Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution expander,
     11 // which is used to generate the code corresponding to a given scalar evolution
     12 // expression.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/LLVMContext.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Target/TargetData.h"
     22 #include "llvm/Target/TargetLowering.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 
     25 using namespace llvm;
     26 
     27 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
     28 /// reusing an existing cast if a suitable one exists, moving an existing
     29 /// cast if a suitable one exists but isn't in the right place, or
     30 /// creating a new one.
     31 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
     32                                        Instruction::CastOps Op,
     33                                        BasicBlock::iterator IP) {
     34   // This function must be called with the builder having a valid insertion
     35   // point. It doesn't need to be the actual IP where the uses of the returned
     36   // cast will be added, but it must dominate such IP.
     37   // We use this precondition to produce a cast that will dominate all its
     38   // uses. In particular, this is crucial for the case where the builder's
     39   // insertion point *is* the point where we were asked to put the cast.
     40   // Since we don't know the the builder's insertion point is actually
     41   // where the uses will be added (only that it dominates it), we are
     42   // not allowed to move it.
     43   BasicBlock::iterator BIP = Builder.GetInsertPoint();
     44 
     45   Instruction *Ret = NULL;
     46 
     47   // Check to see if there is already a cast!
     48   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
     49        UI != E; ++UI) {
     50     User *U = *UI;
     51     if (U->getType() == Ty)
     52       if (CastInst *CI = dyn_cast<CastInst>(U))
     53         if (CI->getOpcode() == Op) {
     54           // If the cast isn't where we want it, create a new cast at IP.
     55           // Likewise, do not reuse a cast at BIP because it must dominate
     56           // instructions that might be inserted before BIP.
     57           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
     58             // Create a new cast, and leave the old cast in place in case
     59             // it is being used as an insert point. Clear its operand
     60             // so that it doesn't hold anything live.
     61             Ret = CastInst::Create(Op, V, Ty, "", IP);
     62             Ret->takeName(CI);
     63             CI->replaceAllUsesWith(Ret);
     64             CI->setOperand(0, UndefValue::get(V->getType()));
     65             break;
     66           }
     67           Ret = CI;
     68           break;
     69         }
     70   }
     71 
     72   // Create a new cast.
     73   if (!Ret)
     74     Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
     75 
     76   // We assert at the end of the function since IP might point to an
     77   // instruction with different dominance properties than a cast
     78   // (an invoke for example) and not dominate BIP (but the cast does).
     79   assert(SE.DT->dominates(Ret, BIP));
     80 
     81   rememberInstruction(Ret);
     82   return Ret;
     83 }
     84 
     85 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
     86 /// which must be possible with a noop cast, doing what we can to share
     87 /// the casts.
     88 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
     89   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
     90   assert((Op == Instruction::BitCast ||
     91           Op == Instruction::PtrToInt ||
     92           Op == Instruction::IntToPtr) &&
     93          "InsertNoopCastOfTo cannot perform non-noop casts!");
     94   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
     95          "InsertNoopCastOfTo cannot change sizes!");
     96 
     97   // Short-circuit unnecessary bitcasts.
     98   if (Op == Instruction::BitCast) {
     99     if (V->getType() == Ty)
    100       return V;
    101     if (CastInst *CI = dyn_cast<CastInst>(V)) {
    102       if (CI->getOperand(0)->getType() == Ty)
    103         return CI->getOperand(0);
    104     }
    105   }
    106   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
    107   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
    108       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    109     if (CastInst *CI = dyn_cast<CastInst>(V))
    110       if ((CI->getOpcode() == Instruction::PtrToInt ||
    111            CI->getOpcode() == Instruction::IntToPtr) &&
    112           SE.getTypeSizeInBits(CI->getType()) ==
    113           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
    114         return CI->getOperand(0);
    115     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    116       if ((CE->getOpcode() == Instruction::PtrToInt ||
    117            CE->getOpcode() == Instruction::IntToPtr) &&
    118           SE.getTypeSizeInBits(CE->getType()) ==
    119           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
    120         return CE->getOperand(0);
    121   }
    122 
    123   // Fold a cast of a constant.
    124   if (Constant *C = dyn_cast<Constant>(V))
    125     return ConstantExpr::getCast(Op, C, Ty);
    126 
    127   // Cast the argument at the beginning of the entry block, after
    128   // any bitcasts of other arguments.
    129   if (Argument *A = dyn_cast<Argument>(V)) {
    130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    131     while ((isa<BitCastInst>(IP) &&
    132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
    133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
    134            isa<DbgInfoIntrinsic>(IP) ||
    135            isa<LandingPadInst>(IP))
    136       ++IP;
    137     return ReuseOrCreateCast(A, Ty, Op, IP);
    138   }
    139 
    140   // Cast the instruction immediately after the instruction.
    141   Instruction *I = cast<Instruction>(V);
    142   BasicBlock::iterator IP = I; ++IP;
    143   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    144     IP = II->getNormalDest()->begin();
    145   while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
    146     ++IP;
    147   return ReuseOrCreateCast(I, Ty, Op, IP);
    148 }
    149 
    150 /// InsertBinop - Insert the specified binary operator, doing a small amount
    151 /// of work to avoid inserting an obviously redundant operation.
    152 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
    153                                  Value *LHS, Value *RHS) {
    154   // Fold a binop with constant operands.
    155   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    156     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    157       return ConstantExpr::get(Opcode, CLHS, CRHS);
    158 
    159   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
    160   unsigned ScanLimit = 6;
    161   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    162   // Scanning starts from the last instruction before the insertion point.
    163   BasicBlock::iterator IP = Builder.GetInsertPoint();
    164   if (IP != BlockBegin) {
    165     --IP;
    166     for (; ScanLimit; --IP, --ScanLimit) {
    167       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    168       // generated code.
    169       if (isa<DbgInfoIntrinsic>(IP))
    170         ScanLimit++;
    171       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
    172           IP->getOperand(1) == RHS)
    173         return IP;
    174       if (IP == BlockBegin) break;
    175     }
    176   }
    177 
    178   // Save the original insertion point so we can restore it when we're done.
    179   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    180   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    181 
    182   // Move the insertion point out of as many loops as we can.
    183   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    184     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    185     BasicBlock *Preheader = L->getLoopPreheader();
    186     if (!Preheader) break;
    187 
    188     // Ok, move up a level.
    189     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    190   }
    191 
    192   // If we haven't found this binop, insert it.
    193   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
    194   BO->setDebugLoc(SaveInsertPt->getDebugLoc());
    195   rememberInstruction(BO);
    196 
    197   // Restore the original insert point.
    198   if (SaveInsertBB)
    199     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    200 
    201   return BO;
    202 }
    203 
    204 /// FactorOutConstant - Test if S is divisible by Factor, using signed
    205 /// division. If so, update S with Factor divided out and return true.
    206 /// S need not be evenly divisible if a reasonable remainder can be
    207 /// computed.
    208 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
    209 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
    210 /// check to see if the divide was folded.
    211 static bool FactorOutConstant(const SCEV *&S,
    212                               const SCEV *&Remainder,
    213                               const SCEV *Factor,
    214                               ScalarEvolution &SE,
    215                               const TargetData *TD) {
    216   // Everything is divisible by one.
    217   if (Factor->isOne())
    218     return true;
    219 
    220   // x/x == 1.
    221   if (S == Factor) {
    222     S = SE.getConstant(S->getType(), 1);
    223     return true;
    224   }
    225 
    226   // For a Constant, check for a multiple of the given factor.
    227   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    228     // 0/x == 0.
