Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for C++ expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/DeclSpec.h"
     16 #include "clang/Sema/Initialization.h"
     17 #include "clang/Sema/Lookup.h"
     18 #include "clang/Sema/ParsedTemplate.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "clang/Sema/Scope.h"
     21 #include "clang/Sema/TemplateDeduction.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/CharUnits.h"
     24 #include "clang/AST/CXXInheritance.h"
     25 #include "clang/AST/DeclObjC.h"
     26 #include "clang/AST/ExprCXX.h"
     27 #include "clang/AST/ExprObjC.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/TargetInfo.h"
     31 #include "clang/Lex/Preprocessor.h"
     32 #include "TypeLocBuilder.h"
     33 #include "llvm/ADT/APInt.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 using namespace clang;
     37 using namespace sema;
     38 
     39 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
     40                                    IdentifierInfo &II,
     41                                    SourceLocation NameLoc,
     42                                    Scope *S, CXXScopeSpec &SS,
     43                                    ParsedType ObjectTypePtr,
     44                                    bool EnteringContext) {
     45   // Determine where to perform name lookup.
     46 
     47   // FIXME: This area of the standard is very messy, and the current
     48   // wording is rather unclear about which scopes we search for the
     49   // destructor name; see core issues 399 and 555. Issue 399 in
     50   // particular shows where the current description of destructor name
     51   // lookup is completely out of line with existing practice, e.g.,
     52   // this appears to be ill-formed:
     53   //
     54   //   namespace N {
     55   //     template <typename T> struct S {
     56   //       ~S();
     57   //     };
     58   //   }
     59   //
     60   //   void f(N::S<int>* s) {
     61   //     s->N::S<int>::~S();
     62   //   }
     63   //
     64   // See also PR6358 and PR6359.
     65   // For this reason, we're currently only doing the C++03 version of this
     66   // code; the C++0x version has to wait until we get a proper spec.
     67   QualType SearchType;
     68   DeclContext *LookupCtx = 0;
     69   bool isDependent = false;
     70   bool LookInScope = false;
     71 
     72   // If we have an object type, it's because we are in a
     73   // pseudo-destructor-expression or a member access expression, and
     74   // we know what type we're looking for.
     75   if (ObjectTypePtr)
     76     SearchType = GetTypeFromParser(ObjectTypePtr);
     77 
     78   if (SS.isSet()) {
     79     NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
     80 
     81     bool AlreadySearched = false;
     82     bool LookAtPrefix = true;
     83     // C++ [basic.lookup.qual]p6:
     84     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
     85     //   the type-names are looked up as types in the scope designated by the
     86     //   nested-name-specifier. In a qualified-id of the form:
     87     //
     88     //     ::[opt] nested-name-specifier  ~ class-name
     89     //
     90     //   where the nested-name-specifier designates a namespace scope, and in
     91     //   a qualified-id of the form:
     92     //
     93     //     ::opt nested-name-specifier class-name ::  ~ class-name
     94     //
     95     //   the class-names are looked up as types in the scope designated by
     96     //   the nested-name-specifier.
     97     //
     98     // Here, we check the first case (completely) and determine whether the
     99     // code below is permitted to look at the prefix of the
    100     // nested-name-specifier.
    101     DeclContext *DC = computeDeclContext(SS, EnteringContext);
    102     if (DC && DC->isFileContext()) {
    103       AlreadySearched = true;
    104       LookupCtx = DC;
    105       isDependent = false;
    106     } else if (DC && isa<CXXRecordDecl>(DC))
    107       LookAtPrefix = false;
    108 
    109     // The second case from the C++03 rules quoted further above.
    110     NestedNameSpecifier *Prefix = 0;
    111     if (AlreadySearched) {
    112       // Nothing left to do.
    113     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
    114       CXXScopeSpec PrefixSS;
    115       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    116       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
    117       isDependent = isDependentScopeSpecifier(PrefixSS);
    118     } else if (ObjectTypePtr) {
    119       LookupCtx = computeDeclContext(SearchType);
    120       isDependent = SearchType->isDependentType();
    121     } else {
    122       LookupCtx = computeDeclContext(SS, EnteringContext);
    123       isDependent = LookupCtx && LookupCtx->isDependentContext();
    124     }
    125 
    126     LookInScope = false;
    127   } else if (ObjectTypePtr) {
    128     // C++ [basic.lookup.classref]p3:
    129     //   If the unqualified-id is ~type-name, the type-name is looked up
    130     //   in the context of the entire postfix-expression. If the type T
    131     //   of the object expression is of a class type C, the type-name is
    132     //   also looked up in the scope of class C. At least one of the
    133     //   lookups shall find a name that refers to (possibly
    134     //   cv-qualified) T.
    135     LookupCtx = computeDeclContext(SearchType);
    136     isDependent = SearchType->isDependentType();
    137     assert((isDependent || !SearchType->isIncompleteType()) &&
    138            "Caller should have completed object type");
    139 
    140     LookInScope = true;
    141   } else {
    142     // Perform lookup into the current scope (only).
    143     LookInScope = true;
    144   }
    145 
    146   TypeDecl *NonMatchingTypeDecl = 0;
    147   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
    148   for (unsigned Step = 0; Step != 2; ++Step) {
    149     // Look for the name first in the computed lookup context (if we
    150     // have one) and, if that fails to find a match, in the scope (if
    151     // we're allowed to look there).
    152     Found.clear();
    153     if (Step == 0 && LookupCtx)
    154       LookupQualifiedName(Found, LookupCtx);
    155     else if (Step == 1 && LookInScope && S)
    156       LookupName(Found, S);
    157     else
    158       continue;
    159 
    160     // FIXME: Should we be suppressing ambiguities here?
    161     if (Found.isAmbiguous())
    162       return ParsedType();
    163 
    164     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
    165       QualType T = Context.getTypeDeclType(Type);
    166 
    167       if (SearchType.isNull() || SearchType->isDependentType() ||
    168           Context.hasSameUnqualifiedType(T, SearchType)) {
    169         // We found our type!
    170 
    171         return ParsedType::make(T);
    172       }
    173 
    174       if (!SearchType.isNull())
    175         NonMatchingTypeDecl = Type;
    176     }
    177 
    178     // If the name that we found is a class template name, and it is
    179     // the same name as the template name in the last part of the
    180     // nested-name-specifier (if present) or the object type, then
    181     // this is the destructor for that class.
    182     // FIXME: This is a workaround until we get real drafting for core
    183     // issue 399, for which there isn't even an obvious direction.
    184     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
    185       QualType MemberOfType;
    186       if (SS.isSet()) {
    187         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
    188           // Figure out the type of the context, if it has one.
    189           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
    190             MemberOfType = Context.getTypeDeclType(Record);
    191         }
    192       }
    193       if (MemberOfType.isNull())
    194         MemberOfType = SearchType;
    195 
    196       if (MemberOfType.isNull())
    197         continue;
    198 
    199       // We're referring into a class template specialization. If the
    200       // class template we found is the same as the template being
    201       // specialized, we found what we are looking for.
    202       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
    203         if (ClassTemplateSpecializationDecl *Spec
    204               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
    205           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
    206                 Template->getCanonicalDecl())
    207             return ParsedType::make(MemberOfType);
    208         }
    209 
    210         continue;
    211       }
    212 
    213       // We're referring to an unresolved class template
    214       // specialization. Determine whether we class template we found
    215       // is the same as the template being specialized or, if we don't
    216       // know which template is being specialized, that it at least
    217       // has the same name.
    218       if (const TemplateSpecializationType *SpecType
    219             = MemberOfType->getAs<TemplateSpecializationType>()) {
    220         TemplateName SpecName = SpecType->getTemplateName();
    221 
    222         // The class template we found is the same template being
    223         // specialized.
    224         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
    225           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
    226             return ParsedType::make(MemberOfType);
    227 
    228           continue;
    229         }
    230 
    231         // The class template we found has the same name as the
    232         // (dependent) template name being specialized.
    233         if (DependentTemplateName *DepTemplate
    234                                     = SpecName.getAsDependentTemplateName()) {
    235           if (DepTemplate->isIdentifier() &&
    236               DepTemplate->getIdentifier() == Template->getIdentifier())
    237             return ParsedType::make(MemberOfType);
    238 
    239           continue;
    240         }
    241       }
    242     }
    243   }
    244 
    245   if (isDependent) {
    246     // We didn't find our type, but that's okay: it's dependent
    247     // anyway.
    248 
    249     // FIXME: What if we have no nested-name-specifier?
    250     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
    251                                    SS.getWithLocInContext(Context),
    252                                    II, NameLoc);
    253     return ParsedType::make(T);
    254   }
    255 
    256   if (NonMatchingTypeDecl) {
    257     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
    258     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
    259       << T << SearchType;
    260     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
    261       << T;
    262   } else if (ObjectTypePtr)
    263     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
    264       << &II;
    265   else
    266     Diag(NameLoc, diag::err_destructor_class_name);
    267 
    268   return ParsedType();
    269 }
    270 
    271 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
    272     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
    273       return ParsedType();
    274     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
    275            && "only get destructor types from declspecs");
    276     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    277     QualType SearchType = GetTypeFromParser(ObjectType);
    278     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
    279       return ParsedType::make(T);
    280     }
    281 
    282     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
    283       << T << SearchType;
    284     return ParsedType();
    285 }
    286 
    287 /// \brief Build a C++ typeid expression with a type operand.
    288 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    289                                 SourceLocation TypeidLoc,
    290                                 TypeSourceInfo *Operand,
    291                                 SourceLocation RParenLoc) {
    292   // C++ [expr.typeid]p4:
    293   //   The top-level cv-qualifiers of the lvalue expression or the type-id
    294   //   that is the operand of typeid are always ignored.
    295   //   If the type of the type-id is a class type or a reference to a class
    296   //   type, the class shall be completely-defined.
    297   Qualifiers Quals;
    298   QualType T
    299     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
    300                                       Quals);
    301   if (T->getAs<RecordType>() &&
    302       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    303     return ExprError();
    304 
    305   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    306                                            Operand,
    307                                            SourceRange(TypeidLoc, RParenLoc)));
    308 }
    309 
    310 /// \brief Build a C++ typeid expression with an expression operand.
    311 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
    312                                 SourceLocation TypeidLoc,
    313                                 Expr *E,
    314                                 SourceLocation RParenLoc) {
    315   if (E && !E->isTypeDependent()) {
    316     if (E->getType()->isPlaceholderType()) {
    317       ExprResult result = CheckPlaceholderExpr(E);
    318       if (result.isInvalid()) return ExprError();
    319       E = result.take();
    320     }
    321 
    322     QualType T = E->getType();
    323     if (const RecordType *RecordT = T->getAs<RecordType>()) {
    324       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
    325       // C++ [expr.typeid]p3:
    326       //   [...] If the type of the expression is a class type, the class
    327       //   shall be completely-defined.
    328       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    329         return ExprError();
    330 
    331       // C++ [expr.typeid]p3:
    332       //   When typeid is applied to an expression other than an glvalue of a
    333       //   polymorphic class type [...] [the] expression is an unevaluated
    334       //   operand. [...]
    335       if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
    336         // The subexpression is potentially evaluated; switch the context
    337         // and recheck the subexpression.
    338         ExprResult Result = TranformToPotentiallyEvaluated(E);
    339         if (Result.isInvalid()) return ExprError();
    340         E = Result.take();
    341 
    342         // We require a vtable to query the type at run time.
    343         MarkVTableUsed(TypeidLoc, RecordD);
    344       }
    345     }
    346 
    347     // C++ [expr.typeid]p4:
    348     //   [...] If the type of the type-id is a reference to a possibly
    349     //   cv-qualified type, the result of the typeid expression refers to a
    350     //   std::type_info object representing the cv-unqualified referenced
    351     //   type.
    352     Qualifiers Quals;
    353     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    354     if (!Context.hasSameType(T, UnqualT)) {
    355       T = UnqualT;
    356       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
    357     }
    358   }
    359 
    360   return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
    361                                            E,
    362                                            SourceRange(TypeidLoc, RParenLoc)));
    363 }
    364 
    365 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
    366 ExprResult
    367 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
    368                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    369   // Find the std::type_info type.
    370   if (!getStdNamespace())
    371     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    372 
    373   if (!CXXTypeInfoDecl) {
    374     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    375     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    376     LookupQualifiedName(R, getStdNamespace());
    377     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    378     if (!CXXTypeInfoDecl)
    379       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
    380   }
    381 
    382   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
    383 
    384   if (isType) {
    385     // The operand is a type; handle it as such.
    386     TypeSourceInfo *TInfo = 0;
    387     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    388                                    &TInfo);
    389     if (T.isNull())
    390       return ExprError();
    391 
    392     if (!TInfo)
    393       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    394 
    395     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
    396   }
    397 
    398   // The operand is an expression.
    399   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    400 }
    401 
    402 /// Retrieve the UuidAttr associated with QT.
    403 static UuidAttr *GetUuidAttrOfType(QualType QT) {
    404   // Optionally remove one level of pointer, reference or array indirection.
    405   const Type *Ty = QT.getTypePtr();;
    406   if (QT->isPointerType() || QT->isReferenceType())
    407     Ty = QT->getPointeeType().getTypePtr();
    408   else if (QT->isArrayType())
    409     Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
    410 
    411   // Loop all record redeclaration looking for an uuid attribute.
    412   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    413   for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
    414        E = RD->redecls_end(); I != E; ++I) {
    415     if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
    416       return Uuid;
    417   }
    418 
    419   return 0;
    420 }
    421 
    422 /// \brief Build a Microsoft __uuidof expression with a type operand.
    423 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    424                                 SourceLocation TypeidLoc,
    425                                 TypeSourceInfo *Operand,
    426                                 SourceLocation RParenLoc) {
    427   if (!Operand->getType()->isDependentType()) {
    428     if (!GetUuidAttrOfType(Operand->getType()))
    429       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    430   }
    431 
    432   // FIXME: add __uuidof semantic analysis for type operand.
    433   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    434                                            Operand,
    435                                            SourceRange(TypeidLoc, RParenLoc)));
    436 }
    437 
    438 /// \brief Build a Microsoft __uuidof expression with an expression operand.
    439 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
    440                                 SourceLocation TypeidLoc,
    441                                 Expr *E,
    442                                 SourceLocation RParenLoc) {
    443   if (!E->getType()->isDependentType()) {
    444     if (!GetUuidAttrOfType(E->getType()) &&
    445         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    446       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    447   }
    448   // FIXME: add __uuidof semantic analysis for type operand.
    449   return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
    450                                            E,
    451                                            SourceRange(TypeidLoc, RParenLoc)));
    452 }
    453 
    454 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
    455 ExprResult
    456 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
    457                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
    458   // If MSVCGuidDecl has not been cached, do the lookup.
    459   if (!MSVCGuidDecl) {
    460     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
    461     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
    462     LookupQualifiedName(R, Context.getTranslationUnitDecl());
    463     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
    464     if (!MSVCGuidDecl)
    465       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
    466   }
    467 
    468   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
    469 
    470   if (isType) {
    471     // The operand is a type; handle it as such.
    472     TypeSourceInfo *TInfo = 0;
    473     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
    474                                    &TInfo);
    475     if (T.isNull())
    476       return ExprError();
    477 
    478     if (!TInfo)
    479       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
    480 
    481     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
    482   }
    483 
    484   // The operand is an expression.
    485   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
    486 }
    487 
    488 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
    489 ExprResult
    490 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
    491   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
    492          "Unknown C++ Boolean value!");
    493   return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
    494                                                 Context.BoolTy, OpLoc));
    495 }
    496 
    497 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
    498 ExprResult
    499 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
    500   return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
    501 }
    502 
    503 /// ActOnCXXThrow - Parse throw expressions.
    504 ExprResult
    505 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
    506   bool IsThrownVarInScope = false;
    507   if (Ex) {
    508     // C++0x [class.copymove]p31:
    509     //   When certain criteria are met, an implementation is allowed to omit the
    510     //   copy/move construction of a class object [...]
    511     //
    512     //     - in a throw-expression, when the operand is the name of a
    513     //       non-volatile automatic object (other than a function or catch-
    514     //       clause parameter) whose scope does not extend beyond the end of the
    515     //       innermost enclosing try-block (if there is one), the copy/move
    516     //       operation from the operand to the exception object (15.1) can be
    517     //       omitted by constructing the automatic object directly into the
    518     //       exception object
    519     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
    520       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
    521         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
    522           for( ; S; S = S->getParent()) {
    523             if (S->isDeclScope(Var)) {
    524               IsThrownVarInScope = true;
    525               break;
    526             }
    527 
    528             if (S->getFlags() &
    529                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
    530                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
    531                  Scope::TryScope))
    532               break;
    533           }
    534         }
    535       }
    536   }
    537 
    538   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
    539 }
    540 
    541 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
    542                                bool IsThrownVarInScope) {
    543   // Don't report an error if 'throw' is used in system headers.
    544   if (!getLangOpts().CXXExceptions &&
    545       !getSourceManager().isInSystemHeader(OpLoc))
    546     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
    547 
    548   if (Ex && !Ex->isTypeDependent()) {
    549     ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
    550     if (ExRes.isInvalid())
    551       return ExprError();
    552     Ex = ExRes.take();
    553   }
    554 
    555   return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
    556                                           IsThrownVarInScope));
    557 }
    558 
    559 /// CheckCXXThrowOperand - Validate the operand of a throw.
    560 ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
    561                                       bool IsThrownVarInScope) {
    562   // C++ [except.throw]p3:
    563   //   A throw-expression initializes a temporary object, called the exception
    564   //   object, the type of which is determined by removing any top-level
    565   //   cv-qualifiers from the static type of the operand of throw and adjusting
    566   //   the type from "array of T" or "function returning T" to "pointer to T"
    567   //   or "pointer to function returning T", [...]
    568   if (E->getType().hasQualifiers())
    569     E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
    570                           E->getValueKind()).take();
    571 
    572   ExprResult Res = DefaultFunctionArrayConversion(E);
    573   if (Res.isInvalid())
    574     return ExprError();
    575   E = Res.take();
    576 
    577   //   If the type of the exception would be an incomplete type or a pointer
    578   //   to an incomplete type other than (cv) void the program is ill-formed.
    579   QualType Ty = E->getType();
    580   bool isPointer = false;
    581   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    582     Ty = Ptr->getPointeeType();
    583     isPointer = true;
    584   }
    585   if (!isPointer || !Ty->isVoidType()) {
    586     if (RequireCompleteType(ThrowLoc, Ty,
    587                             PDiag(isPointer ? diag::err_throw_incomplete_ptr
    588                                             : diag::err_throw_incomplete)
    589                               << E->getSourceRange()))
    590       return ExprError();
    591 
    592     if (RequireNonAbstractType(ThrowLoc, E->getType(),
    593                                PDiag(diag::err_throw_abstract_type)
    594                                  << E->getSourceRange()))
    595       return ExprError();
    596   }
    597 
    598   // Initialize the exception result.  This implicitly weeds out
    599   // abstract types or types with inaccessible copy constructors.
    600 
    601   // C++0x [class.copymove]p31:
    602   //   When certain criteria are met, an implementation is allowed to omit the
    603   //   copy/move construction of a class object [...]
    604   //
    605   //     - in a throw-expression, when the operand is the name of a
    606   //       non-volatile automatic object (other than a function or catch-clause
    607   //       parameter) whose scope does not extend beyond the end of the
    608   //       innermost enclosing try-block (if there is one), the copy/move
    609   //       operation from the operand to the exception object (15.1) can be
    610   //       omitted by constructing the automatic object directly into the
    611   //       exception object
    612   const VarDecl *NRVOVariable = 0;
    613   if (IsThrownVarInScope)
    614     NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
    615 
    616   InitializedEntity Entity =
    617       InitializedEntity::InitializeException(ThrowLoc, E->getType(),
    618                                              /*NRVO=*/NRVOVariable != 0);
    619   Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
    620                                         QualType(), E,
    621                                         IsThrownVarInScope);
    622   if (Res.isInvalid())
    623     return ExprError();
    624   E = Res.take();
    625 
    626   // If the exception has class type, we need additional handling.
    627   const RecordType *RecordTy = Ty->getAs<RecordType>();
    628   if (!RecordTy)
    629     return Owned(E);
    630   CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
    631 
    632   // If we are throwing a polymorphic class type or pointer thereof,
    633   // exception handling will make use of the vtable.
    634   MarkVTableUsed(ThrowLoc, RD);
    635 
    636   // If a pointer is thrown, the referenced object will not be destroyed.
    637   if (isPointer)
    638     return Owned(E);
    639 
    640   // If the class has a destructor, we must be able to call it.
    641   if (RD->hasIrrelevantDestructor())
    642     return Owned(E);
    643 
    644   CXXDestructorDecl *Destructor = LookupDestructor(RD);
    645   if (!Destructor)
    646     return Owned(E);
    647 
    648   MarkFunctionReferenced(E->getExprLoc(), Destructor);
    649   CheckDestructorAccess(E->getExprLoc(), Destructor,
    650                         PDiag(diag::err_access_dtor_exception) << Ty);
    651   DiagnoseUseOfDecl(Destructor, E->getExprLoc());
    652   return Owned(E);
    653 }
    654 
    655 QualType Sema::getCurrentThisType() {
    656   DeclContext *DC = getFunctionLevelDeclContext();
    657   QualType ThisTy = CXXThisTypeOverride;
    658   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    659     if (method && method->isInstance())
    660       ThisTy = method->getThisType(Context);
    661   }
    662 
    663   return ThisTy;
    664 }
    665 
    666 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
    667                                          Decl *ContextDecl,
    668                                          unsigned CXXThisTypeQuals,
    669                                          bool Enabled)
    670   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
    671 {
    672   if (!Enabled || !ContextDecl)
    673     return;
    674 
    675   CXXRecordDecl *Record = 0;
    676   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    677     Record = Template->getTemplatedDecl();
    678   else
    679     Record = cast<CXXRecordDecl>(ContextDecl);
    680 
    681   S.CXXThisTypeOverride
    682     = S.Context.getPointerType(
    683         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
    684 
    685   this->Enabled = true;
    686 }
    687 
    688 
    689 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
    690   if (Enabled) {
    691     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
    692   }
    693 }
    694 
    695 void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
    696   // We don't need to capture this in an unevaluated context.
    697   if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
    698     return;
    699 
    700   // Otherwise, check that we can capture 'this'.
    701   unsigned NumClosures = 0;
    702   for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
    703     if (CapturingScopeInfo *CSI =
    704             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
    705       if (CSI->CXXThisCaptureIndex != 0) {
    706         // 'this' is already being captured; there isn't anything more to do.
    707         break;
    708       }
    709 
    710       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
    711           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
    712           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
    713           Explicit) {
    714         // This closure can capture 'this'; continue looking upwards.
    715         NumClosures++;
    716         Explicit = false;
    717         continue;
    718       }
    719       // This context can't implicitly capture 'this'; fail out.
    720       Diag(Loc, diag::err_this_capture) << Explicit;
    721       return;
    722     }
    723     break;
    724   }
    725 
    726   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
    727   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
    728   // contexts.
    729   for (unsigned idx = FunctionScopes.size() - 1;
    730        NumClosures; --idx, --NumClosures) {
    731     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
    732     Expr *ThisExpr = 0;
    733     QualType ThisTy = getCurrentThisType();
    734     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
    735       // For lambda expressions, build a field and an initializing expression.
    736       CXXRecordDecl *Lambda = LSI->Lambda;
    737       FieldDecl *Field
    738         = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
    739                             Context.getTrivialTypeSourceInfo(ThisTy, Loc),
    740                             0, false, false);
    741       Field->setImplicit(true);
    742       Field->setAccess(AS_private);
    743       Lambda->addDecl(Field);
    744       ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
    745     }
    746     bool isNested = NumClosures > 1;
    747     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
    748   }
    749 }
    750 
    751 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
    752   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
    753   /// is a non-lvalue expression whose value is the address of the object for
    754   /// which the function is called.
    755 
    756   QualType ThisTy = getCurrentThisType();
    757   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
    758 
    759   CheckCXXThisCapture(Loc);
    760   return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
    761 }
    762 
    763 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
    764   // If we're outside the body of a member function, then we'll have a specified
    765   // type for 'this'.
    766   if (CXXThisTypeOverride.isNull())
    767     return false;
    768 
    769   // Determine whether we're looking into a class that's currently being
    770   // defined.
