1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This library implements the functionality defined in llvm/Assembly/Writer.h 11 // 12 // Note that these routines must be extremely tolerant of various errors in the 13 // LLVM code, because it can be used for debugging transformations. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Assembly/Writer.h" 18 #include "llvm/Assembly/PrintModulePass.h" 19 #include "llvm/Assembly/AssemblyAnnotationWriter.h" 20 #include "llvm/LLVMContext.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/Constants.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/InlineAsm.h" 25 #include "llvm/IntrinsicInst.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Module.h" 28 #include "llvm/ValueSymbolTable.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/Support/CFG.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/Dwarf.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/FormattedStream.h" 39 #include <algorithm> 40 #include <cctype> 41 using namespace llvm; 42 43 // Make virtual table appear in this compilation unit. 44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} 45 46 //===----------------------------------------------------------------------===// 47 // Helper Functions 48 //===----------------------------------------------------------------------===// 49 50 static const Module *getModuleFromVal(const Value *V) { 51 if (const Argument *MA = dyn_cast<Argument>(V)) 52 return MA->getParent() ? MA->getParent()->getParent() : 0; 53 54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 55 return BB->getParent() ? BB->getParent()->getParent() : 0; 56 57 if (const Instruction *I = dyn_cast<Instruction>(V)) { 58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0; 59 return M ? M->getParent() : 0; 60 } 61 62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 63 return GV->getParent(); 64 return 0; 65 } 66 67 // PrintEscapedString - Print each character of the specified string, escaping 68 // it if it is not printable or if it is an escape char. 69 static void PrintEscapedString(StringRef Name, raw_ostream &Out) { 70 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 71 unsigned char C = Name[i]; 72 if (isprint(C) && C != '\\' && C != '"') 73 Out << C; 74 else 75 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 76 } 77 } 78 79 enum PrefixType { 80 GlobalPrefix, 81 LabelPrefix, 82 LocalPrefix, 83 NoPrefix 84 }; 85 86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 87 /// prefixed with % (if the string only contains simple characters) or is 88 /// surrounded with ""'s (if it has special chars in it). Print it out. 89 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 90 assert(!Name.empty() && "Cannot get empty name!"); 91 switch (Prefix) { 92 default: llvm_unreachable("Bad prefix!"); 93 case NoPrefix: break; 94 case GlobalPrefix: OS << '@'; break; 95 case LabelPrefix: break; 96 case LocalPrefix: OS << '%'; break; 97 } 98 99 // Scan the name to see if it needs quotes first. 100 bool NeedsQuotes = isdigit(Name[0]); 101 if (!NeedsQuotes) { 102 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 103 char C = Name[i]; 104 if (!isalnum(C) && C != '-' && C != '.' && C != '_') { 105 NeedsQuotes = true; 106 break; 107 } 108 } 109 } 110 111 // If we didn't need any quotes, just write out the name in one blast. 112 if (!NeedsQuotes) { 113 OS << Name; 114 return; 115 } 116 117 // Okay, we need quotes. Output the quotes and escape any scary characters as 118 // needed. 119 OS << '"'; 120 PrintEscapedString(Name, OS); 121 OS << '"'; 122 } 123 124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either 125 /// prefixed with % (if the string only contains simple characters) or is 126 /// surrounded with ""'s (if it has special chars in it). Print it out. 127 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 128 PrintLLVMName(OS, V->getName(), 129 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // TypePrinting Class: Type printing machinery 134 //===----------------------------------------------------------------------===// 135 136 /// TypePrinting - Type printing machinery. 137 namespace { 138 class TypePrinting { 139 TypePrinting(const TypePrinting &); // DO NOT IMPLEMENT 140 void operator=(const TypePrinting&); // DO NOT IMPLEMENT 141 public: 142 143 /// NamedTypes - The named types that are used by the current module. 144 std::vector<StructType*> NamedTypes; 145 146 /// NumberedTypes - The numbered types, along with their value. 147 DenseMap<StructType*, unsigned> NumberedTypes; 148 149 150 TypePrinting() {} 151 ~TypePrinting() {} 152 153 void incorporateTypes(const Module &M); 154 155 void print(Type *Ty, raw_ostream &OS); 156 157 void printStructBody(StructType *Ty, raw_ostream &OS); 158 }; 159 } // end anonymous namespace. 160 161 162 void TypePrinting::incorporateTypes(const Module &M) { 163 M.findUsedStructTypes(NamedTypes); 164 165 // The list of struct types we got back includes all the struct types, split 166 // the unnamed ones out to a numbering and remove the anonymous structs. 167 unsigned NextNumber = 0; 168 169 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 170 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 171 StructType *STy = *I; 172 173 // Ignore anonymous types. 174 if (STy->isLiteral()) 175 continue; 176 177 if (STy->getName().empty()) 178 NumberedTypes[STy] = NextNumber++; 179 else 180 *NextToUse++ = STy; 181 } 182 183 NamedTypes.erase(NextToUse, NamedTypes.end()); 184 } 185 186 187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making 188 /// use of type names or up references to shorten the type name where possible. 189 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 190 switch (Ty->getTypeID()) { 191 case Type::VoidTyID: OS << "void"; break; 192 case Type::FloatTyID: OS << "float"; break; 193 case Type::DoubleTyID: OS << "double"; break; 194 case Type::X86_FP80TyID: OS << "x86_fp80"; break; 195 case Type::FP128TyID: OS << "fp128"; break; 196 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; 197 case Type::LabelTyID: OS << "label"; break; 198 case Type::MetadataTyID: OS << "metadata"; break; 199 case Type::X86_MMXTyID: OS << "x86_mmx"; break; 200 case Type::IntegerTyID: 201 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 202 return; 203 204 case Type::FunctionTyID: { 205 FunctionType *FTy = cast<FunctionType>(Ty); 206 print(FTy->getReturnType(), OS); 207 OS << " ("; 208 for (FunctionType::param_iterator I = FTy->param_begin(), 209 E = FTy->param_end(); I != E; ++I) { 210 if (I != FTy->param_begin()) 211 OS << ", "; 212 print(*I, OS); 213 } 214 if (FTy->isVarArg()) { 215 if (FTy->getNumParams()) OS << ", "; 216 OS << "..."; 217 } 218 OS << ')'; 219 return; 220 } 221 case Type::StructTyID: { 222 StructType *STy = cast<StructType>(Ty); 223 224 if (STy->isLiteral()) 225 return printStructBody(STy, OS); 226 227 if (!STy->getName().empty()) 228 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 229 230 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); 231 if (I != NumberedTypes.end()) 232 OS << '%' << I->second; 233 else // Not enumerated, print the hex address. 234 OS << "%\"type 0x" << STy << '\"'; 235 return; 236 } 237 case Type::PointerTyID: { 238 PointerType *PTy = cast<PointerType>(Ty); 239 print(PTy->getElementType(), OS); 240 if (unsigned AddressSpace = PTy->getAddressSpace()) 241 OS << " addrspace(" << AddressSpace << ')'; 242 OS << '*'; 243 return; 244 } 245 case Type::ArrayTyID: { 246 ArrayType *ATy = cast<ArrayType>(Ty); 247 OS << '[' << ATy->getNumElements() << " x "; 248 print(ATy->getElementType(), OS); 249 OS << ']'; 250 return; 251 } 252 case Type::VectorTyID: { 253 VectorType *PTy = cast<VectorType>(Ty); 254 OS << "<" << PTy->getNumElements() << " x "; 255 print(PTy->getElementType(), OS); 256 OS << '>'; 257 return; 258 } 259 default: 260 OS << "<unrecognized-type>"; 261 return; 262 } 263 } 264 265 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 266 if (STy->isOpaque()) { 267 OS << "opaque"; 268 return; 269 } 270 271 if (STy->isPacked()) 272 OS << '<'; 273 274 if (STy->getNumElements() == 0) { 275 OS << "{}"; 276 } else { 277 StructType::element_iterator I = STy->element_begin(); 278 OS << "{ "; 279 print(*I++, OS); 280 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 281 OS << ", "; 282 print(*I, OS); 283 } 284 285 OS << " }"; 286 } 287 if (STy->isPacked()) 288 OS << '>'; 289 } 290 291 292 293 //===----------------------------------------------------------------------===// 294 // SlotTracker Class: Enumerate slot numbers for unnamed values 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 /// This class provides computation of slot numbers for LLVM Assembly writing. 