    229     if (C->isZero())
    230       return true;
    231     // Check for divisibility.
    232     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
    233       ConstantInt *CI =
    234         ConstantInt::get(SE.getContext(),
    235                          C->getValue()->getValue().sdiv(
    236                                                    FC->getValue()->getValue()));
    237       // If the quotient is zero and the remainder is non-zero, reject
    238       // the value at this scale. It will be considered for subsequent
    239       // smaller scales.
    240       if (!CI->isZero()) {
    241         const SCEV *Div = SE.getConstant(CI);
    242         S = Div;
    243         Remainder =
    244           SE.getAddExpr(Remainder,
    245                         SE.getConstant(C->getValue()->getValue().srem(
    246                                                   FC->getValue()->getValue())));
    247         return true;
    248       }
    249     }
    250   }
    251 
    252   // In a Mul, check if there is a constant operand which is a multiple
    253   // of the given factor.
    254   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    255     if (TD) {
    256       // With TargetData, the size is known. Check if there is a constant
    257       // operand which is a multiple of the given factor. If so, we can
    258       // factor it.
    259       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    260       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
    261         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
    262           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    263           NewMulOps[0] =
    264             SE.getConstant(C->getValue()->getValue().sdiv(
    265                                                    FC->getValue()->getValue()));
    266           S = SE.getMulExpr(NewMulOps);
    267           return true;
    268         }
    269     } else {
    270       // Without TargetData, check if Factor can be factored out of any of the
    271       // Mul's operands. If so, we can just remove it.
    272       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
    273         const SCEV *SOp = M->getOperand(i);
    274         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
    275         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
    276             Remainder->isZero()) {
    277           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    278           NewMulOps[i] = SOp;
    279           S = SE.getMulExpr(NewMulOps);
    280           return true;
    281         }
    282       }
    283     }
    284   }
    285 
    286   // In an AddRec, check if both start and step are divisible.
    287   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    288     const SCEV *Step = A->getStepRecurrence(SE);
    289     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    290     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
    291       return false;
    292     if (!StepRem->isZero())
    293       return false;
    294     const SCEV *Start = A->getStart();
    295     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
    296       return false;
    297     // FIXME: can use A->getNoWrapFlags(FlagNW)
    298     S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
    299     return true;
    300   }
    301 
    302   return false;
    303 }
    304 
    305 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
    306 /// is the number of SCEVAddRecExprs present, which are kept at the end of
    307 /// the list.
    308 ///
    309 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
    310                                 Type *Ty,
    311                                 ScalarEvolution &SE) {
    312   unsigned NumAddRecs = 0;
    313   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    314     ++NumAddRecs;
    315   // Group Ops into non-addrecs and addrecs.
    316   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
    317   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
    318   // Let ScalarEvolution sort and simplify the non-addrecs list.
    319   const SCEV *Sum = NoAddRecs.empty() ?
    320                     SE.getConstant(Ty, 0) :
    321                     SE.getAddExpr(NoAddRecs);
    322   // If it returned an add, use the operands. Otherwise it simplified
    323   // the sum into a single value, so just use that.
    324   Ops.clear();
    325   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    326     Ops.append(Add->op_begin(), Add->op_end());
    327   else if (!Sum->isZero())
    328     Ops.push_back(Sum);
    329   // Then append the addrecs.
    330   Ops.append(AddRecs.begin(), AddRecs.end());
    331 }
    332 
    333 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
    334 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
    335 /// This helps expose more opportunities for folding parts of the expressions
    336 /// into GEP indices.
    337 ///
    338 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
    339                          Type *Ty,
    340                          ScalarEvolution &SE) {
    341   // Find the addrecs.
    342   SmallVector<const SCEV *, 8> AddRecs;
    343   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    344     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
    345       const SCEV *Start = A->getStart();
    346       if (Start->isZero()) break;
    347       const SCEV *Zero = SE.getConstant(Ty, 0);
    348       AddRecs.push_back(SE.getAddRecExpr(Zero,
    349                                          A->getStepRecurrence(SE),
    350                                          A->getLoop(),
    351                                          // FIXME: A->getNoWrapFlags(FlagNW)
    352                                          SCEV::FlagAnyWrap));
    353       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
    354         Ops[i] = Zero;
    355         Ops.append(Add->op_begin(), Add->op_end());
    356         e += Add->getNumOperands();
    357       } else {
    358         Ops[i] = Start;
    359       }
    360     }
    361   if (!AddRecs.empty()) {
    362     // Add the addrecs onto the end of the list.
    363     Ops.append(AddRecs.begin(), AddRecs.end());
    364     // Resort the operand list, moving any constants to the front.
    365     SimplifyAddOperands(Ops, Ty, SE);
    366   }
    367 }
    368 
    369 /// expandAddToGEP - Expand an addition expression with a pointer type into
    370 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
    371 /// BasicAliasAnalysis and other passes analyze the result. See the rules
    372 /// for getelementptr vs. inttoptr in
    373 /// http://llvm.org/docs/LangRef.html#pointeraliasing
    374 /// for details.
    375 ///
    376 /// Design note: The correctness of using getelementptr here depends on
    377 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
    378 /// they may introduce pointer arithmetic which may not be safely converted
    379 /// into getelementptr.
    380 ///
    381 /// Design note: It might seem desirable for this function to be more
    382 /// loop-aware. If some of the indices are loop-invariant while others
    383 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
    384 /// loop-invariant portions of the overall computation outside the loop.
    385 /// However, there are a few reasons this is not done here. Hoisting simple
    386 /// arithmetic is a low-level optimization that often isn't very
    387 /// important until late in the optimization process. In fact, passes
    388 /// like InstructionCombining will combine GEPs, even if it means
    389 /// pushing loop-invariant computation down into loops, so even if the
    390 /// GEPs were split here, the work would quickly be undone. The
    391 /// LoopStrengthReduction pass, which is usually run quite late (and
    392 /// after the last InstructionCombining pass), takes care of hoisting
    393 /// loop-invariant portions of expressions, after considering what
    394 /// can be folded using target addressing modes.
    395 ///
    396 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
    397                                     const SCEV *const *op_end,
    398                                     PointerType *PTy,
    399                                     Type *Ty,
    400                                     Value *V) {
    401   Type *ElTy = PTy->getElementType();
    402   SmallVector<Value *, 4> GepIndices;
    403   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
    404   bool AnyNonZeroIndices = false;
    405 
    406   // Split AddRecs up into parts as either of the parts may be usable
    407   // without the other.
    408   SplitAddRecs(Ops, Ty, SE);
    409 
    410   // Descend down the pointer's type and attempt to convert the other
    411   // operands into GEP indices, at each level. The first index in a GEP
    412   // indexes into the array implied by the pointer operand; the rest of
    413   // the indices index into the element or field type selected by the
    414   // preceding index.
    415   for (;;) {
    416     // If the scale size is not 0, attempt to factor out a scale for
    417     // array indexing.
    418     SmallVector<const SCEV *, 8> ScaledOps;
    419     if (ElTy->isSized()) {
    420       const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
    421       if (!ElSize->isZero()) {
    422         SmallVector<const SCEV *, 8> NewOps;
    423         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    424           const SCEV *Op = Ops[i];
    425           const SCEV *Remainder = SE.getConstant(Ty, 0);
    426           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
    427             // Op now has ElSize factored out.
    428             ScaledOps.push_back(Op);
    429             if (!Remainder->isZero())
    430               NewOps.push_back(Remainder);
    431             AnyNonZeroIndices = true;
    432           } else {
    433             // The operand was not divisible, so add it to the list of operands
    434             // we'll scan next iteration.