    771   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
    772   return Class && Class->isBeingDefined();
    773 }
    774 
    775 ExprResult
    776 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
    777                                 SourceLocation LParenLoc,
    778                                 MultiExprArg exprs,
    779                                 SourceLocation RParenLoc) {
    780   if (!TypeRep)
    781     return ExprError();
    782 
    783   TypeSourceInfo *TInfo;
    784   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
    785   if (!TInfo)
    786     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
    787 
    788   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
    789 }
    790 
    791 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
    792 /// Can be interpreted either as function-style casting ("int(x)")
    793 /// or class type construction ("ClassType(x,y,z)")
    794 /// or creation of a value-initialized type ("int()").
    795 ExprResult
    796 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
    797                                 SourceLocation LParenLoc,
    798                                 MultiExprArg exprs,
    799                                 SourceLocation RParenLoc) {
    800   QualType Ty = TInfo->getType();
    801   unsigned NumExprs = exprs.size();
    802   Expr **Exprs = (Expr**)exprs.get();
    803   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
    804 
    805   if (Ty->isDependentType() ||
    806       CallExpr::hasAnyTypeDependentArguments(
    807         llvm::makeArrayRef(Exprs, NumExprs))) {
    808     exprs.release();
    809 
    810     return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
    811                                                     LParenLoc,
    812                                                     Exprs, NumExprs,
    813                                                     RParenLoc));
    814   }
    815 
    816   bool ListInitialization = LParenLoc.isInvalid();
    817   assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
    818          && "List initialization must have initializer list as expression.");
    819   SourceRange FullRange = SourceRange(TyBeginLoc,
    820       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
    821 
    822   // C++ [expr.type.conv]p1:
    823   // If the expression list is a single expression, the type conversion
    824   // expression is equivalent (in definedness, and if defined in meaning) to the
    825   // corresponding cast expression.
    826   if (NumExprs == 1 && !ListInitialization) {
    827     Expr *Arg = Exprs[0];
    828     exprs.release();
    829     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
    830   }
    831 
    832   QualType ElemTy = Ty;
    833   if (Ty->isArrayType()) {
    834     if (!ListInitialization)
    835       return ExprError(Diag(TyBeginLoc,
    836                             diag::err_value_init_for_array_type) << FullRange);
    837     ElemTy = Context.getBaseElementType(Ty);
    838   }
    839 
    840   if (!Ty->isVoidType() &&
    841       RequireCompleteType(TyBeginLoc, ElemTy,
    842                           PDiag(diag::err_invalid_incomplete_type_use)
    843                             << FullRange))
    844     return ExprError();
    845 
    846   if (RequireNonAbstractType(TyBeginLoc, Ty,
    847                              diag::err_allocation_of_abstract_type))
    848     return ExprError();
    849 
    850   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
    851   InitializationKind Kind
    852     = NumExprs ? ListInitialization
    853                     ? InitializationKind::CreateDirectList(TyBeginLoc)
    854                     : InitializationKind::CreateDirect(TyBeginLoc,
    855                                                        LParenLoc, RParenLoc)
    856                : InitializationKind::CreateValue(TyBeginLoc,
    857                                                  LParenLoc, RParenLoc);
    858   InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
    859   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
    860 
    861   if (!Result.isInvalid() && ListInitialization &&
    862       isa<InitListExpr>(Result.get())) {
    863     // If the list-initialization doesn't involve a constructor call, we'll get
    864     // the initializer-list (with corrected type) back, but that's not what we
    865     // want, since it will be treated as an initializer list in further
    866     // processing. Explicitly insert a cast here.
    867     InitListExpr *List = cast<InitListExpr>(Result.take());
    868     Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
    869                                     Expr::getValueKindForType(TInfo->getType()),
    870                                                  TInfo, TyBeginLoc, CK_NoOp,
    871                                                  List, /*Path=*/0, RParenLoc));
    872   }
    873 
    874   // FIXME: Improve AST representation?
    875   return move(Result);
    876 }
    877 
    878 /// doesUsualArrayDeleteWantSize - Answers whether the usual
    879 /// operator delete[] for the given type has a size_t parameter.
    880 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
    881                                          QualType allocType) {
    882   const RecordType *record =
    883     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
    884   if (!record) return false;
    885 
    886   // Try to find an operator delete[] in class scope.
    887 
    888   DeclarationName deleteName =
    889     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
    890   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
    891   S.LookupQualifiedName(ops, record->getDecl());
    892 
    893   // We're just doing this for information.
    894   ops.suppressDiagnostics();
    895 
    896   // Very likely: there's no operator delete[].
    897   if (ops.empty()) return false;
    898 
    899   // If it's ambiguous, it should be illegal to call operator delete[]
    900   // on this thing, so it doesn't matter if we allocate extra space or not.
    901   if (ops.isAmbiguous()) return false;
    902 
    903   LookupResult::Filter filter = ops.makeFilter();
    904   while (filter.hasNext()) {
    905     NamedDecl *del = filter.next()->getUnderlyingDecl();
    906 
    907     // C++0x [basic.stc.dynamic.deallocation]p2:
    908     //   A template instance is never a usual deallocation function,
    909     //   regardless of its signature.
    910     if (isa<FunctionTemplateDecl>(del)) {
    911       filter.erase();
    912       continue;
    913     }
    914 
    915     // C++0x [basic.stc.dynamic.deallocation]p2:
    916     //   If class T does not declare [an operator delete[] with one
    917     //   parameter] but does declare a member deallocation function
    918     //   named operator delete[] with exactly two parameters, the
    919     //   second of which has type std::size_t, then this function
    920     //   is a usual deallocation function.
    921     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
    922       filter.erase();
    923       continue;
    924     }
    925   }
    926   filter.done();
    927 
    928   if (!ops.isSingleResult()) return false;
    929 
    930   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
    931   return (del->getNumParams() == 2);
    932 }
    933 
    934 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
    935 
    936 /// E.g.:
    937 /// @code new (memory) int[size][4] @endcode
    938 /// or
    939 /// @code ::new Foo(23, "hello") @endcode
    940 ///
    941 /// \param StartLoc The first location of the expression.
    942 /// \param UseGlobal True if 'new' was prefixed with '::'.
    943 /// \param PlacementLParen Opening paren of the placement arguments.
    944 /// \param PlacementArgs Placement new arguments.
    945 /// \param PlacementRParen Closing paren of the placement arguments.
    946 /// \param TypeIdParens If the type is in parens, the source range.
    947 /// \param D The type to be allocated, as well as array dimensions.
    948 /// \param ConstructorLParen Opening paren of the constructor args, empty if
    949 ///                          initializer-list syntax is used.
    950 /// \param ConstructorArgs Constructor/initialization arguments.
    951 /// \param ConstructorRParen Closing paren of the constructor args.
    952 ExprResult
    953 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
    954                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
    955                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
    956                   Declarator &D, Expr *Initializer) {
    957   bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
    958 
    959   Expr *ArraySize = 0;
    960   // If the specified type is an array, unwrap it and save the expression.
    961   if (D.getNumTypeObjects() > 0 &&
    962       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    963     DeclaratorChunk &Chunk = D.getTypeObject(0);
    964     if (TypeContainsAuto)
    965       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
    966         << D.getSourceRange());
    967     if (Chunk.Arr.hasStatic)
    968       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
    969         << D.getSourceRange());
    970     if (!Chunk.Arr.NumElts)
    971       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
    972         << D.getSourceRange());
    973 
    974     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    975     D.DropFirstTypeObject();
    976   }
    977 
    978   // Every dimension shall be of constant size.
    979   if (ArraySize) {
    980     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
    981       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
    982         break;
    983 
    984       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
    985       if (Expr *NumElts = (Expr *)Array.NumElts) {
    986         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
    987           Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
    988             PDiag(diag::err_new_array_nonconst)).take();
    989           if (!Array.NumElts)
    990             return ExprError();
    991         }
    992       }
    993     }
    994   }
    995 
    996   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
    997   QualType AllocType = TInfo->getType();
    998   if (D.isInvalidType())
    999     return ExprError();
   1000 
   1001   SourceRange DirectInitRange;
   1002   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
   1003     DirectInitRange = List->getSourceRange();
   1004 
   1005   return BuildCXXNew(StartLoc, UseGlobal,
   1006                      PlacementLParen,
   1007                      move(PlacementArgs),
   1008                      PlacementRParen,
   1009                      TypeIdParens,
   1010                      AllocType,
   1011                      TInfo,
   1012                      ArraySize,
   1013                      DirectInitRange,
   1014                      Initializer,
   1015                      TypeContainsAuto);
   1016 }
   1017 
   1018 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
   1019                                        Expr *Init) {
   1020   if (!Init)
   1021     return true;
   1022   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
   1023     return PLE->getNumExprs() == 0;
   1024   if (isa<ImplicitValueInitExpr>(Init))
   1025     return true;
   1026   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
   1027     return !CCE->isListInitialization() &&
   1028            CCE->getConstructor()->isDefaultConstructor();
   1029   else if (Style == CXXNewExpr::ListInit) {
   1030     assert(isa<InitListExpr>(Init) &&
   1031            "Shouldn't create list CXXConstructExprs for arrays.");
   1032     return true;
   1033   }
   1034   return false;
   1035 }
   1036 
   1037 ExprResult
   1038 Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
   1039                   SourceLocation PlacementLParen,
   1040                   MultiExprArg PlacementArgs,
   1041                   SourceLocation PlacementRParen,
   1042                   SourceRange TypeIdParens,
   1043                   QualType AllocType,
   1044                   TypeSourceInfo *AllocTypeInfo,
   1045                   Expr *ArraySize,
   1046                   SourceRange DirectInitRange,
   1047                   Expr *Initializer,
   1048                   bool TypeMayContainAuto) {
   1049   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
   1050 
   1051   CXXNewExpr::InitializationStyle initStyle;
   1052   if (DirectInitRange.isValid()) {
   1053     assert(Initializer && "Have parens but no initializer.");
   1054     initStyle = CXXNewExpr::CallInit;
   1055   } else if (Initializer && isa<InitListExpr>(Initializer))
   1056     initStyle = CXXNewExpr::ListInit;
   1057   else {
   1058     // In template instantiation, the initializer could be a CXXDefaultArgExpr
   1059     // unwrapped from a CXXConstructExpr that was implicitly built. There is no
   1060     // particularly sane way we can handle this (especially since it can even
   1061     // occur for array new), so we throw the initializer away and have it be
   1062     // rebuilt.
   1063     if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
   1064       Initializer = 0;
   1065     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
   1066             isa<CXXConstructExpr>(Initializer)) &&
   1067            "Initializer expression that cannot have been implicitly created.");
   1068     initStyle = CXXNewExpr::NoInit;
   1069   }
   1070 
   1071   Expr **Inits = &Initializer;
   1072   unsigned NumInits = Initializer ? 1 : 0;
   1073   if (initStyle == CXXNewExpr::CallInit) {
   1074     if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
   1075       Inits = List->getExprs();
   1076       NumInits = List->getNumExprs();
   1077     } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
   1078       if (!isa<CXXTemporaryObjectExpr>(CCE)) {
   1079         // Can happen in template instantiation. Since this is just an implicit
   1080         // construction, we just take it apart and rebuild it.
   1081         Inits = CCE->getArgs();
   1082         NumInits = CCE->getNumArgs();
   1083       }
   1084     }
   1085   }
   1086 
   1087   // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   1088   if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
   1089     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
   1090       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
   1091                        << AllocType << TypeRange);
   1092     if (initStyle == CXXNewExpr::ListInit)
   1093       return ExprError(Diag(Inits[0]->getLocStart(),
   1094                             diag::err_auto_new_requires_parens)
   1095                        << AllocType << TypeRange);
   1096     if (NumInits > 1) {
   1097       Expr *FirstBad = Inits[1];
   1098       return ExprError(Diag(FirstBad->getLocStart(),
   1099                             diag::err_auto_new_ctor_multiple_expressions)
   1100                        << AllocType << TypeRange);
   1101     }
   1102     Expr *Deduce = Inits[0];
   1103     TypeSourceInfo *DeducedType = 0;
   1104     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
   1105             DAR_Failed)
   1106       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
   1107                        << AllocType << Deduce->getType()
   1108                        << TypeRange << Deduce->getSourceRange());
   1109     if (!DeducedType)
   1110       return ExprError();
   1111 
   1112     AllocTypeInfo = DeducedType;
   1113     AllocType = AllocTypeInfo->getType();
   1114   }
   1115 
   1116   // Per C++0x [expr.new]p5, the type being constructed may be a
   1117   // typedef of an array type.
   1118   if (!ArraySize) {
   1119     if (const ConstantArrayType *Array
   1120                               = Context.getAsConstantArrayType(AllocType)) {
   1121       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
   1122                                          Context.getSizeType(),
   1123                                          TypeRange.getEnd());
   1124       AllocType = Array->getElementType();
   1125     }
   1126   }
   1127 
   1128   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
   1129     return ExprError();
   1130 
   1131   if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
   1132     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
   1133          diag::warn_dangling_std_initializer_list)
   1134         << /*at end of FE*/0 << Inits[0]->getSourceRange();
   1135   }
   1136 
   1137   // In ARC, infer 'retaining' for the allocated
   1138   if (getLangOpts().ObjCAutoRefCount &&
   1139       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1140       AllocType->isObjCLifetimeType()) {
   1141     AllocType = Context.getLifetimeQualifiedType(AllocType,
   1142                                     AllocType->getObjCARCImplicitLifetime());
   1143   }
   1144 
   1145   QualType ResultType = Context.getPointerType(AllocType);
   1146 
   1147   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
   1148   //   integral or enumeration type with a non-negative value."
   1149   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
   1150   //   enumeration type, or a class type for which a single non-explicit
   1151   //   conversion function to integral or unscoped enumeration type exists.
   1152   if (ArraySize && !ArraySize->isTypeDependent()) {
   1153     ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
   1154       StartLoc, ArraySize,
   1155       PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x,
   1156       PDiag(diag::err_array_size_incomplete_type)
   1157         << ArraySize->getSourceRange(),
   1158       PDiag(diag::err_array_size_explicit_conversion),
   1159       PDiag(diag::note_array_size_conversion),
   1160       PDiag(diag::err_array_size_ambiguous_conversion),
   1161       PDiag(diag::note_array_size_conversion),
   1162       PDiag(getLangOpts().CPlusPlus0x ?
   1163               diag::warn_cxx98_compat_array_size_conversion :
   1164               diag::ext_array_size_conversion),
   1165       /*AllowScopedEnumerations*/ false);
   1166     if (ConvertedSize.isInvalid())
   1167       return ExprError();
   1168 
   1169     ArraySize = ConvertedSize.take();
   1170     QualType SizeType = ArraySize->getType();
   1171     if (!SizeType->isIntegralOrUnscopedEnumerationType())
   1172       return ExprError();
   1173 
   1174     // C++98 [expr.new]p7:
   1175     //   The expression in a direct-new-declarator shall have integral type
   1176     //   with a non-negative value.
   1177     //
   1178     // Let's see if this is a constant < 0. If so, we reject it out of
   1179     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
   1180     // array type.
   1181     //
   1182     // Note: such a construct has well-defined semantics in C++11: it throws
   1183     // std::bad_array_new_length.
   1184     if (!ArraySize->isValueDependent()) {
   1185       llvm::APSInt Value;
   1186       // We've already performed any required implicit conversion to integer or
   1187       // unscoped enumeration type.
   1188       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
   1189         if (Value < llvm::APSInt(
   1190                         llvm::APInt::getNullValue(Value.getBitWidth()),
   1191                                  Value.isUnsigned())) {
   1192           if (getLangOpts().CPlusPlus0x)
   1193             Diag(ArraySize->getLocStart(),
   1194                  diag::warn_typecheck_negative_array_new_size)
   1195               << ArraySize->getSourceRange();
   1196           else
   1197             return ExprError(Diag(ArraySize->getLocStart(),
   1198                                   diag::err_typecheck_negative_array_size)
   1199                              << ArraySize->getSourceRange());
   1200         } else if (!AllocType->isDependentType()) {
   1201           unsigned ActiveSizeBits =
   1202             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
   1203           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   1204             if (getLangOpts().CPlusPlus0x)
   1205               Diag(ArraySize->getLocStart(),
   1206                    diag::warn_array_new_too_large)
   1207                 << Value.toString(10)
   1208                 << ArraySize->getSourceRange();
   1209             else
   1210               return ExprError(Diag(ArraySize->getLocStart(),
   1211                                     diag::err_array_too_large)
   1212                                << Value.toString(10)
   1213                                << ArraySize->getSourceRange());
   1214           }
   1215         }
   1216       } else if (TypeIdParens.isValid()) {
   1217         // Can't have dynamic array size when the type-id is in parentheses.
   1218         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
   1219           << ArraySize->getSourceRange()
   1220           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
   1221           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
   1222 
   1223         TypeIdParens = SourceRange();
   1224       }
   1225     }
   1226 
   1227     // ARC: warn about ABI issues.
   1228     if (getLangOpts().ObjCAutoRefCount) {
   1229       QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1230       if (BaseAllocType.hasStrongOrWeakObjCLifetime())
   1231         Diag(StartLoc, diag::warn_err_new_delete_object_array)
   1232           << 0 << BaseAllocType;
   1233     }
   1234 
   1235     // Note that we do *not* convert the argument in any way.  It can
   1236     // be signed, larger than size_t, whatever.
   1237   }
   1238 
   1239   FunctionDecl *OperatorNew = 0;
   1240   FunctionDecl *OperatorDelete = 0;
   1241   Expr **PlaceArgs = (Expr**)PlacementArgs.get();
   1242   unsigned NumPlaceArgs = PlacementArgs.size();
   1243 
   1244   if (!AllocType->isDependentType() &&
   1245       !Expr::hasAnyTypeDependentArguments(
   1246         llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
   1247       FindAllocationFunctions(StartLoc,
   1248                               SourceRange(PlacementLParen, PlacementRParen),
   1249                               UseGlobal, AllocType, ArraySize, PlaceArgs,
   1250                               NumPlaceArgs, OperatorNew, OperatorDelete))
   1251     return ExprError();
   1252 
   1253   // If this is an array allocation, compute whether the usual array
   1254   // deallocation function for the type has a size_t parameter.
   1255   bool UsualArrayDeleteWantsSize = false;
   1256   if (ArraySize && !AllocType->isDependentType())
   1257     UsualArrayDeleteWantsSize
   1258       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
   1259 
   1260   SmallVector<Expr *, 8> AllPlaceArgs;
   1261   if (OperatorNew) {
   1262     // Add default arguments, if any.
   1263     const FunctionProtoType *Proto =
   1264       OperatorNew->getType()->getAs<FunctionProtoType>();
   1265     VariadicCallType CallType =
   1266       Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
   1267 
   1268     if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
   1269                                Proto, 1, PlaceArgs, NumPlaceArgs,
   1270                                AllPlaceArgs, CallType))
   1271       return ExprError();
   1272 
   1273     NumPlaceArgs = AllPlaceArgs.size();
   1274     if (NumPlaceArgs > 0)
   1275       PlaceArgs = &AllPlaceArgs[0];
   1276 
   1277     DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
   1278                           PlaceArgs, NumPlaceArgs);
   1279 
   1280     // FIXME: Missing call to CheckFunctionCall or equivalent
   1281   }
   1282 
   1283   // Warn if the type is over-aligned and is being allocated by global operator
   1284   // new.
   1285   if (NumPlaceArgs == 0 && OperatorNew &&
   1286       (OperatorNew->isImplicit() ||
   1287        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
   1288     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
   1289       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
   1290       if (Align > SuitableAlign)
   1291         Diag(StartLoc, diag::warn_overaligned_type)
   1292             << AllocType
   1293             << unsigned(Align / Context.getCharWidth())
   1294             << unsigned(SuitableAlign / Context.getCharWidth());
   1295     }
   1296   }
   1297 
   1298   QualType InitType = AllocType;
   1299   // Array 'new' can't have any initializers except empty parentheses.
   1300   // Initializer lists are also allowed, in C++11. Rely on the parser for the
   1301   // dialect distinction.
   1302   if (ResultType->isArrayType() || ArraySize) {
   1303     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
   1304       SourceRange InitRange(Inits[0]->getLocStart(),
   1305                             Inits[NumInits - 1]->getLocEnd());
   1306       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
   1307       return ExprError();
   1308     }
   1309     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
   1310       // We do the initialization typechecking against the array type
   1311       // corresponding to the number of initializers + 1 (to also check
   1312       // default-initialization).
   1313       unsigned NumElements = ILE->getNumInits() + 1;
   1314       InitType = Context.getConstantArrayType(AllocType,
   1315           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
   1316                                               ArrayType::Normal, 0);
   1317     }
   1318   }
   1319 
   1320   if (!AllocType->isDependentType() &&
   1321       !Expr::hasAnyTypeDependentArguments(
   1322         llvm::makeArrayRef(Inits, NumInits))) {
   1323     // C++11 [expr.new]p15:
   1324     //   A new-expression that creates an object of type T initializes that
   1325     //   object as follows:
   1326     InitializationKind Kind
   1327     //     - If the new-initializer is omitted, the object is default-
   1328     //       initialized (8.5); if no initialization is performed,
   1329     //       the object has indeterminate value
   1330       = initStyle == CXXNewExpr::NoInit
   1331           ? InitializationKind::CreateDefault(TypeRange.getBegin())
   1332     //     - Otherwise, the new-initializer is interpreted according to the
   1333     //       initialization rules of 8.5 for direct-initialization.
   1334           : initStyle == CXXNewExpr::ListInit
   1335               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
   1336               : InitializationKind::CreateDirect(TypeRange.getBegin(),
   1337                                                  DirectInitRange.getBegin(),
   1338                                                  DirectInitRange.getEnd());
   1339 
   1340     InitializedEntity Entity
   1341       = InitializedEntity::InitializeNew(StartLoc, InitType);
   1342     InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
   1343     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
   1344                                           MultiExprArg(Inits, NumInits));
   1345     if (FullInit.isInvalid())
   1346       return ExprError();
   1347 
   1348     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
   1349     // we don't want the initialized object to be destructed.
   1350     if (CXXBindTemporaryExpr *Binder =
   1351             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
   1352       FullInit = Owned(Binder->getSubExpr());
   1353 
   1354     Initializer = FullInit.take();
   1355   }
   1356 
   1357   // Mark the new and delete operators as referenced.
   1358   if (OperatorNew)
   1359     MarkFunctionReferenced(StartLoc, OperatorNew);
   1360   if (OperatorDelete)
   1361     MarkFunctionReferenced(StartLoc, OperatorDelete);
   1362 
   1363   // C++0x [expr.new]p17:
   1364   //   If the new expression creates an array of objects of class type,
   1365   //   access and ambiguity control are done for the destructor.
   1366   QualType BaseAllocType = Context.getBaseElementType(AllocType);
   1367   if (ArraySize && !BaseAllocType->isDependentType()) {
   1368     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
   1369       if (CXXDestructorDecl *dtor = LookupDestructor(
   1370               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
   1371         MarkFunctionReferenced(StartLoc, dtor);
   1372         CheckDestructorAccess(StartLoc, dtor,
   1373                               PDiag(diag::err_access_dtor)
   1374                                 << BaseAllocType);
   1375         DiagnoseUseOfDecl(dtor, StartLoc);
   1376       }
   1377     }
   1378   }
   1379 
   1380   PlacementArgs.release();
   1381 
   1382   return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
   1383                                         OperatorDelete,
   1384                                         UsualArrayDeleteWantsSize,
   1385                                         PlaceArgs, NumPlaceArgs, TypeIdParens,
   1386                                         ArraySize, initStyle, Initializer,
   1387                                         ResultType, AllocTypeInfo,
   1388                                         StartLoc, DirectInitRange));
   1389 }
   1390 
   1391 /// \brief Checks that a type is suitable as the allocated type
   1392 /// in a new-expression.
   1393 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
   1394                               SourceRange R) {
   1395   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
   1396   //   abstract class type or array thereof.
