1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements induction variable simplification. It does 11 // not define any actual pass or policy, but provides a single function to 12 // simplify a loop's induction variables based on ScalarEvolution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "indvars" 17 18 #include "llvm/Instructions.h" 19 #include "llvm/Analysis/Dominators.h" 20 #include "llvm/Analysis/IVUsers.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 32 using namespace llvm; 33 34 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 35 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 37 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 38 39 namespace { 40 /// SimplifyIndvar - This is a utility for simplifying induction variables 41 /// based on ScalarEvolution. It is the primary instrument of the 42 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 43 /// other loop passes that preserve SCEV. 44 class SimplifyIndvar { 45 Loop *L; 46 LoopInfo *LI; 47 DominatorTree *DT; 48 ScalarEvolution *SE; 49 IVUsers *IU; // NULL for DisableIVRewrite 50 const TargetData *TD; // May be NULL 51 52 SmallVectorImpl<WeakVH> &DeadInsts; 53 54 bool Changed; 55 56 public: 57 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, 58 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) : 59 L(Loop), 60 LI(LPM->getAnalysisIfAvailable<LoopInfo>()), 61 SE(SE), 62 IU(IVU), 63 TD(LPM->getAnalysisIfAvailable<TargetData>()), 64 DeadInsts(Dead), 65 Changed(false) { 66 assert(LI && "IV simplification requires LoopInfo"); 67 } 68 69 bool hasChanged() const { return Changed; } 70 71 /// Iteratively perform simplification on a worklist of users of the 72 /// specified induction variable. This is the top-level driver that applies 73 /// all simplicitions to users of an IV. 74 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL); 75 76 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 77 78 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 79 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 80 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 81 bool IsSigned); 82 }; 83 } 84 85 /// foldIVUser - Fold an IV operand into its use. This removes increments of an 86 /// aligned IV when used by a instruction that ignores the low bits. 87 /// 88 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 89 /// 90 /// Return the operand of IVOperand for this induction variable if IVOperand can 91 /// be folded (in case more folding opportunities have been exposed). 92 /// Otherwise return null. 93 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 94 Value *IVSrc = 0; 95 unsigned OperIdx = 0; 96 const SCEV *FoldedExpr = 0; 97 switch (UseInst->getOpcode()) { 98 default: 99 return 0; 100 case Instruction::UDiv: 101 case Instruction::LShr: 102 // We're only interested in the case where we know something about 103 // the numerator and have a constant denominator. 104 if (IVOperand != UseInst->getOperand(OperIdx) || 105 !isa<ConstantInt>(UseInst->getOperand(1))) 106 return 0; 107 108 // Attempt to fold a binary operator with constant operand. 109 // e.g. ((I + 1) >> 2) => I >> 2 110 if (IVOperand->getNumOperands() != 2 || 111 !isa<ConstantInt>(IVOperand->getOperand(1))) 112 return 0; 113 114 IVSrc = IVOperand->getOperand(0); 115 // IVSrc must be the (SCEVable) IV, since the other operand is const. 116 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 117 118 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 119 if (UseInst->getOpcode() == Instruction::LShr) { 120 // Get a constant for the divisor. See createSCEV. 121 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 122 if (D->getValue().uge(BitWidth)) 123 return 0; 124 125 D = ConstantInt::get(UseInst->getContext(), 126 APInt(BitWidth, 1).shl(D->getZExtValue())); 127 } 128 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 129 } 130 // We have something that might fold it's operand. Compare SCEVs. 131 if (!SE->isSCEVable(UseInst->getType())) 132 return 0; 133 134 // Bypass the operand if SCEV can prove it has no effect. 135 if (SE->getSCEV(UseInst) != FoldedExpr) 136 return 0; 137 138 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 139 << " -> " << *UseInst << '\n'); 140 141 UseInst->setOperand(OperIdx, IVSrc); 142 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 143 144 ++NumElimOperand; 145 Changed = true; 146 if (IVOperand->use_empty()) 147 DeadInsts.push_back(IVOperand); 148 return IVSrc; 149 } 150 151 /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless 152 /// comparisons against an induction variable. 153 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 154 unsigned IVOperIdx = 0; 155 ICmpInst::Predicate Pred = ICmp->getPredicate(); 156 if (IVOperand != ICmp->getOperand(0)) { 157 // Swapped 158 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 159 IVOperIdx = 1; 160 Pred = ICmpInst::getSwappedPredicate(Pred); 161 } 162 163 // Get the SCEVs for the ICmp operands. 