Home | History | Annotate | Download | only in X86
      1 //=======- X86FrameLowering.cpp - X86 Frame Information --------*- C++ -*-====//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/Function.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineModuleInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCSymbol.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/Target/TargetOptions.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 
     33 using namespace llvm;
     34 
     35 // FIXME: completely move here.
     36 extern cl::opt<bool> ForceStackAlign;
     37 
     38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     39   return !MF.getFrameInfo()->hasVarSizedObjects();
     40 }
     41 
     42 /// hasFP - Return true if the specified function should have a dedicated frame
     43 /// pointer register.  This is true if the function has variable sized allocas
     44 /// or if frame pointer elimination is disabled.
     45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     46   const MachineFrameInfo *MFI = MF.getFrameInfo();
     47   const MachineModuleInfo &MMI = MF.getMMI();
     48   const TargetRegisterInfo *RI = TM.getRegisterInfo();
     49 
     50   return (DisableFramePointerElim(MF) ||
     51           RI->needsStackRealignment(MF) ||
     52           MFI->hasVarSizedObjects() ||
     53           MFI->isFrameAddressTaken() ||
     54           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     55           MMI.callsUnwindInit());
     56 }
     57 
     58 static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
     59   if (is64Bit) {
     60     if (isInt<8>(Imm))
     61       return X86::SUB64ri8;
     62     return X86::SUB64ri32;
     63   } else {
     64     if (isInt<8>(Imm))
     65       return X86::SUB32ri8;
     66     return X86::SUB32ri;
     67   }
     68 }
     69 
     70 static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
     71   if (is64Bit) {
     72     if (isInt<8>(Imm))
     73       return X86::ADD64ri8;
     74     return X86::ADD64ri32;
     75   } else {
     76     if (isInt<8>(Imm))
     77       return X86::ADD32ri8;
     78     return X86::ADD32ri;
     79   }
     80 }
     81 
     82 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
     83 /// when it reaches the "return" instruction. We can then pop a stack object
     84 /// to this register without worry about clobbering it.
     85 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
     86                                        MachineBasicBlock::iterator &MBBI,
     87                                        const TargetRegisterInfo &TRI,
     88                                        bool Is64Bit) {
     89   const MachineFunction *MF = MBB.getParent();
     90   const Function *F = MF->getFunction();
     91   if (!F || MF->getMMI().callsEHReturn())
     92     return 0;
     93 
     94   static const unsigned CallerSavedRegs32Bit[] = {
     95     X86::EAX, X86::EDX, X86::ECX, 0
     96   };
     97 
     98   static const unsigned CallerSavedRegs64Bit[] = {
     99     X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
    100     X86::R8,  X86::R9,  X86::R10, X86::R11, 0
    101   };
    102 
    103   unsigned Opc = MBBI->getOpcode();
    104   switch (Opc) {
    105   default: return 0;
    106   case X86::RET:
    107   case X86::RETI:
    108   case X86::TCRETURNdi:
    109   case X86::TCRETURNri:
    110   case X86::TCRETURNmi:
    111   case X86::TCRETURNdi64:
    112   case X86::TCRETURNri64:
    113   case X86::TCRETURNmi64:
    114   case X86::EH_RETURN:
    115   case X86::EH_RETURN64: {
    116     SmallSet<unsigned, 8> Uses;
    117     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    118       MachineOperand &MO = MBBI->getOperand(i);
    119       if (!MO.isReg() || MO.isDef())
    120         continue;
    121       unsigned Reg = MO.getReg();
    122       if (!Reg)
    123         continue;
    124       for (const unsigned *AsI = TRI.getOverlaps(Reg); *AsI; ++AsI)
    125         Uses.insert(*AsI);
    126     }
    127 
    128     const unsigned *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
    129     for (; *CS; ++CS)
    130       if (!Uses.count(*CS))
    131         return *CS;
    132   }
    133   }
    134 
    135   return 0;
    136 }
    137 
    138 
    139 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    140 /// stack pointer by a constant value.
    141 static
    142 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    143                   unsigned StackPtr, int64_t NumBytes,
    144                   bool Is64Bit, const TargetInstrInfo &TII,
    145                   const TargetRegisterInfo &TRI) {
    146   bool isSub = NumBytes < 0;
    147   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    148   unsigned Opc = isSub ?
    149     getSUBriOpcode(Is64Bit, Offset) :
    150     getADDriOpcode(Is64Bit, Offset);
    151   uint64_t Chunk = (1LL << 31) - 1;
    152   DebugLoc DL = MBB.findDebugLoc(MBBI);
    153 
    154   while (Offset) {
    155     uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
    156     if (ThisVal == (Is64Bit ? 8 : 4)) {
    157       // Use push / pop instead.
    158       unsigned Reg = isSub
    159         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    160         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    161       if (Reg) {
    162         Opc = isSub
    163           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    164           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    165         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    166           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    167         if (isSub)
    168           MI->setFlag(MachineInstr::FrameSetup);
    169         Offset -= ThisVal;
    170         continue;
    171       }
    172     }
    173 
    174     MachineInstr *MI =
    175       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    176       .addReg(StackPtr)
    177       .addImm(ThisVal);
    178     if (isSub)
    179       MI->setFlag(MachineInstr::FrameSetup);
    180     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    181     Offset -= ThisVal;
    182   }
    183 }
    184 
    185 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
    186 static
    187 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    188                       unsigned StackPtr, uint64_t *NumBytes = NULL) {
    189   if (MBBI == MBB.begin()) return;
    190 
    191   MachineBasicBlock::iterator PI = prior(MBBI);
    192   unsigned Opc = PI->getOpcode();
    193   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    194        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    195       PI->getOperand(0).getReg() == StackPtr) {
    196     if (NumBytes)
    197       *NumBytes += PI->getOperand(2).getImm();
    198     MBB.erase(PI);
    199   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    200               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    201              PI->getOperand(0).getReg() == StackPtr) {
    202     if (NumBytes)
    203       *NumBytes -= PI->getOperand(2).getImm();
    204     MBB.erase(PI);
    205   }
    206 }
    207 
    208 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
    209 static
    210 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
    211                         MachineBasicBlock::iterator &MBBI,
    212                         unsigned StackPtr, uint64_t *NumBytes = NULL) {
    213   // FIXME: THIS ISN'T RUN!!!
