstructor() ||
   1078               Record->hasTrivialMoveAssignment()) &&
   1079              "Trying to aggregate-copy a type without a trivial copy "
   1080              "constructor or assignment operator");
   1081       // Ignore empty classes in C++.
   1082       if (Record->isEmpty())
   1083         return;
   1084     }
   1085   }
   1086 
   1087   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1088   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1089   // read from another object that overlaps in anyway the storage of the first
   1090   // object, then the overlap shall be exact and the two objects shall have
   1091   // qualified or unqualified versions of a compatible type."
   1092   //
   1093   // memcpy is not defined if the source and destination pointers are exactly
   1094   // equal, but other compilers do this optimization, and almost every memcpy
   1095   // implementation handles this case safely.  If there is a libc that does not
   1096   // safely handle this, we can add a target hook.
   1097 
   1098   // Get size and alignment info for this aggregate.
   1099   std::pair<CharUnits, CharUnits> TypeInfo =
   1100     getContext().getTypeInfoInChars(Ty);
   1101 
   1102   // FIXME: Handle variable sized types.
   1103 
   1104   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1105   // appear to be `extra' memory ops:
   1106   //
   1107   // volatile struct { int i; } a, b;
   1108   //
   1109   // int main() {
   1110   //   a = b;
   1111   //   a = b;
   1112   // }
   1113   //
   1114   // we need to use a different call here.  We use isVolatile to indicate when
   1115   // either the source or the destination is volatile.
   1116 
   1117   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
   1118   llvm::Type *DBP =
   1119     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
   1120   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
   1121 
   1122   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
   1123   llvm::Type *SBP =
   1124     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
   1125   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
   1126 
   1127   // Don't do any of the memmove_collectable tests if GC isn't set.
   1128   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
   1129     // fall through
   1130   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1131     RecordDecl *Record = RecordTy->getDecl();
   1132     if (Record->hasObjectMember()) {
   1133       CharUnits size = TypeInfo.first;
   1134       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1135       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1136       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1137                                                     SizeVal);
   1138       return;
   1139     }
   1140   } else if (Ty->isArrayType()) {
   1141     QualType BaseType = getContext().getBaseElementType(Ty);
   1142     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1143       if (RecordTy->getDecl()->hasObjectMember()) {
   1144         CharUnits size = TypeInfo.first;
   1145         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1146         llvm::Value *SizeVal =
   1147           llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1148         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1149                                                       SizeVal);
   1150         return;
   1151       }
   1152     }
   1153   }
   1154 
   1155   Builder.CreateMemCpy(DestPtr, SrcPtr,
   1156                        llvm::ConstantInt::get(IntPtrTy,
   1157                                               TypeInfo.first.getQuantity()),
   1158                        TypeInfo.second.getQuantity(), isVolatile);
   1159 }
   1160