Home | History | Annotate | Download | only in Sema
      1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for statements.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Scope.h"
     16 #include "clang/Sema/ScopeInfo.h"
     17 #include "clang/Sema/Initialization.h"
     18 #include "clang/Sema/Lookup.h"
     19 #include "clang/AST/APValue.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/StmtObjC.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "clang/Basic/TargetInfo.h"
     29 #include "llvm/ADT/ArrayRef.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 using namespace clang;
     33 using namespace sema;
     34 
     35 StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
     36   Expr *E = expr.get();
     37   if (!E) // FIXME: FullExprArg has no error state?
     38     return StmtError();
     39 
     40   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
     41   // void expression for its side effects.  Conversion to void allows any
     42   // operand, even incomplete types.
     43 
     44   // Same thing in for stmt first clause (when expr) and third clause.
     45   return Owned(static_cast<Stmt*>(E));
     46 }
     47 
     48 
     49 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
     50                                bool HasLeadingEmptyMacro) {
     51   return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
     52 }
     53 
     54 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
     55                                SourceLocation EndLoc) {
     56   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
     57 
     58   // If we have an invalid decl, just return an error.
     59   if (DG.isNull()) return StmtError();
     60 
     61   return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
     62 }
     63 
     64 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
     65   DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
     66 
     67   // If we have an invalid decl, just return.
     68   if (DG.isNull() || !DG.isSingleDecl()) return;
     69   VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
     70 
     71   // suppress any potential 'unused variable' warning.
     72   var->setUsed();
     73 
     74   // foreach variables are never actually initialized in the way that
     75   // the parser came up with.
     76   var->setInit(0);
     77 
     78   // In ARC, we don't need to retain the iteration variable of a fast
     79   // enumeration loop.  Rather than actually trying to catch that
     80   // during declaration processing, we remove the consequences here.
     81   if (getLangOptions().ObjCAutoRefCount) {
     82     QualType type = var->getType();
     83 
     84     // Only do this if we inferred the lifetime.  Inferred lifetime
     85     // will show up as a local qualifier because explicit lifetime
     86     // should have shown up as an AttributedType instead.
     87     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
     88       // Add 'const' and mark the variable as pseudo-strong.
     89       var->setType(type.withConst());
     90       var->setARCPseudoStrong(true);
     91     }
     92   }
     93 }
     94 
     95 /// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
     96 ///
     97 /// Adding a cast to void (or other expression wrappers) will prevent the
     98 /// warning from firing.
     99 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
    100   SourceLocation Loc;
    101   bool IsNotEqual, CanAssign;
    102 
    103   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    104     if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
    105       return false;
    106 
    107     Loc = Op->getOperatorLoc();
    108     IsNotEqual = Op->getOpcode() == BO_NE;
    109     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
    110   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    111     if (Op->getOperator() != OO_EqualEqual &&
    112         Op->getOperator() != OO_ExclaimEqual)
    113       return false;
    114 
    115     Loc = Op->getOperatorLoc();
    116     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
    117     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
    118   } else {
    119     // Not a typo-prone comparison.
    120     return false;
    121   }
    122 
    123   // Suppress warnings when the operator, suspicious as it may be, comes from
    124   // a macro expansion.
    125   if (Loc.isMacroID())
    126     return false;
    127 
    128   S.Diag(Loc, diag::warn_unused_comparison)
    129     << (unsigned)IsNotEqual << E->getSourceRange();
    130 
    131   // If the LHS is a plausible entity to assign to, provide a fixit hint to
    132   // correct common typos.
    133   if (CanAssign) {
    134     if (IsNotEqual)
    135       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
    136         << FixItHint::CreateReplacement(Loc, "|=");
    137     else
    138       S.Diag(Loc, diag::note_equality_comparison_to_assign)
    139         << FixItHint::CreateReplacement(Loc, "=");
    140   }
    141 
    142   return true;
    143 }
    144 
    145 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
    146   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    147     return DiagnoseUnusedExprResult(Label->getSubStmt());
    148 
    149   const Expr *E = dyn_cast_or_null<Expr>(S);
    150   if (!E)
    151     return;
    152 
    153   SourceLocation Loc;
    154   SourceRange R1, R2;
    155   if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
    156     return;
    157 
    158   // Okay, we have an unused result.  Depending on what the base expression is,
    159   // we might want to make a more specific diagnostic.  Check for one of these
    160   // cases now.
    161   unsigned DiagID = diag::warn_unused_expr;
    162   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
    163     E = Temps->getSubExpr();
    164   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    165     E = TempExpr->getSubExpr();
    166 
    167   if (DiagnoseUnusedComparison(*this, E))
    168     return;
    169 
    170   E = E->IgnoreParenImpCasts();
    171   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    172     if (E->getType()->isVoidType())
    173       return;
    174 
    175     // If the callee has attribute pure, const, or warn_unused_result, warn with
    176     // a more specific message to make it clear what is happening.
    177     if (const Decl *FD = CE->getCalleeDecl()) {
    178       if (FD->getAttr<WarnUnusedResultAttr>()) {
    179         Diag(Loc, diag::warn_unused_result) << R1 << R2;
    180         return;
    181       }
    182       if (FD->getAttr<PureAttr>()) {
    183         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
    184         return;
    185       }
    186       if (FD->getAttr<ConstAttr>()) {
    187         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
    188         return;
    189       }
    190     }
    191   } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    192     if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
    193       Diag(Loc, diag::err_arc_unused_init_message) << R1;
    194       return;
    195     }
    196     const ObjCMethodDecl *MD = ME->getMethodDecl();
    197     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
    198       Diag(Loc, diag::warn_unused_result) << R1 << R2;
    199       return;
    200     }
    201   } else if (isa<ObjCPropertyRefExpr>(E)) {
    202     DiagID = diag::warn_unused_property_expr;
    203   } else if (const CXXFunctionalCastExpr *FC
    204                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
    205     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
    206         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
    207       return;
    208   }
    209   // Diagnose "(void*) blah" as a typo for "(void) blah".
    210   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    211     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    212     QualType T = TI->getType();
    213 
    214     // We really do want to use the non-canonical type here.
    215     if (T == Context.VoidPtrTy) {
    216       PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
    217 
    218       Diag(Loc, diag::warn_unused_voidptr)
    219         << FixItHint::CreateRemoval(TL.getStarLoc());
    220       return;
    221     }
    222   }
    223 
    224   DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
    225 }
    226 
    227 StmtResult
    228 Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
    229                         MultiStmtArg elts, bool isStmtExpr) {
    230   unsigned NumElts = elts.size();
    231   Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
    232   // If we're in C89 mode, check that we don't have any decls after stmts.  If
    233   // so, emit an extension diagnostic.
    234   if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
    235     // Note that __extension__ can be around a decl.
    236     unsigned i = 0;
    237     // Skip over all declarations.
    238     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
    239       /*empty*/;
    240 
    241     // We found the end of the list or a statement.  Scan for another declstmt.
    242     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
    243       /*empty*/;
    244 
    245     if (i != NumElts) {
    246       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
    247       Diag(D->getLocation(), diag::ext_mixed_decls_code);
    248     }
    249   }
    250   // Warn about unused expressions in statements.
    251   for (unsigned i = 0; i != NumElts; ++i) {
    252     // Ignore statements that are last in a statement expression.
    253     if (isStmtExpr && i == NumElts - 1)
    254       continue;
    255 
    256     DiagnoseUnusedExprResult(Elts[i]);
    257   }
    258 
    259   return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
    260 }
    261 
    262 StmtResult
    263 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
    264                     SourceLocation DotDotDotLoc, Expr *RHSVal,
    265                     SourceLocation ColonLoc) {
    266   assert((LHSVal != 0) && "missing expression in case statement");
    267 
    268   // C99 6.8.4.2p3: The expression shall be an integer constant.
    269   // However, GCC allows any evaluatable integer expression.
    270   if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
    271       VerifyIntegerConstantExpression(LHSVal))
    272     return StmtError();
    273 
    274   // GCC extension: The expression shall be an integer constant.
    275 
    276   if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
    277       VerifyIntegerConstantExpression(RHSVal)) {
    278     RHSVal = 0;  // Recover by just forgetting about it.
    279   }
    280 
    281   if (getCurFunction()->SwitchStack.empty()) {
    282     Diag(CaseLoc, diag::err_case_not_in_switch);
    283     return StmtError();
    284   }
    285 
    286   CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
    287                                         ColonLoc);
    288   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
    289   return Owned(CS);
    290 }
    291 
    292 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
    293 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
    294   DiagnoseUnusedExprResult(SubStmt);
    295 
    296   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
    297   CS->setSubStmt(SubStmt);
    298 }
    299 
    300 StmtResult
    301 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
    302                        Stmt *SubStmt, Scope *CurScope) {
    303   DiagnoseUnusedExprResult(SubStmt);
    304 
    305   if (getCurFunction()->SwitchStack.empty()) {
    306     Diag(DefaultLoc, diag::err_default_not_in_switch);
    307     return Owned(SubStmt);
    308   }
    309 
    310   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
    311   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
    312   return Owned(DS);
    313 }
    314 
    315 StmtResult
    316 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
    317                      SourceLocation ColonLoc, Stmt *SubStmt) {
    318 
    319   // If the label was multiply defined, reject it now.
    320   if (TheDecl->getStmt()) {
    321     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    322     Diag(TheDecl->getLocation(), diag::note_previous_definition);
    323     return Owned(SubStmt);
    324   }
    325 
    326   // Otherwise, things are good.  Fill in the declaration and return it.
    327   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
    328   TheDecl->setStmt(LS);
    329   if (!TheDecl->isGnuLocal())
    330     TheDecl->setLocation(IdentLoc);
    331   return Owned(LS);
    332 }
    333 
    334 StmtResult
    335 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
    336                   Stmt *thenStmt, SourceLocation ElseLoc,
    337                   Stmt *elseStmt) {
    338   ExprResult CondResult(CondVal.release());
    339 
    340   VarDecl *ConditionVar = 0;
    341   if (CondVar) {
    342     ConditionVar = cast<VarDecl>(CondVar);
    343     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
    344     if (CondResult.isInvalid())
    345       return StmtError();
    346   }
    347   Expr *ConditionExpr = CondResult.takeAs<Expr>();
    348   if (!ConditionExpr)
    349     return StmtError();
    350 
    351   DiagnoseUnusedExprResult(thenStmt);
    352 
    353   // Warn if the if block has a null body without an else value.
    354   // this helps prevent bugs due to typos, such as
    355   // if (condition);
    356   //   do_stuff();
    357   //
    358   if (!elseStmt) {
    359     if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
    360       // But do not warn if the body is a macro that expands to nothing, e.g:
    361       //
    362       // #define CALL(x)
    363       // if (condition)
    364       //   CALL(0);
    365       //
    366       if (!stmt->hasLeadingEmptyMacro())
    367         Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
    368   }
    369 
    370   DiagnoseUnusedExprResult(elseStmt);
    371 
    372   return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
    373                                     thenStmt, ElseLoc, elseStmt));
    374 }
    375 
    376 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
    377 /// the specified width and sign.  If an overflow occurs, detect it and emit
    378 /// the specified diagnostic.
