Home | History | Annotate | Download | only in Analysis
      1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CFG and CFGBuilder classes for representing and
     11 //  building Control-Flow Graphs (CFGs) from ASTs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Support/SaveAndRestore.h"
     16 #include "clang/Analysis/CFG.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/StmtVisitor.h"
     19 #include "clang/AST/PrettyPrinter.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/Basic/AttrKinds.h"
     22 #include "llvm/Support/GraphWriter.h"
     23 #include "llvm/Support/Allocator.h"
     24 #include "llvm/Support/Format.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/ADT/OwningPtr.h"
     28 
     29 using namespace clang;
     30 
     31 namespace {
     32 
     33 static SourceLocation GetEndLoc(Decl *D) {
     34   if (VarDecl *VD = dyn_cast<VarDecl>(D))
     35     if (Expr *Ex = VD->getInit())
     36       return Ex->getSourceRange().getEnd();
     37   return D->getLocation();
     38 }
     39 
     40 class CFGBuilder;
     41 
     42 /// The CFG builder uses a recursive algorithm to build the CFG.  When
     43 ///  we process an expression, sometimes we know that we must add the
     44 ///  subexpressions as block-level expressions.  For example:
     45 ///
     46 ///    exp1 || exp2
     47 ///
     48 ///  When processing the '||' expression, we know that exp1 and exp2
     49 ///  need to be added as block-level expressions, even though they
     50 ///  might not normally need to be.  AddStmtChoice records this
     51 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
     52 ///  the builder has an option not to add a subexpression as a
     53 ///  block-level expression.
     54 ///
     55 class AddStmtChoice {
     56 public:
     57   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
     58 
     59   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
     60 
     61   bool alwaysAdd(CFGBuilder &builder,
     62                  const Stmt *stmt) const;
     63 
     64   /// Return a copy of this object, except with the 'always-add' bit
     65   ///  set as specified.
     66   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
     67     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
     68   }
     69 
     70 private:
     71   Kind kind;
     72 };
     73 
     74 /// LocalScope - Node in tree of local scopes created for C++ implicit
     75 /// destructor calls generation. It contains list of automatic variables
     76 /// declared in the scope and link to position in previous scope this scope
     77 /// began in.
     78 ///
     79 /// The process of creating local scopes is as follows:
     80 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
     81 /// - Before processing statements in scope (e.g. CompoundStmt) create
     82 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
     83 ///   and set CFGBuilder::ScopePos to the end of new scope,
     84 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
     85 ///   at this VarDecl,
     86 /// - For every normal (without jump) end of scope add to CFGBlock destructors
     87 ///   for objects in the current scope,
     88 /// - For every jump add to CFGBlock destructors for objects
     89 ///   between CFGBuilder::ScopePos and local scope position saved for jump
     90 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
     91 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
     92 ///   (adding any variable that doesn't need constructor to be called to
     93 ///   LocalScope can break this assumption),
     94 ///
     95 class LocalScope {
     96 public:
     97   typedef BumpVector<VarDecl*> AutomaticVarsTy;
     98 
     99   /// const_iterator - Iterates local scope backwards and jumps to previous
    100   /// scope on reaching the beginning of currently iterated scope.
    101   class const_iterator {
    102     const LocalScope* Scope;
    103 
    104     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
    105     /// Invalid iterator (with null Scope) has VarIter equal to 0.
    106     unsigned VarIter;
    107 
    108   public:
    109     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
    110     /// Incrementing invalid iterator is allowed and will result in invalid
    111     /// iterator.
    112     const_iterator()
    113         : Scope(NULL), VarIter(0) {}
    114 
    115     /// Create valid iterator. In case when S.Prev is an invalid iterator and
    116     /// I is equal to 0, this will create invalid iterator.
    117     const_iterator(const LocalScope& S, unsigned I)
    118         : Scope(&S), VarIter(I) {
    119       // Iterator to "end" of scope is not allowed. Handle it by going up
    120       // in scopes tree possibly up to invalid iterator in the root.
    121       if (VarIter == 0 && Scope)
    122         *this = Scope->Prev;
    123     }
    124 
    125     VarDecl *const* operator->() const {
    126       assert (Scope && "Dereferencing invalid iterator is not allowed");
    127       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    128       return &Scope->Vars[VarIter - 1];
    129     }
    130     VarDecl *operator*() const {
    131       return *this->operator->();
    132     }
    133 
    134     const_iterator &operator++() {
    135       if (!Scope)
    136         return *this;
    137 
    138       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    139       --VarIter;
    140       if (VarIter == 0)
    141         *this = Scope->Prev;
    142       return *this;
    143     }
    144     const_iterator operator++(int) {
    145       const_iterator P = *this;
    146       ++*this;
    147       return P;
    148     }
    149 
    150     bool operator==(const const_iterator &rhs) const {
    151       return Scope == rhs.Scope && VarIter == rhs.VarIter;
    152     }
    153     bool operator!=(const const_iterator &rhs) const {
    154       return !(*this == rhs);
    155     }
    156 
    157     operator bool() const {
    158       return *this != const_iterator();
    159     }
    160 
    161     int distance(const_iterator L);
    162   };
    163 
    164   friend class const_iterator;
    165 
    166 private:
    167   BumpVectorContext ctx;
    168 
    169   /// Automatic variables in order of declaration.
    170   AutomaticVarsTy Vars;
    171   /// Iterator to variable in previous scope that was declared just before
    172   /// begin of this scope.
    173   const_iterator Prev;
    174 
    175 public:
    176   /// Constructs empty scope linked to previous scope in specified place.
    177   LocalScope(BumpVectorContext &ctx, const_iterator P)
    178       : ctx(ctx), Vars(ctx, 4), Prev(P) {}
    179 
    180   /// Begin of scope in direction of CFG building (backwards).
    181   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
    182 
    183   void addVar(VarDecl *VD) {
    184     Vars.push_back(VD, ctx);
    185   }
    186 };
    187 
    188 /// distance - Calculates distance from this to L. L must be reachable from this
    189 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
    190 /// number of scopes between this and L.
    191 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
    192   int D = 0;
    193   const_iterator F = *this;
    194   while (F.Scope != L.Scope) {
    195     assert (F != const_iterator()
    196         && "L iterator is not reachable from F iterator.");
    197     D += F.VarIter;
    198     F = F.Scope->Prev;
    199   }
    200   D += F.VarIter - L.VarIter;
    201   return D;
    202 }
    203 
    204 /// BlockScopePosPair - Structure for specifying position in CFG during its
    205 /// build process. It consists of CFGBlock that specifies position in CFG graph
    206 /// and  LocalScope::const_iterator that specifies position in LocalScope graph.
    207 struct BlockScopePosPair {
    208   BlockScopePosPair() : block(0) {}
    209   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
    210       : block(b), scopePosition(scopePos) {}
    211 
    212   CFGBlock *block;
    213   LocalScope::const_iterator scopePosition;
    214 };
    215 
    216 /// TryResult - a class representing a variant over the values
    217 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
    218 ///  and is used by the CFGBuilder to decide if a branch condition
    219 ///  can be decided up front during CFG construction.
    220 class TryResult {
    221   int X;
    222 public:
    223   TryResult(bool b) : X(b ? 1 : 0) {}
    224   TryResult() : X(-1) {}
    225 
    226   bool isTrue() const { return X == 1; }
    227   bool isFalse() const { return X == 0; }
    228   bool isKnown() const { return X >= 0; }
    229   void negate() {
    230     assert(isKnown());
    231     X ^= 0x1;
    232   }
    233 };
    234 
    235 /// CFGBuilder - This class implements CFG construction from an AST.
    236 ///   The builder is stateful: an instance of the builder should be used to only
    237 ///   construct a single CFG.
    238 ///
    239 ///   Example usage:
    240 ///
    241 ///     CFGBuilder builder;
    242 ///     CFG* cfg = builder.BuildAST(stmt1);
    243 ///
    244 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
    245 ///  the AST in reverse order so that the successor of a basic block is
    246 ///  constructed prior to its predecessor.  This allows us to nicely capture
    247 ///  implicit fall-throughs without extra basic blocks.
    248 ///
    249 class CFGBuilder {
    250   typedef BlockScopePosPair JumpTarget;
    251   typedef BlockScopePosPair JumpSource;
    252 
    253   ASTContext *Context;
    254   OwningPtr<CFG> cfg;
    255 
    256   CFGBlock *Block;
    257   CFGBlock *Succ;
    258   JumpTarget ContinueJumpTarget;
    259   JumpTarget BreakJumpTarget;
    260   CFGBlock *SwitchTerminatedBlock;
    261   CFGBlock *DefaultCaseBlock;
    262   CFGBlock *TryTerminatedBlock;
    263 
    264   // Current position in local scope.
    265   LocalScope::const_iterator ScopePos;
    266 
    267   // LabelMap records the mapping from Label expressions to their jump targets.
    268   typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
    269   LabelMapTy LabelMap;
    270 
    271   // A list of blocks that end with a "goto" that must be backpatched to their
    272   // resolved targets upon completion of CFG construction.
    273   typedef std::vector<JumpSource> BackpatchBlocksTy;
    274   BackpatchBlocksTy BackpatchBlocks;
    275 
    276   // A list of labels whose address has been taken (for indirect gotos).
    277   typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
    278   LabelSetTy AddressTakenLabels;
    279 
    280   bool badCFG;
    281   const CFG::BuildOptions &BuildOpts;
    282 
    283   // State to track for building switch statements.
    284   bool switchExclusivelyCovered;
    285   Expr::EvalResult *switchCond;
    286 
    287   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
    288   const Stmt *lastLookup;
    289 
    290   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
    291   // during construction of branches for chained logical operators.
    292   typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
    293   CachedBoolEvalsTy CachedBoolEvals;
    294 
    295 public:
    296   explicit CFGBuilder(ASTContext *astContext,
    297                       const CFG::BuildOptions &buildOpts)
    298     : Context(astContext), cfg(new CFG()), // crew a new CFG
    299       Block(NULL), Succ(NULL),
    300       SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
    301       TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
    302       switchExclusivelyCovered(false), switchCond(0),
    303       cachedEntry(0), lastLookup(0) {}
    304 
    305   // buildCFG - Used by external clients to construct the CFG.
    306   CFG* buildCFG(const Decl *D, Stmt *Statement);
    307 
    308   bool alwaysAdd(const Stmt *stmt);
    309 
    310 private:
    311   // Visitors to walk an AST and construct the CFG.
    312   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
    313   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
    314   CFGBlock *VisitBreakStmt(BreakStmt *B);
    315   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
    316   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
    317       AddStmtChoice asc);
    318   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
    319   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
    320   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
    321   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
    322                                       AddStmtChoice asc);
    323   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
    324   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
    325                                        AddStmtChoice asc);
    326   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
    327                                         AddStmtChoice asc);
    328   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
    329   CFGBlock *VisitCaseStmt(CaseStmt *C);
    330   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
    331   CFGBlock *VisitCompoundStmt(CompoundStmt *C);
    332   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
    333                                      AddStmtChoice asc);
    334   CFGBlock *VisitContinueStmt(ContinueStmt *C);
    335   CFGBlock *VisitDeclStmt(DeclStmt *DS);
    336   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
    337   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
    338   CFGBlock *VisitDoStmt(DoStmt *D);
    339   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
    340   CFGBlock *VisitForStmt(ForStmt *F);
    341   CFGBlock *VisitGotoStmt(GotoStmt *G);
    342   CFGBlock *VisitIfStmt(IfStmt *I);
    343   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
    344   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
    345   CFGBlock *VisitLabelStmt(LabelStmt *L);
    346   CFGBlock *VisitLambdaExpr(LambdaExpr *L);
    347   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
    348   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
    349   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
    350   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
    351   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
    352   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
    353   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
    354   CFGBlock *VisitReturnStmt(ReturnStmt *R);
    355   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
    356   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
    357                                           AddStmtChoice asc);
    358   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
    359   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
    360   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
    361   CFGBlock *VisitWhileStmt(WhileStmt *W);
    362 
    363   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
    364   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
    365   CFGBlock *VisitChildren(Stmt *S);
    366   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
    367 
    368   // Visitors to walk an AST and generate destructors of temporaries in
    369   // full expression.
    370   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
    371   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
    372   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
    373   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
    374       bool BindToTemporary);
    375   CFGBlock *
    376   VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
    377                                             bool BindToTemporary);
    378 
    379   // NYS == Not Yet Supported
    380   CFGBlock *NYS() {
    381     badCFG = true;
    382     return Block;
    383   }
    384 
    385   void autoCreateBlock() { if (!Block) Block = createBlock(); }
    386   CFGBlock *createBlock(bool add_successor = true);
    387   CFGBlock *createNoReturnBlock();
    388 
    389   CFGBlock *addStmt(Stmt *S) {
    390     return Visit(S, AddStmtChoice::AlwaysAdd);
    391   }
    392   CFGBlock *addInitializer(CXXCtorInitializer *I);
    393   void addAutomaticObjDtors(LocalScope::const_iterator B,
    394                             LocalScope::const_iterator E, Stmt *S);
    395   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
    396 
    397   // Local scopes creation.
    398   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
    399 
    400   void addLocalScopeForStmt(Stmt *S);
    401   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
    402   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
    403 
    404   void addLocalScopeAndDtors(Stmt *S);
    405 
    406   // Interface to CFGBlock - adding CFGElements.
    407   void appendStmt(CFGBlock *B, const Stmt *S) {
    408     if (alwaysAdd(S) && cachedEntry)
    409       cachedEntry->second = B;
    410 
    411     // All block-level expressions should have already been IgnoreParens()ed.
    412     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
    413     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
    414   }
    415   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
    416     B->appendInitializer(I, cfg->getBumpVectorContext());
    417   }
    418   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
    419     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
    420   }
    421   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
    422     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
    423   }
    424   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
    425     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
    426   }
    427   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
    428     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
    429   }
    430 
    431   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
    432       LocalScope::const_iterator B, LocalScope::const_iterator E);
    433 
    434   void addSuccessor(CFGBlock *B, CFGBlock *S) {
    435     B->addSuccessor(S, cfg->getBumpVectorContext());
    436   }
    437 
    438   /// Try and evaluate an expression to an integer constant.
    439   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
    440     if (!BuildOpts.PruneTriviallyFalseEdges)
    441       return false;
    442     return !S->isTypeDependent() &&
    443            !S->isValueDependent() &&
    444            S->EvaluateAsRValue(outResult, *Context);
    445   }
    446 
    447   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
    448   /// if we can evaluate to a known value, otherwise return -1.
    449   TryResult tryEvaluateBool(Expr *S) {
    450     if (!BuildOpts.PruneTriviallyFalseEdges ||
    451         S->isTypeDependent() || S->isValueDependent())
    452       return TryResult();
    453 
    454     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
    455       if (Bop->isLogicalOp()) {
    456         // Check the cache first.
    457         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
    458         if (I != CachedBoolEvals.end())
    459           return I->second; // already in map;
    460 
    461         // Retrieve result at first, or the map might be updated.
    462         TryResult Result = evaluateAsBooleanConditionNoCache(S);
    463         CachedBoolEvals[S] = Result; // update or insert
    464         return Result;
    465       }
    466     }
    467 
    468     return evaluateAsBooleanConditionNoCache(S);
    469   }
    470 
    471   /// \brief Evaluate as boolean \param E without using the cache.
    472   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
    473     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
    474       if (Bop->isLogicalOp()) {
    475         TryResult LHS = tryEvaluateBool(Bop->getLHS());
    476         if (LHS.isKnown()) {
    477           // We were able to evaluate the LHS, see if we can get away with not
    478           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
    479           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    480             return LHS.isTrue();
    481 
    482           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    483           if (RHS.isKnown()) {
    484             if (Bop->getOpcode() == BO_LOr)
    485               return LHS.isTrue() || RHS.isTrue();
    486             else
    487               return LHS.isTrue() && RHS.isTrue();
    488           }
    489         } else {
    490           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    491           if (RHS.isKnown()) {
    492             // We can't evaluate the LHS; however, sometimes the result
    493             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
    494             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    495               return RHS.isTrue();
    496           }
    497         }
    498 
    499         return TryResult();
    500       }
    501     }
    502 
    503     bool Result;
    504     if (E->EvaluateAsBooleanCondition(Result, *Context))
    505       return Result;
    506 
    507     return TryResult();
    508   }
    509 
    510 };
    511 
    512 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
    513                                      const Stmt *stmt) const {
    514   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
    515 }
    516 
    517 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
    518   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
    519 
    520   if (!BuildOpts.forcedBlkExprs)
    521     return shouldAdd;
    522 
    523   if (lastLookup == stmt) {
    524     if (cachedEntry) {
    525       assert(cachedEntry->first == stmt);
    526       return true;
    527     }
    528     return shouldAdd;
    529   }
    530 
    531   lastLookup = stmt;
    532 
    533   // Perform the lookup!