    214   return;
    215 
    216   if (MBBI == MBB.end()) return;
    217 
    218   MachineBasicBlock::iterator NI = llvm::next(MBBI);
    219   if (NI == MBB.end()) return;
    220 
    221   unsigned Opc = NI->getOpcode();
    222   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    223        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    224       NI->getOperand(0).getReg() == StackPtr) {
    225     if (NumBytes)
    226       *NumBytes -= NI->getOperand(2).getImm();
    227     MBB.erase(NI);
    228     MBBI = NI;
    229   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    230               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    231              NI->getOperand(0).getReg() == StackPtr) {
    232     if (NumBytes)
    233       *NumBytes += NI->getOperand(2).getImm();
    234     MBB.erase(NI);
    235     MBBI = NI;
    236   }
    237 }
    238 
    239 /// mergeSPUpdates - Checks the instruction before/after the passed
    240 /// instruction. If it is an ADD/SUB instruction it is deleted argument and the
    241 /// stack adjustment is returned as a positive value for ADD and a negative for
    242 /// SUB.
    243 static int mergeSPUpdates(MachineBasicBlock &MBB,
    244                            MachineBasicBlock::iterator &MBBI,
    245                            unsigned StackPtr,
    246                            bool doMergeWithPrevious) {
    247   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    248       (!doMergeWithPrevious && MBBI == MBB.end()))
    249     return 0;
    250 
    251   MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
    252   MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
    253   unsigned Opc = PI->getOpcode();
    254   int Offset = 0;
    255 
    256   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    257        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    258       PI->getOperand(0).getReg() == StackPtr){
    259     Offset += PI->getOperand(2).getImm();
    260     MBB.erase(PI);
    261     if (!doMergeWithPrevious) MBBI = NI;
    262   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    263               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    264              PI->getOperand(0).getReg() == StackPtr) {
    265     Offset -= PI->getOperand(2).getImm();
    266     MBB.erase(PI);
    267     if (!doMergeWithPrevious) MBBI = NI;
    268   }
    269 
    270   return Offset;
    271 }
    272 
    273 static bool isEAXLiveIn(MachineFunction &MF) {
    274   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
    275        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    276     unsigned Reg = II->first;
    277 
    278     if (Reg == X86::EAX || Reg == X86::AX ||
    279         Reg == X86::AH || Reg == X86::AL)
    280       return true;
    281   }
    282 
    283   return false;
    284 }
    285 
    286 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
    287                                                  MCSymbol *Label,
    288                                                  unsigned FramePtr) const {
    289   MachineFrameInfo *MFI = MF.getFrameInfo();
    290   MachineModuleInfo &MMI = MF.getMMI();
    291 
    292   // Add callee saved registers to move list.
    293   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    294   if (CSI.empty()) return;
    295 
    296   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    297   const TargetData *TD = TM.getTargetData();
    298   bool HasFP = hasFP(MF);
    299 
    300   // Calculate amount of bytes used for return address storing.
    301   int stackGrowth = -TD->getPointerSize();
    302 
    303   // FIXME: This is dirty hack. The code itself is pretty mess right now.
    304   // It should be rewritten from scratch and generalized sometimes.
    305 
    306   // Determine maximum offset (minimum due to stack growth).
    307   int64_t MaxOffset = 0;
    308   for (std::vector<CalleeSavedInfo>::const_iterator
    309          I = CSI.begin(), E = CSI.end(); I != E; ++I)
    310     MaxOffset = std::min(MaxOffset,
    311                          MFI->getObjectOffset(I->getFrameIdx()));
    312 
    313   // Calculate offsets.
    314   int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
    315   for (std::vector<CalleeSavedInfo>::const_iterator
    316          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    317     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    318     unsigned Reg = I->getReg();
    319     Offset = MaxOffset - Offset + saveAreaOffset;
    320 
    321     // Don't output a new machine move if we're re-saving the frame
    322     // pointer. This happens when the PrologEpilogInserter has inserted an extra
    323     // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
    324     // generates one when frame pointers are used. If we generate a "machine
    325     // move" for this extra "PUSH", the linker will lose track of the fact that
    326     // the frame pointer should have the value of the first "PUSH" when it's
    327     // trying to unwind.
    328     //
    329     // FIXME: This looks inelegant. It's possibly correct, but it's covering up
    330     //        another bug. I.e., one where we generate a prolog like this:
    331     //
    332     //          pushl  %ebp
    333     //          movl   %esp, %ebp
    334     //          pushl  %ebp
    335     //          pushl  %esi
    336     //           ...
    337     //
    338     //        The immediate re-push of EBP is unnecessary. At the least, it's an
    339     //        optimization bug. EBP can be used as a scratch register in certain
    340     //        cases, but probably not when we have a frame pointer.
    341     if (HasFP && FramePtr == Reg)
    342       continue;
    343 
    344     MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
    345     MachineLocation CSSrc(Reg);
    346     Moves.push_back(MachineMove(Label, CSDst, CSSrc));
    347   }
    348 }
    349 
    350 /// getCompactUnwindRegNum - Get the compact unwind number for a given
    351 /// register. The number corresponds to the enum lists in
    352 /// compact_unwind_encoding.h.
    353 static int getCompactUnwindRegNum(const unsigned *CURegs, unsigned Reg) {
    354   int Idx = 1;
    355   for (; *CURegs; ++CURegs, ++Idx)
    356     if (*CURegs == Reg)
    357       return Idx;
    358 
    359   return -1;
    360 }
    361 
    362 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
    363 /// used with frameless stacks. It is passed the number of registers to be saved
    364 /// and an array of the registers saved.
    365 static uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[6],
    366                                                          unsigned RegCount,
    367                                                          bool Is64Bit) {
    368   // The saved registers are numbered from 1 to 6. In order to encode the order
    369   // in which they were saved, we re-number them according to their place in the
    370   // register order. The re-numbering is relative to the last re-numbered
    371   // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
    372   //
    373   //    Orig  Re-Num
    374   //    ----  ------
    375   //     6       6
    376   //     2       2
    377   //     4       3
    378   //     5       3
    379   //
    380   static const unsigned CU32BitRegs[] = {
    381     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    382   };
    383   static const unsigned CU64BitRegs[] = {
    384     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    385   };
    386   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    387 
    388   uint32_t RenumRegs[6];
    389   for (unsigned i = 6 - RegCount; i < 6; ++i) {
    390     int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
    391     if (CUReg == -1) return ~0U;
    392     SavedRegs[i] = CUReg;
    393 
    394     unsigned Countless = 0;
    395     for (unsigned j = 6 - RegCount; j < i; ++j)
    396       if (SavedRegs[j] < SavedRegs[i])
    397         ++Countless;
    398 
    399     RenumRegs[i] = SavedRegs[i] - Countless - 1;
    400   }
    401 
    402   // Take the renumbered values and encode them into a 10-bit number.