    435             NewOps.push_back(Ops[i]);
    436           }
    437         }
    438         // If we made any changes, update Ops.
    439         if (!ScaledOps.empty()) {
    440           Ops = NewOps;
    441           SimplifyAddOperands(Ops, Ty, SE);
    442         }
    443       }
    444     }
    445 
    446     // Record the scaled array index for this level of the type. If
    447     // we didn't find any operands that could be factored, tentatively
    448     // assume that element zero was selected (since the zero offset
    449     // would obviously be folded away).
    450     Value *Scaled = ScaledOps.empty() ?
    451                     Constant::getNullValue(Ty) :
    452                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    453     GepIndices.push_back(Scaled);
    454 
    455     // Collect struct field index operands.
    456     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
    457       bool FoundFieldNo = false;
    458       // An empty struct has no fields.
    459       if (STy->getNumElements() == 0) break;
    460       if (SE.TD) {
    461         // With TargetData, field offsets are known. See if a constant offset
    462         // falls within any of the struct fields.
    463         if (Ops.empty()) break;
    464         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
    465           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
    466             const StructLayout &SL = *SE.TD->getStructLayout(STy);
    467             uint64_t FullOffset = C->getValue()->getZExtValue();
    468             if (FullOffset < SL.getSizeInBytes()) {
    469               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
    470               GepIndices.push_back(
    471                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
    472               ElTy = STy->getTypeAtIndex(ElIdx);
    473               Ops[0] =
    474                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
    475               AnyNonZeroIndices = true;
    476               FoundFieldNo = true;
    477             }
    478           }
    479       } else {
    480         // Without TargetData, just check for an offsetof expression of the
    481         // appropriate struct type.
    482         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    483           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
    484             Type *CTy;
    485             Constant *FieldNo;
    486             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
    487               GepIndices.push_back(FieldNo);
    488               ElTy =
    489                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
    490               Ops[i] = SE.getConstant(Ty, 0);
    491               AnyNonZeroIndices = true;
    492               FoundFieldNo = true;
    493               break;
    494             }
    495           }
    496       }
    497       // If no struct field offsets were found, tentatively assume that
    498       // field zero was selected (since the zero offset would obviously
    499       // be folded away).
    500       if (!FoundFieldNo) {
    501         ElTy = STy->getTypeAtIndex(0u);
    502         GepIndices.push_back(
    503           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
    504       }
    505     }
    506 
    507     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
    508       ElTy = ATy->getElementType();
    509     else
    510       break;
    511   }
    512 
    513   // If none of the operands were convertible to proper GEP indices, cast
    514   // the base to i8* and do an ugly getelementptr with that. It's still
    515   // better than ptrtoint+arithmetic+inttoptr at least.
    516   if (!AnyNonZeroIndices) {
    517     // Cast the base to i8*.
    518     V = InsertNoopCastOfTo(V,
    519        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
    520 
    521     assert(!isa<Instruction>(V) ||
    522            SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
    523 
    524     // Expand the operands for a plain byte offset.
    525     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
    526 
    527     // Fold a GEP with constant operands.
    528     if (Constant *CLHS = dyn_cast<Constant>(V))
    529       if (Constant *CRHS = dyn_cast<Constant>(Idx))
    530         return ConstantExpr::getGetElementPtr(CLHS, CRHS);
    531 
    532     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    533     unsigned ScanLimit = 6;
    534     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    535     // Scanning starts from the last instruction before the insertion point.
    536     BasicBlock::iterator IP = Builder.GetInsertPoint();
    537     if (IP != BlockBegin) {
    538       --IP;
    539       for (; ScanLimit; --IP, --ScanLimit) {
    540         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    541         // generated code.
    542         if (isa<DbgInfoIntrinsic>(IP))
    543           ScanLimit++;
    544         if (IP->getOpcode() == Instruction::GetElementPtr &&
    545             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
    546           return IP;
    547         if (IP == BlockBegin) break;
    548       }
    549     }
    550 
    551     // Save the original insertion point so we can restore it when we're done.
    552     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    553     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    554 
    555     // Move the insertion point out of as many loops as we can.
    556     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    557       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
    558       BasicBlock *Preheader = L->getLoopPreheader();
    559       if (!Preheader) break;
    560 
    561       // Ok, move up a level.
    562       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    563     }
    564 
    565     // Emit a GEP.
    566     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    567     rememberInstruction(GEP);
    568 
    569     // Restore the original insert point.
    570     if (SaveInsertBB)
    571       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    572 
    573     return GEP;
    574   }
    575 
    576   // Save the original insertion point so we can restore it when we're done.
    577   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    578   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    579 
    580   // Move the insertion point out of as many loops as we can.
    581   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    582     if (!L->isLoopInvariant(V)) break;
    583 
    584     bool AnyIndexNotLoopInvariant = false;
    585     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
    586          E = GepIndices.end(); I != E; ++I)
    587       if (!L->isLoopInvariant(*I)) {
    588         AnyIndexNotLoopInvariant = true;
    589         break;
    590       }
    591     if (AnyIndexNotLoopInvariant)
    592       break;
    593 
    594     BasicBlock *Preheader = L->getLoopPreheader();
    595     if (!Preheader) break;
    596 
    597     // Ok, move up a level.
    598     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    599   }
    600 
    601   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    602   // because ScalarEvolution may have changed the address arithmetic to
    603   // compute a value which is beyond the end of the allocated object.
    604   Value *Casted = V;
    605   if (V->getType() != PTy)
    606     Casted = InsertNoopCastOfTo(Casted, PTy);
    607   Value *GEP = Builder.CreateGEP(Casted,
    608                                  GepIndices,
    609                                  "scevgep");
    610   Ops.push_back(SE.getUnknown(GEP));
    611   rememberInstruction(GEP);
    612 
    613   // Restore the original insert point.
    614   if (SaveInsertBB)
    615     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    616 
    617   return expand(SE.getAddExpr(Ops));
    618 }
    619 
    620 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
    621 /// SCEV expansion. If they are nested, this is the most nested. If they are
    622 /// neighboring, pick the later.
    623 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
    624                                         DominatorTree &DT) {
    625   if (!A) return B;
    626   if (!B) return A;
    627   if (A->contains(B)) return B;
    628   if (B->contains(A)) return A;
    629   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
    630   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
    631   return A; // Arbitrarily break the tie.
    632 }
    633 
    634 /// getRelevantLoop - Get the most relevant loop associated with the given
    635 /// expression, according to PickMostRelevantLoop.
    636 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
    637   // Test whether we've already computed the most relevant loop for this SCEV.
    638   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    639     RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
    640   if (!Pair.second)
    641     return Pair.first->second;
    642 
    643   if (isa<SCEVConstant>(S))
    644     // A constant has no relevant loops.
    645     return 0;
    646   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    647     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
    648       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    649     // A non-instruction has no relevant loops.
    650     return 0;
    651   }
    652   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    653     const Loop *L = 0;
    654     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    655       L = AR->getLoop();
    656     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
    657          I != E; ++I)
    658       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    659     return RelevantLoops[N] = L;
    660   }
    661   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    662     const Loop *Result = getRelevantLoop(C->getOperand());
    663     return RelevantLoops[C] = Result;
    664   }
    665   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    666     const Loop *Result =
    667       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
    668                            getRelevantLoop(D->getRHS()),
    669                            *SE.DT);
    670     return RelevantLoops[D] = Result;
    671   }
    672   llvm_unreachable("Unexpected SCEV type!");
    673 }
    674 
    675 namespace {
    676 
    677 /// LoopCompare - Compare loops by PickMostRelevantLoop.
