Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Support/PatternMatch.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     22 /// returning the kind and providing the out parameter results if we
     23 /// successfully match.
     24 static SelectPatternFlavor
     25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     26   SelectInst *SI = dyn_cast<SelectInst>(V);
     27   if (SI == 0) return SPF_UNKNOWN;
     28 
     29   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     30   if (ICI == 0) return SPF_UNKNOWN;
     31 
     32   LHS = ICI->getOperand(0);
     33   RHS = ICI->getOperand(1);
     34 
     35   // (icmp X, Y) ? X : Y
     36   if (SI->getTrueValue() == ICI->getOperand(0) &&
     37       SI->getFalseValue() == ICI->getOperand(1)) {
     38     switch (ICI->getPredicate()) {
     39     default: return SPF_UNKNOWN; // Equality.
     40     case ICmpInst::ICMP_UGT:
     41     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     42     case ICmpInst::ICMP_SGT:
     43     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     44     case ICmpInst::ICMP_ULT:
     45     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     46     case ICmpInst::ICMP_SLT:
     47     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     48     }
     49   }
     50 
     51   // (icmp X, Y) ? Y : X
     52   if (SI->getTrueValue() == ICI->getOperand(1) &&
     53       SI->getFalseValue() == ICI->getOperand(0)) {
     54     switch (ICI->getPredicate()) {
     55       default: return SPF_UNKNOWN; // Equality.
     56       case ICmpInst::ICMP_UGT:
     57       case ICmpInst::ICMP_UGE: return SPF_UMIN;
     58       case ICmpInst::ICMP_SGT:
     59       case ICmpInst::ICMP_SGE: return SPF_SMIN;
     60       case ICmpInst::ICMP_ULT:
     61       case ICmpInst::ICMP_ULE: return SPF_UMAX;
     62       case ICmpInst::ICMP_SLT:
     63       case ICmpInst::ICMP_SLE: return SPF_SMAX;
     64     }
     65   }
     66 
     67   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     68 
     69   return SPF_UNKNOWN;
     70 }
     71 
     72 
     73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     74 ///   %C = or %A, %B
     75 ///   %D = select %cond, %C, %A
     76 /// into:
     77 ///   %C = select %cond, %B, 0
     78 ///   %D = or %A, %C
     79 ///
     80 /// Assuming that the specified instruction is an operand to the select, return
     81 /// a bitmask indicating which operands of this instruction are foldable if they
     82 /// equal the other incoming value of the select.
     83 ///
     84 static unsigned GetSelectFoldableOperands(Instruction *I) {
     85   switch (I->getOpcode()) {
     86   case Instruction::Add:
     87   case Instruction::Mul:
     88   case Instruction::And:
     89   case Instruction::Or:
     90   case Instruction::Xor:
     91     return 3;              // Can fold through either operand.
     92   case Instruction::Sub:   // Can only fold on the amount subtracted.
     93   case Instruction::Shl:   // Can only fold on the shift amount.
     94   case Instruction::LShr:
     95   case Instruction::AShr:
     96     return 1;
     97   default:
     98     return 0;              // Cannot fold
     99   }
    100 }
    101 
    102 /// GetSelectFoldableConstant - For the same transformation as the previous
    103 /// function, return the identity constant that goes into the select.
    104 static Constant *GetSelectFoldableConstant(Instruction *I) {
    105   switch (I->getOpcode()) {
    106   default: llvm_unreachable("This cannot happen!");
    107   case Instruction::Add:
    108   case Instruction::Sub:
    109   case Instruction::Or:
    110   case Instruction::Xor:
    111   case Instruction::Shl:
    112   case Instruction::LShr:
    113   case Instruction::AShr:
    114     return Constant::getNullValue(I->getType());
    115   case Instruction::And:
    116     return Constant::getAllOnesValue(I->getType());
    117   case Instruction::Mul:
    118     return ConstantInt::get(I->getType(), 1);
    119   }
    120 }
    121 
    122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    123 /// have the same opcode and only one use each.  Try to simplify this.
    124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    125                                           Instruction *FI) {
    126   if (TI->getNumOperands() == 1) {
    127     // If this is a non-volatile load or a cast from the same type,
    128     // merge.