    534   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
    535 
    536   if (!fb) {
    537     // No need to update 'cachedEntry', since it will always be null.
    538     assert(cachedEntry == 0);
    539     return shouldAdd;
    540   }
    541 
    542   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
    543   if (itr == fb->end()) {
    544     cachedEntry = 0;
    545     return shouldAdd;
    546   }
    547 
    548   cachedEntry = &*itr;
    549   return true;
    550 }
    551 
    552 // FIXME: Add support for dependent-sized array types in C++?
    553 // Does it even make sense to build a CFG for an uninstantiated template?
    554 static const VariableArrayType *FindVA(const Type *t) {
    555   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
    556     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
    557       if (vat->getSizeExpr())
    558         return vat;
    559 
    560     t = vt->getElementType().getTypePtr();
    561   }
    562 
    563   return 0;
    564 }
    565 
    566 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
    567 ///  arbitrary statement.  Examples include a single expression or a function
    568 ///  body (compound statement).  The ownership of the returned CFG is
    569 ///  transferred to the caller.  If CFG construction fails, this method returns
    570 ///  NULL.
    571 CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
    572   assert(cfg.get());
    573   if (!Statement)
    574     return NULL;
    575 
    576   // Create an empty block that will serve as the exit block for the CFG.  Since
    577   // this is the first block added to the CFG, it will be implicitly registered
    578   // as the exit block.
    579   Succ = createBlock();
    580   assert(Succ == &cfg->getExit());
    581   Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
    582 
    583   if (BuildOpts.AddImplicitDtors)
    584     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
    585       addImplicitDtorsForDestructor(DD);
    586 
    587   // Visit the statements and create the CFG.
    588   CFGBlock *B = addStmt(Statement);
    589 
    590   if (badCFG)
    591     return NULL;
    592 
    593   // For C++ constructor add initializers to CFG.
    594   if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
    595     for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
    596         E = CD->init_rend(); I != E; ++I) {
    597       B = addInitializer(*I);
    598       if (badCFG)
    599         return NULL;
    600     }
    601   }
    602 
    603   if (B)
    604     Succ = B;
    605 
    606   // Backpatch the gotos whose label -> block mappings we didn't know when we
    607   // encountered them.
    608   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
    609                                    E = BackpatchBlocks.end(); I != E; ++I ) {
    610 
    611     CFGBlock *B = I->block;
    612     GotoStmt *G = cast<GotoStmt>(B->getTerminator());
    613     LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
    614 
    615     // If there is no target for the goto, then we are looking at an
    616     // incomplete AST.  Handle this by not registering a successor.
    617     if (LI == LabelMap.end()) continue;
    618 
    619     JumpTarget JT = LI->second;
    620     prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
    621                                            JT.scopePosition);
    622     addSuccessor(B, JT.block);
    623   }
    624 
    625   // Add successors to the Indirect Goto Dispatch block (if we have one).
    626   if (CFGBlock *B = cfg->getIndirectGotoBlock())
    627     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
    628                               E = AddressTakenLabels.end(); I != E; ++I ) {
    629 
    630       // Lookup the target block.
    631       LabelMapTy::iterator LI = LabelMap.find(*I);
    632 
    633       // If there is no target block that contains label, then we are looking
    634       // at an incomplete AST.  Handle this by not registering a successor.
    635       if (LI == LabelMap.end()) continue;
    636 
    637       addSuccessor(B, LI->second.block);
    638     }
    639 
    640   // Create an empty entry block that has no predecessors.
    641   cfg->setEntry(createBlock());
    642 
    643   return cfg.take();
    644 }
    645 
    646 /// createBlock - Used to lazily create blocks that are connected
    647 ///  to the current (global) succcessor.
    648 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
    649   CFGBlock *B = cfg->createBlock();
    650   if (add_successor && Succ)
    651     addSuccessor(B, Succ);
    652   return B;
    653 }
    654 
    655 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
    656 /// CFG. It is *not* connected to the current (global) successor, and instead
    657 /// directly tied to the exit block in order to be reachable.
    658 CFGBlock *CFGBuilder::createNoReturnBlock() {
    659   CFGBlock *B = createBlock(false);
    660   B->setHasNoReturnElement();
    661   addSuccessor(B, &cfg->getExit());
    662   return B;
    663 }
    664 
    665 /// addInitializer - Add C++ base or member initializer element to CFG.
    666 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
    667   if (!BuildOpts.AddInitializers)
    668     return Block;
    669 
    670   bool IsReference = false;
    671   bool HasTemporaries = false;
    672 
    673   // Destructors of temporaries in initialization expression should be called
    674   // after initialization finishes.
    675   Expr *Init = I->getInit();
    676   if (Init) {
    677     if (FieldDecl *FD = I->getAnyMember())
    678       IsReference = FD->getType()->isReferenceType();
    679     HasTemporaries = isa<ExprWithCleanups>(Init);
    680 
    681     if (BuildOpts.AddImplicitDtors && HasTemporaries) {
    682       // Generate destructors for temporaries in initialization expression.
    683       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
    684           IsReference);
    685     }
    686   }
    687 
    688   autoCreateBlock();
    689   appendInitializer(Block, I);
    690 
    691   if (Init) {
    692     if (HasTemporaries) {
    693       // For expression with temporaries go directly to subexpression to omit
    694       // generating destructors for the second time.
    695       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
    696     }
    697     return Visit(Init);
    698   }
    699 
    700   return Block;
    701 }
    702 
    703 /// \brief Retrieve the type of the temporary object whose lifetime was
    704 /// extended by a local reference with the given initializer.
    705 static QualType getReferenceInitTemporaryType(ASTContext &Context,
    706                                               const Expr *Init) {
    707   while (true) {
    708     // Skip parentheses.
    709     Init = Init->IgnoreParens();
    710 
    711     // Skip through cleanups.
    712     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
    713       Init = EWC->getSubExpr();
    714       continue;
    715     }
    716 
    717     // Skip through the temporary-materialization expression.
    718     if (const MaterializeTemporaryExpr *MTE
    719           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
    720       Init = MTE->GetTemporaryExpr();
    721       continue;
    722     }
    723 
    724     // Skip derived-to-base and no-op casts.
    725     if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
    726       if ((CE->getCastKind() == CK_DerivedToBase ||
    727            CE->getCastKind() == CK_UncheckedDerivedToBase ||
    728            CE->getCastKind() == CK_NoOp) &&
    729           Init->getType()->isRecordType()) {
    730         Init = CE->getSubExpr();
    731         continue;
    732       }
    733     }
    734 
    735     // Skip member accesses into rvalues.
    736     if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
    737       if (!ME->isArrow() && ME->getBase()->isRValue()) {
    738         Init = ME->getBase();
    739         continue;
    740       }
    741     }
    742 
    743     break;
    744   }
    745 
    746   return Init->getType();
    747 }
    748 
    749 /// addAutomaticObjDtors - Add to current block automatic objects destructors
    750 /// for objects in range of local scope positions. Use S as trigger statement
    751 /// for destructors.
    752 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
    753                                       LocalScope::const_iterator E, Stmt *S) {
    754   if (!BuildOpts.AddImplicitDtors)
    755     return;
    756 
    757   if (B == E)
    758     return;
    759 
    760   // We need to append the destructors in reverse order, but any one of them
    761   // may be a no-return destructor which changes the CFG. As a result, buffer
    762   // this sequence up and replay them in reverse order when appending onto the
    763   // CFGBlock(s).
    764   SmallVector<VarDecl*, 10> Decls;
    765   Decls.reserve(B.distance(E));
    766   for (LocalScope::const_iterator I = B; I != E; ++I)
    767     Decls.push_back(*I);
    768 
    769   for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
    770                                                    E = Decls.rend();
    771        I != E; ++I) {
    772     // If this destructor is marked as a no-return destructor, we need to
    773     // create a new block for the destructor which does not have as a successor
    774     // anything built thus far: control won't flow out of this block.
    775     QualType Ty;
    776     if ((*I)->getType()->isReferenceType()) {
    777       Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
    778     } else {
    779       Ty = Context->getBaseElementType((*I)->getType());
    780     }
    781 
    782     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
    783     if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
    784       Block = createNoReturnBlock();
    785     else
    786       autoCreateBlock();
    787 
    788     appendAutomaticObjDtor(Block, *I, S);
    789   }
    790 }
    791 
    792 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
    793 /// base and member objects in destructor.
    794 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
    795   assert (BuildOpts.AddImplicitDtors
    796       && "Can be called only when dtors should be added");
    797   const CXXRecordDecl *RD = DD->getParent();
    798 
    799   // At the end destroy virtual base objects.
    800   for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
    801       VE = RD->vbases_end(); VI != VE; ++VI) {
    802     const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
    803     if (!CD->hasTrivialDestructor()) {
    804       autoCreateBlock();
    805       appendBaseDtor(Block, VI);
    806     }
    807   }
    808 
    809   // Before virtual bases destroy direct base objects.
    810   for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
    811       BE = RD->bases_end(); BI != BE; ++BI) {
    812     if (!BI->isVirtual()) {
    813       const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
    814       if (!CD->hasTrivialDestructor()) {
    815         autoCreateBlock();
    816         appendBaseDtor(Block, BI);
    817       }
    818     }
    819   }
    820 
    821   // First destroy member objects.
    822   for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
    823       FE = RD->field_end(); FI != FE; ++FI) {
    824     // Check for constant size array. Set type to array element type.
    825     QualType QT = FI->getType();
    826     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
    827       if (AT->getSize() == 0)
    828         continue;
    829       QT = AT->getElementType();
    830     }
    831 
    832     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
    833       if (!CD->hasTrivialDestructor()) {
    834         autoCreateBlock();
    835         appendMemberDtor(Block, *FI);
    836       }
    837   }
    838 }
    839 
    840 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
    841 /// way return valid LocalScope object.
    842 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
    843   if (!Scope) {
    844     llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
    845     Scope = alloc.Allocate<LocalScope>();
    846     BumpVectorContext ctx(alloc);
    847     new (Scope) LocalScope(ctx, ScopePos);
    848   }
    849   return Scope;
    850 }
    851 
    852 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
    853 /// that should create implicit scope (e.g. if/else substatements).
    854 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
    855   if (!BuildOpts.AddImplicitDtors)
    856     return;
    857 
    858   LocalScope *Scope = 0;
    859 
    860   // For compound statement we will be creating explicit scope.
    861   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    862     for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
    863         ; BI != BE; ++BI) {
    864       Stmt *SI = (*BI)->stripLabelLikeStatements();
    865       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
    866         Scope = addLocalScopeForDeclStmt(DS, Scope);
    867     }
    868     return;
    869   }
    870 
    871   // For any other statement scope will be implicit and as such will be
    872   // interesting only for DeclStmt.
    873   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
    874     addLocalScopeForDeclStmt(DS);
    875 }
    876 
    877 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
    878 /// reuse Scope if not NULL.
    879 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
    880                                                  LocalScope* Scope) {
    881   if (!BuildOpts.AddImplicitDtors)
    882     return Scope;
    883 
    884   for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
    885       ; DI != DE; ++DI) {
    886     if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
    887       Scope = addLocalScopeForVarDecl(VD, Scope);
    888   }
    889   return Scope;
    890 }
    891 
    892 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
    893 /// create add scope for automatic objects and temporary objects bound to
    894 /// const reference. Will reuse Scope if not NULL.
    895 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
    896                                                 LocalScope* Scope) {
    897   if (!BuildOpts.AddImplicitDtors)
    898     return Scope;
    899 
    900   // Check if variable is local.
    901   switch (VD->getStorageClass()) {
    902   case SC_None:
    903   case SC_Auto:
    904   case SC_Register:
    905     break;
    906   default: return Scope;
    907   }
    908 
    909   // Check for const references bound to temporary. Set type to pointee.
    910   QualType QT = VD->getType();
    911   if (QT.getTypePtr()->isReferenceType()) {
    912     if (!VD->extendsLifetimeOfTemporary())
    913       return Scope;
    914 
    915     QT = getReferenceInitTemporaryType(*Context, VD->getInit());
    916   }
    917 
    918   // Check for constant size array. Set type to array element type.
    919   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
    920     if (AT->getSize() == 0)
    921       return Scope;
    922     QT = AT->getElementType();
    923   }
    924 
    925   // Check if type is a C++ class with non-trivial destructor.
    926   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
    927     if (!CD->hasTrivialDestructor()) {
    928       // Add the variable to scope
    929       Scope = createOrReuseLocalScope(Scope);
    930       Scope->addVar(VD);
    931       ScopePos = Scope->begin();
    932     }
    933   return Scope;
    934 }
    935 
    936 /// addLocalScopeAndDtors - For given statement add local scope for it and
    937 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
    938 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
    939   if (!BuildOpts.AddImplicitDtors)
    940     return;
    941 
    942   LocalScope::const_iterator scopeBeginPos = ScopePos;
    943   addLocalScopeForStmt(S);
    944   addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
    945 }
    946 
    947 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
    948 /// variables with automatic storage duration to CFGBlock's elements vector.
    949 /// Elements will be prepended to physical beginning of the vector which
    950 /// happens to be logical end. Use blocks terminator as statement that specifies
    951 /// destructors call site.
    952 /// FIXME: This mechanism for adding automatic destructors doesn't handle
    953 /// no-return destructors properly.
    954 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
    955     LocalScope::const_iterator B, LocalScope::const_iterator E) {
    956   BumpVectorContext &C = cfg->getBumpVectorContext();
    957   CFGBlock::iterator InsertPos
    958     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
    959   for (LocalScope::const_iterator I = B; I != E; ++I)
    960     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
    961                                             Blk->getTerminator());
    962 }
    963 
    964 /// Visit - Walk the subtree of a statement and add extra
    965 ///   blocks for ternary operators, &&, and ||.  We also process "," and
    966 ///   DeclStmts (which may contain nested control-flow).