    379 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
    380                                               unsigned NewWidth, bool NewSign,
    381                                               SourceLocation Loc,
    382                                               unsigned DiagID) {
    383   // Perform a conversion to the promoted condition type if needed.
    384   if (NewWidth > Val.getBitWidth()) {
    385     // If this is an extension, just do it.
    386     Val = Val.extend(NewWidth);
    387     Val.setIsSigned(NewSign);
    388 
    389     // If the input was signed and negative and the output is
    390     // unsigned, don't bother to warn: this is implementation-defined
    391     // behavior.
    392     // FIXME: Introduce a second, default-ignored warning for this case?
    393   } else if (NewWidth < Val.getBitWidth()) {
    394     // If this is a truncation, check for overflow.
    395     llvm::APSInt ConvVal(Val);
    396     ConvVal = ConvVal.trunc(NewWidth);
    397     ConvVal.setIsSigned(NewSign);
    398     ConvVal = ConvVal.extend(Val.getBitWidth());
    399     ConvVal.setIsSigned(Val.isSigned());
    400     if (ConvVal != Val)
    401       Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
    402 
    403     // Regardless of whether a diagnostic was emitted, really do the
    404     // truncation.
    405     Val = Val.trunc(NewWidth);
    406     Val.setIsSigned(NewSign);
    407   } else if (NewSign != Val.isSigned()) {
    408     // Convert the sign to match the sign of the condition.  This can cause
    409     // overflow as well: unsigned(INTMIN)
    410     // We don't diagnose this overflow, because it is implementation-defined
    411     // behavior.
    412     // FIXME: Introduce a second, default-ignored warning for this case?
    413     llvm::APSInt OldVal(Val);
    414     Val.setIsSigned(NewSign);
    415   }
    416 }
    417 
    418 namespace {
    419   struct CaseCompareFunctor {
    420     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    421                     const llvm::APSInt &RHS) {
    422       return LHS.first < RHS;
    423     }
    424     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
    425                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    426       return LHS.first < RHS.first;
    427     }
    428     bool operator()(const llvm::APSInt &LHS,
    429                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
    430       return LHS < RHS.first;
    431     }
    432   };
    433 }
    434 
    435 /// CmpCaseVals - Comparison predicate for sorting case values.
    436 ///
    437 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
    438                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
    439   if (lhs.first < rhs.first)
    440     return true;
    441 
    442   if (lhs.first == rhs.first &&
    443       lhs.second->getCaseLoc().getRawEncoding()
    444        < rhs.second->getCaseLoc().getRawEncoding())
    445     return true;
    446   return false;
    447 }
    448 
    449 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
    450 ///
    451 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    452                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    453 {
    454   return lhs.first < rhs.first;
    455 }
    456 
    457 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
    458 ///
    459 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
    460                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
    461 {
    462   return lhs.first == rhs.first;
    463 }
    464 
    465 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
    466 /// potentially integral-promoted expression @p expr.
    467 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
    468   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
    469     expr = cleanups->getSubExpr();
    470   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
    471     if (impcast->getCastKind() != CK_IntegralCast) break;
    472     expr = impcast->getSubExpr();
    473   }
    474   return expr->getType();
    475 }
    476 
    477 StmtResult
    478 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
    479                              Decl *CondVar) {
    480   ExprResult CondResult;
    481 
    482   VarDecl *ConditionVar = 0;
    483   if (CondVar) {
    484     ConditionVar = cast<VarDecl>(CondVar);
    485     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
    486     if (CondResult.isInvalid())
    487       return StmtError();
    488 
    489     Cond = CondResult.release();
    490   }
    491 
    492   if (!Cond)
    493     return StmtError();
    494 
    495   CondResult
    496     = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
    497                           PDiag(diag::err_typecheck_statement_requires_integer),
    498                                    PDiag(diag::err_switch_incomplete_class_type)
    499                                      << Cond->getSourceRange(),
    500                                    PDiag(diag::err_switch_explicit_conversion),
    501                                          PDiag(diag::note_switch_conversion),
    502                                    PDiag(diag::err_switch_multiple_conversions),
    503                                          PDiag(diag::note_switch_conversion),
    504                                          PDiag(0));
    505   if (CondResult.isInvalid()) return StmtError();
    506   Cond = CondResult.take();
    507 
    508   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
    509   CondResult = UsualUnaryConversions(Cond);
    510   if (CondResult.isInvalid()) return StmtError();
    511   Cond = CondResult.take();
    512 
    513   if (!CondVar) {
    514     CheckImplicitConversions(Cond, SwitchLoc);
    515     CondResult = MaybeCreateExprWithCleanups(Cond);
    516     if (CondResult.isInvalid())
    517       return StmtError();
    518     Cond = CondResult.take();
    519   }
    520 
    521   getCurFunction()->setHasBranchIntoScope();
    522 
    523   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
    524   getCurFunction()->SwitchStack.push_back(SS);
    525   return Owned(SS);
    526 }
    527 
    528 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
    529   if (Val.getBitWidth() < BitWidth)
    530     Val = Val.extend(BitWidth);
    531   else if (Val.getBitWidth() > BitWidth)
    532     Val = Val.trunc(BitWidth);
    533   Val.setIsSigned(IsSigned);
    534 }
    535 
    536 StmtResult
    537 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
    538                             Stmt *BodyStmt) {
    539   SwitchStmt *SS = cast<SwitchStmt>(Switch);
    540   assert(SS == getCurFunction()->SwitchStack.back() &&
    541          "switch stack missing push/pop!");
    542 
    543   SS->setBody(BodyStmt, SwitchLoc);
    544   getCurFunction()->SwitchStack.pop_back();
    545 
    546   Expr *CondExpr = SS->getCond();
    547   if (!CondExpr) return StmtError();
    548 
    549   QualType CondType = CondExpr->getType();
    550 
    551   Expr *CondExprBeforePromotion = CondExpr;
    552   QualType CondTypeBeforePromotion =
    553       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
    554 
    555   // C++ 6.4.2.p2:
    556   // Integral promotions are performed (on the switch condition).
    557   //
    558   // A case value unrepresentable by the original switch condition
    559   // type (before the promotion) doesn't make sense, even when it can
    560   // be represented by the promoted type.  Therefore we need to find
    561   // the pre-promotion type of the switch condition.
    562   if (!CondExpr->isTypeDependent()) {
    563     // We have already converted the expression to an integral or enumeration
    564     // type, when we started the switch statement. If we don't have an
    565     // appropriate type now, just return an error.
    566     if (!CondType->isIntegralOrEnumerationType())
    567       return StmtError();
    568 
    569     if (CondExpr->isKnownToHaveBooleanValue()) {
    570       // switch(bool_expr) {...} is often a programmer error, e.g.
    571       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
    572       // One can always use an if statement instead of switch(bool_expr).
    573       Diag(SwitchLoc, diag::warn_bool_switch_condition)
    574           << CondExpr->getSourceRange();
    575     }
    576   }
    577 
    578   // Get the bitwidth of the switched-on value before promotions.  We must
    579   // convert the integer case values to this width before comparison.
    580   bool HasDependentValue
    581     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
    582   unsigned CondWidth
    583     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
    584   bool CondIsSigned
    585     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
    586 
    587   // Accumulate all of the case values in a vector so that we can sort them
    588   // and detect duplicates.  This vector contains the APInt for the case after
    589   // it has been converted to the condition type.
    590   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
    591   CaseValsTy CaseVals;
    592 
    593   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
    594   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
    595   CaseRangesTy CaseRanges;
    596 
    597   DefaultStmt *TheDefaultStmt = 0;
    598 
    599   bool CaseListIsErroneous = false;
    600 
    601   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
    602        SC = SC->getNextSwitchCase()) {
    603 
    604     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
    605       if (TheDefaultStmt) {
    606         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
    607         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
    608 
    609         // FIXME: Remove the default statement from the switch block so that
    610         // we'll return a valid AST.  This requires recursing down the AST and
    611         // finding it, not something we are set up to do right now.  For now,
    612         // just lop the entire switch stmt out of the AST.
    613         CaseListIsErroneous = true;
    614       }
    615       TheDefaultStmt = DS;
    616 
    617     } else {
    618       CaseStmt *CS = cast<CaseStmt>(SC);
    619 
    620       // We already verified that the expression has a i-c-e value (C99
    621       // 6.8.4.2p3) - get that value now.
    622       Expr *Lo = CS->getLHS();
    623 
    624       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
    625         HasDependentValue = true;
    626         break;
    627       }
    628 
    629       llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
    630 
    631       // Convert the value to the same width/sign as the condition.
    632       ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
    633                                          Lo->getLocStart(),
    634                                          diag::warn_case_value_overflow);
    635 
    636       // If the LHS is not the same type as the condition, insert an implicit
    637       // cast.
    638       Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
    639       CS->setLHS(Lo);
    640 
    641       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
    642       if (CS->getRHS()) {
    643         if (CS->getRHS()->isTypeDependent() ||
    644             CS->getRHS()->isValueDependent()) {
    645           HasDependentValue = true;
    646           break;
    647         }
    648         CaseRanges.push_back(std::make_pair(LoVal, CS));
    649       } else
    650         CaseVals.push_back(std::make_pair(LoVal, CS));
    651     }
    652   }
    653 
    654   if (!HasDependentValue) {
    655     // If we don't have a default statement, check whether the
    656     // condition is constant.
    657     llvm::APSInt ConstantCondValue;
    658     bool HasConstantCond = false;
    659     bool ShouldCheckConstantCond = false;
    660     if (!HasDependentValue && !TheDefaultStmt) {
    661       Expr::EvalResult Result;
    662       HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
    663       if (HasConstantCond) {
    664         assert(Result.Val.isInt() && "switch condition evaluated to non-int");
    665         ConstantCondValue = Result.Val.getInt();
    666         ShouldCheckConstantCond = true;
    667 
    668         assert(ConstantCondValue.getBitWidth() == CondWidth &&
    669                ConstantCondValue.isSigned() == CondIsSigned);
    670       }
    671     }
    672 
    673     // Sort all the scalar case values so we can easily detect duplicates.
    674     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
    675 
    676     if (!CaseVals.empty()) {
    677       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
    678         if (ShouldCheckConstantCond &&
    679             CaseVals[i].first == ConstantCondValue)
    680           ShouldCheckConstantCond = false;
    681 
    682         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
    683           // If we have a duplicate, report it.