    678 class LoopCompare {
    679   DominatorTree &DT;
    680 public:
    681   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
    682 
    683   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
    684                   std::pair<const Loop *, const SCEV *> RHS) const {
    685     // Keep pointer operands sorted at the end.
    686     if (LHS.second->getType()->isPointerTy() !=
    687         RHS.second->getType()->isPointerTy())
    688       return LHS.second->getType()->isPointerTy();
    689 
    690     // Compare loops with PickMostRelevantLoop.
    691     if (LHS.first != RHS.first)
    692       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
    693 
    694     // If one operand is a non-constant negative and the other is not,
    695     // put the non-constant negative on the right so that a sub can
    696     // be used instead of a negate and add.
    697     if (LHS.second->isNonConstantNegative()) {
    698       if (!RHS.second->isNonConstantNegative())
    699         return false;
    700     } else if (RHS.second->isNonConstantNegative())
    701       return true;
    702 
    703     // Otherwise they are equivalent according to this comparison.
    704     return false;
    705   }
    706 };
    707 
    708 }
    709 
    710 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
    711   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    712 
    713   // Collect all the add operands in a loop, along with their associated loops.
    714   // Iterate in reverse so that constants are emitted last, all else equal, and
    715   // so that pointer operands are inserted first, which the code below relies on
    716   // to form more involved GEPs.
    717   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    718   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
    719        E(S->op_begin()); I != E; ++I)
    720     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    721 
    722   // Sort by loop. Use a stable sort so that constants follow non-constants and
    723   // pointer operands precede non-pointer operands.
    724   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    725 
    726   // Emit instructions to add all the operands. Hoist as much as possible
    727   // out of loops, and form meaningful getelementptrs where possible.
    728   Value *Sum = 0;
    729   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    730        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    731     const Loop *CurLoop = I->first;
    732     const SCEV *Op = I->second;
    733     if (!Sum) {
    734       // This is the first operand. Just expand it.
    735       Sum = expand(Op);
    736       ++I;
    737     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
    738       // The running sum expression is a pointer. Try to form a getelementptr
    739       // at this level with that as the base.
    740       SmallVector<const SCEV *, 4> NewOps;
    741       for (; I != E && I->first == CurLoop; ++I) {
    742         // If the operand is SCEVUnknown and not instructions, peek through
    743         // it, to enable more of it to be folded into the GEP.
    744         const SCEV *X = I->second;
    745         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
    746           if (!isa<Instruction>(U->getValue()))
    747             X = SE.getSCEV(U->getValue());
    748         NewOps.push_back(X);
    749       }
    750       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    751     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
    752       // The running sum is an integer, and there's a pointer at this level.
    753       // Try to form a getelementptr. If the running sum is instructions,
    754       // use a SCEVUnknown to avoid re-analyzing them.
    755       SmallVector<const SCEV *, 4> NewOps;
    756       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
    757                                                SE.getSCEV(Sum));
    758       for (++I; I != E && I->first == CurLoop; ++I)
    759         NewOps.push_back(I->second);
    760       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    761     } else if (Op->isNonConstantNegative()) {
    762       // Instead of doing a negate and add, just do a subtract.
    763       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
    764       Sum = InsertNoopCastOfTo(Sum, Ty);
    765       Sum = InsertBinop(Instruction::Sub, Sum, W);
    766       ++I;
    767     } else {
    768       // A simple add.
    769       Value *W = expandCodeFor(Op, Ty);
    770       Sum = InsertNoopCastOfTo(Sum, Ty);
    771       // Canonicalize a constant to the RHS.
    772       if (isa<Constant>(Sum)) std::swap(Sum, W);
    773       Sum = InsertBinop(Instruction::Add, Sum, W);
    774       ++I;
    775     }
    776   }
    777 
    778   return Sum;
    779 }
    780 
    781 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
    782   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    783 
    784   // Collect all the mul operands in a loop, along with their associated loops.
    785   // Iterate in reverse so that constants are emitted last, all else equal.
    786   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    787   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
    788        E(S->op_begin()); I != E; ++I)
    789     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    790 
    791   // Sort by loop. Use a stable sort so that constants follow non-constants.
    792   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    793 
    794   // Emit instructions to mul all the operands. Hoist as much as possible
    795   // out of loops.
    796   Value *Prod = 0;
    797   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    798        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    799     const SCEV *Op = I->second;
    800     if (!Prod) {
    801       // This is the first operand. Just expand it.
    802       Prod = expand(Op);
    803       ++I;
    804     } else if (Op->isAllOnesValue()) {
    805       // Instead of doing a multiply by negative one, just do a negate.
    806       Prod = InsertNoopCastOfTo(Prod, Ty);
    807       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
    808       ++I;
    809     } else {
    810       // A simple mul.
    811       Value *W = expandCodeFor(Op, Ty);
    812       Prod = InsertNoopCastOfTo(Prod, Ty);
    813       // Canonicalize a constant to the RHS.
    814       if (isa<Constant>(Prod)) std::swap(Prod, W);
    815       Prod = InsertBinop(Instruction::Mul, Prod, W);
    816       ++I;
    817     }
    818   }
    819 
    820   return Prod;
    821 }
    822 
    823 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
    824   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    825 
    826   Value *LHS = expandCodeFor(S->getLHS(), Ty);
    827   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    828     const APInt &RHS = SC->getValue()->getValue();
    829     if (RHS.isPowerOf2())
    830       return InsertBinop(Instruction::LShr, LHS,
    831                          ConstantInt::get(Ty, RHS.logBase2()));
    832   }
    833 
    834   Value *RHS = expandCodeFor(S->getRHS(), Ty);
    835   return InsertBinop(Instruction::UDiv, LHS, RHS);
    836 }
    837 
    838 /// Move parts of Base into Rest to leave Base with the minimal
    839 /// expression that provides a pointer operand suitable for a
    840 /// GEP expansion.
    841 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
    842                               ScalarEvolution &SE) {
    843   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    844     Base = A->getStart();
    845     Rest = SE.getAddExpr(Rest,
    846                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
    847                                           A->getStepRecurrence(SE),
    848                                           A->getLoop(),
    849                                           // FIXME: A->getNoWrapFlags(FlagNW)
    850                                           SCEV::FlagAnyWrap));
    851   }
    852   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    853     Base = A->getOperand(A->getNumOperands()-1);
    854     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    855     NewAddOps.back() = Rest;
    856     Rest = SE.getAddExpr(NewAddOps);
    857     ExposePointerBase(Base, Rest, SE);
    858   }
    859 }
    860 
    861 /// Determine if this is a well-behaved chain of instructions leading back to
    862 /// the PHI. If so, it may be reused by expanded expressions.
    863 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
    864                                          const Loop *L) {
    865   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
    866       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    867     return false;
    868   // If any of the operands don't dominate the insert position, bail.
    869   // Addrec operands are always loop-invariant, so this can only happen
    870   // if there are instructions which haven't been hoisted.
    871   if (L == IVIncInsertLoop) {
    872     for (User::op_iterator OI = IncV->op_begin()+1,
    873            OE = IncV->op_end(); OI != OE; ++OI)
    874       if (Instruction *OInst = dyn_cast<Instruction>(OI))
    875         if (!SE.DT->dominates(OInst, IVIncInsertPos))
    876           return false;
    877   }
    878   // Advance to the next instruction.