    403   uint32_t permutationEncoding = 0;
    404   switch (RegCount) {
    405   case 6:
    406     permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    407                            + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    408                            +     RenumRegs[4];
    409     break;
    410   case 5:
    411     permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    412                            + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    413                            +     RenumRegs[5];
    414     break;
    415   case 4:
    416     permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    417                            + 3 * RenumRegs[4] +      RenumRegs[5];
    418     break;
    419   case 3:
    420     permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    421                            +     RenumRegs[5];
    422     break;
    423   case 2:
    424     permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    425     break;
    426   case 1:
    427     permutationEncoding |=       RenumRegs[5];
    428     break;
    429   }
    430 
    431   assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    432          "Invalid compact register encoding!");
    433   return permutationEncoding;
    434 }
    435 
    436 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
    437 /// compact encoding with a frame pointer.
    438 static uint32_t encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[6],
    439                                                       bool Is64Bit) {
    440   static const unsigned CU32BitRegs[] = {
    441     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    442   };
    443   static const unsigned CU64BitRegs[] = {
    444     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    445   };
    446   const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    447 
    448   // Encode the registers in the order they were saved, 3-bits per register. The
    449   // registers are numbered from 1 to 6.
    450   uint32_t RegEnc = 0;
    451   for (int I = 5; I >= 0; --I) {
    452     unsigned Reg = SavedRegs[I];
    453     if (Reg == 0) break;
    454     int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
    455     if (CURegNum == -1)
    456       return ~0U;
    457     RegEnc |= (CURegNum & 0x7) << (5 - I);
    458   }
    459 
    460   assert((RegEnc & 0x7FFF) == RegEnc && "Invalid compact register encoding!");
    461   return RegEnc;
    462 }
    463 
    464 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
    465   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    466   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    467   unsigned StackPtr = RegInfo->getStackRegister();
    468 
    469   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    470   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    471 
    472   bool Is64Bit = STI.is64Bit();
    473   bool HasFP = hasFP(MF);
    474 
    475   unsigned SavedRegs[6] = { 0, 0, 0, 0, 0, 0 };
    476   int SavedRegIdx = 6;
    477 
    478   unsigned OffsetSize = (Is64Bit ? 8 : 4);
    479 
    480   unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
    481   unsigned PushInstrSize = 1;
    482   unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
    483   unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
    484   unsigned SubtractInstr = getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta);
    485   unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
    486 
    487   unsigned StackDivide = (Is64Bit ? 8 : 4);
    488 
    489   unsigned InstrOffset = 0;
    490   unsigned CFAOffset = 0;
    491   unsigned StackAdjust = 0;
    492 
    493   MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
    494   bool ExpectEnd = false;
    495   for (MachineBasicBlock::iterator
    496          MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
    497     MachineInstr &MI = *MBBI;
    498     unsigned Opc = MI.getOpcode();
    499     if (Opc == X86::PROLOG_LABEL) continue;
    500     if (!MI.getFlag(MachineInstr::FrameSetup)) break;
    501 
    502     // We don't exect any more prolog instructions.
    503     if (ExpectEnd) return 0;
    504 
    505     if (Opc == PushInstr) {
    506       // If there are too many saved registers, we cannot use compact encoding.
    507       if (--SavedRegIdx < 0) return 0;
    508 
    509       SavedRegs[SavedRegIdx] = MI.getOperand(0).getReg();
    510       CFAOffset += OffsetSize;
    511       InstrOffset += PushInstrSize;
    512     } else if (Opc == MoveInstr) {
    513       unsigned SrcReg = MI.getOperand(1).getReg();
    514       unsigned DstReg = MI.getOperand(0).getReg();
    515 
    516       if (DstReg != FramePtr || SrcReg != StackPtr)
    517         return 0;
    518 
    519       CFAOffset = 0;
    520       memset(SavedRegs, 0, sizeof(SavedRegs));
    521       InstrOffset += MoveInstrSize;
    522     } else if (Opc == SubtractInstr) {
    523       if (StackAdjust)
    524         // We all ready have a stack pointer adjustment.
    525         return 0;
    526 
    527       if (!MI.getOperand(0).isReg() ||
    528           MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
    529           MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
    530         // We need this to be a stack adjustment pointer. Something like:
    531         //
    532         //   %RSP<def> = SUB64ri8 %RSP, 48
    533         return 0;
    534 
    535       StackAdjust = MI.getOperand(2).getImm() / StackDivide;
    536       SubtractInstrIdx += InstrOffset;
    537       ExpectEnd = true;
    538     }
    539   }
    540 
    541   // Encode that we are using EBP/RBP as the frame pointer.
    542   uint32_t CompactUnwindEncoding = 0;
    543   CFAOffset /= StackDivide;
    544   if (HasFP) {
    545     if ((CFAOffset & 0xFF) != CFAOffset)
    546       // Offset was too big for compact encoding.
    547       return 0;
    548 
    549     // Get the encoding of the saved registers when we have a frame pointer.
    550     uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
    551     if (RegEnc == ~0U)
    552       return 0;
    553 
    554     CompactUnwindEncoding |= 0x01000000;
    555     CompactUnwindEncoding |= (CFAOffset & 0xFF) << 16;
    556     CompactUnwindEncoding |= RegEnc & 0x7FFF;
    557   } else {
    558     unsigned FullOffset = CFAOffset + StackAdjust;
    559     if ((FullOffset & 0xFF) == FullOffset) {
    560       // Frameless stack.
    561       CompactUnwindEncoding |= 0x02000000;
    562       CompactUnwindEncoding |= (FullOffset & 0xFF) << 16;
    563     } else {
    564       if ((CFAOffset & 0x7) != CFAOffset)
    565         // The extra stack adjustments are too big for us to handle.
    566         return 0;
    567 
    568       // Frameless stack with an offset too large for us to encode compactly.
    569       CompactUnwindEncoding |= 0x03000000;
    570 
    571       // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    572       // instruction.