300 /// 301 class SlotTracker { 302 public: 303 /// ValueMap - A mapping of Values to slot numbers. 304 typedef DenseMap<const Value*, unsigned> ValueMap; 305 306 private: 307 /// TheModule - The module for which we are holding slot numbers. 308 const Module* TheModule; 309 310 /// TheFunction - The function for which we are holding slot numbers. 311 const Function* TheFunction; 312 bool FunctionProcessed; 313 314 /// mMap - The slot map for the module level data. 315 ValueMap mMap; 316 unsigned mNext; 317 318 /// fMap - The slot map for the function level data. 319 ValueMap fMap; 320 unsigned fNext; 321 322 /// mdnMap - Map for MDNodes. 323 DenseMap<const MDNode*, unsigned> mdnMap; 324 unsigned mdnNext; 325 public: 326 /// Construct from a module 327 explicit SlotTracker(const Module *M); 328 /// Construct from a function, starting out in incorp state. 329 explicit SlotTracker(const Function *F); 330 331 /// Return the slot number of the specified value in it's type 332 /// plane. If something is not in the SlotTracker, return -1. 333 int getLocalSlot(const Value *V); 334 int getGlobalSlot(const GlobalValue *V); 335 int getMetadataSlot(const MDNode *N); 336 337 /// If you'd like to deal with a function instead of just a module, use 338 /// this method to get its data into the SlotTracker. 339 void incorporateFunction(const Function *F) { 340 TheFunction = F; 341 FunctionProcessed = false; 342 } 343 344 /// After calling incorporateFunction, use this method to remove the 345 /// most recently incorporated function from the SlotTracker. This 346 /// will reset the state of the machine back to just the module contents. 347 void purgeFunction(); 348 349 /// MDNode map iterators. 350 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; 351 mdn_iterator mdn_begin() { return mdnMap.begin(); } 352 mdn_iterator mdn_end() { return mdnMap.end(); } 353 unsigned mdn_size() const { return mdnMap.size(); } 354 bool mdn_empty() const { return mdnMap.empty(); } 355 356 /// This function does the actual initialization. 357 inline void initialize(); 358 359 // Implementation Details 360 private: 361 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 362 void CreateModuleSlot(const GlobalValue *V); 363 364 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 365 void CreateMetadataSlot(const MDNode *N); 366 367 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 368 void CreateFunctionSlot(const Value *V); 369 370 /// Add all of the module level global variables (and their initializers) 371 /// and function declarations, but not the contents of those functions. 372 void processModule(); 373 374 /// Add all of the functions arguments, basic blocks, and instructions. 375 void processFunction(); 376 377 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT 378 void operator=(const SlotTracker &); // DO NOT IMPLEMENT 379 }; 380 381 } // end anonymous namespace 382 383 384 static SlotTracker *createSlotTracker(const Value *V) { 385 if (const Argument *FA = dyn_cast<Argument>(V)) 386 return new SlotTracker(FA->getParent()); 387 388 if (const Instruction *I = dyn_cast<Instruction>(V)) 389 if (I->getParent()) 390 return new SlotTracker(I->getParent()->getParent()); 391 392 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 393 return new SlotTracker(BB->getParent()); 394 395 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 396 return new SlotTracker(GV->getParent()); 397 398 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 399 return new SlotTracker(GA->getParent()); 400 401 if (const Function *Func = dyn_cast<Function>(V)) 402 return new SlotTracker(Func); 403 404 if (const MDNode *MD = dyn_cast<MDNode>(V)) { 405 if (!MD->isFunctionLocal()) 406 return new SlotTracker(MD->getFunction()); 407 408 return new SlotTracker((Function *)0); 409 } 410 411 return 0; 412 } 413 414 #if 0 415 #define ST_DEBUG(X) dbgs() << X 416 #else 417 #define ST_DEBUG(X) 418 #endif 419 420 // Module level constructor. Causes the contents of the Module (sans functions) 421 // to be added to the slot table. 422 SlotTracker::SlotTracker(const Module *M) 423 : TheModule(M), TheFunction(0), FunctionProcessed(false), 424 mNext(0), fNext(0), mdnNext(0) { 425 } 426 427 // Function level constructor. Causes the contents of the Module and the one 428 // function provided to be added to the slot table. 429 SlotTracker::SlotTracker(const Function *F) 430 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), 431 mNext(0), fNext(0), mdnNext(0) { 432 } 433 434 inline void SlotTracker::initialize() { 435 if (TheModule) { 436 processModule(); 437 TheModule = 0; ///< Prevent re-processing next time we're called. 438 } 439 440 if (TheFunction && !FunctionProcessed) 441 processFunction(); 442 } 443 444 // Iterate through all the global variables, functions, and global 445 // variable initializers and create slots for them. 446 void SlotTracker::processModule() { 447 ST_DEBUG("begin processModule!\n"); 448 449 // Add all of the unnamed global variables to the value table. 450 for (Module::const_global_iterator I = TheModule->global_begin(), 451 E = TheModule->global_end(); I != E; ++I) { 452 if (!I->hasName()) 453 CreateModuleSlot(I); 454 } 455 456 // Add metadata used by named metadata. 457 for (Module::const_named_metadata_iterator 458 I = TheModule->named_metadata_begin(), 459 E = TheModule->named_metadata_end(); I != E; ++I) { 460 const NamedMDNode *NMD = I; 461 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 462 CreateMetadataSlot(NMD->getOperand(i)); 463 } 464 465 // Add all the unnamed functions to the table. 466 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); 467 I != E; ++I) 468 if (!I->hasName()) 469 CreateModuleSlot(I); 470 471 ST_DEBUG("end processModule!\n"); 472 } 473 474 // Process the arguments, basic blocks, and instructions of a function. 475 void SlotTracker::processFunction() { 476 ST_DEBUG("begin processFunction!\n"); 477 fNext = 0; 478 479 // Add all the function arguments with no names. 480 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 481 AE = TheFunction->arg_end(); AI != AE; ++AI) 482 if (!AI->hasName()) 483 CreateFunctionSlot(AI); 484 485 ST_DEBUG("Inserting Instructions:\n"); 486 487 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; 488 489 // Add all of the basic blocks and instructions with no names. 490 for (Function::const_iterator BB = TheFunction->begin(), 491 E = TheFunction->end(); BB != E; ++BB) { 492 if (!BB->hasName()) 493 CreateFunctionSlot(BB); 494 495 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 496 ++I) { 497 if (!I->getType()->isVoidTy() && !I->hasName()) 498 CreateFunctionSlot(I); 499 500 // Intrinsics can directly use metadata. We allow direct calls to any 501 // llvm.foo function here, because the target may not be linked into the 502 // optimizer. 503 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 504 if (Function *F = CI->getCalledFunction()) 505 if (F->getName().startswith("llvm.")) 506 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 507 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) 508 CreateMetadataSlot(N); 509 } 510 511 // Process metadata attached with this instruction. 512 I->getAllMetadata(MDForInst); 513 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) 514 CreateMetadataSlot(MDForInst[i].second); 515 MDForInst.clear(); 516 } 517 } 518 519 FunctionProcessed = true; 520 521 ST_DEBUG("end processFunction!\n"); 522 } 523 524 /// Clean up after incorporating a function. This is the only way to get out of 525 /// the function incorporation state that affects get*Slot/Create*Slot. Function 526 /// incorporation state is indicated by TheFunction != 0. 527 void SlotTracker::purgeFunction() { 528 ST_DEBUG("begin purgeFunction!\n"); 529 fMap.clear(); // Simply discard the function level map 530 TheFunction = 0; 531 FunctionProcessed = false; 532 ST_DEBUG("end purgeFunction!\n"); 533 } 534 535 /// getGlobalSlot - Get the slot number of a global value. 536 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 537 // Check for uninitialized state and do lazy initialization. 538 initialize(); 539 540 // Find the value in the module map 541 ValueMap::iterator MI = mMap.find(V); 542 return MI == mMap.end() ? -1 : (int)MI->second; 543 } 544 545 /// getMetadataSlot - Get the slot number of a MDNode. 546 int SlotTracker::getMetadataSlot(const MDNode *N) { 547 // Check for uninitialized state and do lazy initialization. 