Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "gvn"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/GlobalVariable.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/ConstantFolding.h"
     25 #include "llvm/Analysis/Dominators.h"
     26 #include "llvm/Analysis/InstructionSimplify.h"
     27 #include "llvm/Analysis/Loads.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     30 #include "llvm/Analysis/PHITransAddr.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/Assembly/Writer.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Target/TargetLibraryInfo.h"
     35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     36 #include "llvm/Transforms/Utils/SSAUpdater.h"
     37 #include "llvm/ADT/DenseMap.h"
     38 #include "llvm/ADT/DepthFirstIterator.h"
     39 #include "llvm/ADT/Hashing.h"
     40 #include "llvm/ADT/SmallPtrSet.h"
     41 #include "llvm/ADT/Statistic.h"
     42 #include "llvm/Support/Allocator.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/IRBuilder.h"
     46 #include "llvm/Support/PatternMatch.h"
     47 using namespace llvm;
     48 using namespace PatternMatch;
     49 
     50 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     51 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     52 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     53 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     54 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     55 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     56 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     57 
     58 static cl::opt<bool> EnablePRE("enable-pre",
     59                                cl::init(true), cl::Hidden);
     60 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     61 
     62 //===----------------------------------------------------------------------===//
     63 //                         ValueTable Class
     64 //===----------------------------------------------------------------------===//
     65 
     66 /// This class holds the mapping between values and value numbers.  It is used
     67 /// as an efficient mechanism to determine the expression-wise equivalence of
     68 /// two values.
     69 namespace {
     70   struct Expression {
     71     uint32_t opcode;
     72     Type *type;
     73     SmallVector<uint32_t, 4> varargs;
     74 
     75     Expression(uint32_t o = ~2U) : opcode(o) { }
     76 
     77     bool operator==(const Expression &other) const {
     78       if (opcode != other.opcode)
     79         return false;
     80       if (opcode == ~0U || opcode == ~1U)
     81         return true;
     82       if (type != other.type)
     83         return false;
     84       if (varargs != other.varargs)
     85         return false;
     86       return true;
     87     }
     88 
     89     friend hash_code hash_value(const Expression &Value) {
     90       return hash_combine(Value.opcode, Value.type,
     91                           hash_combine_range(Value.varargs.begin(),
     92                                              Value.varargs.end()));
     93     }
     94   };
     95 
     96   class ValueTable {
     97     DenseMap<Value*, uint32_t> valueNumbering;
     98     DenseMap<Expression, uint32_t> expressionNumbering;
     99     AliasAnalysis *AA;
    100     MemoryDependenceAnalysis *MD;
    101     DominatorTree *DT;
    102 
    103     uint32_t nextValueNumber;
    104 
    105     Expression create_expression(Instruction* I);
    106     Expression create_cmp_expression(unsigned Opcode,
    107                                      CmpInst::Predicate Predicate,
    108                                      Value *LHS, Value *RHS);
    109     Expression create_extractvalue_expression(ExtractValueInst* EI);
    110     uint32_t lookup_or_add_call(CallInst* C);
    111   public:
    112     ValueTable() : nextValueNumber(1) { }
    113     uint32_t lookup_or_add(Value *V);
    114     uint32_t lookup(Value *V) const;
    115     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
    116                                Value *LHS, Value *RHS);
    117     void add(Value *V, uint32_t num);
    118     void clear();
    119     void erase(Value *v);
    120     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    121     AliasAnalysis *getAliasAnalysis() const { return AA; }
    122     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    123     void setDomTree(DominatorTree* D) { DT = D; }
    124     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    125     void verifyRemoved(const Value *) const;
    126   };
    127 }
    128 
    129 namespace llvm {
    130 template <> struct DenseMapInfo<Expression> {
    131   static inline Expression getEmptyKey() {
    132     return ~0U;
    133   }
    134 
    135   static inline Expression getTombstoneKey() {
    136     return ~1U;
    137   }
    138 
    139   static unsigned getHashValue(const Expression e) {
    140     using llvm::hash_value;
    141     return static_cast<unsigned>(hash_value(e));
    142   }
    143   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    144     return LHS == RHS;
    145   }
    146 };
    147 
    148 }
    149 
    150 //===----------------------------------------------------------------------===//
    151 //                     ValueTable Internal Functions
    152 //===----------------------------------------------------------------------===//
    153 
    154 Expression ValueTable::create_expression(Instruction *I) {
    155   Expression e;
    156   e.type = I->getType();
    157   e.opcode = I->getOpcode();
    158   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    159        OI != OE; ++OI)
    160     e.varargs.push_back(lookup_or_add(*OI));
    161   if (I->isCommutative()) {
    162     // Ensure that commutative instructions that only differ by a permutation
    163     // of their operands get the same value number by sorting the operand value
    164     // numbers.  Since all commutative instructions have two operands it is more
    165     // efficient to sort by hand rather than using, say, std::sort.
    166     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    167     if (e.varargs[0] > e.varargs[1])
    168       std::swap(e.varargs[0], e.varargs[1]);
    169   }
    170 
    171   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    172     // Sort the operand value numbers so x<y and y>x get the same value number.
    173     CmpInst::Predicate Predicate = C->getPredicate();
    174     if (e.varargs[0] > e.varargs[1]) {
    175       std::swap(e.varargs[0], e.varargs[1]);
    176       Predicate = CmpInst::getSwappedPredicate(Predicate);
    177     }
    178     e.opcode = (C->getOpcode() << 8) | Predicate;
    179   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    180     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    181          II != IE; ++II)
    182       e.varargs.push_back(*II);
    183   }
    184 
    185   return e;
    186 }
    187 
    188 Expression ValueTable::create_cmp_expression(unsigned Opcode,
    189                                              CmpInst::Predicate Predicate,
    190                                              Value *LHS, Value *RHS) {
    191   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    192          "Not a comparison!");
    193   Expression e;
    194   e.type = CmpInst::makeCmpResultType(LHS->getType());
    195   e.varargs.push_back(lookup_or_add(LHS));
    196   e.varargs.push_back(lookup_or_add(RHS));
    197 
    198   // Sort the operand value numbers so x<y and y>x get the same value number.
    199   if (e.varargs[0] > e.varargs[1]) {
    200     std::swap(e.varargs[0], e.varargs[1]);
    201     Predicate = CmpInst::getSwappedPredicate(Predicate);
    202   }
    203   e.opcode = (Opcode << 8) | Predicate;
    204   return e;
    205 }
    206 
    207 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    208   assert(EI != 0 && "Not an ExtractValueInst?");
    209   Expression e;
    210   e.type = EI->getType();
    211   e.opcode = 0;
    212 
    213   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    214   if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    215     // EI might be an extract from one of our recognised intrinsics. If it
    216     // is we'll synthesize a semantically equivalent expression instead on
    217     // an extract value expression.
    218     switch (I->getIntrinsicID()) {
    219       case Intrinsic::sadd_with_overflow:
    220       case Intrinsic::uadd_with_overflow:
    221         e.opcode = Instruction::Add;
    222         break;
    223       case Intrinsic::ssub_with_overflow:
    224       case Intrinsic::usub_with_overflow:
    225         e.opcode = Instruction::Sub;
    226         break;
    227       case Intrinsic::smul_with_overflow:
    228       case Intrinsic::umul_with_overflow:
    229         e.opcode = Instruction::Mul;
    230         break;
    231       default:
    232         break;
    233     }
    234 
    235     if (e.opcode != 0) {
    236       // Intrinsic recognized. Grab its args to finish building the expression.
    237       assert(I->getNumArgOperands() == 2 &&
    238              "Expect two args for recognised intrinsics.");
    239       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    240       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    241       return e;
    242     }
    243   }
    244 
    245   // Not a recognised intrinsic. Fall back to producing an extract value
    246   // expression.
    247   e.opcode = EI->getOpcode();
    248   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    249        OI != OE; ++OI)
    250     e.varargs.push_back(lookup_or_add(*OI));
    251 
    252   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    253          II != IE; ++II)
    254     e.varargs.push_back(*II);
    255 
    256   return e;
    257 }
    258 
    259 //===----------------------------------------------------------------------===//
    260 //                     ValueTable External Functions
    261 //===----------------------------------------------------------------------===//
    262 
    263 /// add - Insert a value into the table with a specified value number.
    264 void ValueTable::add(Value *V, uint32_t num) {
    265   valueNumbering.insert(std::make_pair(V, num));
    266 }
    267 
    268 uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
    269   if (AA->doesNotAccessMemory(C)) {
    270     Expression exp = create_expression(C);
    271     uint32_t& e = expressionNumbering[exp];
    272     if (!e) e = nextValueNumber++;
    273     valueNumbering[C] = e;
    274     return e;
    275   } else if (AA->onlyReadsMemory(C)) {
    276     Expression exp = create_expression(C);
    277     uint32_t& e = expressionNumbering[exp];
    278     if (!e) {
    279       e = nextValueNumber++;
    280       valueNumbering[C] = e;
    281       return e;
    282     }
    283     if (!MD) {
    284       e = nextValueNumber++;
    285       valueNumbering[C] = e;
    286       return e;
    287     }
    288 
    289     MemDepResult local_dep = MD->getDependency(C);
    290 
    291     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    292       valueNumbering[C] =  nextValueNumber;
    293       return nextValueNumber++;
    294     }
    295 
    296     if (local_dep.isDef()) {
    297       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    298 
    299       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    300         valueNumbering[C] = nextValueNumber;
    301         return nextValueNumber++;
    302       }
    303 
    304       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    305         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    306         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    307         if (c_vn != cd_vn) {
    308           valueNumbering[C] = nextValueNumber;
    309           return nextValueNumber++;
    310         }
    311       }
    312 
    313       uint32_t v = lookup_or_add(local_cdep);
    314       valueNumbering[C] = v;
    315       return v;
    316     }
    317 
    318     // Non-local case.
    319     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    320       MD->getNonLocalCallDependency(CallSite(C));
    321     // FIXME: Move the checking logic to MemDep!
    322     CallInst* cdep = 0;
    323 
    324     // Check to see if we have a single dominating call instruction that is
    325     // identical to C.
    326     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    327       const NonLocalDepEntry *I = &deps[i];
    328       if (I->getResult().isNonLocal())
    329         continue;
    330 
    331       // We don't handle non-definitions.  If we already have a call, reject
    332       // instruction dependencies.
    333       if (!I->getResult().isDef() || cdep != 0) {
    334         cdep = 0;
    335         break;
    336       }
    337 
    338       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    339       // FIXME: All duplicated with non-local case.