    879   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    880   if (!IncV)
    881     return false;
    882 
    883   if (IncV->mayHaveSideEffects())
    884     return false;
    885 
    886   if (IncV != PN)
    887     return true;
    888 
    889   return isNormalAddRecExprPHI(PN, IncV, L);
    890 }
    891 
    892 /// getIVIncOperand returns an induction variable increment's induction
    893 /// variable operand.
    894 ///
    895 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
    896 /// operands dominate InsertPos.
    897 ///
    898 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
    899 /// simple patterns generated by getAddRecExprPHILiterally and
    900 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
    901 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
    902                                            Instruction *InsertPos,
    903                                            bool allowScale) {
    904   if (IncV == InsertPos)
    905     return NULL;
    906 
    907   switch (IncV->getOpcode()) {
    908   default:
    909     return NULL;
    910   // Check for a simple Add/Sub or GEP of a loop invariant step.
    911   case Instruction::Add:
    912   case Instruction::Sub: {
    913     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    914     if (!OInst || SE.DT->dominates(OInst, InsertPos))
    915       return dyn_cast<Instruction>(IncV->getOperand(0));
    916     return NULL;
    917   }
    918   case Instruction::BitCast:
    919     return dyn_cast<Instruction>(IncV->getOperand(0));
    920   case Instruction::GetElementPtr:
    921     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
    922          I != E; ++I) {
    923       if (isa<Constant>(*I))
    924         continue;
    925       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
    926         if (!SE.DT->dominates(OInst, InsertPos))
    927           return NULL;
    928       }
    929       if (allowScale) {
    930         // allow any kind of GEP as long as it can be hoisted.
    931         continue;
    932       }
    933       // This must be a pointer addition of constants (pretty), which is already
    934       // handled, or some number of address-size elements (ugly). Ugly geps
    935       // have 2 operands. i1* is used by the expander to represent an
    936       // address-size element.
    937       if (IncV->getNumOperands() != 2)
    938         return NULL;
    939       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
    940       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
    941           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
    942         return NULL;
    943       break;
    944     }
    945     return dyn_cast<Instruction>(IncV->getOperand(0));
    946   }
    947 }
    948 
    949 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
    950 /// it available to other uses in this loop. Recursively hoist any operands,
    951 /// until we reach a value that dominates InsertPos.
    952 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
    953   if (SE.DT->dominates(IncV, InsertPos))
    954       return true;
    955 
    956   // InsertPos must itself dominate IncV so that IncV's new position satisfies
    957   // its existing users.
    958   if (!SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
    959     return false;
    960 
    961   // Check that the chain of IV operands leading back to Phi can be hoisted.
    962   SmallVector<Instruction*, 4> IVIncs;
    963   for(;;) {
    964     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    965     if (!Oper)
    966       return false;
    967     // IncV is safe to hoist.
    968     IVIncs.push_back(IncV);
    969     IncV = Oper;
    970     if (SE.DT->dominates(IncV, InsertPos))
    971       break;
    972   }
    973   for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
    974          E = IVIncs.rend(); I != E; ++I) {
    975     (*I)->moveBefore(InsertPos);
    976   }
    977   return true;
    978 }
    979 
    980 /// Determine if this cyclic phi is in a form that would have been generated by
    981 /// LSR. We don't care if the phi was actually expanded in this pass, as long
    982 /// as it is in a low-cost form, for example, no implied multiplication. This
    983 /// should match any patterns generated by getAddRecExprPHILiterally and
    984 /// expandAddtoGEP.
    985 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
    986                                            const Loop *L) {
    987   for(Instruction *IVOper = IncV;
    988       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
    989                                 /*allowScale=*/false));) {
    990     if (IVOper == PN)
    991       return true;
    992   }
    993   return false;
    994 }
    995 
    996 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
    997 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
    998 /// need to materialize IV increments elsewhere to handle difficult situations.
    999 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
   1000                                  Type *ExpandTy, Type *IntTy,
   1001                                  bool useSubtract) {
   1002   Value *IncV;
   1003   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
   1004   if (ExpandTy->isPointerTy()) {
   1005     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
   1006     // If the step isn't constant, don't use an implicitly scaled GEP, because
   1007     // that would require a multiply inside the loop.
   1008     if (!isa<ConstantInt>(StepV))
   1009       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
   1010                                   GEPPtrTy->getAddressSpace());
   1011     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
   1012     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
   1013     if (IncV->getType() != PN->getType()) {
   1014       IncV = Builder.CreateBitCast(IncV, PN->getType());
   1015       rememberInstruction(IncV);
   1016     }
   1017   } else {
   1018     IncV = useSubtract ?
   1019       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
   1020       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
   1021     rememberInstruction(IncV);
   1022   }
   1023   return IncV;
   1024 }
   1025 
   1026 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
   1027 /// the base addrec, which is the addrec without any non-loop-dominating
   1028 /// values, and return the PHI.
   1029 PHINode *
   1030 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
   1031                                         const Loop *L,
   1032                                         Type *ExpandTy,
   1033                                         Type *IntTy) {
   1034   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
   1035 
   1036   // Reuse a previously-inserted PHI, if present.
   1037   BasicBlock *LatchBlock = L->getLoopLatch();
   1038   if (LatchBlock) {
   1039     for (BasicBlock::iterator I = L->getHeader()->begin();
   1040          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1041       if (!SE.isSCEVable(PN->getType()) ||
   1042           (SE.getEffectiveSCEVType(PN->getType()) !=
   1043            SE.getEffectiveSCEVType(Normalized->getType())) ||
   1044           SE.getSCEV(PN) != Normalized)
   1045         continue;
   1046 
   1047       Instruction *IncV =
   1048         cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
   1049 
   1050       if (LSRMode) {
   1051         if (!isExpandedAddRecExprPHI(PN, IncV, L))
   1052           continue;
   1053         if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
   1054           continue;
   1055       }
   1056       else {
   1057         if (!isNormalAddRecExprPHI(PN, IncV, L))
   1058           continue;
   1059         if (L == IVIncInsertLoop)
   1060           do {
   1061             if (SE.DT->dominates(IncV, IVIncInsertPos))
   1062               break;
   1063             // Make sure the increment is where we want it. But don't move it
   1064             // down past a potential existing post-inc user.
   1065             IncV->moveBefore(IVIncInsertPos);
   1066             IVIncInsertPos = IncV;
   1067             IncV = cast<Instruction>(IncV->getOperand(0));
   1068           } while (IncV != PN);
   1069       }
   1070       // Ok, the add recurrence looks usable.
   1071       // Remember this PHI, even in post-inc mode.
   1072       InsertedValues.insert(PN);
   1073       // Remember the increment.
   1074       rememberInstruction(IncV);
   1075       return PN;
   1076     }
   1077   }
   1078 
   1079   // Save the original insertion point so we can restore it when we're done.
   1080   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1081   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1082 
   1083   // Another AddRec may need to be recursively expanded below. For example, if
   1084   // this AddRec is quadratic, the StepV may itself be an AddRec in this
   1085   // loop. Remove this loop from the PostIncLoops set before expanding such
   1086   // AddRecs. Otherwise, we cannot find a valid position for the step
   1087   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
   1088   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
   1089   // so it's not worth implementing SmallPtrSet::swap.
   1090   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
   1091   PostIncLoops.clear();
   1092 
   1093   // Expand code for the start value.
   1094   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
   1095                                 L->getHeader()->begin());
   1096 
   1097   // StartV must be hoisted into L's preheader to dominate the new phi.