    129     if (TI->isCast()) {
    130       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
    131         return 0;
    132     } else {
    133       return 0;  // unknown unary op.
    134     }
    135 
    136     // Fold this by inserting a select from the input values.
    137     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    138                                          FI->getOperand(0), SI.getName()+".v");
    139     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    140                             TI->getType());
    141   }
    142 
    143   // Only handle binary operators here.
    144   if (!isa<BinaryOperator>(TI))
    145     return 0;
    146 
    147   // Figure out if the operations have any operands in common.
    148   Value *MatchOp, *OtherOpT, *OtherOpF;
    149   bool MatchIsOpZero;
    150   if (TI->getOperand(0) == FI->getOperand(0)) {
    151     MatchOp  = TI->getOperand(0);
    152     OtherOpT = TI->getOperand(1);
    153     OtherOpF = FI->getOperand(1);
    154     MatchIsOpZero = true;
    155   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    156     MatchOp  = TI->getOperand(1);
    157     OtherOpT = TI->getOperand(0);
    158     OtherOpF = FI->getOperand(0);
    159     MatchIsOpZero = false;
    160   } else if (!TI->isCommutative()) {
    161     return 0;
    162   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    163     MatchOp  = TI->getOperand(0);
    164     OtherOpT = TI->getOperand(1);
    165     OtherOpF = FI->getOperand(0);
    166     MatchIsOpZero = true;
    167   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    168     MatchOp  = TI->getOperand(1);
    169     OtherOpT = TI->getOperand(0);
    170     OtherOpF = FI->getOperand(1);
    171     MatchIsOpZero = true;
    172   } else {
    173     return 0;
    174   }
    175 
    176   // If we reach here, they do have operations in common.
    177   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    178                                        OtherOpF, SI.getName()+".v");
    179 
    180   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    181     if (MatchIsOpZero)
    182       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    183     else
    184       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    185   }
    186   llvm_unreachable("Shouldn't get here");
    187 }
    188 
    189 static bool isSelect01(Constant *C1, Constant *C2) {
    190   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    191   if (!C1I)
    192     return false;
    193   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    194   if (!C2I)
    195     return false;
    196   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    197     return false;
    198   return C1I->isOne() || C1I->isAllOnesValue() ||
    199          C2I->isOne() || C2I->isAllOnesValue();
    200 }
    201 
    202 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    203 /// facilitate further optimization.
    204 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    205                                             Value *FalseVal) {
    206   // See the comment above GetSelectFoldableOperands for a description of the
    207   // transformation we are doing here.
    208   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    209     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    210         !isa<Constant>(FalseVal)) {
    211       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    212         unsigned OpToFold = 0;
    213         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    214           OpToFold = 1;
    215         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    216           OpToFold = 2;
    217         }
    218 
    219         if (OpToFold) {
    220           Constant *C = GetSelectFoldableConstant(TVI);
    221           Value *OOp = TVI->getOperand(2-OpToFold);
    222           // Avoid creating select between 2 constants unless it's selecting
    223           // between 0, 1 and -1.
    224           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    225             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    226             NewSel->takeName(TVI);
    227             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    228             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    229                                                         FalseVal, NewSel);
    230             if (isa<PossiblyExactOperator>(BO))
    231               BO->setIsExact(TVI_BO->isExact());
    232             if (isa<OverflowingBinaryOperator>(BO)) {
    233               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    234               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    235             }
    236             return BO;
    237           }
    238         }
    239       }
    240     }
    241   }
    242 
    243   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    244     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    245         !isa<Constant>(TrueVal)) {
    246       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    247         unsigned OpToFold = 0;
    248         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    249           OpToFold = 1;
    250         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    251           OpToFold = 2;
    252         }
    253 
    254         if (OpToFold) {
    255           Constant *C = GetSelectFoldableConstant(FVI);
    256           Value *OOp = FVI->getOperand(2-OpToFold);
    257           // Avoid creating select between 2 constants unless it's selecting
    258           // between 0, 1 and -1.