   1397   if (AllocType->isFunctionType())
   1398     return Diag(Loc, diag::err_bad_new_type)
   1399       << AllocType << 0 << R;
   1400   else if (AllocType->isReferenceType())
   1401     return Diag(Loc, diag::err_bad_new_type)
   1402       << AllocType << 1 << R;
   1403   else if (!AllocType->isDependentType() &&
   1404            RequireCompleteType(Loc, AllocType,
   1405                                PDiag(diag::err_new_incomplete_type)
   1406                                  << R))
   1407     return true;
   1408   else if (RequireNonAbstractType(Loc, AllocType,
   1409                                   diag::err_allocation_of_abstract_type))
   1410     return true;
   1411   else if (AllocType->isVariablyModifiedType())
   1412     return Diag(Loc, diag::err_variably_modified_new_type)
   1413              << AllocType;
   1414   else if (unsigned AddressSpace = AllocType.getAddressSpace())
   1415     return Diag(Loc, diag::err_address_space_qualified_new)
   1416       << AllocType.getUnqualifiedType() << AddressSpace;
   1417   else if (getLangOpts().ObjCAutoRefCount) {
   1418     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
   1419       QualType BaseAllocType = Context.getBaseElementType(AT);
   1420       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
   1421           BaseAllocType->isObjCLifetimeType())
   1422         return Diag(Loc, diag::err_arc_new_array_without_ownership)
   1423           << BaseAllocType;
   1424     }
   1425   }
   1426 
   1427   return false;
   1428 }
   1429 
   1430 /// \brief Determine whether the given function is a non-placement
   1431 /// deallocation function.
   1432 static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
   1433   if (FD->isInvalidDecl())
   1434     return false;
   1435 
   1436   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
   1437     return Method->isUsualDeallocationFunction();
   1438 
   1439   return ((FD->getOverloadedOperator() == OO_Delete ||
   1440            FD->getOverloadedOperator() == OO_Array_Delete) &&
   1441           FD->getNumParams() == 1);
   1442 }
   1443 
   1444 /// FindAllocationFunctions - Finds the overloads of operator new and delete
   1445 /// that are appropriate for the allocation.
   1446 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
   1447                                    bool UseGlobal, QualType AllocType,
   1448                                    bool IsArray, Expr **PlaceArgs,
   1449                                    unsigned NumPlaceArgs,
   1450                                    FunctionDecl *&OperatorNew,
   1451                                    FunctionDecl *&OperatorDelete) {
   1452   // --- Choosing an allocation function ---
   1453   // C++ 5.3.4p8 - 14 & 18
   1454   // 1) If UseGlobal is true, only look in the global scope. Else, also look
   1455   //   in the scope of the allocated class.
   1456   // 2) If an array size is given, look for operator new[], else look for
   1457   //   operator new.
   1458   // 3) The first argument is always size_t. Append the arguments from the
   1459   //   placement form.
   1460 
   1461   SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
   1462   // We don't care about the actual value of this argument.
   1463   // FIXME: Should the Sema create the expression and embed it in the syntax
   1464   // tree? Or should the consumer just recalculate the value?
   1465   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
   1466                       Context.getTargetInfo().getPointerWidth(0)),
   1467                       Context.getSizeType(),
   1468                       SourceLocation());
   1469   AllocArgs[0] = &Size;
   1470   std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
   1471 
   1472   // C++ [expr.new]p8:
   1473   //   If the allocated type is a non-array type, the allocation
   1474   //   function's name is operator new and the deallocation function's
   1475   //   name is operator delete. If the allocated type is an array
   1476   //   type, the allocation function's name is operator new[] and the
   1477   //   deallocation function's name is operator delete[].
   1478   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
   1479                                         IsArray ? OO_Array_New : OO_New);
   1480   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   1481                                         IsArray ? OO_Array_Delete : OO_Delete);
   1482 
   1483   QualType AllocElemType = Context.getBaseElementType(AllocType);
   1484 
   1485   if (AllocElemType->isRecordType() && !UseGlobal) {
   1486     CXXRecordDecl *Record
   1487       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1488     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1489                           AllocArgs.size(), Record, /*AllowMissing=*/true,
   1490                           OperatorNew))
   1491       return true;
   1492   }
   1493   if (!OperatorNew) {
   1494     // Didn't find a member overload. Look for a global one.
   1495     DeclareGlobalNewDelete();
   1496     DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1497     if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
   1498                           AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
   1499                           OperatorNew))
   1500       return true;
   1501   }
   1502 
   1503   // We don't need an operator delete if we're running under
   1504   // -fno-exceptions.
   1505   if (!getLangOpts().Exceptions) {
   1506     OperatorDelete = 0;
   1507     return false;
   1508   }
   1509 
   1510   // FindAllocationOverload can change the passed in arguments, so we need to
   1511   // copy them back.
   1512   if (NumPlaceArgs > 0)
   1513     std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
   1514 
   1515   // C++ [expr.new]p19:
   1516   //
   1517   //   If the new-expression begins with a unary :: operator, the
   1518   //   deallocation function's name is looked up in the global
   1519   //   scope. Otherwise, if the allocated type is a class type T or an
   1520   //   array thereof, the deallocation function's name is looked up in
   1521   //   the scope of T. If this lookup fails to find the name, or if
   1522   //   the allocated type is not a class type or array thereof, the
   1523   //   deallocation function's name is looked up in the global scope.
   1524   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
   1525   if (AllocElemType->isRecordType() && !UseGlobal) {
   1526     CXXRecordDecl *RD
   1527       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
   1528     LookupQualifiedName(FoundDelete, RD);
   1529   }
   1530   if (FoundDelete.isAmbiguous())
   1531     return true; // FIXME: clean up expressions?
   1532 
   1533   if (FoundDelete.empty()) {
   1534     DeclareGlobalNewDelete();
   1535     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
   1536   }
   1537 
   1538   FoundDelete.suppressDiagnostics();
   1539 
   1540   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
   1541 
   1542   // Whether we're looking for a placement operator delete is dictated
   1543   // by whether we selected a placement operator new, not by whether
   1544   // we had explicit placement arguments.  This matters for things like
   1545   //   struct A { void *operator new(size_t, int = 0); ... };
   1546   //   A *a = new A()
   1547   bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
   1548 
   1549   if (isPlacementNew) {
   1550     // C++ [expr.new]p20:
   1551     //   A declaration of a placement deallocation function matches the
   1552     //   declaration of a placement allocation function if it has the
   1553     //   same number of parameters and, after parameter transformations
   1554     //   (8.3.5), all parameter types except the first are
   1555     //   identical. [...]
   1556     //
   1557     // To perform this comparison, we compute the function type that
   1558     // the deallocation function should have, and use that type both
   1559     // for template argument deduction and for comparison purposes.
   1560     //
   1561     // FIXME: this comparison should ignore CC and the like.
   1562     QualType ExpectedFunctionType;
   1563     {
   1564       const FunctionProtoType *Proto
   1565         = OperatorNew->getType()->getAs<FunctionProtoType>();
   1566 
   1567       SmallVector<QualType, 4> ArgTypes;
   1568       ArgTypes.push_back(Context.VoidPtrTy);
   1569       for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
   1570         ArgTypes.push_back(Proto->getArgType(I));
   1571 
   1572       FunctionProtoType::ExtProtoInfo EPI;
   1573       EPI.Variadic = Proto->isVariadic();
   1574 
   1575       ExpectedFunctionType
   1576         = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
   1577                                   ArgTypes.size(), EPI);
   1578     }
   1579 
   1580     for (LookupResult::iterator D = FoundDelete.begin(),
   1581                              DEnd = FoundDelete.end();
   1582          D != DEnd; ++D) {
   1583       FunctionDecl *Fn = 0;
   1584       if (FunctionTemplateDecl *FnTmpl
   1585             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
   1586         // Perform template argument deduction to try to match the
   1587         // expected function type.
   1588         TemplateDeductionInfo Info(Context, StartLoc);
   1589         if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
   1590           continue;
   1591       } else
   1592         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
   1593 
   1594       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
   1595         Matches.push_back(std::make_pair(D.getPair(), Fn));
   1596     }
   1597   } else {
   1598     // C++ [expr.new]p20:
   1599     //   [...] Any non-placement deallocation function matches a
   1600     //   non-placement allocation function. [...]
   1601     for (LookupResult::iterator D = FoundDelete.begin(),
   1602                              DEnd = FoundDelete.end();
   1603          D != DEnd; ++D) {
   1604       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
   1605         if (isNonPlacementDeallocationFunction(Fn))
   1606           Matches.push_back(std::make_pair(D.getPair(), Fn));
   1607     }
   1608   }
   1609 
   1610   // C++ [expr.new]p20:
   1611   //   [...] If the lookup finds a single matching deallocation
   1612   //   function, that function will be called; otherwise, no
   1613   //   deallocation function will be called.
   1614   if (Matches.size() == 1) {
   1615     OperatorDelete = Matches[0].second;
   1616 
   1617     // C++0x [expr.new]p20:
   1618     //   If the lookup finds the two-parameter form of a usual
   1619     //   deallocation function (3.7.4.2) and that function, considered
   1620     //   as a placement deallocation function, would have been
   1621     //   selected as a match for the allocation function, the program
   1622     //   is ill-formed.
   1623     if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
   1624         isNonPlacementDeallocationFunction(OperatorDelete)) {
   1625       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
   1626         << SourceRange(PlaceArgs[0]->getLocStart(),
   1627                        PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
   1628       Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
   1629         << DeleteName;
   1630     } else {
   1631       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
   1632                             Matches[0].first);
   1633     }
   1634   }
   1635 
   1636   return false;
   1637 }
   1638 
   1639 /// FindAllocationOverload - Find an fitting overload for the allocation
   1640 /// function in the specified scope.
   1641 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
   1642                                   DeclarationName Name, Expr** Args,
   1643                                   unsigned NumArgs, DeclContext *Ctx,
   1644                                   bool AllowMissing, FunctionDecl *&Operator,
   1645                                   bool Diagnose) {
   1646   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
   1647   LookupQualifiedName(R, Ctx);
   1648   if (R.empty()) {
   1649     if (AllowMissing || !Diagnose)
   1650       return false;
   1651     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1652       << Name << Range;
   1653   }
   1654 
   1655   if (R.isAmbiguous())
   1656     return true;
   1657 
   1658   R.suppressDiagnostics();
   1659 
   1660   OverloadCandidateSet Candidates(StartLoc);
   1661   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
   1662        Alloc != AllocEnd; ++Alloc) {
   1663     // Even member operator new/delete are implicitly treated as
   1664     // static, so don't use AddMemberCandidate.
   1665     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
   1666 
   1667     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
   1668       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
   1669                                    /*ExplicitTemplateArgs=*/0,
   1670                                    llvm::makeArrayRef(Args, NumArgs),
   1671                                    Candidates,
   1672                                    /*SuppressUserConversions=*/false);
   1673       continue;
   1674     }
   1675 
   1676     FunctionDecl *Fn = cast<FunctionDecl>(D);
   1677     AddOverloadCandidate(Fn, Alloc.getPair(),
   1678                          llvm::makeArrayRef(Args, NumArgs), Candidates,
   1679                          /*SuppressUserConversions=*/false);
   1680   }
   1681 
   1682   // Do the resolution.
   1683   OverloadCandidateSet::iterator Best;
   1684   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
   1685   case OR_Success: {
   1686     // Got one!
   1687     FunctionDecl *FnDecl = Best->Function;
   1688     MarkFunctionReferenced(StartLoc, FnDecl);
   1689     // The first argument is size_t, and the first parameter must be size_t,
   1690     // too. This is checked on declaration and can be assumed. (It can't be
   1691     // asserted on, though, since invalid decls are left in there.)
   1692     // Watch out for variadic allocator function.
   1693     unsigned NumArgsInFnDecl = FnDecl->getNumParams();
   1694     for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
   1695       InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   1696                                                        FnDecl->getParamDecl(i));
   1697 
   1698       if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
   1699         return true;
   1700 
   1701       ExprResult Result
   1702         = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
   1703       if (Result.isInvalid())
   1704         return true;
   1705 
   1706       Args[i] = Result.takeAs<Expr>();
   1707     }
   1708 
   1709     Operator = FnDecl;
   1710 
   1711     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
   1712                               Best->FoundDecl, Diagnose) == AR_inaccessible)
   1713       return true;
   1714 
   1715     return false;
   1716   }
   1717 
   1718   case OR_No_Viable_Function:
   1719     if (Diagnose) {
   1720       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
   1721         << Name << Range;
   1722       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1723                                 llvm::makeArrayRef(Args, NumArgs));
   1724     }
   1725     return true;
   1726 
   1727   case OR_Ambiguous:
   1728     if (Diagnose) {
   1729       Diag(StartLoc, diag::err_ovl_ambiguous_call)
   1730         << Name << Range;
   1731       Candidates.NoteCandidates(*this, OCD_ViableCandidates,
   1732                                 llvm::makeArrayRef(Args, NumArgs));
   1733     }
   1734     return true;
   1735 
   1736   case OR_Deleted: {
   1737     if (Diagnose) {
   1738       Diag(StartLoc, diag::err_ovl_deleted_call)
   1739         << Best->Function->isDeleted()
   1740         << Name
   1741         << getDeletedOrUnavailableSuffix(Best->Function)
   1742         << Range;
   1743       Candidates.NoteCandidates(*this, OCD_AllCandidates,
   1744                                 llvm::makeArrayRef(Args, NumArgs));
   1745     }
   1746     return true;
   1747   }
   1748   }
   1749   llvm_unreachable("Unreachable, bad result from BestViableFunction");
   1750 }
   1751 
   1752 
   1753 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
   1754 /// delete. These are:
   1755 /// @code
   1756 ///   // C++03:
   1757 ///   void* operator new(std::size_t) throw(std::bad_alloc);
   1758 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
   1759 ///   void operator delete(void *) throw();
   1760 ///   void operator delete[](void *) throw();
   1761 ///   // C++0x:
   1762 ///   void* operator new(std::size_t);
   1763 ///   void* operator new[](std::size_t);
   1764 ///   void operator delete(void *);
   1765 ///   void operator delete[](void *);
   1766 /// @endcode
   1767 /// C++0x operator delete is implicitly noexcept.
   1768 /// Note that the placement and nothrow forms of new are *not* implicitly
   1769 /// declared. Their use requires including \<new\>.
   1770 void Sema::DeclareGlobalNewDelete() {
   1771   if (GlobalNewDeleteDeclared)
   1772     return;
   1773 
   1774   // C++ [basic.std.dynamic]p2:
   1775   //   [...] The following allocation and deallocation functions (18.4) are
   1776   //   implicitly declared in global scope in each translation unit of a
   1777   //   program
   1778   //
   1779   //     C++03:
   1780   //     void* operator new(std::size_t) throw(std::bad_alloc);
   1781   //     void* operator new[](std::size_t) throw(std::bad_alloc);
   1782   //     void  operator delete(void*) throw();
   1783   //     void  operator delete[](void*) throw();
   1784   //     C++0x:
   1785   //     void* operator new(std::size_t);
   1786   //     void* operator new[](std::size_t);
   1787   //     void  operator delete(void*);
   1788   //     void  operator delete[](void*);
   1789   //
   1790   //   These implicit declarations introduce only the function names operator
   1791   //   new, operator new[], operator delete, operator delete[].
   1792   //
   1793   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
   1794   // "std" or "bad_alloc" as necessary to form the exception specification.
   1795   // However, we do not make these implicit declarations visible to name
   1796   // lookup.
   1797   // Note that the C++0x versions of operator delete are deallocation functions,
   1798   // and thus are implicitly noexcept.
   1799   if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
   1800     // The "std::bad_alloc" class has not yet been declared, so build it
   1801     // implicitly.
   1802     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
   1803                                         getOrCreateStdNamespace(),
   1804                                         SourceLocation(), SourceLocation(),
   1805                                       &PP.getIdentifierTable().get("bad_alloc"),
   1806                                         0);
   1807     getStdBadAlloc()->setImplicit(true);
   1808   }
   1809 
   1810   GlobalNewDeleteDeclared = true;
   1811 
   1812   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
   1813   QualType SizeT = Context.getSizeType();
   1814   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
   1815 
   1816   DeclareGlobalAllocationFunction(
   1817       Context.DeclarationNames.getCXXOperatorName(OO_New),
   1818       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1819   DeclareGlobalAllocationFunction(
   1820       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
   1821       VoidPtr, SizeT, AssumeSaneOperatorNew);
   1822   DeclareGlobalAllocationFunction(
   1823       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
   1824       Context.VoidTy, VoidPtr);
   1825   DeclareGlobalAllocationFunction(
   1826       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
   1827       Context.VoidTy, VoidPtr);
   1828 }
   1829 
   1830 /// DeclareGlobalAllocationFunction - Declares a single implicit global
   1831 /// allocation function if it doesn't already exist.
   1832 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
   1833                                            QualType Return, QualType Argument,
   1834                                            bool AddMallocAttr) {
   1835   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
   1836 
   1837   // Check if this function is already declared.
   1838   {
   1839     DeclContext::lookup_iterator Alloc, AllocEnd;
   1840     for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
   1841          Alloc != AllocEnd; ++Alloc) {
   1842       // Only look at non-template functions, as it is the predefined,
   1843       // non-templated allocation function we are trying to declare here.
   1844       if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
   1845         QualType InitialParamType =
   1846           Context.getCanonicalType(
   1847             Func->getParamDecl(0)->getType().getUnqualifiedType());
   1848         // FIXME: Do we need to check for default arguments here?
   1849         if (Func->getNumParams() == 1 && InitialParamType == Argument) {
   1850           if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
   1851             Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1852           return;
   1853         }
   1854       }
   1855     }
   1856   }
   1857 
   1858   QualType BadAllocType;
   1859   bool HasBadAllocExceptionSpec
   1860     = (Name.getCXXOverloadedOperator() == OO_New ||
   1861        Name.getCXXOverloadedOperator() == OO_Array_New);
   1862   if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
   1863     assert(StdBadAlloc && "Must have std::bad_alloc declared");
   1864     BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
   1865   }
   1866 
   1867   FunctionProtoType::ExtProtoInfo EPI;
   1868   if (HasBadAllocExceptionSpec) {
   1869     if (!getLangOpts().CPlusPlus0x) {
   1870       EPI.ExceptionSpecType = EST_Dynamic;
   1871       EPI.NumExceptions = 1;
   1872       EPI.Exceptions = &BadAllocType;
   1873     }
   1874   } else {
   1875     EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
   1876                                 EST_BasicNoexcept : EST_DynamicNone;
   1877   }
   1878 
   1879   QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
   1880   FunctionDecl *Alloc =
   1881     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
   1882                          SourceLocation(), Name,
   1883                          FnType, /*TInfo=*/0, SC_None,
   1884                          SC_None, false, true);
   1885   Alloc->setImplicit();
   1886 
   1887   if (AddMallocAttr)
   1888     Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
   1889 
   1890   ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
   1891                                            SourceLocation(), 0,
   1892                                            Argument, /*TInfo=*/0,
   1893                                            SC_None, SC_None, 0);
   1894   Alloc->setParams(Param);
   1895 
   1896   // FIXME: Also add this declaration to the IdentifierResolver, but
   1897   // make sure it is at the end of the chain to coincide with the
   1898   // global scope.
   1899   Context.getTranslationUnitDecl()->addDecl(Alloc);
   1900 }
   1901 
   1902 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
   1903                                     DeclarationName Name,
   1904                                     FunctionDecl* &Operator, bool Diagnose) {
   1905   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
   1906   // Try to find operator delete/operator delete[] in class scope.
   1907   LookupQualifiedName(Found, RD);
   1908 
   1909   if (Found.isAmbiguous())
   1910     return true;
   1911 
   1912   Found.suppressDiagnostics();
   1913 
   1914   SmallVector<DeclAccessPair,4> Matches;
   1915   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1916        F != FEnd; ++F) {
   1917     NamedDecl *ND = (*F)->getUnderlyingDecl();
   1918 
   1919     // Ignore template operator delete members from the check for a usual
   1920     // deallocation function.
   1921     if (isa<FunctionTemplateDecl>(ND))
   1922       continue;
   1923 
   1924     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
   1925       Matches.push_back(F.getPair());
   1926   }
   1927 
   1928   // There's exactly one suitable operator;  pick it.
   1929   if (Matches.size() == 1) {
   1930     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
   1931 
   1932     if (Operator->isDeleted()) {
   1933       if (Diagnose) {
   1934         Diag(StartLoc, diag::err_deleted_function_use);
   1935         NoteDeletedFunction(Operator);
   1936       }
   1937       return true;
   1938     }
   1939 
   1940     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
   1941                               Matches[0], Diagnose) == AR_inaccessible)
   1942       return true;
   1943 
   1944     return false;
   1945 
   1946   // We found multiple suitable operators;  complain about the ambiguity.
   1947   } else if (!Matches.empty()) {
   1948     if (Diagnose) {
   1949       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
   1950         << Name << RD;
   1951 
   1952       for (SmallVectorImpl<DeclAccessPair>::iterator
   1953              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
   1954         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1955              diag::note_member_declared_here) << Name;
   1956     }
   1957     return true;
   1958   }
   1959 
   1960   // We did find operator delete/operator delete[] declarations, but
   1961   // none of them were suitable.
   1962   if (!Found.empty()) {
   1963     if (Diagnose) {
   1964       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
   1965         << Name << RD;
   1966 
   1967       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
   1968            F != FEnd; ++F)
   1969         Diag((*F)->getUnderlyingDecl()->getLocation(),
   1970              diag::note_member_declared_here) << Name;
   1971     }
   1972     return true;
   1973   }
   1974 
   1975   // Look for a global declaration.
   1976   DeclareGlobalNewDelete();
   1977   DeclContext *TUDecl = Context.getTranslationUnitDecl();
   1978 
   1979   CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
   1980   Expr* DeallocArgs[1];
   1981   DeallocArgs[0] = &Null;
   1982   if (FindAllocationOverload(StartLoc, SourceRange(), Name,
   1983                              DeallocArgs, 1, TUDecl, !Diagnose,
   1984                              Operator, Diagnose))
   1985     return true;
   1986 
   1987   assert(Operator && "Did not find a deallocation function!");
   1988   return false;
   1989 }
   1990 
   1991 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
   1992 /// @code ::delete ptr; @endcode
   1993 /// or
   1994 /// @code delete [] ptr; @endcode
   1995 ExprResult
   1996 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
   1997                      bool ArrayForm, Expr *ExE) {
   1998   // C++ [expr.delete]p1:
   1999   //   The operand shall have a pointer type, or a class type having a single
   2000   //   conversion function to a pointer type. The result has type void.
   2001   //
   2002   // DR599 amends "pointer type" to "pointer to object type" in both cases.
   2003 
   2004   ExprResult Ex = Owned(ExE);
   2005   FunctionDecl *OperatorDelete = 0;
   2006   bool ArrayFormAsWritten = ArrayForm;
   2007   bool UsualArrayDeleteWantsSize = false;
   2008 
   2009   if (!Ex.get()->isTypeDependent()) {
   2010     // Perform lvalue-to-rvalue cast, if needed.
   2011     Ex = DefaultLvalueConversion(Ex.take());
   2012 
   2013     QualType Type = Ex.get()->getType();
   2014 
   2015     if (const RecordType *Record = Type->getAs<RecordType>()) {
   2016       if (RequireCompleteType(StartLoc, Type,
   2017                               PDiag(diag::err_delete_incomplete_class_type)))
   2018         return ExprError();
   2019 
   2020       SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
   2021 
   2022       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   2023       const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
   2024       for (UnresolvedSetImpl::iterator I = Conversions->begin(),
   2025              E = Conversions->end(); I != E; ++I) {
   2026         NamedDecl *D = I.getDecl();
   2027         if (isa<UsingShadowDecl>(D))
   2028           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2029 
   2030         // Skip over templated conversion functions; they aren't considered.
   2031         if (isa<FunctionTemplateDecl>(D))
   2032           continue;
   2033 
   2034         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   2035 
   2036         QualType ConvType = Conv->getConversionType().getNonReferenceType();
   2037         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   2038           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
   2039             ObjectPtrConversions.push_back(Conv);
   2040       }
   2041       if (ObjectPtrConversions.size() == 1) {
   2042         // We have a single conversion to a pointer-to-object type. Perform
   2043         // that conversion.
   2044         // TODO: don't redo the conversion calculation.