    684           Diag(CaseVals[i].second->getLHS()->getLocStart(),
    685                diag::err_duplicate_case) << CaseVals[i].first.toString(10);
    686           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
    687                diag::note_duplicate_case_prev);
    688           // FIXME: We really want to remove the bogus case stmt from the
    689           // substmt, but we have no way to do this right now.
    690           CaseListIsErroneous = true;
    691         }
    692       }
    693     }
    694 
    695     // Detect duplicate case ranges, which usually don't exist at all in
    696     // the first place.
    697     if (!CaseRanges.empty()) {
    698       // Sort all the case ranges by their low value so we can easily detect
    699       // overlaps between ranges.
    700       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
    701 
    702       // Scan the ranges, computing the high values and removing empty ranges.
    703       std::vector<llvm::APSInt> HiVals;
    704       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    705         llvm::APSInt &LoVal = CaseRanges[i].first;
    706         CaseStmt *CR = CaseRanges[i].second;
    707         Expr *Hi = CR->getRHS();
    708         llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
    709 
    710         // Convert the value to the same width/sign as the condition.
    711         ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
    712                                            Hi->getLocStart(),
    713                                            diag::warn_case_value_overflow);
    714 
    715         // If the LHS is not the same type as the condition, insert an implicit
    716         // cast.
    717         Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
    718         CR->setRHS(Hi);
    719 
    720         // If the low value is bigger than the high value, the case is empty.
    721         if (LoVal > HiVal) {
    722           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
    723             << SourceRange(CR->getLHS()->getLocStart(),
    724                            Hi->getLocEnd());
    725           CaseRanges.erase(CaseRanges.begin()+i);
    726           --i, --e;
    727           continue;
    728         }
    729 
    730         if (ShouldCheckConstantCond &&
    731             LoVal <= ConstantCondValue &&
    732             ConstantCondValue <= HiVal)
    733           ShouldCheckConstantCond = false;
    734 
    735         HiVals.push_back(HiVal);
    736       }
    737 
    738       // Rescan the ranges, looking for overlap with singleton values and other
    739       // ranges.  Since the range list is sorted, we only need to compare case
    740       // ranges with their neighbors.
    741       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
    742         llvm::APSInt &CRLo = CaseRanges[i].first;
    743         llvm::APSInt &CRHi = HiVals[i];
    744         CaseStmt *CR = CaseRanges[i].second;
    745 
    746         // Check to see whether the case range overlaps with any
    747         // singleton cases.
    748         CaseStmt *OverlapStmt = 0;
    749         llvm::APSInt OverlapVal(32);
    750 
    751         // Find the smallest value >= the lower bound.  If I is in the
    752         // case range, then we have overlap.
    753         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
    754                                                   CaseVals.end(), CRLo,
    755                                                   CaseCompareFunctor());
    756         if (I != CaseVals.end() && I->first < CRHi) {
    757           OverlapVal  = I->first;   // Found overlap with scalar.
    758           OverlapStmt = I->second;
    759         }
    760 
    761         // Find the smallest value bigger than the upper bound.
    762         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
    763         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
    764           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
    765           OverlapStmt = (I-1)->second;
    766         }
    767 
    768         // Check to see if this case stmt overlaps with the subsequent
    769         // case range.
    770         if (i && CRLo <= HiVals[i-1]) {
    771           OverlapVal  = HiVals[i-1];       // Found overlap with range.
    772           OverlapStmt = CaseRanges[i-1].second;
    773         }
    774 
    775         if (OverlapStmt) {
    776           // If we have a duplicate, report it.
    777           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
    778             << OverlapVal.toString(10);
    779           Diag(OverlapStmt->getLHS()->getLocStart(),
    780                diag::note_duplicate_case_prev);
    781           // FIXME: We really want to remove the bogus case stmt from the
    782           // substmt, but we have no way to do this right now.
    783           CaseListIsErroneous = true;
    784         }
    785       }
    786     }
    787 
    788     // Complain if we have a constant condition and we didn't find a match.
    789     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
    790       // TODO: it would be nice if we printed enums as enums, chars as
    791       // chars, etc.
    792       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
    793         << ConstantCondValue.toString(10)
    794         << CondExpr->getSourceRange();
    795     }
    796 
    797     // Check to see if switch is over an Enum and handles all of its
    798     // values.  We only issue a warning if there is not 'default:', but
    799     // we still do the analysis to preserve this information in the AST
    800     // (which can be used by flow-based analyes).
    801     //
    802     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
    803 
    804     // If switch has default case, then ignore it.
    805     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
    806       const EnumDecl *ED = ET->getDecl();
    807       typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
    808         EnumValsTy;
    809       EnumValsTy EnumVals;
    810 
    811       // Gather all enum values, set their type and sort them,
    812       // allowing easier comparison with CaseVals.
    813       for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
    814            EDI != ED->enumerator_end(); ++EDI) {
    815         llvm::APSInt Val = EDI->getInitVal();
    816         AdjustAPSInt(Val, CondWidth, CondIsSigned);
    817         EnumVals.push_back(std::make_pair(Val, *EDI));
    818       }
    819       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
    820       EnumValsTy::iterator EIend =
    821         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
    822 
    823       // See which case values aren't in enum.
    824       // TODO: we might want to check whether case values are out of the
    825       // enum even if we don't want to check whether all cases are handled.
    826       if (!TheDefaultStmt) {
    827         EnumValsTy::const_iterator EI = EnumVals.begin();
    828         for (CaseValsTy::const_iterator CI = CaseVals.begin();
    829              CI != CaseVals.end(); CI++) {
    830           while (EI != EIend && EI->first < CI->first)
    831             EI++;
    832           if (EI == EIend || EI->first > CI->first)
    833             Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
    834               << ED->getDeclName();
    835         }
    836         // See which of case ranges aren't in enum
    837         EI = EnumVals.begin();
    838         for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
    839              RI != CaseRanges.end() && EI != EIend; RI++) {
    840           while (EI != EIend && EI->first < RI->first)
    841             EI++;
    842 
    843           if (EI == EIend || EI->first != RI->first) {
    844             Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
    845               << ED->getDeclName();
    846           }
    847 
    848           llvm::APSInt Hi =
    849             RI->second->getRHS()->EvaluateKnownConstInt(Context);
    850           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
    851           while (EI != EIend && EI->first < Hi)
    852             EI++;
    853           if (EI == EIend || EI->first != Hi)
    854             Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
    855               << ED->getDeclName();
    856         }
    857       }
    858 
    859       // Check which enum vals aren't in switch
    860       CaseValsTy::const_iterator CI = CaseVals.begin();
    861       CaseRangesTy::const_iterator RI = CaseRanges.begin();
    862       bool hasCasesNotInSwitch = false;
    863 
    864       SmallVector<DeclarationName,8> UnhandledNames;
    865 
    866       for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
    867         // Drop unneeded case values
    868         llvm::APSInt CIVal;
    869         while (CI != CaseVals.end() && CI->first < EI->first)
    870           CI++;
    871 
    872         if (CI != CaseVals.end() && CI->first == EI->first)
    873           continue;
    874 
    875         // Drop unneeded case ranges
    876         for (; RI != CaseRanges.end(); RI++) {
    877           llvm::APSInt Hi =
    878             RI->second->getRHS()->EvaluateKnownConstInt(Context);
    879           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
    880           if (EI->first <= Hi)
    881             break;
    882         }
    883 
    884         if (RI == CaseRanges.end() || EI->first < RI->first) {
    885           hasCasesNotInSwitch = true;
    886           if (!TheDefaultStmt)
    887             UnhandledNames.push_back(EI->second->getDeclName());
    888         }
    889       }
    890 
    891       // Produce a nice diagnostic if multiple values aren't handled.
    892       switch (UnhandledNames.size()) {
    893       case 0: break;
    894       case 1:
    895         Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
    896           << UnhandledNames[0];
    897         break;
    898       case 2:
    899         Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
    900           << UnhandledNames[0] << UnhandledNames[1];
    901         break;
    902       case 3:
    903         Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
    904           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
    905         break;
    906       default:
    907         Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
    908           << (unsigned)UnhandledNames.size()
    909           << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
    910         break;
    911       }
    912 
    913       if (!hasCasesNotInSwitch)
    914         SS->setAllEnumCasesCovered();
    915     }
    916   }
    917 
    918   // FIXME: If the case list was broken is some way, we don't have a good system
    919   // to patch it up.  Instead, just return the whole substmt as broken.
    920   if (CaseListIsErroneous)
    921     return StmtError();
    922 
    923   return Owned(SS);
    924 }
    925 
    926 StmtResult
    927 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
    928                      Decl *CondVar, Stmt *Body) {
    929   ExprResult CondResult(Cond.release());
    930 
    931   VarDecl *ConditionVar = 0;
    932   if (CondVar) {
    933     ConditionVar = cast<VarDecl>(CondVar);
    934     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
    935     if (CondResult.isInvalid())
    936       return StmtError();
    937   }
    938   Expr *ConditionExpr = CondResult.take();
    939   if (!ConditionExpr)
    940     return StmtError();
    941 
    942   DiagnoseUnusedExprResult(Body);
    943 
    944   return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
    945                                        Body, WhileLoc));
    946 }
    947 
    948 StmtResult
    949 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
    950                   SourceLocation WhileLoc, SourceLocation CondLParen,
    951                   Expr *Cond, SourceLocation CondRParen) {
    952   assert(Cond && "ActOnDoStmt(): missing expression");
    953 
    954   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
    955   if (CondResult.isInvalid() || CondResult.isInvalid())
    956     return StmtError();
    957   Cond = CondResult.take();
    958 
    959   CheckImplicitConversions(Cond, DoLoc);
    960   CondResult = MaybeCreateExprWithCleanups(Cond);
    961   if (CondResult.isInvalid())
    962     return StmtError();
    963   Cond = CondResult.take();
    964 
    965   DiagnoseUnusedExprResult(Body);
    966 
    967   return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
    968 }
    969 
    970 StmtResult
    971 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
    972                    Stmt *First, FullExprArg second, Decl *secondVar,
    973                    FullExprArg third,
    974                    SourceLocation RParenLoc, Stmt *Body) {
    975   if (!getLangOptions().CPlusPlus) {
    976     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
    977       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
    978       // declare identifiers for objects having storage class 'auto' or
    979       // 'register'.
    980       for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
    981            DI!=DE; ++DI) {
    982         VarDecl *VD = dyn_cast<VarDecl>(*DI);
    983         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
    984           VD = 0;
    985         if (VD == 0)
    986           Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
    987         // FIXME: mark decl erroneous!