    340       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    341         cdep = NonLocalDepCall;
    342         continue;
    343       }
    344 
    345       cdep = 0;
    346       break;
    347     }
    348 
    349     if (!cdep) {
    350       valueNumbering[C] = nextValueNumber;
    351       return nextValueNumber++;
    352     }
    353 
    354     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    355       valueNumbering[C] = nextValueNumber;
    356       return nextValueNumber++;
    357     }
    358     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    359       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    360       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    361       if (c_vn != cd_vn) {
    362         valueNumbering[C] = nextValueNumber;
    363         return nextValueNumber++;
    364       }
    365     }
    366 
    367     uint32_t v = lookup_or_add(cdep);
    368     valueNumbering[C] = v;
    369     return v;
    370 
    371   } else {
    372     valueNumbering[C] = nextValueNumber;
    373     return nextValueNumber++;
    374   }
    375 }
    376 
    377 /// lookup_or_add - Returns the value number for the specified value, assigning
    378 /// it a new number if it did not have one before.
    379 uint32_t ValueTable::lookup_or_add(Value *V) {
    380   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    381   if (VI != valueNumbering.end())
    382     return VI->second;
    383 
    384   if (!isa<Instruction>(V)) {
    385     valueNumbering[V] = nextValueNumber;
    386     return nextValueNumber++;
    387   }
    388 
    389   Instruction* I = cast<Instruction>(V);
    390   Expression exp;
    391   switch (I->getOpcode()) {
    392     case Instruction::Call:
    393       return lookup_or_add_call(cast<CallInst>(I));
    394     case Instruction::Add:
    395     case Instruction::FAdd:
    396     case Instruction::Sub:
    397     case Instruction::FSub:
    398     case Instruction::Mul:
    399     case Instruction::FMul:
    400     case Instruction::UDiv:
    401     case Instruction::SDiv:
    402     case Instruction::FDiv:
    403     case Instruction::URem:
    404     case Instruction::SRem:
    405     case Instruction::FRem:
    406     case Instruction::Shl:
    407     case Instruction::LShr:
    408     case Instruction::AShr:
    409     case Instruction::And:
    410     case Instruction::Or :
    411     case Instruction::Xor:
    412     case Instruction::ICmp:
    413     case Instruction::FCmp:
    414     case Instruction::Trunc:
    415     case Instruction::ZExt:
    416     case Instruction::SExt:
    417     case Instruction::FPToUI:
    418     case Instruction::FPToSI:
    419     case Instruction::UIToFP:
    420     case Instruction::SIToFP:
    421     case Instruction::FPTrunc:
    422     case Instruction::FPExt:
    423     case Instruction::PtrToInt:
    424     case Instruction::IntToPtr:
    425     case Instruction::BitCast:
    426     case Instruction::Select:
    427     case Instruction::ExtractElement:
    428     case Instruction::InsertElement:
    429     case Instruction::ShuffleVector:
    430     case Instruction::InsertValue:
    431     case Instruction::GetElementPtr:
    432       exp = create_expression(I);
    433       break;
    434     case Instruction::ExtractValue:
    435       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    436       break;
    437     default:
    438       valueNumbering[V] = nextValueNumber;
    439       return nextValueNumber++;
    440   }
    441 
    442   uint32_t& e = expressionNumbering[exp];
    443   if (!e) e = nextValueNumber++;
    444   valueNumbering[V] = e;
    445   return e;
    446 }
    447 
    448 /// lookup - Returns the value number of the specified value. Fails if
    449 /// the value has not yet been numbered.
    450 uint32_t ValueTable::lookup(Value *V) const {
    451   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    452   assert(VI != valueNumbering.end() && "Value not numbered?");
    453   return VI->second;
    454 }
    455 
    456 /// lookup_or_add_cmp - Returns the value number of the given comparison,
    457 /// assigning it a new number if it did not have one before.  Useful when
    458 /// we deduced the result of a comparison, but don't immediately have an
    459 /// instruction realizing that comparison to hand.
    460 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
    461                                        CmpInst::Predicate Predicate,
    462                                        Value *LHS, Value *RHS) {
    463   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
    464   uint32_t& e = expressionNumbering[exp];
    465   if (!e) e = nextValueNumber++;
    466   return e;
    467 }
    468 
    469 /// clear - Remove all entries from the ValueTable.
    470 void ValueTable::clear() {
    471   valueNumbering.clear();
    472   expressionNumbering.clear();
    473   nextValueNumber = 1;
    474 }
    475 
    476 /// erase - Remove a value from the value numbering.
    477 void ValueTable::erase(Value *V) {
    478   valueNumbering.erase(V);
    479 }
    480 
    481 /// verifyRemoved - Verify that the value is removed from all internal data
    482 /// structures.
    483 void ValueTable::verifyRemoved(const Value *V) const {
    484   for (DenseMap<Value*, uint32_t>::const_iterator
    485          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    486     assert(I->first != V && "Inst still occurs in value numbering map!");
    487   }
    488 }
    489 
    490 //===----------------------------------------------------------------------===//
    491 //                                GVN Pass
    492 //===----------------------------------------------------------------------===//
    493 
    494 namespace {
    495 
    496   class GVN : public FunctionPass {
    497     bool NoLoads;
    498     MemoryDependenceAnalysis *MD;
    499     DominatorTree *DT;
    500     const TargetData *TD;
    501     const TargetLibraryInfo *TLI;
    502 
    503     ValueTable VN;
    504 
    505     /// LeaderTable - A mapping from value numbers to lists of Value*'s that
    506     /// have that value number.  Use findLeader to query it.
    507     struct LeaderTableEntry {
    508       Value *Val;
    509       BasicBlock *BB;
    510       LeaderTableEntry *Next;
    511     };
    512     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    513     BumpPtrAllocator TableAllocator;
    514 
    515     SmallVector<Instruction*, 8> InstrsToErase;
    516   public:
    517     static char ID; // Pass identification, replacement for typeid
    518     explicit GVN(bool noloads = false)
    519         : FunctionPass(ID), NoLoads(noloads), MD(0) {
    520       initializeGVNPass(*PassRegistry::getPassRegistry());
    521     }
    522 
    523     bool runOnFunction(Function &F);
    524 
    525     /// markInstructionForDeletion - This removes the specified instruction from
    526     /// our various maps and marks it for deletion.
    527     void markInstructionForDeletion(Instruction *I) {
    528       VN.erase(I);
    529       InstrsToErase.push_back(I);
    530     }
    531 
    532     const TargetData *getTargetData() const { return TD; }
    533     DominatorTree &getDominatorTree() const { return *DT; }
    534     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    535     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    536   private:
    537     /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
    538     /// its value number.
    539     void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    540       LeaderTableEntry &Curr = LeaderTable[N];
    541       if (!Curr.Val) {
    542         Curr.Val = V;
    543         Curr.BB = BB;
    544         return;
    545       }
    546 
    547       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    548       Node->Val = V;
    549       Node->BB = BB;
    550       Node->Next = Curr.Next;
    551       Curr.Next = Node;
    552     }
    553 
    554     /// removeFromLeaderTable - Scan the list of values corresponding to a given
    555     /// value number, and remove the given value if encountered.
    556     void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
    557       LeaderTableEntry* Prev = 0;
    558       LeaderTableEntry* Curr = &LeaderTable[N];
    559 
    560       while (Curr->Val != V || Curr->BB != BB) {
    561         Prev = Curr;
    562         Curr = Curr->Next;
    563       }
    564 
    565       if (Prev) {
    566         Prev->Next = Curr->Next;
    567       } else {
    568         if (!Curr->Next) {
    569           Curr->Val = 0;
    570           Curr->BB = 0;
    571         } else {
    572           LeaderTableEntry* Next = Curr->Next;
    573           Curr->Val = Next->Val;
    574           Curr->BB = Next->BB;
    575           Curr->Next = Next->Next;
    576         }
    577       }
    578     }
    579 
    580     // List of critical edges to be split between iterations.
    581     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    582 
    583     // This transformation requires dominator postdominator info
    584     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    585       AU.addRequired<DominatorTree>();
    586       AU.addRequired<TargetLibraryInfo>();
    587       if (!NoLoads)
    588         AU.addRequired<MemoryDependenceAnalysis>();
    589       AU.addRequired<AliasAnalysis>();
    590 
    591       AU.addPreserved<DominatorTree>();
    592       AU.addPreserved<AliasAnalysis>();
    593     }
    594 
    595 
    596     // Helper fuctions
    597     // FIXME: eliminate or document these better
    598     bool processLoad(LoadInst *L);
    599     bool processInstruction(Instruction *I);
    600     bool processNonLocalLoad(LoadInst *L);
    601     bool processBlock(BasicBlock *BB);
    602     void dump(DenseMap<uint32_t, Value*> &d);
    603     bool iterateOnFunction(Function &F);
    604     bool performPRE(Function &F);
    605     Value *findLeader(BasicBlock *BB, uint32_t num);
    606     void cleanupGlobalSets();
    607     void verifyRemoved(const Instruction *I) const;
    608     bool splitCriticalEdges();
    609     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
    610                                          BasicBlock *Root);
    611     bool propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root);
    612   };
    613 
    614   char GVN::ID = 0;
    615 }
    616 
    617 // createGVNPass - The public interface to this file...
    618 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    619   return new GVN(NoLoads);
    620 }
    621 
    622 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    623 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    624 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    625 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    626 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    627 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    628 
    629 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    630   errs() << "{\n";
    631   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    632        E = d.end(); I != E; ++I) {
    633       errs() << I->first << "\n";
    634       I->second->dump();
    635   }
    636   errs() << "}\n";
    637 }
    638 
    639 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
    640 /// we're analyzing is fully available in the specified block.  As we go, keep
    641 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    642 /// map is actually a tri-state map with the following values:
    643 ///   0) we know the block *is not* fully available.
    644 ///   1) we know the block *is* fully available.
    645 ///   2) we do not know whether the block is fully available or not, but we are
    646 ///      currently speculating that it will be.
    647 ///   3) we are speculating for this block and have used that to speculate for
    648 ///      other blocks.
    649 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    650                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
    651   // Optimistically assume that the block is fully available and check to see
    652   // if we already know about this block in one lookup.
    653   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    654     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    655 
    656   // If the entry already existed for this block, return the precomputed value.
    657   if (!IV.second) {
    658     // If this is a speculative "available" value, mark it as being used for
    659     // speculation of other blocks.
    660     if (IV.first->second == 2)
    661       IV.first->second = 3;
    662     return IV.first->second != 0;
    663   }
    664 
    665   // Otherwise, see if it is fully available in all predecessors.
    666   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    667 
    668   // If this block has no predecessors, it isn't live-in here.