   2045         ExprResult Res =
   2046           PerformImplicitConversion(Ex.get(),
   2047                             ObjectPtrConversions.front()->getConversionType(),
   2048                                     AA_Converting);
   2049         if (Res.isUsable()) {
   2050           Ex = move(Res);
   2051           Type = Ex.get()->getType();
   2052         }
   2053       }
   2054       else if (ObjectPtrConversions.size() > 1) {
   2055         Diag(StartLoc, diag::err_ambiguous_delete_operand)
   2056               << Type << Ex.get()->getSourceRange();
   2057         for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
   2058           NoteOverloadCandidate(ObjectPtrConversions[i]);
   2059         return ExprError();
   2060       }
   2061     }
   2062 
   2063     if (!Type->isPointerType())
   2064       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2065         << Type << Ex.get()->getSourceRange());
   2066 
   2067     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
   2068     QualType PointeeElem = Context.getBaseElementType(Pointee);
   2069 
   2070     if (unsigned AddressSpace = Pointee.getAddressSpace())
   2071       return Diag(Ex.get()->getLocStart(),
   2072                   diag::err_address_space_qualified_delete)
   2073                << Pointee.getUnqualifiedType() << AddressSpace;
   2074 
   2075     CXXRecordDecl *PointeeRD = 0;
   2076     if (Pointee->isVoidType() && !isSFINAEContext()) {
   2077       // The C++ standard bans deleting a pointer to a non-object type, which
   2078       // effectively bans deletion of "void*". However, most compilers support
   2079       // this, so we treat it as a warning unless we're in a SFINAE context.
   2080       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
   2081         << Type << Ex.get()->getSourceRange();
   2082     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
   2083       return ExprError(Diag(StartLoc, diag::err_delete_operand)
   2084         << Type << Ex.get()->getSourceRange());
   2085     } else if (!Pointee->isDependentType()) {
   2086       if (!RequireCompleteType(StartLoc, Pointee,
   2087                                PDiag(diag::warn_delete_incomplete)
   2088                                  << Ex.get()->getSourceRange())) {
   2089         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
   2090           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
   2091       }
   2092     }
   2093 
   2094     // C++ [expr.delete]p2:
   2095     //   [Note: a pointer to a const type can be the operand of a
   2096     //   delete-expression; it is not necessary to cast away the constness
   2097     //   (5.2.11) of the pointer expression before it is used as the operand
   2098     //   of the delete-expression. ]
   2099     if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
   2100       Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
   2101                                           CK_BitCast, Ex.take(), 0, VK_RValue));
   2102 
   2103     if (Pointee->isArrayType() && !ArrayForm) {
   2104       Diag(StartLoc, diag::warn_delete_array_type)
   2105           << Type << Ex.get()->getSourceRange()
   2106           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
   2107       ArrayForm = true;
   2108     }
   2109 
   2110     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
   2111                                       ArrayForm ? OO_Array_Delete : OO_Delete);
   2112 
   2113     if (PointeeRD) {
   2114       if (!UseGlobal &&
   2115           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
   2116                                    OperatorDelete))
   2117         return ExprError();
   2118 
   2119       // If we're allocating an array of records, check whether the
   2120       // usual operator delete[] has a size_t parameter.
   2121       if (ArrayForm) {
   2122         // If the user specifically asked to use the global allocator,
   2123         // we'll need to do the lookup into the class.
   2124         if (UseGlobal)
   2125           UsualArrayDeleteWantsSize =
   2126             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
   2127 
   2128         // Otherwise, the usual operator delete[] should be the
   2129         // function we just found.
   2130         else if (isa<CXXMethodDecl>(OperatorDelete))
   2131           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
   2132       }
   2133 
   2134       if (!PointeeRD->hasIrrelevantDestructor())
   2135         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2136           MarkFunctionReferenced(StartLoc,
   2137                                     const_cast<CXXDestructorDecl*>(Dtor));
   2138           DiagnoseUseOfDecl(Dtor, StartLoc);
   2139         }
   2140 
   2141       // C++ [expr.delete]p3:
   2142       //   In the first alternative (delete object), if the static type of the
   2143       //   object to be deleted is different from its dynamic type, the static
   2144       //   type shall be a base class of the dynamic type of the object to be
   2145       //   deleted and the static type shall have a virtual destructor or the
   2146       //   behavior is undefined.
   2147       //
   2148       // Note: a final class cannot be derived from, no issue there
   2149       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
   2150         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
   2151         if (dtor && !dtor->isVirtual()) {
   2152           if (PointeeRD->isAbstract()) {
   2153             // If the class is abstract, we warn by default, because we're
   2154             // sure the code has undefined behavior.
   2155             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
   2156                 << PointeeElem;
   2157           } else if (!ArrayForm) {
   2158             // Otherwise, if this is not an array delete, it's a bit suspect,
   2159             // but not necessarily wrong.
   2160             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
   2161           }
   2162         }
   2163       }
   2164 
   2165     } else if (getLangOpts().ObjCAutoRefCount &&
   2166                PointeeElem->isObjCLifetimeType() &&
   2167                (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
   2168                 PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
   2169                ArrayForm) {
   2170       Diag(StartLoc, diag::warn_err_new_delete_object_array)
   2171         << 1 << PointeeElem;
   2172     }
   2173 
   2174     if (!OperatorDelete) {
   2175       // Look for a global declaration.
   2176       DeclareGlobalNewDelete();
   2177       DeclContext *TUDecl = Context.getTranslationUnitDecl();
   2178       Expr *Arg = Ex.get();
   2179       if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
   2180                                  &Arg, 1, TUDecl, /*AllowMissing=*/false,
   2181                                  OperatorDelete))
   2182         return ExprError();
   2183     }
   2184 
   2185     MarkFunctionReferenced(StartLoc, OperatorDelete);
   2186 
   2187     // Check access and ambiguity of operator delete and destructor.
   2188     if (PointeeRD) {
   2189       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
   2190           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
   2191                       PDiag(diag::err_access_dtor) << PointeeElem);
   2192       }
   2193     }
   2194 
   2195   }
   2196 
   2197   return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
   2198                                            ArrayFormAsWritten,
   2199                                            UsualArrayDeleteWantsSize,
   2200                                            OperatorDelete, Ex.take(), StartLoc));
   2201 }
   2202 
   2203 /// \brief Check the use of the given variable as a C++ condition in an if,
   2204 /// while, do-while, or switch statement.
   2205 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
   2206                                         SourceLocation StmtLoc,
   2207                                         bool ConvertToBoolean) {
   2208   QualType T = ConditionVar->getType();
   2209 
   2210   // C++ [stmt.select]p2:
   2211   //   The declarator shall not specify a function or an array.
   2212   if (T->isFunctionType())
   2213     return ExprError(Diag(ConditionVar->getLocation(),
   2214                           diag::err_invalid_use_of_function_type)
   2215                        << ConditionVar->getSourceRange());
   2216   else if (T->isArrayType())
   2217     return ExprError(Diag(ConditionVar->getLocation(),
   2218                           diag::err_invalid_use_of_array_type)
   2219                      << ConditionVar->getSourceRange());
   2220 
   2221   ExprResult Condition =
   2222     Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
   2223                               SourceLocation(),
   2224                               ConditionVar,
   2225                               /*enclosing*/ false,
   2226                               ConditionVar->getLocation(),
   2227                               ConditionVar->getType().getNonReferenceType(),
   2228                               VK_LValue));
   2229 
   2230   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
   2231 
   2232   if (ConvertToBoolean) {
   2233     Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
   2234     if (Condition.isInvalid())
   2235       return ExprError();
   2236   }
   2237 
   2238   return move(Condition);
   2239 }
   2240 
   2241 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
   2242 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
   2243   // C++ 6.4p4:
   2244   // The value of a condition that is an initialized declaration in a statement
   2245   // other than a switch statement is the value of the declared variable
   2246   // implicitly converted to type bool. If that conversion is ill-formed, the
   2247   // program is ill-formed.
   2248   // The value of a condition that is an expression is the value of the
   2249   // expression, implicitly converted to bool.
   2250   //
   2251   return PerformContextuallyConvertToBool(CondExpr);
   2252 }
   2253 
   2254 /// Helper function to determine whether this is the (deprecated) C++
   2255 /// conversion from a string literal to a pointer to non-const char or
   2256 /// non-const wchar_t (for narrow and wide string literals,
   2257 /// respectively).
   2258 bool
   2259 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
   2260   // Look inside the implicit cast, if it exists.
   2261   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
   2262     From = Cast->getSubExpr();
   2263 
   2264   // A string literal (2.13.4) that is not a wide string literal can
   2265   // be converted to an rvalue of type "pointer to char"; a wide
   2266   // string literal can be converted to an rvalue of type "pointer
   2267   // to wchar_t" (C++ 4.2p2).
   2268   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
   2269     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
   2270       if (const BuiltinType *ToPointeeType
   2271           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
   2272         // This conversion is considered only when there is an
   2273         // explicit appropriate pointer target type (C++ 4.2p2).
   2274         if (!ToPtrType->getPointeeType().hasQualifiers()) {
   2275           switch (StrLit->getKind()) {
   2276             case StringLiteral::UTF8:
   2277             case StringLiteral::UTF16:
   2278             case StringLiteral::UTF32:
   2279               // We don't allow UTF literals to be implicitly converted
   2280               break;
   2281             case StringLiteral::Ascii:
   2282               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
   2283                       ToPointeeType->getKind() == BuiltinType::Char_S);
   2284             case StringLiteral::Wide:
   2285               return ToPointeeType->isWideCharType();
   2286           }
   2287         }
   2288       }
   2289 
   2290   return false;
   2291 }
   2292 
   2293 static ExprResult BuildCXXCastArgument(Sema &S,
   2294                                        SourceLocation CastLoc,
   2295                                        QualType Ty,
   2296                                        CastKind Kind,
   2297                                        CXXMethodDecl *Method,
   2298                                        DeclAccessPair FoundDecl,
   2299                                        bool HadMultipleCandidates,
   2300                                        Expr *From) {
   2301   switch (Kind) {
   2302   default: llvm_unreachable("Unhandled cast kind!");
   2303   case CK_ConstructorConversion: {
   2304     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
   2305     ASTOwningVector<Expr*> ConstructorArgs(S);
   2306 
   2307     if (S.CompleteConstructorCall(Constructor,
   2308                                   MultiExprArg(&From, 1),
   2309                                   CastLoc, ConstructorArgs))
   2310       return ExprError();
   2311 
   2312     S.CheckConstructorAccess(CastLoc, Constructor,
   2313                              InitializedEntity::InitializeTemporary(Ty),
   2314                              Constructor->getAccess());
   2315 
   2316     ExprResult Result
   2317       = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
   2318                                 move_arg(ConstructorArgs),
   2319                                 HadMultipleCandidates, /*ZeroInit*/ false,
   2320                                 CXXConstructExpr::CK_Complete, SourceRange());
   2321     if (Result.isInvalid())
   2322       return ExprError();
   2323 
   2324     return S.MaybeBindToTemporary(Result.takeAs<Expr>());
   2325   }
   2326 
   2327   case CK_UserDefinedConversion: {
   2328     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
   2329 
   2330     // Create an implicit call expr that calls it.
   2331     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
   2332     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
   2333                                                  HadMultipleCandidates);
   2334     if (Result.isInvalid())
   2335       return ExprError();
   2336     // Record usage of conversion in an implicit cast.
   2337     Result = S.Owned(ImplicitCastExpr::Create(S.Context,
   2338                                               Result.get()->getType(),
   2339                                               CK_UserDefinedConversion,
   2340                                               Result.get(), 0,
   2341                                               Result.get()->getValueKind()));
   2342 
   2343     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
   2344 
   2345     return S.MaybeBindToTemporary(Result.get());
   2346   }
   2347   }
   2348 }
   2349 
   2350 /// PerformImplicitConversion - Perform an implicit conversion of the
   2351 /// expression From to the type ToType using the pre-computed implicit
   2352 /// conversion sequence ICS. Returns the converted
   2353 /// expression. Action is the kind of conversion we're performing,
   2354 /// used in the error message.
   2355 ExprResult
   2356 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2357                                 const ImplicitConversionSequence &ICS,
   2358                                 AssignmentAction Action,
   2359                                 CheckedConversionKind CCK) {
   2360   switch (ICS.getKind()) {
   2361   case ImplicitConversionSequence::StandardConversion: {
   2362     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
   2363                                                Action, CCK);
   2364     if (Res.isInvalid())
   2365       return ExprError();
   2366     From = Res.take();
   2367     break;
   2368   }
   2369 
   2370   case ImplicitConversionSequence::UserDefinedConversion: {
   2371 
   2372       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
   2373       CastKind CastKind;
   2374       QualType BeforeToType;
   2375       assert(FD && "FIXME: aggregate initialization from init list");
   2376       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
   2377         CastKind = CK_UserDefinedConversion;
   2378 
   2379         // If the user-defined conversion is specified by a conversion function,
   2380         // the initial standard conversion sequence converts the source type to
   2381         // the implicit object parameter of the conversion function.
   2382         BeforeToType = Context.getTagDeclType(Conv->getParent());
   2383       } else {
   2384         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
   2385         CastKind = CK_ConstructorConversion;
   2386         // Do no conversion if dealing with ... for the first conversion.
   2387         if (!ICS.UserDefined.EllipsisConversion) {
   2388           // If the user-defined conversion is specified by a constructor, the
   2389           // initial standard conversion sequence converts the source type to the
   2390           // type required by the argument of the constructor
   2391           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
   2392         }
   2393       }
   2394       // Watch out for elipsis conversion.
   2395       if (!ICS.UserDefined.EllipsisConversion) {
   2396         ExprResult Res =
   2397           PerformImplicitConversion(From, BeforeToType,
   2398                                     ICS.UserDefined.Before, AA_Converting,
   2399                                     CCK);
   2400         if (Res.isInvalid())
   2401           return ExprError();
   2402         From = Res.take();
   2403       }
   2404 
   2405       ExprResult CastArg
   2406         = BuildCXXCastArgument(*this,
   2407                                From->getLocStart(),
   2408                                ToType.getNonReferenceType(),
   2409                                CastKind, cast<CXXMethodDecl>(FD),
   2410                                ICS.UserDefined.FoundConversionFunction,
   2411                                ICS.UserDefined.HadMultipleCandidates,
   2412                                From);
   2413 
   2414       if (CastArg.isInvalid())
   2415         return ExprError();
   2416 
   2417       From = CastArg.take();
   2418 
   2419       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
   2420                                        AA_Converting, CCK);
   2421   }
   2422 
   2423   case ImplicitConversionSequence::AmbiguousConversion:
   2424     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
   2425                           PDiag(diag::err_typecheck_ambiguous_condition)
   2426                             << From->getSourceRange());
   2427      return ExprError();
   2428 
   2429   case ImplicitConversionSequence::EllipsisConversion:
   2430     llvm_unreachable("Cannot perform an ellipsis conversion");
   2431 
   2432   case ImplicitConversionSequence::BadConversion:
   2433     return ExprError();
   2434   }
   2435 
   2436   // Everything went well.
   2437   return Owned(From);
   2438 }
   2439 
   2440 /// PerformImplicitConversion - Perform an implicit conversion of the
   2441 /// expression From to the type ToType by following the standard
   2442 /// conversion sequence SCS. Returns the converted
   2443 /// expression. Flavor is the context in which we're performing this
   2444 /// conversion, for use in error messages.
   2445 ExprResult
   2446 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   2447                                 const StandardConversionSequence& SCS,
   2448                                 AssignmentAction Action,
   2449                                 CheckedConversionKind CCK) {
   2450   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
   2451 
   2452   // Overall FIXME: we are recomputing too many types here and doing far too
   2453   // much extra work. What this means is that we need to keep track of more
   2454   // information that is computed when we try the implicit conversion initially,
   2455   // so that we don't need to recompute anything here.
   2456   QualType FromType = From->getType();
   2457 
   2458   if (SCS.CopyConstructor) {
   2459     // FIXME: When can ToType be a reference type?
   2460     assert(!ToType->isReferenceType());
   2461     if (SCS.Second == ICK_Derived_To_Base) {
   2462       ASTOwningVector<Expr*> ConstructorArgs(*this);
   2463       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
   2464                                   MultiExprArg(*this, &From, 1),
   2465                                   /*FIXME:ConstructLoc*/SourceLocation(),
   2466                                   ConstructorArgs))
   2467         return ExprError();
   2468       return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2469                                    ToType, SCS.CopyConstructor,
   2470                                    move_arg(ConstructorArgs),
   2471                                    /*HadMultipleCandidates*/ false,
   2472                                    /*ZeroInit*/ false,
   2473                                    CXXConstructExpr::CK_Complete,
   2474                                    SourceRange());
   2475     }
   2476     return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
   2477                                  ToType, SCS.CopyConstructor,
   2478                                  MultiExprArg(*this, &From, 1),
   2479                                  /*HadMultipleCandidates*/ false,
   2480                                  /*ZeroInit*/ false,
   2481                                  CXXConstructExpr::CK_Complete,
   2482                                  SourceRange());
   2483   }
   2484 
   2485   // Resolve overloaded function references.
   2486   if (Context.hasSameType(FromType, Context.OverloadTy)) {
   2487     DeclAccessPair Found;
   2488     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
   2489                                                           true, Found);
   2490     if (!Fn)
   2491       return ExprError();
   2492 
   2493     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
   2494       return ExprError();
   2495 
   2496     From = FixOverloadedFunctionReference(From, Found, Fn);
   2497     FromType = From->getType();
   2498   }
   2499 
   2500   // Perform the first implicit conversion.
   2501   switch (SCS.First) {
   2502   case ICK_Identity:
   2503     // Nothing to do.
   2504     break;
   2505 
   2506   case ICK_Lvalue_To_Rvalue: {
   2507     assert(From->getObjectKind() != OK_ObjCProperty);
   2508     FromType = FromType.getUnqualifiedType();
   2509     ExprResult FromRes = DefaultLvalueConversion(From);
   2510     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
   2511     From = FromRes.take();
   2512     break;
   2513   }
   2514 
   2515   case ICK_Array_To_Pointer:
   2516     FromType = Context.getArrayDecayedType(FromType);
   2517     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
   2518                              VK_RValue, /*BasePath=*/0, CCK).take();
   2519     break;
   2520 
   2521   case ICK_Function_To_Pointer:
   2522     FromType = Context.getPointerType(FromType);
   2523     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
   2524                              VK_RValue, /*BasePath=*/0, CCK).take();
   2525     break;
   2526 
   2527   default:
   2528     llvm_unreachable("Improper first standard conversion");
   2529   }
   2530 
   2531   // Perform the second implicit conversion
   2532   switch (SCS.Second) {
   2533   case ICK_Identity:
   2534     // If both sides are functions (or pointers/references to them), there could
   2535     // be incompatible exception declarations.
   2536     if (CheckExceptionSpecCompatibility(From, ToType))
   2537       return ExprError();
   2538     // Nothing else to do.
   2539     break;
   2540 
   2541   case ICK_NoReturn_Adjustment:
   2542     // If both sides are functions (or pointers/references to them), there could
   2543     // be incompatible exception declarations.
   2544     if (CheckExceptionSpecCompatibility(From, ToType))
   2545       return ExprError();
   2546 
   2547     From = ImpCastExprToType(From, ToType, CK_NoOp,
   2548                              VK_RValue, /*BasePath=*/0, CCK).take();
   2549     break;
   2550 
   2551   case ICK_Integral_Promotion:
   2552   case ICK_Integral_Conversion:
   2553     From = ImpCastExprToType(From, ToType, CK_IntegralCast,
   2554                              VK_RValue, /*BasePath=*/0, CCK).take();
   2555     break;
   2556 
   2557   case ICK_Floating_Promotion:
   2558   case ICK_Floating_Conversion:
   2559     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
   2560                              VK_RValue, /*BasePath=*/0, CCK).take();
   2561     break;
   2562 
   2563   case ICK_Complex_Promotion:
   2564   case ICK_Complex_Conversion: {
   2565     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
   2566     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
   2567     CastKind CK;
   2568     if (FromEl->isRealFloatingType()) {
   2569       if (ToEl->isRealFloatingType())
   2570         CK = CK_FloatingComplexCast;
   2571       else
   2572         CK = CK_FloatingComplexToIntegralComplex;
   2573     } else if (ToEl->isRealFloatingType()) {
   2574       CK = CK_IntegralComplexToFloatingComplex;
   2575     } else {
   2576       CK = CK_IntegralComplexCast;
   2577     }
   2578     From = ImpCastExprToType(From, ToType, CK,
   2579                              VK_RValue, /*BasePath=*/0, CCK).take();
   2580     break;
   2581   }
   2582 
   2583   case ICK_Floating_Integral:
   2584     if (ToType->isRealFloatingType())
   2585       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
   2586                                VK_RValue, /*BasePath=*/0, CCK).take();
   2587     else
   2588       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
   2589                                VK_RValue, /*BasePath=*/0, CCK).take();
   2590     break;
   2591 
   2592   case ICK_Compatible_Conversion:
   2593       From = ImpCastExprToType(From, ToType, CK_NoOp,
   2594                                VK_RValue, /*BasePath=*/0, CCK).take();
   2595     break;
   2596 
   2597   case ICK_Writeback_Conversion:
   2598   case ICK_Pointer_Conversion: {
   2599     if (SCS.IncompatibleObjC && Action != AA_Casting) {
   2600       // Diagnose incompatible Objective-C conversions
   2601       if (Action == AA_Initializing || Action == AA_Assigning)
   2602         Diag(From->getLocStart(),
   2603              diag::ext_typecheck_convert_incompatible_pointer)
   2604           << ToType << From->getType() << Action
   2605           << From->getSourceRange() << 0;
   2606       else
   2607         Diag(From->getLocStart(),
   2608              diag::ext_typecheck_convert_incompatible_pointer)
   2609           << From->getType() << ToType << Action
   2610           << From->getSourceRange() << 0;
   2611 
   2612       if (From->getType()->isObjCObjectPointerType() &&
   2613           ToType->isObjCObjectPointerType())
   2614         EmitRelatedResultTypeNote(From);
   2615     }
   2616     else if (getLangOpts().ObjCAutoRefCount &&
   2617              !CheckObjCARCUnavailableWeakConversion(ToType,
   2618                                                     From->getType())) {
   2619       if (Action == AA_Initializing)
   2620         Diag(From->getLocStart(),
   2621              diag::err_arc_weak_unavailable_assign);
   2622       else
   2623         Diag(From->getLocStart(),
   2624              diag::err_arc_convesion_of_weak_unavailable)
   2625           << (Action == AA_Casting) << From->getType() << ToType
   2626           << From->getSourceRange();
   2627     }
   2628 
   2629     CastKind Kind = CK_Invalid;
   2630     CXXCastPath BasePath;
   2631     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2632       return ExprError();
   2633 
   2634     // Make sure we extend blocks if necessary.
   2635     // FIXME: doing this here is really ugly.
   2636     if (Kind == CK_BlockPointerToObjCPointerCast) {
   2637       ExprResult E = From;
   2638       (void) PrepareCastToObjCObjectPointer(E);
   2639       From = E.take();
   2640     }
   2641 
   2642     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2643              .take();
   2644     break;
   2645   }
   2646 
   2647   case ICK_Pointer_Member: {
   2648     CastKind Kind = CK_Invalid;
   2649     CXXCastPath BasePath;
   2650     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
   2651       return ExprError();
   2652     if (CheckExceptionSpecCompatibility(From, ToType))
   2653       return ExprError();
   2654     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
   2655              .take();
   2656     break;
   2657   }
   2658 
   2659   case ICK_Boolean_Conversion:
   2660     // Perform half-to-boolean conversion via float.