    988       }
    989     }
    990   }
    991 
    992   ExprResult SecondResult(second.release());
    993   VarDecl *ConditionVar = 0;
    994   if (secondVar) {
    995     ConditionVar = cast<VarDecl>(secondVar);
    996     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
    997     if (SecondResult.isInvalid())
    998       return StmtError();
    999   }
   1000 
   1001   Expr *Third  = third.release().takeAs<Expr>();
   1002 
   1003   DiagnoseUnusedExprResult(First);
   1004   DiagnoseUnusedExprResult(Third);
   1005   DiagnoseUnusedExprResult(Body);
   1006 
   1007   return Owned(new (Context) ForStmt(Context, First,
   1008                                      SecondResult.take(), ConditionVar,
   1009                                      Third, Body, ForLoc, LParenLoc,
   1010                                      RParenLoc));
   1011 }
   1012 
   1013 /// In an Objective C collection iteration statement:
   1014 ///   for (x in y)
   1015 /// x can be an arbitrary l-value expression.  Bind it up as a
   1016 /// full-expression.
   1017 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
   1018   CheckImplicitConversions(E);
   1019   ExprResult Result = MaybeCreateExprWithCleanups(E);
   1020   if (Result.isInvalid()) return StmtError();
   1021   return Owned(static_cast<Stmt*>(Result.get()));
   1022 }
   1023 
   1024 ExprResult
   1025 Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
   1026   assert(collection);
   1027 
   1028   // Bail out early if we've got a type-dependent expression.
   1029   if (collection->isTypeDependent()) return Owned(collection);
   1030 
   1031   // Perform normal l-value conversion.
   1032   ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
   1033   if (result.isInvalid())
   1034     return ExprError();
   1035   collection = result.take();
   1036 
   1037   // The operand needs to have object-pointer type.
   1038   // TODO: should we do a contextual conversion?
   1039   const ObjCObjectPointerType *pointerType =
   1040     collection->getType()->getAs<ObjCObjectPointerType>();
   1041   if (!pointerType)
   1042     return Diag(forLoc, diag::err_collection_expr_type)
   1043              << collection->getType() << collection->getSourceRange();
   1044 
   1045   // Check that the operand provides
   1046   //   - countByEnumeratingWithState:objects:count:
   1047   const ObjCObjectType *objectType = pointerType->getObjectType();
   1048   ObjCInterfaceDecl *iface = objectType->getInterface();
   1049 
   1050   // If we have a forward-declared type, we can't do this check.
   1051   if (iface && iface->isForwardDecl()) {
   1052     // This is ill-formed under ARC.
   1053     if (getLangOptions().ObjCAutoRefCount) {
   1054       Diag(forLoc, diag::err_arc_collection_forward)
   1055         << pointerType->getPointeeType() << collection->getSourceRange();
   1056     }
   1057 
   1058     // Otherwise, if we have any useful type information, check that
   1059     // the type declares the appropriate method.
   1060   } else if (iface || !objectType->qual_empty()) {
   1061     IdentifierInfo *selectorIdents[] = {
   1062       &Context.Idents.get("countByEnumeratingWithState"),
   1063       &Context.Idents.get("objects"),
   1064       &Context.Idents.get("count")
   1065     };
   1066     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
   1067 
   1068     ObjCMethodDecl *method = 0;
   1069 
   1070     // If there's an interface, look in both the public and private APIs.
   1071     if (iface) {
   1072       method = iface->lookupInstanceMethod(selector);
   1073       if (!method) method = LookupPrivateInstanceMethod(selector, iface);
   1074     }
   1075 
   1076     // Also check protocol qualifiers.
   1077     if (!method)
   1078       method = LookupMethodInQualifiedType(selector, pointerType,
   1079                                            /*instance*/ true);
   1080 
   1081     // If we didn't find it anywhere, give up.
   1082     if (!method) {
   1083       Diag(forLoc, diag::warn_collection_expr_type)
   1084         << collection->getType() << selector << collection->getSourceRange();
   1085     }
   1086 
   1087     // TODO: check for an incompatible signature?
   1088   }
   1089 
   1090   // Wrap up any cleanups in the expression.
   1091   return Owned(MaybeCreateExprWithCleanups(collection));
   1092 }
   1093 
   1094 StmtResult
   1095 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
   1096                                  SourceLocation LParenLoc,
   1097                                  Stmt *First, Expr *Second,
   1098                                  SourceLocation RParenLoc, Stmt *Body) {
   1099   if (First) {
   1100     QualType FirstType;
   1101     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
   1102       if (!DS->isSingleDecl())
   1103         return StmtError(Diag((*DS->decl_begin())->getLocation(),
   1104                          diag::err_toomany_element_decls));
   1105 
   1106       VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
   1107       FirstType = D->getType();
   1108       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
   1109       // declare identifiers for objects having storage class 'auto' or
   1110       // 'register'.
   1111       if (!D->hasLocalStorage())
   1112         return StmtError(Diag(D->getLocation(),
   1113                               diag::err_non_variable_decl_in_for));
   1114     } else {
   1115       Expr *FirstE = cast<Expr>(First);
   1116       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
   1117         return StmtError(Diag(First->getLocStart(),
   1118                    diag::err_selector_element_not_lvalue)
   1119           << First->getSourceRange());
   1120 
   1121       FirstType = static_cast<Expr*>(First)->getType();
   1122     }
   1123     if (!FirstType->isDependentType() &&
   1124         !FirstType->isObjCObjectPointerType() &&
   1125         !FirstType->isBlockPointerType())
   1126         Diag(ForLoc, diag::err_selector_element_type)
   1127           << FirstType << First->getSourceRange();
   1128   }
   1129 
   1130   return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
   1131                                                    ForLoc, RParenLoc));
   1132 }
   1133 
   1134 namespace {
   1135 
   1136 enum BeginEndFunction {
   1137   BEF_begin,
   1138   BEF_end
   1139 };
   1140 
   1141 /// Build a variable declaration for a for-range statement.
   1142 static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
   1143                                      QualType Type, const char *Name) {
   1144   DeclContext *DC = SemaRef.CurContext;
   1145   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
   1146   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
   1147   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
   1148                                   TInfo, SC_Auto, SC_None);
   1149   Decl->setImplicit();
   1150   return Decl;
   1151 }
   1152 
   1153 /// Finish building a variable declaration for a for-range statement.
   1154 /// \return true if an error occurs.
   1155 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
   1156                                   SourceLocation Loc, int diag) {
   1157   // Deduce the type for the iterator variable now rather than leaving it to
   1158   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
   1159   TypeSourceInfo *InitTSI = 0;
   1160   if (Init->getType()->isVoidType() ||
   1161       !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
   1162     SemaRef.Diag(Loc, diag) << Init->getType();
   1163   if (!InitTSI) {
   1164     Decl->setInvalidDecl();
   1165     return true;
   1166   }
   1167   Decl->setTypeSourceInfo(InitTSI);
   1168   Decl->setType(InitTSI->getType());
   1169 
   1170   // In ARC, infer lifetime.
   1171   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
   1172   // we're doing the equivalent of fast iteration.
   1173   if (SemaRef.getLangOptions().ObjCAutoRefCount &&
   1174       SemaRef.inferObjCARCLifetime(Decl))
   1175     Decl->setInvalidDecl();
   1176 
   1177   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
   1178                                /*TypeMayContainAuto=*/false);
   1179   SemaRef.FinalizeDeclaration(Decl);
   1180   SemaRef.CurContext->addHiddenDecl(Decl);
   1181   return false;
   1182 }
   1183 
   1184 /// Produce a note indicating which begin/end function was implicitly called
   1185 /// by a C++0x for-range statement. This is often not obvious from the code,
   1186 /// nor from the diagnostics produced when analysing the implicit expressions
   1187 /// required in a for-range statement.
   1188 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
   1189                                   BeginEndFunction BEF) {
   1190   CallExpr *CE = dyn_cast<CallExpr>(E);
   1191   if (!CE)
   1192     return;
   1193   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
   1194   if (!D)
   1195     return;
   1196   SourceLocation Loc = D->getLocation();
   1197 
   1198   std::string Description;
   1199   bool IsTemplate = false;
   1200   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
   1201     Description = SemaRef.getTemplateArgumentBindingsText(
   1202       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
   1203     IsTemplate = true;
   1204   }
   1205 
   1206   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
   1207     << BEF << IsTemplate << Description << E->getType();
   1208 }
   1209 
   1210 /// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
   1211 /// given LookupResult is non-empty, it is assumed to describe a member which
   1212 /// will be invoked. Otherwise, the function will be found via argument
   1213 /// dependent lookup.
   1214 static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
   1215                                             SourceLocation Loc,
   1216                                             VarDecl *Decl,
   1217                                             BeginEndFunction BEF,
   1218                                             const DeclarationNameInfo &NameInfo,
   1219                                             LookupResult &MemberLookup,
   1220                                             Expr *Range) {
   1221   ExprResult CallExpr;
   1222   if (!MemberLookup.empty()) {
   1223     ExprResult MemberRef =
   1224       SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
   1225                                        /*IsPtr=*/false, CXXScopeSpec(),
   1226                                        /*Qualifier=*/0, MemberLookup,
   1227                                        /*TemplateArgs=*/0);
   1228     if (MemberRef.isInvalid())
   1229       return ExprError();
   1230     CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
   1231                                      Loc, 0);
   1232     if (CallExpr.isInvalid())
   1233       return ExprError();
   1234   } else {
   1235     UnresolvedSet<0> FoundNames;
   1236     // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
   1237     // std is an associated namespace.
   1238     UnresolvedLookupExpr *Fn =
   1239       UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
   1240                                    NestedNameSpecifierLoc(), NameInfo,
   1241                                    /*NeedsADL=*/true, /*Overloaded=*/false,
   1242                                    FoundNames.begin(), FoundNames.end(),
   1243                                    /*LookInStdNamespace=*/true);
   1244     CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
   1245                                                0);
   1246     if (CallExpr.isInvalid()) {
   1247       SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
   1248         << Range->getType();
   1249       return ExprError();
   1250     }
   1251   }
   1252   if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
   1253                             diag::err_for_range_iter_deduction_failure)) {
   1254     NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
   1255     return ExprError();
   1256   }
   1257   return CallExpr;
   1258 }
   1259 
   1260 }
   1261 
   1262 /// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
   1263 ///
   1264 /// C++0x [stmt.ranged]:
   1265 ///   A range-based for statement is equivalent to
   1266 ///
   1267 ///   {
   1268 ///     auto && __range = range-init;
   1269 ///     for ( auto __begin = begin-expr,
   1270 ///           __end = end-expr;
   1271 ///           __begin != __end;
   1272 ///           ++__begin ) {
   1273 ///       for-range-declaration = *__begin;
   1274 ///       statement
   1275 ///     }
   1276 ///   }
   1277 ///
   1278 /// The body of the loop is not available yet, since it cannot be analysed until
   1279 /// we have determined the type of the for-range-declaration.