    967 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
    968   if (!S) {
    969     badCFG = true;
    970     return 0;
    971   }
    972 
    973   if (Expr *E = dyn_cast<Expr>(S))
    974     S = E->IgnoreParens();
    975 
    976   switch (S->getStmtClass()) {
    977     default:
    978       return VisitStmt(S, asc);
    979 
    980     case Stmt::AddrLabelExprClass:
    981       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
    982 
    983     case Stmt::BinaryConditionalOperatorClass:
    984       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
    985 
    986     case Stmt::BinaryOperatorClass:
    987       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
    988 
    989     case Stmt::BlockExprClass:
    990       return VisitNoRecurse(cast<Expr>(S), asc);
    991 
    992     case Stmt::BreakStmtClass:
    993       return VisitBreakStmt(cast<BreakStmt>(S));
    994 
    995     case Stmt::CallExprClass:
    996     case Stmt::CXXOperatorCallExprClass:
    997     case Stmt::CXXMemberCallExprClass:
    998     case Stmt::UserDefinedLiteralClass:
    999       return VisitCallExpr(cast<CallExpr>(S), asc);
   1000 
   1001     case Stmt::CaseStmtClass:
   1002       return VisitCaseStmt(cast<CaseStmt>(S));
   1003 
   1004     case Stmt::ChooseExprClass:
   1005       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
   1006 
   1007     case Stmt::CompoundStmtClass:
   1008       return VisitCompoundStmt(cast<CompoundStmt>(S));
   1009 
   1010     case Stmt::ConditionalOperatorClass:
   1011       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
   1012 
   1013     case Stmt::ContinueStmtClass:
   1014       return VisitContinueStmt(cast<ContinueStmt>(S));
   1015 
   1016     case Stmt::CXXCatchStmtClass:
   1017       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
   1018 
   1019     case Stmt::ExprWithCleanupsClass:
   1020       return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
   1021 
   1022     case Stmt::CXXBindTemporaryExprClass:
   1023       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
   1024 
   1025     case Stmt::CXXConstructExprClass:
   1026       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
   1027 
   1028     case Stmt::CXXFunctionalCastExprClass:
   1029       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
   1030 
   1031     case Stmt::CXXTemporaryObjectExprClass:
   1032       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
   1033 
   1034     case Stmt::CXXThrowExprClass:
   1035       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
   1036 
   1037     case Stmt::CXXTryStmtClass:
   1038       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
   1039 
   1040     case Stmt::CXXForRangeStmtClass:
   1041       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
   1042 
   1043     case Stmt::DeclStmtClass:
   1044       return VisitDeclStmt(cast<DeclStmt>(S));
   1045 
   1046     case Stmt::DefaultStmtClass:
   1047       return VisitDefaultStmt(cast<DefaultStmt>(S));
   1048 
   1049     case Stmt::DoStmtClass:
   1050       return VisitDoStmt(cast<DoStmt>(S));
   1051 
   1052     case Stmt::ForStmtClass:
   1053       return VisitForStmt(cast<ForStmt>(S));
   1054 
   1055     case Stmt::GotoStmtClass:
   1056       return VisitGotoStmt(cast<GotoStmt>(S));
   1057 
   1058     case Stmt::IfStmtClass:
   1059       return VisitIfStmt(cast<IfStmt>(S));
   1060 
   1061     case Stmt::ImplicitCastExprClass:
   1062       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
   1063 
   1064     case Stmt::IndirectGotoStmtClass:
   1065       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
   1066 
   1067     case Stmt::LabelStmtClass:
   1068       return VisitLabelStmt(cast<LabelStmt>(S));
   1069 
   1070     case Stmt::LambdaExprClass:
   1071       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
   1072 
   1073     case Stmt::AttributedStmtClass:
   1074       return Visit(cast<AttributedStmt>(S)->getSubStmt(), asc);
   1075 
   1076     case Stmt::MemberExprClass:
   1077       return VisitMemberExpr(cast<MemberExpr>(S), asc);
   1078 
   1079     case Stmt::NullStmtClass:
   1080       return Block;
   1081 
   1082     case Stmt::ObjCAtCatchStmtClass:
   1083       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
   1084 
   1085     case Stmt::ObjCAutoreleasePoolStmtClass:
   1086     return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
   1087 
   1088     case Stmt::ObjCAtSynchronizedStmtClass:
   1089       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
   1090 
   1091     case Stmt::ObjCAtThrowStmtClass:
   1092       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
   1093 
   1094     case Stmt::ObjCAtTryStmtClass:
   1095       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
   1096 
   1097     case Stmt::ObjCForCollectionStmtClass:
   1098       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
   1099 
   1100     case Stmt::OpaqueValueExprClass:
   1101       return Block;
   1102 
   1103     case Stmt::PseudoObjectExprClass:
   1104       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
   1105 
   1106     case Stmt::ReturnStmtClass:
   1107       return VisitReturnStmt(cast<ReturnStmt>(S));
   1108 
   1109     case Stmt::UnaryExprOrTypeTraitExprClass:
   1110       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
   1111                                            asc);
   1112 
   1113     case Stmt::StmtExprClass:
   1114       return VisitStmtExpr(cast<StmtExpr>(S), asc);
   1115 
   1116     case Stmt::SwitchStmtClass:
   1117       return VisitSwitchStmt(cast<SwitchStmt>(S));
   1118 
   1119     case Stmt::UnaryOperatorClass:
   1120       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
   1121 
   1122     case Stmt::WhileStmtClass:
   1123       return VisitWhileStmt(cast<WhileStmt>(S));
   1124   }
   1125 }
   1126 
   1127 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
   1128   if (asc.alwaysAdd(*this, S)) {
   1129     autoCreateBlock();
   1130     appendStmt(Block, S);
   1131   }
   1132 
   1133   return VisitChildren(S);
   1134 }
   1135 
   1136 /// VisitChildren - Visit the children of a Stmt.
   1137 CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
   1138   CFGBlock *lastBlock = Block;
   1139   for (Stmt::child_range I = Terminator->children(); I; ++I)
   1140     if (Stmt *child = *I)
   1141       if (CFGBlock *b = Visit(child))
   1142         lastBlock = b;
   1143 
   1144   return lastBlock;
   1145 }
   1146 
   1147 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
   1148                                          AddStmtChoice asc) {
   1149   AddressTakenLabels.insert(A->getLabel());
   1150 
   1151   if (asc.alwaysAdd(*this, A)) {
   1152     autoCreateBlock();
   1153     appendStmt(Block, A);
   1154   }
   1155 
   1156   return Block;
   1157 }
   1158 
   1159 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
   1160            AddStmtChoice asc) {
   1161   if (asc.alwaysAdd(*this, U)) {
   1162     autoCreateBlock();
   1163     appendStmt(Block, U);
   1164   }
   1165 
   1166   return Visit(U->getSubExpr(), AddStmtChoice());
   1167 }
   1168 
   1169 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
   1170                                           AddStmtChoice asc) {
   1171   if (B->isLogicalOp()) { // && or ||
   1172     CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1173     appendStmt(ConfluenceBlock, B);
   1174 
   1175     if (badCFG)
   1176       return 0;
   1177 
   1178     // create the block evaluating the LHS
   1179     CFGBlock *LHSBlock = createBlock(false);
   1180     LHSBlock->setTerminator(B);
   1181 
   1182     // create the block evaluating the RHS
   1183     Succ = ConfluenceBlock;
   1184     Block = NULL;
   1185     CFGBlock *RHSBlock = addStmt(B->getRHS());
   1186 
   1187     if (RHSBlock) {
   1188       if (badCFG)
   1189         return 0;
   1190     } else {
   1191       // Create an empty block for cases where the RHS doesn't require
   1192       // any explicit statements in the CFG.
   1193       RHSBlock = createBlock();
   1194     }
   1195 
   1196     // Generate the blocks for evaluating the LHS.
   1197     Block = LHSBlock;
   1198     CFGBlock *EntryLHSBlock = addStmt(B->getLHS());
   1199 
   1200     // See if this is a known constant.
   1201     TryResult KnownVal = tryEvaluateBool(B->getLHS());
   1202     if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
   1203       KnownVal.negate();
   1204 
   1205     // Now link the LHSBlock with RHSBlock.
   1206     if (B->getOpcode() == BO_LOr) {
   1207       addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
   1208       addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
   1209     } else {
   1210       assert(B->getOpcode() == BO_LAnd);
   1211       addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
   1212       addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
   1213     }
   1214 
   1215     return EntryLHSBlock;
   1216   }
   1217 
   1218   if (B->getOpcode() == BO_Comma) { // ,
   1219     autoCreateBlock();
   1220     appendStmt(Block, B);
   1221     addStmt(B->getRHS());
   1222     return addStmt(B->getLHS());
   1223   }
   1224 
   1225   if (B->isAssignmentOp()) {
   1226     if (asc.alwaysAdd(*this, B)) {
   1227       autoCreateBlock();
   1228       appendStmt(Block, B);
   1229     }
   1230     Visit(B->getLHS());
   1231     return Visit(B->getRHS());
   1232   }
   1233 
   1234   if (asc.alwaysAdd(*this, B)) {
   1235     autoCreateBlock();
   1236     appendStmt(Block, B);
   1237   }
   1238 
   1239   CFGBlock *RBlock = Visit(B->getRHS());
   1240   CFGBlock *LBlock = Visit(B->getLHS());
   1241   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
   1242   // containing a DoStmt, and the LHS doesn't create a new block, then we should
   1243   // return RBlock.  Otherwise we'll incorrectly return NULL.
   1244   return (LBlock ? LBlock : RBlock);
   1245 }
   1246 
   1247 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
   1248   if (asc.alwaysAdd(*this, E)) {
   1249     autoCreateBlock();
   1250     appendStmt(Block, E);
   1251   }
   1252   return Block;
   1253 }
   1254 
   1255 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
   1256   // "break" is a control-flow statement.  Thus we stop processing the current
   1257   // block.
   1258   if (badCFG)
   1259     return 0;
   1260 
   1261   // Now create a new block that ends with the break statement.
   1262   Block = createBlock(false);
   1263   Block->setTerminator(B);
   1264 
   1265   // If there is no target for the break, then we are looking at an incomplete
   1266   // AST.  This means that the CFG cannot be constructed.
   1267   if (BreakJumpTarget.block) {
   1268     addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
   1269     addSuccessor(Block, BreakJumpTarget.block);
   1270   } else
   1271     badCFG = true;
   1272 
   1273 
   1274   return Block;
   1275 }
   1276 
   1277 static bool CanThrow(Expr *E, ASTContext &Ctx) {
   1278   QualType Ty = E->getType();
   1279   if (Ty->isFunctionPointerType())
   1280     Ty = Ty->getAs<PointerType>()->getPointeeType();
   1281   else if (Ty->isBlockPointerType())
   1282     Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
   1283 
   1284   const FunctionType *FT = Ty->getAs<FunctionType>();
   1285   if (FT) {
   1286     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
   1287       if (Proto->getExceptionSpecType() != EST_Uninstantiated &&
   1288           Proto->isNothrow(Ctx))
   1289         return false;
   1290   }
   1291   return true;
   1292 }
   1293 
   1294 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
   1295   // Compute the callee type.
   1296   QualType calleeType = C->getCallee()->getType();
   1297   if (calleeType == Context->BoundMemberTy) {
   1298     QualType boundType = Expr::findBoundMemberType(C->getCallee());
   1299 
   1300     // We should only get a null bound type if processing a dependent
   1301     // CFG.  Recover by assuming nothing.
   1302     if (!boundType.isNull()) calleeType = boundType;
   1303   }
   1304 
   1305   // If this is a call to a no-return function, this stops the block here.
   1306   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
   1307 
   1308   bool AddEHEdge = false;
   1309 
   1310   // Languages without exceptions are assumed to not throw.
   1311   if (Context->getLangOpts().Exceptions) {
   1312     if (BuildOpts.AddEHEdges)
   1313       AddEHEdge = true;
   1314   }
   1315 
   1316   if (FunctionDecl *FD = C->getDirectCallee()) {
   1317     if (FD->hasAttr<NoReturnAttr>())
   1318       NoReturn = true;
   1319     if (FD->hasAttr<NoThrowAttr>())
   1320       AddEHEdge = false;
   1321   }
   1322 
   1323   if (!CanThrow(C->getCallee(), *Context))
   1324     AddEHEdge = false;
   1325 
   1326   if (!NoReturn && !AddEHEdge)
   1327     return VisitStmt(C, asc.withAlwaysAdd(true));
   1328 
   1329   if (Block) {
   1330     Succ = Block;
   1331     if (badCFG)
   1332       return 0;
   1333   }
   1334 
   1335   if (NoReturn)
   1336     Block = createNoReturnBlock();
   1337   else
   1338     Block = createBlock();
   1339 
   1340   appendStmt(Block, C);
   1341 
   1342   if (AddEHEdge) {
   1343     // Add exceptional edges.
   1344     if (TryTerminatedBlock)
   1345       addSuccessor(Block, TryTerminatedBlock);
   1346     else
   1347       addSuccessor(Block, &cfg->getExit());
   1348   }
   1349 
   1350   return VisitChildren(C);
   1351 }
   1352 
   1353 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
   1354                                       AddStmtChoice asc) {
   1355   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1356   appendStmt(ConfluenceBlock, C);
   1357   if (badCFG)
   1358     return 0;
   1359 
   1360   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1361   Succ = ConfluenceBlock;
   1362   Block = NULL;
   1363   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
   1364   if (badCFG)
   1365     return 0;
   1366 
   1367   Succ = ConfluenceBlock;
   1368   Block = NULL;
   1369   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
   1370   if (badCFG)
   1371     return 0;
   1372 
   1373   Block = createBlock(false);
   1374   // See if this is a known constant.
   1375   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   1376   addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
   1377   addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
   1378   Block->setTerminator(C);
   1379   return addStmt(C->getCond());
   1380 }
   1381 
   1382 
   1383 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
   1384   addLocalScopeAndDtors(C);
   1385   CFGBlock *LastBlock = Block;
   1386 
   1387   for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
   1388        I != E; ++I ) {
   1389     // If we hit a segment of code just containing ';' (NullStmts), we can
   1390     // get a null block back.  In such cases, just use the LastBlock
   1391     if (CFGBlock *newBlock = addStmt(*I))
   1392       LastBlock = newBlock;
   1393 
   1394     if (badCFG)
   1395       return NULL;
   1396   }
   1397 
   1398   return LastBlock;
   1399 }
   1400 
   1401 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
   1402                                                AddStmtChoice asc) {
   1403   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
   1404   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
   1405 
   1406   // Create the confluence block that will "merge" the results of the ternary
   1407   // expression.
   1408   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1409   appendStmt(ConfluenceBlock, C);
   1410   if (badCFG)
   1411     return 0;
   1412 
   1413   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1414 
   1415   // Create a block for the LHS expression if there is an LHS expression.  A
   1416   // GCC extension allows LHS to be NULL, causing the condition to be the
   1417   // value that is returned instead.
   1418   //  e.g: x ?: y is shorthand for: x ? x : y;
   1419   Succ = ConfluenceBlock;
   1420   Block = NULL;
   1421   CFGBlock *LHSBlock = 0;
   1422   const Expr *trueExpr = C->getTrueExpr();
   1423   if (trueExpr != opaqueValue) {
   1424     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
   1425     if (badCFG)
   1426       return 0;
   1427     Block = NULL;
   1428   }
   1429   else
   1430     LHSBlock = ConfluenceBlock;
   1431 
   1432   // Create the block for the RHS expression.
   1433   Succ = ConfluenceBlock;
   1434   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
   1435   if (badCFG)
   1436     return 0;
   1437 
   1438   // Create the block that will contain the condition.
   1439   Block = createBlock(false);
   1440 
   1441   // See if this is a known constant.
   1442   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   1443   addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
   1444   addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
   1445   Block->setTerminator(C);
   1446   Expr *condExpr = C->getCond();
   1447 
   1448   if (opaqueValue) {
   1449     // Run the condition expression if it's not trivially expressed in
   1450     // terms of the opaque value (or if there is no opaque value).
   1451     if (condExpr != opaqueValue)
   1452       addStmt(condExpr);
   1453 
   1454     // Before that, run the common subexpression if there was one.
   1455     // At least one of this or the above will be run.
   1456     return addStmt(BCO->getCommon());
   1457   }
   1458 
   1459   return addStmt(condExpr);
   1460 }
   1461 
   1462 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
   1463   // Check if the Decl is for an __label__.  If so, elide it from the
   1464   // CFG entirely.
   1465   if (isa<LabelDecl>(*DS->decl_begin()))
   1466     return Block;
   1467 
   1468   // This case also handles static_asserts.
   1469   if (DS->isSingleDecl())
   1470     return VisitDeclSubExpr(DS);
   1471 
   1472   CFGBlock *B = 0;
   1473 
   1474   // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
   1475   typedef SmallVector<Decl*,10> BufTy;
   1476   BufTy Buf(DS->decl_begin(), DS->decl_end());
   1477 
   1478   for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
   1479     // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
   1480     unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
   1481                ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
   1482 
   1483     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
   1484     // automatically freed with the CFG.
   1485     DeclGroupRef DG(*I);
   1486     Decl *D = *I;
   1487     void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
   1488     DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
   1489 
   1490     // Append the fake DeclStmt to block.
   1491     B = VisitDeclSubExpr(DSNew);
   1492   }
   1493 
   1494   return B;
   1495 }
   1496 
   1497 /// VisitDeclSubExpr - Utility method to add block-level expressions for
   1498 /// DeclStmts and initializers in them.
   1499 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
   1500   assert(DS->isSingleDecl() && "Can handle single declarations only.");
   1501   Decl *D = DS->getSingleDecl();
   1502 
   1503   if (isa<StaticAssertDecl>(D)) {
   1504     // static_asserts aren't added to the CFG because they do not impact
   1505     // runtime semantics.
   1506     return Block;
   1507   }
   1508 
   1509   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
   1510 
   1511   if (!VD) {
   1512     autoCreateBlock();
   1513     appendStmt(Block, DS);
   1514     return Block;
   1515   }
   1516 
   1517   bool IsReference = false;
   1518   bool HasTemporaries = false;
   1519 
   1520   // Destructors of temporaries in initialization expression should be called
   1521   // after initialization finishes.
   1522   Expr *Init = VD->getInit();
   1523   if (Init) {
   1524     IsReference = VD->getType()->isReferenceType();
   1525     HasTemporaries = isa<ExprWithCleanups>(Init);
   1526 
   1527     if (BuildOpts.AddImplicitDtors && HasTemporaries) {
   1528       // Generate destructors for temporaries in initialization expression.