164 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 165 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 166 167 // Simplify unnecessary loops away. 168 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 169 S = SE->getSCEVAtScope(S, ICmpLoop); 170 X = SE->getSCEVAtScope(X, ICmpLoop); 171 172 // If the condition is always true or always false, replace it with 173 // a constant value. 174 if (SE->isKnownPredicate(Pred, S, X)) 175 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 176 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 177 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 178 else 179 return; 180 181 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 182 ++NumElimCmp; 183 Changed = true; 184 DeadInsts.push_back(ICmp); 185 } 186 187 /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless 188 /// remainder operations operating on an induction variable. 189 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 190 Value *IVOperand, 191 bool IsSigned) { 192 // We're only interested in the case where we know something about 193 // the numerator. 194 if (IVOperand != Rem->getOperand(0)) 195 return; 196 197 // Get the SCEVs for the ICmp operands. 198 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 199 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 200 201 // Simplify unnecessary loops away. 202 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 203 S = SE->getSCEVAtScope(S, ICmpLoop); 204 X = SE->getSCEVAtScope(X, ICmpLoop); 205 206 // i % n --> i if i is in [0,n). 207 if ((!IsSigned || SE->isKnownNonNegative(S)) && 208 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 209 S, X)) 210 Rem->replaceAllUsesWith(Rem->getOperand(0)); 211 else { 212 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 213 const SCEV *LessOne = 214 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 215 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 216 return; 217 218 if (!SE->isKnownPredicate(IsSigned ? 219 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 220 LessOne, X)) 221 return; 222 223 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 224 Rem->getOperand(0), Rem->getOperand(1)); 225 SelectInst *Sel = 226 SelectInst::Create(ICmp, 227 ConstantInt::get(Rem->getType(), 0), 228 Rem->getOperand(0), "tmp", Rem); 229 Rem->replaceAllUsesWith(Sel); 230 } 231 232 // Inform IVUsers about the new users. 233 if (IU) { 234 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) 235 IU->AddUsersIfInteresting(I); 236 } 237 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 238 ++NumElimRem; 239 Changed = true; 240 DeadInsts.push_back(Rem); 241 } 242 243 /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has 244 /// no observable side-effect given the range of IV values. 245 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 246 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 247 Instruction *IVOperand) { 248 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 249 eliminateIVComparison(ICmp, IVOperand); 250 return true; 251 } 252 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 253 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 254 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 255 eliminateIVRemainder(Rem, IVOperand, IsSigned); 256 return true; 257 } 258 } 259 260 // Eliminate any operation that SCEV can prove is an identity function. 261 if (!SE->isSCEVable(UseInst->getType()) || 262 (UseInst->getType() != IVOperand->getType()) || 263 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 264 return false; 265 266 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 267 268 UseInst->replaceAllUsesWith(IVOperand); 269 ++NumElimIdentity; 270 Changed = true; 271 DeadInsts.push_back(UseInst); 272 return true; 273 } 274 275 /// pushIVUsers - Add all uses of Def to the current IV's worklist. 276 /// 277 static void pushIVUsers( 278 Instruction *Def, 279 SmallPtrSet<Instruction*,16> &Simplified, 280 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 281 282 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); 283 UI != E; ++UI) { 284 Instruction *User = cast<Instruction>(*UI); 285 286 // Avoid infinite or exponential worklist processing. 287 // Also ensure unique worklist users. 288 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 289 // self edges first. 290 if (User != Def && Simplified.insert(User)) 291 SimpleIVUsers.push_back(std::make_pair(User, Def)); 292 } 293 } 294 295 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV 296 /// expression in terms of that IV. 297 /// 298 /// This is similar to IVUsers' isInteresting() but processes each instruction 299 /// non-recursively when the operand is already known to be a simpleIVUser. 