    259           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    260             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    261             NewSel->takeName(FVI);
    262             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    263             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    264                                                         TrueVal, NewSel);
    265             if (isa<PossiblyExactOperator>(BO))
    266               BO->setIsExact(FVI_BO->isExact());
    267             if (isa<OverflowingBinaryOperator>(BO)) {
    268               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    269               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    270             }
    271             return BO;
    272           }
    273         }
    274       }
    275     }
    276   }
    277 
    278   return 0;
    279 }
    280 
    281 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    282 /// replaced with RepOp.
    283 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    284                                      const TargetData *TD,
    285                                      const TargetLibraryInfo *TLI) {
    286   // Trivial replacement.
    287   if (V == Op)
    288     return RepOp;
    289 
    290   Instruction *I = dyn_cast<Instruction>(V);
    291   if (!I)
    292     return 0;
    293 
    294   // If this is a binary operator, try to simplify it with the replaced op.
    295   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    296     if (B->getOperand(0) == Op)
    297       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
    298     if (B->getOperand(1) == Op)
    299       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
    300   }
    301 
    302   // Same for CmpInsts.
    303   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    304     if (C->getOperand(0) == Op)
    305       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
    306                              TLI);
    307     if (C->getOperand(1) == Op)
    308       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
    309                              TLI);
    310   }
    311 
    312   // TODO: We could hand off more cases to instsimplify here.
    313 
    314   // If all operands are constant after substituting Op for RepOp then we can
    315   // constant fold the instruction.
    316   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    317     // Build a list of all constant operands.
    318     SmallVector<Constant*, 8> ConstOps;
    319     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    320       if (I->getOperand(i) == Op)
    321         ConstOps.push_back(CRepOp);
    322       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    323         ConstOps.push_back(COp);
    324       else
    325         break;
    326     }
    327 
    328     // All operands were constants, fold it.
    329     if (ConstOps.size() == I->getNumOperands()) {
    330       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    331         if (!LI->isVolatile())
    332           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
    333 
    334       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    335                                       ConstOps, TD, TLI);
    336     }
    337   }
    338 
    339   return 0;
    340 }
    341 
    342 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    343 /// ICmpInst as its first operand.
    344 ///
    345 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    346                                                    ICmpInst *ICI) {
    347   bool Changed = false;
    348   ICmpInst::Predicate Pred = ICI->getPredicate();
    349   Value *CmpLHS = ICI->getOperand(0);
    350   Value *CmpRHS = ICI->getOperand(1);
    351   Value *TrueVal = SI.getTrueValue();
    352   Value *FalseVal = SI.getFalseValue();
    353 
    354   // Check cases where the comparison is with a constant that
    355   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    356   // here, so make sure the select is the only user.
    357   if (ICI->hasOneUse())
    358     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    359       // X < MIN ? T : F  -->  F
    360       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    361           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    362         return ReplaceInstUsesWith(SI, FalseVal);
    363       // X > MAX ? T : F  -->  F
    364       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    365                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    366         return ReplaceInstUsesWith(SI, FalseVal);
    367       switch (Pred) {
    368       default: break;
    369       case ICmpInst::ICMP_ULT:
    370       case ICmpInst::ICMP_SLT:
    371       case ICmpInst::ICMP_UGT:
    372       case ICmpInst::ICMP_SGT: {
    373         // These transformations only work for selects over integers.
    374         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    375         if (!SelectTy)
    376           break;
    377 
    378         Constant *AdjustedRHS;
    379         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    380           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    381         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    382           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    383 
    384         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    385         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    386         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    387             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    388           ; // Nothing to do here. Values match without any sign/zero extension.
    389 
    390         // Types do not match. Instead of calculating this with mixed types
    391         // promote all to the larger type. This enables scalar evolution to
    392         // analyze this expression.