    669   if (PI == PE)
    670     goto SpeculationFailure;
    671 
    672   for (; PI != PE; ++PI)
    673     // If the value isn't fully available in one of our predecessors, then it
    674     // isn't fully available in this block either.  Undo our previous
    675     // optimistic assumption and bail out.
    676     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
    677       goto SpeculationFailure;
    678 
    679   return true;
    680 
    681 // SpeculationFailure - If we get here, we found out that this is not, after
    682 // all, a fully-available block.  We have a problem if we speculated on this and
    683 // used the speculation to mark other blocks as available.
    684 SpeculationFailure:
    685   char &BBVal = FullyAvailableBlocks[BB];
    686 
    687   // If we didn't speculate on this, just return with it set to false.
    688   if (BBVal == 2) {
    689     BBVal = 0;
    690     return false;
    691   }
    692 
    693   // If we did speculate on this value, we could have blocks set to 1 that are
    694   // incorrect.  Walk the (transitive) successors of this block and mark them as
    695   // 0 if set to one.
    696   SmallVector<BasicBlock*, 32> BBWorklist;
    697   BBWorklist.push_back(BB);
    698 
    699   do {
    700     BasicBlock *Entry = BBWorklist.pop_back_val();
    701     // Note that this sets blocks to 0 (unavailable) if they happen to not
    702     // already be in FullyAvailableBlocks.  This is safe.
    703     char &EntryVal = FullyAvailableBlocks[Entry];
    704     if (EntryVal == 0) continue;  // Already unavailable.
    705 
    706     // Mark as unavailable.
    707     EntryVal = 0;
    708 
    709     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
    710       BBWorklist.push_back(*I);
    711   } while (!BBWorklist.empty());
    712 
    713   return false;
    714 }
    715 
    716 
    717 /// CanCoerceMustAliasedValueToLoad - Return true if
    718 /// CoerceAvailableValueToLoadType will succeed.
    719 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    720                                             Type *LoadTy,
    721                                             const TargetData &TD) {
    722   // If the loaded or stored value is an first class array or struct, don't try
    723   // to transform them.  We need to be able to bitcast to integer.
    724   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    725       StoredVal->getType()->isStructTy() ||
    726       StoredVal->getType()->isArrayTy())
    727     return false;
    728 
    729   // The store has to be at least as big as the load.
    730   if (TD.getTypeSizeInBits(StoredVal->getType()) <
    731         TD.getTypeSizeInBits(LoadTy))
    732     return false;
    733 
    734   return true;
    735 }
    736 
    737 
    738 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
    739 /// then a load from a must-aliased pointer of a different type, try to coerce
    740 /// the stored value.  LoadedTy is the type of the load we want to replace and
    741 /// InsertPt is the place to insert new instructions.
    742 ///
    743 /// If we can't do it, return null.
    744 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    745                                              Type *LoadedTy,
    746                                              Instruction *InsertPt,
    747                                              const TargetData &TD) {
    748   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
    749     return 0;
    750 
    751   // If this is already the right type, just return it.
    752   Type *StoredValTy = StoredVal->getType();
    753 
    754   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
    755   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
    756 
    757   // If the store and reload are the same size, we can always reuse it.
    758   if (StoreSize == LoadSize) {
    759     // Pointer to Pointer -> use bitcast.
    760     if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
    761       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    762 
    763     // Convert source pointers to integers, which can be bitcast.
    764     if (StoredValTy->isPointerTy()) {
    765       StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    766       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    767     }
    768 
    769     Type *TypeToCastTo = LoadedTy;
    770     if (TypeToCastTo->isPointerTy())
    771       TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
    772 
    773     if (StoredValTy != TypeToCastTo)
    774       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    775 
    776     // Cast to pointer if the load needs a pointer type.
    777     if (LoadedTy->isPointerTy())
    778       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    779 
    780     return StoredVal;
    781   }
    782 
    783   // If the loaded value is smaller than the available value, then we can
    784   // extract out a piece from it.  If the available value is too small, then we
    785   // can't do anything.
    786   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    787 
    788   // Convert source pointers to integers, which can be manipulated.
    789   if (StoredValTy->isPointerTy()) {
    790     StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
    791     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    792   }
    793 
    794   // Convert vectors and fp to integer, which can be manipulated.
    795   if (!StoredValTy->isIntegerTy()) {
    796     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    797     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    798   }
    799 
    800   // If this is a big-endian system, we need to shift the value down to the low
    801   // bits so that a truncate will work.
    802   if (TD.isBigEndian()) {
    803     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    804     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    805   }
    806 
    807   // Truncate the integer to the right size now.
    808   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    809   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    810 
    811   if (LoadedTy == NewIntTy)
    812     return StoredVal;
    813 
    814   // If the result is a pointer, inttoptr.
    815   if (LoadedTy->isPointerTy())
    816     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    817 
    818   // Otherwise, bitcast.
    819   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    820 }
    821 
    822 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
    823 /// memdep query of a load that ends up being a clobbering memory write (store,
    824 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    825 /// by the load but we can't be sure because the pointers don't mustalias.
    826 ///
    827 /// Check this case to see if there is anything more we can do before we give
    828 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    829 /// value of the piece that feeds the load.
    830 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    831                                           Value *WritePtr,
    832                                           uint64_t WriteSizeInBits,
    833                                           const TargetData &TD) {
    834   // If the loaded or stored value is a first class array or struct, don't try
    835   // to transform them.  We need to be able to bitcast to integer.
    836   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    837     return -1;
    838 
    839   int64_t StoreOffset = 0, LoadOffset = 0;
    840   Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
    841   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
    842   if (StoreBase != LoadBase)
    843     return -1;
    844 
    845   // If the load and store are to the exact same address, they should have been
    846   // a must alias.  AA must have gotten confused.
    847   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    848   // to a load from the base of the memset.
    849 #if 0
    850   if (LoadOffset == StoreOffset) {
    851     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    852     << "Base       = " << *StoreBase << "\n"
    853     << "Store Ptr  = " << *WritePtr << "\n"
    854     << "Store Offs = " << StoreOffset << "\n"
    855     << "Load Ptr   = " << *LoadPtr << "\n";
    856     abort();
    857   }
    858 #endif
    859 
    860   // If the load and store don't overlap at all, the store doesn't provide
    861   // anything to the load.  In this case, they really don't alias at all, AA
    862   // must have gotten confused.
    863   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
    864 
    865   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    866     return -1;
    867   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    868   LoadSize >>= 3;
    869 
    870 
    871   bool isAAFailure = false;
    872   if (StoreOffset < LoadOffset)
    873     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    874   else
    875     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    876 
    877   if (isAAFailure) {
    878 #if 0
    879     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    880     << "Base       = " << *StoreBase << "\n"
    881     << "Store Ptr  = " << *WritePtr << "\n"
    882     << "Store Offs = " << StoreOffset << "\n"
    883     << "Load Ptr   = " << *LoadPtr << "\n";
    884     abort();
    885 #endif
    886     return -1;
    887   }
    888 
    889   // If the Load isn't completely contained within the stored bits, we don't
    890   // have all the bits to feed it.  We could do something crazy in the future
    891   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    892   // valuable.
    893   if (StoreOffset > LoadOffset ||
    894       StoreOffset+StoreSize < LoadOffset+LoadSize)
    895     return -1;
    896 
    897   // Okay, we can do this transformation.  Return the number of bytes into the
    898   // store that the load is.
    899   return LoadOffset-StoreOffset;
    900 }
    901 
    902 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
    903 /// memdep query of a load that ends up being a clobbering store.
    904 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    905                                           StoreInst *DepSI,
    906                                           const TargetData &TD) {
    907   // Cannot handle reading from store of first-class aggregate yet.
    908   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    909       DepSI->getValueOperand()->getType()->isArrayTy())
    910     return -1;
    911 
    912   Value *StorePtr = DepSI->getPointerOperand();
    913   uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    914   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    915                                         StorePtr, StoreSize, TD);
    916 }
    917 
    918 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
    919 /// memdep query of a load that ends up being clobbered by another load.  See if
    920 /// the other load can feed into the second load.
    921 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
    922                                          LoadInst *DepLI, const TargetData &TD){
    923   // Cannot handle reading from store of first-class aggregate yet.
    924   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    925     return -1;
    926 
    927   Value *DepPtr = DepLI->getPointerOperand();
    928   uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
    929   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
    930   if (R != -1) return R;
    931 
    932   // If we have a load/load clobber an DepLI can be widened to cover this load,
    933   // then we should widen it!
    934   int64_t LoadOffs = 0;
    935   const Value *LoadBase =
    936     GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
    937   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
    938 
    939   unsigned Size = MemoryDependenceAnalysis::
    940     getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
    941   if (Size == 0) return -1;
    942 
    943   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
    944 }
    945 
    946 
    947 
    948 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    949                                             MemIntrinsic *MI,
    950                                             const TargetData &TD) {
    951   // If the mem operation is a non-constant size, we can't handle it.
    952   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    953   if (SizeCst == 0) return -1;
    954   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
    955 
    956   // If this is memset, we just need to see if the offset is valid in the size
    957   // of the memset..
    958   if (MI->getIntrinsicID() == Intrinsic::memset)
    959     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    960                                           MemSizeInBits, TD);
    961 
    962   // If we have a memcpy/memmove, the only case we can handle is if this is a
    963   // copy from constant memory.  In that case, we can read directly from the
    964   // constant memory.
    965   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    966 
    967   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    968   if (Src == 0) return -1;
    969 
    970   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
    971   if (GV == 0 || !GV->isConstant()) return -1;
    972 
    973   // See if the access is within the bounds of the transfer.
    974   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    975                                               MI->getDest(), MemSizeInBits, TD);
    976   if (Offset == -1)
    977     return Offset;
    978 
    979   // Otherwise, see if we can constant fold a load from the constant with the
    980   // offset applied as appropriate.
    981   Src = ConstantExpr::getBitCast(Src,
    982                                  llvm::Type::getInt8PtrTy(Src->getContext()));
    983   Constant *OffsetCst =
    984     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    985   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
    986   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
    987   if (ConstantFoldLoadFromConstPtr(Src, &TD))
    988     return Offset;
    989   return -1;
    990 }
    991 
    992 
    993 /// GetStoreValueForLoad - This function is called when we have a
    994 /// memdep query of a load that ends up being a clobbering store.  This means
    995 /// that the store provides bits used by the load but we the pointers don't
    996 /// mustalias.  Check this case to see if there is anything more we can do
    997 /// before we give up.
    998 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
    999                                    Type *LoadTy,
   1000                                    Instruction *InsertPt, const TargetData &TD){
   1001   LLVMContext &Ctx = SrcVal->getType()->getContext();
   1002 
   1003   uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
   1004   uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
   1005 
   1006   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1007 
   1008   // Compute which bits of the stored value are being used by the load.  Convert
   1009   // to an integer type to start with.