   1098   assert(!isa<Instruction>(StartV) ||
   1099          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
   1100                                   L->getHeader()));
   1101 
   1102   // Expand code for the step value. Do this before creating the PHI so that PHI
   1103   // reuse code doesn't see an incomplete PHI.
   1104   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1105   // If the stride is negative, insert a sub instead of an add for the increment
   1106   // (unless it's a constant, because subtracts of constants are canonicalized
   1107   // to adds).
   1108   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1109   if (useSubtract)
   1110     Step = SE.getNegativeSCEV(Step);
   1111   // Expand the step somewhere that dominates the loop header.
   1112   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1113 
   1114   // Create the PHI.
   1115   BasicBlock *Header = L->getHeader();
   1116   Builder.SetInsertPoint(Header, Header->begin());
   1117   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1118   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
   1119                                   Twine(IVName) + ".iv");
   1120   rememberInstruction(PN);
   1121 
   1122   // Create the step instructions and populate the PHI.
   1123   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1124     BasicBlock *Pred = *HPI;
   1125 
   1126     // Add a start value.
   1127     if (!L->contains(Pred)) {
   1128       PN->addIncoming(StartV, Pred);
   1129       continue;
   1130     }
   1131 
   1132     // Create a step value and add it to the PHI.
   1133     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
   1134     // instructions at IVIncInsertPos.
   1135     Instruction *InsertPos = L == IVIncInsertLoop ?
   1136       IVIncInsertPos : Pred->getTerminator();
   1137     Builder.SetInsertPoint(InsertPos);
   1138     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1139 
   1140     PN->addIncoming(IncV, Pred);
   1141   }
   1142 
   1143   // Restore the original insert point.
   1144   if (SaveInsertBB)
   1145     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1146 
   1147   // After expanding subexpressions, restore the PostIncLoops set so the caller
   1148   // can ensure that IVIncrement dominates the current uses.
   1149   PostIncLoops = SavedPostIncLoops;
   1150 
   1151   // Remember this PHI, even in post-inc mode.
   1152   InsertedValues.insert(PN);
   1153 
   1154   return PN;
   1155 }
   1156 
   1157 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   1158   Type *STy = S->getType();
   1159   Type *IntTy = SE.getEffectiveSCEVType(STy);
   1160   const Loop *L = S->getLoop();
   1161 
   1162   // Determine a normalized form of this expression, which is the expression
   1163   // before any post-inc adjustment is made.
   1164   const SCEVAddRecExpr *Normalized = S;
   1165   if (PostIncLoops.count(L)) {
   1166     PostIncLoopSet Loops;
   1167     Loops.insert(L);
   1168     Normalized =
   1169       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
   1170                                                   Loops, SE, *SE.DT));
   1171   }
   1172 
   1173   // Strip off any non-loop-dominating component from the addrec start.
   1174   const SCEV *Start = Normalized->getStart();
   1175   const SCEV *PostLoopOffset = 0;
   1176   if (!SE.properlyDominates(Start, L->getHeader())) {
   1177     PostLoopOffset = Start;
   1178     Start = SE.getConstant(Normalized->getType(), 0);
   1179     Normalized = cast<SCEVAddRecExpr>(
   1180       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
   1181                        Normalized->getLoop(),
   1182                        // FIXME: Normalized->getNoWrapFlags(FlagNW)
   1183                        SCEV::FlagAnyWrap));
   1184   }
   1185 
   1186   // Strip off any non-loop-dominating component from the addrec step.
   1187   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1188   const SCEV *PostLoopScale = 0;
   1189   if (!SE.dominates(Step, L->getHeader())) {
   1190     PostLoopScale = Step;
   1191     Step = SE.getConstant(Normalized->getType(), 1);
   1192     Normalized =
   1193       cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
   1194                                             Normalized->getLoop(),
   1195                                             // FIXME: Normalized
   1196                                             // ->getNoWrapFlags(FlagNW)
   1197                                             SCEV::FlagAnyWrap));
   1198   }
   1199 
   1200   // Expand the core addrec. If we need post-loop scaling, force it to
   1201   // expand to an integer type to avoid the need for additional casting.
   1202   Type *ExpandTy = PostLoopScale ? IntTy : STy;
   1203   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
   1204 
   1205   // Accommodate post-inc mode, if necessary.
   1206   Value *Result;
   1207   if (!PostIncLoops.count(L))
   1208     Result = PN;
   1209   else {
   1210     // In PostInc mode, use the post-incremented value.
   1211     BasicBlock *LatchBlock = L->getLoopLatch();
   1212     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
   1213     Result = PN->getIncomingValueForBlock(LatchBlock);
   1214 
   1215     // For an expansion to use the postinc form, the client must call
   1216     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
   1217     // or dominated by IVIncInsertPos.
   1218     if (isa<Instruction>(Result)
   1219         && !SE.DT->dominates(cast<Instruction>(Result),
   1220                              Builder.GetInsertPoint())) {
   1221       // The induction variable's postinc expansion does not dominate this use.
   1222       // IVUsers tries to prevent this case, so it is rare. However, it can
   1223       // happen when an IVUser outside the loop is not dominated by the latch
   1224       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
   1225       // all cases. Consider a phi outide whose operand is replaced during
   1226       // expansion with the value of the postinc user. Without fundamentally
   1227       // changing the way postinc users are tracked, the only remedy is
   1228       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
   1229       // but hopefully expandCodeFor handles that.
   1230       bool useSubtract =
   1231         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1232       if (useSubtract)
   1233         Step = SE.getNegativeSCEV(Step);
   1234       // Expand the step somewhere that dominates the loop header.
   1235       BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1236       BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1237       Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1238       // Restore the insertion point to the place where the caller has
   1239       // determined dominates all uses.
   1240       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1241       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1242     }
   1243   }
   1244 
   1245   // Re-apply any non-loop-dominating scale.
   1246   if (PostLoopScale) {
   1247     Result = InsertNoopCastOfTo(Result, IntTy);
   1248     Result = Builder.CreateMul(Result,
   1249                                expandCodeFor(PostLoopScale, IntTy));
   1250     rememberInstruction(Result);
   1251   }
   1252 
   1253   // Re-apply any non-loop-dominating offset.
   1254   if (PostLoopOffset) {
   1255     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
   1256       const SCEV *const OffsetArray[1] = { PostLoopOffset };
   1257       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
   1258     } else {
   1259       Result = InsertNoopCastOfTo(Result, IntTy);
   1260       Result = Builder.CreateAdd(Result,
   1261                                  expandCodeFor(PostLoopOffset, IntTy));
   1262       rememberInstruction(Result);
   1263     }
   1264   }
   1265 
   1266   return Result;
   1267 }
   1268 
   1269 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   1270   if (!CanonicalMode) return expandAddRecExprLiterally(S);
   1271 
   1272   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1273   const Loop *L = S->getLoop();
   1274 
   1275   // First check for an existing canonical IV in a suitable type.
   1276   PHINode *CanonicalIV = 0;
   1277   if (PHINode *PN = L->getCanonicalInductionVariable())
   1278     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
   1279       CanonicalIV = PN;
   1280 
   1281   // Rewrite an AddRec in terms of the canonical induction variable, if
   1282   // its type is more narrow.