    573       CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    574 
    575       // Encode any extra stack stack changes (done via push instructions).
    576       CompactUnwindEncoding |= (CFAOffset & 0x7) << 13;
    577     }
    578 
    579     // Get the encoding of the saved registers when we don't have a frame
    580     // pointer.
    581     uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegs,
    582                                                                6 - SavedRegIdx,
    583                                                                Is64Bit);
    584     if (RegEnc == ~0U) return 0;
    585     CompactUnwindEncoding |= RegEnc & 0x3FF;
    586   }
    587 
    588   return CompactUnwindEncoding;
    589 }
    590 
    591 /// emitPrologue - Push callee-saved registers onto the stack, which
    592 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    593 /// space for local variables. Also emit labels used by the exception handler to
    594 /// generate the exception handling frames.
    595 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
    596   MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
    597   MachineBasicBlock::iterator MBBI = MBB.begin();
    598   MachineFrameInfo *MFI = MF.getFrameInfo();
    599   const Function *Fn = MF.getFunction();
    600   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    601   const X86InstrInfo &TII = *TM.getInstrInfo();
    602   MachineModuleInfo &MMI = MF.getMMI();
    603   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    604   bool needsFrameMoves = MMI.hasDebugInfo() ||
    605     Fn->needsUnwindTableEntry();
    606   uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
    607   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    608   bool HasFP = hasFP(MF);
    609   bool Is64Bit = STI.is64Bit();
    610   bool IsWin64 = STI.isTargetWin64();
    611   unsigned StackAlign = getStackAlignment();
    612   unsigned SlotSize = RegInfo->getSlotSize();
    613   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    614   unsigned StackPtr = RegInfo->getStackRegister();
    615   DebugLoc DL;
    616 
    617   // If we're forcing a stack realignment we can't rely on just the frame
    618   // info, we need to know the ABI stack alignment as well in case we
    619   // have a call out.  Otherwise just make sure we have some alignment - we'll
    620   // go with the minimum SlotSize.
    621   if (ForceStackAlign) {
    622     if (MFI->hasCalls())
    623       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    624     else if (MaxAlign < SlotSize)
    625       MaxAlign = SlotSize;
    626   }
    627 
    628   // Add RETADDR move area to callee saved frame size.
    629   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    630   if (TailCallReturnAddrDelta < 0)
    631     X86FI->setCalleeSavedFrameSize(
    632       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    633 
    634   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    635   // function, and use up to 128 bytes of stack space, don't have a frame
    636   // pointer, calls, or dynamic alloca then we do not need to adjust the
    637   // stack pointer (we fit in the Red Zone).
    638   if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
    639       !RegInfo->needsStackRealignment(MF) &&
    640       !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
    641       !MFI->adjustsStack() &&                      // No calls.
    642       !IsWin64 &&                                  // Win64 has no Red Zone
    643       !EnableSegmentedStacks) {                    // Regular stack
    644     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    645     if (HasFP) MinSize += SlotSize;
    646     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    647     MFI->setStackSize(StackSize);
    648   }
    649 
    650   // Insert stack pointer adjustment for later moving of return addr.  Only
    651   // applies to tail call optimized functions where the callee argument stack
    652   // size is bigger than the callers.
    653   if (TailCallReturnAddrDelta < 0) {
    654     MachineInstr *MI =
    655       BuildMI(MBB, MBBI, DL,
    656               TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
    657               StackPtr)
    658         .addReg(StackPtr)
    659         .addImm(-TailCallReturnAddrDelta)
    660         .setMIFlag(MachineInstr::FrameSetup);
    661     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    662   }
    663 
    664   // Mapping for machine moves:
    665   //
    666   //   DST: VirtualFP AND
    667   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    668   //        ELSE                        => DW_CFA_def_cfa
    669   //
    670   //   SRC: VirtualFP AND
    671   //        DST: Register               => DW_CFA_def_cfa_register
    672   //
    673   //   ELSE
    674   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    675   //        REG < 64                    => DW_CFA_offset + Reg
    676   //        ELSE                        => DW_CFA_offset_extended
    677 
    678   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    679   const TargetData *TD = MF.getTarget().getTargetData();
    680   uint64_t NumBytes = 0;
    681   int stackGrowth = -TD->getPointerSize();
    682 
    683   if (HasFP) {
    684     // Calculate required stack adjustment.
    685     uint64_t FrameSize = StackSize - SlotSize;
    686     if (RegInfo->needsStackRealignment(MF))
    687       FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
    688 
    689     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
    690 
    691     // Get the offset of the stack slot for the EBP register, which is
    692     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
    693     // Update the frame offset adjustment.
    694     MFI->setOffsetAdjustment(-NumBytes);
    695 
    696     // Save EBP/RBP into the appropriate stack slot.
    697     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
    698       .addReg(FramePtr, RegState::Kill)
    699       .setMIFlag(MachineInstr::FrameSetup);
    700 
    701     if (needsFrameMoves) {
    702       // Mark the place where EBP/RBP was saved.
    703       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    704       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    705         .addSym(FrameLabel);
    706 
    707       // Define the current CFA rule to use the provided offset.
    708       if (StackSize) {
    709         MachineLocation SPDst(MachineLocation::VirtualFP);
    710         MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
    711         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    712       } else {
    713         MachineLocation SPDst(StackPtr);
    714         MachineLocation SPSrc(StackPtr, stackGrowth);
    715         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    716       }
    717 
    718       // Change the rule for the FramePtr to be an "offset" rule.
    719       MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
    720       MachineLocation FPSrc(FramePtr);
    721       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    722     }
    723 
    724     // Update EBP with the new base value.
    725     BuildMI(MBB, MBBI, DL,
    726             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
    727         .addReg(StackPtr)
    728         .setMIFlag(MachineInstr::FrameSetup);
    729 
    730     if (needsFrameMoves) {
    731       // Mark effective beginning of when frame pointer becomes valid.
    732       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    733       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    734         .addSym(FrameLabel);
    735 
    736       // Define the current CFA to use the EBP/RBP register.
    737       MachineLocation FPDst(FramePtr);
    738       MachineLocation FPSrc(MachineLocation::VirtualFP);
    739       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    740     }
    741 
    742     // Mark the FramePtr as live-in in every block except the entry.