548 initialize(); 549 550 // Find the MDNode in the module map 551 mdn_iterator MI = mdnMap.find(N); 552 return MI == mdnMap.end() ? -1 : (int)MI->second; 553 } 554 555 556 /// getLocalSlot - Get the slot number for a value that is local to a function. 557 int SlotTracker::getLocalSlot(const Value *V) { 558 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 559 560 // Check for uninitialized state and do lazy initialization. 561 initialize(); 562 563 ValueMap::iterator FI = fMap.find(V); 564 return FI == fMap.end() ? -1 : (int)FI->second; 565 } 566 567 568 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 569 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 570 assert(V && "Can't insert a null Value into SlotTracker!"); 571 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 572 assert(!V->hasName() && "Doesn't need a slot!"); 573 574 unsigned DestSlot = mNext++; 575 mMap[V] = DestSlot; 576 577 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 578 DestSlot << " ["); 579 // G = Global, F = Function, A = Alias, o = other 580 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 581 (isa<Function>(V) ? 'F' : 582 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); 583 } 584 585 /// CreateSlot - Create a new slot for the specified value if it has no name. 586 void SlotTracker::CreateFunctionSlot(const Value *V) { 587 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 588 589 unsigned DestSlot = fNext++; 590 fMap[V] = DestSlot; 591 592 // G = Global, F = Function, o = other 593 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 594 DestSlot << " [o]\n"); 595 } 596 597 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 598 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 599 assert(N && "Can't insert a null Value into SlotTracker!"); 600 601 // Don't insert if N is a function-local metadata, these are always printed 602 // inline. 603 if (!N->isFunctionLocal()) { 604 mdn_iterator I = mdnMap.find(N); 605 if (I != mdnMap.end()) 606 return; 607 608 unsigned DestSlot = mdnNext++; 609 mdnMap[N] = DestSlot; 610 } 611 612 // Recursively add any MDNodes referenced by operands. 613 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 614 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 615 CreateMetadataSlot(Op); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // AsmWriter Implementation 620 //===----------------------------------------------------------------------===// 621 622 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 623 TypePrinting *TypePrinter, 624 SlotTracker *Machine, 625 const Module *Context); 626 627 628 629 static const char *getPredicateText(unsigned predicate) { 630 const char * pred = "unknown"; 631 switch (predicate) { 632 case FCmpInst::FCMP_FALSE: pred = "false"; break; 633 case FCmpInst::FCMP_OEQ: pred = "oeq"; break; 634 case FCmpInst::FCMP_OGT: pred = "ogt"; break; 635 case FCmpInst::FCMP_OGE: pred = "oge"; break; 636 case FCmpInst::FCMP_OLT: pred = "olt"; break; 637 case FCmpInst::FCMP_OLE: pred = "ole"; break; 638 case FCmpInst::FCMP_ONE: pred = "one"; break; 639 case FCmpInst::FCMP_ORD: pred = "ord"; break; 640 case FCmpInst::FCMP_UNO: pred = "uno"; break; 641 case FCmpInst::FCMP_UEQ: pred = "ueq"; break; 642 case FCmpInst::FCMP_UGT: pred = "ugt"; break; 643 case FCmpInst::FCMP_UGE: pred = "uge"; break; 644 case FCmpInst::FCMP_ULT: pred = "ult"; break; 645 case FCmpInst::FCMP_ULE: pred = "ule"; break; 646 case FCmpInst::FCMP_UNE: pred = "une"; break; 647 case FCmpInst::FCMP_TRUE: pred = "true"; break; 648 case ICmpInst::ICMP_EQ: pred = "eq"; break; 649 case ICmpInst::ICMP_NE: pred = "ne"; break; 650 case ICmpInst::ICMP_SGT: pred = "sgt"; break; 651 case ICmpInst::ICMP_SGE: pred = "sge"; break; 652 case ICmpInst::ICMP_SLT: pred = "slt"; break; 653 case ICmpInst::ICMP_SLE: pred = "sle"; break; 654 case ICmpInst::ICMP_UGT: pred = "ugt"; break; 655 case ICmpInst::ICMP_UGE: pred = "uge"; break; 656 case ICmpInst::ICMP_ULT: pred = "ult"; break; 657 case ICmpInst::ICMP_ULE: pred = "ule"; break; 658 } 659 return pred; 660 } 661 662 static void writeAtomicRMWOperation(raw_ostream &Out, 663 AtomicRMWInst::BinOp Op) { 664 switch (Op) { 665 default: Out << " <unknown operation " << Op << ">"; break; 666 case AtomicRMWInst::Xchg: Out << " xchg"; break; 667 case AtomicRMWInst::Add: Out << " add"; break; 668 case AtomicRMWInst::Sub: Out << " sub"; break; 669 case AtomicRMWInst::And: Out << " and"; break; 670 case AtomicRMWInst::Nand: Out << " nand"; break; 671 case AtomicRMWInst::Or: Out << " or"; break; 672 case AtomicRMWInst::Xor: Out << " xor"; break; 673 case AtomicRMWInst::Max: Out << " max"; break; 674 case AtomicRMWInst::Min: Out << " min"; break; 675 case AtomicRMWInst::UMax: Out << " umax"; break; 676 case AtomicRMWInst::UMin: Out << " umin"; break; 677 } 678 } 679 680 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 681 if (const OverflowingBinaryOperator *OBO = 682 dyn_cast<OverflowingBinaryOperator>(U)) { 683 if (OBO->hasNoUnsignedWrap()) 684 Out << " nuw"; 685 if (OBO->hasNoSignedWrap()) 686 Out << " nsw"; 687 } else if (const PossiblyExactOperator *Div = 688 dyn_cast<PossiblyExactOperator>(U)) { 689 if (Div->isExact()) 690 Out << " exact"; 691 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 692 if (GEP->isInBounds()) 693 Out << " inbounds"; 694 } 695 } 696 697 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 698 TypePrinting &TypePrinter, 699 SlotTracker *Machine, 700 const Module *Context) { 701 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 702 if (CI->getType()->isIntegerTy(1)) { 703 Out << (CI->getZExtValue() ? "true" : "false"); 704 return; 705 } 706 Out << CI->getValue(); 707 return; 708 } 709 710 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 711 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || 712 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { 713 // We would like to output the FP constant value in exponential notation, 714 // but we cannot do this if doing so will lose precision. Check here to 715 // make sure that we only output it in exponential format if we can parse 716 // the value back and get the same value. 717 // 718 bool ignored; 719 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; 720 double Val = isDouble ? CFP->getValueAPF().convertToDouble() : 721 CFP->getValueAPF().convertToFloat(); 722 SmallString<128> StrVal; 723 raw_svector_ostream(StrVal) << Val; 724 725 // Check to make sure that the stringized number is not some string like 726 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 727 // that the string matches the "[-+]?[0-9]" regex. 728 // 729 if ((StrVal[0] >= '0' && StrVal[0] <= '9') || 730 ((StrVal[0] == '-' || StrVal[0] == '+') && 731 (StrVal[1] >= '0' && StrVal[1] <= '9'))) { 732 // Reparse stringized version! 733 if (atof(StrVal.c_str()) == Val) { 734 Out << StrVal.str(); 735 return; 736 } 737 } 738 // Otherwise we could not reparse it to exactly the same value, so we must 739 // output the string in hexadecimal format! Note that loading and storing 740 // floating point types changes the bits of NaNs on some hosts, notably 741 // x86, so we must not use these types. 742 assert(sizeof(double) == sizeof(uint64_t) && 743 "assuming that double is 64 bits!"); 744 char Buffer[40]; 745 APFloat apf = CFP->getValueAPF(); 746 // Floats are represented in ASCII IR as double, convert. 747 if (!isDouble) 748 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 749 &ignored); 750 Out << "0x" << 751 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), 752 Buffer+40); 753 return; 754 } 755 756 // Some form of long double. These appear as a magic letter identifying 757 // the type, then a fixed number of hex digits. 