300 /// 301 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 302 if (!SE->isSCEVable(I->getType())) 303 return false; 304 305 // Get the symbolic expression for this instruction. 306 const SCEV *S = SE->getSCEV(I); 307 308 // Only consider affine recurrences. 309 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 310 if (AR && AR->getLoop() == L) 311 return true; 312 313 return false; 314 } 315 316 /// simplifyUsers - Iteratively perform simplification on a worklist of users 317 /// of the specified induction variable. Each successive simplification may push 318 /// more users which may themselves be candidates for simplification. 319 /// 320 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 321 /// instructions in-place during analysis. Rather than rewriting induction 322 /// variables bottom-up from their users, it transforms a chain of IVUsers 323 /// top-down, updating the IR only when it encouters a clear optimization 324 /// opportunitiy. 325 /// 326 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 327 /// 328 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 329 if (!SE->isSCEVable(CurrIV->getType())) 330 return; 331 332 // Instructions processed by SimplifyIndvar for CurrIV. 333 SmallPtrSet<Instruction*,16> Simplified; 334 335 // Use-def pairs if IV users waiting to be processed for CurrIV. 336 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 337 338 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 339 // called multiple times for the same LoopPhi. This is the proper thing to 340 // do for loop header phis that use each other. 341 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 342 343 while (!SimpleIVUsers.empty()) { 344 std::pair<Instruction*, Instruction*> UseOper = 345 SimpleIVUsers.pop_back_val(); 346 // Bypass back edges to avoid extra work. 347 if (UseOper.first == CurrIV) continue; 348 349 Instruction *IVOperand = UseOper.second; 350 for (unsigned N = 0; IVOperand; ++N) { 351 assert(N <= Simplified.size() && "runaway iteration"); 352 353 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 354 if (!NewOper) 355 break; // done folding 356 IVOperand = dyn_cast<Instruction>(NewOper); 357 } 358 if (!IVOperand) 359 continue; 360 361 if (eliminateIVUser(UseOper.first, IVOperand)) { 362 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 363 continue; 364 } 365 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 366 if (V && Cast) { 367 V->visitCast(Cast); 368 continue; 369 } 370 if (isSimpleIVUser(UseOper.first, L, SE)) { 371 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 372 } 373 } 374 } 375 376 namespace llvm { 377 378 /// simplifyUsersOfIV - Simplify instructions that use this induction variable 379 /// by using ScalarEvolution to analyze the IV's recurrence. 380 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 381 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 382 { 383 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); 384 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); 385 SIV.simplifyUsers(CurrIV, V); 386 return SIV.hasChanged(); 387 } 388 389 /// simplifyLoopIVs - Simplify users of induction variables within this 390 /// loop. This does not actually change or add IVs. 391 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 392 SmallVectorImpl<WeakVH> &Dead) { 393 bool Changed = false; 394 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 395 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 396 } 397 return Changed; 398 } 399 400 /// simplifyIVUsers - Perform simplification on instructions recorded by the 401 /// IVUsers pass. 402 /// 403 /// This is the old approach to IV simplification to be replaced by 404 /// SimplifyLoopIVs. 405 bool simplifyIVUsers(IVUsers *IU, ScalarEvolution *SE, LPPassManager *LPM, 406 SmallVectorImpl<WeakVH> &Dead) { 407 SimplifyIndvar SIV(IU->getLoop(), SE, LPM, Dead); 408 409 // Each round of simplification involves a round of eliminating operations 410 // followed by a round of widening IVs. A single IVUsers worklist is used 411 // across all rounds. The inner loop advances the user. If widening exposes 412 // more uses, then another pass through the outer loop is triggered. 413 for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) { 414 Instruction *UseInst = I->getUser(); 415 Value *IVOperand = I->getOperandValToReplace(); 416 417 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 418 SIV.eliminateIVComparison(ICmp, IVOperand); 419 continue; 420 } 421 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 422 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 423 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 424 SIV.eliminateIVRemainder(Rem, IVOperand, IsSigned); 425 continue; 426 } 427 } 428 } 429 return SIV.hasChanged(); 430 } 431 432 } // namespace llvm 433