   1280 StmtResult
   1281 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
   1282                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
   1283                            SourceLocation RParenLoc) {
   1284   if (!First || !Range)
   1285     return StmtError();
   1286 
   1287   DeclStmt *DS = dyn_cast<DeclStmt>(First);
   1288   assert(DS && "first part of for range not a decl stmt");
   1289 
   1290   if (!DS->isSingleDecl()) {
   1291     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
   1292     return StmtError();
   1293   }
   1294   if (DS->getSingleDecl()->isInvalidDecl())
   1295     return StmtError();
   1296 
   1297   if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
   1298     return StmtError();
   1299 
   1300   // Build  auto && __range = range-init
   1301   SourceLocation RangeLoc = Range->getLocStart();
   1302   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
   1303                                            Context.getAutoRRefDeductType(),
   1304                                            "__range");
   1305   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
   1306                             diag::err_for_range_deduction_failure))
   1307     return StmtError();
   1308 
   1309   // Claim the type doesn't contain auto: we've already done the checking.
   1310   DeclGroupPtrTy RangeGroup =
   1311     BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
   1312   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
   1313   if (RangeDecl.isInvalid())
   1314     return StmtError();
   1315 
   1316   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
   1317                               /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
   1318                               RParenLoc);
   1319 }
   1320 
   1321 /// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
   1322 StmtResult
   1323 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
   1324                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
   1325                            Expr *Inc, Stmt *LoopVarDecl,
   1326                            SourceLocation RParenLoc) {
   1327   Scope *S = getCurScope();
   1328 
   1329   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
   1330   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
   1331   QualType RangeVarType = RangeVar->getType();
   1332 
   1333   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
   1334   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
   1335 
   1336   StmtResult BeginEndDecl = BeginEnd;
   1337   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
   1338 
   1339   if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
   1340     SourceLocation RangeLoc = RangeVar->getLocation();
   1341 
   1342     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
   1343 
   1344     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   1345                                                 VK_LValue, ColonLoc);
   1346     if (BeginRangeRef.isInvalid())
   1347       return StmtError();
   1348 
   1349     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
   1350                                               VK_LValue, ColonLoc);
   1351     if (EndRangeRef.isInvalid())
   1352       return StmtError();
   1353 
   1354     QualType AutoType = Context.getAutoDeductType();
   1355     Expr *Range = RangeVar->getInit();
   1356     if (!Range)
   1357       return StmtError();
   1358     QualType RangeType = Range->getType();
   1359 
   1360     if (RequireCompleteType(RangeLoc, RangeType,
   1361                             PDiag(diag::err_for_range_incomplete_type)))
   1362       return StmtError();
   1363 
   1364     // Build auto __begin = begin-expr, __end = end-expr.
   1365     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   1366                                              "__begin");
   1367     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
   1368                                            "__end");
   1369 
   1370     // Build begin-expr and end-expr and attach to __begin and __end variables.
   1371     ExprResult BeginExpr, EndExpr;
   1372     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
   1373       // - if _RangeT is an array type, begin-expr and end-expr are __range and
   1374       //   __range + __bound, respectively, where __bound is the array bound. If
   1375       //   _RangeT is an array of unknown size or an array of incomplete type,
   1376       //   the program is ill-formed;
   1377 
   1378       // begin-expr is __range.
   1379       BeginExpr = BeginRangeRef;
   1380       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
   1381                                 diag::err_for_range_iter_deduction_failure)) {
   1382         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1383         return StmtError();
   1384       }
   1385 
   1386       // Find the array bound.
   1387       ExprResult BoundExpr;
   1388       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
   1389         BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
   1390                                                  Context.getPointerDiffType(),
   1391                                                  RangeLoc));
   1392       else if (const VariableArrayType *VAT =
   1393                dyn_cast<VariableArrayType>(UnqAT))
   1394         BoundExpr = VAT->getSizeExpr();
   1395       else {
   1396         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
   1397         // UnqAT is not incomplete and Range is not type-dependent.
   1398         llvm_unreachable("Unexpected array type in for-range");
   1399       }
   1400 
   1401       // end-expr is __range + __bound.
   1402       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
   1403                            BoundExpr.get());
   1404       if (EndExpr.isInvalid())
   1405         return StmtError();
   1406       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
   1407                                 diag::err_for_range_iter_deduction_failure)) {
   1408         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   1409         return StmtError();
   1410       }
   1411     } else {
   1412       DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
   1413                                         ColonLoc);
   1414       DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
   1415                                       ColonLoc);
   1416 
   1417       LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
   1418       LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
   1419 
   1420       if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
   1421         // - if _RangeT is a class type, the unqualified-ids begin and end are
   1422         //   looked up in the scope of class _RangeT as if by class member access
   1423         //   lookup (3.4.5), and if either (or both) finds at least one
   1424         //   declaration, begin-expr and end-expr are __range.begin() and
   1425         //   __range.end(), respectively;
   1426         LookupQualifiedName(BeginMemberLookup, D);
   1427         LookupQualifiedName(EndMemberLookup, D);
   1428 
   1429         if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
   1430           Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
   1431             << RangeType << BeginMemberLookup.empty();
   1432           return StmtError();
   1433         }
   1434       } else {
   1435         // - otherwise, begin-expr and end-expr are begin(__range) and
   1436         //   end(__range), respectively, where begin and end are looked up with
   1437         //   argument-dependent lookup (3.4.2). For the purposes of this name
   1438         //   lookup, namespace std is an associated namespace.
   1439       }
   1440 
   1441       BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
   1442                                             BEF_begin, BeginNameInfo,
   1443                                             BeginMemberLookup,
   1444                                             BeginRangeRef.get());
   1445       if (BeginExpr.isInvalid())
   1446         return StmtError();
   1447 
   1448       EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
   1449                                           BEF_end, EndNameInfo,
   1450                                           EndMemberLookup, EndRangeRef.get());
   1451       if (EndExpr.isInvalid())
   1452         return StmtError();
   1453     }
   1454 
   1455     // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
   1456     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
   1457     if (!Context.hasSameType(BeginType, EndType)) {
   1458       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
   1459         << BeginType << EndType;
   1460       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1461       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   1462     }
   1463 
   1464     Decl *BeginEndDecls[] = { BeginVar, EndVar };
   1465     // Claim the type doesn't contain auto: we've already done the checking.
   1466     DeclGroupPtrTy BeginEndGroup =
   1467       BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
   1468     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
   1469 
   1470     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
   1471     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   1472                                            VK_LValue, ColonLoc);
   1473     if (BeginRef.isInvalid())
   1474       return StmtError();
   1475 
   1476     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
   1477                                          VK_LValue, ColonLoc);
   1478     if (EndRef.isInvalid())
   1479       return StmtError();
   1480 
   1481     // Build and check __begin != __end expression.
   1482     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
   1483                            BeginRef.get(), EndRef.get());
   1484     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
   1485     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
   1486     if (NotEqExpr.isInvalid()) {
   1487       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1488       if (!Context.hasSameType(BeginType, EndType))
   1489         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
   1490       return StmtError();
   1491     }
   1492 
   1493     // Build and check ++__begin expression.
   1494     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   1495                                 VK_LValue, ColonLoc);
   1496     if (BeginRef.isInvalid())
   1497       return StmtError();
   1498 
   1499     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
   1500     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
   1501     if (IncrExpr.isInvalid()) {
   1502       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1503       return StmtError();
   1504     }
   1505 
   1506     // Build and check *__begin  expression.
   1507     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
   1508                                 VK_LValue, ColonLoc);
   1509     if (BeginRef.isInvalid())
   1510       return StmtError();
   1511 
   1512     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
   1513     if (DerefExpr.isInvalid()) {
   1514       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1515       return StmtError();
   1516     }
   1517 
   1518     // Attach  *__begin  as initializer for VD.
   1519     if (!LoopVar->isInvalidDecl()) {
   1520       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
   1521                            /*TypeMayContainAuto=*/true);
   1522       if (LoopVar->isInvalidDecl())
   1523         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
   1524     }
   1525   } else {
   1526     // The range is implicitly used as a placeholder when it is dependent.
   1527     RangeVar->setUsed();
   1528   }
   1529 
   1530   return Owned(new (Context) CXXForRangeStmt(RangeDS,
   1531                                      cast_or_null<DeclStmt>(BeginEndDecl.get()),
   1532                                              NotEqExpr.take(), IncrExpr.take(),
   1533                                              LoopVarDS, /*Body=*/0, ForLoc,
   1534                                              ColonLoc, RParenLoc));
   1535 }
   1536 
   1537 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
   1538 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
   1539 /// body cannot be performed until after the type of the range variable is
   1540 /// determined.
   1541 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
   1542   if (!S || !B)
   1543     return StmtError();
   1544 
   1545   cast<CXXForRangeStmt>(S)->setBody(B);
   1546   return S;
   1547 }
   1548 
   1549 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
   1550                                SourceLocation LabelLoc,
   1551                                LabelDecl *TheDecl) {
   1552   getCurFunction()->setHasBranchIntoScope();
   1553   TheDecl->setUsed();
   1554   return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
   1555 }
   1556 
   1557 StmtResult
   1558 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
   1559                             Expr *E) {
   1560   // Convert operand to void*
   1561   if (!E->isTypeDependent()) {
   1562     QualType ETy = E->getType();
   1563     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
   1564     ExprResult ExprRes = Owned(E);
   1565     AssignConvertType ConvTy =
   1566       CheckSingleAssignmentConstraints(DestTy, ExprRes);
   1567     if (ExprRes.isInvalid())
   1568       return StmtError();
   1569     E = ExprRes.take();
   1570     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
   1571       return StmtError();
   1572   }
   1573 
   1574   getCurFunction()->setHasIndirectGoto();
   1575 
   1576   return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
   1577 }
   1578 
   1579 StmtResult
   1580 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
   1581   Scope *S = CurScope->getContinueParent();
   1582   if (!S) {
   1583     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
   1584     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
   1585   }
   1586 
   1587   return Owned(new (Context) ContinueStmt(ContinueLoc));
   1588 }
   1589 
   1590 StmtResult
   1591 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
   1592   Scope *S = CurScope->getBreakParent();
   1593   if (!S) {
   1594     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
   1595     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
   1596   }
   1597 
   1598   return Owned(new (Context) BreakStmt(BreakLoc));
   1599 }
   1600 
   1601 /// \brief Determine whether the given expression is a candidate for
   1602 /// copy elision in either a return statement or a throw expression.
   1603 ///
   1604 /// \param ReturnType If we're determining the copy elision candidate for
   1605 /// a return statement, this is the return type of the function. If we're
   1606 /// determining the copy elision candidate for a throw expression, this will
   1607 /// be a NULL type.
   1608 ///
   1609 /// \param E The expression being returned from the function or block, or
   1610 /// being thrown.
   1611 ///
   1612 /// \param AllowFunctionParameter Whether we allow function parameters to
   1613 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
   1614 /// we re-use this logic to determine whether we should try to move as part of
   1615 /// a return or throw (which does allow function parameters).