   1010   if (SrcVal->getType()->isPointerTy())
   1011     SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx));
   1012   if (!SrcVal->getType()->isIntegerTy())
   1013     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1014 
   1015   // Shift the bits to the least significant depending on endianness.
   1016   unsigned ShiftAmt;
   1017   if (TD.isLittleEndian())
   1018     ShiftAmt = Offset*8;
   1019   else
   1020     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1021 
   1022   if (ShiftAmt)
   1023     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1024 
   1025   if (LoadSize != StoreSize)
   1026     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1027 
   1028   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
   1029 }
   1030 
   1031 /// GetLoadValueForLoad - This function is called when we have a
   1032 /// memdep query of a load that ends up being a clobbering load.  This means
   1033 /// that the load *may* provide bits used by the load but we can't be sure
   1034 /// because the pointers don't mustalias.  Check this case to see if there is
   1035 /// anything more we can do before we give up.
   1036 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1037                                   Type *LoadTy, Instruction *InsertPt,
   1038                                   GVN &gvn) {
   1039   const TargetData &TD = *gvn.getTargetData();
   1040   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1041   // widen SrcVal out to a larger load.
   1042   unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
   1043   unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
   1044   if (Offset+LoadSize > SrcValSize) {
   1045     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1046     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1047     // If we have a load/load clobber an DepLI can be widened to cover this
   1048     // load, then we should widen it to the next power of 2 size big enough!
   1049     unsigned NewLoadSize = Offset+LoadSize;
   1050     if (!isPowerOf2_32(NewLoadSize))
   1051       NewLoadSize = NextPowerOf2(NewLoadSize);
   1052 
   1053     Value *PtrVal = SrcVal->getPointerOperand();
   1054 
   1055     // Insert the new load after the old load.  This ensures that subsequent
   1056     // memdep queries will find the new load.  We can't easily remove the old
   1057     // load completely because it is already in the value numbering table.
   1058     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1059     Type *DestPTy =
   1060       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1061     DestPTy = PointerType::get(DestPTy,
   1062                        cast<PointerType>(PtrVal->getType())->getAddressSpace());
   1063     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1064     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1065     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1066     NewLoad->takeName(SrcVal);
   1067     NewLoad->setAlignment(SrcVal->getAlignment());
   1068 
   1069     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1070     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1071 
   1072     // Replace uses of the original load with the wider load.  On a big endian
   1073     // system, we need to shift down to get the relevant bits.
   1074     Value *RV = NewLoad;
   1075     if (TD.isBigEndian())
   1076       RV = Builder.CreateLShr(RV,
   1077                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1078     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1079     SrcVal->replaceAllUsesWith(RV);
   1080 
   1081     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1082     // because the load is already memoized into the leader map table that GVN
   1083     // tracks.  It is potentially possible to remove the load from the table,
   1084     // but then there all of the operations based on it would need to be
   1085     // rehashed.  Just leave the dead load around.
   1086     gvn.getMemDep().removeInstruction(SrcVal);
   1087     SrcVal = NewLoad;
   1088   }
   1089 
   1090   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
   1091 }
   1092 
   1093 
   1094 /// GetMemInstValueForLoad - This function is called when we have a
   1095 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1096 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1097                                      Type *LoadTy, Instruction *InsertPt,
   1098                                      const TargetData &TD){
   1099   LLVMContext &Ctx = LoadTy->getContext();
   1100   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
   1101 
   1102   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1103 
   1104   // We know that this method is only called when the mem transfer fully
   1105   // provides the bits for the load.
   1106   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1107     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1108     // independently of what the offset is.
   1109     Value *Val = MSI->getValue();
   1110     if (LoadSize != 1)
   1111       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1112 
   1113     Value *OneElt = Val;
   1114 
   1115     // Splat the value out to the right number of bits.
   1116     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1117       // If we can double the number of bytes set, do it.
   1118       if (NumBytesSet*2 <= LoadSize) {
   1119         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1120         Val = Builder.CreateOr(Val, ShVal);
   1121         NumBytesSet <<= 1;
   1122         continue;
   1123       }
   1124 
   1125       // Otherwise insert one byte at a time.
   1126       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1127       Val = Builder.CreateOr(OneElt, ShVal);
   1128       ++NumBytesSet;
   1129     }
   1130 
   1131     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
   1132   }
   1133 
   1134   // Otherwise, this is a memcpy/memmove from a constant global.
   1135   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1136   Constant *Src = cast<Constant>(MTI->getSource());
   1137 
   1138   // Otherwise, see if we can constant fold a load from the constant with the
   1139   // offset applied as appropriate.
   1140   Src = ConstantExpr::getBitCast(Src,
   1141                                  llvm::Type::getInt8PtrTy(Src->getContext()));
   1142   Constant *OffsetCst =
   1143   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1144   Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
   1145   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
   1146   return ConstantFoldLoadFromConstPtr(Src, &TD);
   1147 }
   1148 
   1149 namespace {
   1150 
   1151 struct AvailableValueInBlock {
   1152   /// BB - The basic block in question.
   1153   BasicBlock *BB;
   1154   enum ValType {
   1155     SimpleVal,  // A simple offsetted value that is accessed.
   1156     LoadVal,    // A value produced by a load.
   1157     MemIntrin   // A memory intrinsic which is loaded from.
   1158   };
   1159 
   1160   /// V - The value that is live out of the block.
   1161   PointerIntPair<Value *, 2, ValType> Val;
   1162 
   1163   /// Offset - The byte offset in Val that is interesting for the load query.
   1164   unsigned Offset;
   1165 
   1166   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
   1167                                    unsigned Offset = 0) {
   1168     AvailableValueInBlock Res;
   1169     Res.BB = BB;
   1170     Res.Val.setPointer(V);
   1171     Res.Val.setInt(SimpleVal);
   1172     Res.Offset = Offset;
   1173     return Res;
   1174   }
   1175 
   1176   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
   1177                                      unsigned Offset = 0) {
   1178     AvailableValueInBlock Res;
   1179     Res.BB = BB;
   1180     Res.Val.setPointer(MI);
   1181     Res.Val.setInt(MemIntrin);
   1182     Res.Offset = Offset;
   1183     return Res;
   1184   }
   1185 
   1186   static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
   1187                                        unsigned Offset = 0) {
   1188     AvailableValueInBlock Res;
   1189     Res.BB = BB;
   1190     Res.Val.setPointer(LI);
   1191     Res.Val.setInt(LoadVal);
   1192     Res.Offset = Offset;
   1193     return Res;
   1194   }
   1195 
   1196   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
   1197   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
   1198   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
   1199 
   1200   Value *getSimpleValue() const {
   1201     assert(isSimpleValue() && "Wrong accessor");
   1202     return Val.getPointer();
   1203   }
   1204 
   1205   LoadInst *getCoercedLoadValue() const {
   1206     assert(isCoercedLoadValue() && "Wrong accessor");
   1207     return cast<LoadInst>(Val.getPointer());
   1208   }
   1209 
   1210   MemIntrinsic *getMemIntrinValue() const {
   1211     assert(isMemIntrinValue() && "Wrong accessor");
   1212     return cast<MemIntrinsic>(Val.getPointer());
   1213   }
   1214 
   1215   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
   1216   /// defined here to the specified type.  This handles various coercion cases.
   1217   Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
   1218     Value *Res;
   1219     if (isSimpleValue()) {
   1220       Res = getSimpleValue();
   1221       if (Res->getType() != LoadTy) {
   1222         const TargetData *TD = gvn.getTargetData();
   1223         assert(TD && "Need target data to handle type mismatch case");
   1224         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
   1225                                    *TD);
   1226 
   1227         DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1228                      << *getSimpleValue() << '\n'
   1229                      << *Res << '\n' << "\n\n\n");
   1230       }
   1231     } else if (isCoercedLoadValue()) {
   1232       LoadInst *Load = getCoercedLoadValue();
   1233       if (Load->getType() == LoadTy && Offset == 0) {
   1234         Res = Load;
   1235       } else {
   1236         Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1237                                   gvn);
   1238 
   1239         DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1240                      << *getCoercedLoadValue() << '\n'
   1241                      << *Res << '\n' << "\n\n\n");
   1242       }
   1243     } else {
   1244       const TargetData *TD = gvn.getTargetData();
   1245       assert(TD && "Need target data to handle type mismatch case");
   1246       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
   1247                                    LoadTy, BB->getTerminator(), *TD);
   1248       DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1249                    << "  " << *getMemIntrinValue() << '\n'
   1250                    << *Res << '\n' << "\n\n\n");
   1251     }
   1252     return Res;
   1253   }
   1254 };
   1255 
   1256 } // end anonymous namespace
   1257 
   1258 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
   1259 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1260 /// that should be used at LI's definition site.
   1261 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1262                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1263                                      GVN &gvn) {
   1264   // Check for the fully redundant, dominating load case.  In this case, we can
   1265   // just use the dominating value directly.
   1266   if (ValuesPerBlock.size() == 1 &&
   1267       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1268                                                LI->getParent()))
   1269     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
   1270 
   1271   // Otherwise, we have to construct SSA form.
   1272   SmallVector<PHINode*, 8> NewPHIs;
   1273   SSAUpdater SSAUpdate(&NewPHIs);
   1274   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1275 
   1276   Type *LoadTy = LI->getType();
   1277 
   1278   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1279     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1280     BasicBlock *BB = AV.BB;
   1281 
   1282     if (SSAUpdate.HasValueForBlock(BB))
   1283       continue;
   1284 
   1285     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
   1286   }
   1287 
   1288   // Perform PHI construction.
   1289   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1290 
   1291   // If new PHI nodes were created, notify alias analysis.
   1292   if (V->getType()->isPointerTy()) {
   1293     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1294 
   1295     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1296       AA->copyValue(LI, NewPHIs[i]);
   1297 
   1298     // Now that we've copied information to the new PHIs, scan through
   1299     // them again and inform alias analysis that we've added potentially
   1300     // escaping uses to any values that are operands to these PHIs.
   1301     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1302       PHINode *P = NewPHIs[i];
   1303       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1304         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1305         AA->addEscapingUse(P->getOperandUse(jj));
   1306       }
   1307     }
   1308   }
   1309 
   1310   return V;
   1311 }
   1312 
   1313 static bool isLifetimeStart(const Instruction *Inst) {
   1314   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1315     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1316   return false;
   1317 }
   1318 
   1319 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
   1320 /// non-local by performing PHI construction.
   1321 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1322   // Find the non-local dependencies of the load.