   1529       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
   1530           IsReference);
   1531     }
   1532   }
   1533 
   1534   autoCreateBlock();
   1535   appendStmt(Block, DS);
   1536 
   1537   // Keep track of the last non-null block, as 'Block' can be nulled out
   1538   // if the initializer expression is something like a 'while' in a
   1539   // statement-expression.
   1540   CFGBlock *LastBlock = Block;
   1541 
   1542   if (Init) {
   1543     if (HasTemporaries) {
   1544       // For expression with temporaries go directly to subexpression to omit
   1545       // generating destructors for the second time.
   1546       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
   1547       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
   1548         LastBlock = newBlock;
   1549     }
   1550     else {
   1551       if (CFGBlock *newBlock = Visit(Init))
   1552         LastBlock = newBlock;
   1553     }
   1554   }
   1555 
   1556   // If the type of VD is a VLA, then we must process its size expressions.
   1557   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
   1558        VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
   1559     Block = addStmt(VA->getSizeExpr());
   1560 
   1561   // Remove variable from local scope.
   1562   if (ScopePos && VD == *ScopePos)
   1563     ++ScopePos;
   1564 
   1565   return Block ? Block : LastBlock;
   1566 }
   1567 
   1568 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
   1569   // We may see an if statement in the middle of a basic block, or it may be the
   1570   // first statement we are processing.  In either case, we create a new basic
   1571   // block.  First, we create the blocks for the then...else statements, and
   1572   // then we create the block containing the if statement.  If we were in the
   1573   // middle of a block, we stop processing that block.  That block is then the
   1574   // implicit successor for the "then" and "else" clauses.
   1575 
   1576   // Save local scope position because in case of condition variable ScopePos
   1577   // won't be restored when traversing AST.
   1578   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   1579 
   1580   // Create local scope for possible condition variable.
   1581   // Store scope position. Add implicit destructor.
   1582   if (VarDecl *VD = I->getConditionVariable()) {
   1583     LocalScope::const_iterator BeginScopePos = ScopePos;
   1584     addLocalScopeForVarDecl(VD);
   1585     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
   1586   }
   1587 
   1588   // The block we were processing is now finished.  Make it the successor
   1589   // block.
   1590   if (Block) {
   1591     Succ = Block;
   1592     if (badCFG)
   1593       return 0;
   1594   }
   1595 
   1596   // Process the false branch.
   1597   CFGBlock *ElseBlock = Succ;
   1598 
   1599   if (Stmt *Else = I->getElse()) {
   1600     SaveAndRestore<CFGBlock*> sv(Succ);
   1601 
   1602     // NULL out Block so that the recursive call to Visit will
   1603     // create a new basic block.
   1604     Block = NULL;
   1605 
   1606     // If branch is not a compound statement create implicit scope
   1607     // and add destructors.
   1608     if (!isa<CompoundStmt>(Else))
   1609       addLocalScopeAndDtors(Else);
   1610 
   1611     ElseBlock = addStmt(Else);
   1612 
   1613     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
   1614       ElseBlock = sv.get();
   1615     else if (Block) {
   1616       if (badCFG)
   1617         return 0;
   1618     }
   1619   }
   1620 
   1621   // Process the true branch.
   1622   CFGBlock *ThenBlock;
   1623   {
   1624     Stmt *Then = I->getThen();
   1625     assert(Then);
   1626     SaveAndRestore<CFGBlock*> sv(Succ);
   1627     Block = NULL;
   1628 
   1629     // If branch is not a compound statement create implicit scope
   1630     // and add destructors.
   1631     if (!isa<CompoundStmt>(Then))
   1632       addLocalScopeAndDtors(Then);
   1633 
   1634     ThenBlock = addStmt(Then);
   1635 
   1636     if (!ThenBlock) {
   1637       // We can reach here if the "then" body has all NullStmts.
   1638       // Create an empty block so we can distinguish between true and false
   1639       // branches in path-sensitive analyses.
   1640       ThenBlock = createBlock(false);
   1641       addSuccessor(ThenBlock, sv.get());
   1642     } else if (Block) {
   1643       if (badCFG)
   1644         return 0;
   1645     }
   1646   }
   1647 
   1648   // Now create a new block containing the if statement.
   1649   Block = createBlock(false);
   1650 
   1651   // Set the terminator of the new block to the If statement.
   1652   Block->setTerminator(I);
   1653 
   1654   // See if this is a known constant.
   1655   const TryResult &KnownVal = tryEvaluateBool(I->getCond());
   1656 
   1657   // Now add the successors.
   1658   addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
   1659   addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
   1660 
   1661   // Add the condition as the last statement in the new block.  This may create
   1662   // new blocks as the condition may contain control-flow.  Any newly created
   1663   // blocks will be pointed to be "Block".
   1664   Block = addStmt(I->getCond());
   1665 
   1666   // Finally, if the IfStmt contains a condition variable, add both the IfStmt
   1667   // and the condition variable initialization to the CFG.
   1668   if (VarDecl *VD = I->getConditionVariable()) {
   1669     if (Expr *Init = VD->getInit()) {
   1670       autoCreateBlock();
   1671       appendStmt(Block, I->getConditionVariableDeclStmt());
   1672       addStmt(Init);
   1673     }
   1674   }
   1675 
   1676   return Block;
   1677 }
   1678 
   1679 
   1680 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
   1681   // If we were in the middle of a block we stop processing that block.
   1682   //
   1683   // NOTE: If a "return" appears in the middle of a block, this means that the
   1684   //       code afterwards is DEAD (unreachable).  We still keep a basic block
   1685   //       for that code; a simple "mark-and-sweep" from the entry block will be
   1686   //       able to report such dead blocks.
   1687 
   1688   // Create the new block.
   1689   Block = createBlock(false);
   1690 
   1691   // The Exit block is the only successor.
   1692   addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
   1693   addSuccessor(Block, &cfg->getExit());
   1694 
   1695   // Add the return statement to the block.  This may create new blocks if R
   1696   // contains control-flow (short-circuit operations).
   1697   return VisitStmt(R, AddStmtChoice::AlwaysAdd);
   1698 }
   1699 
   1700 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
   1701   // Get the block of the labeled statement.  Add it to our map.
   1702   addStmt(L->getSubStmt());
   1703   CFGBlock *LabelBlock = Block;
   1704 
   1705   if (!LabelBlock)              // This can happen when the body is empty, i.e.
   1706     LabelBlock = createBlock(); // scopes that only contains NullStmts.
   1707 
   1708   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
   1709          "label already in map");
   1710   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
   1711 
   1712   // Labels partition blocks, so this is the end of the basic block we were
   1713   // processing (L is the block's label).  Because this is label (and we have
   1714   // already processed the substatement) there is no extra control-flow to worry
   1715   // about.
   1716   LabelBlock->setLabel(L);
   1717   if (badCFG)
   1718     return 0;
   1719 
   1720   // We set Block to NULL to allow lazy creation of a new block (if necessary);
   1721   Block = NULL;
   1722 
   1723   // This block is now the implicit successor of other blocks.
   1724   Succ = LabelBlock;
   1725 
   1726   return LabelBlock;
   1727 }
   1728 
   1729 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
   1730   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
   1731   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
   1732        et = E->capture_init_end(); it != et; ++it) {
   1733     if (Expr *Init = *it) {
   1734       CFGBlock *Tmp = Visit(Init);
   1735       if (Tmp != 0)
   1736         LastBlock = Tmp;
   1737     }
   1738   }
   1739   return LastBlock;
   1740 }
   1741 
   1742 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
   1743   // Goto is a control-flow statement.  Thus we stop processing the current
   1744   // block and create a new one.
   1745 
   1746   Block = createBlock(false);
   1747   Block->setTerminator(G);
   1748 
   1749   // If we already know the mapping to the label block add the successor now.
   1750   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
   1751 
   1752   if (I == LabelMap.end())
   1753     // We will need to backpatch this block later.
   1754     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
   1755   else {
   1756     JumpTarget JT = I->second;
   1757     addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
   1758     addSuccessor(Block, JT.block);
   1759   }
   1760 
   1761   return Block;
   1762 }
   1763 
   1764 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
   1765   CFGBlock *LoopSuccessor = NULL;
   1766 
   1767   // Save local scope position because in case of condition variable ScopePos
   1768   // won't be restored when traversing AST.
   1769   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   1770 
   1771   // Create local scope for init statement and possible condition variable.
   1772   // Add destructor for init statement and condition variable.
   1773   // Store scope position for continue statement.
   1774   if (Stmt *Init = F->getInit())
   1775     addLocalScopeForStmt(Init);
   1776   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   1777 
   1778   if (VarDecl *VD = F->getConditionVariable())
   1779     addLocalScopeForVarDecl(VD);
   1780   LocalScope::const_iterator ContinueScopePos = ScopePos;
   1781 
   1782   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
   1783 
   1784   // "for" is a control-flow statement.  Thus we stop processing the current
   1785   // block.
   1786   if (Block) {
   1787     if (badCFG)
   1788       return 0;
   1789     LoopSuccessor = Block;
   1790   } else
   1791     LoopSuccessor = Succ;
   1792 
   1793   // Save the current value for the break targets.
   1794   // All breaks should go to the code following the loop.
   1795   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   1796   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   1797 
   1798   // Because of short-circuit evaluation, the condition of the loop can span
   1799   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   1800   // evaluate the condition.
   1801   CFGBlock *ExitConditionBlock = createBlock(false);
   1802   CFGBlock *EntryConditionBlock = ExitConditionBlock;
   1803 
   1804   // Set the terminator for the "exit" condition block.
   1805   ExitConditionBlock->setTerminator(F);
   1806 
   1807   // Now add the actual condition to the condition block.  Because the condition
   1808   // itself may contain control-flow, new blocks may be created.
   1809   if (Stmt *C = F->getCond()) {
   1810     Block = ExitConditionBlock;
   1811     EntryConditionBlock = addStmt(C);
   1812     if (badCFG)
   1813       return 0;
   1814     assert(Block == EntryConditionBlock ||
   1815            (Block == 0 && EntryConditionBlock == Succ));
   1816 
   1817     // If this block contains a condition variable, add both the condition
   1818     // variable and initializer to the CFG.
   1819     if (VarDecl *VD = F->getConditionVariable()) {
   1820       if (Expr *Init = VD->getInit()) {
   1821         autoCreateBlock();
   1822         appendStmt(Block, F->getConditionVariableDeclStmt());
   1823         EntryConditionBlock = addStmt(Init);
   1824         assert(Block == EntryConditionBlock);
   1825       }
   1826     }
   1827 
   1828     if (Block) {
   1829       if (badCFG)
   1830         return 0;
   1831     }
   1832   }
   1833 
   1834   // The condition block is the implicit successor for the loop body as well as
   1835   // any code above the loop.
   1836   Succ = EntryConditionBlock;
   1837 
   1838   // See if this is a known constant.
   1839   TryResult KnownVal(true);
   1840 
   1841   if (F->getCond())
   1842     KnownVal = tryEvaluateBool(F->getCond());
   1843 
   1844   // Now create the loop body.
   1845   {
   1846     assert(F->getBody());
   1847 
   1848    // Save the current values for Block, Succ, and continue targets.
   1849    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   1850    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   1851 
   1852     // Create a new block to contain the (bottom) of the loop body.
   1853     Block = NULL;
   1854 
   1855     // Loop body should end with destructor of Condition variable (if any).
   1856     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
   1857 
   1858     if (Stmt *I = F->getInc()) {
   1859       // Generate increment code in its own basic block.  This is the target of
   1860       // continue statements.
   1861       Succ = addStmt(I);
   1862     } else {
   1863       // No increment code.  Create a special, empty, block that is used as the
   1864       // target block for "looping back" to the start of the loop.
   1865       assert(Succ == EntryConditionBlock);
   1866       Succ = Block ? Block : createBlock();
   1867     }
   1868 
   1869     // Finish up the increment (or empty) block if it hasn't been already.
   1870     if (Block) {
   1871       assert(Block == Succ);
   1872       if (badCFG)
   1873         return 0;
   1874       Block = 0;
   1875     }
   1876 
   1877     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   1878 
   1879     // The starting block for the loop increment is the block that should
   1880     // represent the 'loop target' for looping back to the start of the loop.
   1881     ContinueJumpTarget.block->setLoopTarget(F);
   1882 
   1883     // If body is not a compound statement create implicit scope
   1884     // and add destructors.
   1885     if (!isa<CompoundStmt>(F->getBody()))
   1886       addLocalScopeAndDtors(F->getBody());
   1887 
   1888     // Now populate the body block, and in the process create new blocks as we
   1889     // walk the body of the loop.
   1890     CFGBlock *BodyBlock = addStmt(F->getBody());
   1891 
   1892     if (!BodyBlock)
   1893       BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
   1894     else if (badCFG)
   1895       return 0;
   1896 
   1897     // This new body block is a successor to our "exit" condition block.
   1898     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
   1899   }
   1900 
   1901   // Link up the condition block with the code that follows the loop.  (the
   1902   // false branch).
   1903   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
   1904 
   1905   // If the loop contains initialization, create a new block for those
   1906   // statements.  This block can also contain statements that precede the loop.
   1907   if (Stmt *I = F->getInit()) {
   1908     Block = createBlock();
   1909     return addStmt(I);
   1910   }
   1911 
   1912   // There is no loop initialization.  We are thus basically a while loop.
   1913   // NULL out Block to force lazy block construction.
   1914   Block = NULL;
   1915   Succ = EntryConditionBlock;
   1916   return EntryConditionBlock;
   1917 }
   1918 
   1919 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
   1920   if (asc.alwaysAdd(*this, M)) {
   1921     autoCreateBlock();
   1922     appendStmt(Block, M);
   1923   }
   1924   return Visit(M->getBase());
   1925 }
   1926 
   1927 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
   1928   // Objective-C fast enumeration 'for' statements:
   1929   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
   1930   //
   1931   //  for ( Type newVariable in collection_expression ) { statements }
   1932   //
   1933   //  becomes:
   1934   //
   1935   //   prologue:
   1936   //     1. collection_expression
   1937   //     T. jump to loop_entry
   1938   //   loop_entry:
   1939   //     1. side-effects of element expression
   1940   //     1. ObjCForCollectionStmt [performs binding to newVariable]
   1941   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
   1942   //   TB:
   1943   //     statements
   1944   //     T. jump to loop_entry
   1945   //   FB:
   1946   //     what comes after
   1947   //
   1948   //  and
   1949   //
   1950   //  Type existingItem;
   1951   //  for ( existingItem in expression ) { statements }
   1952   //
   1953   //  becomes:
   1954   //
   1955   //   the same with newVariable replaced with existingItem; the binding works
   1956   //   the same except that for one ObjCForCollectionStmt::getElement() returns
   1957   //   a DeclStmt and the other returns a DeclRefExpr.
   1958   //
   1959 
   1960   CFGBlock *LoopSuccessor = 0;
   1961 
   1962   if (Block) {
   1963     if (badCFG)
   1964       return 0;
   1965     LoopSuccessor = Block;
   1966     Block = 0;
   1967   } else
   1968     LoopSuccessor = Succ;
   1969 
   1970   // Build the condition blocks.
   1971   CFGBlock *ExitConditionBlock = createBlock(false);
   1972 
   1973   // Set the terminator for the "exit" condition block.
   1974   ExitConditionBlock->setTerminator(S);
   1975 
   1976   // The last statement in the block should be the ObjCForCollectionStmt, which
   1977   // performs the actual binding to 'element' and determines if there are any
   1978   // more items in the collection.
   1979   appendStmt(ExitConditionBlock, S);
   1980   Block = ExitConditionBlock;
   1981 
   1982   // Walk the 'element' expression to see if there are any side-effects.  We
   1983   // generate new blocks as necessary.  We DON'T add the statement by default to
   1984   // the CFG unless it contains control-flow.
   1985   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
   1986                                         AddStmtChoice::NotAlwaysAdd);
   1987   if (Block) {
   1988     if (badCFG)
   1989       return 0;
   1990     Block = 0;
   1991   }
   1992 
   1993   // The condition block is the implicit successor for the loop body as well as
   1994   // any code above the loop.
   1995   Succ = EntryConditionBlock;
   1996 
   1997   // Now create the true branch.
   1998   {
   1999     // Save the current values for Succ, continue and break targets.
   2000     SaveAndRestore<CFGBlock*> save_Succ(Succ);
   2001     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2002         save_break(BreakJumpTarget);
   2003 
   2004     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2005     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
   2006 
   2007     CFGBlock *BodyBlock = addStmt(S->getBody());
   2008 
   2009     if (!BodyBlock)
   2010       BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
   2011     else if (Block) {
   2012       if (badCFG)
   2013         return 0;
   2014     }
   2015 
   2016     // This new body block is a successor to our "exit" condition block.