    743     for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
    744          I != E; ++I)
    745       I->addLiveIn(FramePtr);
    746 
    747     // Realign stack
    748     if (RegInfo->needsStackRealignment(MF)) {
    749       MachineInstr *MI =
    750         BuildMI(MBB, MBBI, DL,
    751                 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
    752         .addReg(StackPtr)
    753         .addImm(-MaxAlign)
    754         .setMIFlag(MachineInstr::FrameSetup);
    755 
    756       // The EFLAGS implicit def is dead.
    757       MI->getOperand(3).setIsDead();
    758     }
    759   } else {
    760     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
    761   }
    762 
    763   // Skip the callee-saved push instructions.
    764   bool PushedRegs = false;
    765   int StackOffset = 2 * stackGrowth;
    766 
    767   while (MBBI != MBB.end() &&
    768          (MBBI->getOpcode() == X86::PUSH32r ||
    769           MBBI->getOpcode() == X86::PUSH64r)) {
    770     PushedRegs = true;
    771     MBBI->setFlag(MachineInstr::FrameSetup);
    772     ++MBBI;
    773 
    774     if (!HasFP && needsFrameMoves) {
    775       // Mark callee-saved push instruction.
    776       MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    777       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
    778 
    779       // Define the current CFA rule to use the provided offset.
    780       unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
    781       MachineLocation SPDst(Ptr);
    782       MachineLocation SPSrc(Ptr, StackOffset);
    783       Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    784       StackOffset += stackGrowth;
    785     }
    786   }
    787 
    788   DL = MBB.findDebugLoc(MBBI);
    789 
    790   // If there is an SUB32ri of ESP immediately before this instruction, merge
    791   // the two. This can be the case when tail call elimination is enabled and
    792   // the callee has more arguments then the caller.
    793   NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
    794 
    795   // If there is an ADD32ri or SUB32ri of ESP immediately after this
    796   // instruction, merge the two instructions.
    797   mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
    798 
    799   // Adjust stack pointer: ESP -= numbytes.
    800 
    801   // Windows and cygwin/mingw require a prologue helper routine when allocating
    802   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
    803   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
    804   // stack and adjust the stack pointer in one go.  The 64-bit version of
    805   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
    806   // responsible for adjusting the stack pointer.  Touching the stack at 4K
    807   // increments is necessary to ensure that the guard pages used by the OS
    808   // virtual memory manager are allocated in correct sequence.
    809   if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
    810     const char *StackProbeSymbol;
    811     bool isSPUpdateNeeded = false;
    812 
    813     if (Is64Bit) {
    814       if (STI.isTargetCygMing())
    815         StackProbeSymbol = "___chkstk";
    816       else {
    817         StackProbeSymbol = "__chkstk";
    818         isSPUpdateNeeded = true;
    819       }
    820     } else if (STI.isTargetCygMing())
    821       StackProbeSymbol = "_alloca";
    822     else
    823       StackProbeSymbol = "_chkstk";
    824 
    825     // Check whether EAX is livein for this function.
    826     bool isEAXAlive = isEAXLiveIn(MF);
    827 
    828     if (isEAXAlive) {
    829       // Sanity check that EAX is not livein for this function.
    830       // It should not be, so throw an assert.
    831       assert(!Is64Bit && "EAX is livein in x64 case!");
    832 
    833       // Save EAX
    834       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
    835         .addReg(X86::EAX, RegState::Kill)
    836         .setMIFlag(MachineInstr::FrameSetup);
    837     }
    838 
    839     if (Is64Bit) {
    840       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
    841       // Function prologue is responsible for adjusting the stack pointer.
    842       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
    843         .addImm(NumBytes)
    844         .setMIFlag(MachineInstr::FrameSetup);
    845     } else {
    846       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
    847       // We'll also use 4 already allocated bytes for EAX.
    848       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
    849         .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
    850         .setMIFlag(MachineInstr::FrameSetup);
    851     }
    852 
    853     BuildMI(MBB, MBBI, DL,
    854             TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
    855       .addExternalSymbol(StackProbeSymbol)
    856       .addReg(StackPtr,    RegState::Define | RegState::Implicit)
    857       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
    858       .setMIFlag(MachineInstr::FrameSetup);
    859 
    860     // MSVC x64's __chkstk needs to adjust %rsp.
    861     // FIXME: %rax preserves the offset and should be available.
    862     if (isSPUpdateNeeded)
    863       emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
    864                    TII, *RegInfo);
    865 
    866     if (isEAXAlive) {
    867         // Restore EAX
    868         MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
    869                                                 X86::EAX),
    870                                         StackPtr, false, NumBytes - 4);
    871         MI->setFlag(MachineInstr::FrameSetup);
    872         MBB.insert(MBBI, MI);
    873     }
    874   } else if (NumBytes)
    875     emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
    876                  TII, *RegInfo);
    877 
    878   if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
    879     // Mark end of stack pointer adjustment.
    880     MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    881     BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    882       .addSym(Label);
    883 
    884     if (!HasFP && NumBytes) {
    885       // Define the current CFA rule to use the provided offset.
    886       if (StackSize) {
    887         MachineLocation SPDst(MachineLocation::VirtualFP);
    888         MachineLocation SPSrc(MachineLocation::VirtualFP,
    889                               -StackSize + stackGrowth);
    890         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    891       } else {
    892         MachineLocation SPDst(StackPtr);
    893         MachineLocation SPSrc(StackPtr, stackGrowth);
    894         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    895       }
    896     }
    897 
    898     // Emit DWARF info specifying the offsets of the callee-saved registers.
    899     if (PushedRegs)
    900       emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
    901   }
    902 
    903   // Darwin 10.7 and greater has support for compact unwind encoding.
    904   if (STI.getTargetTriple().isMacOSX() &&
    905       !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
    906     MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
    907 }
    908 
    909 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
    910                                     MachineBasicBlock &MBB) const {
    911   const MachineFrameInfo *MFI = MF.getFrameInfo();
    912   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    913   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    914   const X86InstrInfo &TII = *TM.getInstrInfo();
    915   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
    916   assert(MBBI != MBB.end() && "Returning block has no instructions");
    917   unsigned RetOpcode = MBBI->getOpcode();
    918   DebugLoc DL = MBBI->getDebugLoc();
    919   bool Is64Bit = STI.is64Bit();
    920   unsigned StackAlign = getStackAlignment();
    921   unsigned SlotSize = RegInfo->getSlotSize();
    922   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    923   unsigned StackPtr = RegInfo->getStackRegister();
    924 
    925   switch (RetOpcode) {
    926   default:
    927     llvm_unreachable("Can only insert epilog into returning blocks");
    928   case X86::RET:
    929   case X86::RETI:
    930   case X86::TCRETURNdi:
    931   case X86::TCRETURNri:
    932   case X86::TCRETURNmi:
    933   case X86::TCRETURNdi64:
    934   case X86::TCRETURNri64:
    935   case X86::TCRETURNmi64:
    936   case X86::EH_RETURN:
    937   case X86::EH_RETURN64:
    938     break;  // These are ok
    939   }
    940 
    941   // Get the number of bytes to allocate from the FrameInfo.