   2661     if (From->getType()->isHalfType()) {
   2662       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
   2663       FromType = Context.FloatTy;
   2664     }
   2665 
   2666     From = ImpCastExprToType(From, Context.BoolTy,
   2667                              ScalarTypeToBooleanCastKind(FromType),
   2668                              VK_RValue, /*BasePath=*/0, CCK).take();
   2669     break;
   2670 
   2671   case ICK_Derived_To_Base: {
   2672     CXXCastPath BasePath;
   2673     if (CheckDerivedToBaseConversion(From->getType(),
   2674                                      ToType.getNonReferenceType(),
   2675                                      From->getLocStart(),
   2676                                      From->getSourceRange(),
   2677                                      &BasePath,
   2678                                      CStyle))
   2679       return ExprError();
   2680 
   2681     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
   2682                       CK_DerivedToBase, From->getValueKind(),
   2683                       &BasePath, CCK).take();
   2684     break;
   2685   }
   2686 
   2687   case ICK_Vector_Conversion:
   2688     From = ImpCastExprToType(From, ToType, CK_BitCast,
   2689                              VK_RValue, /*BasePath=*/0, CCK).take();
   2690     break;
   2691 
   2692   case ICK_Vector_Splat:
   2693     From = ImpCastExprToType(From, ToType, CK_VectorSplat,
   2694                              VK_RValue, /*BasePath=*/0, CCK).take();
   2695     break;
   2696 
   2697   case ICK_Complex_Real:
   2698     // Case 1.  x -> _Complex y
   2699     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
   2700       QualType ElType = ToComplex->getElementType();
   2701       bool isFloatingComplex = ElType->isRealFloatingType();
   2702 
   2703       // x -> y
   2704       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
   2705         // do nothing
   2706       } else if (From->getType()->isRealFloatingType()) {
   2707         From = ImpCastExprToType(From, ElType,
   2708                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
   2709       } else {
   2710         assert(From->getType()->isIntegerType());
   2711         From = ImpCastExprToType(From, ElType,
   2712                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
   2713       }
   2714       // y -> _Complex y
   2715       From = ImpCastExprToType(From, ToType,
   2716                    isFloatingComplex ? CK_FloatingRealToComplex
   2717                                      : CK_IntegralRealToComplex).take();
   2718 
   2719     // Case 2.  _Complex x -> y
   2720     } else {
   2721       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
   2722       assert(FromComplex);
   2723 
   2724       QualType ElType = FromComplex->getElementType();
   2725       bool isFloatingComplex = ElType->isRealFloatingType();
   2726 
   2727       // _Complex x -> x
   2728       From = ImpCastExprToType(From, ElType,
   2729                    isFloatingComplex ? CK_FloatingComplexToReal
   2730                                      : CK_IntegralComplexToReal,
   2731                                VK_RValue, /*BasePath=*/0, CCK).take();
   2732 
   2733       // x -> y
   2734       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
   2735         // do nothing
   2736       } else if (ToType->isRealFloatingType()) {
   2737         From = ImpCastExprToType(From, ToType,
   2738                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
   2739                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2740       } else {
   2741         assert(ToType->isIntegerType());
   2742         From = ImpCastExprToType(From, ToType,
   2743                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
   2744                                  VK_RValue, /*BasePath=*/0, CCK).take();
   2745       }
   2746     }
   2747     break;
   2748 
   2749   case ICK_Block_Pointer_Conversion: {
   2750     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
   2751                              VK_RValue, /*BasePath=*/0, CCK).take();
   2752     break;
   2753   }
   2754 
   2755   case ICK_TransparentUnionConversion: {
   2756     ExprResult FromRes = Owned(From);
   2757     Sema::AssignConvertType ConvTy =
   2758       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
   2759     if (FromRes.isInvalid())
   2760       return ExprError();
   2761     From = FromRes.take();
   2762     assert ((ConvTy == Sema::Compatible) &&
   2763             "Improper transparent union conversion");
   2764     (void)ConvTy;
   2765     break;
   2766   }
   2767 
   2768   case ICK_Lvalue_To_Rvalue:
   2769   case ICK_Array_To_Pointer:
   2770   case ICK_Function_To_Pointer:
   2771   case ICK_Qualification:
   2772   case ICK_Num_Conversion_Kinds:
   2773     llvm_unreachable("Improper second standard conversion");
   2774   }
   2775 
   2776   switch (SCS.Third) {
   2777   case ICK_Identity:
   2778     // Nothing to do.
   2779     break;
   2780 
   2781   case ICK_Qualification: {
   2782     // The qualification keeps the category of the inner expression, unless the
   2783     // target type isn't a reference.
   2784     ExprValueKind VK = ToType->isReferenceType() ?
   2785                                   From->getValueKind() : VK_RValue;
   2786     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
   2787                              CK_NoOp, VK, /*BasePath=*/0, CCK).take();
   2788 
   2789     if (SCS.DeprecatedStringLiteralToCharPtr &&
   2790         !getLangOpts().WritableStrings)
   2791       Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
   2792         << ToType.getNonReferenceType();
   2793 
   2794     break;
   2795     }
   2796 
   2797   default:
   2798     llvm_unreachable("Improper third standard conversion");
   2799   }
   2800 
   2801   // If this conversion sequence involved a scalar -> atomic conversion, perform
   2802   // that conversion now.
   2803   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
   2804     if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
   2805       From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
   2806                                CCK).take();
   2807 
   2808   return Owned(From);
   2809 }
   2810 
   2811 ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
   2812                                      SourceLocation KWLoc,
   2813                                      ParsedType Ty,
   2814                                      SourceLocation RParen) {
   2815   TypeSourceInfo *TSInfo;
   2816   QualType T = GetTypeFromParser(Ty, &TSInfo);
   2817 
   2818   if (!TSInfo)
   2819     TSInfo = Context.getTrivialTypeSourceInfo(T);
   2820   return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
   2821 }
   2822 
   2823 /// \brief Check the completeness of a type in a unary type trait.
   2824 ///
   2825 /// If the particular type trait requires a complete type, tries to complete
   2826 /// it. If completing the type fails, a diagnostic is emitted and false
   2827 /// returned. If completing the type succeeds or no completion was required,
   2828 /// returns true.
   2829 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
   2830                                                 UnaryTypeTrait UTT,
   2831                                                 SourceLocation Loc,
   2832                                                 QualType ArgTy) {
   2833   // C++0x [meta.unary.prop]p3:
   2834   //   For all of the class templates X declared in this Clause, instantiating
   2835   //   that template with a template argument that is a class template
   2836   //   specialization may result in the implicit instantiation of the template
   2837   //   argument if and only if the semantics of X require that the argument
   2838   //   must be a complete type.
   2839   // We apply this rule to all the type trait expressions used to implement
   2840   // these class templates. We also try to follow any GCC documented behavior
   2841   // in these expressions to ensure portability of standard libraries.
   2842   switch (UTT) {
   2843     // is_complete_type somewhat obviously cannot require a complete type.
   2844   case UTT_IsCompleteType:
   2845     // Fall-through
   2846 
   2847     // These traits are modeled on the type predicates in C++0x
   2848     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
   2849     // requiring a complete type, as whether or not they return true cannot be
   2850     // impacted by the completeness of the type.
   2851   case UTT_IsVoid:
   2852   case UTT_IsIntegral:
   2853   case UTT_IsFloatingPoint:
   2854   case UTT_IsArray:
   2855   case UTT_IsPointer:
   2856   case UTT_IsLvalueReference:
   2857   case UTT_IsRvalueReference:
   2858   case UTT_IsMemberFunctionPointer:
   2859   case UTT_IsMemberObjectPointer:
   2860   case UTT_IsEnum:
   2861   case UTT_IsUnion:
   2862   case UTT_IsClass:
   2863   case UTT_IsFunction:
   2864   case UTT_IsReference:
   2865   case UTT_IsArithmetic:
   2866   case UTT_IsFundamental:
   2867   case UTT_IsObject:
   2868   case UTT_IsScalar:
   2869   case UTT_IsCompound:
   2870   case UTT_IsMemberPointer:
   2871     // Fall-through
   2872 
   2873     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
   2874     // which requires some of its traits to have the complete type. However,
   2875     // the completeness of the type cannot impact these traits' semantics, and
   2876     // so they don't require it. This matches the comments on these traits in
   2877     // Table 49.
   2878   case UTT_IsConst:
   2879   case UTT_IsVolatile:
   2880   case UTT_IsSigned:
   2881   case UTT_IsUnsigned:
   2882     return true;
   2883 
   2884     // C++0x [meta.unary.prop] Table 49 requires the following traits to be
   2885     // applied to a complete type.
   2886   case UTT_IsTrivial:
   2887   case UTT_IsTriviallyCopyable:
   2888   case UTT_IsStandardLayout:
   2889   case UTT_IsPOD:
   2890   case UTT_IsLiteral:
   2891   case UTT_IsEmpty:
   2892   case UTT_IsPolymorphic:
   2893   case UTT_IsAbstract:
   2894     // Fall-through
   2895 
   2896   // These traits require a complete type.
   2897   case UTT_IsFinal:
   2898 
   2899     // These trait expressions are designed to help implement predicates in
   2900     // [meta.unary.prop] despite not being named the same. They are specified
   2901     // by both GCC and the Embarcadero C++ compiler, and require the complete
   2902     // type due to the overarching C++0x type predicates being implemented
   2903     // requiring the complete type.
   2904   case UTT_HasNothrowAssign:
   2905   case UTT_HasNothrowConstructor:
   2906   case UTT_HasNothrowCopy:
   2907   case UTT_HasTrivialAssign:
   2908   case UTT_HasTrivialDefaultConstructor:
   2909   case UTT_HasTrivialCopy:
   2910   case UTT_HasTrivialDestructor:
   2911   case UTT_HasVirtualDestructor:
   2912     // Arrays of unknown bound are expressly allowed.
   2913     QualType ElTy = ArgTy;
   2914     if (ArgTy->isIncompleteArrayType())
   2915       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
   2916 
   2917     // The void type is expressly allowed.
   2918     if (ElTy->isVoidType())
   2919       return true;
   2920 
   2921     return !S.RequireCompleteType(
   2922       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
   2923   }
   2924   llvm_unreachable("Type trait not handled by switch");
   2925 }
   2926 
   2927 static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
   2928                                    SourceLocation KeyLoc, QualType T) {
   2929   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   2930 
   2931   ASTContext &C = Self.Context;
   2932   switch(UTT) {
   2933     // Type trait expressions corresponding to the primary type category
   2934     // predicates in C++0x [meta.unary.cat].
   2935   case UTT_IsVoid:
   2936     return T->isVoidType();
   2937   case UTT_IsIntegral:
   2938     return T->isIntegralType(C);
   2939   case UTT_IsFloatingPoint:
   2940     return T->isFloatingType();
   2941   case UTT_IsArray:
   2942     return T->isArrayType();
   2943   case UTT_IsPointer:
   2944     return T->isPointerType();
   2945   case UTT_IsLvalueReference:
   2946     return T->isLValueReferenceType();
   2947   case UTT_IsRvalueReference:
   2948     return T->isRValueReferenceType();
   2949   case UTT_IsMemberFunctionPointer:
   2950     return T->isMemberFunctionPointerType();
   2951   case UTT_IsMemberObjectPointer:
   2952     return T->isMemberDataPointerType();
   2953   case UTT_IsEnum:
   2954     return T->isEnumeralType();
   2955   case UTT_IsUnion:
   2956     return T->isUnionType();
   2957   case UTT_IsClass:
   2958     return T->isClassType() || T->isStructureType();
   2959   case UTT_IsFunction:
   2960     return T->isFunctionType();
   2961 
   2962     // Type trait expressions which correspond to the convenient composition
   2963     // predicates in C++0x [meta.unary.comp].
   2964   case UTT_IsReference:
   2965     return T->isReferenceType();
   2966   case UTT_IsArithmetic:
   2967     return T->isArithmeticType() && !T->isEnumeralType();
   2968   case UTT_IsFundamental:
   2969     return T->isFundamentalType();
   2970   case UTT_IsObject:
   2971     return T->isObjectType();
   2972   case UTT_IsScalar:
   2973     // Note: semantic analysis depends on Objective-C lifetime types to be
   2974     // considered scalar types. However, such types do not actually behave
   2975     // like scalar types at run time (since they may require retain/release
   2976     // operations), so we report them as non-scalar.
   2977     if (T->isObjCLifetimeType()) {
   2978       switch (T.getObjCLifetime()) {
   2979       case Qualifiers::OCL_None:
   2980       case Qualifiers::OCL_ExplicitNone:
   2981         return true;
   2982 
   2983       case Qualifiers::OCL_Strong:
   2984       case Qualifiers::OCL_Weak:
   2985       case Qualifiers::OCL_Autoreleasing:
   2986         return false;
   2987       }
   2988     }
   2989 
   2990     return T->isScalarType();
   2991   case UTT_IsCompound:
   2992     return T->isCompoundType();
   2993   case UTT_IsMemberPointer:
   2994     return T->isMemberPointerType();
   2995 
   2996     // Type trait expressions which correspond to the type property predicates
   2997     // in C++0x [meta.unary.prop].
   2998   case UTT_IsConst:
   2999     return T.isConstQualified();
   3000   case UTT_IsVolatile:
   3001     return T.isVolatileQualified();
   3002   case UTT_IsTrivial:
   3003     return T.isTrivialType(Self.Context);
   3004   case UTT_IsTriviallyCopyable:
   3005     return T.isTriviallyCopyableType(Self.Context);
   3006   case UTT_IsStandardLayout:
   3007     return T->isStandardLayoutType();
   3008   case UTT_IsPOD:
   3009     return T.isPODType(Self.Context);
   3010   case UTT_IsLiteral:
   3011     return T->isLiteralType();
   3012   case UTT_IsEmpty:
   3013     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3014       return !RD->isUnion() && RD->isEmpty();
   3015     return false;
   3016   case UTT_IsPolymorphic:
   3017     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3018       return RD->isPolymorphic();
   3019     return false;
   3020   case UTT_IsAbstract:
   3021     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3022       return RD->isAbstract();
   3023     return false;
   3024   case UTT_IsFinal:
   3025     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   3026       return RD->hasAttr<FinalAttr>();
   3027     return false;
   3028   case UTT_IsSigned:
   3029     return T->isSignedIntegerType();
   3030   case UTT_IsUnsigned:
   3031     return T->isUnsignedIntegerType();
   3032 
   3033     // Type trait expressions which query classes regarding their construction,
   3034     // destruction, and copying. Rather than being based directly on the
   3035     // related type predicates in the standard, they are specified by both
   3036     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
   3037     // specifications.
   3038     //
   3039     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
   3040     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3041   case UTT_HasTrivialDefaultConstructor:
   3042     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3043     //   If __is_pod (type) is true then the trait is true, else if type is
   3044     //   a cv class or union type (or array thereof) with a trivial default
   3045     //   constructor ([class.ctor]) then the trait is true, else it is false.
   3046     if (T.isPODType(Self.Context))
   3047       return true;
   3048     if (const RecordType *RT =
   3049           C.getBaseElementType(T)->getAs<RecordType>())
   3050       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
   3051     return false;
   3052   case UTT_HasTrivialCopy:
   3053     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3054     //   If __is_pod (type) is true or type is a reference type then
   3055     //   the trait is true, else if type is a cv class or union type
   3056     //   with a trivial copy constructor ([class.copy]) then the trait
   3057     //   is true, else it is false.
   3058     if (T.isPODType(Self.Context) || T->isReferenceType())
   3059       return true;
   3060     if (const RecordType *RT = T->getAs<RecordType>())
   3061       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
   3062     return false;
   3063   case UTT_HasTrivialAssign:
   3064     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3065     //   If type is const qualified or is a reference type then the
   3066     //   trait is false. Otherwise if __is_pod (type) is true then the
   3067     //   trait is true, else if type is a cv class or union type with
   3068     //   a trivial copy assignment ([class.copy]) then the trait is
   3069     //   true, else it is false.
   3070     // Note: the const and reference restrictions are interesting,
   3071     // given that const and reference members don't prevent a class
   3072     // from having a trivial copy assignment operator (but do cause
   3073     // errors if the copy assignment operator is actually used, q.v.
   3074     // [class.copy]p12).
   3075 
   3076     if (C.getBaseElementType(T).isConstQualified())
   3077       return false;
   3078     if (T.isPODType(Self.Context))
   3079       return true;
   3080     if (const RecordType *RT = T->getAs<RecordType>())
   3081       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
   3082     return false;
   3083   case UTT_HasTrivialDestructor:
   3084     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3085     //   If __is_pod (type) is true or type is a reference type
   3086     //   then the trait is true, else if type is a cv class or union
   3087     //   type (or array thereof) with a trivial destructor
   3088     //   ([class.dtor]) then the trait is true, else it is
   3089     //   false.
   3090     if (T.isPODType(Self.Context) || T->isReferenceType())
   3091       return true;
   3092 
   3093     // Objective-C++ ARC: autorelease types don't require destruction.
   3094     if (T->isObjCLifetimeType() &&
   3095         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
   3096       return true;
   3097 
   3098     if (const RecordType *RT =
   3099           C.getBaseElementType(T)->getAs<RecordType>())
   3100       return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
   3101     return false;
   3102   // TODO: Propagate nothrowness for implicitly declared special members.
   3103   case UTT_HasNothrowAssign:
   3104     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3105     //   If type is const qualified or is a reference type then the
   3106     //   trait is false. Otherwise if __has_trivial_assign (type)
   3107     //   is true then the trait is true, else if type is a cv class
   3108     //   or union type with copy assignment operators that are known
   3109     //   not to throw an exception then the trait is true, else it is
   3110     //   false.
   3111     if (C.getBaseElementType(T).isConstQualified())
   3112       return false;
   3113     if (T->isReferenceType())
   3114       return false;
   3115     if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
   3116       return true;
   3117     if (const RecordType *RT = T->getAs<RecordType>()) {
   3118       CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
   3119       if (RD->hasTrivialCopyAssignment())
   3120         return true;
   3121 
   3122       bool FoundAssign = false;
   3123       DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
   3124       LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
   3125                        Sema::LookupOrdinaryName);
   3126       if (Self.LookupQualifiedName(Res, RD)) {
   3127         Res.suppressDiagnostics();
   3128         for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
   3129              Op != OpEnd; ++Op) {
   3130           if (isa<FunctionTemplateDecl>(*Op))
   3131             continue;
   3132 
   3133           CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
   3134           if (Operator->isCopyAssignmentOperator()) {
   3135             FoundAssign = true;
   3136             const FunctionProtoType *CPT
   3137                 = Operator->getType()->getAs<FunctionProtoType>();
   3138             CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3139             if (!CPT)
   3140               return false;
   3141             if (CPT->getExceptionSpecType() == EST_Delayed)
   3142               return false;
   3143             if (!CPT->isNothrow(Self.Context))
   3144               return false;
   3145           }
   3146         }
   3147       }
   3148 
   3149       return FoundAssign;
   3150     }
   3151     return false;
   3152   case UTT_HasNothrowCopy:
   3153     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3154     //   If __has_trivial_copy (type) is true then the trait is true, else
   3155     //   if type is a cv class or union type with copy constructors that are
   3156     //   known not to throw an exception then the trait is true, else it is
   3157     //   false.
   3158     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
   3159       return true;
   3160     if (const RecordType *RT = T->getAs<RecordType>()) {
   3161       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3162       if (RD->hasTrivialCopyConstructor())
   3163         return true;
   3164 
   3165       bool FoundConstructor = false;
   3166       unsigned FoundTQs;
   3167       DeclContext::lookup_const_iterator Con, ConEnd;
   3168       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   3169            Con != ConEnd; ++Con) {
   3170         // A template constructor is never a copy constructor.
   3171         // FIXME: However, it may actually be selected at the actual overload
   3172         // resolution point.
   3173         if (isa<FunctionTemplateDecl>(*Con))
   3174           continue;
   3175         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3176         if (Constructor->isCopyConstructor(FoundTQs)) {
   3177           FoundConstructor = true;
   3178           const FunctionProtoType *CPT
   3179               = Constructor->getType()->getAs<FunctionProtoType>();
   3180           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3181           if (!CPT)
   3182             return false;
   3183           if (CPT->getExceptionSpecType() == EST_Delayed)
   3184             return false;
   3185           // FIXME: check whether evaluating default arguments can throw.
   3186           // For now, we'll be conservative and assume that they can throw.
   3187           if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
   3188             return false;
   3189         }
   3190       }
   3191 
   3192       return FoundConstructor;
   3193     }
   3194     return false;
   3195   case UTT_HasNothrowConstructor:
   3196     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3197     //   If __has_trivial_constructor (type) is true then the trait is
   3198     //   true, else if type is a cv class or union type (or array
   3199     //   thereof) with a default constructor that is known not to
   3200     //   throw an exception then the trait is true, else it is false.
   3201     if (T.isPODType(C) || T->isObjCLifetimeType())
   3202       return true;
   3203     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
   3204       CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   3205       if (RD->hasTrivialDefaultConstructor())
   3206         return true;
   3207 
   3208       DeclContext::lookup_const_iterator Con, ConEnd;
   3209       for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
   3210            Con != ConEnd; ++Con) {
   3211         // FIXME: In C++0x, a constructor template can be a default constructor.
   3212         if (isa<FunctionTemplateDecl>(*Con))
   3213           continue;
   3214         CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
   3215         if (Constructor->isDefaultConstructor()) {
   3216           const FunctionProtoType *CPT
   3217               = Constructor->getType()->getAs<FunctionProtoType>();
   3218           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
   3219           if (!CPT)
   3220             return false;
   3221           if (CPT->getExceptionSpecType() == EST_Delayed)
   3222             return false;
   3223           // TODO: check whether evaluating default arguments can throw.
   3224           // For now, we'll be conservative and assume that they can throw.
   3225           return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
   3226         }
   3227       }
   3228     }
   3229     return false;
   3230   case UTT_HasVirtualDestructor:
   3231     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
   3232     //   If type is a class type with a virtual destructor ([class.dtor])
   3233     //   then the trait is true, else it is false.
   3234     if (const RecordType *Record = T->getAs<RecordType>()) {
   3235       CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
   3236       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
   3237         return Destructor->isVirtual();
   3238     }
   3239     return false;
   3240 
   3241     // These type trait expressions are modeled on the specifications for the
   3242     // Embarcadero C++0x type trait functions:
   3243     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
   3244   case UTT_IsCompleteType:
   3245     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
   3246     //   Returns True if and only if T is a complete type at the point of the
   3247     //   function call.
   3248     return !T->isIncompleteType();
   3249   }
   3250   llvm_unreachable("Type trait not covered by switch");
   3251 }
   3252 
   3253 ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
   3254                                      SourceLocation KWLoc,
   3255                                      TypeSourceInfo *TSInfo,
   3256                                      SourceLocation RParen) {
   3257   QualType T = TSInfo->getType();
   3258   if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
   3259     return ExprError();
   3260 
   3261   bool Value = false;
   3262   if (!T->isDependentType())
   3263     Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
   3264 
   3265   return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
   3266                                                 RParen, Context.BoolTy));
   3267 }
   3268 
   3269 ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
   3270                                       SourceLocation KWLoc,
   3271                                       ParsedType LhsTy,
   3272                                       ParsedType RhsTy,
   3273                                       SourceLocation RParen) {
   3274   TypeSourceInfo *LhsTSInfo;
   3275   QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
   3276   if (!LhsTSInfo)
   3277     LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
   3278 
   3279   TypeSourceInfo *RhsTSInfo;
   3280   QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
   3281   if (!RhsTSInfo)
   3282     RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
   3283 
   3284   return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
   3285 }
   3286 
   3287 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
   3288                               ArrayRef<TypeSourceInfo *> Args,
   3289                               SourceLocation RParenLoc) {
   3290   switch (Kind) {
   3291   case clang::TT_IsTriviallyConstructible: {
   3292     // C++11 [meta.unary.prop]:
   3293     //   is_trivially_constructible is defined as:
   3294     //
   3295     //     is_constructible<T, Args...>::value is true and the variable
   3296     //     definition for is_constructible, as defined below, is known to call no
   3297     //     operation that is not trivial.
   3298     //
   3299     //   The predicate condition for a template specialization
   3300     //   is_constructible<T, Args...> shall be satisfied if and only if the
   3301     //   following variable definition would be well-formed for some invented
   3302     //   variable t:
   3303     //
   3304     //     T t(create<Args>()...);
   3305     if (Args.empty()) {
   3306       S.Diag(KWLoc, diag::err_type_trait_arity)
   3307         << 1 << 1 << 1 << (int)Args.size();
   3308       return false;
   3309     }
   3310 
   3311     bool SawVoid = false;
   3312     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3313       if (Args[I]->getType()->isVoidType()) {
   3314         SawVoid = true;
   3315         continue;
   3316       }
   3317 
   3318       if (!Args[I]->getType()->isIncompleteType() &&
   3319         S.RequireCompleteType(KWLoc, Args[I]->getType(),
   3320           diag::err_incomplete_type_used_in_type_trait_expr))
   3321         return false;
   3322     }
   3323 
   3324     // If any argument was 'void', of course it won't type-check.