   2017     addSuccessor(ExitConditionBlock, BodyBlock);
   2018   }
   2019 
   2020   // Link up the condition block with the code that follows the loop.
   2021   // (the false branch).
   2022   addSuccessor(ExitConditionBlock, LoopSuccessor);
   2023 
   2024   // Now create a prologue block to contain the collection expression.
   2025   Block = createBlock();
   2026   return addStmt(S->getCollection());
   2027 }
   2028 
   2029 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
   2030   // Inline the body.
   2031   return addStmt(S->getSubStmt());
   2032   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
   2033 }
   2034 
   2035 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
   2036   // FIXME: Add locking 'primitives' to CFG for @synchronized.
   2037 
   2038   // Inline the body.
   2039   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
   2040 
   2041   // The sync body starts its own basic block.  This makes it a little easier
   2042   // for diagnostic clients.
   2043   if (SyncBlock) {
   2044     if (badCFG)
   2045       return 0;
   2046 
   2047     Block = 0;
   2048     Succ = SyncBlock;
   2049   }
   2050 
   2051   // Add the @synchronized to the CFG.
   2052   autoCreateBlock();
   2053   appendStmt(Block, S);
   2054 
   2055   // Inline the sync expression.
   2056   return addStmt(S->getSynchExpr());
   2057 }
   2058 
   2059 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
   2060   // FIXME
   2061   return NYS();
   2062 }
   2063 
   2064 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
   2065   autoCreateBlock();
   2066 
   2067   // Add the PseudoObject as the last thing.
   2068   appendStmt(Block, E);
   2069 
   2070   CFGBlock *lastBlock = Block;
   2071 
   2072   // Before that, evaluate all of the semantics in order.  In
   2073   // CFG-land, that means appending them in reverse order.
   2074   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
   2075     Expr *Semantic = E->getSemanticExpr(--i);
   2076 
   2077     // If the semantic is an opaque value, we're being asked to bind
   2078     // it to its source expression.
   2079     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
   2080       Semantic = OVE->getSourceExpr();
   2081 
   2082     if (CFGBlock *B = Visit(Semantic))
   2083       lastBlock = B;
   2084   }
   2085 
   2086   return lastBlock;
   2087 }
   2088 
   2089 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
   2090   CFGBlock *LoopSuccessor = NULL;
   2091 
   2092   // Save local scope position because in case of condition variable ScopePos
   2093   // won't be restored when traversing AST.
   2094   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2095 
   2096   // Create local scope for possible condition variable.
   2097   // Store scope position for continue statement.
   2098   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   2099   if (VarDecl *VD = W->getConditionVariable()) {
   2100     addLocalScopeForVarDecl(VD);
   2101     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2102   }
   2103 
   2104   // "while" is a control-flow statement.  Thus we stop processing the current
   2105   // block.
   2106   if (Block) {
   2107     if (badCFG)
   2108       return 0;
   2109     LoopSuccessor = Block;
   2110     Block = 0;
   2111   } else
   2112     LoopSuccessor = Succ;
   2113 
   2114   // Because of short-circuit evaluation, the condition of the loop can span
   2115   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2116   // evaluate the condition.
   2117   CFGBlock *ExitConditionBlock = createBlock(false);
   2118   CFGBlock *EntryConditionBlock = ExitConditionBlock;
   2119 
   2120   // Set the terminator for the "exit" condition block.
   2121   ExitConditionBlock->setTerminator(W);
   2122 
   2123   // Now add the actual condition to the condition block.  Because the condition
   2124   // itself may contain control-flow, new blocks may be created.  Thus we update
   2125   // "Succ" after adding the condition.
   2126   if (Stmt *C = W->getCond()) {
   2127     Block = ExitConditionBlock;
   2128     EntryConditionBlock = addStmt(C);
   2129     // The condition might finish the current 'Block'.
   2130     Block = EntryConditionBlock;
   2131 
   2132     // If this block contains a condition variable, add both the condition
   2133     // variable and initializer to the CFG.
   2134     if (VarDecl *VD = W->getConditionVariable()) {
   2135       if (Expr *Init = VD->getInit()) {
   2136         autoCreateBlock();
   2137         appendStmt(Block, W->getConditionVariableDeclStmt());
   2138         EntryConditionBlock = addStmt(Init);
   2139         assert(Block == EntryConditionBlock);
   2140       }
   2141     }
   2142 
   2143     if (Block) {
   2144       if (badCFG)
   2145         return 0;
   2146     }
   2147   }
   2148 
   2149   // The condition block is the implicit successor for the loop body as well as
   2150   // any code above the loop.
   2151   Succ = EntryConditionBlock;
   2152 
   2153   // See if this is a known constant.
   2154   const TryResult& KnownVal = tryEvaluateBool(W->getCond());
   2155 
   2156   // Process the loop body.
   2157   {
   2158     assert(W->getBody());
   2159 
   2160     // Save the current values for Block, Succ, and continue and break targets
   2161     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2162     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2163         save_break(BreakJumpTarget);
   2164 
   2165     // Create an empty block to represent the transition block for looping back
   2166     // to the head of the loop.
   2167     Block = 0;
   2168     assert(Succ == EntryConditionBlock);
   2169     Succ = createBlock();
   2170     Succ->setLoopTarget(W);
   2171     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
   2172 
   2173     // All breaks should go to the code following the loop.
   2174     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2175 
   2176     // NULL out Block to force lazy instantiation of blocks for the body.
   2177     Block = NULL;
   2178 
   2179     // Loop body should end with destructor of Condition variable (if any).
   2180     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2181 
   2182     // If body is not a compound statement create implicit scope
   2183     // and add destructors.
   2184     if (!isa<CompoundStmt>(W->getBody()))
   2185       addLocalScopeAndDtors(W->getBody());
   2186 
   2187     // Create the body.  The returned block is the entry to the loop body.
   2188     CFGBlock *BodyBlock = addStmt(W->getBody());
   2189 
   2190     if (!BodyBlock)
   2191       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
   2192     else if (Block) {
   2193       if (badCFG)
   2194         return 0;
   2195     }
   2196 
   2197     // Add the loop body entry as a successor to the condition.
   2198     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
   2199   }
   2200 
   2201   // Link up the condition block with the code that follows the loop.  (the
   2202   // false branch).
   2203   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
   2204 
   2205   // There can be no more statements in the condition block since we loop back
   2206   // to this block.  NULL out Block to force lazy creation of another block.
   2207   Block = NULL;
   2208 
   2209   // Return the condition block, which is the dominating block for the loop.
   2210   Succ = EntryConditionBlock;
   2211   return EntryConditionBlock;
   2212 }
   2213 
   2214 
   2215 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
   2216   // FIXME: For now we pretend that @catch and the code it contains does not
   2217   //  exit.
   2218   return Block;
   2219 }
   2220 
   2221 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
   2222   // FIXME: This isn't complete.  We basically treat @throw like a return
   2223   //  statement.
   2224 
   2225   // If we were in the middle of a block we stop processing that block.
   2226   if (badCFG)
   2227     return 0;
   2228 
   2229   // Create the new block.
   2230   Block = createBlock(false);
   2231 
   2232   // The Exit block is the only successor.
   2233   addSuccessor(Block, &cfg->getExit());
   2234 
   2235   // Add the statement to the block.  This may create new blocks if S contains
   2236   // control-flow (short-circuit operations).
   2237   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
   2238 }
   2239 
   2240 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
   2241   // If we were in the middle of a block we stop processing that block.
   2242   if (badCFG)
   2243     return 0;
   2244 
   2245   // Create the new block.
   2246   Block = createBlock(false);
   2247 
   2248   if (TryTerminatedBlock)
   2249     // The current try statement is the only successor.
   2250     addSuccessor(Block, TryTerminatedBlock);
   2251   else
   2252     // otherwise the Exit block is the only successor.
   2253     addSuccessor(Block, &cfg->getExit());
   2254 
   2255   // Add the statement to the block.  This may create new blocks if S contains
   2256   // control-flow (short-circuit operations).
   2257   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
   2258 }
   2259 
   2260 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
   2261   CFGBlock *LoopSuccessor = NULL;
   2262 
   2263   // "do...while" is a control-flow statement.  Thus we stop processing the
   2264   // current block.
   2265   if (Block) {
   2266     if (badCFG)
   2267       return 0;
   2268     LoopSuccessor = Block;
   2269   } else
   2270     LoopSuccessor = Succ;
   2271 
   2272   // Because of short-circuit evaluation, the condition of the loop can span
   2273   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2274   // evaluate the condition.
   2275   CFGBlock *ExitConditionBlock = createBlock(false);
   2276   CFGBlock *EntryConditionBlock = ExitConditionBlock;
   2277 
   2278   // Set the terminator for the "exit" condition block.
   2279   ExitConditionBlock->setTerminator(D);
   2280 
   2281   // Now add the actual condition to the condition block.  Because the condition
   2282   // itself may contain control-flow, new blocks may be created.
   2283   if (Stmt *C = D->getCond()) {
   2284     Block = ExitConditionBlock;
   2285     EntryConditionBlock = addStmt(C);
   2286     if (Block) {
   2287       if (badCFG)
   2288         return 0;
   2289     }
   2290   }
   2291 
   2292   // The condition block is the implicit successor for the loop body.
   2293   Succ = EntryConditionBlock;
   2294 
   2295   // See if this is a known constant.
   2296   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
   2297 
   2298   // Process the loop body.
   2299   CFGBlock *BodyBlock = NULL;
   2300   {
   2301     assert(D->getBody());
   2302 
   2303     // Save the current values for Block, Succ, and continue and break targets
   2304     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2305     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2306         save_break(BreakJumpTarget);
   2307 
   2308     // All continues within this loop should go to the condition block
   2309     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
   2310 
   2311     // All breaks should go to the code following the loop.
   2312     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2313 
   2314     // NULL out Block to force lazy instantiation of blocks for the body.
   2315     Block = NULL;
   2316 
   2317     // If body is not a compound statement create implicit scope
   2318     // and add destructors.
   2319     if (!isa<CompoundStmt>(D->getBody()))
   2320       addLocalScopeAndDtors(D->getBody());
   2321 
   2322     // Create the body.  The returned block is the entry to the loop body.
   2323     BodyBlock = addStmt(D->getBody());
   2324 
   2325     if (!BodyBlock)
   2326       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
   2327     else if (Block) {
   2328       if (badCFG)
   2329         return 0;
   2330     }
   2331 
   2332     if (!KnownVal.isFalse()) {
   2333       // Add an intermediate block between the BodyBlock and the
   2334       // ExitConditionBlock to represent the "loop back" transition.  Create an
   2335       // empty block to represent the transition block for looping back to the
   2336       // head of the loop.
   2337       // FIXME: Can we do this more efficiently without adding another block?
   2338       Block = NULL;
   2339       Succ = BodyBlock;
   2340       CFGBlock *LoopBackBlock = createBlock();
   2341       LoopBackBlock->setLoopTarget(D);
   2342 
   2343       // Add the loop body entry as a successor to the condition.
   2344       addSuccessor(ExitConditionBlock, LoopBackBlock);
   2345     }
   2346     else
   2347       addSuccessor(ExitConditionBlock, NULL);
   2348   }
   2349 
   2350   // Link up the condition block with the code that follows the loop.
   2351   // (the false branch).
   2352   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
   2353 
   2354   // There can be no more statements in the body block(s) since we loop back to
   2355   // the body.  NULL out Block to force lazy creation of another block.
   2356   Block = NULL;
   2357 
   2358   // Return the loop body, which is the dominating block for the loop.
   2359   Succ = BodyBlock;
   2360   return BodyBlock;
   2361 }
   2362 
   2363 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
   2364   // "continue" is a control-flow statement.  Thus we stop processing the
   2365   // current block.
   2366   if (badCFG)
   2367     return 0;
   2368 
   2369   // Now create a new block that ends with the continue statement.
   2370   Block = createBlock(false);
   2371   Block->setTerminator(C);
   2372 
   2373   // If there is no target for the continue, then we are looking at an
   2374   // incomplete AST.  This means the CFG cannot be constructed.
   2375   if (ContinueJumpTarget.block) {
   2376     addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
   2377     addSuccessor(Block, ContinueJumpTarget.block);
   2378   } else
   2379     badCFG = true;
   2380 
   2381   return Block;
   2382 }
   2383 
   2384 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
   2385                                                     AddStmtChoice asc) {
   2386 
   2387   if (asc.alwaysAdd(*this, E)) {
   2388     autoCreateBlock();
   2389     appendStmt(Block, E);
   2390   }
   2391 
   2392   // VLA types have expressions that must be evaluated.
   2393   CFGBlock *lastBlock = Block;
   2394 
   2395   if (E->isArgumentType()) {
   2396     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
   2397          VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
   2398       lastBlock = addStmt(VA->getSizeExpr());
   2399   }
   2400   return lastBlock;
   2401 }
   2402 
   2403 /// VisitStmtExpr - Utility method to handle (nested) statement
   2404 ///  expressions (a GCC extension).
   2405 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
   2406   if (asc.alwaysAdd(*this, SE)) {
   2407     autoCreateBlock();
   2408     appendStmt(Block, SE);
   2409   }
   2410   return VisitCompoundStmt(SE->getSubStmt());
   2411 }
   2412 
   2413 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
   2414   // "switch" is a control-flow statement.  Thus we stop processing the current
   2415   // block.
   2416   CFGBlock *SwitchSuccessor = NULL;
   2417 
   2418   // Save local scope position because in case of condition variable ScopePos
   2419   // won't be restored when traversing AST.
   2420   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2421 
   2422   // Create local scope for possible condition variable.
   2423   // Store scope position. Add implicit destructor.
   2424   if (VarDecl *VD = Terminator->getConditionVariable()) {
   2425     LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
   2426     addLocalScopeForVarDecl(VD);
   2427     addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
   2428   }
   2429 
   2430   if (Block) {
   2431     if (badCFG)
   2432       return 0;
   2433     SwitchSuccessor = Block;
   2434   } else SwitchSuccessor = Succ;
   2435 
   2436   // Save the current "switch" context.
   2437   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
   2438                             save_default(DefaultCaseBlock);
   2439   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   2440 
   2441   // Set the "default" case to be the block after the switch statement.  If the
   2442   // switch statement contains a "default:", this value will be overwritten with
   2443   // the block for that code.
   2444   DefaultCaseBlock = SwitchSuccessor;
   2445 
   2446   // Create a new block that will contain the switch statement.
   2447   SwitchTerminatedBlock = createBlock(false);
   2448 
   2449   // Now process the switch body.  The code after the switch is the implicit
   2450   // successor.
   2451   Succ = SwitchSuccessor;
   2452   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
   2453 
   2454   // When visiting the body, the case statements should automatically get linked
   2455   // up to the switch.  We also don't keep a pointer to the body, since all
   2456   // control-flow from the switch goes to case/default statements.
   2457   assert(Terminator->getBody() && "switch must contain a non-NULL body");
   2458   Block = NULL;
   2459 
   2460   // For pruning unreachable case statements, save the current state
   2461   // for tracking the condition value.
   2462   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
   2463                                                      false);
   2464 
   2465   // Determine if the switch condition can be explicitly evaluated.
   2466   assert(Terminator->getCond() && "switch condition must be non-NULL");
   2467   Expr::EvalResult result;
   2468   bool b = tryEvaluate(Terminator->getCond(), result);
   2469   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
   2470                                                     b ? &result : 0);
   2471 
   2472   // If body is not a compound statement create implicit scope
   2473   // and add destructors.
   2474   if (!isa<CompoundStmt>(Terminator->getBody()))
   2475     addLocalScopeAndDtors(Terminator->getBody());
   2476 
   2477   addStmt(Terminator->getBody());
   2478   if (Block) {
   2479     if (badCFG)
   2480       return 0;
   2481   }
   2482 
   2483   // If we have no "default:" case, the default transition is to the code
   2484   // following the switch body.  Moreover, take into account if all the
   2485   // cases of a switch are covered (e.g., switching on an enum value).
   2486   addSuccessor(SwitchTerminatedBlock,
   2487                switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
   2488                ? 0 : DefaultCaseBlock);
   2489 
   2490   // Add the terminator and condition in the switch block.