758 Out << "0x"; 759 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { 760 Out << 'K'; 761 // api needed to prevent premature destruction 762 APInt api = CFP->getValueAPF().bitcastToAPInt(); 763 const uint64_t* p = api.getRawData(); 764 uint64_t word = p[1]; 765 int shiftcount=12; 766 int width = api.getBitWidth(); 767 for (int j=0; j<width; j+=4, shiftcount-=4) { 768 unsigned int nibble = (word>>shiftcount) & 15; 769 if (nibble < 10) 770 Out << (unsigned char)(nibble + '0'); 771 else 772 Out << (unsigned char)(nibble - 10 + 'A'); 773 if (shiftcount == 0 && j+4 < width) { 774 word = *p; 775 shiftcount = 64; 776 if (width-j-4 < 64) 777 shiftcount = width-j-4; 778 } 779 } 780 return; 781 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) 782 Out << 'L'; 783 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) 784 Out << 'M'; 785 else 786 llvm_unreachable("Unsupported floating point type"); 787 // api needed to prevent premature destruction 788 APInt api = CFP->getValueAPF().bitcastToAPInt(); 789 const uint64_t* p = api.getRawData(); 790 uint64_t word = *p; 791 int shiftcount=60; 792 int width = api.getBitWidth(); 793 for (int j=0; j<width; j+=4, shiftcount-=4) { 794 unsigned int nibble = (word>>shiftcount) & 15; 795 if (nibble < 10) 796 Out << (unsigned char)(nibble + '0'); 797 else 798 Out << (unsigned char)(nibble - 10 + 'A'); 799 if (shiftcount == 0 && j+4 < width) { 800 word = *(++p); 801 shiftcount = 64; 802 if (width-j-4 < 64) 803 shiftcount = width-j-4; 804 } 805 } 806 return; 807 } 808 809 if (isa<ConstantAggregateZero>(CV)) { 810 Out << "zeroinitializer"; 811 return; 812 } 813 814 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 815 Out << "blockaddress("; 816 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 817 Context); 818 Out << ", "; 819 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 820 Context); 821 Out << ")"; 822 return; 823 } 824 825 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 826 // As a special case, print the array as a string if it is an array of 827 // i8 with ConstantInt values. 828 // 829 Type *ETy = CA->getType()->getElementType(); 830 if (CA->isString()) { 831 Out << "c\""; 832 PrintEscapedString(CA->getAsString(), Out); 833 Out << '"'; 834 } else { // Cannot output in string format... 835 Out << '['; 836 if (CA->getNumOperands()) { 837 TypePrinter.print(ETy, Out); 838 Out << ' '; 839 WriteAsOperandInternal(Out, CA->getOperand(0), 840 &TypePrinter, Machine, 841 Context); 842 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 843 Out << ", "; 844 TypePrinter.print(ETy, Out); 845 Out << ' '; 846 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 847 Context); 848 } 849 } 850 Out << ']'; 851 } 852 return; 853 } 854 855 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 856 if (CS->getType()->isPacked()) 857 Out << '<'; 858 Out << '{'; 859 unsigned N = CS->getNumOperands(); 860 if (N) { 861 Out << ' '; 862 TypePrinter.print(CS->getOperand(0)->getType(), Out); 863 Out << ' '; 864 865 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 866 Context); 867 868 for (unsigned i = 1; i < N; i++) { 869 Out << ", "; 870 TypePrinter.print(CS->getOperand(i)->getType(), Out); 871 Out << ' '; 872 873 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 874 Context); 875 } 876 Out << ' '; 877 } 878 879 Out << '}'; 880 if (CS->getType()->isPacked()) 881 Out << '>'; 882 return; 883 } 884 885 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { 886 Type *ETy = CP->getType()->getElementType(); 887 assert(CP->getNumOperands() > 0 && 888 "Number of operands for a PackedConst must be > 0"); 889 Out << '<'; 890 TypePrinter.print(ETy, Out); 891 Out << ' '; 892 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine, 893 Context); 894 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { 895 Out << ", "; 896 TypePrinter.print(ETy, Out); 897 Out << ' '; 898 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine, 899 Context); 900 } 901 Out << '>'; 902 return; 903 } 904 905 if (isa<ConstantPointerNull>(CV)) { 906 Out << "null"; 907 return; 908 } 909 910 if (isa<UndefValue>(CV)) { 911 Out << "undef"; 912 return; 913 } 914 915 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 916 Out << CE->getOpcodeName(); 917 WriteOptimizationInfo(Out, CE); 918 if (CE->isCompare()) 919 Out << ' ' << getPredicateText(CE->getPredicate()); 920 Out << " ("; 921 922 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 923 TypePrinter.print((*OI)->getType(), Out); 924 Out << ' '; 925 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 926 if (OI+1 != CE->op_end()) 927 Out << ", "; 928 } 929 930 if (CE->hasIndices()) { 931 ArrayRef<unsigned> Indices = CE->getIndices(); 932 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 933 Out << ", " << Indices[i]; 934 } 935 936 if (CE->isCast()) { 937 Out << " to "; 938 TypePrinter.print(CE->getType(), Out); 939 } 940 941 Out << ')'; 942 return; 943 } 944 945 Out << "<placeholder or erroneous Constant>"; 946 } 947 948 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 949 TypePrinting *TypePrinter, 950 SlotTracker *Machine, 951 const Module *Context) { 952 Out << "!{"; 953 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 954 const Value *V = Node->getOperand(mi); 955 if (V == 0) 956 Out << "null"; 957 else { 958 TypePrinter->print(V->getType(), Out); 959 Out << ' '; 960 WriteAsOperandInternal(Out, Node->getOperand(mi), 961 TypePrinter, Machine, Context); 962 } 963 if (mi + 1 != me) 964 Out << ", "; 965 } 966 967 Out << "}"; 968 } 969 970 971 /// WriteAsOperand - Write the name of the specified value out to the specified 972 /// ostream. This can be useful when you just want to print int %reg126, not 973 /// the whole instruction that generated it. 974 /// 975 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 976 TypePrinting *TypePrinter, 977 SlotTracker *Machine, 978 const Module *Context) { 979 if (V->hasName()) { 980 PrintLLVMName(Out, V); 981 return; 982 } 983 984 const Constant *CV = dyn_cast<Constant>(V); 985 if (CV && !isa<GlobalValue>(CV)) { 986 assert(TypePrinter && "Constants require TypePrinting!"); 987 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 988 return; 989 } 990 991 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 992 Out << "asm "; 993 if (IA->hasSideEffects()) 994 Out << "sideeffect "; 995 if (IA->isAlignStack()) 996 Out << "alignstack "; 997 Out << '"'; 998 PrintEscapedString(IA->getAsmString(), Out); 999 Out << "\", \""; 1000 PrintEscapedString(IA->getConstraintString(), Out); 1001 Out << '"'; 1002 return; 1003 } 1004 1005 if (const MDNode *N = dyn_cast<MDNode>(V)) { 1006 if (N->isFunctionLocal()) { 1007 // Print metadata inline, not via slot reference number. 1008 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); 1009 return; 1010 } 1011 1012 if (!Machine) { 1013 if (N->isFunctionLocal()) 1014 Machine = new SlotTracker(N->getFunction()); 1015 else 1016 Machine = new SlotTracker(Context); 1017 } 1018 int Slot = Machine->getMetadataSlot(N); 1019 if (Slot == -1) 1020 Out << "<badref>"; 1021 else 1022 Out << '!' << Slot; 1023 return; 1024 } 1025 1026 if (const MDString *MDS = dyn_cast<MDString>(V)) { 1027 Out << "!\""; 1028 PrintEscapedString(MDS->getString(), Out); 1029 Out << '"'; 1030 return; 1031 } 1032 1033 if (V->getValueID() == Value::PseudoSourceValueVal || 1034 V->getValueID() == Value::FixedStackPseudoSourceValueVal) { 1035 V->print(Out); 1036 return; 1037 } 1038 1039 char Prefix = '%'; 1040 int Slot; 1041 // If we have a SlotTracker, use it. 1042 if (Machine) { 1043 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1044 Slot = Machine->getGlobalSlot(GV); 1045 Prefix = '@'; 1046 } else { 1047 Slot = Machine->getLocalSlot(V); 1048 1049 // If the local value didn't succeed, then we may be referring to a value 1050 // from a different function. Translate it, as this can happen when using 1051 // address of blocks. 1052 if (Slot == -1) 1053 if ((Machine = createSlotTracker(V))) { 1054 Slot = Machine->getLocalSlot(V); 1055 delete Machine; 1056 } 1057 } 1058 } else if ((Machine = createSlotTracker(V))) { 1059 // Otherwise, create one to get the # and then destroy it. 1060 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1061 Slot = Machine->getGlobalSlot(GV); 1062 Prefix = '@'; 1063 } else { 1064 Slot = Machine->getLocalSlot(V); 1065 } 1066 delete Machine; 1067 Machine = 0; 1068 } else { 1069 Slot = -1; 1070 } 1071 1072 if (Slot != -1) 1073 Out << Prefix << Slot; 1074 else 1075 Out << "<badref>"; 1076 } 1077 1078 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, 1079 bool PrintType, const Module *Context) { 1080 1081 // Fast path: Don't construct and populate a TypePrinting object if we 1082 // won't be needing any types printed. 