   1616 ///
   1617 /// \returns The NRVO candidate variable, if the return statement may use the
   1618 /// NRVO, or NULL if there is no such candidate.
   1619 const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
   1620                                              Expr *E,
   1621                                              bool AllowFunctionParameter) {
   1622   QualType ExprType = E->getType();
   1623   // - in a return statement in a function with ...
   1624   // ... a class return type ...
   1625   if (!ReturnType.isNull()) {
   1626     if (!ReturnType->isRecordType())
   1627       return 0;
   1628     // ... the same cv-unqualified type as the function return type ...
   1629     if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
   1630       return 0;
   1631   }
   1632 
   1633   // ... the expression is the name of a non-volatile automatic object
   1634   // (other than a function or catch-clause parameter)) ...
   1635   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
   1636   if (!DR)
   1637     return 0;
   1638   const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
   1639   if (!VD)
   1640     return 0;
   1641 
   1642   if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
   1643       !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
   1644       !VD->getType().isVolatileQualified() &&
   1645       ((VD->getKind() == Decl::Var) ||
   1646        (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
   1647     return VD;
   1648 
   1649   return 0;
   1650 }
   1651 
   1652 /// \brief Perform the initialization of a potentially-movable value, which
   1653 /// is the result of return value.
   1654 ///
   1655 /// This routine implements C++0x [class.copy]p33, which attempts to treat
   1656 /// returned lvalues as rvalues in certain cases (to prefer move construction),
   1657 /// then falls back to treating them as lvalues if that failed.
   1658 ExprResult
   1659 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
   1660                                       const VarDecl *NRVOCandidate,
   1661                                       QualType ResultType,
   1662                                       Expr *Value,
   1663                                       bool AllowNRVO) {
   1664   // C++0x [class.copy]p33:
   1665   //   When the criteria for elision of a copy operation are met or would
   1666   //   be met save for the fact that the source object is a function
   1667   //   parameter, and the object to be copied is designated by an lvalue,
   1668   //   overload resolution to select the constructor for the copy is first
   1669   //   performed as if the object were designated by an rvalue.
   1670   ExprResult Res = ExprError();
   1671   if (AllowNRVO &&
   1672       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
   1673     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
   1674                               Value->getType(), CK_LValueToRValue,
   1675                               Value, VK_XValue);
   1676 
   1677     Expr *InitExpr = &AsRvalue;
   1678     InitializationKind Kind
   1679       = InitializationKind::CreateCopy(Value->getLocStart(),
   1680                                        Value->getLocStart());
   1681     InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
   1682 
   1683     //   [...] If overload resolution fails, or if the type of the first
   1684     //   parameter of the selected constructor is not an rvalue reference
   1685     //   to the object's type (possibly cv-qualified), overload resolution
   1686     //   is performed again, considering the object as an lvalue.
   1687     if (Seq) {
   1688       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
   1689            StepEnd = Seq.step_end();
   1690            Step != StepEnd; ++Step) {
   1691         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
   1692           continue;
   1693 
   1694         CXXConstructorDecl *Constructor
   1695         = cast<CXXConstructorDecl>(Step->Function.Function);
   1696 
   1697         const RValueReferenceType *RRefType
   1698           = Constructor->getParamDecl(0)->getType()
   1699                                                  ->getAs<RValueReferenceType>();
   1700 
   1701         // If we don't meet the criteria, break out now.
   1702         if (!RRefType ||
   1703             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
   1704                             Context.getTypeDeclType(Constructor->getParent())))
   1705           break;
   1706 
   1707         // Promote "AsRvalue" to the heap, since we now need this
   1708         // expression node to persist.
   1709         Value = ImplicitCastExpr::Create(Context, Value->getType(),
   1710                                          CK_LValueToRValue, Value, 0,
   1711                                          VK_XValue);
   1712 
   1713         // Complete type-checking the initialization of the return type
   1714         // using the constructor we found.
   1715         Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
   1716       }
   1717     }
   1718   }
   1719 
   1720   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
   1721   // above, or overload resolution failed. Either way, we need to try
   1722   // (again) now with the return value expression as written.
   1723   if (Res.isInvalid())
   1724     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
   1725 
   1726   return Res;
   1727 }
   1728 
   1729 /// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
   1730 ///
   1731 StmtResult
   1732 Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   1733   // If this is the first return we've seen in the block, infer the type of
   1734   // the block from it.
   1735   BlockScopeInfo *CurBlock = getCurBlock();
   1736   if (CurBlock->ReturnType.isNull()) {
   1737     if (RetValExp) {
   1738       // Don't call UsualUnaryConversions(), since we don't want to do
   1739       // integer promotions here.
   1740       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
   1741       if (Result.isInvalid())
   1742         return StmtError();
   1743       RetValExp = Result.take();
   1744 
   1745       if (!RetValExp->isTypeDependent()) {
   1746         CurBlock->ReturnType = RetValExp->getType();
   1747         if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
   1748           // We have to remove a 'const' added to copied-in variable which was
   1749           // part of the implementation spec. and not the actual qualifier for
   1750           // the variable.
   1751           if (CDRE->isConstQualAdded())
   1752             CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
   1753         }
   1754       } else
   1755         CurBlock->ReturnType = Context.DependentTy;
   1756     } else
   1757       CurBlock->ReturnType = Context.VoidTy;
   1758   }
   1759   QualType FnRetType = CurBlock->ReturnType;
   1760 
   1761   if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
   1762     Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
   1763       << getCurFunctionOrMethodDecl()->getDeclName();
   1764     return StmtError();
   1765   }
   1766 
   1767   // Otherwise, verify that this result type matches the previous one.  We are
   1768   // pickier with blocks than for normal functions because we don't have GCC
   1769   // compatibility to worry about here.
   1770   const VarDecl *NRVOCandidate = 0;
   1771   if (FnRetType->isDependentType()) {
   1772     // Delay processing for now.  TODO: there are lots of dependent
   1773     // types we can conclusively prove aren't void.
   1774   } else if (FnRetType->isVoidType()) {
   1775     if (RetValExp &&
   1776         !(getLangOptions().CPlusPlus &&
   1777           (RetValExp->isTypeDependent() ||
   1778            RetValExp->getType()->isVoidType()))) {
   1779       Diag(ReturnLoc, diag::err_return_block_has_expr);
   1780       RetValExp = 0;
   1781     }
   1782   } else if (!RetValExp) {
   1783     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
   1784   } else if (!RetValExp->isTypeDependent()) {
   1785     // we have a non-void block with an expression, continue checking
   1786 
   1787     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   1788     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   1789     // function return.
   1790 
   1791     // In C++ the return statement is handled via a copy initialization.
   1792     // the C version of which boils down to CheckSingleAssignmentConstraints.
   1793     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   1794     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   1795                                                                    FnRetType,
   1796                                                            NRVOCandidate != 0);
   1797     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   1798                                                      FnRetType, RetValExp);
   1799     if (Res.isInvalid()) {
   1800       // FIXME: Cleanup temporaries here, anyway?
   1801       return StmtError();
   1802     }
   1803     RetValExp = Res.take();
   1804     CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
   1805   }
   1806 
   1807   if (RetValExp) {
   1808     CheckImplicitConversions(RetValExp, ReturnLoc);
   1809     RetValExp = MaybeCreateExprWithCleanups(RetValExp);
   1810   }
   1811   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
   1812                                                 NRVOCandidate);
   1813 
   1814   // If we need to check for the named return value optimization, save the
   1815   // return statement in our scope for later processing.
   1816   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
   1817       !CurContext->isDependentContext())
   1818     FunctionScopes.back()->Returns.push_back(Result);
   1819 
   1820   return Owned(Result);
   1821 }
   1822 
   1823 StmtResult
   1824 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
   1825   // Check for unexpanded parameter packs.
   1826   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
   1827     return StmtError();
   1828 
   1829   if (getCurBlock())
   1830     return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
   1831 
   1832   QualType FnRetType;
   1833   QualType DeclaredRetType;
   1834   if (const FunctionDecl *FD = getCurFunctionDecl()) {
   1835     FnRetType = FD->getResultType();
   1836     DeclaredRetType = FnRetType;
   1837     if (FD->hasAttr<NoReturnAttr>() ||
   1838         FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
   1839       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
   1840         << getCurFunctionOrMethodDecl()->getDeclName();
   1841   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
   1842     DeclaredRetType = MD->getResultType();
   1843     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
   1844       // In the implementation of a method with a related return type, the
   1845       // type used to type-check the validity of return statements within the
   1846       // method body is a pointer to the type of the class being implemented.
   1847       FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
   1848       FnRetType = Context.getObjCObjectPointerType(FnRetType);
   1849     } else {
   1850       FnRetType = DeclaredRetType;
   1851     }
   1852   } else // If we don't have a function/method context, bail.
   1853     return StmtError();
   1854 
   1855   ReturnStmt *Result = 0;
   1856   if (FnRetType->isVoidType()) {
   1857     if (RetValExp) {
   1858       if (!RetValExp->isTypeDependent()) {
   1859         // C99 6.8.6.4p1 (ext_ since GCC warns)
   1860         unsigned D = diag::ext_return_has_expr;
   1861         if (RetValExp->getType()->isVoidType())
   1862           D = diag::ext_return_has_void_expr;
   1863         else {
   1864           ExprResult Result = Owned(RetValExp);
   1865           Result = IgnoredValueConversions(Result.take());
   1866           if (Result.isInvalid())
   1867             return StmtError();
   1868           RetValExp = Result.take();
   1869           RetValExp = ImpCastExprToType(RetValExp,
   1870                                         Context.VoidTy, CK_ToVoid).take();
   1871         }
   1872 
   1873         // return (some void expression); is legal in C++.
   1874         if (D != diag::ext_return_has_void_expr ||
   1875             !getLangOptions().CPlusPlus) {
   1876           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
   1877 
   1878           int FunctionKind = 0;
   1879           if (isa<ObjCMethodDecl>(CurDecl))
   1880             FunctionKind = 1;
   1881           else if (isa<CXXConstructorDecl>(CurDecl))
   1882             FunctionKind = 2;
   1883           else if (isa<CXXDestructorDecl>(CurDecl))
   1884             FunctionKind = 3;
   1885 
   1886           Diag(ReturnLoc, D)
   1887             << CurDecl->getDeclName() << FunctionKind
   1888             << RetValExp->getSourceRange();
   1889         }
   1890       }
   1891 
   1892       CheckImplicitConversions(RetValExp, ReturnLoc);
   1893       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
   1894     }
   1895 
   1896     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
   1897   } else if (!RetValExp && !FnRetType->isDependentType()) {
   1898     unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
   1899     // C99 6.8.6.4p1 (ext_ since GCC warns)
   1900     if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
   1901 
   1902     if (FunctionDecl *FD = getCurFunctionDecl())
   1903       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
   1904     else
   1905       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
   1906     Result = new (Context) ReturnStmt(ReturnLoc);
   1907   } else {
   1908     const VarDecl *NRVOCandidate = 0;
   1909     if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
   1910       // we have a non-void function with an expression, continue checking
   1911 
   1912       // C99 6.8.6.4p3(136): The return statement is not an assignment. The
   1913       // overlap restriction of subclause 6.5.16.1 does not apply to the case of
   1914       // function return.