    393         else if (CmpRHS->getType()->getScalarSizeInBits()
    394                  < SelectTy->getBitWidth()) {
    395           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    396 
    397           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    398           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    399           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    400           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    401           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    402                 sextRHS == FalseVal) {
    403             CmpLHS = TrueVal;
    404             AdjustedRHS = sextRHS;
    405           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    406                      sextRHS == TrueVal) {
    407             CmpLHS = FalseVal;
    408             AdjustedRHS = sextRHS;
    409           } else if (ICI->isUnsigned()) {
    410             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    411             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    412             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    413             // zext + signed compare cannot be changed:
    414             //    0xff <s 0x00, but 0x00ff >s 0x0000
    415             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    416                 zextRHS == FalseVal) {
    417               CmpLHS = TrueVal;
    418               AdjustedRHS = zextRHS;
    419             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    420                        zextRHS == TrueVal) {
    421               CmpLHS = FalseVal;
    422               AdjustedRHS = zextRHS;
    423             } else
    424               break;
    425           } else
    426             break;
    427         } else
    428           break;
    429 
    430         Pred = ICmpInst::getSwappedPredicate(Pred);
    431         CmpRHS = AdjustedRHS;
    432         std::swap(FalseVal, TrueVal);
    433         ICI->setPredicate(Pred);
    434         ICI->setOperand(0, CmpLHS);
    435         ICI->setOperand(1, CmpRHS);
    436         SI.setOperand(1, TrueVal);
    437         SI.setOperand(2, FalseVal);
    438 
    439         // Move ICI instruction right before the select instruction. Otherwise
    440         // the sext/zext value may be defined after the ICI instruction uses it.
    441         ICI->moveBefore(&SI);
    442 
    443         Changed = true;
    444         break;
    445       }
    446       }
    447     }
    448 
    449   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    450   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    451   // FIXME: Type and constness constraints could be lifted, but we have to
    452   //        watch code size carefully. We should consider xor instead of
    453   //        sub/add when we decide to do that.
    454   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    455     if (TrueVal->getType() == Ty) {
    456       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    457         ConstantInt *C1 = NULL, *C2 = NULL;
    458         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    459           C1 = dyn_cast<ConstantInt>(TrueVal);
    460           C2 = dyn_cast<ConstantInt>(FalseVal);
    461         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    462           C1 = dyn_cast<ConstantInt>(FalseVal);
    463           C2 = dyn_cast<ConstantInt>(TrueVal);
    464         }
    465         if (C1 && C2) {
    466           // This shift results in either -1 or 0.
    467           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    468 
    469           // Check if we can express the operation with a single or.
    470           if (C2->isAllOnesValue())
    471             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    472 
    473           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    474           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    475         }
    476       }
    477     }
    478   }
    479 
    480   // If we have an equality comparison then we know the value in one of the
    481   // arms of the select. See if substituting this value into the arm and
    482   // simplifying the result yields the same value as the other arm.
    483   if (Pred == ICmpInst::ICMP_EQ) {
    484     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    485         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    486       return ReplaceInstUsesWith(SI, FalseVal);
    487     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    488         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    489       return ReplaceInstUsesWith(SI, FalseVal);
    490   } else if (Pred == ICmpInst::ICMP_NE) {
    491     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    492         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    493       return ReplaceInstUsesWith(SI, TrueVal);
    494     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    495         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    496       return ReplaceInstUsesWith(SI, TrueVal);
    497   }
    498 
    499   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    500 
    501   if (isa<Constant>(CmpRHS)) {
    502     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    503       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    504       SI.setOperand(1, CmpRHS);
    505       Changed = true;
    506     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    507       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    508       SI.setOperand(2, CmpRHS);
    509       Changed = true;
    510     }
    511   }
    512 
    513   return Changed ? &SI : 0;
    514 }
    515 
    516 
    517 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    518 /// PHI node (but the two may be in different blocks).  See if the true/false
    519 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    520 /// example, cases like this cannot be mapped:
    521 ///
    522 ///   X = phi [ C1, BB1], [C2, BB2]
    523 ///   Y = add
    524 ///   Z = select X, Y, 0
    525 ///
    526 /// because Y is not live in BB1/BB2.
    527 ///
    528 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    529                                                    const SelectInst &SI) {
    530   // If the value is a non-instruction value like a constant or argument, it
    531   // can always be mapped.
    532   const Instruction *I = dyn_cast<Instruction>(V);
    533   if (I == 0) return true;
    534 
    535   // If V is a PHI node defined in the same block as the condition PHI, we can
    536   // map the arguments.