1083 if (!PrintType && 1084 ((!isa<Constant>(V) && !isa<MDNode>(V)) || 1085 V->hasName() || isa<GlobalValue>(V))) { 1086 WriteAsOperandInternal(Out, V, 0, 0, Context); 1087 return; 1088 } 1089 1090 if (Context == 0) Context = getModuleFromVal(V); 1091 1092 TypePrinting TypePrinter; 1093 if (Context) 1094 TypePrinter.incorporateTypes(*Context); 1095 if (PrintType) { 1096 TypePrinter.print(V->getType(), Out); 1097 Out << ' '; 1098 } 1099 1100 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); 1101 } 1102 1103 namespace { 1104 1105 class AssemblyWriter { 1106 formatted_raw_ostream &Out; 1107 SlotTracker &Machine; 1108 const Module *TheModule; 1109 TypePrinting TypePrinter; 1110 AssemblyAnnotationWriter *AnnotationWriter; 1111 1112 public: 1113 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 1114 const Module *M, 1115 AssemblyAnnotationWriter *AAW) 1116 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { 1117 if (M) 1118 TypePrinter.incorporateTypes(*M); 1119 } 1120 1121 void printMDNodeBody(const MDNode *MD); 1122 void printNamedMDNode(const NamedMDNode *NMD); 1123 1124 void printModule(const Module *M); 1125 1126 void writeOperand(const Value *Op, bool PrintType); 1127 void writeParamOperand(const Value *Operand, Attributes Attrs); 1128 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); 1129 1130 void writeAllMDNodes(); 1131 1132 void printTypeIdentities(); 1133 void printGlobal(const GlobalVariable *GV); 1134 void printAlias(const GlobalAlias *GV); 1135 void printFunction(const Function *F); 1136 void printArgument(const Argument *FA, Attributes Attrs); 1137 void printBasicBlock(const BasicBlock *BB); 1138 void printInstruction(const Instruction &I); 1139 1140 private: 1141 // printInfoComment - Print a little comment after the instruction indicating 1142 // which slot it occupies. 1143 void printInfoComment(const Value &V); 1144 }; 1145 } // end of anonymous namespace 1146 1147 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 1148 if (Operand == 0) { 1149 Out << "<null operand!>"; 1150 return; 1151 } 1152 if (PrintType) { 1153 TypePrinter.print(Operand->getType(), Out); 1154 Out << ' '; 1155 } 1156 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1157 } 1158 1159 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering, 1160 SynchronizationScope SynchScope) { 1161 if (Ordering == NotAtomic) 1162 return; 1163 1164 switch (SynchScope) { 1165 default: Out << " <bad scope " << int(SynchScope) << ">"; break; 1166 case SingleThread: Out << " singlethread"; break; 1167 case CrossThread: break; 1168 } 1169 1170 switch (Ordering) { 1171 default: Out << " <bad ordering " << int(Ordering) << ">"; break; 1172 case Unordered: Out << " unordered"; break; 1173 case Monotonic: Out << " monotonic"; break; 1174 case Acquire: Out << " acquire"; break; 1175 case Release: Out << " release"; break; 1176 case AcquireRelease: Out << " acq_rel"; break; 1177 case SequentiallyConsistent: Out << " seq_cst"; break; 1178 } 1179 } 1180 1181 void AssemblyWriter::writeParamOperand(const Value *Operand, 1182 Attributes Attrs) { 1183 if (Operand == 0) { 1184 Out << "<null operand!>"; 1185 return; 1186 } 1187 1188 // Print the type 1189 TypePrinter.print(Operand->getType(), Out); 1190 // Print parameter attributes list 1191 if (Attrs != Attribute::None) 1192 Out << ' ' << Attribute::getAsString(Attrs); 1193 Out << ' '; 1194 // Print the operand 1195 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 1196 } 1197 1198 void AssemblyWriter::printModule(const Module *M) { 1199 if (!M->getModuleIdentifier().empty() && 1200 // Don't print the ID if it will start a new line (which would 1201 // require a comment char before it). 1202 M->getModuleIdentifier().find('\n') == std::string::npos) 1203 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 1204 1205 if (!M->getDataLayout().empty()) 1206 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; 1207 if (!M->getTargetTriple().empty()) 1208 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 1209 1210 if (!M->getModuleInlineAsm().empty()) { 1211 // Split the string into lines, to make it easier to read the .ll file. 1212 std::string Asm = M->getModuleInlineAsm(); 1213 size_t CurPos = 0; 1214 size_t NewLine = Asm.find_first_of('\n', CurPos); 1215 Out << '\n'; 1216 while (NewLine != std::string::npos) { 1217 // We found a newline, print the portion of the asm string from the 1218 // last newline up to this newline. 1219 Out << "module asm \""; 1220 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), 1221 Out); 1222 Out << "\"\n"; 1223 CurPos = NewLine+1; 1224 NewLine = Asm.find_first_of('\n', CurPos); 1225 } 1226 std::string rest(Asm.begin()+CurPos, Asm.end()); 1227 if (!rest.empty()) { 1228 Out << "module asm \""; 1229 PrintEscapedString(rest, Out); 1230 Out << "\"\n"; 1231 } 1232 } 1233 1234 // Loop over the dependent libraries and emit them. 1235 Module::lib_iterator LI = M->lib_begin(); 1236 Module::lib_iterator LE = M->lib_end(); 1237 if (LI != LE) { 1238 Out << '\n'; 1239 Out << "deplibs = [ "; 1240 while (LI != LE) { 1241 Out << '"' << *LI << '"'; 1242 ++LI; 1243 if (LI != LE) 1244 Out << ", "; 1245 } 1246 Out << " ]"; 1247 } 1248 1249 printTypeIdentities(); 1250 1251 // Output all globals. 1252 if (!M->global_empty()) Out << '\n'; 1253 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1254 I != E; ++I) 1255 printGlobal(I); 1256 1257 // Output all aliases. 1258 if (!M->alias_empty()) Out << "\n"; 1259 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 1260 I != E; ++I) 1261 printAlias(I); 1262 1263 // Output all of the functions. 1264 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1265 printFunction(I); 1266 1267 // Output named metadata. 1268 if (!M->named_metadata_empty()) Out << '\n'; 1269 1270 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 1271 E = M->named_metadata_end(); I != E; ++I) 1272 printNamedMDNode(I); 1273 1274 // Output metadata. 1275 if (!Machine.mdn_empty()) { 1276 Out << '\n'; 1277 writeAllMDNodes(); 1278 } 1279 } 1280 1281 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 1282 Out << '!'; 1283 StringRef Name = NMD->getName(); 1284 if (Name.empty()) { 1285 Out << "<empty name> "; 1286 } else { 1287 if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' || 1288 Name[0] == '.' || Name[0] == '_') 1289 Out << Name[0]; 1290 else 1291 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 1292 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 1293 unsigned char C = Name[i]; 1294 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_') 1295 Out << C; 1296 else 1297 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 1298 } 1299 } 1300 Out << " = !{"; 1301 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1302 if (i) Out << ", "; 1303 int Slot = Machine.getMetadataSlot(NMD->getOperand(i)); 1304 if (Slot == -1) 1305 Out << "<badref>"; 1306 else 1307 Out << '!' << Slot; 1308 } 1309 Out << "}\n"; 1310 } 1311 1312 1313 static void PrintLinkage(GlobalValue::LinkageTypes LT, 1314 formatted_raw_ostream &Out) { 1315 switch (LT) { 1316 case GlobalValue::ExternalLinkage: break; 1317 case GlobalValue::PrivateLinkage: Out << "private "; break; 1318 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; 1319 case GlobalValue::LinkerPrivateWeakLinkage: 1320 Out << "linker_private_weak "; 1321 break; 1322 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 1323 Out << "linker_private_weak_def_auto "; 1324 break; 1325 case GlobalValue::InternalLinkage: Out << "internal "; break; 1326 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; 1327 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; 1328 case GlobalValue::WeakAnyLinkage: Out << "weak "; break; 1329 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; 1330 case GlobalValue::CommonLinkage: Out << "common "; break; 1331 case GlobalValue::AppendingLinkage: Out << "appending "; break; 1332 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; 1333 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; 1334 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; 1335 case GlobalValue::AvailableExternallyLinkage: 1336 Out << "available_externally "; 1337 break; 1338 } 1339 } 1340 1341 1342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 1343 formatted_raw_ostream &Out) { 1344 switch (Vis) { 1345 case GlobalValue::DefaultVisibility: break; 1346 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 1347 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 1348 } 1349 } 1350 1351 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 1352 if (GV->isMaterializable()) 1353 Out << "; Materializable\n"; 1354 1355 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 1356 Out << " = "; 1357 1358 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 1359 Out << "external "; 1360 1361 PrintLinkage(GV->getLinkage(), Out); 1362 PrintVisibility(GV->getVisibility(), Out); 1363 1364 if (GV->isThreadLocal()) Out << "thread_local "; 1365 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 1366 Out << "addrspace(" << AddressSpace << ") "; 1367 if (GV->hasUnnamedAddr()) Out << "unnamed_addr "; 1368 Out << (GV->isConstant() ? "constant " : "global "); 1369 TypePrinter.print(GV->getType()->getElementType(), Out); 1370 1371 if (GV->hasInitializer()) { 1372 Out << ' '; 1373 writeOperand(GV->getInitializer(), false); 1374 } 1375 1376 if (GV->hasSection()) { 1377 Out << ", section \""; 1378 PrintEscapedString(GV->getSection(), Out); 1379 Out << '"'; 1380 } 1381 if (GV->getAlignment()) 1382 Out << ", align " << GV->getAlignment(); 1383 1384 printInfoComment(*GV); 1385 Out << '\n'; 1386 } 1387 1388 void AssemblyWriter::printAlias(const GlobalAlias *GA) { 1389 if (GA->isMaterializable()) 1390 Out << "; Materializable\n"; 1391 1392 // Don't crash when dumping partially built GA 1393 if (!GA->hasName()) 1394 Out << "<<nameless>> = "; 1395 else { 1396 PrintLLVMName(Out, GA); 1397 Out << " = "; 1398 } 1399 PrintVisibility(GA->getVisibility(), Out); 1400 1401 Out << "alias "; 1402 1403 PrintLinkage(GA->getLinkage(), Out); 1404 1405 const Constant *Aliasee = GA->getAliasee(); 1406 1407 if (Aliasee == 0) { 1408 TypePrinter.print(GA->getType(), Out); 1409 Out << " <<NULL ALIASEE>>"; 1410 } else { 1411 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); 1412 } 1413 1414 printInfoComment(*GA); 1415 Out << '\n'; 1416 } 1417 1418 void AssemblyWriter::printTypeIdentities() { 1419 if (TypePrinter.NumberedTypes.empty() && 1420 TypePrinter.NamedTypes.empty()) 1421 return; 1422 1423 Out << '\n'; 1424 1425 // We know all the numbers that each type is used and we know that it is a 1426 // dense assignment. Convert the map to an index table. 1427 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size()); 1428 for (DenseMap<StructType*, unsigned>::iterator I = 1429 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end(); 1430 I != E; ++I) { 1431 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?"); 1432 NumberedTypes[I->second] = I->first; 1433 } 1434 1435 // Emit all numbered types. 1436 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { 1437 Out << '%' << i << " = type "; 1438 1439 // Make sure we print out at least one level of the type structure, so 1440 // that we do not get %2 = type %2 1441 TypePrinter.printStructBody(NumberedTypes[i], Out); 1442 Out << '\n'; 1443 } 1444 1445 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) { 1446 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix); 1447 Out << " = type "; 1448 1449 // Make sure we print out at least one level of the type structure, so 1450 // that we do not get %FILE = type %FILE 1451 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out); 1452 Out << '\n'; 1453 } 1454 } 1455 1456 /// printFunction - Print all aspects of a function. 1457 /// 1458 void AssemblyWriter::printFunction(const Function *F) { 1459 // Print out the return type and name. 1460 Out << '\n'; 1461 1462 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 1463 1464 if (F->isMaterializable()) 1465 Out << "; Materializable\n"; 1466 1467 if (F->isDeclaration()) 1468 Out << "declare "; 1469 else 1470 Out << "define "; 1471 1472 PrintLinkage(F->getLinkage(), Out); 1473 PrintVisibility(F->getVisibility(), Out); 1474 1475 // Print the calling convention. 1476 switch (F->getCallingConv()) { 1477 case CallingConv::C: break; // default 1478 case CallingConv::Fast: Out << "fastcc "; break; 1479 case CallingConv::Cold: Out << "coldcc "; break; 1480 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; 1481 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; 1482 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break; 1483 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; 1484 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; 1485 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; 1486 case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; 1487 case CallingConv::PTX_Kernel: Out << "ptx_kernel "; break; 1488 case CallingConv::PTX_Device: Out << "ptx_device "; break; 1489 default: Out << "cc" << F->getCallingConv() << " "; break; 1490 } 1491 1492 FunctionType *FT = F->getFunctionType(); 1493 const AttrListPtr &Attrs = F->getAttributes(); 1494 Attributes RetAttrs = Attrs.getRetAttributes(); 1495 if (RetAttrs != Attribute::None) 1496 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; 1497 TypePrinter.print(F->getReturnType(), Out); 1498 Out << ' '; 1499 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 1500 Out << '('; 1501 Machine.incorporateFunction(F); 1502 1503 // Loop over the arguments, printing them... 1504 1505 unsigned Idx = 1; 1506 if (!F->isDeclaration()) { 1507 // If this isn't a declaration, print the argument names as well. 1508 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 1509 I != E; ++I) { 1510 // Insert commas as we go... the first arg doesn't get a comma 1511 if (I != F->arg_begin()) Out << ", "; 1512 printArgument(I, Attrs.getParamAttributes(Idx)); 1513 Idx++; 1514 } 1515 } else { 1516 // Otherwise, print the types from the function type. 1517 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1518 // Insert commas as we go... the first arg doesn't get a comma 1519 if (i) Out << ", "; 1520 1521 // Output type... 1522 TypePrinter.print(FT->getParamType(i), Out); 1523 1524 Attributes ArgAttrs = Attrs.getParamAttributes(i+1); 1525 if (ArgAttrs != Attribute::None) 1526 Out << ' ' << Attribute::getAsString(ArgAttrs); 1527 } 1528 } 1529 1530 // Finish printing arguments... 1531 if (FT->isVarArg()) { 1532 if (FT->getNumParams()) Out << ", "; 1533 Out << "..."; // Output varargs portion of signature! 1534 } 1535 Out << ')'; 1536 if (F->hasUnnamedAddr()) 1537 Out << " unnamed_addr"; 1538 Attributes FnAttrs = Attrs.getFnAttributes(); 1539 if (FnAttrs != Attribute::None) 1540 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); 1541 if (F->hasSection()) { 1542 Out << " section \""; 1543 PrintEscapedString(F->getSection(), Out); 1544 Out << '"'; 1545 } 1546 if (F->getAlignment()) 1547 Out << " align " << F->getAlignment(); 1548 if (F->hasGC()) 1549 Out << " gc \"" << F->getGC() << '"'; 1550 if (F->isDeclaration()) { 1551 Out << '\n'; 1552 } else { 1553 Out << " {"; 1554 // Output all of the function's basic blocks. 1555 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) 1556 printBasicBlock(I); 1557 1558 Out << "}\n"; 1559 } 1560 1561 Machine.purgeFunction(); 1562 } 1563 1564 /// printArgument - This member is called for every argument that is passed into 1565 /// the function. Simply print it out 1566 /// 1567 void AssemblyWriter::printArgument(const Argument *Arg, 1568 Attributes Attrs) { 1569 // Output type... 1570 TypePrinter.print(Arg->getType(), Out); 1571 1572 // Output parameter attributes list 1573 if (Attrs != Attribute::None) 1574 Out << ' ' << Attribute::getAsString(Attrs); 1575 1576 // Output name, if available... 1577 if (Arg->hasName()) { 1578 Out << ' '; 1579 PrintLLVMName(Out, Arg); 1580 } 1581 } 1582 1583 /// printBasicBlock - This member is called for each basic block in a method. 1584 /// 1585 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 1586 if (BB->hasName()) { // Print out the label if it exists... 1587 Out << "\n"; 1588 PrintLLVMName(Out, BB->getName(), LabelPrefix); 1589 Out << ':'; 1590 } else if (!BB->use_empty()) { // Don't print block # of no uses... 1591 Out << "\n; <label>:"; 1592 int Slot = Machine.getLocalSlot(BB); 1593 if (Slot != -1) 1594 Out << Slot; 1595 else 1596 Out << "<badref>"; 1597 } 1598 1599 if (BB->getParent() == 0) { 1600 Out.PadToColumn(50); 1601 Out << "; Error: Block without parent!"; 1602 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? 1603 // Output predecessors for the block. 1604 Out.PadToColumn(50); 1605 Out << ";"; 1606 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1607 1608 if (PI == PE) { 1609 Out << " No predecessors!"; 1610 } else { 1611 Out << " preds = "; 1612 writeOperand(*PI, false); 1613 for (++PI; PI != PE; ++PI) { 1614 Out << ", "; 1615 writeOperand(*PI, false); 1616 } 1617 } 1618 } 1619 1620 Out << "\n"; 1621 1622 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 1623 1624 // Output all of the instructions in the basic block... 1625 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1626 printInstruction(*I); 1627 Out << '\n'; 1628 } 1629 1630 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 1631 } 1632 1633 /// printInfoComment - Print a little comment after the instruction indicating 1634 /// which slot it occupies. 1635 /// 1636 void AssemblyWriter::printInfoComment(const Value &V) { 1637 if (AnnotationWriter) { 1638 AnnotationWriter->printInfoComment(V, Out); 1639 return; 1640 } 1641 } 1642 1643 // This member is called for each Instruction in a function.. 