   2491   SwitchTerminatedBlock->setTerminator(Terminator);
   2492   Block = SwitchTerminatedBlock;
   2493   Block = addStmt(Terminator->getCond());
   2494 
   2495   // Finally, if the SwitchStmt contains a condition variable, add both the
   2496   // SwitchStmt and the condition variable initialization to the CFG.
   2497   if (VarDecl *VD = Terminator->getConditionVariable()) {
   2498     if (Expr *Init = VD->getInit()) {
   2499       autoCreateBlock();
   2500       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
   2501       addStmt(Init);
   2502     }
   2503   }
   2504 
   2505   return Block;
   2506 }
   2507 
   2508 static bool shouldAddCase(bool &switchExclusivelyCovered,
   2509                           const Expr::EvalResult *switchCond,
   2510                           const CaseStmt *CS,
   2511                           ASTContext &Ctx) {
   2512   if (!switchCond)
   2513     return true;
   2514 
   2515   bool addCase = false;
   2516 
   2517   if (!switchExclusivelyCovered) {
   2518     if (switchCond->Val.isInt()) {
   2519       // Evaluate the LHS of the case value.
   2520       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
   2521       const llvm::APSInt &condInt = switchCond->Val.getInt();
   2522 
   2523       if (condInt == lhsInt) {
   2524         addCase = true;
   2525         switchExclusivelyCovered = true;
   2526       }
   2527       else if (condInt < lhsInt) {
   2528         if (const Expr *RHS = CS->getRHS()) {
   2529           // Evaluate the RHS of the case value.
   2530           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
   2531           if (V2 <= condInt) {
   2532             addCase = true;
   2533             switchExclusivelyCovered = true;
   2534           }
   2535         }
   2536       }
   2537     }
   2538     else
   2539       addCase = true;
   2540   }
   2541   return addCase;
   2542 }
   2543 
   2544 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
   2545   // CaseStmts are essentially labels, so they are the first statement in a
   2546   // block.
   2547   CFGBlock *TopBlock = 0, *LastBlock = 0;
   2548 
   2549   if (Stmt *Sub = CS->getSubStmt()) {
   2550     // For deeply nested chains of CaseStmts, instead of doing a recursion
   2551     // (which can blow out the stack), manually unroll and create blocks
   2552     // along the way.
   2553     while (isa<CaseStmt>(Sub)) {
   2554       CFGBlock *currentBlock = createBlock(false);
   2555       currentBlock->setLabel(CS);
   2556 
   2557       if (TopBlock)
   2558         addSuccessor(LastBlock, currentBlock);
   2559       else
   2560         TopBlock = currentBlock;
   2561 
   2562       addSuccessor(SwitchTerminatedBlock,
   2563                    shouldAddCase(switchExclusivelyCovered, switchCond,
   2564                                  CS, *Context)
   2565                    ? currentBlock : 0);
   2566 
   2567       LastBlock = currentBlock;
   2568       CS = cast<CaseStmt>(Sub);
   2569       Sub = CS->getSubStmt();
   2570     }
   2571 
   2572     addStmt(Sub);
   2573   }
   2574 
   2575   CFGBlock *CaseBlock = Block;
   2576   if (!CaseBlock)
   2577     CaseBlock = createBlock();
   2578 
   2579   // Cases statements partition blocks, so this is the top of the basic block we
   2580   // were processing (the "case XXX:" is the label).
   2581   CaseBlock->setLabel(CS);
   2582 
   2583   if (badCFG)
   2584     return 0;
   2585 
   2586   // Add this block to the list of successors for the block with the switch
   2587   // statement.
   2588   assert(SwitchTerminatedBlock);
   2589   addSuccessor(SwitchTerminatedBlock,
   2590                shouldAddCase(switchExclusivelyCovered, switchCond,
   2591                              CS, *Context)
   2592                ? CaseBlock : 0);
   2593 
   2594   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   2595   Block = NULL;
   2596 
   2597   if (TopBlock) {
   2598     addSuccessor(LastBlock, CaseBlock);
   2599     Succ = TopBlock;
   2600   } else {
   2601     // This block is now the implicit successor of other blocks.
   2602     Succ = CaseBlock;
   2603   }
   2604 
   2605   return Succ;
   2606 }
   2607 
   2608 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
   2609   if (Terminator->getSubStmt())
   2610     addStmt(Terminator->getSubStmt());
   2611 
   2612   DefaultCaseBlock = Block;
   2613 
   2614   if (!DefaultCaseBlock)
   2615     DefaultCaseBlock = createBlock();
   2616 
   2617   // Default statements partition blocks, so this is the top of the basic block
   2618   // we were processing (the "default:" is the label).
   2619   DefaultCaseBlock->setLabel(Terminator);
   2620 
   2621   if (badCFG)
   2622     return 0;
   2623 
   2624   // Unlike case statements, we don't add the default block to the successors
   2625   // for the switch statement immediately.  This is done when we finish
   2626   // processing the switch statement.  This allows for the default case
   2627   // (including a fall-through to the code after the switch statement) to always
   2628   // be the last successor of a switch-terminated block.
   2629 
   2630   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   2631   Block = NULL;
   2632 
   2633   // This block is now the implicit successor of other blocks.
   2634   Succ = DefaultCaseBlock;
   2635 
   2636   return DefaultCaseBlock;
   2637 }
   2638 
   2639 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
   2640   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
   2641   // current block.
   2642   CFGBlock *TrySuccessor = NULL;
   2643 
   2644   if (Block) {
   2645     if (badCFG)
   2646       return 0;
   2647     TrySuccessor = Block;
   2648   } else TrySuccessor = Succ;
   2649 
   2650   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
   2651 
   2652   // Create a new block that will contain the try statement.
   2653   CFGBlock *NewTryTerminatedBlock = createBlock(false);
   2654   // Add the terminator in the try block.
   2655   NewTryTerminatedBlock->setTerminator(Terminator);
   2656 
   2657   bool HasCatchAll = false;
   2658   for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
   2659     // The code after the try is the implicit successor.
   2660     Succ = TrySuccessor;
   2661     CXXCatchStmt *CS = Terminator->getHandler(h);
   2662     if (CS->getExceptionDecl() == 0) {
   2663       HasCatchAll = true;
   2664     }
   2665     Block = NULL;
   2666     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
   2667     if (CatchBlock == 0)
   2668       return 0;
   2669     // Add this block to the list of successors for the block with the try
   2670     // statement.
   2671     addSuccessor(NewTryTerminatedBlock, CatchBlock);
   2672   }
   2673   if (!HasCatchAll) {
   2674     if (PrevTryTerminatedBlock)
   2675       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
   2676     else
   2677       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
   2678   }
   2679 
   2680   // The code after the try is the implicit successor.
   2681   Succ = TrySuccessor;
   2682 
   2683   // Save the current "try" context.
   2684   SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
   2685   cfg->addTryDispatchBlock(TryTerminatedBlock);
   2686 
   2687   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
   2688   Block = NULL;
   2689   Block = addStmt(Terminator->getTryBlock());
   2690   return Block;
   2691 }
   2692 
   2693 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
   2694   // CXXCatchStmt are treated like labels, so they are the first statement in a
   2695   // block.
   2696 
   2697   // Save local scope position because in case of exception variable ScopePos
   2698   // won't be restored when traversing AST.
   2699   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2700 
   2701   // Create local scope for possible exception variable.
   2702   // Store scope position. Add implicit destructor.
   2703   if (VarDecl *VD = CS->getExceptionDecl()) {
   2704     LocalScope::const_iterator BeginScopePos = ScopePos;
   2705     addLocalScopeForVarDecl(VD);
   2706     addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
   2707   }
   2708 
   2709   if (CS->getHandlerBlock())
   2710     addStmt(CS->getHandlerBlock());
   2711 
   2712   CFGBlock *CatchBlock = Block;
   2713   if (!CatchBlock)
   2714     CatchBlock = createBlock();
   2715 
   2716   // CXXCatchStmt is more than just a label.  They have semantic meaning
   2717   // as well, as they implicitly "initialize" the catch variable.  Add
   2718   // it to the CFG as a CFGElement so that the control-flow of these
   2719   // semantics gets captured.
   2720   appendStmt(CatchBlock, CS);
   2721 
   2722   // Also add the CXXCatchStmt as a label, to mirror handling of regular
   2723   // labels.
   2724   CatchBlock->setLabel(CS);
   2725 
   2726   // Bail out if the CFG is bad.
   2727   if (badCFG)
   2728     return 0;
   2729 
   2730   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   2731   Block = NULL;
   2732 
   2733   return CatchBlock;
   2734 }
   2735 
   2736 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
   2737   // C++0x for-range statements are specified as [stmt.ranged]:
   2738   //
   2739   // {
   2740   //   auto && __range = range-init;
   2741   //   for ( auto __begin = begin-expr,
   2742   //         __end = end-expr;
   2743   //         __begin != __end;
   2744   //         ++__begin ) {
   2745   //     for-range-declaration = *__begin;
   2746   //     statement
   2747   //   }
   2748   // }
   2749 
   2750   // Save local scope position before the addition of the implicit variables.
   2751   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2752 
   2753   // Create local scopes and destructors for range, begin and end variables.
   2754   if (Stmt *Range = S->getRangeStmt())
   2755     addLocalScopeForStmt(Range);
   2756   if (Stmt *BeginEnd = S->getBeginEndStmt())
   2757     addLocalScopeForStmt(BeginEnd);
   2758   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
   2759 
   2760   LocalScope::const_iterator ContinueScopePos = ScopePos;
   2761 
   2762   // "for" is a control-flow statement.  Thus we stop processing the current
   2763   // block.
   2764   CFGBlock *LoopSuccessor = NULL;
   2765   if (Block) {
   2766     if (badCFG)
   2767       return 0;
   2768     LoopSuccessor = Block;
   2769   } else
   2770     LoopSuccessor = Succ;
   2771 
   2772   // Save the current value for the break targets.
   2773   // All breaks should go to the code following the loop.
   2774   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   2775   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2776 
   2777   // The block for the __begin != __end expression.
   2778   CFGBlock *ConditionBlock = createBlock(false);
   2779   ConditionBlock->setTerminator(S);
   2780 
   2781   // Now add the actual condition to the condition block.
   2782   if (Expr *C = S->getCond()) {
   2783     Block = ConditionBlock;
   2784     CFGBlock *BeginConditionBlock = addStmt(C);
   2785     if (badCFG)
   2786       return 0;
   2787     assert(BeginConditionBlock == ConditionBlock &&
   2788            "condition block in for-range was unexpectedly complex");
   2789     (void)BeginConditionBlock;
   2790   }
   2791 
   2792   // The condition block is the implicit successor for the loop body as well as
   2793   // any code above the loop.
   2794   Succ = ConditionBlock;
   2795 
   2796   // See if this is a known constant.
   2797   TryResult KnownVal(true);
   2798 
   2799   if (S->getCond())
   2800     KnownVal = tryEvaluateBool(S->getCond());
   2801 
   2802   // Now create the loop body.
   2803   {
   2804     assert(S->getBody());
   2805 
   2806     // Save the current values for Block, Succ, and continue targets.
   2807     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2808     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   2809 
   2810     // Generate increment code in its own basic block.  This is the target of
   2811     // continue statements.
   2812     Block = 0;
   2813     Succ = addStmt(S->getInc());
   2814     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   2815 
   2816     // The starting block for the loop increment is the block that should
   2817     // represent the 'loop target' for looping back to the start of the loop.
   2818     ContinueJumpTarget.block->setLoopTarget(S);
   2819 
   2820     // Finish up the increment block and prepare to start the loop body.
   2821     assert(Block);
   2822     if (badCFG)
   2823       return 0;
   2824     Block = 0;
   2825 
   2826 
   2827     // Add implicit scope and dtors for loop variable.
   2828     addLocalScopeAndDtors(S->getLoopVarStmt());
   2829 
   2830     // Populate a new block to contain the loop body and loop variable.
   2831     Block = addStmt(S->getBody());
   2832     if (badCFG)
   2833       return 0;
   2834     Block = addStmt(S->getLoopVarStmt());
   2835     if (badCFG)
   2836       return 0;
   2837 
   2838     // This new body block is a successor to our condition block.
   2839     addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
   2840   }
   2841 
   2842   // Link up the condition block with the code that follows the loop (the
   2843   // false branch).
   2844   addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
   2845 
   2846   // Add the initialization statements.
   2847   Block = createBlock();
   2848   addStmt(S->getBeginEndStmt());
   2849   return addStmt(S->getRangeStmt());
   2850 }
   2851 
   2852 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
   2853     AddStmtChoice asc) {
   2854   if (BuildOpts.AddImplicitDtors) {
   2855     // If adding implicit destructors visit the full expression for adding
   2856     // destructors of temporaries.
   2857     VisitForTemporaryDtors(E->getSubExpr());
   2858 
   2859     // Full expression has to be added as CFGStmt so it will be sequenced
   2860     // before destructors of it's temporaries.
   2861     asc = asc.withAlwaysAdd(true);
   2862   }
   2863   return Visit(E->getSubExpr(), asc);
   2864 }
   2865 
   2866 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
   2867                                                 AddStmtChoice asc) {
   2868   if (asc.alwaysAdd(*this, E)) {
   2869     autoCreateBlock();
   2870     appendStmt(Block, E);
   2871 
   2872     // We do not want to propagate the AlwaysAdd property.
   2873     asc = asc.withAlwaysAdd(false);
   2874   }
   2875   return Visit(E->getSubExpr(), asc);
   2876 }
   2877 
   2878 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
   2879                                             AddStmtChoice asc) {
   2880   autoCreateBlock();
   2881   appendStmt(Block, C);
   2882 
   2883   return VisitChildren(C);
   2884 }
   2885 
   2886 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
   2887                                                  AddStmtChoice asc) {
   2888   if (asc.alwaysAdd(*this, E)) {
   2889     autoCreateBlock();
   2890     appendStmt(Block, E);
   2891     // We do not want to propagate the AlwaysAdd property.
   2892     asc = asc.withAlwaysAdd(false);
   2893   }
   2894   return Visit(E->getSubExpr(), asc);
   2895 }
   2896 
   2897 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
   2898                                                   AddStmtChoice asc) {
   2899   autoCreateBlock();
   2900   appendStmt(Block, C);
   2901   return VisitChildren(C);
   2902 }
   2903 
   2904 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
   2905                                             AddStmtChoice asc) {
   2906   if (asc.alwaysAdd(*this, E)) {
   2907     autoCreateBlock();
   2908     appendStmt(Block, E);
   2909   }
   2910   return Visit(E->getSubExpr(), AddStmtChoice());
   2911 }
   2912 
   2913 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   2914   // Lazily create the indirect-goto dispatch block if there isn't one already.
   2915   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
   2916 
   2917   if (!IBlock) {
   2918     IBlock = createBlock(false);
   2919     cfg->setIndirectGotoBlock(IBlock);
   2920   }
   2921 
   2922   // IndirectGoto is a control-flow statement.  Thus we stop processing the
   2923   // current block and create a new one.
   2924   if (badCFG)
   2925     return 0;
   2926 
   2927   Block = createBlock(false);
   2928   Block->setTerminator(I);
   2929   addSuccessor(Block, IBlock);
   2930   return addStmt(I->getTarget());
   2931 }
   2932 
   2933 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
   2934 tryAgain:
   2935   if (!E) {
   2936     badCFG = true;
   2937     return NULL;
   2938   }
   2939   switch (E->getStmtClass()) {
   2940     default:
   2941       return VisitChildrenForTemporaryDtors(E);
   2942 
   2943     case Stmt::BinaryOperatorClass:
   2944       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
   2945 
   2946     case Stmt::CXXBindTemporaryExprClass:
   2947       return VisitCXXBindTemporaryExprForTemporaryDtors(
   2948           cast<CXXBindTemporaryExpr>(E), BindToTemporary);
   2949 
   2950     case Stmt::BinaryConditionalOperatorClass:
   2951     case Stmt::ConditionalOperatorClass:
   2952       return VisitConditionalOperatorForTemporaryDtors(
   2953           cast<AbstractConditionalOperator>(E), BindToTemporary);
   2954 
   2955     case Stmt::ImplicitCastExprClass:
   2956       // For implicit cast we want BindToTemporary to be passed further.
   2957       E = cast<CastExpr>(E)->getSubExpr();
   2958       goto tryAgain;
   2959 
   2960     case Stmt::ParenExprClass:
   2961       E = cast<ParenExpr>(E)->getSubExpr();
   2962       goto tryAgain;
   2963 
   2964     case Stmt::MaterializeTemporaryExprClass:
   2965       E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
   2966       goto tryAgain;
   2967   }
   2968 }
   2969 
   2970 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
   2971   // When visiting children for destructors we want to visit them in reverse
   2972   // order. Because there's no reverse iterator for children must to reverse
   2973   // them in helper vector.