   1323   SmallVector<NonLocalDepResult, 64> Deps;
   1324   AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
   1325   MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
   1326   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
   1327   //             << Deps.size() << *LI << '\n');
   1328 
   1329   // If we had to process more than one hundred blocks to find the
   1330   // dependencies, this load isn't worth worrying about.  Optimizing
   1331   // it will be too expensive.
   1332   unsigned NumDeps = Deps.size();
   1333   if (NumDeps > 100)
   1334     return false;
   1335 
   1336   // If we had a phi translation failure, we'll have a single entry which is a
   1337   // clobber in the current block.  Reject this early.
   1338   if (NumDeps == 1 &&
   1339       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1340     DEBUG(
   1341       dbgs() << "GVN: non-local load ";
   1342       WriteAsOperand(dbgs(), LI);
   1343       dbgs() << " has unknown dependencies\n";
   1344     );
   1345     return false;
   1346   }
   1347 
   1348   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1349   // where we have a value available in repl, also keep track of whether we see
   1350   // dependencies that produce an unknown value for the load (such as a call
   1351   // that could potentially clobber the load).
   1352   SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
   1353   SmallVector<BasicBlock*, 64> UnavailableBlocks;
   1354 
   1355   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1356     BasicBlock *DepBB = Deps[i].getBB();
   1357     MemDepResult DepInfo = Deps[i].getResult();
   1358 
   1359     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1360       UnavailableBlocks.push_back(DepBB);
   1361       continue;
   1362     }
   1363 
   1364     if (DepInfo.isClobber()) {
   1365       // The address being loaded in this non-local block may not be the same as
   1366       // the pointer operand of the load if PHI translation occurs.  Make sure
   1367       // to consider the right address.
   1368       Value *Address = Deps[i].getAddress();
   1369 
   1370       // If the dependence is to a store that writes to a superset of the bits
   1371       // read by the load, we can extract the bits we need for the load from the
   1372       // stored value.
   1373       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1374         if (TD && Address) {
   1375           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
   1376                                                       DepSI, *TD);
   1377           if (Offset != -1) {
   1378             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1379                                                        DepSI->getValueOperand(),
   1380                                                                 Offset));
   1381             continue;
   1382           }
   1383         }
   1384       }
   1385 
   1386       // Check to see if we have something like this:
   1387       //    load i32* P
   1388       //    load i8* (P+1)
   1389       // if we have this, replace the later with an extraction from the former.
   1390       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1391         // If this is a clobber and L is the first instruction in its block, then
   1392         // we have the first instruction in the entry block.
   1393         if (DepLI != LI && Address && TD) {
   1394           int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
   1395                                                      LI->getPointerOperand(),
   1396                                                      DepLI, *TD);
   1397 
   1398           if (Offset != -1) {
   1399             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1400                                                                     Offset));
   1401             continue;
   1402           }
   1403         }
   1404       }
   1405 
   1406       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1407       // forward a value on from it.
   1408       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1409         if (TD && Address) {
   1410           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1411                                                         DepMI, *TD);
   1412           if (Offset != -1) {
   1413             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1414                                                                   Offset));
   1415             continue;
   1416           }
   1417         }
   1418       }
   1419 
   1420       UnavailableBlocks.push_back(DepBB);
   1421       continue;
   1422     }
   1423 
   1424     // DepInfo.isDef() here
   1425 
   1426     Instruction *DepInst = DepInfo.getInst();
   1427 
   1428     // Loading the allocation -> undef.
   1429     if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
   1430         // Loading immediately after lifetime begin -> undef.
   1431         isLifetimeStart(DepInst)) {
   1432       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1433                                              UndefValue::get(LI->getType())));
   1434       continue;
   1435     }
   1436 
   1437     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1438       // Reject loads and stores that are to the same address but are of
   1439       // different types if we have to.
   1440       if (S->getValueOperand()->getType() != LI->getType()) {
   1441         // If the stored value is larger or equal to the loaded value, we can
   1442         // reuse it.
   1443         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1444                                                         LI->getType(), *TD)) {
   1445           UnavailableBlocks.push_back(DepBB);
   1446           continue;
   1447         }
   1448       }
   1449 
   1450       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1451                                                          S->getValueOperand()));
   1452       continue;
   1453     }
   1454 
   1455     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1456       // If the types mismatch and we can't handle it, reject reuse of the load.
   1457       if (LD->getType() != LI->getType()) {
   1458         // If the stored value is larger or equal to the loaded value, we can
   1459         // reuse it.
   1460         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
   1461           UnavailableBlocks.push_back(DepBB);
   1462           continue;
   1463         }
   1464       }
   1465       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1466       continue;
   1467     }
   1468 
   1469     UnavailableBlocks.push_back(DepBB);
   1470     continue;
   1471   }
   1472 
   1473   // If we have no predecessors that produce a known value for this load, exit
   1474   // early.
   1475   if (ValuesPerBlock.empty()) return false;
   1476 
   1477   // If all of the instructions we depend on produce a known value for this
   1478   // load, then it is fully redundant and we can use PHI insertion to compute
   1479   // its value.  Insert PHIs and remove the fully redundant value now.
   1480   if (UnavailableBlocks.empty()) {
   1481     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1482 
   1483     // Perform PHI construction.
   1484     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1485     LI->replaceAllUsesWith(V);
   1486 
   1487     if (isa<PHINode>(V))
   1488       V->takeName(LI);
   1489     if (V->getType()->isPointerTy())
   1490       MD->invalidateCachedPointerInfo(V);
   1491     markInstructionForDeletion(LI);
   1492     ++NumGVNLoad;
   1493     return true;
   1494   }
   1495 
   1496   if (!EnablePRE || !EnableLoadPRE)
   1497     return false;
   1498 
   1499   // Okay, we have *some* definitions of the value.  This means that the value
   1500   // is available in some of our (transitive) predecessors.  Lets think about
   1501   // doing PRE of this load.  This will involve inserting a new load into the
   1502   // predecessor when it's not available.  We could do this in general, but
   1503   // prefer to not increase code size.  As such, we only do this when we know
   1504   // that we only have to insert *one* load (which means we're basically moving
   1505   // the load, not inserting a new one).
   1506 
   1507   SmallPtrSet<BasicBlock *, 4> Blockers;
   1508   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1509     Blockers.insert(UnavailableBlocks[i]);
   1510 
   1511   // Let's find the first basic block with more than one predecessor.  Walk
   1512   // backwards through predecessors if needed.
   1513   BasicBlock *LoadBB = LI->getParent();
   1514   BasicBlock *TmpBB = LoadBB;
   1515 
   1516   bool isSinglePred = false;
   1517   bool allSingleSucc = true;
   1518   while (TmpBB->getSinglePredecessor()) {
   1519     isSinglePred = true;
   1520     TmpBB = TmpBB->getSinglePredecessor();
   1521     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1522       return false;
   1523     if (Blockers.count(TmpBB))
   1524       return false;
   1525 
   1526     // If any of these blocks has more than one successor (i.e. if the edge we
   1527     // just traversed was critical), then there are other paths through this
   1528     // block along which the load may not be anticipated.  Hoisting the load
   1529     // above this block would be adding the load to execution paths along
   1530     // which it was not previously executed.
   1531     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1532       return false;
   1533   }
   1534 
   1535   assert(TmpBB);
   1536   LoadBB = TmpBB;
   1537 
   1538   // FIXME: It is extremely unclear what this loop is doing, other than
   1539   // artificially restricting loadpre.
   1540   if (isSinglePred) {
   1541     bool isHot = false;
   1542     for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1543       const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1544       if (AV.isSimpleValue())
   1545         // "Hot" Instruction is in some loop (because it dominates its dep.
   1546         // instruction).
   1547         if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
   1548           if (DT->dominates(LI, I)) {
   1549             isHot = true;
   1550             break;
   1551           }
   1552     }
   1553 
   1554     // We are interested only in "hot" instructions. We don't want to do any
   1555     // mis-optimizations here.
   1556     if (!isHot)
   1557       return false;
   1558   }
   1559 
   1560   // Check to see how many predecessors have the loaded value fully
   1561   // available.
   1562   DenseMap<BasicBlock*, Value*> PredLoads;
   1563   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1564   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1565     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1566   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1567     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1568 
   1569   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
   1570   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1571        PI != E; ++PI) {
   1572     BasicBlock *Pred = *PI;
   1573     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
   1574       continue;
   1575     }
   1576     PredLoads[Pred] = 0;
   1577 
   1578     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1579       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1580         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1581               << Pred->getName() << "': " << *LI << '\n');
   1582         return false;
   1583       }
   1584 
   1585       if (LoadBB->isLandingPad()) {
   1586         DEBUG(dbgs()
   1587               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
   1588               << Pred->getName() << "': " << *LI << '\n');
   1589         return false;
   1590       }
   1591 
   1592       unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
   1593       NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
   1594     }
   1595   }
   1596 
   1597   if (!NeedToSplit.empty()) {
   1598     toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
   1599     return false;
   1600   }
   1601 
   1602   // Decide whether PRE is profitable for this load.
   1603   unsigned NumUnavailablePreds = PredLoads.size();
   1604   assert(NumUnavailablePreds != 0 &&
   1605          "Fully available value should be eliminated above!");
   1606 
   1607   // If this load is unavailable in multiple predecessors, reject it.
   1608   // FIXME: If we could restructure the CFG, we could make a common pred with
   1609   // all the preds that don't have an available LI and insert a new load into
   1610   // that one block.
   1611   if (NumUnavailablePreds != 1)
   1612       return false;
   1613 
   1614   // Check if the load can safely be moved to all the unavailable predecessors.
   1615   bool CanDoPRE = true;
   1616   SmallVector<Instruction*, 8> NewInsts;
   1617   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1618          E = PredLoads.end(); I != E; ++I) {
   1619     BasicBlock *UnavailablePred = I->first;
   1620 
   1621     // Do PHI translation to get its value in the predecessor if necessary.  The
   1622     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1623 
   1624     // If all preds have a single successor, then we know it is safe to insert
   1625     // the load on the pred (?!?), so we can insert code to materialize the
   1626     // pointer if it is not available.
   1627     PHITransAddr Address(LI->getPointerOperand(), TD);
   1628     Value *LoadPtr = 0;
   1629     if (allSingleSucc) {
   1630       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1631                                                   *DT, NewInsts);
   1632     } else {
   1633       Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
   1634       LoadPtr = Address.getAddr();
   1635     }
   1636 
   1637     // If we couldn't find or insert a computation of this phi translated value,
   1638     // we fail PRE.
   1639     if (LoadPtr == 0) {
   1640       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1641             << *LI->getPointerOperand() << "\n");
   1642       CanDoPRE = false;
   1643       break;
   1644     }
   1645 
   1646     // Make sure it is valid to move this load here.  We have to watch out for:
   1647     //  @1 = getelementptr (i8* p, ...