1644 void AssemblyWriter::printInstruction(const Instruction &I) { 1645 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 1646 1647 // Print out indentation for an instruction. 1648 Out << " "; 1649 1650 // Print out name if it exists... 1651 if (I.hasName()) { 1652 PrintLLVMName(Out, &I); 1653 Out << " = "; 1654 } else if (!I.getType()->isVoidTy()) { 1655 // Print out the def slot taken. 1656 int SlotNum = Machine.getLocalSlot(&I); 1657 if (SlotNum == -1) 1658 Out << "<badref> = "; 1659 else 1660 Out << '%' << SlotNum << " = "; 1661 } 1662 1663 if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) 1664 Out << "tail "; 1665 1666 // Print out the opcode... 1667 Out << I.getOpcodeName(); 1668 1669 // If this is an atomic load or store, print out the atomic marker. 1670 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 1671 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 1672 Out << " atomic"; 1673 1674 // If this is a volatile operation, print out the volatile marker. 1675 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 1676 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 1677 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 1678 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 1679 Out << " volatile"; 1680 1681 // Print out optimization information. 1682 WriteOptimizationInfo(Out, &I); 1683 1684 // Print out the compare instruction predicates 1685 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 1686 Out << ' ' << getPredicateText(CI->getPredicate()); 1687 1688 // Print out the atomicrmw operation 1689 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 1690 writeAtomicRMWOperation(Out, RMWI->getOperation()); 1691 1692 // Print out the type of the operands... 1693 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; 1694 1695 // Special case conditional branches to swizzle the condition out to the front 1696 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 1697 BranchInst &BI(cast<BranchInst>(I)); 1698 Out << ' '; 1699 writeOperand(BI.getCondition(), true); 1700 Out << ", "; 1701 writeOperand(BI.getSuccessor(0), true); 1702 Out << ", "; 1703 writeOperand(BI.getSuccessor(1), true); 1704 1705 } else if (isa<SwitchInst>(I)) { 1706 SwitchInst& SI(cast<SwitchInst>(I)); 1707 // Special case switch instruction to get formatting nice and correct. 1708 Out << ' '; 1709 writeOperand(SI.getCondition(), true); 1710 Out << ", "; 1711 writeOperand(SI.getDefaultDest(), true); 1712 Out << " ["; 1713 // Skip the first item since that's the default case. 1714 unsigned NumCases = SI.getNumCases(); 1715 for (unsigned i = 1; i < NumCases; ++i) { 1716 Out << "\n "; 1717 writeOperand(SI.getCaseValue(i), true); 1718 Out << ", "; 1719 writeOperand(SI.getSuccessor(i), true); 1720 } 1721 Out << "\n ]"; 1722 } else if (isa<IndirectBrInst>(I)) { 1723 // Special case indirectbr instruction to get formatting nice and correct. 1724 Out << ' '; 1725 writeOperand(Operand, true); 1726 Out << ", ["; 1727 1728 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 1729 if (i != 1) 1730 Out << ", "; 1731 writeOperand(I.getOperand(i), true); 1732 } 1733 Out << ']'; 1734 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 1735 Out << ' '; 1736 TypePrinter.print(I.getType(), Out); 1737 Out << ' '; 1738 1739 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 1740 if (op) Out << ", "; 1741 Out << "[ "; 1742 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 1743 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 1744 } 1745 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 1746 Out << ' '; 1747 writeOperand(I.getOperand(0), true); 1748 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1749 Out << ", " << *i; 1750 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 1751 Out << ' '; 1752 writeOperand(I.getOperand(0), true); Out << ", "; 1753 writeOperand(I.getOperand(1), true); 1754 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1755 Out << ", " << *i; 1756 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 1757 Out << ' '; 1758 TypePrinter.print(I.getType(), Out); 1759 Out << " personality "; 1760 writeOperand(I.getOperand(0), true); Out << '\n'; 1761 1762 if (LPI->isCleanup()) 1763 Out << " cleanup"; 1764 1765 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 1766 if (i != 0 || LPI->isCleanup()) Out << "\n"; 1767 if (LPI->isCatch(i)) 1768 Out << " catch "; 1769 else 1770 Out << " filter "; 1771 1772 writeOperand(LPI->getClause(i), true); 1773 } 1774 } else if (isa<ReturnInst>(I) && !Operand) { 1775 Out << " void"; 1776 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 1777 // Print the calling convention being used. 1778 switch (CI->getCallingConv()) { 1779 case CallingConv::C: break; // default 1780 case CallingConv::Fast: Out << " fastcc"; break; 1781 case CallingConv::Cold: Out << " coldcc"; break; 1782 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; 1783 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; 1784 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; 1785 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; 1786 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; 1787 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; 1788 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; 1789 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; 1790 case CallingConv::PTX_Device: Out << " ptx_device"; break; 1791 default: Out << " cc" << CI->getCallingConv(); break; 1792 } 1793 1794 Operand = CI->getCalledValue(); 1795 PointerType *PTy = cast<PointerType>(Operand->getType()); 1796 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1797 Type *RetTy = FTy->getReturnType(); 1798 const AttrListPtr &PAL = CI->getAttributes(); 1799 1800 if (PAL.getRetAttributes() != Attribute::None) 1801 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); 1802 1803 // If possible, print out the short form of the call instruction. We can 1804 // only do this if the first argument is a pointer to a nonvararg function, 1805 // and if the return type is not a pointer to a function. 1806 // 1807 Out << ' '; 1808 if (!FTy->isVarArg() && 1809 (!RetTy->isPointerTy() || 1810 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1811 TypePrinter.print(RetTy, Out); 1812 Out << ' '; 1813 writeOperand(Operand, false); 1814 } else { 1815 writeOperand(Operand, true); 1816 } 1817 Out << '('; 1818 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 1819 if (op > 0) 1820 Out << ", "; 1821 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1)); 1822 } 1823 Out << ')'; 1824 if (PAL.getFnAttributes() != Attribute::None) 1825 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); 1826 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 1827 Operand = II->getCalledValue(); 1828 PointerType *PTy = cast<PointerType>(Operand->getType()); 1829 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1830 Type *RetTy = FTy->getReturnType(); 1831 const AttrListPtr &PAL = II->getAttributes(); 1832 1833 // Print the calling convention being used. 1834 switch (II->getCallingConv()) { 1835 case CallingConv::C: break; // default 1836 case CallingConv::Fast: Out << " fastcc"; break; 1837 case CallingConv::Cold: Out << " coldcc"; break; 1838 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break; 1839 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break; 1840 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break; 1841 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break; 1842 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break; 1843 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break; 1844 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break; 1845 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break; 1846 case CallingConv::PTX_Device: Out << " ptx_device"; break; 1847 default: Out << " cc" << II->getCallingConv(); break; 1848 } 1849 1850 if (PAL.getRetAttributes() != Attribute::None) 1851 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes()); 1852 1853 // If possible, print out the short form of the invoke instruction. We can 1854 // only do this if the first argument is a pointer to a nonvararg function, 1855 // and if the return type is not a pointer to a function. 