    942   uint64_t StackSize = MFI->getStackSize();
    943   uint64_t MaxAlign  = MFI->getMaxAlignment();
    944   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
    945   uint64_t NumBytes = 0;
    946 
    947   // If we're forcing a stack realignment we can't rely on just the frame
    948   // info, we need to know the ABI stack alignment as well in case we
    949   // have a call out.  Otherwise just make sure we have some alignment - we'll
    950   // go with the minimum.
    951   if (ForceStackAlign) {
    952     if (MFI->hasCalls())
    953       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    954     else
    955       MaxAlign = MaxAlign ? MaxAlign : 4;
    956   }
    957 
    958   if (hasFP(MF)) {
    959     // Calculate required stack adjustment.
    960     uint64_t FrameSize = StackSize - SlotSize;
    961     if (RegInfo->needsStackRealignment(MF))
    962       FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
    963 
    964     NumBytes = FrameSize - CSSize;
    965 
    966     // Pop EBP.
    967     BuildMI(MBB, MBBI, DL,
    968             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
    969   } else {
    970     NumBytes = StackSize - CSSize;
    971   }
    972 
    973   // Skip the callee-saved pop instructions.
    974   MachineBasicBlock::iterator LastCSPop = MBBI;
    975   while (MBBI != MBB.begin()) {
    976     MachineBasicBlock::iterator PI = prior(MBBI);
    977     unsigned Opc = PI->getOpcode();
    978 
    979     if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
    980         !PI->getDesc().isTerminator())
    981       break;
    982 
    983     --MBBI;
    984   }
    985 
    986   DL = MBBI->getDebugLoc();
    987 
    988   // If there is an ADD32ri or SUB32ri of ESP immediately before this
    989   // instruction, merge the two instructions.
    990   if (NumBytes || MFI->hasVarSizedObjects())
    991     mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
    992 
    993   // If dynamic alloca is used, then reset esp to point to the last callee-saved
    994   // slot before popping them off! Same applies for the case, when stack was
    995   // realigned.
    996   if (RegInfo->needsStackRealignment(MF)) {
    997     // We cannot use LEA here, because stack pointer was realigned. We need to
    998     // deallocate local frame back.
    999     if (CSSize) {
   1000       emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
   1001       MBBI = prior(LastCSPop);
   1002     }
   1003 
   1004     BuildMI(MBB, MBBI, DL,
   1005             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1006             StackPtr).addReg(FramePtr);
   1007   } else if (MFI->hasVarSizedObjects()) {
   1008     if (CSSize) {
   1009       unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
   1010       MachineInstr *MI =
   1011         addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
   1012                      FramePtr, false, -CSSize);
   1013       MBB.insert(MBBI, MI);
   1014     } else {
   1015       BuildMI(MBB, MBBI, DL,
   1016               TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
   1017         .addReg(FramePtr);
   1018     }
   1019   } else if (NumBytes) {
   1020     // Adjust stack pointer back: ESP += numbytes.
   1021     emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
   1022   }
   1023 
   1024   // We're returning from function via eh_return.
   1025   if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
   1026     MBBI = MBB.getLastNonDebugInstr();
   1027     MachineOperand &DestAddr  = MBBI->getOperand(0);
   1028     assert(DestAddr.isReg() && "Offset should be in register!");
   1029     BuildMI(MBB, MBBI, DL,
   1030             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1031             StackPtr).addReg(DestAddr.getReg());
   1032   } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
   1033              RetOpcode == X86::TCRETURNmi ||
   1034              RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
   1035              RetOpcode == X86::TCRETURNmi64) {
   1036     bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
   1037     // Tail call return: adjust the stack pointer and jump to callee.
   1038     MBBI = MBB.getLastNonDebugInstr();
   1039     MachineOperand &JumpTarget = MBBI->getOperand(0);
   1040     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
   1041     assert(StackAdjust.isImm() && "Expecting immediate value.");
   1042 
   1043     // Adjust stack pointer.
   1044     int StackAdj = StackAdjust.getImm();
   1045     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
   1046     int Offset = 0;
   1047     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
   1048 
   1049     // Incoporate the retaddr area.
   1050     Offset = StackAdj-MaxTCDelta;
   1051     assert(Offset >= 0 && "Offset should never be negative");
   1052 
   1053     if (Offset) {
   1054       // Check for possible merge with preceding ADD instruction.
   1055       Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1056       emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII, *RegInfo);
   1057     }
   1058 
   1059     // Jump to label or value in register.
   1060     if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
   1061       MachineInstrBuilder MIB =
   1062         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
   1063                                        ? X86::TAILJMPd : X86::TAILJMPd64));
   1064       if (JumpTarget.isGlobal())
   1065         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
   1066                              JumpTarget.getTargetFlags());
   1067       else {
   1068         assert(JumpTarget.isSymbol());
   1069         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
   1070                               JumpTarget.getTargetFlags());
   1071       }
   1072     } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
   1073       MachineInstrBuilder MIB =
   1074         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
   1075                                        ? X86::TAILJMPm : X86::TAILJMPm64));
   1076       for (unsigned i = 0; i != 5; ++i)
   1077         MIB.addOperand(MBBI->getOperand(i));
   1078     } else if (RetOpcode == X86::TCRETURNri64) {
   1079       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
   1080         addReg(JumpTarget.getReg(), RegState::Kill);
   1081     } else {
   1082       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
   1083         addReg(JumpTarget.getReg(), RegState::Kill);
   1084     }
   1085 
   1086     MachineInstr *NewMI = prior(MBBI);
   1087     for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
   1088       NewMI->addOperand(MBBI->getOperand(i));
   1089 
   1090     // Delete the pseudo instruction TCRETURN.