    537   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    538 
    539   if (const PHINode *VP = dyn_cast<PHINode>(I))
    540     if (VP->getParent() == CondPHI->getParent())
    541       return true;
    542 
    543   // Otherwise, if the PHI and select are defined in the same block and if V is
    544   // defined in a different block, then we can transform it.
    545   if (SI.getParent() == CondPHI->getParent() &&
    546       I->getParent() != CondPHI->getParent())
    547     return true;
    548 
    549   // Otherwise we have a 'hard' case and we can't tell without doing more
    550   // detailed dominator based analysis, punt.
    551   return false;
    552 }
    553 
    554 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    555 ///   SPF2(SPF1(A, B), C)
    556 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    557                                         SelectPatternFlavor SPF1,
    558                                         Value *A, Value *B,
    559                                         Instruction &Outer,
    560                                         SelectPatternFlavor SPF2, Value *C) {
    561   if (C == A || C == B) {
    562     // MAX(MAX(A, B), B) -> MAX(A, B)
    563     // MIN(MIN(a, b), a) -> MIN(a, b)
    564     if (SPF1 == SPF2)
    565       return ReplaceInstUsesWith(Outer, Inner);
    566 
    567     // MAX(MIN(a, b), a) -> a
    568     // MIN(MAX(a, b), a) -> a
    569     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    570         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    571         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    572         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    573       return ReplaceInstUsesWith(Outer, C);
    574   }
    575 
    576   // TODO: MIN(MIN(A, 23), 97)
    577   return 0;
    578 }
    579 
    580 
    581 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    582 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    583 /// with the non-constant value and a power of two we can turn the select
    584 /// into a shift on the result of the 'and'.
    585 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    586                                 ConstantInt *FalseVal,
    587                                 InstCombiner::BuilderTy *Builder) {
    588   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    589   if (!IC || !IC->isEquality())
    590     return 0;
    591 
    592   if (!match(IC->getOperand(1), m_Zero()))
    593     return 0;
    594 
    595   ConstantInt *AndRHS;
    596   Value *LHS = IC->getOperand(0);
    597   if (LHS->getType() != SI.getType() ||
    598       !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    599     return 0;
    600 
    601   // If both select arms are non-zero see if we have a select of the form
    602   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    603   // for 'x ? 2^n : 0' and fix the thing up at the end.
    604   ConstantInt *Offset = 0;
    605   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    606     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    607       Offset = FalseVal;
    608     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    609       Offset = TrueVal;
    610     else
    611       return 0;
    612 
    613     // Adjust TrueVal and FalseVal to the offset.
    614     TrueVal = ConstantInt::get(Builder->getContext(),
    615                                TrueVal->getValue() - Offset->getValue());
    616     FalseVal = ConstantInt::get(Builder->getContext(),
    617                                 FalseVal->getValue() - Offset->getValue());
    618   }
    619 
    620   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    621   if (!AndRHS->getValue().isPowerOf2() ||
    622       (!TrueVal->getValue().isPowerOf2() &&
    623        !FalseVal->getValue().isPowerOf2()))
    624     return 0;
    625 
    626   // Determine which shift is needed to transform result of the 'and' into the
    627   // desired result.
    628   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    629   unsigned ValZeros = ValC->getValue().logBase2();
    630   unsigned AndZeros = AndRHS->getValue().logBase2();
    631 
    632   Value *V = LHS;
    633   if (ValZeros > AndZeros)
    634     V = Builder->CreateShl(V, ValZeros - AndZeros);
    635   else if (ValZeros < AndZeros)
    636     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    637 
    638   // Okay, now we know that everything is set up, we just don't know whether we
    639   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    640   bool ShouldNotVal = !TrueVal->isZero();
    641   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    642   if (ShouldNotVal)
    643     V = Builder->CreateXor(V, ValC);
    644 
    645   // Apply an offset if needed.