   1283   if (CanonicalIV &&
   1284       SE.getTypeSizeInBits(CanonicalIV->getType()) >
   1285       SE.getTypeSizeInBits(Ty)) {
   1286     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
   1287     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
   1288       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
   1289     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
   1290                                        // FIXME: S->getNoWrapFlags(FlagNW)
   1291                                        SCEV::FlagAnyWrap));
   1292     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1293     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1294     BasicBlock::iterator NewInsertPt =
   1295       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
   1296     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
   1297            isa<LandingPadInst>(NewInsertPt))
   1298       ++NewInsertPt;
   1299     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
   1300                       NewInsertPt);
   1301     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1302     return V;
   1303   }
   1304 
   1305   // {X,+,F} --> X + {0,+,F}
   1306   if (!S->getStart()->isZero()) {
   1307     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
   1308     NewOps[0] = SE.getConstant(Ty, 0);
   1309     // FIXME: can use S->getNoWrapFlags()
   1310     const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
   1311 
   1312     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
   1313     // comments on expandAddToGEP for details.
   1314     const SCEV *Base = S->getStart();
   1315     const SCEV *RestArray[1] = { Rest };
   1316     // Dig into the expression to find the pointer base for a GEP.
   1317     ExposePointerBase(Base, RestArray[0], SE);
   1318     // If we found a pointer, expand the AddRec with a GEP.
   1319     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
   1320       // Make sure the Base isn't something exotic, such as a multiplied
   1321       // or divided pointer value. In those cases, the result type isn't
   1322       // actually a pointer type.
   1323       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
   1324         Value *StartV = expand(Base);
   1325         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
   1326         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
   1327       }
   1328     }
   1329 
   1330     // Just do a normal add. Pre-expand the operands to suppress folding.
   1331     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
   1332                                 SE.getUnknown(expand(Rest))));
   1333   }
   1334 
   1335   // If we don't yet have a canonical IV, create one.
   1336   if (!CanonicalIV) {
   1337     // Create and insert the PHI node for the induction variable in the
   1338     // specified loop.
   1339     BasicBlock *Header = L->getHeader();
   1340     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1341     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
   1342                                   Header->begin());
   1343     rememberInstruction(CanonicalIV);
   1344 
   1345     Constant *One = ConstantInt::get(Ty, 1);
   1346     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1347       BasicBlock *HP = *HPI;
   1348       if (L->contains(HP)) {
   1349         // Insert a unit add instruction right before the terminator
   1350         // corresponding to the back-edge.
   1351         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
   1352                                                      "indvar.next",
   1353                                                      HP->getTerminator());
   1354         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
   1355         rememberInstruction(Add);
   1356         CanonicalIV->addIncoming(Add, HP);
   1357       } else {
   1358         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
   1359       }
   1360     }
   1361   }
   1362 
   1363   // {0,+,1} --> Insert a canonical induction variable into the loop!
   1364   if (S->isAffine() && S->getOperand(1)->isOne()) {
   1365     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
   1366            "IVs with types different from the canonical IV should "
   1367            "already have been handled!");
   1368     return CanonicalIV;
   1369   }
   1370 
   1371   // {0,+,F} --> {0,+,1} * F
   1372 
   1373   // If this is a simple linear addrec, emit it now as a special case.
   1374   if (S->isAffine())    // {0,+,F} --> i*F
   1375     return
   1376       expand(SE.getTruncateOrNoop(
   1377         SE.getMulExpr(SE.getUnknown(CanonicalIV),
   1378                       SE.getNoopOrAnyExtend(S->getOperand(1),
   1379                                             CanonicalIV->getType())),
   1380         Ty));
   1381 
   1382   // If this is a chain of recurrences, turn it into a closed form, using the
   1383   // folders, then expandCodeFor the closed form.  This allows the folders to
   1384   // simplify the expression without having to build a bunch of special code
   1385   // into this folder.
   1386   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
   1387 
   1388   // Promote S up to the canonical IV type, if the cast is foldable.
   1389   const SCEV *NewS = S;
   1390   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
   1391   if (isa<SCEVAddRecExpr>(Ext))
   1392     NewS = Ext;
   1393 
   1394   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
   1395   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
   1396 
   1397   // Truncate the result down to the original type, if needed.
   1398   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
   1399   return expand(T);
   1400 }
   1401 
   1402 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
   1403   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1404   Value *V = expandCodeFor(S->getOperand(),
   1405                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1406   Value *I = Builder.CreateTrunc(V, Ty);
   1407   rememberInstruction(I);
   1408   return I;
   1409 }
   1410 
   1411 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
   1412   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1413   Value *V = expandCodeFor(S->getOperand(),
   1414                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1415   Value *I = Builder.CreateZExt(V, Ty);
   1416   rememberInstruction(I);
   1417   return I;
   1418 }
   1419 
   1420 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
   1421   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1422   Value *V = expandCodeFor(S->getOperand(),
   1423                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1424   Value *I = Builder.CreateSExt(V, Ty);
   1425   rememberInstruction(I);
   1426   return I;
   1427 }
   1428 
   1429 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
   1430   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1431   Type *Ty = LHS->getType();
   1432   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1433     // In the case of mixed integer and pointer types, do the
   1434     // rest of the comparisons as integer.
   1435     if (S->getOperand(i)->getType() != Ty) {
   1436       Ty = SE.getEffectiveSCEVType(Ty);
   1437       LHS = InsertNoopCastOfTo(LHS, Ty);
   1438     }
   1439     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1440     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
   1441     rememberInstruction(ICmp);
   1442     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
   1443     rememberInstruction(Sel);
   1444     LHS = Sel;
   1445   }
   1446   // In the case of mixed integer and pointer types, cast the
   1447   // final result back to the pointer type.
   1448   if (LHS->getType() != S->getType())
   1449     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1450   return LHS;
   1451 }
   1452 
   1453 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
   1454   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1455   Type *Ty = LHS->getType();
   1456   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1457     // In the case of mixed integer and pointer types, do the
   1458     // rest of the comparisons as integer.
   1459     if (S->getOperand(i)->getType() != Ty) {
   1460       Ty = SE.getEffectiveSCEVType(Ty);
   1461       LHS = InsertNoopCastOfTo(LHS, Ty);
   1462     }
   1463     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1464     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
   1465     rememberInstruction(ICmp);
   1466     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
   1467     rememberInstruction(Sel);
   1468     LHS = Sel;
   1469   }
   1470   // In the case of mixed integer and pointer types, cast the
   1471   // final result back to the pointer type.
   1472   if (LHS->getType() != S->getType())
   1473     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1474   return LHS;
   1475 }
   1476 
   1477 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
   1478                                    Instruction *IP) {
   1479   Builder.SetInsertPoint(IP->getParent(), IP);
   1480   return expandCodeFor(SH, Ty);
   1481 }
   1482 
   1483 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
   1484   // Expand the code for this SCEV.
   1485   Value *V = expand(SH);
   1486   if (Ty) {
   1487     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
   1488            "non-trivial casts should be done with the SCEVs directly!");
   1489     V = InsertNoopCastOfTo(V, Ty);
   1490   }
   1491   return V;
   1492 }
   1493 
   1494 Value *SCEVExpander::expand(const SCEV *S) {
   1495   // Compute an insertion point for this SCEV object. Hoist the instructions
   1496   // as far out in the loop nest as possible.
   1497   Instruction *InsertPt = Builder.GetInsertPoint();
   1498   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
   1499        L = L->getParentLoop())
   1500     if (SE.isLoopInvariant(S, L)) {
   1501       if (!L) break;
   1502       if (BasicBlock *Preheader = L->getLoopPreheader())
   1503         InsertPt = Preheader->getTerminator();
   1504       else {
   1505         // LSR sets the insertion point for AddRec start/step values to the
   1506         // block start to simplify value reuse, even though it's an invalid
   1507         // position. SCEVExpander must correct for this in all cases.