   2974   typedef SmallVector<Stmt *, 4> ChildrenVect;
   2975   ChildrenVect ChildrenRev;
   2976   for (Stmt::child_range I = E->children(); I; ++I) {
   2977     if (*I) ChildrenRev.push_back(*I);
   2978   }
   2979 
   2980   CFGBlock *B = Block;
   2981   for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
   2982       L = ChildrenRev.rend(); I != L; ++I) {
   2983     if (CFGBlock *R = VisitForTemporaryDtors(*I))
   2984       B = R;
   2985   }
   2986   return B;
   2987 }
   2988 
   2989 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
   2990   if (E->isLogicalOp()) {
   2991     // Destructors for temporaries in LHS expression should be called after
   2992     // those for RHS expression. Even if this will unnecessarily create a block,
   2993     // this block will be used at least by the full expression.
   2994     autoCreateBlock();
   2995     CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
   2996     if (badCFG)
   2997       return NULL;
   2998 
   2999     Succ = ConfluenceBlock;
   3000     Block = NULL;
   3001     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
   3002 
   3003     if (RHSBlock) {
   3004       if (badCFG)
   3005         return NULL;
   3006 
   3007       // If RHS expression did produce destructors we need to connect created
   3008       // blocks to CFG in same manner as for binary operator itself.
   3009       CFGBlock *LHSBlock = createBlock(false);
   3010       LHSBlock->setTerminator(CFGTerminator(E, true));
   3011 
   3012       // For binary operator LHS block is before RHS in list of predecessors
   3013       // of ConfluenceBlock.
   3014       std::reverse(ConfluenceBlock->pred_begin(),
   3015           ConfluenceBlock->pred_end());
   3016 
   3017       // See if this is a known constant.
   3018       TryResult KnownVal = tryEvaluateBool(E->getLHS());
   3019       if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
   3020         KnownVal.negate();
   3021 
   3022       // Link LHSBlock with RHSBlock exactly the same way as for binary operator
   3023       // itself.
   3024       if (E->getOpcode() == BO_LOr) {
   3025         addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
   3026         addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
   3027       } else {
   3028         assert (E->getOpcode() == BO_LAnd);
   3029         addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
   3030         addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
   3031       }
   3032 
   3033       Block = LHSBlock;
   3034       return LHSBlock;
   3035     }
   3036 
   3037     Block = ConfluenceBlock;
   3038     return ConfluenceBlock;
   3039   }
   3040 
   3041   if (E->isAssignmentOp()) {
   3042     // For assignment operator (=) LHS expression is visited
   3043     // before RHS expression. For destructors visit them in reverse order.
   3044     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
   3045     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
   3046     return LHSBlock ? LHSBlock : RHSBlock;
   3047   }
   3048 
   3049   // For any other binary operator RHS expression is visited before
   3050   // LHS expression (order of children). For destructors visit them in reverse
   3051   // order.
   3052   CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
   3053   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
   3054   return RHSBlock ? RHSBlock : LHSBlock;
   3055 }
   3056 
   3057 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
   3058     CXXBindTemporaryExpr *E, bool BindToTemporary) {
   3059   // First add destructors for temporaries in subexpression.
   3060   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
   3061   if (!BindToTemporary) {
   3062     // If lifetime of temporary is not prolonged (by assigning to constant
   3063     // reference) add destructor for it.
   3064 
   3065     // If the destructor is marked as a no-return destructor, we need to create
   3066     // a new block for the destructor which does not have as a successor
   3067     // anything built thus far. Control won't flow out of this block.
   3068     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
   3069     if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
   3070       Block = createNoReturnBlock();
   3071     else
   3072       autoCreateBlock();
   3073 
   3074     appendTemporaryDtor(Block, E);
   3075     B = Block;
   3076   }
   3077   return B;
   3078 }
   3079 
   3080 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
   3081     AbstractConditionalOperator *E, bool BindToTemporary) {
   3082   // First add destructors for condition expression.  Even if this will
   3083   // unnecessarily create a block, this block will be used at least by the full
   3084   // expression.
   3085   autoCreateBlock();
   3086   CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
   3087   if (badCFG)
   3088     return NULL;
   3089   if (BinaryConditionalOperator *BCO
   3090         = dyn_cast<BinaryConditionalOperator>(E)) {
   3091     ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
   3092     if (badCFG)
   3093       return NULL;
   3094   }
   3095 
   3096   // Try to add block with destructors for LHS expression.
   3097   CFGBlock *LHSBlock = NULL;
   3098   Succ = ConfluenceBlock;
   3099   Block = NULL;
   3100   LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
   3101   if (badCFG)
   3102     return NULL;
   3103 
   3104   // Try to add block with destructors for RHS expression;
   3105   Succ = ConfluenceBlock;
   3106   Block = NULL;
   3107   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
   3108                                               BindToTemporary);
   3109   if (badCFG)
   3110     return NULL;
   3111 
   3112   if (!RHSBlock && !LHSBlock) {
   3113     // If neither LHS nor RHS expression had temporaries to destroy don't create
   3114     // more blocks.
   3115     Block = ConfluenceBlock;
   3116     return Block;
   3117   }
   3118 
   3119   Block = createBlock(false);
   3120   Block->setTerminator(CFGTerminator(E, true));
   3121 
   3122   // See if this is a known constant.
   3123   const TryResult &KnownVal = tryEvaluateBool(E->getCond());
   3124 
   3125   if (LHSBlock) {
   3126     addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
   3127   } else if (KnownVal.isFalse()) {
   3128     addSuccessor(Block, NULL);
   3129   } else {
   3130     addSuccessor(Block, ConfluenceBlock);
   3131     std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
   3132   }
   3133 
   3134   if (!RHSBlock)
   3135     RHSBlock = ConfluenceBlock;
   3136   addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
   3137 
   3138   return Block;
   3139 }
   3140 
   3141 } // end anonymous namespace
   3142 
   3143 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
   3144 ///  no successors or predecessors.  If this is the first block created in the
   3145 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
   3146 CFGBlock *CFG::createBlock() {
   3147   bool first_block = begin() == end();
   3148 
   3149   // Create the block.
   3150   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
   3151   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
   3152   Blocks.push_back(Mem, BlkBVC);
   3153 
   3154   // If this is the first block, set it as the Entry and Exit.
   3155   if (first_block)
   3156     Entry = Exit = &back();
   3157 
   3158   // Return the block.
   3159   return &back();
   3160 }
   3161 
   3162 /// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
   3163 ///  CFG is returned to the caller.
   3164 CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
   3165     const BuildOptions &BO) {
   3166   CFGBuilder Builder(C, BO);
   3167   return Builder.buildCFG(D, Statement);
   3168 }
   3169 
   3170 const CXXDestructorDecl *
   3171 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
   3172   switch (getKind()) {
   3173     case CFGElement::Invalid:
   3174     case CFGElement::Statement:
   3175     case CFGElement::Initializer:
   3176       llvm_unreachable("getDestructorDecl should only be used with "
   3177                        "ImplicitDtors");
   3178     case CFGElement::AutomaticObjectDtor: {
   3179       const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
   3180       QualType ty = var->getType();
   3181       ty = ty.getNonReferenceType();
   3182       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
   3183         ty = arrayType->getElementType();
   3184       }
   3185       const RecordType *recordType = ty->getAs<RecordType>();
   3186       const CXXRecordDecl *classDecl =
   3187       cast<CXXRecordDecl>(recordType->getDecl());
   3188       return classDecl->getDestructor();
   3189     }
   3190     case CFGElement::TemporaryDtor: {
   3191       const CXXBindTemporaryExpr *bindExpr =
   3192         cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
   3193       const CXXTemporary *temp = bindExpr->getTemporary();
   3194       return temp->getDestructor();
   3195     }
   3196     case CFGElement::BaseDtor:
   3197     case CFGElement::MemberDtor:
   3198 
   3199       // Not yet supported.
   3200       return 0;
   3201   }
   3202   llvm_unreachable("getKind() returned bogus value");
   3203 }
   3204 
   3205 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
   3206   if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
   3207     QualType ty = cdecl->getType();
   3208     return cast<FunctionType>(ty)->getNoReturnAttr();
   3209   }
   3210   return false;
   3211 }
   3212 
   3213 //===----------------------------------------------------------------------===//
   3214 // CFG: Queries for BlkExprs.
   3215 //===----------------------------------------------------------------------===//
   3216 
   3217 namespace {
   3218   typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
   3219 }
   3220 
   3221 static void FindSubExprAssignments(const Stmt *S,
   3222                                    llvm::SmallPtrSet<const Expr*,50>& Set) {
   3223   if (!S)
   3224     return;
   3225 
   3226   for (Stmt::const_child_range I = S->children(); I; ++I) {
   3227     const Stmt *child = *I;
   3228     if (!child)
   3229       continue;
   3230 
   3231     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
   3232       if (B->isAssignmentOp()) Set.insert(B);
   3233 
   3234     FindSubExprAssignments(child, Set);
   3235   }
   3236 }
   3237 
   3238 static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
   3239   BlkExprMapTy* M = new BlkExprMapTy();
   3240 
   3241   // Look for assignments that are used as subexpressions.  These are the only
   3242   // assignments that we want to *possibly* register as a block-level
   3243   // expression.  Basically, if an assignment occurs both in a subexpression and
   3244   // at the block-level, it is a block-level expression.
   3245   llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
   3246 
   3247   for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
   3248     for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
   3249       if (const CFGStmt *S = BI->getAs<CFGStmt>())
   3250         FindSubExprAssignments(S->getStmt(), SubExprAssignments);
   3251 
   3252   for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
   3253 
   3254     // Iterate over the statements again on identify the Expr* and Stmt* at the
   3255     // block-level that are block-level expressions.
   3256 
   3257     for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
   3258       const CFGStmt *CS = BI->getAs<CFGStmt>();
   3259       if (!CS)
   3260         continue;
   3261       if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
   3262         assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
   3263 
   3264         if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
   3265           // Assignment expressions that are not nested within another
   3266           // expression are really "statements" whose value is never used by
   3267           // another expression.
   3268           if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
   3269             continue;
   3270         } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
   3271           // Special handling for statement expressions.  The last statement in
   3272           // the statement expression is also a block-level expr.
   3273           const CompoundStmt *C = SE->getSubStmt();
   3274           if (!C->body_empty()) {
   3275             const Stmt *Last = C->body_back();
   3276             if (const Expr *LastEx = dyn_cast<Expr>(Last))
   3277               Last = LastEx->IgnoreParens();
   3278             unsigned x = M->size();
   3279             (*M)[Last] = x;
   3280           }
   3281         }
   3282 
   3283         unsigned x = M->size();
   3284         (*M)[Exp] = x;
   3285       }
   3286     }
   3287 
   3288     // Look at terminators.  The condition is a block-level expression.
   3289 
   3290     Stmt *S = (*I)->getTerminatorCondition();
   3291 
   3292     if (S && M->find(S) == M->end()) {
   3293       unsigned x = M->size();
   3294       (*M)[S] = x;
   3295     }
   3296   }
   3297 
   3298   return M;
   3299 }
   3300 
   3301 CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
   3302   assert(S != NULL);
   3303   if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
   3304 
   3305   BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
   3306   BlkExprMapTy::iterator I = M->find(S);
   3307   return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
   3308 }
   3309 
   3310 unsigned CFG::getNumBlkExprs() {
   3311   if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
   3312     return M->size();
   3313 
   3314   // We assume callers interested in the number of BlkExprs will want
   3315   // the map constructed if it doesn't already exist.
   3316   BlkExprMap = (void*) PopulateBlkExprMap(*this);
   3317   return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
   3318 }
   3319 
   3320 //===----------------------------------------------------------------------===//
   3321 // Filtered walking of the CFG.
   3322 //===----------------------------------------------------------------------===//
   3323 
   3324 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
   3325         const CFGBlock *From, const CFGBlock *To) {
   3326 
   3327   if (To && F.IgnoreDefaultsWithCoveredEnums) {
   3328     // If the 'To' has no label or is labeled but the label isn't a
   3329     // CaseStmt then filter this edge.
   3330     if (const SwitchStmt *S =
   3331         dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
   3332       if (S->isAllEnumCasesCovered()) {
   3333         const Stmt *L = To->getLabel();
   3334         if (!L || !isa<CaseStmt>(L))
   3335           return true;
   3336       }
   3337     }
   3338   }
   3339 
   3340   return false;
   3341 }
   3342 
   3343 //===----------------------------------------------------------------------===//
   3344 // Cleanup: CFG dstor.
   3345 //===----------------------------------------------------------------------===//
   3346 
   3347 CFG::~CFG() {
   3348   delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
   3349 }
   3350 
   3351 //===----------------------------------------------------------------------===//
   3352 // CFG pretty printing
   3353 //===----------------------------------------------------------------------===//
   3354 
   3355 namespace {
   3356 
   3357 class StmtPrinterHelper : public PrinterHelper  {
   3358   typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
   3359   typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
   3360   StmtMapTy StmtMap;
   3361   DeclMapTy DeclMap;
   3362   signed currentBlock;
   3363   unsigned currentStmt;
   3364   const LangOptions &LangOpts;
   3365 public:
   3366 
   3367   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
   3368     : currentBlock(0), currentStmt(0), LangOpts(LO)
   3369   {
   3370     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
   3371       unsigned j = 1;
   3372       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
   3373            BI != BEnd; ++BI, ++j ) {
   3374         if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
   3375           const Stmt *stmt= SE->getStmt();
   3376           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
   3377           StmtMap[stmt] = P;
   3378 
   3379           switch (stmt->getStmtClass()) {
   3380             case Stmt::DeclStmtClass:
   3381                 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
   3382                 break;
   3383             case Stmt::IfStmtClass: {
   3384               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
   3385               if (var)
   3386                 DeclMap[var] = P;
   3387               break;
   3388             }
   3389             case Stmt::ForStmtClass: {
   3390               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
   3391               if (var)
   3392                 DeclMap[var] = P;
   3393               break;
   3394             }
   3395             case Stmt::WhileStmtClass: {
   3396               const VarDecl *var =
   3397                 cast<WhileStmt>(stmt)->getConditionVariable();
   3398               if (var)
   3399                 DeclMap[var] = P;
   3400               break;
   3401             }
   3402             case Stmt::SwitchStmtClass: {
   3403               const VarDecl *var =
   3404                 cast<SwitchStmt>(stmt)->getConditionVariable();
   3405               if (var)
   3406                 DeclMap[var] = P;
   3407               break;
   3408             }
   3409             case Stmt::CXXCatchStmtClass: {
   3410               const VarDecl *var =
   3411                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
   3412               if (var)
   3413                 DeclMap[var] = P;
   3414               break;
   3415             }
   3416             default:
   3417               break;
   3418           }
   3419         }
   3420       }
   3421     }
   3422   }
   3423 
   3424 
   3425   virtual ~StmtPrinterHelper() {}
   3426 
   3427   const LangOptions &getLangOpts() const { return LangOpts; }
   3428   void setBlockID(signed i) { currentBlock = i; }
   3429   void setStmtID(unsigned i) { currentStmt = i; }
   3430 
   3431   virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
   3432     StmtMapTy::iterator I = StmtMap.find(S);
   3433 
   3434     if (I == StmtMap.end())
   3435       return false;
   3436 
   3437     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   3438                           && I->second.second == currentStmt) {
   3439       return false;
   3440     }
   3441 
   3442     OS << "[B" << I->second.first << "." << I->second.second << "]";
   3443     return true;
   3444   }
   3445 
   3446   bool handleDecl(const Decl *D, raw_ostream &OS) {
   3447     DeclMapTy::iterator I = DeclMap.find(D);
   3448 
   3449     if (I == DeclMap.end())
   3450       return false;
   3451 
   3452     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   3453                           && I->second.second == currentStmt) {
   3454       return false;
   3455     }
   3456 
   3457     OS << "[B" << I->second.first << "." << I->second.second << "]";
   3458     return true;
   3459   }
   3460 };
   3461 } // end anonymous namespace
   3462 
   3463 
   3464 namespace {
   3465 class CFGBlockTerminatorPrint
   3466   : public StmtVisitor<CFGBlockTerminatorPrint,void> {
   3467 
   3468   raw_ostream &OS;
   3469   StmtPrinterHelper* Helper;
   3470   PrintingPolicy Policy;
   3471 public:
   3472   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
   3473                           const PrintingPolicy &Policy)
   3474     : OS(os), Helper(helper), Policy(Policy) {}
   3475 
   3476   void VisitIfStmt(IfStmt *I) {
   3477     OS << "if ";
   3478     I->getCond()->printPretty(OS,Helper,Policy);
   3479   }
   3480 
   3481   // Default case.