   1091     MBB.erase(MBBI);
   1092   } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
   1093              (X86FI->getTCReturnAddrDelta() < 0)) {
   1094     // Add the return addr area delta back since we are not tail calling.
   1095     int delta = -1*X86FI->getTCReturnAddrDelta();
   1096     MBBI = MBB.getLastNonDebugInstr();
   1097 
   1098     // Check for possible merge with preceding ADD instruction.
   1099     delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1100     emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII, *RegInfo);
   1101   }
   1102 }
   1103 
   1104 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
   1105   const X86RegisterInfo *RI =
   1106     static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1107   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1108   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1109   uint64_t StackSize = MFI->getStackSize();
   1110 
   1111   if (RI->needsStackRealignment(MF)) {
   1112     if (FI < 0) {
   1113       // Skip the saved EBP.
   1114       Offset += RI->getSlotSize();
   1115     } else {
   1116       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1117       return Offset + StackSize;
   1118     }
   1119     // FIXME: Support tail calls
   1120   } else {
   1121     if (!hasFP(MF))
   1122       return Offset + StackSize;
   1123 
   1124     // Skip the saved EBP.
   1125     Offset += RI->getSlotSize();
   1126 
   1127     // Skip the RETADDR move area
   1128     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1129     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1130     if (TailCallReturnAddrDelta < 0)
   1131       Offset -= TailCallReturnAddrDelta;
   1132   }
   1133 
   1134   return Offset;
   1135 }
   1136 
   1137 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
   1138                                              MachineBasicBlock::iterator MI,
   1139                                         const std::vector<CalleeSavedInfo> &CSI,
   1140                                           const TargetRegisterInfo *TRI) const {
   1141   if (CSI.empty())
   1142     return false;
   1143 
   1144   DebugLoc DL = MBB.findDebugLoc(MI);
   1145 
   1146   MachineFunction &MF = *MBB.getParent();
   1147 
   1148   unsigned SlotSize = STI.is64Bit() ? 8 : 4;
   1149   unsigned FPReg = TRI->getFrameRegister(MF);
   1150   unsigned CalleeFrameSize = 0;
   1151 
   1152   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1153   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1154 
   1155   // Push GPRs. It increases frame size.
   1156   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1157   for (unsigned i = CSI.size(); i != 0; --i) {
   1158     unsigned Reg = CSI[i-1].getReg();
   1159     if (!X86::GR64RegClass.contains(Reg) &&
   1160         !X86::GR32RegClass.contains(Reg))
   1161       continue;
   1162     // Add the callee-saved register as live-in. It's killed at the spill.
   1163     MBB.addLiveIn(Reg);
   1164     if (Reg == FPReg)
   1165       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
   1166       continue;
   1167     CalleeFrameSize += SlotSize;
   1168     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
   1169       .setMIFlag(MachineInstr::FrameSetup);
   1170   }
   1171 
   1172   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
   1173 
   1174   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1175   // It can be done by spilling XMMs to stack frame.
   1176   // Note that only Win64 ABI might spill XMMs.
   1177   for (unsigned i = CSI.size(); i != 0; --i) {
   1178     unsigned Reg = CSI[i-1].getReg();
   1179     if (X86::GR64RegClass.contains(Reg) ||
   1180         X86::GR32RegClass.contains(Reg))
   1181       continue;
   1182     // Add the callee-saved register as live-in. It's killed at the spill.
   1183     MBB.addLiveIn(Reg);
   1184     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1185     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
   1186                             RC, TRI);
   1187   }
   1188 
   1189   return true;
   1190 }
   1191 
   1192 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1193                                                MachineBasicBlock::iterator MI,
   1194                                         const std::vector<CalleeSavedInfo> &CSI,
   1195                                           const TargetRegisterInfo *TRI) const {
   1196   if (CSI.empty())
   1197     return false;
   1198 
   1199   DebugLoc DL = MBB.findDebugLoc(MI);
   1200 
   1201   MachineFunction &MF = *MBB.getParent();
   1202   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1203 
   1204   // Reload XMMs from stack frame.
   1205   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1206     unsigned Reg = CSI[i].getReg();
   1207     if (X86::GR64RegClass.contains(Reg) ||
   1208         X86::GR32RegClass.contains(Reg))
   1209       continue;
   1210     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1211     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
   1212                              RC, TRI);
   1213   }
   1214 
   1215   // POP GPRs.
   1216   unsigned FPReg = TRI->getFrameRegister(MF);
   1217   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1218   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1219     unsigned Reg = CSI[i].getReg();
   1220     if (!X86::GR64RegClass.contains(Reg) &&
   1221         !X86::GR32RegClass.contains(Reg))
   1222       continue;
   1223     if (Reg == FPReg)
   1224       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
   1225       continue;
   1226     BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
   1227   }
   1228   return true;
   1229 }
   1230 
   1231 void
   1232 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
   1233                                                    RegScavenger *RS) const {
   1234   MachineFrameInfo *MFI = MF.getFrameInfo();
   1235   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
   1236   unsigned SlotSize = RegInfo->getSlotSize();
   1237 
   1238   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1239   int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1240 
   1241   if (TailCallReturnAddrDelta < 0) {
   1242     // create RETURNADDR area
   1243     //   arg
   1244     //   arg
   1245     //   RETADDR
   1246     //   { ...
   1247     //     RETADDR area
   1248     //     ...
   1249     //   }
   1250     //   [EBP]
   1251     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   1252                            (-1U*SlotSize)+TailCallReturnAddrDelta, true);
   1253   }
   1254 
   1255   if (hasFP(MF)) {
   1256     assert((TailCallReturnAddrDelta <= 0) &&
   1257            "The Delta should always be zero or negative");
   1258     const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
   1259 
   1260     // Create a frame entry for the EBP register that must be saved.