   3325     if (SawVoid)
   3326       return false;
   3327 
   3328     llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
   3329     llvm::SmallVector<Expr *, 2> ArgExprs;
   3330     ArgExprs.reserve(Args.size() - 1);
   3331     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
   3332       QualType T = Args[I]->getType();
   3333       if (T->isObjectType() || T->isFunctionType())
   3334         T = S.Context.getRValueReferenceType(T);
   3335       OpaqueArgExprs.push_back(
   3336         OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
   3337                         T.getNonLValueExprType(S.Context),
   3338                         Expr::getValueKindForType(T)));
   3339       ArgExprs.push_back(&OpaqueArgExprs.back());
   3340     }
   3341 
   3342     // Perform the initialization in an unevaluated context within a SFINAE
   3343     // trap at translation unit scope.
   3344     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   3345     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
   3346     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
   3347     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
   3348     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
   3349                                                                  RParenLoc));
   3350     InitializationSequence Init(S, To, InitKind,
   3351                                 ArgExprs.begin(), ArgExprs.size());
   3352     if (Init.Failed())
   3353       return false;
   3354 
   3355     ExprResult Result = Init.Perform(S, To, InitKind,
   3356                                      MultiExprArg(ArgExprs.data(),
   3357                                                   ArgExprs.size()));
   3358     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3359       return false;
   3360 
   3361     // The initialization succeeded; not make sure there are no non-trivial
   3362     // calls.
   3363     return !Result.get()->hasNonTrivialCall(S.Context);
   3364   }
   3365   }
   3366 
   3367   return false;
   3368 }
   3369 
   3370 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3371                                 ArrayRef<TypeSourceInfo *> Args,
   3372                                 SourceLocation RParenLoc) {
   3373   bool Dependent = false;
   3374   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3375     if (Args[I]->getType()->isDependentType()) {
   3376       Dependent = true;
   3377       break;
   3378     }
   3379   }
   3380 
   3381   bool Value = false;
   3382   if (!Dependent)
   3383     Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
   3384 
   3385   return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
   3386                                Args, RParenLoc, Value);
   3387 }
   3388 
   3389 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
   3390                                 ArrayRef<ParsedType> Args,
   3391                                 SourceLocation RParenLoc) {
   3392   llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
   3393   ConvertedArgs.reserve(Args.size());
   3394 
   3395   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   3396     TypeSourceInfo *TInfo;
   3397     QualType T = GetTypeFromParser(Args[I], &TInfo);
   3398     if (!TInfo)
   3399       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
   3400 
   3401     ConvertedArgs.push_back(TInfo);
   3402   }
   3403 
   3404   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
   3405 }
   3406 
   3407 static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
   3408                                     QualType LhsT, QualType RhsT,
   3409                                     SourceLocation KeyLoc) {
   3410   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
   3411          "Cannot evaluate traits of dependent types");
   3412 
   3413   switch(BTT) {
   3414   case BTT_IsBaseOf: {
   3415     // C++0x [meta.rel]p2
   3416     // Base is a base class of Derived without regard to cv-qualifiers or
   3417     // Base and Derived are not unions and name the same class type without
   3418     // regard to cv-qualifiers.
   3419 
   3420     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
   3421     if (!lhsRecord) return false;
   3422 
   3423     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
   3424     if (!rhsRecord) return false;
   3425 
   3426     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
   3427              == (lhsRecord == rhsRecord));
   3428 
   3429     if (lhsRecord == rhsRecord)
   3430       return !lhsRecord->getDecl()->isUnion();
   3431 
   3432     // C++0x [meta.rel]p2:
   3433     //   If Base and Derived are class types and are different types
   3434     //   (ignoring possible cv-qualifiers) then Derived shall be a
   3435     //   complete type.
   3436     if (Self.RequireCompleteType(KeyLoc, RhsT,
   3437                           diag::err_incomplete_type_used_in_type_trait_expr))
   3438       return false;
   3439 
   3440     return cast<CXXRecordDecl>(rhsRecord->getDecl())
   3441       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
   3442   }
   3443   case BTT_IsSame:
   3444     return Self.Context.hasSameType(LhsT, RhsT);
   3445   case BTT_TypeCompatible:
   3446     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
   3447                                            RhsT.getUnqualifiedType());
   3448   case BTT_IsConvertible:
   3449   case BTT_IsConvertibleTo: {
   3450     // C++0x [meta.rel]p4:
   3451     //   Given the following function prototype:
   3452     //
   3453     //     template <class T>
   3454     //       typename add_rvalue_reference<T>::type create();
   3455     //
   3456     //   the predicate condition for a template specialization
   3457     //   is_convertible<From, To> shall be satisfied if and only if
   3458     //   the return expression in the following code would be
   3459     //   well-formed, including any implicit conversions to the return
   3460     //   type of the function:
   3461     //
   3462     //     To test() {
   3463     //       return create<From>();
   3464     //     }
   3465     //
   3466     //   Access checking is performed as if in a context unrelated to To and
   3467     //   From. Only the validity of the immediate context of the expression
   3468     //   of the return-statement (including conversions to the return type)
   3469     //   is considered.
   3470     //
   3471     // We model the initialization as a copy-initialization of a temporary
   3472     // of the appropriate type, which for this expression is identical to the
   3473     // return statement (since NRVO doesn't apply).
   3474     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3475       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3476 
   3477     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
   3478     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3479                          Expr::getValueKindForType(LhsT));
   3480     Expr *FromPtr = &From;
   3481     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
   3482                                                            SourceLocation()));
   3483 
   3484     // Perform the initialization in an unevaluated context within a SFINAE
   3485     // trap at translation unit scope.
   3486     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3487     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3488     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3489     InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
   3490     if (Init.Failed())
   3491       return false;
   3492 
   3493     ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
   3494     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
   3495   }
   3496 
   3497   case BTT_IsTriviallyAssignable: {
   3498     // C++11 [meta.unary.prop]p3:
   3499     //   is_trivially_assignable is defined as:
   3500     //     is_assignable<T, U>::value is true and the assignment, as defined by
   3501     //     is_assignable, is known to call no operation that is not trivial
   3502     //
   3503     //   is_assignable is defined as:
   3504     //     The expression declval<T>() = declval<U>() is well-formed when
   3505     //     treated as an unevaluated operand (Clause 5).
   3506     //
   3507     //   For both, T and U shall be complete types, (possibly cv-qualified)
   3508     //   void, or arrays of unknown bound.
   3509     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
   3510         Self.RequireCompleteType(KeyLoc, LhsT,
   3511           diag::err_incomplete_type_used_in_type_trait_expr))
   3512       return false;
   3513     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
   3514         Self.RequireCompleteType(KeyLoc, RhsT,
   3515           diag::err_incomplete_type_used_in_type_trait_expr))
   3516       return false;
   3517 
   3518     // cv void is never assignable.
   3519     if (LhsT->isVoidType() || RhsT->isVoidType())
   3520       return false;
   3521 
   3522     // Build expressions that emulate the effect of declval<T>() and
   3523     // declval<U>().
   3524     if (LhsT->isObjectType() || LhsT->isFunctionType())
   3525       LhsT = Self.Context.getRValueReferenceType(LhsT);
   3526     if (RhsT->isObjectType() || RhsT->isFunctionType())
   3527       RhsT = Self.Context.getRValueReferenceType(RhsT);
   3528     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
   3529                         Expr::getValueKindForType(LhsT));
   3530     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
   3531                         Expr::getValueKindForType(RhsT));
   3532 
   3533     // Attempt the assignment in an unevaluated context within a SFINAE
   3534     // trap at translation unit scope.
   3535     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
   3536     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
   3537     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
   3538     ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
   3539     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
   3540       return false;
   3541 
   3542     return !Result.get()->hasNonTrivialCall(Self.Context);
   3543   }
   3544   }
   3545   llvm_unreachable("Unknown type trait or not implemented");
   3546 }
   3547 
   3548 ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
   3549                                       SourceLocation KWLoc,
   3550                                       TypeSourceInfo *LhsTSInfo,
   3551                                       TypeSourceInfo *RhsTSInfo,
   3552                                       SourceLocation RParen) {
   3553   QualType LhsT = LhsTSInfo->getType();
   3554   QualType RhsT = RhsTSInfo->getType();
   3555 
   3556   if (BTT == BTT_TypeCompatible) {
   3557     if (getLangOpts().CPlusPlus) {
   3558       Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
   3559         << SourceRange(KWLoc, RParen);
   3560       return ExprError();
   3561     }
   3562   }
   3563 
   3564   bool Value = false;
   3565   if (!LhsT->isDependentType() && !RhsT->isDependentType())
   3566     Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
   3567 
   3568   // Select trait result type.
   3569   QualType ResultType;
   3570   switch (BTT) {
   3571   case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
   3572   case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
   3573   case BTT_IsSame:         ResultType = Context.BoolTy; break;
   3574   case BTT_TypeCompatible: ResultType = Context.IntTy; break;
   3575   case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
   3576   case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
   3577   }
   3578 
   3579   return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
   3580                                                  RhsTSInfo, Value, RParen,
   3581                                                  ResultType));
   3582 }
   3583 
   3584 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
   3585                                      SourceLocation KWLoc,
   3586                                      ParsedType Ty,
   3587                                      Expr* DimExpr,
   3588                                      SourceLocation RParen) {
   3589   TypeSourceInfo *TSInfo;
   3590   QualType T = GetTypeFromParser(Ty, &TSInfo);
   3591   if (!TSInfo)
   3592     TSInfo = Context.getTrivialTypeSourceInfo(T);
   3593 
   3594   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
   3595 }
   3596 
   3597 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
   3598                                            QualType T, Expr *DimExpr,
   3599                                            SourceLocation KeyLoc) {
   3600   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
   3601 
   3602   switch(ATT) {
   3603   case ATT_ArrayRank:
   3604     if (T->isArrayType()) {
   3605       unsigned Dim = 0;
   3606       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3607         ++Dim;
   3608         T = AT->getElementType();
   3609       }
   3610       return Dim;
   3611     }
   3612     return 0;
   3613 
   3614   case ATT_ArrayExtent: {
   3615     llvm::APSInt Value;
   3616     uint64_t Dim;
   3617     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
   3618           Self.PDiag(diag::err_dimension_expr_not_constant_integer),
   3619           false).isInvalid())
   3620       return 0;
   3621     if (Value.isSigned() && Value.isNegative()) {
   3622       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
   3623         << DimExpr->getSourceRange();
   3624       return 0;
   3625     }
   3626     Dim = Value.getLimitedValue();
   3627 
   3628     if (T->isArrayType()) {
   3629       unsigned D = 0;
   3630       bool Matched = false;
   3631       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
   3632         if (Dim == D) {
   3633           Matched = true;
   3634           break;
   3635         }
   3636         ++D;
   3637         T = AT->getElementType();
   3638       }
   3639 
   3640       if (Matched && T->isArrayType()) {
   3641         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
   3642           return CAT->getSize().getLimitedValue();
   3643       }
   3644     }
   3645     return 0;
   3646   }
   3647   }
   3648   llvm_unreachable("Unknown type trait or not implemented");
   3649 }
   3650 
   3651 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
   3652                                      SourceLocation KWLoc,
   3653                                      TypeSourceInfo *TSInfo,
   3654                                      Expr* DimExpr,
   3655                                      SourceLocation RParen) {
   3656   QualType T = TSInfo->getType();
   3657 
   3658   // FIXME: This should likely be tracked as an APInt to remove any host
   3659   // assumptions about the width of size_t on the target.
   3660   uint64_t Value = 0;
   3661   if (!T->isDependentType())
   3662     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
   3663 
   3664   // While the specification for these traits from the Embarcadero C++
   3665   // compiler's documentation says the return type is 'unsigned int', Clang
   3666   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
   3667   // compiler, there is no difference. On several other platforms this is an
   3668   // important distinction.
   3669   return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
   3670                                                 DimExpr, RParen,
   3671                                                 Context.getSizeType()));
   3672 }
   3673 
   3674 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
   3675                                       SourceLocation KWLoc,
   3676                                       Expr *Queried,
   3677                                       SourceLocation RParen) {
   3678   // If error parsing the expression, ignore.
   3679   if (!Queried)
   3680     return ExprError();
   3681 
   3682   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
   3683 
   3684   return move(Result);
   3685 }
   3686 
   3687 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
   3688   switch (ET) {
   3689   case ET_IsLValueExpr: return E->isLValue();
   3690   case ET_IsRValueExpr: return E->isRValue();
   3691   }
   3692   llvm_unreachable("Expression trait not covered by switch");
   3693 }
   3694 
   3695 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
   3696                                       SourceLocation KWLoc,
   3697                                       Expr *Queried,
   3698                                       SourceLocation RParen) {
   3699   if (Queried->isTypeDependent()) {
   3700     // Delay type-checking for type-dependent expressions.
   3701   } else if (Queried->getType()->isPlaceholderType()) {
   3702     ExprResult PE = CheckPlaceholderExpr(Queried);
   3703     if (PE.isInvalid()) return ExprError();
   3704     return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
   3705   }
   3706 
   3707   bool Value = EvaluateExpressionTrait(ET, Queried);
   3708 
   3709   return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
   3710                                                  RParen, Context.BoolTy));
   3711 }
   3712 
   3713 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
   3714                                             ExprValueKind &VK,
   3715                                             SourceLocation Loc,
   3716                                             bool isIndirect) {
   3717   assert(!LHS.get()->getType()->isPlaceholderType() &&
   3718          !RHS.get()->getType()->isPlaceholderType() &&
   3719          "placeholders should have been weeded out by now");
   3720 
   3721   // The LHS undergoes lvalue conversions if this is ->*.
   3722   if (isIndirect) {
   3723     LHS = DefaultLvalueConversion(LHS.take());
   3724     if (LHS.isInvalid()) return QualType();
   3725   }
   3726 
   3727   // The RHS always undergoes lvalue conversions.
   3728   RHS = DefaultLvalueConversion(RHS.take());
   3729   if (RHS.isInvalid()) return QualType();
   3730 
   3731   const char *OpSpelling = isIndirect ? "->*" : ".*";
   3732   // C++ 5.5p2
   3733   //   The binary operator .* [p3: ->*] binds its second operand, which shall
   3734   //   be of type "pointer to member of T" (where T is a completely-defined
   3735   //   class type) [...]
   3736   QualType RHSType = RHS.get()->getType();
   3737   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
   3738   if (!MemPtr) {
   3739     Diag(Loc, diag::err_bad_memptr_rhs)
   3740       << OpSpelling << RHSType << RHS.get()->getSourceRange();
   3741     return QualType();
   3742   }
   3743 
   3744   QualType Class(MemPtr->getClass(), 0);
   3745 
   3746   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
   3747   // member pointer points must be completely-defined. However, there is no
   3748   // reason for this semantic distinction, and the rule is not enforced by
   3749   // other compilers. Therefore, we do not check this property, as it is
   3750   // likely to be considered a defect.
   3751 
   3752   // C++ 5.5p2
   3753   //   [...] to its first operand, which shall be of class T or of a class of
   3754   //   which T is an unambiguous and accessible base class. [p3: a pointer to
   3755   //   such a class]
   3756   QualType LHSType = LHS.get()->getType();
   3757   if (isIndirect) {
   3758     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
   3759       LHSType = Ptr->getPointeeType();
   3760     else {
   3761       Diag(Loc, diag::err_bad_memptr_lhs)
   3762         << OpSpelling << 1 << LHSType
   3763         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
   3764       return QualType();
   3765     }
   3766   }
   3767 
   3768   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
   3769     // If we want to check the hierarchy, we need a complete type.
   3770     if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
   3771         << OpSpelling << (int)isIndirect)) {
   3772       return QualType();
   3773     }
   3774     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   3775                        /*DetectVirtual=*/false);
   3776     // FIXME: Would it be useful to print full ambiguity paths, or is that
   3777     // overkill?
   3778     if (!IsDerivedFrom(LHSType, Class, Paths) ||
   3779         Paths.isAmbiguous(Context.getCanonicalType(Class))) {
   3780       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
   3781         << (int)isIndirect << LHS.get()->getType();
   3782       return QualType();
   3783     }
   3784     // Cast LHS to type of use.
   3785     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
   3786     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
   3787 
   3788     CXXCastPath BasePath;
   3789     BuildBasePathArray(Paths, BasePath);
   3790     LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
   3791                             &BasePath);
   3792   }
   3793 
   3794   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
   3795     // Diagnose use of pointer-to-member type which when used as
   3796     // the functional cast in a pointer-to-member expression.
   3797     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
   3798      return QualType();
   3799   }
   3800 
   3801   // C++ 5.5p2
   3802   //   The result is an object or a function of the type specified by the
   3803   //   second operand.
   3804   // The cv qualifiers are the union of those in the pointer and the left side,
   3805   // in accordance with 5.5p5 and 5.2.5.
   3806   QualType Result = MemPtr->getPointeeType();
   3807   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
   3808 
   3809   // C++0x [expr.mptr.oper]p6:
   3810   //   In a .* expression whose object expression is an rvalue, the program is
   3811   //   ill-formed if the second operand is a pointer to member function with
   3812   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
   3813   //   expression is an lvalue, the program is ill-formed if the second operand
   3814   //   is a pointer to member function with ref-qualifier &&.
   3815   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
   3816     switch (Proto->getRefQualifier()) {
   3817     case RQ_None:
   3818       // Do nothing
   3819       break;
   3820 
   3821     case RQ_LValue:
   3822       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
   3823         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3824           << RHSType << 1 << LHS.get()->getSourceRange();
   3825       break;
   3826 
   3827     case RQ_RValue:
   3828       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
   3829         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
   3830           << RHSType << 0 << LHS.get()->getSourceRange();
   3831       break;
   3832     }
   3833   }
   3834 
   3835   // C++ [expr.mptr.oper]p6:
   3836   //   The result of a .* expression whose second operand is a pointer
   3837   //   to a data member is of the same value category as its
   3838   //   first operand. The result of a .* expression whose second
   3839   //   operand is a pointer to a member function is a prvalue. The
   3840   //   result of an ->* expression is an lvalue if its second operand
   3841   //   is a pointer to data member and a prvalue otherwise.
   3842   if (Result->isFunctionType()) {
   3843     VK = VK_RValue;
   3844     return Context.BoundMemberTy;
   3845   } else if (isIndirect) {
   3846     VK = VK_LValue;
   3847   } else {
   3848     VK = LHS.get()->getValueKind();
   3849   }
   3850 
   3851   return Result;
   3852 }
   3853 
   3854 /// \brief Try to convert a type to another according to C++0x 5.16p3.
   3855 ///
   3856 /// This is part of the parameter validation for the ? operator. If either
   3857 /// value operand is a class type, the two operands are attempted to be
   3858 /// converted to each other. This function does the conversion in one direction.
   3859 /// It returns true if the program is ill-formed and has already been diagnosed
   3860 /// as such.
   3861 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
   3862                                 SourceLocation QuestionLoc,
   3863                                 bool &HaveConversion,
   3864                                 QualType &ToType) {
   3865   HaveConversion = false;
   3866   ToType = To->getType();
   3867 
   3868   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
   3869                                                            SourceLocation());
   3870   // C++0x 5.16p3
   3871   //   The process for determining whether an operand expression E1 of type T1
   3872   //   can be converted to match an operand expression E2 of type T2 is defined
   3873   //   as follows:
   3874   //   -- If E2 is an lvalue:
   3875   bool ToIsLvalue = To->isLValue();
   3876   if (ToIsLvalue) {
   3877     //   E1 can be converted to match E2 if E1 can be implicitly converted to
   3878     //   type "lvalue reference to T2", subject to the constraint that in the
   3879     //   conversion the reference must bind directly to E1.
   3880     QualType T = Self.Context.getLValueReferenceType(ToType);
   3881     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   3882 
   3883     InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3884     if (InitSeq.isDirectReferenceBinding()) {
   3885       ToType = T;
   3886       HaveConversion = true;
   3887       return false;
   3888     }
   3889 
   3890     if (InitSeq.isAmbiguous())
   3891       return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3892   }
   3893 
   3894   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
   3895   //      -- if E1 and E2 have class type, and the underlying class types are
   3896   //         the same or one is a base class of the other:
   3897   QualType FTy = From->getType();
   3898   QualType TTy = To->getType();
   3899   const RecordType *FRec = FTy->getAs<RecordType>();
   3900   const RecordType *TRec = TTy->getAs<RecordType>();
   3901   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
   3902                        Self.IsDerivedFrom(FTy, TTy);
   3903   if (FRec && TRec &&
   3904       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
   3905     //         E1 can be converted to match E2 if the class of T2 is the
   3906     //         same type as, or a base class of, the class of T1, and
   3907     //         [cv2 > cv1].
   3908     if (FRec == TRec || FDerivedFromT) {
   3909       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
   3910         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3911         InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3912         if (InitSeq) {
   3913           HaveConversion = true;
   3914           return false;
   3915         }
   3916 
   3917         if (InitSeq.isAmbiguous())
   3918           return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3919       }
   3920     }
   3921 
   3922     return false;
   3923   }
   3924 
   3925   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
   3926   //        implicitly converted to the type that expression E2 would have
   3927   //        if E2 were converted to an rvalue (or the type it has, if E2 is
   3928   //        an rvalue).
   3929   //
   3930   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
   3931   // to the array-to-pointer or function-to-pointer conversions.
   3932   if (!TTy->getAs<TagType>())
   3933     TTy = TTy.getUnqualifiedType();
   3934 
   3935   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
   3936   InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
   3937   HaveConversion = !InitSeq.Failed();
   3938   ToType = TTy;
   3939   if (InitSeq.isAmbiguous())
   3940     return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
   3941 
   3942   return false;
   3943 }
   3944 
   3945 /// \brief Try to find a common type for two according to C++0x 5.16p5.
   3946 ///
   3947 /// This is part of the parameter validation for the ? operator. If either
   3948 /// value operand is a class type, overload resolution is used to find a
   3949 /// conversion to a common type.
   3950 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
   3951                                     SourceLocation QuestionLoc) {
   3952   Expr *Args[2] = { LHS.get(), RHS.get() };
   3953   OverloadCandidateSet CandidateSet(QuestionLoc);
   3954   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
   3955                                     CandidateSet);
   3956 
   3957   OverloadCandidateSet::iterator Best;
   3958   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
   3959     case OR_Success: {
   3960       // We found a match. Perform the conversions on the arguments and move on.
   3961       ExprResult LHSRes =
   3962         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
   3963                                        Best->Conversions[0], Sema::AA_Converting);
   3964       if (LHSRes.isInvalid())
   3965         break;
   3966       LHS = move(LHSRes);
   3967 
   3968       ExprResult RHSRes =
   3969         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
   3970                                        Best->Conversions[1], Sema::AA_Converting);
   3971       if (RHSRes.isInvalid())
   3972         break;
   3973       RHS = move(RHSRes);
   3974       if (Best->Function)
   3975         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
   3976       return false;
   3977     }
   3978 
   3979     case OR_No_Viable_Function:
   3980 
   3981       // Emit a better diagnostic if one of the expressions is a null pointer
   3982       // constant and the other is a pointer type. In this case, the user most
   3983       // likely forgot to take the address of the other expression.
   3984       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   3985         return true;
   3986 
   3987       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   3988         << LHS.get()->getType() << RHS.get()->getType()
   3989         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3990       return true;
   3991 
   3992     case OR_Ambiguous:
   3993       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
   3994         << LHS.get()->getType() << RHS.get()->getType()
   3995         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   3996       // FIXME: Print the possible common types by printing the return types of
   3997       // the viable candidates.
   3998       break;
   3999 
   4000     case OR_Deleted:
   4001       llvm_unreachable("Conditional operator has only built-in overloads");
   4002   }
   4003   return true;
   4004 }
   4005 
   4006 /// \brief Perform an "extended" implicit conversion as returned by
   4007 /// TryClassUnification.
   4008 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
   4009   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
   4010   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
   4011                                                            SourceLocation());
   4012   Expr *Arg = E.take();
   4013   InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
   4014   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
   4015   if (Result.isInvalid())
   4016     return true;
   4017 
   4018   E = Result;
   4019   return false;
   4020 }
   4021 
   4022 /// \brief Check the operands of ?: under C++ semantics.
   4023 ///
   4024 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
   4025 /// extension. In this case, LHS == Cond. (But they're not aliases.)