   3482   void VisitStmt(Stmt *Terminator) {
   3483     Terminator->printPretty(OS, Helper, Policy);
   3484   }
   3485 
   3486   void VisitForStmt(ForStmt *F) {
   3487     OS << "for (" ;
   3488     if (F->getInit())
   3489       OS << "...";
   3490     OS << "; ";
   3491     if (Stmt *C = F->getCond())
   3492       C->printPretty(OS, Helper, Policy);
   3493     OS << "; ";
   3494     if (F->getInc())
   3495       OS << "...";
   3496     OS << ")";
   3497   }
   3498 
   3499   void VisitWhileStmt(WhileStmt *W) {
   3500     OS << "while " ;
   3501     if (Stmt *C = W->getCond())
   3502       C->printPretty(OS, Helper, Policy);
   3503   }
   3504 
   3505   void VisitDoStmt(DoStmt *D) {
   3506     OS << "do ... while ";
   3507     if (Stmt *C = D->getCond())
   3508       C->printPretty(OS, Helper, Policy);
   3509   }
   3510 
   3511   void VisitSwitchStmt(SwitchStmt *Terminator) {
   3512     OS << "switch ";
   3513     Terminator->getCond()->printPretty(OS, Helper, Policy);
   3514   }
   3515 
   3516   void VisitCXXTryStmt(CXXTryStmt *CS) {
   3517     OS << "try ...";
   3518   }
   3519 
   3520   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
   3521     C->getCond()->printPretty(OS, Helper, Policy);
   3522     OS << " ? ... : ...";
   3523   }
   3524 
   3525   void VisitChooseExpr(ChooseExpr *C) {
   3526     OS << "__builtin_choose_expr( ";
   3527     C->getCond()->printPretty(OS, Helper, Policy);
   3528     OS << " )";
   3529   }
   3530 
   3531   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   3532     OS << "goto *";
   3533     I->getTarget()->printPretty(OS, Helper, Policy);
   3534   }
   3535 
   3536   void VisitBinaryOperator(BinaryOperator* B) {
   3537     if (!B->isLogicalOp()) {
   3538       VisitExpr(B);
   3539       return;
   3540     }
   3541 
   3542     B->getLHS()->printPretty(OS, Helper, Policy);
   3543 
   3544     switch (B->getOpcode()) {
   3545       case BO_LOr:
   3546         OS << " || ...";
   3547         return;
   3548       case BO_LAnd:
   3549         OS << " && ...";
   3550         return;
   3551       default:
   3552         llvm_unreachable("Invalid logical operator.");
   3553     }
   3554   }
   3555 
   3556   void VisitExpr(Expr *E) {
   3557     E->printPretty(OS, Helper, Policy);
   3558   }
   3559 };
   3560 } // end anonymous namespace
   3561 
   3562 static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
   3563                        const CFGElement &E) {
   3564   if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
   3565     const Stmt *S = CS->getStmt();
   3566 
   3567     if (Helper) {
   3568 
   3569       // special printing for statement-expressions.
   3570       if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
   3571         const CompoundStmt *Sub = SE->getSubStmt();
   3572 
   3573         if (Sub->children()) {
   3574           OS << "({ ... ; ";
   3575           Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
   3576           OS << " })\n";
   3577           return;
   3578         }
   3579       }
   3580       // special printing for comma expressions.
   3581       if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
   3582         if (B->getOpcode() == BO_Comma) {
   3583           OS << "... , ";
   3584           Helper->handledStmt(B->getRHS(),OS);
   3585           OS << '\n';
   3586           return;
   3587         }
   3588       }
   3589     }
   3590     S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
   3591 
   3592     if (isa<CXXOperatorCallExpr>(S)) {
   3593       OS << " (OperatorCall)";
   3594     }
   3595     else if (isa<CXXBindTemporaryExpr>(S)) {
   3596       OS << " (BindTemporary)";
   3597     }
   3598     else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
   3599       OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
   3600     }
   3601     else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
   3602       OS << " (" << CE->getStmtClassName() << ", "
   3603          << CE->getCastKindName()
   3604          << ", " << CE->getType().getAsString()
   3605          << ")";
   3606     }
   3607 
   3608     // Expressions need a newline.
   3609     if (isa<Expr>(S))
   3610       OS << '\n';
   3611 
   3612   } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
   3613     const CXXCtorInitializer *I = IE->getInitializer();
   3614     if (I->isBaseInitializer())
   3615       OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
   3616     else OS << I->getAnyMember()->getName();
   3617 
   3618     OS << "(";
   3619     if (Expr *IE = I->getInit())
   3620       IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
   3621     OS << ")";
   3622 
   3623     if (I->isBaseInitializer())
   3624       OS << " (Base initializer)\n";
   3625     else OS << " (Member initializer)\n";
   3626 
   3627   } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
   3628     const VarDecl *VD = DE->getVarDecl();
   3629     Helper->handleDecl(VD, OS);
   3630 
   3631     const Type* T = VD->getType().getTypePtr();
   3632     if (const ReferenceType* RT = T->getAs<ReferenceType>())
   3633       T = RT->getPointeeType().getTypePtr();
   3634     else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
   3635       T = ET;
   3636 
   3637     OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
   3638     OS << " (Implicit destructor)\n";
   3639 
   3640   } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
   3641     const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
   3642     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
   3643     OS << " (Base object destructor)\n";
   3644 
   3645   } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
   3646     const FieldDecl *FD = ME->getFieldDecl();
   3647 
   3648     const Type *T = FD->getType().getTypePtr();
   3649     if (const Type *ET = T->getArrayElementTypeNoTypeQual())
   3650       T = ET;
   3651 
   3652     OS << "this->" << FD->getName();
   3653     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
   3654     OS << " (Member object destructor)\n";
   3655 
   3656   } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
   3657     const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
   3658     OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
   3659     OS << " (Temporary object destructor)\n";
   3660   }
   3661 }
   3662 
   3663 static void print_block(raw_ostream &OS, const CFG* cfg,
   3664                         const CFGBlock &B,
   3665                         StmtPrinterHelper* Helper, bool print_edges,
   3666                         bool ShowColors) {
   3667 
   3668   if (Helper)
   3669     Helper->setBlockID(B.getBlockID());
   3670 
   3671   // Print the header.
   3672   if (ShowColors)
   3673     OS.changeColor(raw_ostream::YELLOW, true);
   3674 
   3675   OS << "\n [B" << B.getBlockID();
   3676 
   3677   if (&B == &cfg->getEntry())
   3678     OS << " (ENTRY)]\n";
   3679   else if (&B == &cfg->getExit())
   3680     OS << " (EXIT)]\n";
   3681   else if (&B == cfg->getIndirectGotoBlock())
   3682     OS << " (INDIRECT GOTO DISPATCH)]\n";
   3683   else
   3684     OS << "]\n";
   3685 
   3686   if (ShowColors)
   3687     OS.resetColor();
   3688 
   3689   // Print the label of this block.
   3690   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
   3691 
   3692     if (print_edges)
   3693       OS << "  ";
   3694 
   3695     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
   3696       OS << L->getName();
   3697     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
   3698       OS << "case ";
   3699       C->getLHS()->printPretty(OS, Helper,
   3700                                PrintingPolicy(Helper->getLangOpts()));
   3701       if (C->getRHS()) {
   3702         OS << " ... ";
   3703         C->getRHS()->printPretty(OS, Helper,
   3704                                  PrintingPolicy(Helper->getLangOpts()));
   3705       }
   3706     } else if (isa<DefaultStmt>(Label))
   3707       OS << "default";
   3708     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
   3709       OS << "catch (";
   3710       if (CS->getExceptionDecl())
   3711         CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
   3712                                       0);
   3713       else
   3714         OS << "...";
   3715       OS << ")";
   3716 
   3717     } else
   3718       llvm_unreachable("Invalid label statement in CFGBlock.");
   3719 
   3720     OS << ":\n";
   3721   }
   3722 
   3723   // Iterate through the statements in the block and print them.
   3724   unsigned j = 1;
   3725 
   3726   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
   3727        I != E ; ++I, ++j ) {
   3728 
   3729     // Print the statement # in the basic block and the statement itself.
   3730     if (print_edges)
   3731       OS << " ";
   3732 
   3733     OS << llvm::format("%3d", j) << ": ";
   3734 
   3735     if (Helper)
   3736       Helper->setStmtID(j);
   3737 
   3738     print_elem(OS, Helper, *I);
   3739   }
   3740 
   3741   // Print the terminator of this block.
   3742   if (B.getTerminator()) {
   3743     if (ShowColors)
   3744       OS.changeColor(raw_ostream::GREEN);
   3745 
   3746     OS << "   T: ";
   3747 
   3748     if (Helper) Helper->setBlockID(-1);
   3749 
   3750     CFGBlockTerminatorPrint TPrinter(OS, Helper,
   3751                                      PrintingPolicy(Helper->getLangOpts()));
   3752     TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
   3753     OS << '\n';
   3754 
   3755     if (ShowColors)
   3756       OS.resetColor();
   3757   }
   3758 
   3759   if (print_edges) {
   3760     // Print the predecessors of this block.
   3761     if (!B.pred_empty()) {
   3762       const raw_ostream::Colors Color = raw_ostream::BLUE;
   3763       if (ShowColors)
   3764         OS.changeColor(Color);
   3765       OS << "   Preds " ;
   3766       if (ShowColors)
   3767         OS.resetColor();
   3768       OS << '(' << B.pred_size() << "):";
   3769       unsigned i = 0;
   3770 
   3771       if (ShowColors)
   3772         OS.changeColor(Color);
   3773 
   3774       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
   3775            I != E; ++I, ++i) {
   3776 
   3777         if (i == 8 || (i-8) == 0)
   3778           OS << "\n     ";
   3779 
   3780         OS << " B" << (*I)->getBlockID();
   3781       }
   3782 
   3783       if (ShowColors)
   3784         OS.resetColor();
   3785 
   3786       OS << '\n';
   3787     }
   3788 
   3789     // Print the successors of this block.
   3790     if (!B.succ_empty()) {
   3791       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
   3792       if (ShowColors)
   3793         OS.changeColor(Color);
   3794       OS << "   Succs ";
   3795       if (ShowColors)
   3796         OS.resetColor();
   3797       OS << '(' << B.succ_size() << "):";
   3798       unsigned i = 0;
   3799 
   3800       if (ShowColors)
   3801         OS.changeColor(Color);
   3802 
   3803       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
   3804            I != E; ++I, ++i) {
   3805 
   3806         if (i == 8 || (i-8) % 10 == 0)
   3807           OS << "\n    ";
   3808 
   3809         if (*I)
   3810           OS << " B" << (*I)->getBlockID();
   3811         else
   3812           OS  << " NULL";
   3813       }
   3814 
   3815       if (ShowColors)
   3816         OS.resetColor();
   3817       OS << '\n';
   3818     }
   3819   }
   3820 }
   3821 
   3822 
   3823 /// dump - A simple pretty printer of a CFG that outputs to stderr.
   3824 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
   3825   print(llvm::errs(), LO, ShowColors);
   3826 }
   3827 
   3828 /// print - A simple pretty printer of a CFG that outputs to an ostream.
   3829 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
   3830   StmtPrinterHelper Helper(this, LO);
   3831 
   3832   // Print the entry block.
   3833   print_block(OS, this, getEntry(), &Helper, true, ShowColors);
   3834 
   3835   // Iterate through the CFGBlocks and print them one by one.
   3836   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
   3837     // Skip the entry block, because we already printed it.
   3838     if (&(**I) == &getEntry() || &(**I) == &getExit())
   3839       continue;
   3840 
   3841     print_block(OS, this, **I, &Helper, true, ShowColors);
   3842   }
   3843 
   3844   // Print the exit block.
   3845   print_block(OS, this, getExit(), &Helper, true, ShowColors);
   3846   OS << '\n';
   3847   OS.flush();
   3848 }
   3849 
   3850 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
   3851 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
   3852                     bool ShowColors) const {
   3853   print(llvm::errs(), cfg, LO, ShowColors);
   3854 }
   3855 
   3856 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
   3857 ///   Generally this will only be called from CFG::print.
   3858 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
   3859                      const LangOptions &LO, bool ShowColors) const {
   3860   StmtPrinterHelper Helper(cfg, LO);
   3861   print_block(OS, cfg, *this, &Helper, true, ShowColors);
   3862   OS << '\n';
   3863 }
   3864 
   3865 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
   3866 void CFGBlock::printTerminator(raw_ostream &OS,
   3867                                const LangOptions &LO) const {
   3868   CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
   3869   TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
   3870 }
   3871 
   3872 Stmt *CFGBlock::getTerminatorCondition() {
   3873   Stmt *Terminator = this->Terminator;
   3874   if (!Terminator)
   3875     return NULL;
   3876 
   3877   Expr *E = NULL;
   3878 
   3879   switch (Terminator->getStmtClass()) {
   3880     default:
   3881       break;
   3882 
   3883     case Stmt::ForStmtClass:
   3884       E = cast<ForStmt>(Terminator)->getCond();
   3885       break;
   3886 
   3887     case Stmt::WhileStmtClass:
   3888       E = cast<WhileStmt>(Terminator)->getCond();
   3889       break;
   3890 
   3891     case Stmt::DoStmtClass:
   3892       E = cast<DoStmt>(Terminator)->getCond();
   3893       break;
   3894 
   3895     case Stmt::IfStmtClass:
   3896       E = cast<IfStmt>(Terminator)->getCond();
   3897       break;
   3898 
   3899     case Stmt::ChooseExprClass:
   3900       E = cast<ChooseExpr>(Terminator)->getCond();
   3901       break;
   3902 
   3903     case Stmt::IndirectGotoStmtClass:
   3904       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
   3905       break;
   3906 
   3907     case Stmt::SwitchStmtClass:
   3908       E = cast<SwitchStmt>(Terminator)->getCond();
   3909       break;
   3910 
   3911     case Stmt::BinaryConditionalOperatorClass:
   3912       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
   3913       break;
   3914 
   3915     case Stmt::ConditionalOperatorClass:
   3916       E = cast<ConditionalOperator>(Terminator)->getCond();
   3917       break;
   3918 
   3919     case Stmt::BinaryOperatorClass: // '&&' and '||'
   3920       E = cast<BinaryOperator>(Terminator)->getLHS();
   3921       break;
   3922 
   3923     case Stmt::ObjCForCollectionStmtClass:
   3924       return Terminator;
   3925   }
   3926 
   3927   return E ? E->IgnoreParens() : NULL;
   3928 }
   3929 
   3930 //===----------------------------------------------------------------------===//
   3931 // CFG Graphviz Visualization
   3932 //===----------------------------------------------------------------------===//
   3933 
   3934 
   3935 #ifndef NDEBUG
   3936 static StmtPrinterHelper* GraphHelper;
   3937 #endif
   3938 
   3939 void CFG::viewCFG(const LangOptions &LO) const {
   3940 #ifndef NDEBUG
   3941   StmtPrinterHelper H(this, LO);
   3942   GraphHelper = &H;
   3943   llvm::ViewGraph(this,"CFG");
   3944   GraphHelper = NULL;
   3945 #endif
   3946 }
   3947 
   3948 namespace llvm {
   3949 template<>
   3950 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
   3951 
   3952   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   3953 
   3954   static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
   3955 
   3956 #ifndef NDEBUG
   3957     std::string OutSStr;
   3958     llvm::raw_string_ostream Out(OutSStr);
   3959     print_block(Out,Graph, *Node, GraphHelper, false, false);
   3960     std::string& OutStr = Out.str();
   3961 
   3962     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
   3963 
   3964     // Process string output to make it nicer...
   3965     for (unsigned i = 0; i != OutStr.length(); ++i)
   3966       if (OutStr[i] == '\n') {                            // Left justify
   3967         OutStr[i] = '\\';
   3968         OutStr.insert(OutStr.begin()+i+1, 'l');
   3969       }
   3970 
   3971     return OutStr;
   3972 #else
   3973     return "";
   3974 #endif
   3975   }
   3976 };
   3977 } // end namespace llvm
   3978