    646   if (Offset)
    647     V = Builder->CreateAdd(V, Offset);
    648   return V;
    649 }
    650 
    651 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    652   Value *CondVal = SI.getCondition();
    653   Value *TrueVal = SI.getTrueValue();
    654   Value *FalseVal = SI.getFalseValue();
    655 
    656   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    657     return ReplaceInstUsesWith(SI, V);
    658 
    659   if (SI.getType()->isIntegerTy(1)) {
    660     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    661       if (C->getZExtValue()) {
    662         // Change: A = select B, true, C --> A = or B, C
    663         return BinaryOperator::CreateOr(CondVal, FalseVal);
    664       }
    665       // Change: A = select B, false, C --> A = and !B, C
    666       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    667       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    668     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    669       if (C->getZExtValue() == false) {
    670         // Change: A = select B, C, false --> A = and B, C
    671         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    672       }
    673       // Change: A = select B, C, true --> A = or !B, C
    674       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    675       return BinaryOperator::CreateOr(NotCond, TrueVal);
    676     }
    677 
    678     // select a, b, a  -> a&b
    679     // select a, a, b  -> a|b
    680     if (CondVal == TrueVal)
    681       return BinaryOperator::CreateOr(CondVal, FalseVal);
    682     else if (CondVal == FalseVal)
    683       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    684 
    685     // select a, ~a, b -> (~a)&b
    686     // select a, b, ~a -> (~a)|b
    687     if (match(TrueVal, m_Not(m_Specific(CondVal))))
    688       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    689     else if (match(FalseVal, m_Not(m_Specific(CondVal))))
    690       return BinaryOperator::CreateOr(TrueVal, FalseVal);
    691   }
    692 
    693   // Selecting between two integer constants?
    694   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    695     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    696       // select C, 1, 0 -> zext C to int
    697       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    698         return new ZExtInst(CondVal, SI.getType());
    699 
    700       // select C, -1, 0 -> sext C to int
    701       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    702         return new SExtInst(CondVal, SI.getType());
    703 
    704       // select C, 0, 1 -> zext !C to int
    705       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    706         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    707         return new ZExtInst(NotCond, SI.getType());
    708       }
    709 
    710       // select C, 0, -1 -> sext !C to int
    711       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    712         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    713         return new SExtInst(NotCond, SI.getType());
    714       }
    715 
    716       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    717         return ReplaceInstUsesWith(SI, V);
    718     }
    719 
    720   // See if we are selecting two values based on a comparison of the two values.
    721   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    722     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    723       // Transform (X == Y) ? X : Y  -> Y
    724       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    725         // This is not safe in general for floating point:
    726         // consider X== -0, Y== +0.
    727         // It becomes safe if either operand is a nonzero constant.
    728         ConstantFP *CFPt, *CFPf;
    729         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    730               !CFPt->getValueAPF().isZero()) ||
    731             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    732              !CFPf->getValueAPF().isZero()))
    733         return ReplaceInstUsesWith(SI, FalseVal);
    734       }
    735       // Transform (X une Y) ? X : Y  -> X
    736       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    737         // This is not safe in general for floating point:
    738         // consider X== -0, Y== +0.
    739         // It becomes safe if either operand is a nonzero constant.
    740         ConstantFP *CFPt, *CFPf;
    741         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    742               !CFPt->getValueAPF().isZero()) ||
    743             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    744              !CFPf->getValueAPF().isZero()))
    745         return ReplaceInstUsesWith(SI, TrueVal);
    746       }
    747       // NOTE: if we wanted to, this is where to detect MIN/MAX
    748 
    749     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    750       // Transform (X == Y) ? Y : X  -> X
    751       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    752         // This is not safe in general for floating point:
    753         // consider X== -0, Y== +0.
    754         // It becomes safe if either operand is a nonzero constant.
    755         ConstantFP *CFPt, *CFPf;
    756         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    757               !CFPt->getValueAPF().isZero()) ||
    758             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    759              !CFPf->getValueAPF().isZero()))
    760           return ReplaceInstUsesWith(SI, FalseVal);
    761       }
    762       // Transform (X une Y) ? Y : X  -> Y
    763       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    764         // This is not safe in general for floating point:
    765         // consider X== -0, Y== +0.
    766         // It becomes safe if either operand is a nonzero constant.
    767         ConstantFP *CFPt, *CFPf;
    768         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    769               !CFPt->getValueAPF().isZero()) ||
    770             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    771              !CFPf->getValueAPF().isZero()))
    772           return ReplaceInstUsesWith(SI, TrueVal);
    773       }
    774       // NOTE: if we wanted to, this is where to detect MIN/MAX
    775     }
    776     // NOTE: if we wanted to, this is where to detect ABS
    777   }
    778 
    779   // See if we are selecting two values based on a comparison of the two values.