   1915 
   1916       // In C++ the return statement is handled via a copy initialization,
   1917       // the C version of which boils down to CheckSingleAssignmentConstraints.
   1918       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
   1919       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
   1920                                                                      FnRetType,
   1921                                                             NRVOCandidate != 0);
   1922       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
   1923                                                        FnRetType, RetValExp);
   1924       if (Res.isInvalid()) {
   1925         // FIXME: Cleanup temporaries here, anyway?
   1926         return StmtError();
   1927       }
   1928 
   1929       RetValExp = Res.takeAs<Expr>();
   1930       if (RetValExp)
   1931         CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
   1932     }
   1933 
   1934     if (RetValExp) {
   1935       // If we type-checked an Objective-C method's return type based
   1936       // on a related return type, we may need to adjust the return
   1937       // type again. Do so now.
   1938       if (DeclaredRetType != FnRetType) {
   1939         ExprResult result = PerformImplicitConversion(RetValExp,
   1940                                                       DeclaredRetType,
   1941                                                       AA_Returning);
   1942         if (result.isInvalid()) return StmtError();
   1943         RetValExp = result.take();
   1944       }
   1945 
   1946       CheckImplicitConversions(RetValExp, ReturnLoc);
   1947       RetValExp = MaybeCreateExprWithCleanups(RetValExp);
   1948     }
   1949     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
   1950   }
   1951 
   1952   // If we need to check for the named return value optimization, save the
   1953   // return statement in our scope for later processing.
   1954   if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
   1955       !CurContext->isDependentContext())
   1956     FunctionScopes.back()->Returns.push_back(Result);
   1957 
   1958   return Owned(Result);
   1959 }
   1960 
   1961 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
   1962 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
   1963 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
   1964 /// provide a strong guidance to not use it.
   1965 ///
   1966 /// This method checks to see if the argument is an acceptable l-value and
   1967 /// returns false if it is a case we can handle.
   1968 static bool CheckAsmLValue(const Expr *E, Sema &S) {
   1969   // Type dependent expressions will be checked during instantiation.
   1970   if (E->isTypeDependent())
   1971     return false;
   1972 
   1973   if (E->isLValue())
   1974     return false;  // Cool, this is an lvalue.
   1975 
   1976   // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
   1977   // are supposed to allow.
   1978   const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
   1979   if (E != E2 && E2->isLValue()) {
   1980     if (!S.getLangOptions().HeinousExtensions)
   1981       S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
   1982         << E->getSourceRange();
   1983     else
   1984       S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
   1985         << E->getSourceRange();
   1986     // Accept, even if we emitted an error diagnostic.
   1987     return false;
   1988   }
   1989 
   1990   // None of the above, just randomly invalid non-lvalue.
   1991   return true;
   1992 }
   1993 
   1994 /// isOperandMentioned - Return true if the specified operand # is mentioned
   1995 /// anywhere in the decomposed asm string.
   1996 static bool isOperandMentioned(unsigned OpNo,
   1997                          ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
   1998   for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
   1999     const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
   2000     if (!Piece.isOperand()) continue;
   2001 
   2002     // If this is a reference to the input and if the input was the smaller
   2003     // one, then we have to reject this asm.
   2004     if (Piece.getOperandNo() == OpNo)
   2005       return true;
   2006   }
   2007 
   2008   return false;
   2009 }
   2010 
   2011 StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
   2012                               bool IsVolatile, unsigned NumOutputs,
   2013                               unsigned NumInputs, IdentifierInfo **Names,
   2014                               MultiExprArg constraints, MultiExprArg exprs,
   2015                               Expr *asmString, MultiExprArg clobbers,
   2016                               SourceLocation RParenLoc, bool MSAsm) {
   2017   unsigned NumClobbers = clobbers.size();
   2018   StringLiteral **Constraints =
   2019     reinterpret_cast<StringLiteral**>(constraints.get());
   2020   Expr **Exprs = exprs.get();
   2021   StringLiteral *AsmString = cast<StringLiteral>(asmString);
   2022   StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
   2023 
   2024   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
   2025 
   2026   // The parser verifies that there is a string literal here.
   2027   if (!AsmString->isAscii())
   2028     return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
   2029       << AsmString->getSourceRange());
   2030 
   2031   for (unsigned i = 0; i != NumOutputs; i++) {
   2032     StringLiteral *Literal = Constraints[i];
   2033     if (!Literal->isAscii())
   2034       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
   2035         << Literal->getSourceRange());
   2036 
   2037     StringRef OutputName;
   2038     if (Names[i])
   2039       OutputName = Names[i]->getName();
   2040 
   2041     TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
   2042     if (!Context.getTargetInfo().validateOutputConstraint(Info))
   2043       return StmtError(Diag(Literal->getLocStart(),
   2044                             diag::err_asm_invalid_output_constraint)
   2045                        << Info.getConstraintStr());
   2046 
   2047     // Check that the output exprs are valid lvalues.
   2048     Expr *OutputExpr = Exprs[i];
   2049     if (CheckAsmLValue(OutputExpr, *this)) {
   2050       return StmtError(Diag(OutputExpr->getLocStart(),
   2051                   diag::err_asm_invalid_lvalue_in_output)
   2052         << OutputExpr->getSourceRange());
   2053     }
   2054 
   2055     OutputConstraintInfos.push_back(Info);
   2056   }
   2057 
   2058   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
   2059 
   2060   for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
   2061     StringLiteral *Literal = Constraints[i];
   2062     if (!Literal->isAscii())
   2063       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
   2064         << Literal->getSourceRange());
   2065 
   2066     StringRef InputName;
   2067     if (Names[i])
   2068       InputName = Names[i]->getName();
   2069 
   2070     TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
   2071     if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
   2072                                                 NumOutputs, Info)) {
   2073       return StmtError(Diag(Literal->getLocStart(),
   2074                             diag::err_asm_invalid_input_constraint)
   2075                        << Info.getConstraintStr());
   2076     }
   2077 
   2078     Expr *InputExpr = Exprs[i];
   2079 
   2080     // Only allow void types for memory constraints.
   2081     if (Info.allowsMemory() && !Info.allowsRegister()) {
   2082       if (CheckAsmLValue(InputExpr, *this))
   2083         return StmtError(Diag(InputExpr->getLocStart(),
   2084                               diag::err_asm_invalid_lvalue_in_input)
   2085                          << Info.getConstraintStr()
   2086                          << InputExpr->getSourceRange());
   2087     }
   2088 
   2089     if (Info.allowsRegister()) {
   2090       if (InputExpr->getType()->isVoidType()) {
   2091         return StmtError(Diag(InputExpr->getLocStart(),
   2092                               diag::err_asm_invalid_type_in_input)
   2093           << InputExpr->getType() << Info.getConstraintStr()
   2094           << InputExpr->getSourceRange());
   2095       }
   2096     }
   2097 
   2098     ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
   2099     if (Result.isInvalid())
   2100       return StmtError();
   2101 
   2102     Exprs[i] = Result.take();
   2103     InputConstraintInfos.push_back(Info);
   2104   }
   2105 
   2106   // Check that the clobbers are valid.
   2107   for (unsigned i = 0; i != NumClobbers; i++) {
   2108     StringLiteral *Literal = Clobbers[i];
   2109     if (!Literal->isAscii())
   2110       return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
   2111         << Literal->getSourceRange());
   2112 
   2113     StringRef Clobber = Literal->getString();
   2114 
   2115     if (!Context.getTargetInfo().isValidClobber(Clobber))
   2116       return StmtError(Diag(Literal->getLocStart(),
   2117                   diag::err_asm_unknown_register_name) << Clobber);
   2118   }
   2119 
   2120   AsmStmt *NS =
   2121     new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
   2122                           NumOutputs, NumInputs, Names, Constraints, Exprs,
   2123                           AsmString, NumClobbers, Clobbers, RParenLoc);
   2124   // Validate the asm string, ensuring it makes sense given the operands we
   2125   // have.
   2126   SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
   2127   unsigned DiagOffs;
   2128   if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
   2129     Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
   2130            << AsmString->getSourceRange();
   2131     return StmtError();
   2132   }
   2133 
   2134   // Validate tied input operands for type mismatches.
   2135   for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
   2136     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
   2137 
   2138     // If this is a tied constraint, verify that the output and input have
   2139     // either exactly the same type, or that they are int/ptr operands with the
   2140     // same size (int/long, int*/long, are ok etc).
   2141     if (!Info.hasTiedOperand()) continue;
   2142 
   2143     unsigned TiedTo = Info.getTiedOperand();
   2144     unsigned InputOpNo = i+NumOutputs;
   2145     Expr *OutputExpr = Exprs[TiedTo];
   2146     Expr *InputExpr = Exprs[InputOpNo];
   2147 
   2148     if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
   2149       continue;
   2150 
   2151     QualType InTy = InputExpr->getType();
   2152     QualType OutTy = OutputExpr->getType();
   2153     if (Context.hasSameType(InTy, OutTy))
   2154       continue;  // All types can be tied to themselves.
   2155 
   2156     // Decide if the input and output are in the same domain (integer/ptr or
   2157     // floating point.
   2158     enum AsmDomain {
   2159       AD_Int, AD_FP, AD_Other
   2160     } InputDomain, OutputDomain;
   2161 
   2162     if (InTy->isIntegerType() || InTy->isPointerType())
   2163       InputDomain = AD_Int;
   2164     else if (InTy->isRealFloatingType())
   2165       InputDomain = AD_FP;
   2166     else
   2167       InputDomain = AD_Other;
   2168 
   2169     if (OutTy->isIntegerType() || OutTy->isPointerType())
   2170       OutputDomain = AD_Int;
   2171     else if (OutTy->isRealFloatingType())
   2172       OutputDomain = AD_FP;
   2173     else
   2174       OutputDomain = AD_Other;
   2175 
   2176     // They are ok if they are the same size and in the same domain.  This
   2177     // allows tying things like:
   2178     //   void* to int*
   2179     //   void* to int            if they are the same size.
   2180     //   double to long double   if they are the same size.
   2181     //
   2182     uint64_t OutSize = Context.getTypeSize(OutTy);
   2183     uint64_t InSize = Context.getTypeSize(InTy);
   2184     if (OutSize == InSize && InputDomain == OutputDomain &&
   2185         InputDomain != AD_Other)
   2186       continue;
   2187 
   2188     // If the smaller input/output operand is not mentioned in the asm string,
   2189     // then we can promote the smaller one to a larger input and the asm string
   2190     // won't notice.