   1648     //  test p and branch if == 0
   1649     //  load @1
   1650     // It is valid to have the getelementptr before the test, even if p can
   1651     // be 0, as getelementptr only does address arithmetic.
   1652     // If we are not pushing the value through any multiple-successor blocks
   1653     // we do not have this case.  Otherwise, check that the load is safe to
   1654     // put anywhere; this can be improved, but should be conservatively safe.
   1655     if (!allSingleSucc &&
   1656         // FIXME: REEVALUTE THIS.
   1657         !isSafeToLoadUnconditionally(LoadPtr,
   1658                                      UnavailablePred->getTerminator(),
   1659                                      LI->getAlignment(), TD)) {
   1660       CanDoPRE = false;
   1661       break;
   1662     }
   1663 
   1664     I->second = LoadPtr;
   1665   }
   1666 
   1667   if (!CanDoPRE) {
   1668     while (!NewInsts.empty()) {
   1669       Instruction *I = NewInsts.pop_back_val();
   1670       if (MD) MD->removeInstruction(I);
   1671       I->eraseFromParent();
   1672     }
   1673     return false;
   1674   }
   1675 
   1676   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1677   // and using PHI construction to get the value in the other predecessors, do
   1678   // it.
   1679   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1680   DEBUG(if (!NewInsts.empty())
   1681           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1682                  << *NewInsts.back() << '\n');
   1683 
   1684   // Assign value numbers to the new instructions.
   1685   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1686     // FIXME: We really _ought_ to insert these value numbers into their
   1687     // parent's availability map.  However, in doing so, we risk getting into
   1688     // ordering issues.  If a block hasn't been processed yet, we would be
   1689     // marking a value as AVAIL-IN, which isn't what we intend.
   1690     VN.lookup_or_add(NewInsts[i]);
   1691   }
   1692 
   1693   for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
   1694          E = PredLoads.end(); I != E; ++I) {
   1695     BasicBlock *UnavailablePred = I->first;
   1696     Value *LoadPtr = I->second;
   1697 
   1698     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1699                                         LI->getAlignment(),
   1700                                         UnavailablePred->getTerminator());
   1701 
   1702     // Transfer the old load's TBAA tag to the new load.
   1703     if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
   1704       NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
   1705 
   1706     // Transfer DebugLoc.
   1707     NewLoad->setDebugLoc(LI->getDebugLoc());
   1708 
   1709     // Add the newly created load.
   1710     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1711                                                         NewLoad));
   1712     MD->invalidateCachedPointerInfo(LoadPtr);
   1713     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1714   }
   1715 
   1716   // Perform PHI construction.
   1717   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1718   LI->replaceAllUsesWith(V);
   1719   if (isa<PHINode>(V))
   1720     V->takeName(LI);
   1721   if (V->getType()->isPointerTy())
   1722     MD->invalidateCachedPointerInfo(V);
   1723   markInstructionForDeletion(LI);
   1724   ++NumPRELoad;
   1725   return true;
   1726 }
   1727 
   1728 /// processLoad - Attempt to eliminate a load, first by eliminating it
   1729 /// locally, and then attempting non-local elimination if that fails.
   1730 bool GVN::processLoad(LoadInst *L) {
   1731   if (!MD)
   1732     return false;
   1733 
   1734   if (!L->isSimple())
   1735     return false;
   1736 
   1737   if (L->use_empty()) {
   1738     markInstructionForDeletion(L);
   1739     return true;
   1740   }
   1741 
   1742   // ... to a pointer that has been loaded from before...
   1743   MemDepResult Dep = MD->getDependency(L);
   1744 
   1745   // If we have a clobber and target data is around, see if this is a clobber
   1746   // that we can fix up through code synthesis.
   1747   if (Dep.isClobber() && TD) {
   1748     // Check to see if we have something like this:
   1749     //   store i32 123, i32* %P
   1750     //   %A = bitcast i32* %P to i8*
   1751     //   %B = gep i8* %A, i32 1
   1752     //   %C = load i8* %B
   1753     //
   1754     // We could do that by recognizing if the clobber instructions are obviously
   1755     // a common base + constant offset, and if the previous store (or memset)
   1756     // completely covers this load.  This sort of thing can happen in bitfield
   1757     // access code.
   1758     Value *AvailVal = 0;
   1759     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1760       int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
   1761                                                   L->getPointerOperand(),
   1762                                                   DepSI, *TD);
   1763       if (Offset != -1)
   1764         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1765                                         L->getType(), L, *TD);
   1766     }
   1767 
   1768     // Check to see if we have something like this:
   1769     //    load i32* P
   1770     //    load i8* (P+1)
   1771     // if we have this, replace the later with an extraction from the former.
   1772     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1773       // If this is a clobber and L is the first instruction in its block, then
   1774       // we have the first instruction in the entry block.
   1775       if (DepLI == L)
   1776         return false;
   1777 
   1778       int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
   1779                                                  L->getPointerOperand(),
   1780                                                  DepLI, *TD);
   1781       if (Offset != -1)
   1782         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1783     }
   1784 
   1785     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1786     // a value on from it.
   1787     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1788       int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
   1789                                                     L->getPointerOperand(),
   1790                                                     DepMI, *TD);
   1791       if (Offset != -1)
   1792         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
   1793     }
   1794 
   1795     if (AvailVal) {
   1796       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1797             << *AvailVal << '\n' << *L << "\n\n\n");
   1798 
   1799       // Replace the load!
   1800       L->replaceAllUsesWith(AvailVal);
   1801       if (AvailVal->getType()->isPointerTy())
   1802         MD->invalidateCachedPointerInfo(AvailVal);
   1803       markInstructionForDeletion(L);
   1804       ++NumGVNLoad;
   1805       return true;
   1806     }
   1807   }
   1808 
   1809   // If the value isn't available, don't do anything!
   1810   if (Dep.isClobber()) {
   1811     DEBUG(
   1812       // fast print dep, using operator<< on instruction is too slow.
   1813       dbgs() << "GVN: load ";
   1814       WriteAsOperand(dbgs(), L);
   1815       Instruction *I = Dep.getInst();
   1816       dbgs() << " is clobbered by " << *I << '\n';
   1817     );
   1818     return false;
   1819   }
   1820 
   1821   // If it is defined in another block, try harder.
   1822   if (Dep.isNonLocal())
   1823     return processNonLocalLoad(L);
   1824 
   1825   if (!Dep.isDef()) {
   1826     DEBUG(
   1827       // fast print dep, using operator<< on instruction is too slow.
   1828       dbgs() << "GVN: load ";
   1829       WriteAsOperand(dbgs(), L);
   1830       dbgs() << " has unknown dependence\n";
   1831     );
   1832     return false;
   1833   }
   1834 
   1835   Instruction *DepInst = Dep.getInst();
   1836   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1837     Value *StoredVal = DepSI->getValueOperand();
   1838 
   1839     // The store and load are to a must-aliased pointer, but they may not
   1840     // actually have the same type.  See if we know how to reuse the stored
   1841     // value (depending on its type).
   1842     if (StoredVal->getType() != L->getType()) {
   1843       if (TD) {
   1844         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
   1845                                                    L, *TD);
   1846         if (StoredVal == 0)
   1847           return false;
   1848 
   1849         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1850                      << '\n' << *L << "\n\n\n");
   1851       }
   1852       else
   1853         return false;
   1854     }
   1855 
   1856     // Remove it!
   1857     L->replaceAllUsesWith(StoredVal);
   1858     if (StoredVal->getType()->isPointerTy())
   1859       MD->invalidateCachedPointerInfo(StoredVal);
   1860     markInstructionForDeletion(L);
   1861     ++NumGVNLoad;
   1862     return true;
   1863   }
   1864 
   1865   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1866     Value *AvailableVal = DepLI;
   1867 
   1868     // The loads are of a must-aliased pointer, but they may not actually have
   1869     // the same type.  See if we know how to reuse the previously loaded value
   1870     // (depending on its type).
   1871     if (DepLI->getType() != L->getType()) {
   1872       if (TD) {
   1873         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
   1874                                                       L, *TD);
   1875         if (AvailableVal == 0)
   1876           return false;
   1877 
   1878         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1879                      << "\n" << *L << "\n\n\n");
   1880       }
   1881       else
   1882         return false;
   1883     }
   1884 
   1885     // Remove it!
   1886     L->replaceAllUsesWith(AvailableVal);
   1887     if (DepLI->getType()->isPointerTy())
   1888       MD->invalidateCachedPointerInfo(DepLI);
   1889     markInstructionForDeletion(L);
   1890     ++NumGVNLoad;
   1891     return true;
   1892   }
   1893 
   1894   // If this load really doesn't depend on anything, then we must be loading an
   1895   // undef value.  This can happen when loading for a fresh allocation with no
   1896   // intervening stores, for example.
   1897   if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
   1898     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1899     markInstructionForDeletion(L);
   1900     ++NumGVNLoad;
   1901     return true;
   1902   }
   1903 
   1904   // If this load occurs either right after a lifetime begin,
   1905   // then the loaded value is undefined.
   1906   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1907     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1908       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1909       markInstructionForDeletion(L);
   1910       ++NumGVNLoad;
   1911       return true;
   1912     }
   1913   }
   1914 
   1915   return false;
   1916 }
   1917 
   1918 // findLeader - In order to find a leader for a given value number at a
   1919 // specific basic block, we first obtain the list of all Values for that number,
   1920 // and then scan the list to find one whose block dominates the block in
   1921 // question.  This is fast because dominator tree queries consist of only
   1922 // a few comparisons of DFS numbers.
   1923 Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
   1924   LeaderTableEntry Vals = LeaderTable[num];
   1925   if (!Vals.Val) return 0;
   1926 
   1927   Value *Val = 0;
   1928   if (DT->dominates(Vals.BB, BB)) {
   1929     Val = Vals.Val;
   1930     if (isa<Constant>(Val)) return Val;
   1931   }
   1932 
   1933   LeaderTableEntry* Next = Vals.Next;
   1934   while (Next) {
   1935     if (DT->dominates(Next->BB, BB)) {
   1936       if (isa<Constant>(Next->Val)) return Next->Val;
   1937       if (!Val) Val = Next->Val;
   1938     }
   1939 
   1940     Next = Next->Next;
   1941   }
   1942 
   1943   return Val;
   1944 }
   1945 
   1946 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
   1947 /// use is dominated by the given basic block.  Returns the number of uses that
   1948 /// were replaced.