    780   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    781     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    782       return Result;
    783 
    784   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    785     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    786       if (TI->hasOneUse() && FI->hasOneUse()) {
    787         Instruction *AddOp = 0, *SubOp = 0;
    788 
    789         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    790         if (TI->getOpcode() == FI->getOpcode())
    791           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    792             return IV;
    793 
    794         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    795         // even legal for FP.
    796         if ((TI->getOpcode() == Instruction::Sub &&
    797              FI->getOpcode() == Instruction::Add) ||
    798             (TI->getOpcode() == Instruction::FSub &&
    799              FI->getOpcode() == Instruction::FAdd)) {
    800           AddOp = FI; SubOp = TI;
    801         } else if ((FI->getOpcode() == Instruction::Sub &&
    802                     TI->getOpcode() == Instruction::Add) ||
    803                    (FI->getOpcode() == Instruction::FSub &&
    804                     TI->getOpcode() == Instruction::FAdd)) {
    805           AddOp = TI; SubOp = FI;
    806         }
    807 
    808         if (AddOp) {
    809           Value *OtherAddOp = 0;
    810           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    811             OtherAddOp = AddOp->getOperand(1);
    812           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    813             OtherAddOp = AddOp->getOperand(0);
    814           }
    815 
    816           if (OtherAddOp) {
    817             // So at this point we know we have (Y -> OtherAddOp):
    818             //        select C, (add X, Y), (sub X, Z)
    819             Value *NegVal;  // Compute -Z
    820             if (SI.getType()->isFPOrFPVectorTy()) {
    821               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    822             } else {
    823               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
    824             }
    825 
    826             Value *NewTrueOp = OtherAddOp;
    827             Value *NewFalseOp = NegVal;
    828             if (AddOp != TI)
    829               std::swap(NewTrueOp, NewFalseOp);
    830             Value *NewSel =
    831               Builder->CreateSelect(CondVal, NewTrueOp,
    832                                     NewFalseOp, SI.getName() + ".p");
    833 
    834             if (SI.getType()->isFPOrFPVectorTy())
    835               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    836             else
    837               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    838           }
    839         }
    840       }
    841 
    842   // See if we can fold the select into one of our operands.
    843   if (SI.getType()->isIntegerTy()) {
    844     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
    845       return FoldI;
    846 
    847     // MAX(MAX(a, b), a) -> MAX(a, b)
    848     // MIN(MIN(a, b), a) -> MIN(a, b)
    849     // MAX(MIN(a, b), a) -> a
    850     // MIN(MAX(a, b), a) -> a
    851     Value *LHS, *RHS, *LHS2, *RHS2;
    852     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
    853       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
    854         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
    855                                           SI, SPF, RHS))
    856           return R;
    857       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
    858         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
    859                                           SI, SPF, LHS))
    860           return R;
    861     }
    862 
    863     // TODO.
    864     // ABS(-X) -> ABS(X)
    865     // ABS(ABS(X)) -> ABS(X)
    866   }
    867 
    868   // See if we can fold the select into a phi node if the condition is a select.
    869   if (isa<PHINode>(SI.getCondition()))
    870     // The true/false values have to be live in the PHI predecessor's blocks.
    871     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
    872         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
    873       if (Instruction *NV = FoldOpIntoPhi(SI))
    874         return NV;
    875 
    876   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    877     if (TrueSI->getCondition() == CondVal) {
    878       SI.setOperand(1, TrueSI->getTrueValue());
    879       return &SI;
    880     }
    881   }
    882   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    883     if (FalseSI->getCondition() == CondVal) {
    884       SI.setOperand(2, FalseSI->getFalseValue());
    885       return &SI;
    886     }
    887   }
    888 
    889   if (BinaryOperator::isNot(CondVal)) {
    890     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    891     SI.setOperand(1, FalseVal);
    892     SI.setOperand(2, TrueVal);
    893     return &SI;
    894   }
    895 
    896   return 0;
    897 }
    898