   1508         InsertPt = L->getHeader()->getFirstInsertionPt();
   1509       }
   1510     } else {
   1511       // If the SCEV is computable at this level, insert it into the header
   1512       // after the PHIs (and after any other instructions that we've inserted
   1513       // there) so that it is guaranteed to dominate any user inside the loop.
   1514       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
   1515         InsertPt = L->getHeader()->getFirstInsertionPt();
   1516       while (InsertPt != Builder.GetInsertPoint()
   1517              && (isInsertedInstruction(InsertPt)
   1518                  || isa<DbgInfoIntrinsic>(InsertPt))) {
   1519         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
   1520       }
   1521       break;
   1522     }
   1523 
   1524   // Check to see if we already expanded this here.
   1525   std::map<std::pair<const SCEV *, Instruction *>,
   1526            AssertingVH<Value> >::iterator I =
   1527     InsertedExpressions.find(std::make_pair(S, InsertPt));
   1528   if (I != InsertedExpressions.end())
   1529     return I->second;
   1530 
   1531   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1532   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1533   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
   1534 
   1535   // Expand the expression into instructions.
   1536   Value *V = visit(S);
   1537 
   1538   // Remember the expanded value for this SCEV at this location.
   1539   //
   1540   // This is independent of PostIncLoops. The mapped value simply materializes
   1541   // the expression at this insertion point. If the mapped value happened to be
   1542   // a postinc expansion, it could be reused by a non postinc user, but only if
   1543   // its insertion point was already at the head of the loop.
   1544   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
   1545 
   1546   restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1547   return V;
   1548 }
   1549 
   1550 void SCEVExpander::rememberInstruction(Value *I) {
   1551   if (!PostIncLoops.empty())
   1552     InsertedPostIncValues.insert(I);
   1553   else
   1554     InsertedValues.insert(I);
   1555 }
   1556 
   1557 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
   1558   Builder.SetInsertPoint(BB, I);
   1559 }
   1560 
   1561 /// getOrInsertCanonicalInductionVariable - This method returns the
   1562 /// canonical induction variable of the specified type for the specified
   1563 /// loop (inserting one if there is none).  A canonical induction variable
   1564 /// starts at zero and steps by one on each iteration.
   1565 PHINode *
   1566 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
   1567                                                     Type *Ty) {
   1568   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
   1569 
   1570   // Build a SCEV for {0,+,1}<L>.
   1571   // Conservatively use FlagAnyWrap for now.
   1572   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
   1573                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
   1574 
   1575   // Emit code for it.
   1576   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1577   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1578   PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
   1579   if (SaveInsertBB)
   1580     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1581 
   1582   return V;
   1583 }
   1584 
   1585 /// Sort values by integer width for replaceCongruentIVs.
   1586 static bool width_descending(Value *lhs, Value *rhs) {
   1587   // Put pointers at the back and make sure pointer < pointer = false.
   1588   if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
   1589     return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
   1590   return rhs->getType()->getPrimitiveSizeInBits()
   1591     < lhs->getType()->getPrimitiveSizeInBits();
   1592 }
   1593 
   1594 /// replaceCongruentIVs - Check for congruent phis in this loop header and
   1595 /// replace them with their most canonical representative. Return the number of
   1596 /// phis eliminated.
   1597 ///
   1598 /// This does not depend on any SCEVExpander state but should be used in
   1599 /// the same context that SCEVExpander is used.
   1600 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
   1601                                            SmallVectorImpl<WeakVH> &DeadInsts,
   1602                                            const TargetLowering *TLI) {
   1603   // Find integer phis in order of increasing width.
   1604   SmallVector<PHINode*, 8> Phis;
   1605   for (BasicBlock::iterator I = L->getHeader()->begin();
   1606        PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   1607     Phis.push_back(Phi);
   1608   }
   1609   if (TLI)
   1610     std::sort(Phis.begin(), Phis.end(), width_descending);
   1611 
   1612   unsigned NumElim = 0;
   1613   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
   1614   // Process phis from wide to narrow. Mapping wide phis to the their truncation
   1615   // so narrow phis can reuse them.
   1616   for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
   1617          PEnd = Phis.end(); PIter != PEnd; ++PIter) {
   1618     PHINode *Phi = *PIter;
   1619 
   1620     if (!SE.isSCEVable(Phi->getType()))
   1621       continue;
   1622 
   1623     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
   1624     if (!OrigPhiRef) {
   1625       OrigPhiRef = Phi;
   1626       if (Phi->getType()->isIntegerTy() && TLI
   1627           && TLI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
   1628         // This phi can be freely truncated to the narrowest phi type. Map the
   1629         // truncated expression to it so it will be reused for narrow types.
   1630         const SCEV *TruncExpr =
   1631           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
   1632         ExprToIVMap[TruncExpr] = Phi;
   1633       }
   1634       continue;
   1635     }
   1636 
   1637     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
   1638     // sense.
   1639     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
   1640       continue;
   1641 
   1642     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1643       Instruction *OrigInc =
   1644         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
   1645       Instruction *IsomorphicInc =
   1646         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
   1647 
   1648       // If this phi has the same width but is more canonical, replace the
   1649       // original with it. As part of the "more canonical" determination,
   1650       // respect a prior decision to use an IV chain.
   1651       if (OrigPhiRef->getType() == Phi->getType()
   1652           && !(ChainedPhis.count(Phi)
   1653                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
   1654           && (ChainedPhis.count(Phi)
   1655               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
   1656         std::swap(OrigPhiRef, Phi);
   1657         std::swap(OrigInc, IsomorphicInc);
   1658       }
   1659       // Replacing the congruent phi is sufficient because acyclic redundancy
   1660       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
   1661       // that a phi is congruent, it's often the head of an IV user cycle that
   1662       // is isomorphic with the original phi. It's worth eagerly cleaning up the
   1663       // common case of a single IV increment so that DeleteDeadPHIs can remove
   1664       // cycles that had postinc uses.
   1665       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
   1666                                                    IsomorphicInc->getType());
   1667       if (OrigInc != IsomorphicInc
   1668           && TruncExpr == SE.getSCEV(IsomorphicInc)
   1669           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
   1670               || hoistIVInc(OrigInc, IsomorphicInc))) {
   1671         DEBUG_WITH_TYPE(DebugType, dbgs()
   1672                         << "INDVARS: Eliminated congruent iv.inc: "
   1673                         << *IsomorphicInc << '\n');
   1674         Value *NewInc = OrigInc;
   1675         if (OrigInc->getType() != IsomorphicInc->getType()) {
   1676           Instruction *IP = isa<PHINode>(OrigInc)
   1677             ? (Instruction*)L->getHeader()->getFirstInsertionPt()
   1678             : OrigInc->getNextNode();
   1679           IRBuilder<> Builder(IP);
   1680           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
   1681           NewInc = Builder.
   1682             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
   1683         }
   1684         IsomorphicInc->replaceAllUsesWith(NewInc);
   1685         DeadInsts.push_back(IsomorphicInc);
   1686       }
   1687     }
   1688     DEBUG_WITH_TYPE(DebugType, dbgs()
   1689                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
   1690     ++NumElim;
   1691     Value *NewIV = OrigPhiRef;
   1692     if (OrigPhiRef->getType() != Phi->getType()) {
   1693       IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
   1694       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
   1695       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
   1696     }
   1697     Phi->replaceAllUsesWith(NewIV);
   1698     DeadInsts.push_back(Phi);
   1699   }
   1700   return NumElim;
   1701 }
   1702