   2191     bool SmallerValueMentioned = false;
   2192 
   2193     // If this is a reference to the input and if the input was the smaller
   2194     // one, then we have to reject this asm.
   2195     if (isOperandMentioned(InputOpNo, Pieces)) {
   2196       // This is a use in the asm string of the smaller operand.  Since we
   2197       // codegen this by promoting to a wider value, the asm will get printed
   2198       // "wrong".
   2199       SmallerValueMentioned |= InSize < OutSize;
   2200     }
   2201     if (isOperandMentioned(TiedTo, Pieces)) {
   2202       // If this is a reference to the output, and if the output is the larger
   2203       // value, then it's ok because we'll promote the input to the larger type.
   2204       SmallerValueMentioned |= OutSize < InSize;
   2205     }
   2206 
   2207     // If the smaller value wasn't mentioned in the asm string, and if the
   2208     // output was a register, just extend the shorter one to the size of the
   2209     // larger one.
   2210     if (!SmallerValueMentioned && InputDomain != AD_Other &&
   2211         OutputConstraintInfos[TiedTo].allowsRegister())
   2212       continue;
   2213 
   2214     // Either both of the operands were mentioned or the smaller one was
   2215     // mentioned.  One more special case that we'll allow: if the tied input is
   2216     // integer, unmentioned, and is a constant, then we'll allow truncating it
   2217     // down to the size of the destination.
   2218     if (InputDomain == AD_Int && OutputDomain == AD_Int &&
   2219         !isOperandMentioned(InputOpNo, Pieces) &&
   2220         InputExpr->isEvaluatable(Context)) {
   2221       CastKind castKind =
   2222         (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
   2223       InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
   2224       Exprs[InputOpNo] = InputExpr;
   2225       NS->setInputExpr(i, InputExpr);
   2226       continue;
   2227     }
   2228 
   2229     Diag(InputExpr->getLocStart(),
   2230          diag::err_asm_tying_incompatible_types)
   2231       << InTy << OutTy << OutputExpr->getSourceRange()
   2232       << InputExpr->getSourceRange();
   2233     return StmtError();
   2234   }
   2235 
   2236   return Owned(NS);
   2237 }
   2238 
   2239 StmtResult
   2240 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
   2241                            SourceLocation RParen, Decl *Parm,
   2242                            Stmt *Body) {
   2243   VarDecl *Var = cast_or_null<VarDecl>(Parm);
   2244   if (Var && Var->isInvalidDecl())
   2245     return StmtError();
   2246 
   2247   return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
   2248 }
   2249 
   2250 StmtResult
   2251 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
   2252   return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
   2253 }
   2254 
   2255 StmtResult
   2256 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
   2257                          MultiStmtArg CatchStmts, Stmt *Finally) {
   2258   if (!getLangOptions().ObjCExceptions)
   2259     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
   2260 
   2261   getCurFunction()->setHasBranchProtectedScope();
   2262   unsigned NumCatchStmts = CatchStmts.size();
   2263   return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
   2264                                      CatchStmts.release(),
   2265                                      NumCatchStmts,
   2266                                      Finally));
   2267 }
   2268 
   2269 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
   2270                                                   Expr *Throw) {
   2271   if (Throw) {
   2272     Throw = MaybeCreateExprWithCleanups(Throw);
   2273     ExprResult Result = DefaultLvalueConversion(Throw);
   2274     if (Result.isInvalid())
   2275       return StmtError();
   2276 
   2277     Throw = Result.take();
   2278     QualType ThrowType = Throw->getType();
   2279     // Make sure the expression type is an ObjC pointer or "void *".
   2280     if (!ThrowType->isDependentType() &&
   2281         !ThrowType->isObjCObjectPointerType()) {
   2282       const PointerType *PT = ThrowType->getAs<PointerType>();
   2283       if (!PT || !PT->getPointeeType()->isVoidType())
   2284         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
   2285                          << Throw->getType() << Throw->getSourceRange());
   2286     }
   2287   }
   2288 
   2289   return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
   2290 }
   2291 
   2292 StmtResult
   2293 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
   2294                            Scope *CurScope) {
   2295   if (!getLangOptions().ObjCExceptions)
   2296     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
   2297 
   2298   if (!Throw) {
   2299     // @throw without an expression designates a rethrow (which much occur
   2300     // in the context of an @catch clause).
   2301     Scope *AtCatchParent = CurScope;
   2302     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
   2303       AtCatchParent = AtCatchParent->getParent();
   2304     if (!AtCatchParent)
   2305       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
   2306   }
   2307 
   2308   return BuildObjCAtThrowStmt(AtLoc, Throw);
   2309 }
   2310 
   2311 ExprResult
   2312 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
   2313   ExprResult result = DefaultLvalueConversion(operand);
   2314   if (result.isInvalid())
   2315     return ExprError();
   2316   operand = result.take();
   2317 
   2318   // Make sure the expression type is an ObjC pointer or "void *".
   2319   QualType type = operand->getType();
   2320   if (!type->isDependentType() &&
   2321       !type->isObjCObjectPointerType()) {
   2322     const PointerType *pointerType = type->getAs<PointerType>();
   2323     if (!pointerType || !pointerType->getPointeeType()->isVoidType())
   2324       return Diag(atLoc, diag::error_objc_synchronized_expects_object)
   2325                << type << operand->getSourceRange();
   2326   }
   2327 
   2328   // The operand to @synchronized is a full-expression.
   2329   return MaybeCreateExprWithCleanups(operand);
   2330 }
   2331 
   2332 StmtResult
   2333 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
   2334                                   Stmt *SyncBody) {
   2335   // We can't jump into or indirect-jump out of a @synchronized block.
   2336   getCurFunction()->setHasBranchProtectedScope();
   2337   return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
   2338 }
   2339 
   2340 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
   2341 /// and creates a proper catch handler from them.
   2342 StmtResult
   2343 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
   2344                          Stmt *HandlerBlock) {
   2345   // There's nothing to test that ActOnExceptionDecl didn't already test.
   2346   return Owned(new (Context) CXXCatchStmt(CatchLoc,
   2347                                           cast_or_null<VarDecl>(ExDecl),
   2348                                           HandlerBlock));
   2349 }
   2350 
   2351 StmtResult
   2352 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
   2353   getCurFunction()->setHasBranchProtectedScope();
   2354   return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
   2355 }
   2356 
   2357 namespace {
   2358 
   2359 class TypeWithHandler {
   2360   QualType t;
   2361   CXXCatchStmt *stmt;
   2362 public:
   2363   TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
   2364   : t(type), stmt(statement) {}
   2365 
   2366   // An arbitrary order is fine as long as it places identical
   2367   // types next to each other.
   2368   bool operator<(const TypeWithHandler &y) const {
   2369     if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
   2370       return true;
   2371     if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
   2372       return false;
   2373     else
   2374       return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
   2375   }
   2376 
   2377   bool operator==(const TypeWithHandler& other) const {
   2378     return t == other.t;
   2379   }
   2380 
   2381   CXXCatchStmt *getCatchStmt() const { return stmt; }
   2382   SourceLocation getTypeSpecStartLoc() const {
   2383     return stmt->getExceptionDecl()->getTypeSpecStartLoc();
   2384   }
   2385 };
   2386 
   2387 }
   2388 
   2389 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
   2390 /// handlers and creates a try statement from them.
   2391 StmtResult
   2392 Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
   2393                        MultiStmtArg RawHandlers) {
   2394   // Don't report an error if 'try' is used in system headers.
   2395   if (!getLangOptions().CXXExceptions &&
   2396       !getSourceManager().isInSystemHeader(TryLoc))
   2397       Diag(TryLoc, diag::err_exceptions_disabled) << "try";
   2398 
   2399   unsigned NumHandlers = RawHandlers.size();
   2400   assert(NumHandlers > 0 &&
   2401          "The parser shouldn't call this if there are no handlers.");
   2402   Stmt **Handlers = RawHandlers.get();
   2403 
   2404   SmallVector<TypeWithHandler, 8> TypesWithHandlers;
   2405 
   2406   for (unsigned i = 0; i < NumHandlers; ++i) {
   2407     CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
   2408     if (!Handler->getExceptionDecl()) {
   2409       if (i < NumHandlers - 1)
   2410         return StmtError(Diag(Handler->getLocStart(),
   2411                               diag::err_early_catch_all));
   2412 
   2413       continue;
   2414     }
   2415 
   2416     const QualType CaughtType = Handler->getCaughtType();
   2417     const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
   2418     TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
   2419   }
   2420 
   2421   // Detect handlers for the same type as an earlier one.
   2422   if (NumHandlers > 1) {
   2423     llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
   2424 
   2425     TypeWithHandler prev = TypesWithHandlers[0];
   2426     for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
   2427       TypeWithHandler curr = TypesWithHandlers[i];
   2428 
   2429       if (curr == prev) {
   2430         Diag(curr.getTypeSpecStartLoc(),
   2431              diag::warn_exception_caught_by_earlier_handler)
   2432           << curr.getCatchStmt()->getCaughtType().getAsString();
   2433         Diag(prev.getTypeSpecStartLoc(),
   2434              diag::note_previous_exception_handler)
   2435           << prev.getCatchStmt()->getCaughtType().getAsString();
   2436       }
   2437 
   2438       prev = curr;
   2439     }
   2440   }
   2441 
   2442   getCurFunction()->setHasBranchProtectedScope();
   2443 
   2444   // FIXME: We should detect handlers that cannot catch anything because an
   2445   // earlier handler catches a superclass. Need to find a method that is not
   2446   // quadratic for this.
   2447   // Neither of these are explicitly forbidden, but every compiler detects them
   2448   // and warns.
   2449 
   2450   return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
   2451                                   Handlers, NumHandlers));
   2452 }
   2453 
   2454 StmtResult
   2455 Sema::ActOnSEHTryBlock(bool IsCXXTry,
   2456                        SourceLocation TryLoc,
   2457                        Stmt *TryBlock,
   2458                        Stmt *Handler) {
   2459   assert(TryBlock && Handler);
   2460 
   2461   getCurFunction()->setHasBranchProtectedScope();
   2462 
   2463   return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
   2464 }
   2465 
   2466 StmtResult
   2467 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
   2468                           Expr *FilterExpr,
   2469                           Stmt *Block) {
   2470   assert(FilterExpr && Block);
   2471 
   2472   if(!FilterExpr->getType()->isIntegerType()) {
   2473     return StmtError(Diag(FilterExpr->getExprLoc(),
   2474                      diag::err_filter_expression_integral)
   2475                      << FilterExpr->getType());
   2476   }
   2477 
   2478   return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
   2479 }
   2480 
   2481 StmtResult
   2482 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
   2483                            Stmt *Block) {
   2484   assert(Block);
   2485   return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
   2486 }
   2487