1856 // 1857 Out << ' '; 1858 if (!FTy->isVarArg() && 1859 (!RetTy->isPointerTy() || 1860 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { 1861 TypePrinter.print(RetTy, Out); 1862 Out << ' '; 1863 writeOperand(Operand, false); 1864 } else { 1865 writeOperand(Operand, true); 1866 } 1867 Out << '('; 1868 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 1869 if (op) 1870 Out << ", "; 1871 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1)); 1872 } 1873 1874 Out << ')'; 1875 if (PAL.getFnAttributes() != Attribute::None) 1876 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes()); 1877 1878 Out << "\n to "; 1879 writeOperand(II->getNormalDest(), true); 1880 Out << " unwind "; 1881 writeOperand(II->getUnwindDest(), true); 1882 1883 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 1884 Out << ' '; 1885 TypePrinter.print(AI->getType()->getElementType(), Out); 1886 if (!AI->getArraySize() || AI->isArrayAllocation()) { 1887 Out << ", "; 1888 writeOperand(AI->getArraySize(), true); 1889 } 1890 if (AI->getAlignment()) { 1891 Out << ", align " << AI->getAlignment(); 1892 } 1893 } else if (isa<CastInst>(I)) { 1894 if (Operand) { 1895 Out << ' '; 1896 writeOperand(Operand, true); // Work with broken code 1897 } 1898 Out << " to "; 1899 TypePrinter.print(I.getType(), Out); 1900 } else if (isa<VAArgInst>(I)) { 1901 if (Operand) { 1902 Out << ' '; 1903 writeOperand(Operand, true); // Work with broken code 1904 } 1905 Out << ", "; 1906 TypePrinter.print(I.getType(), Out); 1907 } else if (Operand) { // Print the normal way. 1908 1909 // PrintAllTypes - Instructions who have operands of all the same type 1910 // omit the type from all but the first operand. If the instruction has 1911 // different type operands (for example br), then they are all printed. 1912 bool PrintAllTypes = false; 1913 Type *TheType = Operand->getType(); 1914 1915 // Select, Store and ShuffleVector always print all types. 1916 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 1917 || isa<ReturnInst>(I)) { 1918 PrintAllTypes = true; 1919 } else { 1920 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 1921 Operand = I.getOperand(i); 1922 // note that Operand shouldn't be null, but the test helps make dump() 1923 // more tolerant of malformed IR 1924 if (Operand && Operand->getType() != TheType) { 1925 PrintAllTypes = true; // We have differing types! Print them all! 1926 break; 1927 } 1928 } 1929 } 1930 1931 if (!PrintAllTypes) { 1932 Out << ' '; 1933 TypePrinter.print(TheType, Out); 1934 } 1935 1936 Out << ' '; 1937 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 1938 if (i) Out << ", "; 1939 writeOperand(I.getOperand(i), PrintAllTypes); 1940 } 1941 } 1942 1943 // Print atomic ordering/alignment for memory operations 1944 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1945 if (LI->isAtomic()) 1946 writeAtomic(LI->getOrdering(), LI->getSynchScope()); 1947 if (LI->getAlignment()) 1948 Out << ", align " << LI->getAlignment(); 1949 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 1950 if (SI->isAtomic()) 1951 writeAtomic(SI->getOrdering(), SI->getSynchScope()); 1952 if (SI->getAlignment()) 1953 Out << ", align " << SI->getAlignment(); 1954 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 1955 writeAtomic(CXI->getOrdering(), CXI->getSynchScope()); 1956 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 1957 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope()); 1958 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 1959 writeAtomic(FI->getOrdering(), FI->getSynchScope()); 1960 } 1961 1962 // Print Metadata info. 1963 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; 1964 I.getAllMetadata(InstMD); 1965 if (!InstMD.empty()) { 1966 SmallVector<StringRef, 8> MDNames; 1967 I.getType()->getContext().getMDKindNames(MDNames); 1968 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { 1969 unsigned Kind = InstMD[i].first; 1970 if (Kind < MDNames.size()) { 1971 Out << ", !" << MDNames[Kind]; 1972 } else { 1973 Out << ", !<unknown kind #" << Kind << ">"; 1974 } 1975 Out << ' '; 1976 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, 1977 TheModule); 1978 } 1979 } 1980 printInfoComment(I); 1981 } 1982 1983 static void WriteMDNodeComment(const MDNode *Node, 1984 formatted_raw_ostream &Out) { 1985 if (Node->getNumOperands() < 1) 1986 return; 1987 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0)); 1988 if (!CI) return; 1989 APInt Val = CI->getValue(); 1990 APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask); 1991 if (Val.ult(LLVMDebugVersion)) 1992 return; 1993 1994 Out.PadToColumn(50); 1995 if (Tag == dwarf::DW_TAG_user_base) 1996 Out << "; [ DW_TAG_user_base ]"; 1997 else if (Tag.isIntN(32)) { 1998 if (const char *TagName = dwarf::TagString(Tag.getZExtValue())) 1999 Out << "; [ " << TagName << " ]"; 2000 } 2001 } 2002 2003 void AssemblyWriter::writeAllMDNodes() { 2004 SmallVector<const MDNode *, 16> Nodes; 2005 Nodes.resize(Machine.mdn_size()); 2006 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); 2007 I != E; ++I) 2008 Nodes[I->second] = cast<MDNode>(I->first); 2009 2010 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 2011 Out << '!' << i << " = metadata "; 2012 printMDNodeBody(Nodes[i]); 2013 } 2014 } 2015 2016 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 2017 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 2018 WriteMDNodeComment(Node, Out); 2019 Out << "\n"; 2020 } 2021 2022 //===----------------------------------------------------------------------===// 2023 // External Interface declarations 2024 //===----------------------------------------------------------------------===// 2025 2026 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2027 SlotTracker SlotTable(this); 2028 formatted_raw_ostream OS(ROS); 2029 AssemblyWriter W(OS, SlotTable, this, AAW); 2030 W.printModule(this); 2031 } 2032 2033 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2034 SlotTracker SlotTable(getParent()); 2035 formatted_raw_ostream OS(ROS); 2036 AssemblyWriter W(OS, SlotTable, getParent(), AAW); 2037 W.printNamedMDNode(this); 2038 } 2039 2040 void Type::print(raw_ostream &OS) const { 2041 if (this == 0) { 2042 OS << "<null Type>"; 2043 return; 2044 } 2045 TypePrinting TP; 2046 TP.print(const_cast<Type*>(this), OS); 2047 2048 // If the type is a named struct type, print the body as well. 2049 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 2050 if (!STy->isLiteral()) { 2051 OS << " = type "; 2052 TP.printStructBody(STy, OS); 2053 } 2054 } 2055 2056 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { 2057 if (this == 0) { 2058 ROS << "printing a <null> value\n"; 2059 return; 2060 } 2061 formatted_raw_ostream OS(ROS); 2062 if (const Instruction *I = dyn_cast<Instruction>(this)) { 2063 const Function *F = I->getParent() ? I->getParent()->getParent() : 0; 2064 SlotTracker SlotTable(F); 2065 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); 2066 W.printInstruction(*I); 2067 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 2068 SlotTracker SlotTable(BB->getParent()); 2069 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); 2070 W.printBasicBlock(BB); 2071 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 2072 SlotTracker SlotTable(GV->getParent()); 2073 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); 2074 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 2075 W.printGlobal(V); 2076 else if (const Function *F = dyn_cast<Function>(GV)) 2077 W.printFunction(F); 2078 else 2079 W.printAlias(cast<GlobalAlias>(GV)); 2080 } else if (const MDNode *N = dyn_cast<MDNode>(this)) { 2081 const Function *F = N->getFunction(); 2082 SlotTracker SlotTable(F); 2083 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); 2084 W.printMDNodeBody(N); 2085 } else if (const Constant *C = dyn_cast<Constant>(this)) { 2086 TypePrinting TypePrinter; 2087 TypePrinter.print(C->getType(), OS); 2088 OS << ' '; 2089 WriteConstantInternal(OS, C, TypePrinter, 0, 0); 2090 } else if (isa<InlineAsm>(this) || isa<MDString>(this) || 2091 isa<Argument>(this)) { 2092 WriteAsOperand(OS, this, true, 0); 2093 } else { 2094 // Otherwise we don't know what it is. Call the virtual function to 2095 // allow a subclass to print itself. 2096 printCustom(OS); 2097 } 2098 } 2099 2100 // Value::printCustom - subclasses should override this to implement printing. 2101 void Value::printCustom(raw_ostream &OS) const { 2102 llvm_unreachable("Unknown value to print out!"); 2103 } 2104 2105 // Value::dump - allow easy printing of Values from the debugger. 2106 void Value::dump() const { print(dbgs()); dbgs() << '\n'; } 2107 2108 // Type::dump - allow easy printing of Types from the debugger. 2109 void Type::dump() const { print(dbgs()); } 2110 2111 // Module::dump() - Allow printing of Modules from the debugger. 2112 void Module::dump() const { print(dbgs(), 0); } 2113