   4026 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
   4027                                            ExprValueKind &VK, ExprObjectKind &OK,
   4028                                            SourceLocation QuestionLoc) {
   4029   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
   4030   // interface pointers.
   4031 
   4032   // C++0x 5.16p1
   4033   //   The first expression is contextually converted to bool.
   4034   if (!Cond.get()->isTypeDependent()) {
   4035     ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
   4036     if (CondRes.isInvalid())
   4037       return QualType();
   4038     Cond = move(CondRes);
   4039   }
   4040 
   4041   // Assume r-value.
   4042   VK = VK_RValue;
   4043   OK = OK_Ordinary;
   4044 
   4045   // Either of the arguments dependent?
   4046   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
   4047     return Context.DependentTy;
   4048 
   4049   // C++0x 5.16p2
   4050   //   If either the second or the third operand has type (cv) void, ...
   4051   QualType LTy = LHS.get()->getType();
   4052   QualType RTy = RHS.get()->getType();
   4053   bool LVoid = LTy->isVoidType();
   4054   bool RVoid = RTy->isVoidType();
   4055   if (LVoid || RVoid) {
   4056     //   ... then the [l2r] conversions are performed on the second and third
   4057     //   operands ...
   4058     LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4059     RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4060     if (LHS.isInvalid() || RHS.isInvalid())
   4061       return QualType();
   4062     LTy = LHS.get()->getType();
   4063     RTy = RHS.get()->getType();
   4064 
   4065     //   ... and one of the following shall hold:
   4066     //   -- The second or the third operand (but not both) is a throw-
   4067     //      expression; the result is of the type of the other and is an rvalue.
   4068     bool LThrow = isa<CXXThrowExpr>(LHS.get());
   4069     bool RThrow = isa<CXXThrowExpr>(RHS.get());
   4070     if (LThrow && !RThrow)
   4071       return RTy;
   4072     if (RThrow && !LThrow)
   4073       return LTy;
   4074 
   4075     //   -- Both the second and third operands have type void; the result is of
   4076     //      type void and is an rvalue.
   4077     if (LVoid && RVoid)
   4078       return Context.VoidTy;
   4079 
   4080     // Neither holds, error.
   4081     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
   4082       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
   4083       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4084     return QualType();
   4085   }
   4086 
   4087   // Neither is void.
   4088 
   4089   // C++0x 5.16p3
   4090   //   Otherwise, if the second and third operand have different types, and
   4091   //   either has (cv) class type, and attempt is made to convert each of those
   4092   //   operands to the other.
   4093   if (!Context.hasSameType(LTy, RTy) &&
   4094       (LTy->isRecordType() || RTy->isRecordType())) {
   4095     ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
   4096     // These return true if a single direction is already ambiguous.
   4097     QualType L2RType, R2LType;
   4098     bool HaveL2R, HaveR2L;
   4099     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
   4100       return QualType();
   4101     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
   4102       return QualType();
   4103 
   4104     //   If both can be converted, [...] the program is ill-formed.
   4105     if (HaveL2R && HaveR2L) {
   4106       Diag(QuestionLoc, diag::err_conditional_ambiguous)
   4107         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4108       return QualType();
   4109     }
   4110 
   4111     //   If exactly one conversion is possible, that conversion is applied to
   4112     //   the chosen operand and the converted operands are used in place of the
   4113     //   original operands for the remainder of this section.
   4114     if (HaveL2R) {
   4115       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
   4116         return QualType();
   4117       LTy = LHS.get()->getType();
   4118     } else if (HaveR2L) {
   4119       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
   4120         return QualType();
   4121       RTy = RHS.get()->getType();
   4122     }
   4123   }
   4124 
   4125   // C++0x 5.16p4
   4126   //   If the second and third operands are glvalues of the same value
   4127   //   category and have the same type, the result is of that type and
   4128   //   value category and it is a bit-field if the second or the third
   4129   //   operand is a bit-field, or if both are bit-fields.
   4130   // We only extend this to bitfields, not to the crazy other kinds of
   4131   // l-values.
   4132   bool Same = Context.hasSameType(LTy, RTy);
   4133   if (Same &&
   4134       LHS.get()->isGLValue() &&
   4135       LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
   4136       LHS.get()->isOrdinaryOrBitFieldObject() &&
   4137       RHS.get()->isOrdinaryOrBitFieldObject()) {
   4138     VK = LHS.get()->getValueKind();
   4139     if (LHS.get()->getObjectKind() == OK_BitField ||
   4140         RHS.get()->getObjectKind() == OK_BitField)
   4141       OK = OK_BitField;
   4142     return LTy;
   4143   }
   4144 
   4145   // C++0x 5.16p5
   4146   //   Otherwise, the result is an rvalue. If the second and third operands
   4147   //   do not have the same type, and either has (cv) class type, ...
   4148   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
   4149     //   ... overload resolution is used to determine the conversions (if any)
   4150     //   to be applied to the operands. If the overload resolution fails, the
   4151     //   program is ill-formed.
   4152     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
   4153       return QualType();
   4154   }
   4155 
   4156   // C++0x 5.16p6
   4157   //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
   4158   //   conversions are performed on the second and third operands.
   4159   LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
   4160   RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
   4161   if (LHS.isInvalid() || RHS.isInvalid())
   4162     return QualType();
   4163   LTy = LHS.get()->getType();
   4164   RTy = RHS.get()->getType();
   4165 
   4166   //   After those conversions, one of the following shall hold:
   4167   //   -- The second and third operands have the same type; the result
   4168   //      is of that type. If the operands have class type, the result
   4169   //      is a prvalue temporary of the result type, which is
   4170   //      copy-initialized from either the second operand or the third
   4171   //      operand depending on the value of the first operand.
   4172   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
   4173     if (LTy->isRecordType()) {
   4174       // The operands have class type. Make a temporary copy.
   4175       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
   4176       ExprResult LHSCopy = PerformCopyInitialization(Entity,
   4177                                                      SourceLocation(),
   4178                                                      LHS);
   4179       if (LHSCopy.isInvalid())
   4180         return QualType();
   4181 
   4182       ExprResult RHSCopy = PerformCopyInitialization(Entity,
   4183                                                      SourceLocation(),
   4184                                                      RHS);
   4185       if (RHSCopy.isInvalid())
   4186         return QualType();
   4187 
   4188       LHS = LHSCopy;
   4189       RHS = RHSCopy;
   4190     }
   4191 
   4192     return LTy;
   4193   }
   4194 
   4195   // Extension: conditional operator involving vector types.
   4196   if (LTy->isVectorType() || RTy->isVectorType())
   4197     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   4198 
   4199   //   -- The second and third operands have arithmetic or enumeration type;
   4200   //      the usual arithmetic conversions are performed to bring them to a
   4201   //      common type, and the result is of that type.
   4202   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
   4203     UsualArithmeticConversions(LHS, RHS);
   4204     if (LHS.isInvalid() || RHS.isInvalid())
   4205       return QualType();
   4206     return LHS.get()->getType();
   4207   }
   4208 
   4209   //   -- The second and third operands have pointer type, or one has pointer
   4210   //      type and the other is a null pointer constant; pointer conversions
   4211   //      and qualification conversions are performed to bring them to their
   4212   //      composite pointer type. The result is of the composite pointer type.
   4213   //   -- The second and third operands have pointer to member type, or one has
   4214   //      pointer to member type and the other is a null pointer constant;
   4215   //      pointer to member conversions and qualification conversions are
   4216   //      performed to bring them to a common type, whose cv-qualification
   4217   //      shall match the cv-qualification of either the second or the third
   4218   //      operand. The result is of the common type.
   4219   bool NonStandardCompositeType = false;
   4220   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
   4221                               isSFINAEContext()? 0 : &NonStandardCompositeType);
   4222   if (!Composite.isNull()) {
   4223     if (NonStandardCompositeType)
   4224       Diag(QuestionLoc,
   4225            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
   4226         << LTy << RTy << Composite
   4227         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4228 
   4229     return Composite;
   4230   }
   4231 
   4232   // Similarly, attempt to find composite type of two objective-c pointers.
   4233   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
   4234   if (!Composite.isNull())
   4235     return Composite;
   4236 
   4237   // Check if we are using a null with a non-pointer type.
   4238   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   4239     return QualType();
   4240 
   4241   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   4242     << LHS.get()->getType() << RHS.get()->getType()
   4243     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   4244   return QualType();
   4245 }
   4246 
   4247 /// \brief Find a merged pointer type and convert the two expressions to it.
   4248 ///
   4249 /// This finds the composite pointer type (or member pointer type) for @p E1
   4250 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
   4251 /// type and returns it.
   4252 /// It does not emit diagnostics.
   4253 ///
   4254 /// \param Loc The location of the operator requiring these two expressions to
   4255 /// be converted to the composite pointer type.
   4256 ///
   4257 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
   4258 /// a non-standard (but still sane) composite type to which both expressions
   4259 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
   4260 /// will be set true.
   4261 QualType Sema::FindCompositePointerType(SourceLocation Loc,
   4262                                         Expr *&E1, Expr *&E2,
   4263                                         bool *NonStandardCompositeType) {
   4264   if (NonStandardCompositeType)
   4265     *NonStandardCompositeType = false;
   4266 
   4267   assert(getLangOpts().CPlusPlus && "This function assumes C++");
   4268   QualType T1 = E1->getType(), T2 = E2->getType();
   4269 
   4270   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
   4271       !T2->isAnyPointerType() && !T2->isMemberPointerType())
   4272    return QualType();
   4273 
   4274   // C++0x 5.9p2
   4275   //   Pointer conversions and qualification conversions are performed on
   4276   //   pointer operands to bring them to their composite pointer type. If
   4277   //   one operand is a null pointer constant, the composite pointer type is
   4278   //   the type of the other operand.
   4279   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4280     if (T2->isMemberPointerType())
   4281       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
   4282     else
   4283       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
   4284     return T2;
   4285   }
   4286   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
   4287     if (T1->isMemberPointerType())
   4288       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
   4289     else
   4290       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
   4291     return T1;
   4292   }
   4293 
   4294   // Now both have to be pointers or member pointers.
   4295   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
   4296       (!T2->isPointerType() && !T2->isMemberPointerType()))
   4297     return QualType();
   4298 
   4299   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
   4300   //   the other has type "pointer to cv2 T" and the composite pointer type is
   4301   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
   4302   //   Otherwise, the composite pointer type is a pointer type similar to the
   4303   //   type of one of the operands, with a cv-qualification signature that is
   4304   //   the union of the cv-qualification signatures of the operand types.
   4305   // In practice, the first part here is redundant; it's subsumed by the second.
   4306   // What we do here is, we build the two possible composite types, and try the
   4307   // conversions in both directions. If only one works, or if the two composite
   4308   // types are the same, we have succeeded.
   4309   // FIXME: extended qualifiers?
   4310   typedef SmallVector<unsigned, 4> QualifierVector;
   4311   QualifierVector QualifierUnion;
   4312   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
   4313       ContainingClassVector;
   4314   ContainingClassVector MemberOfClass;
   4315   QualType Composite1 = Context.getCanonicalType(T1),
   4316            Composite2 = Context.getCanonicalType(T2);
   4317   unsigned NeedConstBefore = 0;
   4318   do {
   4319     const PointerType *Ptr1, *Ptr2;
   4320     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
   4321         (Ptr2 = Composite2->getAs<PointerType>())) {
   4322       Composite1 = Ptr1->getPointeeType();
   4323       Composite2 = Ptr2->getPointeeType();
   4324 
   4325       // If we're allowed to create a non-standard composite type, keep track
   4326       // of where we need to fill in additional 'const' qualifiers.
   4327       if (NonStandardCompositeType &&
   4328           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4329         NeedConstBefore = QualifierUnion.size();
   4330 
   4331       QualifierUnion.push_back(
   4332                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4333       MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
   4334       continue;
   4335     }
   4336 
   4337     const MemberPointerType *MemPtr1, *MemPtr2;
   4338     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
   4339         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
   4340       Composite1 = MemPtr1->getPointeeType();
   4341       Composite2 = MemPtr2->getPointeeType();
   4342 
   4343       // If we're allowed to create a non-standard composite type, keep track
   4344       // of where we need to fill in additional 'const' qualifiers.
   4345       if (NonStandardCompositeType &&
   4346           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
   4347         NeedConstBefore = QualifierUnion.size();
   4348 
   4349       QualifierUnion.push_back(
   4350                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
   4351       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
   4352                                              MemPtr2->getClass()));
   4353       continue;
   4354     }
   4355 
   4356     // FIXME: block pointer types?
   4357 
   4358     // Cannot unwrap any more types.
   4359     break;
   4360   } while (true);
   4361 
   4362   if (NeedConstBefore && NonStandardCompositeType) {
   4363     // Extension: Add 'const' to qualifiers that come before the first qualifier
   4364     // mismatch, so that our (non-standard!) composite type meets the
   4365     // requirements of C++ [conv.qual]p4 bullet 3.
   4366     for (unsigned I = 0; I != NeedConstBefore; ++I) {
   4367       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
   4368         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
   4369         *NonStandardCompositeType = true;
   4370       }
   4371     }
   4372   }
   4373 
   4374   // Rewrap the composites as pointers or member pointers with the union CVRs.
   4375   ContainingClassVector::reverse_iterator MOC
   4376     = MemberOfClass.rbegin();
   4377   for (QualifierVector::reverse_iterator
   4378          I = QualifierUnion.rbegin(),
   4379          E = QualifierUnion.rend();
   4380        I != E; (void)++I, ++MOC) {
   4381     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
   4382     if (MOC->first && MOC->second) {
   4383       // Rebuild member pointer type
   4384       Composite1 = Context.getMemberPointerType(
   4385                                     Context.getQualifiedType(Composite1, Quals),
   4386                                     MOC->first);
   4387       Composite2 = Context.getMemberPointerType(
   4388                                     Context.getQualifiedType(Composite2, Quals),
   4389                                     MOC->second);
   4390     } else {
   4391       // Rebuild pointer type
   4392       Composite1
   4393         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
   4394       Composite2
   4395         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
   4396     }
   4397   }
   4398 
   4399   // Try to convert to the first composite pointer type.
   4400   InitializedEntity Entity1
   4401     = InitializedEntity::InitializeTemporary(Composite1);
   4402   InitializationKind Kind
   4403     = InitializationKind::CreateCopy(Loc, SourceLocation());
   4404   InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
   4405   InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
   4406 
   4407   if (E1ToC1 && E2ToC1) {
   4408     // Conversion to Composite1 is viable.
   4409     if (!Context.hasSameType(Composite1, Composite2)) {
   4410       // Composite2 is a different type from Composite1. Check whether
   4411       // Composite2 is also viable.
   4412       InitializedEntity Entity2
   4413         = InitializedEntity::InitializeTemporary(Composite2);
   4414       InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4415       InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4416       if (E1ToC2 && E2ToC2) {
   4417         // Both Composite1 and Composite2 are viable and are different;
   4418         // this is an ambiguity.
   4419         return QualType();
   4420       }
   4421     }
   4422 
   4423     // Convert E1 to Composite1
   4424     ExprResult E1Result
   4425       = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
   4426     if (E1Result.isInvalid())
   4427       return QualType();
   4428     E1 = E1Result.takeAs<Expr>();
   4429 
   4430     // Convert E2 to Composite1
   4431     ExprResult E2Result
   4432       = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
   4433     if (E2Result.isInvalid())
   4434       return QualType();
   4435     E2 = E2Result.takeAs<Expr>();
   4436 
   4437     return Composite1;
   4438   }
   4439 
   4440   // Check whether Composite2 is viable.
   4441   InitializedEntity Entity2
   4442     = InitializedEntity::InitializeTemporary(Composite2);
   4443   InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
   4444   InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
   4445   if (!E1ToC2 || !E2ToC2)
   4446     return QualType();
   4447 
   4448   // Convert E1 to Composite2
   4449   ExprResult E1Result
   4450     = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
   4451   if (E1Result.isInvalid())
   4452     return QualType();
   4453   E1 = E1Result.takeAs<Expr>();
   4454 
   4455   // Convert E2 to Composite2
   4456   ExprResult E2Result
   4457     = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
   4458   if (E2Result.isInvalid())
   4459     return QualType();
   4460   E2 = E2Result.takeAs<Expr>();
   4461 
   4462   return Composite2;
   4463 }
   4464 
   4465 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
   4466   if (!E)
   4467     return ExprError();
   4468 
   4469   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
   4470 
   4471   // If the result is a glvalue, we shouldn't bind it.
   4472   if (!E->isRValue())
   4473     return Owned(E);
   4474 
   4475   // In ARC, calls that return a retainable type can return retained,
   4476   // in which case we have to insert a consuming cast.
   4477   if (getLangOpts().ObjCAutoRefCount &&
   4478       E->getType()->isObjCRetainableType()) {
   4479 
   4480     bool ReturnsRetained;
   4481 
   4482     // For actual calls, we compute this by examining the type of the
   4483     // called value.
   4484     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
   4485       Expr *Callee = Call->getCallee()->IgnoreParens();
   4486       QualType T = Callee->getType();
   4487 
   4488       if (T == Context.BoundMemberTy) {
   4489         // Handle pointer-to-members.
   4490         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
   4491           T = BinOp->getRHS()->getType();
   4492         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
   4493           T = Mem->getMemberDecl()->getType();
   4494       }
   4495 
   4496       if (const PointerType *Ptr = T->getAs<PointerType>())
   4497         T = Ptr->getPointeeType();
   4498       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
   4499         T = Ptr->getPointeeType();
   4500       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
   4501         T = MemPtr->getPointeeType();
   4502 
   4503       const FunctionType *FTy = T->getAs<FunctionType>();
   4504       assert(FTy && "call to value not of function type?");
   4505       ReturnsRetained = FTy->getExtInfo().getProducesResult();
   4506 
   4507     // ActOnStmtExpr arranges things so that StmtExprs of retainable
   4508     // type always produce a +1 object.
   4509     } else if (isa<StmtExpr>(E)) {
   4510       ReturnsRetained = true;
   4511 
   4512     // We hit this case with the lambda conversion-to-block optimization;
   4513     // we don't want any extra casts here.
   4514     } else if (isa<CastExpr>(E) &&
   4515                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
   4516       return Owned(E);
   4517 
   4518     // For message sends and property references, we try to find an
   4519     // actual method.  FIXME: we should infer retention by selector in
   4520     // cases where we don't have an actual method.
   4521     } else {
   4522       ObjCMethodDecl *D = 0;
   4523       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
   4524         D = Send->getMethodDecl();
   4525       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
   4526         D = BoxedExpr->getBoxingMethod();
   4527       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
   4528         D = ArrayLit->getArrayWithObjectsMethod();
   4529       } else if (ObjCDictionaryLiteral *DictLit
   4530                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
   4531         D = DictLit->getDictWithObjectsMethod();
   4532       }
   4533 
   4534       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
   4535 
   4536       // Don't do reclaims on performSelector calls; despite their
   4537       // return type, the invoked method doesn't necessarily actually
   4538       // return an object.
   4539       if (!ReturnsRetained &&
   4540           D && D->getMethodFamily() == OMF_performSelector)
   4541         return Owned(E);
   4542     }
   4543 
   4544     // Don't reclaim an object of Class type.
   4545     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
   4546       return Owned(E);
   4547 
   4548     ExprNeedsCleanups = true;
   4549 
   4550     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
   4551                                    : CK_ARCReclaimReturnedObject);
   4552     return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
   4553                                           VK_RValue));
   4554   }
   4555 
   4556   if (!getLangOpts().CPlusPlus)
   4557     return Owned(E);
   4558 
   4559   // Search for the base element type (cf. ASTContext::getBaseElementType) with
   4560   // a fast path for the common case that the type is directly a RecordType.
   4561   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
   4562   const RecordType *RT = 0;
   4563   while (!RT) {
   4564     switch (T->getTypeClass()) {
   4565     case Type::Record:
   4566       RT = cast<RecordType>(T);
   4567       break;
   4568     case Type::ConstantArray:
   4569     case Type::IncompleteArray:
   4570     case Type::VariableArray:
   4571     case Type::DependentSizedArray:
   4572       T = cast<ArrayType>(T)->getElementType().getTypePtr();
   4573       break;
   4574     default:
   4575       return Owned(E);
   4576     }
   4577   }
   4578 
   4579   // That should be enough to guarantee that this type is complete, if we're
   4580   // not processing a decltype expression.
   4581   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   4582   if (RD->isInvalidDecl() || RD->isDependentContext())
   4583     return Owned(E);
   4584 
   4585   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
   4586   CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
   4587 
   4588   if (Destructor) {
   4589     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4590     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4591                           PDiag(diag::err_access_dtor_temp)
   4592                             << E->getType());
   4593     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
   4594 
   4595     // If destructor is trivial, we can avoid the extra copy.
   4596     if (Destructor->isTrivial())
   4597       return Owned(E);
   4598 
   4599     // We need a cleanup, but we don't need to remember the temporary.
   4600     ExprNeedsCleanups = true;
   4601   }
   4602 
   4603   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
   4604   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
   4605 
   4606   if (IsDecltype)
   4607     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
   4608 
   4609   return Owned(Bind);
   4610 }
   4611 
   4612 ExprResult
   4613 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
   4614   if (SubExpr.isInvalid())
   4615     return ExprError();
   4616 
   4617   return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
   4618 }
   4619 
   4620 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
   4621   assert(SubExpr && "sub expression can't be null!");
   4622 
   4623   CleanupVarDeclMarking();
   4624 
   4625   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
   4626   assert(ExprCleanupObjects.size() >= FirstCleanup);
   4627   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
   4628   if (!ExprNeedsCleanups)
   4629     return SubExpr;
   4630 
   4631   ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
   4632     = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
   4633                          ExprCleanupObjects.size() - FirstCleanup);
   4634 
   4635   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
   4636   DiscardCleanupsInEvaluationContext();
   4637 
   4638   return E;
   4639 }
   4640 
   4641 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
   4642   assert(SubStmt && "sub statement can't be null!");
   4643 
   4644   CleanupVarDeclMarking();
   4645 
   4646   if (!ExprNeedsCleanups)
   4647     return SubStmt;
   4648 
   4649   // FIXME: In order to attach the temporaries, wrap the statement into
   4650   // a StmtExpr; currently this is only used for asm statements.
   4651   // This is hacky, either create a new CXXStmtWithTemporaries statement or
   4652   // a new AsmStmtWithTemporaries.
   4653   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
   4654                                                       SourceLocation(),
   4655                                                       SourceLocation());
   4656   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
   4657                                    SourceLocation());
   4658   return MaybeCreateExprWithCleanups(E);
   4659 }
   4660 
   4661 /// Process the expression contained within a decltype. For such expressions,
   4662 /// certain semantic checks on temporaries are delayed until this point, and
   4663 /// are omitted for the 'topmost' call in the decltype expression. If the
   4664 /// topmost call bound a temporary, strip that temporary off the expression.
   4665 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
   4666   ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
   4667   assert(Rec.IsDecltype && "not in a decltype expression");
   4668 
   4669   // C++11 [expr.call]p11:
   4670   //   If a function call is a prvalue of object type,
   4671   // -- if the function call is either
   4672   //   -- the operand of a decltype-specifier, or
   4673   //   -- the right operand of a comma operator that is the operand of a
   4674   //      decltype-specifier,
   4675   //   a temporary object is not introduced for the prvalue.
   4676 
   4677   // Recursively rebuild ParenExprs and comma expressions to strip out the
   4678   // outermost CXXBindTemporaryExpr, if any.
   4679   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   4680     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
   4681     if (SubExpr.isInvalid())
   4682       return ExprError();
   4683     if (SubExpr.get() == PE->getSubExpr())
   4684       return Owned(E);
   4685     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
   4686   }
   4687   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   4688     if (BO->getOpcode() == BO_Comma) {
   4689       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
   4690       if (RHS.isInvalid())
   4691         return ExprError();
   4692       if (RHS.get() == BO->getRHS())
   4693         return Owned(E);
   4694       return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
   4695                                                 BO_Comma, BO->getType(),
   4696                                                 BO->getValueKind(),
   4697                                                 BO->getObjectKind(),
   4698                                                 BO->getOperatorLoc()));
   4699     }
   4700   }
   4701 
   4702   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
   4703   if (TopBind)
   4704     E = TopBind->getSubExpr();
   4705 
   4706   // Disable the special decltype handling now.