   1949 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
   1950                                           BasicBlock *Root) {
   1951   unsigned Count = 0;
   1952   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   1953        UI != UE; ) {
   1954     Use &U = (UI++).getUse();
   1955 
   1956     // If From occurs as a phi node operand then the use implicitly lives in the
   1957     // corresponding incoming block.  Otherwise it is the block containing the
   1958     // user that must be dominated by Root.
   1959     BasicBlock *UsingBlock;
   1960     if (PHINode *PN = dyn_cast<PHINode>(U.getUser()))
   1961       UsingBlock = PN->getIncomingBlock(U);
   1962     else
   1963       UsingBlock = cast<Instruction>(U.getUser())->getParent();
   1964 
   1965     if (DT->dominates(Root, UsingBlock)) {
   1966       U.set(To);
   1967       ++Count;
   1968     }
   1969   }
   1970   return Count;
   1971 }
   1972 
   1973 /// propagateEquality - The given values are known to be equal in every block
   1974 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   1975 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   1976 bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
   1977   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   1978   Worklist.push_back(std::make_pair(LHS, RHS));
   1979   bool Changed = false;
   1980 
   1981   while (!Worklist.empty()) {
   1982     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   1983     LHS = Item.first; RHS = Item.second;
   1984 
   1985     if (LHS == RHS) continue;
   1986     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   1987 
   1988     // Don't try to propagate equalities between constants.
   1989     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
   1990 
   1991     // Prefer a constant on the right-hand side, or an Argument if no constants.
   1992     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   1993       std::swap(LHS, RHS);
   1994     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   1995 
   1996     // If there is no obvious reason to prefer the left-hand side over the right-
   1997     // hand side, ensure the longest lived term is on the right-hand side, so the
   1998     // shortest lived term will be replaced by the longest lived.  This tends to
   1999     // expose more simplifications.
   2000     uint32_t LVN = VN.lookup_or_add(LHS);
   2001     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   2002         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   2003       // Move the 'oldest' value to the right-hand side, using the value number as
   2004       // a proxy for age.
   2005       uint32_t RVN = VN.lookup_or_add(RHS);
   2006       if (LVN < RVN) {
   2007         std::swap(LHS, RHS);
   2008         LVN = RVN;
   2009       }
   2010     }
   2011     assert((!isa<Instruction>(RHS) ||
   2012             DT->properlyDominates(cast<Instruction>(RHS)->getParent(), Root)) &&
   2013            "Instruction doesn't dominate scope!");
   2014 
   2015     // If value numbering later deduces that an instruction in the scope is equal
   2016     // to 'LHS' then ensure it will be turned into 'RHS'.
   2017     addToLeaderTable(LVN, RHS, Root);
   2018 
   2019     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   2020     // LHS always has at least one use that is not dominated by Root, this will
   2021     // never do anything if LHS has only one use.
   2022     if (!LHS->hasOneUse()) {
   2023       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
   2024       Changed |= NumReplacements > 0;
   2025       NumGVNEqProp += NumReplacements;
   2026     }
   2027 
   2028     // Now try to deduce additional equalities from this one.  For example, if the
   2029     // known equality was "(A != B)" == "false" then it follows that A and B are
   2030     // equal in the scope.  Only boolean equalities with an explicit true or false
   2031     // RHS are currently supported.
   2032     if (!RHS->getType()->isIntegerTy(1))
   2033       // Not a boolean equality - bail out.
   2034       continue;
   2035     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   2036     if (!CI)
   2037       // RHS neither 'true' nor 'false' - bail out.
   2038       continue;
   2039     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   2040     bool isKnownTrue = CI->isAllOnesValue();
   2041     bool isKnownFalse = !isKnownTrue;
   2042 
   2043     // If "A && B" is known true then both A and B are known true.  If "A || B"
   2044     // is known false then both A and B are known false.
   2045     Value *A, *B;
   2046     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   2047         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   2048       Worklist.push_back(std::make_pair(A, RHS));
   2049       Worklist.push_back(std::make_pair(B, RHS));
   2050       continue;
   2051     }
   2052 
   2053     // If we are propagating an equality like "(A == B)" == "true" then also
   2054     // propagate the equality A == B.  When propagating a comparison such as
   2055     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   2056     if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
   2057       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   2058 
   2059       // If "A == B" is known true, or "A != B" is known false, then replace
   2060       // A with B everywhere in the scope.
   2061       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   2062           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   2063         Worklist.push_back(std::make_pair(Op0, Op1));
   2064 
   2065       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2066       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2067       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2068       // Since we don't have the instruction "A < B" immediately to hand, work out
   2069       // the value number that it would have and use that to find an appropriate
   2070       // instruction (if any).
   2071       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2072       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2073       // If the number we were assigned was brand new then there is no point in
   2074       // looking for an instruction realizing it: there cannot be one!
   2075       if (Num < NextNum) {
   2076         Value *NotCmp = findLeader(Root, Num);
   2077         if (NotCmp && isa<Instruction>(NotCmp)) {
   2078           unsigned NumReplacements =
   2079             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
   2080           Changed |= NumReplacements > 0;
   2081           NumGVNEqProp += NumReplacements;
   2082         }
   2083       }
   2084       // Ensure that any instruction in scope that gets the "A < B" value number
   2085       // is replaced with false.
   2086       addToLeaderTable(Num, NotVal, Root);
   2087 
   2088       continue;
   2089     }
   2090   }
   2091 
   2092   return Changed;
   2093 }
   2094 
   2095 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
   2096 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   2097 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   2098 static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
   2099                                        DominatorTree *DT) {
   2100   // While in theory it is interesting to consider the case in which Dst has
   2101   // more than one predecessor, because Dst might be part of a loop which is
   2102   // only reachable from Src, in practice it is pointless since at the time
   2103   // GVN runs all such loops have preheaders, which means that Dst will have
   2104   // been changed to have only one predecessor, namely Src.
   2105   BasicBlock *Pred = Dst->getSinglePredecessor();
   2106   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
   2107   (void)Src;
   2108   return Pred != 0;
   2109 }
   2110 
   2111 /// processInstruction - When calculating availability, handle an instruction
   2112 /// by inserting it into the appropriate sets
   2113 bool GVN::processInstruction(Instruction *I) {
   2114   // Ignore dbg info intrinsics.
   2115   if (isa<DbgInfoIntrinsic>(I))
   2116     return false;
   2117 
   2118   // If the instruction can be easily simplified then do so now in preference
   2119   // to value numbering it.  Value numbering often exposes redundancies, for
   2120   // example if it determines that %y is equal to %x then the instruction
   2121   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2122   if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
   2123     I->replaceAllUsesWith(V);
   2124     if (MD && V->getType()->isPointerTy())
   2125       MD->invalidateCachedPointerInfo(V);
   2126     markInstructionForDeletion(I);
   2127     ++NumGVNSimpl;
   2128     return true;
   2129   }
   2130 
   2131   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2132     if (processLoad(LI))
   2133       return true;
   2134 
   2135     unsigned Num = VN.lookup_or_add(LI);
   2136     addToLeaderTable(Num, LI, LI->getParent());
   2137     return false;
   2138   }
   2139 
   2140   // For conditional branches, we can perform simple conditional propagation on
   2141   // the condition value itself.
   2142   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2143     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
   2144       return false;
   2145 
   2146     Value *BranchCond = BI->getCondition();
   2147 
   2148     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2149     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2150     BasicBlock *Parent = BI->getParent();
   2151     bool Changed = false;
   2152 
   2153     if (isOnlyReachableViaThisEdge(Parent, TrueSucc, DT))
   2154       Changed |= propagateEquality(BranchCond,
   2155                                    ConstantInt::getTrue(TrueSucc->getContext()),
   2156                                    TrueSucc);
   2157 
   2158     if (isOnlyReachableViaThisEdge(Parent, FalseSucc, DT))
   2159       Changed |= propagateEquality(BranchCond,
   2160                                    ConstantInt::getFalse(FalseSucc->getContext()),
   2161                                    FalseSucc);
   2162 
   2163     return Changed;
   2164   }
   2165 
   2166   // For switches, propagate the case values into the case destinations.
   2167   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2168     Value *SwitchCond = SI->getCondition();
   2169     BasicBlock *Parent = SI->getParent();
   2170     bool Changed = false;
   2171     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2172          i != e; ++i) {
   2173       BasicBlock *Dst = i.getCaseSuccessor();
   2174       if (isOnlyReachableViaThisEdge(Parent, Dst, DT))
   2175         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), Dst);
   2176     }
   2177     return Changed;
   2178   }
   2179 
   2180   // Instructions with void type don't return a value, so there's
   2181   // no point in trying to find redundancies in them.
   2182   if (I->getType()->isVoidTy()) return false;
   2183 
   2184   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2185   unsigned Num = VN.lookup_or_add(I);
   2186 
   2187   // Allocations are always uniquely numbered, so we can save time and memory
   2188   // by fast failing them.
   2189   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2190     addToLeaderTable(Num, I, I->getParent());
   2191     return false;
   2192   }
   2193 
   2194   // If the number we were assigned was a brand new VN, then we don't
   2195   // need to do a lookup to see if the number already exists
   2196   // somewhere in the domtree: it can't!
   2197   if (Num >= NextNum) {
   2198     addToLeaderTable(Num, I, I->getParent());
   2199     return false;
   2200   }
   2201 
   2202   // Perform fast-path value-number based elimination of values inherited from
   2203   // dominators.
   2204   Value *repl = findLeader(I->getParent(), Num);
   2205   if (repl == 0) {
   2206     // Failure, just remember this instance for future use.
   2207     addToLeaderTable(Num, I, I->getParent());
   2208     return false;
   2209   }
   2210 
   2211   // Remove it!
   2212   I->replaceAllUsesWith(repl);
   2213   if (MD && repl->getType()->isPointerTy())
   2214     MD->invalidateCachedPointerInfo(repl);
   2215   markInstructionForDeletion(I);
   2216   return true;
   2217 }
   2218 
   2219 /// runOnFunction - This is the main transformation entry point for a function.
   2220 bool GVN::runOnFunction(Function& F) {
   2221   if (!NoLoads)
   2222     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2223   DT = &getAnalysis<DominatorTree>();
   2224   TD = getAnalysisIfAvailable<TargetData>();
   2225   TLI = &getAnalysis<TargetLibraryInfo>();
   2226   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   2227   VN.setMemDep(MD);
   2228   VN.setDomTree(DT);
   2229 
   2230   bool Changed = false;
   2231   bool ShouldContinue = true;
   2232 
   2233   // Merge unconditional branches, allowing PRE to catch more
   2234   // optimization opportunities.