   1261     int FrameIdx = MFI->CreateFixedObject(SlotSize,
   1262                                           -(int)SlotSize +
   1263                                           TFI.getOffsetOfLocalArea() +
   1264                                           TailCallReturnAddrDelta,
   1265                                           true);
   1266     assert(FrameIdx == MFI->getObjectIndexBegin() &&
   1267            "Slot for EBP register must be last in order to be found!");
   1268     (void)FrameIdx;
   1269   }
   1270 }
   1271 
   1272 static bool
   1273 HasNestArgument(const MachineFunction *MF) {
   1274   const Function *F = MF->getFunction();
   1275   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1276        I != E; I++) {
   1277     if (I->hasNestAttr())
   1278       return true;
   1279   }
   1280   return false;
   1281 }
   1282 
   1283 static unsigned
   1284 GetScratchRegister(bool Is64Bit, const MachineFunction &MF) {
   1285   if (Is64Bit) {
   1286     return X86::R11;
   1287   } else {
   1288     CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   1289     bool IsNested = HasNestArgument(&MF);
   1290 
   1291     if (CallingConvention == CallingConv::X86_FastCall) {
   1292       if (IsNested) {
   1293         report_fatal_error("Segmented stacks does not support fastcall with "
   1294                            "nested function.");
   1295         return -1;
   1296       } else {
   1297         return X86::EAX;
   1298       }
   1299     } else {
   1300       if (IsNested)
   1301         return X86::EDX;
   1302       else
   1303         return X86::ECX;
   1304     }
   1305   }
   1306 }
   1307 
   1308 void
   1309 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
   1310   MachineBasicBlock &prologueMBB = MF.front();
   1311   MachineFrameInfo *MFI = MF.getFrameInfo();
   1312   const X86InstrInfo &TII = *TM.getInstrInfo();
   1313   uint64_t StackSize;
   1314   bool Is64Bit = STI.is64Bit();
   1315   unsigned TlsReg, TlsOffset;
   1316   DebugLoc DL;
   1317   const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
   1318 
   1319   unsigned ScratchReg = GetScratchRegister(Is64Bit, MF);
   1320   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1321          "Scratch register is live-in");
   1322 
   1323   if (MF.getFunction()->isVarArg())
   1324     report_fatal_error("Segmented stacks do not support vararg functions.");
   1325   if (!ST->isTargetLinux())
   1326     report_fatal_error("Segmented stacks supported only on linux.");
   1327 
   1328   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   1329   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   1330   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1331   bool IsNested = false;
   1332 
   1333   // We need to know if the function has a nest argument only in 64 bit mode.
   1334   if (Is64Bit)
   1335     IsNested = HasNestArgument(&MF);
   1336 
   1337   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   1338   // allocMBB needs to be last (terminating) instruction.
   1339   MachineBasicBlock *restoreR10MBB = NULL;
   1340   if (IsNested)
   1341     restoreR10MBB = MF.CreateMachineBasicBlock();
   1342 
   1343   for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
   1344          e = prologueMBB.livein_end(); i != e; i++) {
   1345     allocMBB->addLiveIn(*i);
   1346     checkMBB->addLiveIn(*i);
   1347 
   1348     if (IsNested)
   1349       restoreR10MBB->addLiveIn(*i);
   1350   }
   1351 
   1352   if (IsNested) {
   1353     allocMBB->addLiveIn(X86::R10);
   1354     restoreR10MBB->addLiveIn(X86::RAX);
   1355   }
   1356 
   1357   if (IsNested)
   1358     MF.push_front(restoreR10MBB);
   1359   MF.push_front(allocMBB);
   1360   MF.push_front(checkMBB);
   1361 
   1362   // Eventually StackSize will be calculated by a link-time pass; which will
   1363   // also decide whether checking code needs to be injected into this particular
   1364   // prologue.
   1365   StackSize = MFI->getStackSize();
   1366 
   1367   // Read the limit off the current stacklet off the stack_guard location.
   1368   if (Is64Bit) {
   1369     TlsReg = X86::FS;
   1370     TlsOffset = 0x70;
   1371 
   1372     BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
   1373       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
   1374     BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
   1375       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1376   } else {
   1377     TlsReg = X86::GS;
   1378     TlsOffset = 0x30;
   1379 
   1380     BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   1381       .addImm(0).addReg(0).addImm(-StackSize).addReg(0);
   1382     BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   1383       .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1384   }
   1385 
   1386   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   1387   // It jumps to normal execution of the function body.
   1388   BuildMI(checkMBB, DL, TII.get(X86::JG_4)).addMBB(&prologueMBB);
   1389 
   1390   // On 32 bit we first push the arguments size and then the frame size. On 64
   1391   // bit, we pass the stack frame size in r10 and the argument size in r11.
   1392   if (Is64Bit) {
   1393     // Functions with nested arguments use R10, so it needs to be saved across
   1394     // the call to _morestack
   1395 
   1396     if (IsNested)
   1397       BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
   1398 
   1399     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
   1400       .addImm(StackSize);
   1401     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
   1402       .addImm(X86FI->getArgumentStackSize());
   1403     MF.getRegInfo().setPhysRegUsed(X86::R10);
   1404     MF.getRegInfo().setPhysRegUsed(X86::R11);
   1405   } else {
   1406     // Since we'll call __morestack, stack alignment needs to be preserved.
   1407     BuildMI(allocMBB, DL, TII.get(X86::SUB32ri), X86::ESP).addReg(X86::ESP)
   1408       .addImm(8);
   1409     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1410       .addImm(X86FI->getArgumentStackSize());
   1411     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1412       .addImm(StackSize);
   1413   }
   1414 
   1415   // __morestack is in libgcc
   1416   if (Is64Bit)
   1417     BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   1418       .addExternalSymbol("__morestack");
   1419   else
   1420     BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   1421       .addExternalSymbol("__morestack");
   1422 
   1423   // __morestack only seems to remove 8 bytes off the stack. Add back the
   1424   // additional 8 bytes we added before pushing the arguments.
   1425   if (!Is64Bit)
   1426     BuildMI(allocMBB, DL, TII.get(X86::ADD32ri), X86::ESP).addReg(X86::ESP)
   1427       .addImm(8);
   1428   BuildMI(allocMBB, DL, TII.get(X86::RET));
   1429 
   1430   if (IsNested)
   1431     BuildMI(restoreR10MBB, DL, TII.get(X86::MOV64rr), X86::R10)
   1432       .addReg(X86::RAX);
   1433 
   1434   if (IsNested) {
   1435     allocMBB->addSuccessor(restoreR10MBB);
   1436     restoreR10MBB->addSuccessor(&prologueMBB);
   1437   } else {
   1438     allocMBB->addSuccessor(&prologueMBB);
   1439   }
   1440 
   1441   checkMBB->addSuccessor(allocMBB);
   1442   checkMBB->addSuccessor(&prologueMBB);
   1443 
   1444 #ifdef XDEBUG
   1445   MF.verify();
   1446 #endif
   1447 }
   1448