   4707   Rec.IsDecltype = false;
   4708 
   4709   // Perform the semantic checks we delayed until this point.
   4710   CallExpr *TopCall = dyn_cast<CallExpr>(E);
   4711   for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
   4712     CallExpr *Call = Rec.DelayedDecltypeCalls[I];
   4713     if (Call == TopCall)
   4714       continue;
   4715 
   4716     if (CheckCallReturnType(Call->getCallReturnType(),
   4717                             Call->getLocStart(),
   4718                             Call, Call->getDirectCallee()))
   4719       return ExprError();
   4720   }
   4721 
   4722   // Now all relevant types are complete, check the destructors are accessible
   4723   // and non-deleted, and annotate them on the temporaries.
   4724   for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
   4725     CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
   4726     if (Bind == TopBind)
   4727       continue;
   4728 
   4729     CXXTemporary *Temp = Bind->getTemporary();
   4730 
   4731     CXXRecordDecl *RD =
   4732       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   4733     CXXDestructorDecl *Destructor = LookupDestructor(RD);
   4734     Temp->setDestructor(Destructor);
   4735 
   4736     MarkFunctionReferenced(E->getExprLoc(), Destructor);
   4737     CheckDestructorAccess(E->getExprLoc(), Destructor,
   4738                           PDiag(diag::err_access_dtor_temp)
   4739                             << E->getType());
   4740     DiagnoseUseOfDecl(Destructor, E->getExprLoc());
   4741 
   4742     // We need a cleanup, but we don't need to remember the temporary.
   4743     ExprNeedsCleanups = true;
   4744   }
   4745 
   4746   // Possibly strip off the top CXXBindTemporaryExpr.
   4747   return Owned(E);
   4748 }
   4749 
   4750 ExprResult
   4751 Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
   4752                                    tok::TokenKind OpKind, ParsedType &ObjectType,
   4753                                    bool &MayBePseudoDestructor) {
   4754   // Since this might be a postfix expression, get rid of ParenListExprs.
   4755   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   4756   if (Result.isInvalid()) return ExprError();
   4757   Base = Result.get();
   4758 
   4759   Result = CheckPlaceholderExpr(Base);
   4760   if (Result.isInvalid()) return ExprError();
   4761   Base = Result.take();
   4762 
   4763   QualType BaseType = Base->getType();
   4764   MayBePseudoDestructor = false;
   4765   if (BaseType->isDependentType()) {
   4766     // If we have a pointer to a dependent type and are using the -> operator,
   4767     // the object type is the type that the pointer points to. We might still
   4768     // have enough information about that type to do something useful.
   4769     if (OpKind == tok::arrow)
   4770       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   4771         BaseType = Ptr->getPointeeType();
   4772 
   4773     ObjectType = ParsedType::make(BaseType);
   4774     MayBePseudoDestructor = true;
   4775     return Owned(Base);
   4776   }
   4777 
   4778   // C++ [over.match.oper]p8:
   4779   //   [...] When operator->returns, the operator-> is applied  to the value
   4780   //   returned, with the original second operand.
   4781   if (OpKind == tok::arrow) {
   4782     // The set of types we've considered so far.
   4783     llvm::SmallPtrSet<CanQualType,8> CTypes;
   4784     SmallVector<SourceLocation, 8> Locations;
   4785     CTypes.insert(Context.getCanonicalType(BaseType));
   4786 
   4787     while (BaseType->isRecordType()) {
   4788       Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
   4789       if (Result.isInvalid())
   4790         return ExprError();
   4791       Base = Result.get();
   4792       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
   4793         Locations.push_back(OpCall->getDirectCallee()->getLocation());
   4794       BaseType = Base->getType();
   4795       CanQualType CBaseType = Context.getCanonicalType(BaseType);
   4796       if (!CTypes.insert(CBaseType)) {
   4797         Diag(OpLoc, diag::err_operator_arrow_circular);
   4798         for (unsigned i = 0; i < Locations.size(); i++)
   4799           Diag(Locations[i], diag::note_declared_at);
   4800         return ExprError();
   4801       }
   4802     }
   4803 
   4804     if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
   4805       BaseType = BaseType->getPointeeType();
   4806   }
   4807 
   4808   // Objective-C properties allow "." access on Objective-C pointer types,
   4809   // so adjust the base type to the object type itself.
   4810   if (BaseType->isObjCObjectPointerType())
   4811     BaseType = BaseType->getPointeeType();
   4812 
   4813   // C++ [basic.lookup.classref]p2:
   4814   //   [...] If the type of the object expression is of pointer to scalar
   4815   //   type, the unqualified-id is looked up in the context of the complete
   4816   //   postfix-expression.
   4817   //
   4818   // This also indicates that we could be parsing a pseudo-destructor-name.
   4819   // Note that Objective-C class and object types can be pseudo-destructor
   4820   // expressions or normal member (ivar or property) access expressions.
   4821   if (BaseType->isObjCObjectOrInterfaceType()) {
   4822     MayBePseudoDestructor = true;
   4823   } else if (!BaseType->isRecordType()) {
   4824     ObjectType = ParsedType();
   4825     MayBePseudoDestructor = true;
   4826     return Owned(Base);
   4827   }
   4828 
   4829   // The object type must be complete (or dependent), or
   4830   // C++11 [expr.prim.general]p3:
   4831   //   Unlike the object expression in other contexts, *this is not required to
   4832   //   be of complete type for purposes of class member access (5.2.5) outside
   4833   //   the member function body.
   4834   if (!BaseType->isDependentType() &&
   4835       !isThisOutsideMemberFunctionBody(BaseType) &&
   4836       RequireCompleteType(OpLoc, BaseType,
   4837                           PDiag(diag::err_incomplete_member_access)))
   4838     return ExprError();
   4839 
   4840   // C++ [basic.lookup.classref]p2:
   4841   //   If the id-expression in a class member access (5.2.5) is an
   4842   //   unqualified-id, and the type of the object expression is of a class
   4843   //   type C (or of pointer to a class type C), the unqualified-id is looked
   4844   //   up in the scope of class C. [...]
   4845   ObjectType = ParsedType::make(BaseType);
   4846   return move(Base);
   4847 }
   4848 
   4849 ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
   4850                                                    Expr *MemExpr) {
   4851   SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
   4852   Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
   4853     << isa<CXXPseudoDestructorExpr>(MemExpr)
   4854     << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
   4855 
   4856   return ActOnCallExpr(/*Scope*/ 0,
   4857                        MemExpr,
   4858                        /*LPLoc*/ ExpectedLParenLoc,
   4859                        MultiExprArg(),
   4860                        /*RPLoc*/ ExpectedLParenLoc);
   4861 }
   4862 
   4863 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
   4864                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
   4865   if (Base->hasPlaceholderType()) {
   4866     ExprResult result = S.CheckPlaceholderExpr(Base);
   4867     if (result.isInvalid()) return true;
   4868     Base = result.take();
   4869   }
   4870   ObjectType = Base->getType();
   4871 
   4872   // C++ [expr.pseudo]p2:
   4873   //   The left-hand side of the dot operator shall be of scalar type. The
   4874   //   left-hand side of the arrow operator shall be of pointer to scalar type.
   4875   //   This scalar type is the object type.
   4876   // Note that this is rather different from the normal handling for the
   4877   // arrow operator.
   4878   if (OpKind == tok::arrow) {
   4879     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
   4880       ObjectType = Ptr->getPointeeType();
   4881     } else if (!Base->isTypeDependent()) {
   4882       // The user wrote "p->" when she probably meant "p."; fix it.
   4883       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   4884         << ObjectType << true
   4885         << FixItHint::CreateReplacement(OpLoc, ".");
   4886       if (S.isSFINAEContext())
   4887         return true;
   4888 
   4889       OpKind = tok::period;
   4890     }
   4891   }
   4892 
   4893   return false;
   4894 }
   4895 
   4896 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
   4897                                            SourceLocation OpLoc,
   4898                                            tok::TokenKind OpKind,
   4899                                            const CXXScopeSpec &SS,
   4900                                            TypeSourceInfo *ScopeTypeInfo,
   4901                                            SourceLocation CCLoc,
   4902                                            SourceLocation TildeLoc,
   4903                                          PseudoDestructorTypeStorage Destructed,
   4904                                            bool HasTrailingLParen) {
   4905   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
   4906 
   4907   QualType ObjectType;
   4908   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   4909     return ExprError();
   4910 
   4911   if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
   4912     if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
   4913       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
   4914     else
   4915       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
   4916         << ObjectType << Base->getSourceRange();
   4917     return ExprError();
   4918   }
   4919 
   4920   // C++ [expr.pseudo]p2:
   4921   //   [...] The cv-unqualified versions of the object type and of the type
   4922   //   designated by the pseudo-destructor-name shall be the same type.
   4923   if (DestructedTypeInfo) {
   4924     QualType DestructedType = DestructedTypeInfo->getType();
   4925     SourceLocation DestructedTypeStart
   4926       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
   4927     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
   4928       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
   4929         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
   4930           << ObjectType << DestructedType << Base->getSourceRange()
   4931           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   4932 
   4933         // Recover by setting the destructed type to the object type.
   4934         DestructedType = ObjectType;
   4935         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   4936                                                            DestructedTypeStart);
   4937         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   4938       } else if (DestructedType.getObjCLifetime() !=
   4939                                                 ObjectType.getObjCLifetime()) {
   4940 
   4941         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
   4942           // Okay: just pretend that the user provided the correctly-qualified
   4943           // type.
   4944         } else {
   4945           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
   4946             << ObjectType << DestructedType << Base->getSourceRange()
   4947             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
   4948         }
   4949 
   4950         // Recover by setting the destructed type to the object type.
   4951         DestructedType = ObjectType;
   4952         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
   4953                                                            DestructedTypeStart);
   4954         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   4955       }
   4956     }
   4957   }
   4958 
   4959   // C++ [expr.pseudo]p2:
   4960   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
   4961   //   form
   4962   //
   4963   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
   4964   //
   4965   //   shall designate the same scalar type.
   4966   if (ScopeTypeInfo) {
   4967     QualType ScopeType = ScopeTypeInfo->getType();
   4968     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
   4969         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
   4970 
   4971       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
   4972            diag::err_pseudo_dtor_type_mismatch)
   4973         << ObjectType << ScopeType << Base->getSourceRange()
   4974         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
   4975 
   4976       ScopeType = QualType();
   4977       ScopeTypeInfo = 0;
   4978     }
   4979   }
   4980 
   4981   Expr *Result
   4982     = new (Context) CXXPseudoDestructorExpr(Context, Base,
   4983                                             OpKind == tok::arrow, OpLoc,
   4984                                             SS.getWithLocInContext(Context),
   4985                                             ScopeTypeInfo,
   4986                                             CCLoc,
   4987                                             TildeLoc,
   4988                                             Destructed);
   4989 
   4990   if (HasTrailingLParen)
   4991     return Owned(Result);
   4992 
   4993   return DiagnoseDtorReference(Destructed.getLocation(), Result);
   4994 }
   4995 
   4996 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   4997                                            SourceLocation OpLoc,
   4998                                            tok::TokenKind OpKind,
   4999                                            CXXScopeSpec &SS,
   5000                                            UnqualifiedId &FirstTypeName,
   5001                                            SourceLocation CCLoc,
   5002                                            SourceLocation TildeLoc,
   5003                                            UnqualifiedId &SecondTypeName,
   5004                                            bool HasTrailingLParen) {
   5005   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5006           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5007          "Invalid first type name in pseudo-destructor");
   5008   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5009           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
   5010          "Invalid second type name in pseudo-destructor");
   5011 
   5012   QualType ObjectType;
   5013   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5014     return ExprError();
   5015 
   5016   // Compute the object type that we should use for name lookup purposes. Only
   5017   // record types and dependent types matter.
   5018   ParsedType ObjectTypePtrForLookup;
   5019   if (!SS.isSet()) {
   5020     if (ObjectType->isRecordType())
   5021       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
   5022     else if (ObjectType->isDependentType())
   5023       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
   5024   }
   5025 
   5026   // Convert the name of the type being destructed (following the ~) into a
   5027   // type (with source-location information).
   5028   QualType DestructedType;
   5029   TypeSourceInfo *DestructedTypeInfo = 0;
   5030   PseudoDestructorTypeStorage Destructed;
   5031   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5032     ParsedType T = getTypeName(*SecondTypeName.Identifier,
   5033                                SecondTypeName.StartLocation,
   5034                                S, &SS, true, false, ObjectTypePtrForLookup);
   5035     if (!T &&
   5036         ((SS.isSet() && !computeDeclContext(SS, false)) ||
   5037          (!SS.isSet() && ObjectType->isDependentType()))) {
   5038       // The name of the type being destroyed is a dependent name, and we
   5039       // couldn't find anything useful in scope. Just store the identifier and
   5040       // it's location, and we'll perform (qualified) name lookup again at
   5041       // template instantiation time.
   5042       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
   5043                                                SecondTypeName.StartLocation);
   5044     } else if (!T) {
   5045       Diag(SecondTypeName.StartLocation,
   5046            diag::err_pseudo_dtor_destructor_non_type)
   5047         << SecondTypeName.Identifier << ObjectType;
   5048       if (isSFINAEContext())
   5049         return ExprError();
   5050 
   5051       // Recover by assuming we had the right type all along.
   5052       DestructedType = ObjectType;
   5053     } else
   5054       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
   5055   } else {
   5056     // Resolve the template-id to a type.
   5057     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
   5058     ASTTemplateArgsPtr TemplateArgsPtr(*this,
   5059                                        TemplateId->getTemplateArgs(),
   5060                                        TemplateId->NumArgs);
   5061     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5062                                        TemplateId->TemplateKWLoc,
   5063                                        TemplateId->Template,
   5064                                        TemplateId->TemplateNameLoc,
   5065                                        TemplateId->LAngleLoc,
   5066                                        TemplateArgsPtr,
   5067                                        TemplateId->RAngleLoc);
   5068     if (T.isInvalid() || !T.get()) {
   5069       // Recover by assuming we had the right type all along.
   5070       DestructedType = ObjectType;
   5071     } else
   5072       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
   5073   }
   5074 
   5075   // If we've performed some kind of recovery, (re-)build the type source
   5076   // information.
   5077   if (!DestructedType.isNull()) {
   5078     if (!DestructedTypeInfo)
   5079       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
   5080                                                   SecondTypeName.StartLocation);
   5081     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
   5082   }
   5083 
   5084   // Convert the name of the scope type (the type prior to '::') into a type.
   5085   TypeSourceInfo *ScopeTypeInfo = 0;
   5086   QualType ScopeType;
   5087   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
   5088       FirstTypeName.Identifier) {
   5089     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
   5090       ParsedType T = getTypeName(*FirstTypeName.Identifier,
   5091                                  FirstTypeName.StartLocation,
   5092                                  S, &SS, true, false, ObjectTypePtrForLookup);
   5093       if (!T) {
   5094         Diag(FirstTypeName.StartLocation,
   5095              diag::err_pseudo_dtor_destructor_non_type)
   5096           << FirstTypeName.Identifier << ObjectType;
   5097 
   5098         if (isSFINAEContext())
   5099           return ExprError();
   5100 
   5101         // Just drop this type. It's unnecessary anyway.
   5102         ScopeType = QualType();
   5103       } else
   5104         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
   5105     } else {
   5106       // Resolve the template-id to a type.
   5107       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
   5108       ASTTemplateArgsPtr TemplateArgsPtr(*this,
   5109                                          TemplateId->getTemplateArgs(),
   5110                                          TemplateId->NumArgs);
   5111       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
   5112                                          TemplateId->TemplateKWLoc,
   5113                                          TemplateId->Template,
   5114                                          TemplateId->TemplateNameLoc,
   5115                                          TemplateId->LAngleLoc,
   5116                                          TemplateArgsPtr,
   5117                                          TemplateId->RAngleLoc);
   5118       if (T.isInvalid() || !T.get()) {
   5119         // Recover by dropping this type.
   5120         ScopeType = QualType();
   5121       } else
   5122         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
   5123     }
   5124   }
   5125 
   5126   if (!ScopeType.isNull() && !ScopeTypeInfo)
   5127     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
   5128                                                   FirstTypeName.StartLocation);
   5129 
   5130 
   5131   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
   5132                                    ScopeTypeInfo, CCLoc, TildeLoc,
   5133                                    Destructed, HasTrailingLParen);
   5134 }
   5135 
   5136 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
   5137                                            SourceLocation OpLoc,
   5138                                            tok::TokenKind OpKind,
   5139                                            SourceLocation TildeLoc,
   5140                                            const DeclSpec& DS,
   5141                                            bool HasTrailingLParen) {
   5142   QualType ObjectType;
   5143   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
   5144     return ExprError();
   5145 
   5146   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
   5147 
   5148   TypeLocBuilder TLB;
   5149   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
   5150   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
   5151   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
   5152   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
   5153 
   5154   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
   5155                                    0, SourceLocation(), TildeLoc,
   5156                                    Destructed, HasTrailingLParen);
   5157 }
   5158 
   5159 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
   5160                                         CXXConversionDecl *Method,
   5161                                         bool HadMultipleCandidates) {
   5162   if (Method->getParent()->isLambda() &&
   5163       Method->getConversionType()->isBlockPointerType()) {
   5164     // This is a lambda coversion to block pointer; check if the argument
   5165     // is a LambdaExpr.
   5166     Expr *SubE = E;
   5167     CastExpr *CE = dyn_cast<CastExpr>(SubE);
   5168     if (CE && CE->getCastKind() == CK_NoOp)
   5169       SubE = CE->getSubExpr();
   5170     SubE = SubE->IgnoreParens();
   5171     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
   5172       SubE = BE->getSubExpr();
   5173     if (isa<LambdaExpr>(SubE)) {
   5174       // For the conversion to block pointer on a lambda expression, we
   5175       // construct a special BlockLiteral instead; this doesn't really make
   5176       // a difference in ARC, but outside of ARC the resulting block literal
   5177       // follows the normal lifetime rules for block literals instead of being
   5178       // autoreleased.
   5179       DiagnosticErrorTrap Trap(Diags);
   5180       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
   5181                                                      E->getExprLoc(),
   5182                                                      Method, E);
   5183       if (Exp.isInvalid())
   5184         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
   5185       return Exp;
   5186     }
   5187   }
   5188 
   5189 
   5190   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
   5191                                           FoundDecl, Method);
   5192   if (Exp.isInvalid())
   5193     return true;
   5194 
   5195   MemberExpr *ME =
   5196       new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
   5197                                SourceLocation(), Context.BoundMemberTy,
   5198                                VK_RValue, OK_Ordinary);
   5199   if (HadMultipleCandidates)
   5200     ME->setHadMultipleCandidates(true);
   5201 
   5202   QualType ResultType = Method->getResultType();
   5203   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   5204   ResultType = ResultType.getNonLValueExprType(Context);
   5205 
   5206   MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
   5207   CXXMemberCallExpr *CE =
   5208     new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
   5209                                     Exp.get()->getLocEnd());
   5210   return CE;
   5211 }
   5212 
   5213 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
   5214                                       SourceLocation RParen) {
   5215   CanThrowResult CanThrow = canThrow(Operand);
   5216   return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
   5217                                              CanThrow, KeyLoc, RParen));
   5218 }
   5219 
   5220 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
   5221                                    Expr *Operand, SourceLocation RParen) {
   5222   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
   5223 }
   5224 
   5225 /// Perform the conversions required for an expression used in a
   5226 /// context that ignores the result.
   5227 ExprResult Sema::IgnoredValueConversions(Expr *E) {
   5228   if (E->hasPlaceholderType()) {
   5229     ExprResult result = CheckPlaceholderExpr(E);
   5230     if (result.isInvalid()) return Owned(E);
   5231     E = result.take();
   5232   }
   5233 
   5234   // C99 6.3.2.1:
   5235   //   [Except in specific positions,] an lvalue that does not have
   5236   //   array type is converted to the value stored in the
   5237   //   designated object (and is no longer an lvalue).
   5238   if (E->isRValue()) {
   5239     // In C, function designators (i.e. expressions of function type)
   5240     // are r-values, but we still want to do function-to-pointer decay
   5241     // on them.  This is both technically correct and convenient for
   5242     // some clients.
   5243     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
   5244       return DefaultFunctionArrayConversion(E);
   5245 
   5246     return Owned(E);
   5247   }
   5248 
   5249   // Otherwise, this rule does not apply in C++, at least not for the moment.
   5250   if (getLangOpts().CPlusPlus) return Owned(E);
   5251 
   5252   // GCC seems to also exclude expressions of incomplete enum type.
   5253   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
   5254     if (!T->getDecl()->isComplete()) {
   5255       // FIXME: stupid workaround for a codegen bug!
   5256       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
   5257       return Owned(E);
   5258     }
   5259   }
   5260 
   5261   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
   5262   if (Res.isInvalid())
   5263     return Owned(E);
   5264   E = Res.take();
   5265 
   5266   if (!E->getType()->isVoidType())
   5267     RequireCompleteType(E->getExprLoc(), E->getType(),
   5268                         diag::err_incomplete_type);
   5269   return Owned(E);
   5270 }
   5271 
   5272 ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
   5273   ExprResult FullExpr = Owned(FE);
   5274 
   5275   if (!FullExpr.get())
   5276     return ExprError();
   5277 
   5278   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
   5279     return ExprError();
   5280 
   5281   // Top-level message sends default to 'id' when we're in a debugger.
   5282   if (getLangOpts().DebuggerCastResultToId &&
   5283       FullExpr.get()->getType() == Context.UnknownAnyTy &&
   5284       isa<ObjCMessageExpr>(FullExpr.get())) {
   5285     FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
   5286     if (FullExpr.isInvalid())
   5287       return ExprError();
   5288   }
   5289 
   5290   FullExpr = CheckPlaceholderExpr(FullExpr.take());
   5291   if (FullExpr.isInvalid())
   5292     return ExprError();
   5293 
   5294   FullExpr = IgnoredValueConversions(FullExpr.take());
   5295   if (FullExpr.isInvalid())
   5296     return ExprError();
   5297 
   5298   CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
   5299   return MaybeCreateExprWithCleanups(FullExpr);
   5300 }
   5301 
   5302 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
   5303   if (!FullStmt) return StmtError();
   5304 
   5305   return MaybeCreateStmtWithCleanups(FullStmt);
   5306 }
   5307 
   5308 Sema::IfExistsResult
   5309 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
   5310                                    CXXScopeSpec &SS,
   5311                                    const DeclarationNameInfo &TargetNameInfo) {
   5312   DeclarationName TargetName = TargetNameInfo.getName();
   5313   if (!TargetName)
   5314     return IER_DoesNotExist;
   5315 
   5316   // If the name itself is dependent, then the result is dependent.
   5317   if (TargetName.isDependentName())
   5318     return IER_Dependent;
   5319 
   5320   // Do the redeclaration lookup in the current scope.
   5321   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
   5322                  Sema::NotForRedeclaration);
   5323   LookupParsedName(R, S, &SS);
   5324   R.suppressDiagnostics();
   5325 
   5326   switch (R.getResultKind()) {
   5327   case LookupResult::Found:
   5328   case LookupResult::FoundOverloaded:
   5329   case LookupResult::FoundUnresolvedValue:
   5330   case LookupResult::Ambiguous:
   5331     return IER_Exists;
   5332 
   5333   case LookupResult::NotFound:
   5334     return IER_DoesNotExist;
   5335 
   5336   case LookupResult::NotFoundInCurrentInstantiation:
   5337     return IER_Dependent;
   5338   }
   5339 
   5340   llvm_unreachable("Invalid LookupResult Kind!");
   5341 }
   5342 
   5343 Sema::IfExistsResult
   5344 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
   5345                                    bool IsIfExists, CXXScopeSpec &SS,
   5346                                    UnqualifiedId &Name) {
   5347   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
   5348 
   5349   // Check for unexpanded parameter packs.
   5350   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
   5351   collectUnexpandedParameterPacks(SS, Unexpanded);
   5352   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
   5353   if (!Unexpanded.empty()) {
   5354     DiagnoseUnexpandedParameterPacks(KeywordLoc,
   5355                                      IsIfExists? UPPC_IfExists
   5356                                                : UPPC_IfNotExists,
   5357                                      Unexpanded);
   5358     return IER_Error;
   5359   }
   5360 
   5361   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
   5362 }
   5363