   2235   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2236     BasicBlock *BB = FI++;
   2237 
   2238     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
   2239     if (removedBlock) ++NumGVNBlocks;
   2240 
   2241     Changed |= removedBlock;
   2242   }
   2243 
   2244   unsigned Iteration = 0;
   2245   while (ShouldContinue) {
   2246     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2247     ShouldContinue = iterateOnFunction(F);
   2248     if (splitCriticalEdges())
   2249       ShouldContinue = true;
   2250     Changed |= ShouldContinue;
   2251     ++Iteration;
   2252   }
   2253 
   2254   if (EnablePRE) {
   2255     bool PREChanged = true;
   2256     while (PREChanged) {
   2257       PREChanged = performPRE(F);
   2258       Changed |= PREChanged;
   2259     }
   2260   }
   2261   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2262   // computations into blocks where they become fully redundant.  Note that
   2263   // we can't do this until PRE's critical edge splitting updates memdep.
   2264   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2265 
   2266   cleanupGlobalSets();
   2267 
   2268   return Changed;
   2269 }
   2270 
   2271 
   2272 bool GVN::processBlock(BasicBlock *BB) {
   2273   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2274   // (and incrementing BI before processing an instruction).
   2275   assert(InstrsToErase.empty() &&
   2276          "We expect InstrsToErase to be empty across iterations");
   2277   bool ChangedFunction = false;
   2278 
   2279   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2280        BI != BE;) {
   2281     ChangedFunction |= processInstruction(BI);
   2282     if (InstrsToErase.empty()) {
   2283       ++BI;
   2284       continue;
   2285     }
   2286 
   2287     // If we need some instructions deleted, do it now.
   2288     NumGVNInstr += InstrsToErase.size();
   2289 
   2290     // Avoid iterator invalidation.
   2291     bool AtStart = BI == BB->begin();
   2292     if (!AtStart)
   2293       --BI;
   2294 
   2295     for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
   2296          E = InstrsToErase.end(); I != E; ++I) {
   2297       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2298       if (MD) MD->removeInstruction(*I);
   2299       (*I)->eraseFromParent();
   2300       DEBUG(verifyRemoved(*I));
   2301     }
   2302     InstrsToErase.clear();
   2303 
   2304     if (AtStart)
   2305       BI = BB->begin();
   2306     else
   2307       ++BI;
   2308   }
   2309 
   2310   return ChangedFunction;
   2311 }
   2312 
   2313 /// performPRE - Perform a purely local form of PRE that looks for diamond
   2314 /// control flow patterns and attempts to perform simple PRE at the join point.
   2315 bool GVN::performPRE(Function &F) {
   2316   bool Changed = false;
   2317   DenseMap<BasicBlock*, Value*> predMap;
   2318   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
   2319        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
   2320     BasicBlock *CurrentBlock = *DI;
   2321 
   2322     // Nothing to PRE in the entry block.
   2323     if (CurrentBlock == &F.getEntryBlock()) continue;
   2324 
   2325     // Don't perform PRE on a landing pad.
   2326     if (CurrentBlock->isLandingPad()) continue;
   2327 
   2328     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2329          BE = CurrentBlock->end(); BI != BE; ) {
   2330       Instruction *CurInst = BI++;
   2331 
   2332       if (isa<AllocaInst>(CurInst) ||
   2333           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
   2334           CurInst->getType()->isVoidTy() ||
   2335           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2336           isa<DbgInfoIntrinsic>(CurInst))
   2337         continue;
   2338 
   2339       // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2340       // sinking the compare again, and it would force the code generator to
   2341       // move the i1 from processor flags or predicate registers into a general
   2342       // purpose register.
   2343       if (isa<CmpInst>(CurInst))
   2344         continue;
   2345 
   2346       // We don't currently value number ANY inline asm calls.
   2347       if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2348         if (CallI->isInlineAsm())
   2349           continue;
   2350 
   2351       uint32_t ValNo = VN.lookup(CurInst);
   2352 
   2353       // Look for the predecessors for PRE opportunities.  We're
   2354       // only trying to solve the basic diamond case, where
   2355       // a value is computed in the successor and one predecessor,
   2356       // but not the other.  We also explicitly disallow cases
   2357       // where the successor is its own predecessor, because they're
   2358       // more complicated to get right.
   2359       unsigned NumWith = 0;
   2360       unsigned NumWithout = 0;
   2361       BasicBlock *PREPred = 0;
   2362       predMap.clear();
   2363 
   2364       for (pred_iterator PI = pred_begin(CurrentBlock),
   2365            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
   2366         BasicBlock *P = *PI;
   2367         // We're not interested in PRE where the block is its
   2368         // own predecessor, or in blocks with predecessors
   2369         // that are not reachable.
   2370         if (P == CurrentBlock) {
   2371           NumWithout = 2;
   2372           break;
   2373         } else if (!DT->dominates(&F.getEntryBlock(), P))  {
   2374           NumWithout = 2;
   2375           break;
   2376         }
   2377 
   2378         Value* predV = findLeader(P, ValNo);
   2379         if (predV == 0) {
   2380           PREPred = P;
   2381           ++NumWithout;
   2382         } else if (predV == CurInst) {
   2383           NumWithout = 2;
   2384         } else {
   2385           predMap[P] = predV;
   2386           ++NumWith;
   2387         }
   2388       }
   2389 
   2390       // Don't do PRE when it might increase code size, i.e. when
   2391       // we would need to insert instructions in more than one pred.
   2392       if (NumWithout != 1 || NumWith == 0)
   2393         continue;
   2394 
   2395       // Don't do PRE across indirect branch.
   2396       if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2397         continue;
   2398 
   2399       // We can't do PRE safely on a critical edge, so instead we schedule
   2400       // the edge to be split and perform the PRE the next time we iterate
   2401       // on the function.
   2402       unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2403       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2404         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2405         continue;
   2406       }
   2407 
   2408       // Instantiate the expression in the predecessor that lacked it.
   2409       // Because we are going top-down through the block, all value numbers
   2410       // will be available in the predecessor by the time we need them.  Any
   2411       // that weren't originally present will have been instantiated earlier
   2412       // in this loop.
   2413       Instruction *PREInstr = CurInst->clone();
   2414       bool success = true;
   2415       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
   2416         Value *Op = PREInstr->getOperand(i);
   2417         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2418           continue;
   2419 
   2420         if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
   2421           PREInstr->setOperand(i, V);
   2422         } else {
   2423           success = false;
   2424           break;
   2425         }
   2426       }
   2427 
   2428       // Fail out if we encounter an operand that is not available in
   2429       // the PRE predecessor.  This is typically because of loads which
   2430       // are not value numbered precisely.
   2431       if (!success) {
   2432         delete PREInstr;
   2433         DEBUG(verifyRemoved(PREInstr));
   2434         continue;
   2435       }
   2436 
   2437       PREInstr->insertBefore(PREPred->getTerminator());
   2438       PREInstr->setName(CurInst->getName() + ".pre");
   2439       PREInstr->setDebugLoc(CurInst->getDebugLoc());
   2440       predMap[PREPred] = PREInstr;
   2441       VN.add(PREInstr, ValNo);
   2442       ++NumGVNPRE;
   2443 
   2444       // Update the availability map to include the new instruction.
   2445       addToLeaderTable(ValNo, PREInstr, PREPred);
   2446 
   2447       // Create a PHI to make the value available in this block.
   2448       pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
   2449       PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
   2450                                      CurInst->getName() + ".pre-phi",
   2451                                      CurrentBlock->begin());
   2452       for (pred_iterator PI = PB; PI != PE; ++PI) {
   2453         BasicBlock *P = *PI;
   2454         Phi->addIncoming(predMap[P], P);
   2455       }
   2456 
   2457       VN.add(Phi, ValNo);
   2458       addToLeaderTable(ValNo, Phi, CurrentBlock);
   2459       Phi->setDebugLoc(CurInst->getDebugLoc());
   2460       CurInst->replaceAllUsesWith(Phi);
   2461       if (Phi->getType()->isPointerTy()) {
   2462         // Because we have added a PHI-use of the pointer value, it has now
   2463         // "escaped" from alias analysis' perspective.  We need to inform
   2464         // AA of this.
   2465         for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
   2466              ++ii) {
   2467           unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2468           VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2469         }
   2470 
   2471         if (MD)
   2472           MD->invalidateCachedPointerInfo(Phi);
   2473       }
   2474       VN.erase(CurInst);
   2475       removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2476 
   2477       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2478       if (MD) MD->removeInstruction(CurInst);
   2479       CurInst->eraseFromParent();
   2480       DEBUG(verifyRemoved(CurInst));
   2481       Changed = true;
   2482     }
   2483   }
   2484 
   2485   if (splitCriticalEdges())
   2486     Changed = true;
   2487 
   2488   return Changed;
   2489 }
   2490 
   2491 /// splitCriticalEdges - Split critical edges found during the previous
   2492 /// iteration that may enable further optimization.
   2493 bool GVN::splitCriticalEdges() {
   2494   if (toSplit.empty())
   2495     return false;
   2496   do {
   2497     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2498     SplitCriticalEdge(Edge.first, Edge.second, this);
   2499   } while (!toSplit.empty());
   2500   if (MD) MD->invalidateCachedPredecessors();
   2501   return true;
   2502 }
   2503 
   2504 /// iterateOnFunction - Executes one iteration of GVN
   2505 bool GVN::iterateOnFunction(Function &F) {
   2506   cleanupGlobalSets();
   2507 
   2508   // Top-down walk of the dominator tree
   2509   bool Changed = false;
   2510 #if 0
   2511   // Needed for value numbering with phi construction to work.
   2512   ReversePostOrderTraversal<Function*> RPOT(&F);
   2513   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
   2514        RE = RPOT.end(); RI != RE; ++RI)
   2515     Changed |= processBlock(*RI);
   2516 #else
   2517   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
   2518        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
   2519     Changed |= processBlock(DI->getBlock());
   2520 #endif
   2521 
   2522   return Changed;
   2523 }
   2524 
   2525 void GVN::cleanupGlobalSets() {
   2526   VN.clear();
   2527   LeaderTable.clear();
   2528   TableAllocator.Reset();
   2529 }
   2530 
   2531 /// verifyRemoved - Verify that the specified instruction does not occur in our
   2532 /// internal data structures.
   2533 void GVN::verifyRemoved(const Instruction *Inst) const {
   2534   VN.verifyRemoved(Inst);
   2535 
   2536   // Walk through the value number scope to make sure the instruction isn't
   2537   // ferreted away in it.
   2538   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2539        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2540     const LeaderTableEntry *Node = &I->second;
   2541     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2542 
   2543     while (Node->Next) {
   2544       Node = Node->Next;
   2545       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2546     }
   2547   }
   2548 }
   2549